2020高考立几集锦

合集下载

2020高考数学解答题核心素养题型《专题07 立体几何综合问题》+答题指导)(解析版)

2020高考数学解答题核心素养题型《专题07 立体几何综合问题》+答题指导)(解析版)

专题07 立体几何综合问题【题型解读】▶▶题型一 空间点、线、面的位置关系及空间角的计算(1)空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解.(2)利用向量求空间角的步骤:第一步:建立空间直角坐标系;第二步:确定点的坐标;第三步:求向量(直线的方向向量、平面的法向量)坐标;第四步:计算向量的夹角(或函数值);第五步:将向量夹角转化为所求的空间角;第六步:反思回顾.查看关键点、易错点和答题规范.【例1】 (2019·河南郑州高三联考)在如图所示的多面体中,四边形ABCD 是平行四边形,四边形BDEF是矩形,ED ⊥平面ABCD ,∠ABD =π6,AB =2AD . (1)求证:平面BDEF ⊥平面ADE ;(2)若ED =BD ,求直线AF 与平面AEC 所成角的正弦值.【答案】见解析【解析】(1)在△ABD 中,∠ABD =π6,AB =2AD ,由余弦定理,得BD =3AD ,从而BD 2+AD 2=AB 2,所以△ABD 为直角三角形且∠ADB =90°,故BD ⊥AD .因为DE ⊥平面ABCD ,BD ⊂平面ABCD ,所以DE ⊥BD .又AD ∩DE =D ,所以BD ⊥平面ADE .因为BD ⊂平面BDEF ,所以平面BDEF ⊥平面ADE .(2)由(1)可得,在Rt △ABD 中,∠BAD =π3,BD =3AD , 又由ED =BD ,设AD =1,则BD =ED = 3.因为DE ⊥平面ABCD ,BD ⊥AD ,所以可以点D 为坐标原点,DA ,DB ,DE 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示.则A (1,0,0),C (-1,3,0),E (0,0,3),F (0,3,3).所以AE →=(-1,0,3),AC →=(-2,3,0).设平面AEC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·A E →=0,n ·A C →=0,即⎩⎨⎧ -x +3z =0,-2x +3y =0,令z =1,得n =(3,2,1)为平面AEC 的一个法向量.因为A F →=(-1,3,3), 所以cos 〈n ,A F →〉=n ·A F →|n |·|A F →|=4214, 所以直线AF 与平面AEC 所成角的正弦值为4214. 【素养解读】本例问题(1)证明两平面垂直,考查了逻辑推理的核心素养;问题(2)计算线面所成的角时,考查了直观想象和数学运算的核心素养.【突破训练1】 (2018·北京卷)如图,在三棱柱ABC -A 1B 1C 1中,CC 1⊥平面ABC ,D ,E ,F ,G 分别为AA 1,AC ,A 1C 1,BB 1的中点,AB =BC = 5 ,AC =AA 1=2.(1)求证:AC ⊥平面BEF ;(2)求二面角B -CD -C 1的余弦值;(3)证明:直线FG 与平面BCD 相交.【答案】见解析【解析】(1)证明:在三棱柱ABC -A 1B 1C 1中,因为CC 1⊥平面ABC ,所以四边形A 1ACC 1为矩形.又E ,F 分别为AC ,A 1C 1的中点,所以AC ⊥EF .因为AB =BC .所以AC ⊥BE ,所以AC ⊥平面BEF .(2)由(1)知AC ⊥EF ,AC ⊥BE ,EF ∥CC 1.又CC 1⊥平面ABC ,所以EF ⊥平面ABC .因为BE ⊂平面ABC ,所以EF ⊥BE .如图建立空间直角坐称系Exyz .由题意得B (0,2,0),C (-1,0,0),D (1,0,1),F (0,0,2),G (0,2,1).所以CD →=(2,0,1),C B →=(1,2,0),设平面BCD 的法向量为n =(a ,b ,c ),所以⎩⎪⎨⎪⎧ n ·C D →=0,n ·C B →=0,所以⎩⎪⎨⎪⎧ 2a +c =0,a +2b =0.令a =2,则b =-1,c =-4,所以平面BCD 的法向量n =(2,-1,-4),又因为平面CDC 1的法向量为E B →=(0,2,0),所以cos 〈n ,E B →〉=n ·E B→|n ||EB →|=-2121. 由图可得二面角B -CD -C 1为钝二面角,所以二面角B -CD -C 1的余弦值为-2121. (3)证明:平面BCD 的法向量为n =(2,-1,-4),因为G (0,2,1),F (0,0,2),所以G F →=(0,-2,1),所以n ·G F →=-2,所以n 与G F →不垂直,所以GF 与平面BCD 不平行且不在平面BCD 内,所以GF 与平面BCD 相交. ▶▶题型二 平面图形折叠成空间几何体的问题1.先将平面图形折叠成空间几何体,再以其为载体研究其中的线、面间的位置关系与计算有关的几何量是近几年高考考查立体几何的一类重要考向,它很好地将平面图形拓展成空间图形,同时也为空间立体图形向平面图形转化提供了具体形象的途径,是高考深层次上考查空间想象能力的主要方向.2.(1)解决与折叠有关的问题的关键是搞清折叠前后的变化量和不变量.一般情况下,长度是不变量,而位置关系往往会发生变化,抓住不变量是解决问题的突破口.(2)在解决问题时,要综合考虑折叠前后的图形,既要分析折叠后的图形,也要分析折叠前的图形.(3)解决翻折问题的答题步骤第一步:确定折叠前后的各量之间的关系,搞清折叠前后的变化量和不变量;第二步:在折叠后的图形中确定线和面的位置关系,明确需要用到的线面;第三步:利用判定定理或性质定理进行证明.【例2】 (2018·全国卷Ⅰ)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P 的位置,且PF ⊥BF .(1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.【答案】见解析【解析】(1)证明:由已知可得,BF ⊥PF ,BF ⊥EF ,所以BF ⊥平面PEF .又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD .(2)作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF →的方向为y 轴正方向,|B F →|为单位长,建立如图所示的空间直角坐标系Hxyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE = 3.又PF =1,EF =2,故PE ⊥PF .可得PH =32,EH =32. 则H (0,0,0),P ⎝ ⎛⎭⎪⎫0,0,32,D ⎝ ⎛⎭⎪⎫-1,-32,0,D P →=⎝ ⎛⎭⎪⎫1,32,32,H P →=⎝ ⎛⎭⎪⎫0,0,32为平面ABFD 的法向量.设DP 与平面ABFD 所成角为θ,则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪H P →·D P →|H P →|·|DP →|= 34 3=34. 所以DP 与平面ABFD 所成角的正弦值为34. 【素养解读】本例在证明或计算过程中都要考虑图形翻折前后的变化,因此综合考查了逻辑推理、数学运算、直观想象、数学建模的核心素养.【突破训练2】 如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,AD =2,E 是AD 的中点,O 是AC 与BE 的交点,将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)证明:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 所成锐二面角的余弦值.【答案】见解析【解析】(1)证明:在题图1中,因为AB =BC =1,AD =2,E 是AD 的中点∠BAD =π2,所以BE ⊥AC .即在题图2中,BE ⊥OA 1,BE ⊥OC ,从而BE ⊥平面A 1OC .又CD ∥BE ,所以CD ⊥平面A 1OC .(2)由已知,平面A 1BE ⊥平面BCDE ,又由(1)知,BE ⊥OA 1,BE ⊥OC .所以∠A 1OC 为二面角A 1-BE -C 的平面角,所以∠A 1OC =π2. 如图,以O 为原点,OB →,OC →,OA 1→分别为x 轴、y 轴、z 轴正方向建立空间直角坐标系,因为A 1B =A 1E =BC =ED =1,BC ∥ED ,所以B ⎝ ⎛⎭⎪⎫22,0,0,E ⎝ ⎛⎭⎪⎫-22,0,0,A 1⎝ ⎛⎭⎪⎫0,0,22,C ⎝ ⎛⎭⎪⎫0,22,0, 得BC →=⎝ ⎛⎭⎪⎫-22,22,0,A 1C →=⎝ ⎛⎭⎪⎫0,22,-22, CD →=BE →=(-2,0,0).设平面A 1BC 的一个法向量n 1=(x 1,y 1,z 1),平面A 1CD 的一个法向量n 2=(x 2,y 2,z 2),平面A 1BC 与平面A 1CD 的夹角为θ,则⎩⎪⎨⎪⎧ n 1·BC →=0,n 1·A 1C →=0,得⎩⎪⎨⎪⎧ -x 1+y 1=0,y 1-z 1=0,取n 1=(1,1,1); 由⎩⎪⎨⎪⎧ n 2·CD →=0,n 2·A 1C →=0,得⎩⎪⎨⎪⎧x 2=0,y 2-z 2=0,取n 2=(0,1,1), 从而cos θ=|cos 〈n 1,n 2〉|=23×2=63, 即平面A 1BC 与平面A 1CD 所成锐二面角的余弦值为63. ▶▶题型三 线、面位置关系中的探索性问题是否存在某点或某参数,使得某种线、面位置关系成立问题,是近几年高考命题的热点,常以解答题中最后一问的形式出现,解决这类问题的基本思路类似于反证法,即“在假设存在的前提下通过推理论证,如果能找到符合要求的点(或其他的问题),就肯定这个结论,如果在推理论证中出现矛盾,就说明假设不成立,从而否定这个结论”.【例3】 (2018·全国卷Ⅱ)如图,在三棱锥P -ABC 中,AB =BC =2 2 ,PA =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ; (2)若点M 在棱BC 上,且二面角M -PA -C 为30°,求PC 与平面PAM 所成角的正弦值.【答案】见解析【解析】(1)证明:因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =2 3.连接OB ,因为AB =BC =22AC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2. 由OP 2+OB 2=PB 2知PO ⊥OB .由OP ⊥OB ,OP ⊥AC 知PO ⊥平面ABC .(2)如图,以O 为坐标原点,OB →的方向为x 轴正方向,建立空间直角坐标系Oxyz .则O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,23),A P →=(0,2,23),取平面PAC 的一个法向量O B →=(2,0,0).设M (a,2-a,0)(0<a ≤2),则A M →=(a,4-a,0).设平面PAM 的法向量为n =(x ,y ,z ). 由A P →·n =0,A M →·n =0得⎩⎨⎧ 2y +23z =0,ax +(4-a)y =0,可取n =(3(a -4),3a ,-a ), 所以cos 〈O B →,n 〉=23(a -4)23(a -4)2+3a 2+a2.由已知得|cos 〈O B →,n 〉|=32. 所以23|a -4|23(a -4)2+3a 2+a2=32.解得a =-4(舍去),a =43. 所以n =⎝ ⎛⎭⎪⎫-833,433,-43.又P C →=(0,2,-23), 所以cos 〈P C →,n 〉=34.所以PC 与平面PAM 所成角的正弦值为34. 【素养解读】本例问题(1)中证明线面垂直直接考查了逻辑推理的核心素养;问题(2)中要探求点M 的位置,要求较高,它既考查了直观想象的核心素养,又考查了数学建模的核心素养.【突破训练3】 如图,在直三棱柱ABC -A 1B 1C 1中,平面A 1BC ⊥侧面ABB 1A 1,且AA 1=AB =2. (1)求证:AB ⊥BC ;(2)若直线AC 与平面A 1BC 所成的角为π6,请问在线段A 1C 上是否存在点E ,使得二面角A -BE -C 的大小为2π3,请说明理由.【答案】见解析【解析】(1)证明:连接AB 1交A 1B 于点D ,因为AA 1=AB ,所以AD ⊥A 1B ,又平面A 1BC ⊥侧面ABB 1A 1,平面A 1BC ⊂平面ABB 1A 1=A 1B ,所以AD ⊥平面A 1BC ,BC ⊂平面A 1BC ,所以AD ⊥BC .因为三棱柱ABC -A 1B 1C 1是直三棱柱,所以AA 1⊥底面ABC ,所以AA 1⊥BC ,又AA 1∩AD =A ,所以BC ⊥侧面ABB 1A 1,所以BC ⊥AB . (2)由(1)得AD ⊥平面A 1BC ,所以∠ACD 是直线AC 与平面A 1BC 所成的角,即∠ACD =π6,又AD =2,所以AC =22,假设存在适合条件的点E ,建立如图所示空间直角坐标系Axyz ,设A 1E →=λA 1C →(0≤λ≤1),则B (2,2,0),B 1(2,2,2),由A 1(0,0,2),C (0,22,0),得E (0,22λ,2-2λ),设平面EAB 的一个法向量m =(x ,y ,z ), 由⎩⎪⎨⎪⎧m ·AE →=0,m ·AB →=0,得⎩⎨⎧ 22λy +(2-2λ)z =0,2x +2y =0, 所以可取m =(1-λ,λ-1,2λ), 由(1)知AB 1⊥平面A 1BC ,所以平面CEB 的一个法向量n =(1,1,2), 所以12=⎪⎪⎪⎪⎪⎪cos 2π3=cos 〈m ,n 〉=m·n |m ||n |=2λ22(λ-1)2+2λ2,解得λ=12,故点E 为线段A 1C 中点时,二面角A -BE -C 的大小为2π3.。

捕捉高考命题热点,把握立几复习重点

捕捉高考命题热点,把握立几复习重点

捕捉高考命题热点,把握立几复习重点成都石室中学 王远彬近几年在高考试卷中立体几何部分占15%左右,其中选择、填空题常常考查基本概念和空间位置关系辨析,也可以是考查空间角、空间距离的计算;而解答题的命题形式常常以棱柱、棱锥为载体,对空间位置的证明、空间角和空间距离的计算以灵活的出题方式进行考查。

高考试题很重视对运用向量方法解决立体几何问题的考查,同时兼顾对基本概念的考查,比如棱柱、棱锥相关的概念、球面距离等。

针对历年高考命题规律,我提出以下几点立体几何复习建议以供参考。

一、牢固掌握基本概念,从容应对基础知识考查:例1(2008年全国卷II )平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件: 充要条件① ; 充要条件② .(写出你认为正确的两个充要条件)解:此题旨在考查棱柱的相关概念和性质,如:棱柱必有两个面平行,且各侧面均是平行四边形。

而平行六面体的定义为:底面是平行四边形的四棱柱。

所以,只要考生能记得平行六面体的定义就至少可以找到一个充要条件——底面是平行四边形。

结合平行的判定和性质我们不难推导两组相对侧面分别平行、一组相对侧面平行且全等、对角线交于一点等都可作为本题答案。

点评:对概念的考查既是对基础知识的考查又是对知识的灵活运用,复习过程中应该对易混概念进行对比辨析。

二、识别背景图形,快速建立坐标系。

例2(2006年江西高考题)如图,在三棱锥A -BCD 中,侧面ABD 、ACD 是全等的直角三角形,AD 是公共的斜边,且AD=,BD =CD =1,另一个侧面是正三角形。

(1) 求证:AD ⊥BC(2) 求二面角B -AC -D 的大小 (3) 在直线AC 上是否存在一点E ,使ED 与面BCD 成30︒角?若存在,确定E 的位置;若不存在,说明理由。

解:由已知得A B A C B C ==,考虑到三棱锥A B C D -中各条棱的特殊性,把A B C D -补成正方体,建立空间直角坐标系B xyz -(如图),则(1,0,1)A 、(0,0,0)B 、(1,1,0)C 、(0,1,0)D 。

2020高考数学冲刺核心考点 专题3 第2讲 立体几何(大题)

2020高考数学冲刺核心考点  专题3 第2讲 立体几何(大题)

例3 (2019·临沂模拟)如图,平面ABCD⊥平面ABE,四边形ABCD是边长为2的正 方形,AE=1,F为CE上的点,且BF⊥平面ACE. (1)求证:AE⊥平面BCE;
证明 ∵BF⊥平面ACE,AE⊂平面ACE, ∴BF⊥AE, ∵四边形ABCD是正方形, ∴BC⊥AB, 又平面ABCD⊥平面ABE,平面ABCD∩平面ABE=AB, ∴CB⊥平面ABE, ∵AE⊂平面ABE, ∴CB⊥AE, ∵BF∩BC=B,BF,BC⊂平面BCE, ∴AE⊥平面BCE.
由-A--1-B→1 =12A→B,得 B1(- 3,1,4).
因为
E
是棱
BB1
的点,所以

E-

23,32,2,
所以E→A1=

23,-32,2,-A--1-C→1 =(-2
3,0,0).
设n=(x,y,z)为平面EA1C1的法向量, n·-A--1-C→1 =-2 3x=0,
证明 连接AB1,AC1, ∵点Q为线段A1B的中点,∴A,Q,B1三点共线,且Q为AB1的中点, ∵点P为B1C1的中点,∴PQ∥AC1. 在直三棱柱ABC-A1B1C1中,AC⊥BC, ∴BC⊥平面ACC1A1, 又AC1⊂平面ACC1A1,∴BC⊥AC1. ∵AC=AA1,∴四边形ACC1A1为正方形,∴AC1⊥A1C, 又A1C,BC⊂平面A1BC,A1C∩BC=C, ∴AC1⊥平面A1BC,而PQ∥AC1, ∴PQ⊥平面A1BC.
得-3y-2
3z=0, 2x=0.
令 y=1,则 n=(0,1, 3). 又P→B=( 2,1,- 3),
设直线PB与平面PCD所成的角为θ.

sin
θ=|cos〈n,P→B〉|=

2020年高考数学专题讲解:立体几何(一)

2020年高考数学专题讲解:立体几何(一)

年级:辅导科目:数学课时数:课题立体几何(一)教学目的教学内容一、知识网络二、命题分析立体几何在高考中考查的主要内容有:空间几何体的性质、线面关系的判定与证明、表面积与体积的运算、空间几何体的识图,空间中距离、角的计算等.从近几年高考来看,一般以2~3个客观题来考查线面关系的判定、表面积与体积、空间中的距离与角、空间几何体的性质与识图等,以1个解答题来考查线面关系的证明以及距离、角的计算.在高考中属于中档题目.而三视图作为新课标的新增内容,在2011年高考中,有多套试卷在此知识点命题,主要考查三视图和直观图,特别是通过三视图来确定原图形的相关量.预计今后高考中,三视图的考查不只在选择题、填空题中出现,很有可能在解答题中与其他知识点结合在一起命题.三、复习建议在2012年高考复习中注意以下几个方面:(1)从命题形式来看,涉及立体几何内容的命题形式最为多变,除保留传统的“四选一”的选择题外,还尝试开发了“多选填空”、“完型填空”、“构造填空”等题型,并且这种命题形式正在不断完善和翻新;解答题则设计成几个小问题,此类题目往往以多面体为依托,第一小问考查线线、线面、面面的位置关系,后面几问考查面积、体积等度量关系,其解题思路也都是“作——证——求”,强调作图、证明和计算相结合.在2012年高考复习中注意以下几个方面:(1)从命题形式来看,涉及立体几何内容的命题形式最为多变,除保留传统的“四选一”的选择题外,还尝试开发了“多选填空”、“完型填空”、“构造填空”等题型,并且这种命题形式正在不断完善和翻新;解答题则设计成几个小问题,此类题目往往以多面体为依托,第一小问考查线线、线面、面面的位置关系,后面几问考查面积、体积等度量关系,其解题思路也都是“作——证——求”,强调作图、证明和计算相结合.(3)从方法上来看,着重考查公理化方法,如解答题注重理论推导和计算相结合,考查转化的思想方法,如要把立体.4.空间几何体的直观图画空间几何体的直观图常用画法,基本步骤是:(1)在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′= .(2)已知图形中平行于x轴、y轴的线段,在直观图中分别画成平行于的线段.(3)已知图形中平行于x轴的线段,在直观图中保持原长度,平行于y轴的线段,长度变为.(4)在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴也垂直于x′O′y′平面,已知图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度.5.中心投影与平行投影(1)平行投影的投影线互相,而中心投影的投影线相交于一点.(2)从投影的角度看,三视图和用斜二测画法画出的直观图都是在投影下画出来的图形.(三)基础自测1.(2010·北京理)一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该几何体的俯视图为( )[答案] C[解析] 本题考查了三视图知识,解题的关系是掌握三视图与直观图的知识,特别是应明确三视图是从几何体的哪个方向看到的.由三视图中正(主)视图、侧(左)视图得到几何体的直观图如图所示,所以该几何体的俯视图为C.2.(2010·福建理)如图,若Ω是长方体ABCD—A1B1C1D1被平面EFGH截去几何体EFGHB1C1后得到的几何体,其中E为线段A1B1上异于B1的点,F为线段BB1上异于B1的点,且EH∥A1D1,则下列结论中不正确...的是( ) A.EH∥FG B.四边形EFGH是矩形 C.Ω是棱柱 D.Ω是棱台[答案] D[解析] ∵EH∥A1D1,∴EH∥B1C1∴B1C1∥面EFGH,B1C1∥FG,∴Ω是棱柱,故选D.3.右图为水平放置的正方形ABCO,它在直角坐标系xOy中点B的坐标为(2,2),则在用斜二测画法画出的正方形的直观图中,顶点B′到x′轴的距离为( )A.12B.22C.1 D. 2[答案] B[解析] 如图,在平面直观图中,B′C′=1,∠B′C′D′=45°,∴B′D′=2 2 .4.已知某物体的三视图如图所示,那么这个物体的形状是( )A.六棱柱 B.四棱柱 C.圆柱 D.五棱柱[答案] A[解析] 由俯视图可知,该物体的形状是六棱柱,故选A.5.用小正方体搭成一个几何体,如图是它的主视图和左视图,搭成这个几何体的小正方体最多为________个.[答案] 7[解析] 由主视图和左视图知,该几何体由两层组成,底层最多有3×2=6个,上层只有1个,故最多为7个.6.(2010·新课标理)正(主)视图为一个三角形的几何体可以是________.(写出三种)[答案] 三棱锥、三棱柱、圆锥(其他正确答案同样给分).[解析] 本题考查空间几何体的三视图.本题属于开放性题目,答案不唯一.正视图是三角形的几何体,最容易想到的是三棱锥,其次是四棱锥、圆锥;对于五棱锥、六棱锥等,正视图也可以是三角形.7.已知某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形.(1)求该几何体的体积V ;(2)求该几何体的侧面积S .[分析] 由三视图的形状大小,还原成几何体;再利用体积公式和表面积公式求解.[解析] (1)由该几何体的俯视图、主视图、左视图可知,该几何体是四棱锥.且四棱锥的底面ABCD 是边长为6和8的矩形,高VO =4,O 点是AC 与BD 的交点.∴该几何体的体积V =13×8×6×4=64. (2)如图所示,OE ⊥AB ,OF ⊥BC ,侧面VAB 中,VE =VO 2+OE 2=42+32=5,∴S △VAB =12×AB ×VE =12×8×5=20, 侧面VBC 中,VF =VO 2+OF 2=42+42=42,∴S △VBC =12×BC ×VF =12×6×42=12 2. ∴该几何体的侧面积S =2(S △VAB +S △VBC )=40+24 2.[点评] 由三视图还原成几何体,需要对常见的柱、锥、台、球的三视图非常熟悉,有时还可根据三视图的情况,还原成由常见几何体组合而成的组合体.(四)典型例题1.命题方向:空间几何体的结构特征[例1] 下列命题中,成立的是( )A .各个面都是三角形的多面体一定是棱锥B .四面体一定是三棱锥C .棱锥的侧面是全等的等腰三角形,该棱锥一定是正棱锥D .底面多边形既有外接圆又有内切圆,且侧棱相等的棱锥一定是正棱锥[分析] 结合棱锥、正棱锥的概念逐一进行考查.[解析] A 是错误的,只要将底面全等的两个棱锥的底面重合在一起,所得多面体的每个面都是三角形,但这个多面体不是棱锥;B 是正确的,三个面共顶点,另有三边围成三角形是四面体也必定是个三棱锥;对于C ,如图所示,棱锥的侧面是全等的等腰三角形,但该棱锥不是正棱锥;D 也是错误的,底面多边形既有内切圆又有外接圆,如果不同心,则不是正多边形,因此不是正棱锥.[答案] B[点评] 本题考查棱锥、正棱锥的概念以及四面体与三棱锥的等价性,当三棱锥的棱长都相等时,这样的三棱锥叫正四面体.判断一个命题为真命题要考虑全面,应特别注意一些特殊情况.跟踪练习1:以下命题:①以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆;④一个平面截圆锥、得到一个圆锥和一个圆台.其中正确命题的个数为( )A.0 B.1 C.2 D.3[答案] A[解析] ①应以直角三角形的一条直角边为轴旋转才可以得到圆锥;②以直角梯形垂直于底边的一腰为轴旋转可得到圆台;③它们的底面为圆面,④用平行于圆锥底面的平面截圆锥,可得到一个圆锥和圆台.应选A.2.命题方向:直观图[例2] 若已知△ABC的平面直观图△A′B′C′是边长为a的正三角形,那么原△ABC的面积为( )A.32a2 B.34a2 C.62a2 D.6a2[解析] 如图是△ABC的平面直观图△A′B′C′.作C′D′∥y′轴交x′轴于D′,则C′D′对应△ABC的高CD,∴CD=2C′D′=2·2·C′O′=22·32a=6a.而AB=A′B′=a,∴S△ABC=12·a·6a=62a2[答案] C[点评] 解决这类题的关键是根据斜二测画法求出原三角形的底和高,将水平放置的平面图形的直观图,还原成原来的图形,其作法就是逆用斜二测画法,也就是使平行于x轴的线段的长度不变,而平行于y轴的线段长度变为直观图中平行于y′轴的线段长度的2倍.跟踪练习2已知正三角形ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为( )A.34a 2B.38a 2C.68a 2D.616a 2 [分析] 先根据题意画出直观图,然后根据直观图△A ′B ′C ′的边长及夹角求解.[答案] D[解析] 如图①、②所示的实际图形和直观图.由②可知,A ′B ′=AB =a ,O ′C ′=12OC =34a , 在图②中作C ′D ′⊥A ′B ′于D ′,则C ′D ′=22O ′C ′=68a . ∴S △A ′B ′C ′=12A ′B ′·C ′D ′=12×a ×68a =616a 2. 3.命题方向:三视图[例3] 下列图形中的图(b)是根据图(a)中的实物画出的主视图和俯视图,你认为正确吗?若不正确请改正并画出左视图.[解析] 主视图和俯视图都不正确.主视图的上面的矩形中缺少中间小圆柱形成的轮廓线(用虚线表示);左视图的轮廓是两个矩形叠放在一起,上面的矩形中有2条不可视轮廓线.下面的矩形中有一条可视轮廓线(用实线表示),该几何体的三视图如图所示:[点评] 简单几何体的三视图的画法应从以下几个方面加以把握:(1)搞清主视、左视、俯视的方向,同一物体由放置的位置不同,所画的三视图可能不同.(2)看清简单组合体是由哪几个基本元素组成.(3)画三视图时要遵循“长对正,高平齐,宽相等”的原则,还要注意几何体中与投影垂直或平行的线段及面的位置关系.跟踪练习3(2010·浙江文)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是( )A.3523cm 3B.3203cm 3C.2243cm 3D.1603cm 3 [答案] B[解析] 本题考查了三视图及几何体体积的求解.由三视图可知,该几何体是由一个正四棱台和一个长方体构成的一个组合体,V 台=13×2×(16+42×82+64)=2243cm 3, V 长方体=4×4×2=32cm 3 ∴V 总=V 台+V 长方体=2243+32=3203cm 3.(五)思想方法点拨:1.要注意牢固把握各种几何体的结构特点,利用它们彼此之间的联系来加强记忆,如棱柱、棱锥、棱台为一类;圆柱、圆锥、圆台为一类;或分成柱体、锥体、台体三类来分别认识.只有对比才能把握实质和不同,只有联系才能理解共性和个性.2.要适当与平面几何的有关概念、图形和性质进行对比,通过平面几何与立体几何相关知识的比较,丰富自己的空间想象力.对组合体可通过把它们分解为一些基本几何体来研究.3.画图时要紧紧把握住一斜——在已知图形中垂直于x 轴的线段,在直观图中均与x 轴成45°;二测——两种度量形式,即在直观图中,平行于x 轴的线段长度不变,平行于y 轴的线段变为原长度的一半.4.三视图(1)几何体的三视图的排列规则:俯视图放在主视图的下面,长度与主视图一样,左视图放在主视图右面,高度与主视图一样,宽度与俯视图一样,即“长对正,高平齐,宽相等”.注意虚、实线的区别.(2)应用:在解题的过程中,可以根据三视图的形状及图中所涉及到的线段的长度,推断出原几何图形中的点、线、面之间的关系及图中的一些线段的长度,这样我们就可以解出有关的问题.5.本节常涉及一些截面问题,它把空间图形的性质、画法及有关论证、计算融为一体,常见的、基本的截面问题,如直截面、对角截面、中截面等,要求熟知并掌握.要知道这些截面的形状、位置,并能画出其图形,这常常可以将较难的问题变得简单,如“用一个平面截一个球,截面是圆面”这一点很重要,它把有关球的一些问题转化为圆的问题来解决.(六)课后强化作业一、选择题1.(2010·陕西理)若某空间几何体的三视图如图所示,则该几何体的体积是( )A.13B.23 C .1 D .2[答案] C[解析] C 该几何体是如图所示的直三棱柱V =12×1×2×2=1. 2.下列命题中:①与定点的距离等于定长的点的集合是球面;②球面上三个不同的点,一定都能确定一个圆;③一个平面与球相交,其截面是一个圆,其中正确命题的个数为( )A .0B .1C .2D .3[答案] C[解析] 命题①、②都对,命题③一个平面与球相交,其截面是一个圆面,故选C.[点评] 要注意球与球面的区别.3.(2009·上海文,16)如图,已知三棱锥的底面是直角三角形,直角边长分别为3和4,过直角顶点的侧棱长为4,且垂直于底面,该三棱锥的主视图是( )[答案] B[解析] 本题考查三视图的基本知识及空间想象能力.由题可知,选B.4.如果一个空间几何体的主视图与左视图均为全等的等边三角形,俯视图为一个半径为1的圆及其圆心,那么这个几何体的体积为( )A.33πB.233πC.3πD.π3- 11 - [答案] A[解析] 由三视图知,该几何体是底半径为1的圆锥,轴截面是边长为2的正三角形,∴高为3,体积V =33π. 5.如图,△O ′A ′B ′是△OAB 水平放置的直观图,则△OAB 的面积为( )A .6B .3 2C .6 2D .12[答案] D[解析] 若还原为原三角形,则易知OB =4,OA ⊥OB ,OA =6,∴S △AOB =12×4×6=12. 6.棱长为1的正方体ABCD -A 1B 1C 1D 1的8个顶点都在球O 的表面上,E 、F 分别是棱AA 1、DD 1的中点,则直线EF 被球O 截得的线段长为( )A.22 B .1 C .1+22 D. 2 [答案] D[解析] 由条件知球O 半径为32,球心O 到直线EF 的距离为12,由垂径定理可知直线EF 被球O 截得的线段长d =2⎝ ⎛⎭⎪⎫322-⎝ ⎛⎭⎪⎫122= 2. 7.(2010·广东)如图所示,△ABC 为正三角形,AA ′∥BB ′∥CC ′,CC ′⊥平面ABC 且3AA ′=32BB ′=CC ′=AB ,则多面体ABC -A ′B ′C ′的正视图(也称主视图)是( )[答案] D[解析] 本小题考查线面垂直的判定方法及三视图的有关概念.由于AA ′∥BB ′∥CC ′及CC ′⊥平面ABC ,知BB ′⊥平面ABC ,又CC ′=32BB ′,且△ABC 为正三角形,故正(主)视图为D.8.用单位正方体搭一个几何体,使它的主视图和俯视图如图所示,则它的体积的最小值与最大值分别为( )A .9与13B .7与10C .10与16D .10与15[答案] C [解析] 由俯视图知几何体有三行和三列,且第三列的第一行,第二行都没有小正方体,其余各列各行都有小正- 12 -。

2023年新高考数学临考题号押题第6题 立体几何(新高考)(解析版)

2023年新高考数学临考题号押题第6题 立体几何(新高考)(解析版)

押新高考卷6题立体几何考点3年考题考情分析立体几何2022年新高考Ⅰ卷第8题2022年新高考Ⅱ卷第7题2021年新高考Ⅰ卷第3题2021年新高考Ⅱ卷第5题2020年新高考Ⅰ卷第16题2020年新高考Ⅱ卷第13题立体几何会以单选题、多选题、填空题、解答题4类题型进行考查,单选题难度一般或较难,纵观近几年的新高考试题,分别考查棱锥的体积问题,圆锥的母线长问题,球体的内切外接及表面积体积问题,棱台的体积问题。

可以预测2023年新高考命题方向将继续以表面积体积问题、球体等问题展开命题.1.立体几何基础公式(1)所有椎体体积公式:sh V 31=(2)所有柱体体积公式:shV =(3)球体体积公式:334R V π=(4)球体表面积公式:24R S π=(5)圆柱:rh r s s s sh V ππ22,2+=+==侧底表(6)圆锥:rl r s s s sh V ππ+=+==2,31侧底表2.长方体(正方体、正四棱柱)的体对角线的公式(1)已知长宽高求体对角线:2222c b a l ++=(2)已知共点三面对角线求体对角线:22322212l l l l ++=3.棱长为a 的正四面体的内切球的半径为612a ,外接球的半径为64a .4.欧拉定理(欧拉公式)2V F E +-=(简单多面体的顶点数V、棱数E 和面数F).(1)E =各面多边形边数和的一半.特别地,若每个面的边数为n 的多边形,则面数F 与棱数E 的关系:12E nF =;(2)若每个顶点引出的棱数为m ,则顶点数V 与棱数E 的关系:12E mV =.[方法一]:导数法设正四棱锥的底面边长为2a ,高为则2222l a h =+,2232(3a =+所以26h l =,2222a l h =-所以正四棱锥的体积13V Sh =3.(2021·新高考Ⅰ卷高考真题)已知圆锥的底面半径为长为()A.2B.22C.4【答案】B【分析】设圆锥的母线长为l,根据圆锥底面圆的周长等于扇形的弧长可求得【详解】设圆锥的母线长为l,由于圆锥底面圆的周长等于扇形的弧长,则故选:B.4.(2021·新高考Ⅱ卷高考真题)正四棱台的上、下底面的边长分别为A.20123+B.282C.56 3【答案】D【分析】由四棱台的几何特征算出该几何体的高及上下底面面积,再由棱台的体积公式即可得解【详解】作出图形,连接该正四棱台上下底面的中心,如图,因为该四棱台上下底面边长分别为2,4,侧棱长为所以该棱台的高()2222222h =--=,下底面面积116S =,上底面面积24S =,所以该棱台的体积()12121133V h S S S S =++=故选:D.5.(2020·新高考Ⅰ卷高考真题)已知直四棱柱5为半径的球面与侧面BCC 1B 1的交线长为________【答案】22π.【分析】根据已知条件易得1D E 3=,1D E ⊥离为2,可得侧面11B C CB 与球面的交线是扇形取11B C 的中点为E ,1BB 的中点为因为BAD ∠=60°,直四棱柱ABCD 111D E B C ⊥,又四棱柱1111ABCD A B C D -为直四棱柱,所以因为1111BB B C B = ,所以1D E【详解】因为正方体ABCD -A 1B 1C 1D 1的棱长为111111232NMD D AMN V -==⨯⨯⨯⨯=故答案为:13【点睛】在求解三棱锥的体积时,要注意观察图形的特点,看把哪个当成顶点好计算一些A .10πB .20π【答案】A【分析】新几何体的表面积比原几何体的表面积多了原几何体的轴截面面积,列出方程求解即可【详解】显然新几何体的表面积比原几何体的表面积多了原几何体的轴截面面积,设圆柱的底面半径为r ,高为h ,则所以圆柱的侧面积为2π10πrh =.故选:A.3.(2023·浙江台州·统考二模)如图所示的粮仓可以看成圆柱体与圆锥体的组合体圆柱部分的高为2米,底面圆的半径为A .3π立方米B .2π立方米【答案】C+A.241639+C.12839【答案】B【分析】过点P作底面ABCQ Q Q QP ABC与平面123-P【详解】因为三棱锥-===.2AB AC BCP ABC为正三棱锥,因此过点又因为-过B作AC的垂线于H.由三角形在直角三角形AHO中,AOPO=,在直角三角形又因为2P ABC为正三棱锥,因此因为三棱锥-又M到平面ABC距离为点Q Q AC交PC于过点M作12//【详解】3A D CD '===.()2222229C CD A C CD A C CD A D A C CD ''''⋅=+--=--=-.3,5CD BD ===.222222()99257CD CB CD CB CD CB CD DB ⋅=+--=+-=+-=- .()97822CD A C CB CD A C CD CB CD ''⋅=+⋅=⋅+⋅=--=- .A .15,66⎛⎫ ⎪⎝⎭B .13⎛ ⎝【答案】A【分析】找到水最多和水最少的临界情况,如图分别为多面体答案.【详解】将该容器任意放置均不能使水平面呈三角形,则如图,水最少的临界情况为,水面为面水最多的临界情况为多面体ABCDA 因为111111132A A BD V -=⨯⨯⨯⨯=11111111ABCDA B D ABCD A B C D C B V V V --=-所以1566V <<,即15,66V ⎛∈ ⎝故选:A.故选:C9.(2023·江苏连云港·统考模拟预测)线MN与平面BCD所成角的正切值是(A.2147B【答案】C【分析】作出图形,找出直线【详解】如图,过点A向底面作垂线,垂足为过点M作⊥MG OC于G由题意可知://MG AO且MG因为AO⊥平面BCD,所以则MNG∠即为直线MN与平面设正四面体的棱长为2,则所以222AO AN ON=-=在MNC中,由余弦定理可得:A .2B .12【答案】B【分析】连接PO ,O 为AD 的中点,再由面面垂直性质定理证明CPD ∠,解三角形求其正切值【详解】取AD 的中点O ,连接由已知PAD 为等边三角形,所以又平面PAD ⊥平面ABCD ,平面PO ⊂平面PAD ,所以PO ⊥平面ABCD ,设PD x =,则32PO x =,所以矩形ABCD 的面积ABCD S 所以四棱锥P ABCD -的体积11.(2023·山东潍坊·统考模拟预测)111ABC A B C -的体积为32,则该三棱柱外接球表面积的最小值为(A .12πB .24π【答案】C【分析】设ABC 为等腰直角三角形的直角边为的体积得264a h ⋅=,根据直三棱柱外接球半径的求法可求出最小值,即可得到该三棱柱外接球表面积的最小值【详解】设ABC 为等腰直角三角形的直角边为则111212ABC A B C ABC V S h a -=⋅=⋅故选:A13.(2023·湖北武汉·统考模拟预测)当过A ,C ,P 三点的平面截球O A .()222a +C .()23a +【答案】A【分析】由球的截面性质结合条件确定截面的位置,的截线的长度.【详解】设底面正方形ABCD 的中心为当过A ,C ,P 三点的平面截球O 的截面面积最大时,截面圆为大圆,截面过球心O ,故点P ,O ,1O 三点共线,因为1OO ⊥平面ABCD ,所以1PO ⊥平面ABCD ,此平面截正方体的截面即为正方体的面所以()222L a =+.故选:A .14.(2023·湖北·荆门市龙泉中学校联考二模)【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,求出球心的位置,再求球的半径15.(2023·湖南·校联考模拟预测)《九章算术》卷五《商功》中描述几何体直于底面的四棱锥”,现有阳马P ABCD -在,AB BC 上,当空间四边形PEFD 的周长最小时,三棱锥A .9πB .11π【答案】B【分析】把,AP PB 剪开,使得PAB P ,E ,F ,M 在同一条直线上时,PE 122CF PD ==,∴1BF =.∴点E 为AB 利用勾股定理进而得出结论.【详解】如图所示,把,AP PB 剪开,使得延长DC 到M ,使得CM DC =,则四点间四边形PEFD 的周长取得最小值.可得如图所示,设AFD △的外心为1O ,外接圆的半径为则210sin45==︒AFr .设三棱锥P ADF -外接球的半径为R ,球心为O ,连接1OO ,则则22210111224R ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭.∴三棱锥P ADF -外接球的表面积故选:B.16.(2023·湖南益阳·统考模拟预测)金刚石的成分为纯碳,是自然界中天然存在的最坚硬物质,它的结构是由8个等边三角形组成的正八面体,如图,某金刚石的表面积为则可雕刻成的最大球体积是()A .18πB .92πC .6π【答案】D【分析】先利用条件求出正多形的边长,再将求最大球的体积转化成求金刚石的内切球体积,进而转化成求截面EMFH 内切圆的半径,从而求出结果.【详解】如图,设底面ABCD EM ,设金刚石的边长为a ,则由题知,在等边EBC 中,BC 边上的高在Rt EOH △中,EO EH =由题可知,最大球即为金刚石的内切球,由对称性易知球心在球的半径即为截面EMFH 内切圆的半径,设内切圆半径为17.(2023·广东深圳·统考二模)设表面积相等的正方体、正四面体和球的体积分别为A .123V V V <<B .21<<V V 【答案】B 【分析】设正方体棱长为a ,正四面体棱长为出,,a b R ,进而求出体积的平方,比较体积的平方大小,然后得出答案【详解】设正方体棱长为a ,正四面体棱长为正方体表面积为26S a =,所以2a =所以,()()3232321216S V a a ===;则三棱锥A M BC -的外接球的球心由题意可得3sin 60CO = 直线CM 与平面ABC 故N 的轨迹是以C 为圆心,当球心H 到CM 的距离最大时,三棱锥所以N 在O C 延长线上时,三棱锥设CM 的中点为G ,连接又3CO =,OH OC ⊥所以Rt Rt HOC HGC ≌∴223HC OC ==,∴三棱锥A M BC -的外接球体积最大为故选:C .19.(2023·浙江·统考二模)MN 折起,使点A 到达点球O 表面积的最小值为(A .8π3B 【答案】D【分析】由题设,,B C M如上图,△ANM 、△BNM 、△由平面图到立体图知:MN A N ⊥'又面A MN '⊥面BCMN ,面A MN '所以A N '⊥面BCMN ,同理可得将AMN 翻折后,,A M BM '的中点过D 作DO ⊥面A NM ',过E 作EO 再过D 作DF ⊥面BCMN ,交NM 综上,//DF A N ',//DO BN ,则所以12DO EF BN ==,而A C '=令A N x '=且01x <≤,则BN =所以球O 半径2()2A M r DO =+'当23x =时,min 13r =,故球O点H 恰好是正DAC △的中心(外心),故球心O 必在BH 上,Rt BAC 的外心为E ,连接OE ,则OE ⊥平面ABC ,OE BE ⊥,设三棱锥在Rt BEO △中,由射影定理可得2BE BH BO =⨯,即2323R =,解得∴三棱锥D ABC -外接球的表面积24π12πS R ==.故选:B.。

高考复习归纳--立几

高考复习归纳--立几

P A C B高考热点复习之—立体几何200506021、在三棱锥P -A BC 中,PA =PB =PC ,BC =2a ,A C=a,AB =3a ,点P到平面AB C的距离为错误!a。

(1) 求二面角P-AC-B的大小 (2)求点B 到平面PAC 的距离; 【解】:(1)由条件知∆AB C为直角三角形,∠BAC =90° ∵PA=PB =PC ∴点P 在平面AB C上的射影是∆AB C的外心,即斜边BC 的中点O, 取AC 中点D,连P D,PO ,PO ⊥平面ABC D O⊥AC(∵PO ∥AB) ∴AC ⊥P D, ∠P DO 为二面角P-AC -B 的平面角ta nPDO =DO PO =a a2323=3∴∠PDO =60°,故二面角P -AC-B的大小为60°。

(2)PD =22DO PO +=22a 49a 43+=3a S ∆ABC =错误!·A C·PD=23 a 2设点B 到平面PAC 的距离为h则由V P-AB C=V B-A PC 得31·S ∆AB C·PO=31·S ∆APC ·h h =S ∆ABC ·P O S ∆AP C =2a 23a 23a 3a 21⋅⋅⋅=错误!a故点B 到平面PAC 的距离为错误!a2、在三棱柱A BC-A 1B 1B 1中。

底面A BC 为正三角形(I)求证: (I I)把四棱锥绕直线BC 旋转到合。

试求旋转过的角的余弦值.解:(Ⅰ) 过A 1作A1H⊥底面A BC ,H 为垂足,连接CH 、BH 、AHA 1B⊥AC ,A 1C ⊥AB 由三垂线定理的逆定理 BH ⊥AC ,C H⊥AB ……2分 ∴H 为△AB C的垂心 ∴AH ⊥B C由三垂线定理 AA 1⊥BC ……………………………………………6分(Ⅱ) ∵AA 1∥B B1,由(Ⅰ)知B B 1⊥B C,从而BB ′⊥BC∴∠B1B B′为二面角B 1―BC ―B′的平面角 ……………………9分且有BB ′∥A H(在底面内AH 、BB ′同垂直于BC )∴∠B1BB ′=∠A 1AH(∠B 1BB ′与∠A 1A H的两边分别平行,且方向相同) ∵△ABC 为正三角形 ∴H 为△A BC 的中心 ∵1AB AA a ==在R t△A 1AH 中,co s∠A 1A H=123()3323a AH AA a ⨯==∴cos ∠B1BB′=33即所求二面角B 1―B C―B………………12分 3、正四面体A-BCD 的棱长为1,(Ⅰ)如图(1)M 为CD 中点,求异面直线AM 与BC 所成的角; (Ⅱ)将正四面体沿AB、BD 、DC 、BC 剪开,作为正四棱锥的 侧面如图(2),求二面角M -AB-E 的大小;(Ⅲ)若将图(1)与图(2)面ACD 重合,问该几何体是几面体 (不需要证明),并求这几何体的体积。

2022年高考立体几何汇编

2022年高考立体几何汇编

2022年高考立体几何汇编一.选择题(共10小题)1.(2021•天津)两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为,两个圆锥的高之比为1:3,则这两个圆锥的体积之和为()A.3πB.4πC.9πD.12π2.(2021•新高考Ⅱ)北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步轨道卫星的轨道位于地球赤道所在平面,轨迹高度为36000km(轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O,半径r为6400km的球,其上点A的纬度是指OA与赤道平面所成角的度数.地球表面上能直接观测到的一颗地球静止同步轨道卫星点的纬度最大值为α,该卫星信号覆盖地球表面的表面积S=2πr2(1﹣cosα)(单位:km2),则S占地球表面积的百分比约为()A.26%B.34%C.42%D.50% 3.(2021•新高考Ⅱ)正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为()A.20+12B.28C.D.4.(2021•北京)某四面体的三视图如图所示,该四面体的表面积为()A.B.4C.3+D.2 5.(2021•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.B.3C.D.3 6.(2021•浙江)如图,已知正方体ABCD﹣A1B1C1D1,M,N分别是A1D,D1B的中点,则()A.直线A1D与直线D1B垂直,直线MN∥平面ABCDB.直线A1D与直线D1B平行,直线MN⊥平面BDD1B1C.直线A1D与直线D1B相交,直线MN∥平面ABCDD.直线A1D与直线D1B异面,直线MN⊥平面BDD1B17.(2021•新高考Ⅰ)已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为()A.2B.2C.4D.4 8.(2021•甲卷)已知A,B,C是半径为1的球O的球面上的三个点,且AC⊥BC,AC=BC=1,则三棱锥O﹣ABC的体积为()A.B.C.D.9.(2021•甲卷)在一个正方体中,过顶点A的三条棱的中点分别为E,F,G.该正方体截去三棱锥A﹣EFG后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是()A.B.C.D.10.(2021•乙卷)在正方体ABCD﹣A1B1C1D1中,P为B1D1的中点,则直线PB与AD1所成的角为()A.B.C.D.二.多选题(共2小题)11.(2021•新高考Ⅱ)如图,下列正方体中,O为底面的中点,P为所在棱的中点,M,N 为正方体的顶点,则满足MN⊥OP的是()A.B.C.D.12.(2021•新高考Ⅰ)在正三棱柱ABC﹣A1B1C1中,AB=AA1=1,点P满足=λ+μ,其中λ∈[0,1],μ∈[0,1],则()A.当λ=1时,△AB1P的周长为定值B.当μ=1时,三棱锥P﹣A1BC的体积为定值C.当λ=时,有且仅有一个点P,使得A1P⊥BPD.当μ=时,有且仅有一个点P,使得A1B⊥平面AB1P三.填空题(共4小题)13.(2021•上海)已知圆柱的底面圆半径为1,高为2,AB为上底面圆的一条直径,C是下底面圆周上的一个动点,则ABC的面积的取值范围为.14.(2021•甲卷)已知一个圆锥的底面半径为6,其体积为30π,则该圆锥的侧面积为.15.(2021•乙卷)以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为(写出符合要求的一组答案即可).16.(2021•上海)已知圆柱的底面半径为1,高为2,则圆柱的侧面积为.四.解答题(共11小题)17.(2021•天津)如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,E,F分别为棱BC,CD的中点.(1)求证:D1F∥平面A1EC1;(2)求直线AC1与平面A1EC1所成角的正弦值;(3)求二面角A﹣A1C1﹣E的正弦值.18.(2021•新高考Ⅱ)在四棱锥Q﹣ABCD中,底面ABCD是正方形,若AD=2,QD=QA =,QC=3.(Ⅰ)求证:平面QAD⊥平面ABCD;(Ⅱ)求二面角B﹣QD﹣A的平面角的余弦值.19.(2021•上海)如图,在长方体ABCD﹣A1B1C1D1中,已知AB=BC=2,AA1=3.(1)若P是棱A1D1上的动点,求三棱锥C﹣P AD的体积;(2)求直线AB1与平面ACC1A1的夹角大小.20.(2021•北京)已知正方体ABCD﹣A1B1C1D1,点E为A1D1中点,直线B1C1交平面CDE 于点F.(1)求证:点F为B1C1中点;(2)若点M为棱A1B1上一点,且二面角M﹣CF﹣E的余弦值为,求.21.(2021•甲卷)已知直三棱柱ABC﹣A1B1C1中,侧面AA1B1B为正方形,AB=BC=2,E,F分别为AC和CC1的中点,BF⊥A1B1.(1)求三棱锥F﹣EBC的体积;(2)已知D为棱A1B1上的点,证明:BF⊥DE.22.(2021•乙卷)如图,四棱锥P﹣ABCD的底面是矩形,PD⊥底面ABCD,PD=DC=1,M为BC中点,且PB⊥AM.(1)求BC;(2)求二面角A﹣PM﹣B的正弦值.23.(2021•浙江)如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,∠ABC=120°,AB=1,BC=4,P A=,M,N分别为BC,PC的中点,PD⊥DC,PM⊥MD.(Ⅰ)证明:AB⊥PM;(Ⅱ)求直线AN与平面PDM所成角的正弦值.24.(2021•甲卷)已知直三棱柱ABC﹣A1B1C1中,侧面AA1B1B为正方形,AB=BC=2,E,F分别为AC和CC1的中点,D为棱A1B1上的点,BF⊥A1B1.(1)证明:BF⊥DE;(2)当B1D为何值时,面BB1C1C与面DFE所成的二面角的正弦值最小?25.(2021•乙卷)如图,四棱锥P﹣ABCD的底面是矩形,PD⊥底面ABCD,M为BC的中点,且PB⊥AM.(1)证明:平面P AM⊥平面PBD;(2)若PD=DC=1,求四棱锥P﹣ABCD的体积.26.(2021•新高考Ⅰ)如图,在三棱锥A﹣BCD中,平面ABD⊥平面BCD,AB=AD,O 为BD的中点.(1)证明:OA⊥CD;(2)若△OCD是边长为1的等边三角形,点E在棱AD上,DE=2EA,且二面角E﹣BC﹣D的大小为45°,求三棱锥A﹣BCD的体积.27.(2021•上海)四棱锥P﹣ABCD,底面为正方形ABCD,边长为4,E为AB中点,PE⊥平面ABCD.(1)若△P AB为等边三角形,求四棱锥P﹣ABCD的体积;(2)若CD的中点为F,PF与平面ABCD所成角为45°,求PC与AD所成角的大小.2021年高考立体几何汇编参考答案与试题解析一.选择题(共10小题)1.(2021•天津)两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为,两个圆锥的高之比为1:3,则这两个圆锥的体积之和为()A.3πB.4πC.9πD.12π【分析】由题意画出图形,由球的体积求出球的半径,再由直角三角形中的射影定理求得截面圆的半径,代入圆锥体积公式得答案.【解答】解:如图,设球O的半径为R,由题意,,可得R=2,则球O的直径为4,∵两个圆锥的高之比为1:3,∴AO1=1,BO1=3,由直角三角形中的射影定理可得:r2=1×3,即r=.∴这两个圆锥的体积之和为V=.故选:B.【点评】本题考查球内接圆锥体积的求法,考查空间想象能力与思维能力,考查运算求解能力,是中档题.2.(2021•新高考Ⅱ)北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步轨道卫星的轨道位于地球赤道所在平面,轨迹高度为36000km(轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O,半径r为6400km的球,其上点A的纬度是指OA与赤道平面所成角的度数.地球表面上能直接观测到的一颗地球静止同步轨道卫星点的纬度最大值为α,该卫星信号覆盖地球表面的表面积S=2πr2(1﹣cosα)(单位:km2),则S占地球表面积的百分比约为()A.26%B.34%C.42%D.50%【分析】由题意,地球静止同步卫星轨道的左右两端的竖直截面图,求解cosα,根据卫星信号覆盖的地球表面面积可得S占地球表面积的百分比.【解答】解:由题意,作出地球静止同步卫星轨道的左右两端的竖直截面图,则OB=36000+6400=424000,那么cosα=;卫星信号覆盖的地球表面面积S=2πr2(1﹣cosα),那么,S占地球表面积的百分比为42%.故选:C.【点评】本题考查了对题目的阅读能力和理解能力,属于基础题.3.(2021•新高考Ⅱ)正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为()A.20+12B.28C.D.【分析】过A作AE⊥A1B1,得A1E==1,AE==.连接AC,A1C1,过A作AG⊥A1C1,求出A1G=,从而AG==,由此能求出正四棱台的体积.【解答】解:如图ABCD﹣A1B1C1D1为正四棱台,AB=2,A1B1=4,AA1=2.在等腰梯形A1B1BA中,过A作AE⊥A1B1,可得A1E==1,AE===.连接AC,A1C1,AC=,A1C1==4,过A作AG⊥A1C1,A1G==,AG===,∴正四棱台的体积为:V===.故选:D.【点评】本题考查四棱台的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力、推理论证能力,是中档题.4.(2021•北京)某四面体的三视图如图所示,该四面体的表面积为()A.B.4C.3+D.2【分析】由三视图还原原几何体,其中P A⊥底面ABC,AB⊥AC,P A=AB=AC=2,再由三角形面积公式求解.【解答】解:由三视图还原原几何体如图,P A⊥底面ABC,AB⊥AC,P A=AB=AC=1,则△PBC是边长为的等边三角形,则该四面体的表面积为S=.故选:A.【点评】本题考查由三视图求面积、体积,关键是由三视图还原原几何体,是中档题.5.(2021•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.B.3C.D.3【分析】由三视图还原原几何体,可知该几何体为直四棱柱,底面四边形ABCD为等腰梯形,由已知三视图求得对应的量,再由棱柱体积公式求解.【解答】解:由三视图还原原几何体如图,该几何体为直四棱柱,底面四边形ABCD为等腰梯形,其中AB∥CD,由三视图可知,延长AD与BC后相交于一点,且AD⊥BC,且AB=,CD=,AA1=1,等腰梯形的高为=,则该几何体的体积V==.故选:A.【点评】本题考查由三视图求面积、体积,关键是由三视图还原原几何体,是中档题.6.(2021•浙江)如图,已知正方体ABCD﹣A1B1C1D1,M,N分别是A1D,D1B的中点,则()A.直线A1D与直线D1B垂直,直线MN∥平面ABCDB.直线A1D与直线D1B平行,直线MN⊥平面BDD1B1C.直线A1D与直线D1B相交,直线MN∥平面ABCDD.直线A1D与直线D1B异面,直线MN⊥平面BDD1B1【分析】通过证明直线A1D⊥平面ABD1,MN是△ABD1的中位线,可判断A;根据异面直线的判断可知A1D与直线D1B是异面直线,可判断B;根据异面直线的判断可知直线A1D与直线D1B是异面直线,可判断C;由MN∥AB,可知MN不与平面BDD1B1垂直,可判断D.【解答】解:连接AD1,如图:由正方体可知A1D⊥AD1,A1D⊥AB,∴A1D⊥平面ABD1,∴A1D⊥D1B,由题意知MN为△D1AB的中位线,∴MN∥AB,又∵AB⊂平面ABCD,MN⊄平面ABCD,∴MN∥平面ABCD.∴A对;由正方体可知A1D与平面BDD1相交于点D,D1B⊂平面BDD1,D∉D1B,∴直线A1D与直线D1B是异面直线,∴B、C错;∵MN∥AB,AB不与平面BDD1B1垂直,∴MN不与平面BDD1B1垂直,∴D错.故选:A.【点评】本题考查了线面平行的判定定理和线面垂直的判定定理与性质,考查了逻辑推理核心素养,属于中档题.7.(2021•新高考Ⅰ)已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为()A.2B.2C.4D.4【分析】设母线长为l,利用圆锥底面周长即为侧面展开图半圆的弧长,圆锥的母线长即为侧面展开图半圆的半径,列出方程,求解即可.【解答】解:由题意,设母线长为l,因为圆锥底面周长即为侧面展开图半圆的弧长,圆锥的母线长即为侧面展开图半圆的半径,则有,解得,所以该圆锥的母线长为.故选:B.【点评】本题考查了旋转体的理解和应用,解题的关键是掌握圆锥底面周长即为侧面展开图半圆的弧长,圆锥的母线长即为侧面展开图半圆的半径,考查了逻辑推理能力与运算能力和空间思维能力,属于基础题.8.(2021•甲卷)已知A,B,C是半径为1的球O的球面上的三个点,且AC⊥BC,AC=BC=1,则三棱锥O﹣ABC的体积为()A.B.C.D.【分析】先确定△ABC所在的截面圆的圆心O1为斜边AB的中点,然后在Rt△ABC和Rt△AOO1中,利用勾股定理求出OO1,再利用锥体的体积公式求解即可.【解答】解:因为AC⊥BC,AC=BC=1,所以底面ABC为等腰直角三角形,所以△ABC所在的截面圆的圆心O1为斜边AB的中点,所以OO1⊥平面ABC,在Rt△ABC中,AB=,则,在Rt△AOO1中,,故三棱锥O﹣ABC的体积为.故选:A.【点评】本题考查了锥体外接球和锥体体积公式,解题的关键是确定△ABC所在圆的圆心的位置,考查了逻辑推理能力、化简运算能力、空间想象能力,属于中档题.9.(2021•甲卷)在一个正方体中,过顶点A的三条棱的中点分别为E,F,G.该正方体截去三棱锥A﹣EFG后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是()A.B.C.D.【分析】作出正方体,截去三棱锥A﹣EFG,根据正视图,摆放好正方体,即可求解侧视图.【解答】解:由题意,作出正方体,截去三棱锥A﹣EFG,根据正视图,可得A﹣EFG在正方体左侧面,如图,根据三视图的投影,可得相应的侧视图是D图形,故选:D.【点评】本题考查简单空间图形的三视图,属基础题.10.(2021•乙卷)在正方体ABCD﹣A1B1C1D1中,P为B1D1的中点,则直线PB与AD1所成的角为()A.B.C.D.【分析】由AD1∥BC1,得∠PBC1是直线PB与AD1所成的角(或所成角的补角),由此利用余弦定理,求出直线PB与AD1所成的角.【解答】解∵AD1∥BC1,∴∠PBC1是直线PB与AD1所成的角(或所成角的补角),设正方体ABCD﹣A1B1C1D1的棱长为2,则PB1=PC1==,BC1==2,BP==,∴cos∠PBC1===,∴∠PBC1=,∴直线PB与AD1所成的角为.故选:D.【点评】本题考查异面直线所成角和余弦定理,考查运算求解能力,是基础题.二.多选题(共2小题)11.(2021•新高考Ⅱ)如图,下列正方体中,O为底面的中点,P为所在棱的中点,M,N 为正方体的顶点,则满足MN⊥OP的是()A.B.C.D.【分析】对于A,设正方体棱长为2,设MN与OP所成角为θ,求出tanθ=,从而不满足MN⊥OP;对于B,C,D,作出平面直角坐标系,设正方体棱长为2,利用向量法进行判断.【解答】解:对于A,设正方体棱长为2,设MN与OP所成角为θ,则tanθ==,∴不满足MN⊥OP,故A错误;对于B,如图,作出平面直角坐标系,设正方体棱长为2,则N(2,0,0),M(0,0,2),P(2,0,1),O(1,1,0),=(2,0,﹣2),=(1,﹣1,1),=0,∴满足MN⊥OP,故B正确;对于C,如图,作出平面直角坐标系,设正方体棱长为2,则M(2,2,2),N(0,2,0),O(1,1,0),P(0,0,1),=(﹣2,0,﹣2),=(﹣1,﹣1,1),=0,∴满足MN⊥OP,故C正确;对于D,如图,作出平面直角坐标系,设正方体棱长为2,则M(0,2,2),N(0,0,0),P(2,1,2),O(1,1,0),=(0,﹣2,﹣2),=(1,0,2),=﹣4,∴不满足MN⊥OP,故D错误.故选:BC.【点评】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系基础知识,考查数学运算、逻辑思维等核心素养,是中档题.12.(2021•新高考Ⅰ)在正三棱柱ABC﹣A1B1C1中,AB=AA1=1,点P满足=λ+μ,其中λ∈[0,1],μ∈[0,1],则()A.当λ=1时,△AB1P的周长为定值B.当μ=1时,三棱锥P﹣A1BC的体积为定值C.当λ=时,有且仅有一个点P,使得A1P⊥BPD.当μ=时,有且仅有一个点P,使得A1B⊥平面AB1P【分析】判断当λ=1时,点P在线段CC1上,分别计算点P为两个特殊点时的周长,即可判断选项A;当μ=1时,点P在线段B1C1上,利用线面平行的性质以及锥体的体积公式,即可判断选项B;当λ=时,取线段BC,B1C1的中点分别为M,M1,连结M1M,则点P在线段M1M上,分别取点P在M1,M处,得到均满足A1P⊥BP,即可判断选项C;当μ=时,取CC1的中点D1,BB1的中点D,则点P在线的DD1上,证明当点P在点D1处时,A1B⊥平面AB1D1,利用过定点A与定直线A1B垂直的平面有且只有一个,即可判断选项D.【解答】解:对于A,当λ=1时,=+μ,即,所以,故点P在线段CC1上,此时△AB1P的周长为AB1+B1P+AP,当点P为CC1的中点时,△AB1P的周长为,当点P在点C1处时,△AB1P的周长为,故周长不为定值,故选项A错误;对于B,当μ=1时,,即,所以,故点P在线段B1C1上,因为B1C1∥平面A1BC,所以直线B1C1上的点到平面A1BC的距离相等,又△A1BC的面积为定值,所以三棱锥P﹣A1BC的体积为定值,故选项B正确;对于C,当λ=时,取线段BC,B1C1的中点分别为M,M1,连结M1M,因为,即,所以,则点P在线段M1M上,当点P在M1处时,A1M1⊥B1C1,A1M1⊥B1B,又B1C1∩B1B=B1,所以A1M1⊥平面BB1C1C,又BM1⊂平面BB1C1C,所以A1M1⊥BM1,即A1P⊥BP,同理,当点P在M处,A1P⊥BP,故选项C错误;对于D,当μ=时,取CC1的中点D1,BB1的中点D,因为,即,所以,则点P在线的DD1上,当点P在点D1处时,取AC的中点E,连结A1E,BE,因为BE⊥平面ACC1A1,又AD1⊂平面ACC1A1,所以AD1⊥BE,在正方形ACC1A1中,AD1⊥A1E,又BE∩A1E=E,BE,A1E⊂平面A1BE,故AD1⊥平面A1BE,又A1B⊂平面A1BE,所以A1B⊥AD1,在正方体形ABB1A1中,A1B⊥AB1,又AD1∩AB1=A,AD1,AB1⊂平面AB1D1,所以A1B⊥平面AB1D1,因为过定点A与定直线A1B垂直的平面有且只有一个,故有且仅有一个点P,使得A1B⊥平面AB1P,故选项D正确.故选:BD.【点评】本题考查了动点轨迹,线面平行与线面垂直的判定,锥体的体积问题等,综合性强,考查了逻辑推理能力与空间想象能力,属于难题.三.填空题(共4小题)13.(2021•上海)已知圆柱的底面圆半径为1,高为2,AB为上底面圆的一条直径,C是下底面圆周上的一个动点,则ABC的面积的取值范围为.【分析】上顶面圆心记为O,下底面圆心记为O',连结OC,过点C作CM⊥AB,垂足为点M,由于AB为定值,则S△ABC的大小随着CM的长短变化而变化,分别求解CM的最大值和最小值,即可得到答案.【解答】解:如图1,上底面圆心记为O,下底面圆心记为O',连结OC,过点C作CM⊥AB,垂足为点M,则,根据题意,AB为定值2,所以S△ABC的大小随着CM的长短变化而变化,如图2所示,当点M与点O重合时,CM=OC=,此时S△ABC取得最大值为;如图3所示,当点M与点B重合,CM取最小值2,此时S△ABC取得最小值为.综上所述,S△ABC的取值范围为.故答案为:.【点评】本题考查了空间中的最值问题,将三角形面积的最值问题转化为求解线段CM 的最值问题进行求解是解题的关键,考查了空间想象能力与逻辑推理能力,属于中档题.14.(2021•甲卷)已知一个圆锥的底面半径为6,其体积为30π,则该圆锥的侧面积为39π.【分析】由题意,设圆锥的高为h,根据圆锥的底面半径为6,其体积为30π求出h,再求得母线的长度,然后确定圆锥的侧面积即可.【解答】解:由圆锥的底面半径为6,其体积为30π,设圆锥的高为h,则,解得,所以圆锥的母线长,所以圆锥的侧面积.故答案为:39π.【点评】本题考查了圆锥的侧面积公式和圆锥的体积公式,考查了方程思想,属于基础题.15.(2021•乙卷)以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为②⑤或③④(写出符合要求的一组答案即可).【分析】通过观察已知条件正视图,确定该正视图的长和高,结合长、高、以及侧视图视图中的实线、虚线来确定俯视图图形.【解答】解:观察正视图,推出正视图的长为2和高1,②③图形的高也为1,即可能为该三棱锥的侧视图,④⑤图形的长为2,即可能为该三棱锥的俯视图,当②为侧视图时,结合侧视图中的直线,可以确定该三棱锥的俯视图为⑤,当③为侧视图时,结合侧视图虚线,虚线所在的位置有立体图形的轮廓线,可以确定该三棱锥的俯视图为④.故答案为:②⑤或③④.【点评】该题考查了三棱锥的三视图,需要学生掌握三视图中各个图形边长的等量关系,以及对于三视图中特殊线条能够还原到原立体图形中,需要较强空间想象,属于中等题.16.(2021•上海)已知圆柱的底面半径为1,高为2,则圆柱的侧面积为4π.【分析】根据圆柱的侧面积公式计算即可.【解答】解:圆柱的底面半径为r=1,高为h=2,所以圆柱的侧面积为S侧=2πrh=2π×1×2=4π.故答案为:4π.【点评】本题考查了圆柱的侧面积公式应用问题,是基础题.四.解答题(共11小题)17.(2021•天津)如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,E,F分别为棱BC,CD的中点.(1)求证:D1F∥平面A1EC1;(2)求直线AC1与平面A1EC1所成角的正弦值;(3)求二面角A﹣A1C1﹣E的正弦值.【分析】(1)建立合适的空间直角坐标系,求出所需点的坐标和向量的坐标,利用待定系数法求出平面A1EC1的法向量,利用直线的方向向量与平面的法向量垂直,即可证明;(2)利用(1)中的结论,由向量的夹角公式求解,即可得到答案;(3)利用待定系数法求出平面AA1C1的法向量,然后利用向量的夹角公式求解即可.【解答】(1)证明:以点A为坐标原点,建立空间直角坐标系如图所示,则A1(0,0,2),E(2,1,0),C1(2,2,2),故,设平面A1EC1的法向量为,则,即,令z=1,则x=2,y=﹣2,故,又F(1,2,0),D1(0,2,2),所以,则,又D1F⊄平面A1EC,故D1F∥平面A1EC1;(2)解:由(1)可知,,则==,故直线AC1与平面A1EC1所成角的正弦值为;(3)解:由(1)可知,,设平面AA1C1的法向量为,则,即,令a=1,则b=﹣1,故,所以==,故二面角A﹣A1C1﹣E的正弦值为=.【点评】本题考查了空间向量在立体几何中的应用,在求解有关空间角问题的时候,一般会建立合适的空间直角坐标系,将空间角问题转化为空间向量问题进行研究,属于中档题.18.(2021•新高考Ⅱ)在四棱锥Q﹣ABCD中,底面ABCD是正方形,若AD=2,QD=QA =,QC=3.(Ⅰ)求证:平面QAD⊥平面ABCD;(Ⅱ)求二面角B﹣QD﹣A的平面角的余弦值.【分析】(Ⅰ)由CD2+QD2=QC2证明CD⊥QD,再由CD⊥AD,证明CD⊥平面QAD,即可证明平面QAD⊥平面ABCD.(Ⅱ)取AD的中点O,在平面ABCD内作Ox⊥AD,以OD为y轴,OQ为z轴,建立空间直角坐标系,求出平面ADQ的一个法向量,平面BDQ的一个法向量,再求cos<,>即可.【解答】(Ⅰ)证明:△QCD中,CD=AD=2,QD=,QC=3,所以CD2+QD2=QC2,所以CD⊥QD;又CD⊥AD,AD∩QD=D,AD⊂平面QAD,QD⊂平面QAD,所以CD⊥平面QAD;又CD⊂平面ABCD,所以平面QAD⊥平面ABCD.(Ⅱ)解:取AD的中点O,在平面ABCD内作Ox⊥AD,以OD为y轴,OQ为z轴,建立空间直角坐标系O﹣xyz,如图所示:则O(0,0,0),B(2,﹣1,0),D(0,1,0),Q(0,0,2),因为Ox⊥平面ADQ,所以平面ADQ的一个法向量为=(1,0,0),设平面BDQ的一个法向量为=(x,y,z),由=(﹣2,2,0),=(0,﹣1,2),得,即,令z=1,得y=2,x=2,所以=(2,2,1);所以cos<,>===,所以二面角B﹣QD﹣A的平面角的余弦值为.【点评】本题考查了空间中的垂直关系应用问题,也考查了利用空间向量求二面角的余弦值应用问题,也可以直接利用二面角的定义求二面角的余弦值,是中档题.19.(2021•上海)如图,在长方体ABCD﹣A1B1C1D1中,已知AB=BC=2,AA1=3.(1)若P是棱A1D1上的动点,求三棱锥C﹣P AD的体积;(2)求直线AB1与平面ACC1A1的夹角大小.【分析】(1)直接由三棱锥的体积公式求解即可;(2)易知直线AB1与平面ACC1A1所成的角为∠OAB1,求出其正弦值,再由反三角表示即可.【解答】解:(1)如图,在长方体ABCD﹣A1B1C1D1中,=;(2)连接A1C1∩B1D1=O,∵AB=BC,∴四边形A1B1C1D1为正方形,则OB1⊥OA1,又AA1⊥OB1,OA1∩AA1=A1,∴OB1⊥平面ACC1A1,∴直线AB1与平面ACC1A1所成的角为∠OAB1,∴.∴直线AB1与平面ACC1A1所成的角为.【点评】本题考查三棱锥体积的求法,考查线面角的求解,考查推理能力及运算能力,属于中档题.20.(2021•北京)已知正方体ABCD﹣A1B1C1D1,点E为A1D1中点,直线B1C1交平面CDE 于点F.(1)求证:点F为B1C1中点;(2)若点M为棱A1B1上一点,且二面角M﹣CF﹣E的余弦值为,求.【分析】(1)连结DE,利用线面平行的判定定理证明CD∥平面A1B1C1D1,从而可证明CD∥EF,即可证明四边形A1B1FE为平行四边形,四边形EFC1D1为平行四边形,可得A1E=B1F,ED1=FC1,即可证明B1F=FC1,故点F为B1C1的中点;(2)建立合适的空间直角坐标系,设点M(m,0,0),且m<0,求出所需点的坐标和向量的坐标,然后利用待定系数法求出平面CMF与CDEF的法向量,由向量的夹角公式列出关于m的关系式,求解即可得到答案.【解答】(1)证明:连结DE,在正方体ABCD﹣A1B1C1D1中,CD∥C1D1,C1D1⊂平面A1B1C1D1,CD⊄平面A1B1C1D1,则CD∥平面A1B1C1D1,因为平面A1B1C1D1∩平面CDEF=EF,所以CD∥EF,则EF∥C1D1,故A1B1∥EF∥C1D1,又因为A1D1∥B1C1,所以四边形A1B1FE为平行四边形,四边形EFC1D1为平行四边形,所以A1E=B1F,ED1=FC1,而点E为A1D1的中点,所以A1E=ED1,故B1F=FC1,则点F为B1C1的中点;(2)解:以点B1为原点,建立空间直角坐标系,如图所示,设正方体边长为2,设点M(m,0,0),且m<0,则C(0,2,﹣2),E(﹣2,1,0),F(0,1,0),故,设平面CMF的法向量为,则,即,所以,b=2,故,设平面CDEF的法向量为,则,即,所以x=0,y=2,故,因为二面角M﹣CF﹣E的余弦值为,则==,解得m=±1,又m<0,所以m=﹣1,故=.【点评】本题考查了立体几何的综合应用,涉及了线面平行的性质定理的应用,二面角的应用,在求解有关空间角问题的时候,一般会建立合适的空间直角坐标系,将空间角问题转化为空间向量问题进行研究,属于中档题.21.(2021•甲卷)已知直三棱柱ABC﹣A1B1C1中,侧面AA1B1B为正方形,AB=BC=2,E,F分别为AC和CC1的中点,BF⊥A1B1.(1)求三棱锥F﹣EBC的体积;(2)已知D为棱A1B1上的点,证明:BF⊥DE.【分析】(1)先证明AB⊥平面BCC1B1,即可得到AB⊥BC,再根据直角三角形的性质可知,最后根据三棱锥的体积公式计算即可;(2)取BC中点G,连接EG,B1G,先证明EG∥AB∥B1D,从而得到E、G、B1、D四点共面,再由(1)及线面垂直的性质定理可得BF⊥EG,通过角的正切值判断出∠CBF=∠BB1G,再通过角的代换可得,BF⊥B1G,再根据线面垂直的判定定理可得BF ⊥平面EGB1D,进而得证.【解答】解:(1)在直三棱柱ABC﹣A1B1C1中,BB1⊥A1B1,又BF⊥A1B1,BB1∩BF=B,BB1,BF⊂平面BCC1B1,∴A1B1⊥平面BCC1B1,∵AB∥A1B1,∴AB⊥平面BCC1B1,∴AB⊥BC,又AB=BC,故,∴,而侧面AA1B1B为正方形,∴,∴,即三棱锥F﹣EBC的体积为;(2)证明:如图,取BC中点G,连接EG,B1G,设B1G∩BF=H,∵点E是AC的中点,点G时BC的中点,∴EG∥AB,∴EG∥AB∥B1D,∴E、G、B1、D四点共面,由(1)可得AB⊥平面BCC1B1,∴EG⊥平面BCC1B1,∴BF⊥EG,∵,且这两个角都是锐角,∴∠CBF=∠BB1G,∴∠BHB1=∠BGB1+∠CBF=∠BGB1+∠BB1G=90°,∴BF⊥B1G,又EG∩B1G=G,EG,B1G⊂平面EGB1D,∴BF⊥平面EGB1D,又DE⊂平面EGB1D,∴BF⊥DE.【点评】本题主要考查三棱锥体积的求法以及线线,线面间的垂直关系,考查运算求解能力及逻辑推理能力,属于中档题.22.(2021•乙卷)如图,四棱锥P﹣ABCD的底面是矩形,PD⊥底面ABCD,PD=DC=1,M为BC中点,且PB⊥AM.(1)求BC;(2)求二面角A﹣PM﹣B的正弦值.【分析】(1)连结BD,利用线面垂直的性质定理证明AM⊥PD,从而可以证明AM⊥平面PBD,得到AM⊥BD,证明Rt△DAB∽Rt△ABM,即可得到BC的长度;(2)建立合适的空间直角坐标系,求出所需点的坐标和向量的坐标,然后利用待定系数法求出平面的法向量,由向量的夹角公式以及同角三角函数关系求解即可.【解答】解:(1)连结BD,因为PD⊥底面ABCD,且AM⊂平面ABCD,则AM⊥PD,又AM⊥PB,PB∩PD=P,PB,PD⊂平面PBD,所以AM⊥平面PBD,又BD⊂平面PBD,则AM⊥BD,所以∠ABD+∠ADB=90°,又∠ABD+∠MAB=90°,则有∠ADB=∠MAB,所以Rt△DAB∽Rt△ABM,则,所以,解得BC=;(2)因为DA,DC,DP两两垂直,故以点D位坐标原点建立空间直角坐标系如图所示,则,P(0,0,1),所以,,设平面AMP的法向量为,则有,即,令,则y=1,z=2,故,设平面BMP的法向量为,则有,即,令q=1,则r=1,故,所以=,设二面角A﹣PM﹣B的平面角为α,则sinα==,所以二面角A﹣PM﹣B的正弦值为.【点评】本题考查了空间中线段长度求解以及二面角的求解,在求解有关空间角问题的时候,一般会建立合适的空间直角坐标系,将空间角问题转化为空间向量问题进行研究,属于中档题.23.(2021•浙江)如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,∠ABC=120°,AB=1,BC=4,P A=,M,N分别为BC,PC的中点,PD⊥DC,PM⊥MD.(Ⅰ)证明:AB⊥PM;(Ⅱ)求直线AN与平面PDM所成角的正弦值.【分析】(Ⅰ)由已知求解三角形可得CD⊥DM,结合PD⊥DC,可得CD⊥平面PDM,进一步得到AB⊥PM;(Ⅱ)由(Ⅰ)证明PM⊥平面ABCD,由已知求解三角形可得AM,PM,取AD中点E,连接ME,以M为坐标原点,分别以MD、ME、MP为x、y、z轴建立空间直角坐标系,求出的坐标及平面PDM的一个法向量,由两法向量所成角的余弦值可得直线AN与平面PDM所成角的正弦值.【解答】(Ⅰ)证明:在平行四边形ABCD中,由已知可得,CD=AB=1,CM=BC=2,∠DCM=60°,∴由余弦定理可得,DM2=CD2+CM2﹣2CD×CM×cos60°=,则CD2+DM2=1+3=4=CM2,即CD⊥DM,又PD⊥DC,PD∩DM=D,∴CD⊥平面PDM,而PM⊂平面PDM,∴CD⊥PM,∵CD∥AB,∴AB⊥PM;(Ⅱ)解:由(Ⅰ)知,CD⊥平面PDM,又CD⊂平面ABCD,∴平面ABCD⊥平面PDM,。

2020版 高考大题增分课4 立体几何中的高考热点问题

2020版 高考大题增分课4 立体几何中的高考热点问题

(四)立体几何中的高考热点问题[命题解读] 1.立体几何是高考的必考内容,几乎每年都考查一个解答题,两个选择或填空题,客观题主要考查空间概念,三视图及简单计算;解答题主要采用“论证与计算”相结合的模式,即利用定义、公理、定理证明空间线线、线面、面面平行或垂直,并与几何体的性质相结合考查几何体的计算.2.重在考查学生的空间想象能力、逻辑推理论证能力及数学运算能力.考查的热点是以几何体为载体的垂直、平行的证明、平面图形的折叠、探索开放性问题等;同时考查转化化归思想与数形结合的思想方法.以空间几何体为载体,考查空间平行与垂直关系是高考的热点内容,并常与几何体的体积计算交汇命题,考查学生的空间想象能力、计算与数学推理论证能力,同时突出转化与化归思想方法的考查,试题难度中等.【例1】(本小题满分12分)(2019·哈尔滨模拟)如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD.(1)证明:平面AEC⊥平面BED;(2)若∠ABC=120°,AE⊥EC,三棱锥E-ACD的体积为63,求该三棱锥的侧面积.[信息提取]看到四边形ABCD为菱形,想到对角线垂直;看到三棱锥的体积,想到利用体积列方程求边长.[规范解答](1)证明:因为四边形ABCD为菱形,所以AC⊥BD.因为BE⊥平面ABCD,AC⊂平面ABCD,所以AC⊥BE. 2分因为BD∩BE=B,故AC⊥平面BED.又AC⊂平面AEC,所以平面AEC⊥平面BED. 4分(2)设AB=x,在菱形ABCD中,由∠ABC=120°,可得AG=GC=32x,GB=GD=x2.因为AE⊥EC,所以在Rt△AEC中,可得EG=32x. 6分由BE ⊥平面ABCD ,知△EBG 为直角三角形,可得BE =22x .由已知得,三棱锥E -ACD 的体积V 三棱锥E -ACD =13×12·AC ·GD ·BE =624x 3=63,故x =2.9分从而可得AE =EC =ED = 6.所以△EAC 的面积为3,△EAD 的面积与△ECD 的面积均为 5.故三棱锥E -ACD 的侧面积为3+2 5. 12分 [易错与防范] 易错误区:1.在第(1)问中,易忽视条件BD ∩BE =B .AC ⊂平面AEC 等条件,推理不严谨,导致扣分.2.在第(2)问中,需要计算的量较多,易计算失误,或漏算,导致结果错误. 防范措施:1.在书写证明过程中,应严格按照判定定理的条件写,防止扣分.2.在计算过程中,应牢记计算公式,逐步计算,做到不重不漏.[通性通法] 空间几何体体积的求法(1)若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,等积转换法多用来求三棱锥的体积.(2)若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明:MN ∥平面P AB ;(2)求四面体N -BCM 的体积.[解] (1)证明:由已知得AM =23AD =2.取BP 的中点T ,连接AT ,TN ,由N 为PC 中点知TN ∥BC ,TN =12BC =2.又AD ∥BC ,故TN AM ,四边形AMNT 为平行四边形,于是MN ∥AT . 因为AT ⊂平面P AB ,MN ⊄平面P AB ,所以MN ∥平面P AB .(2)因为P A ⊥平面ABCD ,N 为PC 的中点,所以点N 到平面ABCD 的距离为12P A .取BC 的中点E ,连接AE .由AB =AC =3得AE ⊥BC ,AE =AB 2-BE 2=5.由AM ∥BC 得点M 到BC 的距离为5,故S △BCM =12×4×5=2 5.所以四面体N -BCM 的体积V N -BCM =13×S △BCM ×P A 2=453.求点到平面的距离(几何体的高)求点到平面的距离(几何体的高)涉及到空间几何体的体积和线面垂直关系,是近几年高考考查的一个重要方向,重点考查学生的转化思想和运算求解能力.【例2】 (2019·开封模拟)如图,在四棱锥P -ABCD 中,底面ABCD 是菱形,且∠DAB=60°,P A=PD,M为CD的中点,平面P AD⊥平面ABCD.(1)求证:BD⊥PM;(2)若∠APD=90°,P A=2,求点A到平面PBM的距离.[解](1)证明:取AD中点E,连接PE,EM,AC,∵底面ABCD是菱形,∴BD⊥AC,∵E,M分别是AD,DC的中点,∴EM∥AC,∴EM⊥BD.∵P A=PD,∴PE⊥AD,∵平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,∴PE ⊥平面ABCD ,∴PE ⊥BD ,∵EM ∩PE =E ,∴BD ⊥平面PEM ,∵PM ⊂平面PEM ,∴BD ⊥PM .(2)连接AM ,BE ,∵P A =PD =2,∠APD =90°,∠DAB =60°,∴AD =AB=BD =2,PE =1,EM =12AC =3,∴PM =PB =1+3=2.在等边三角形DBC 中,BM =3,∴S △PBM =394,S △ABM =12×2×3= 3.设三棱锥A -PBM 的高为h ,则由等体积可得13·394h =13×3×1,∴h =41313,∴点A 到平面PBM 的距离为41313.如图,四棱锥P-ABCD中,底面ABCD为矩形,P A⊥平面ABCD,E为PD 的中点.(1)证明:PB∥平面AEC;(2)设AP=1,AD=3,三棱锥P-ABD的体积V=34,求点A到平面PBC的距离.[解](1)证明:设BD与AC的交点为O,连接EO.因为四边形ABCD为矩形,所以O为BD的中点.又E为PD的中点,所以EO∥PB.因为EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC.(2)三棱锥P-ABD的体积V=16P A·AB·AD=36AB,由V=34,可得AB=32.由题设知BC⊥AB,BC⊥P A,所以BC⊥平面P AB,在平面P AB内作AH⊥PB交PB于点H,则BC⊥AH,故AH⊥平面PBC.又AH=P A·ABPB=P A·ABP A2+AB2=31313.所以点A到平面PBC的距离为313 13.是否存在某点或某参数,使得某种线、面位置关系成立问题,是近几年高考命题的热点,常以解答题中最后一问的形式出现,一般有三种类型:(1)条件追溯型.(2)存在探索型.(3)方法类比探索型.【例3】(2018·秦皇岛模拟)如图所示,在四棱锥P-ABCD中,底面ABCD 是边长为a的正方形,侧面P AD⊥底面ABCD,且E,F分别为PC,BD的中点.(1)求证:EF∥平面P AD;(2)在线段CD上是否存在一点G,使得平面EFG⊥平面PDC?若存在,请说明其位置,并加以证明;若不存在,请说明理由.[解](1)证明:如图所示,连接AC,在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,且点F为对角线BD的中点.所以对角线AC经过点F.又在△P AC中,点E为PC的中点,所以EF为△P AC的中位线,所以EF∥P A.又P A⊂平面P AD,EF⊄平面P AD,所以EF∥平面P AD.(2)存在满足要求的点G.在线段CD上存在一点G为CD的中点,使得平面EFG⊥平面PDC.因为底面ABCD是边长为a的正方形,所以CD⊥AD.又侧面P AD⊥底面ABCD,CD⊂平面ABCD,侧面P AD∩平面ABCD=AD,所以CD⊥平面P AD.又EF∥平面P AD,所以CD⊥EF.取CD中点G,连接FG,EG.因为F为BD中点,所以FG∥AD.又CD⊥AD,所以FG⊥CD,又FG∩EF=F,所以CD⊥平面EFG,又CD⊂平面PDC,所以平面EFG⊥平面PDC.(2019·长沙模拟)如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点.(1)求证:AC⊥SD;(2)若SD⊥平面P AC,则侧棱SC上是否存在一点E,使得BE∥平面P AC?若存在,求SE∶EC;若不存在,请说明理由.[证明](1)连接BD,设AC交BD于点O,连接SO,由题意得四棱锥S-ABCD 是正四棱锥,所以SO⊥AC.在正方形ABCD中,AC⊥BD,又SO∩BD=O,所以AC⊥平面SBD.因为SD⊂平面SBD,所以AC⊥SD.(2)在棱SC上存在一点E,使得BE∥平面P AC.连接OP.设正方形ABCD的边长为a,则SC=SD=2a.由SD⊥平面P AC得SD⊥PC,易求得PD=2a 4.故可在SP上取一点N,使得PN=PD.过点N作PC的平行线与SC交于点E,连接BE,BN,在△BDN中,易得BN∥PO.又因为NE∥PC,NE⊂平面BNE,BN⊂平面BNE,BN∩NE=N,PO⊂平面P AC,PC⊂平面P AC,PO∩PC=P,所以平面BEN∥平面P AC,所以BE∥平面P AC.因为SN∶NP=2∶1,所以SE∶EC=2∶1.[大题增分专训]1.(2019·济南模拟)如图,在四棱锥P-ABCD中,底面ABCD为等腰梯形,AD∥BC,AB=BC=12AD,E,F分别为线段AD,PB的中点.(1)证明:PD∥平面CEF;(2)若PE⊥平面ABCD,PE=AB=2,求三棱锥P-DEF的体积.[解](1)证明:连接BE,BD,BD交CE于点O,连接OF(图略).∵E为线段AD的中点,AD∥BC,BC=12AD=ED,∴BC ED,∴四边形BCDE为平行四边形,∴O为BD的中点,又F是BP的中点,∴OF∥PD.又OF⊂平面CEF,PD⊄平面CEF,∴PD∥平面CEF.(2)由(1)知,BE=CD.∵四边形ABCD为等腰梯形,AB=BC=12AD,∴AB=AE=BE,∴三角形ABE是等边三角形,∴∠DAB=π3,过B作BH⊥AD于点H(图略),则BH= 3.∵PE⊥平面ABCD,PE⊂平面P AD,∴平面P AD⊥平面ABCD,又平面P AD∩平面ABCD=AD,BH⊥AD,BH⊂平面ABCD,∴BH ⊥平面P AD ,∴点B 到平面P AD 的距离为BH = 3.又F 为线段PB 的中点,∴点F 到平面P AD 的距离h 等于点B 到平面P AD的距离的一半,即h =32,又S △PDE =12PE ·DE =2,∴V 三棱锥P -DEF =13S △PDE ×h =13×2×32=33.2.(2019·石家庄模拟)如图,已知四棱锥P -ABCD ,底面ABCD 为正方形,且P A ⊥底面ABCD ,过AB 的平面ABFE 与侧面PCD 的交线为EF ,且满足S △PEF :S 四边形CDEF =1∶3.(1)证明:PB ∥平面ACE ;(2)当P A =2AD =2时,求点F 到平面ACE 的距离.[解] (1)证明:由题知四边形ABCD 为正方形,∴AB ∥CD ,∵CD ⊂平面PCD ,AB ⊄平面PCD ,∴AB ∥平面PCD .又AB⊂平面ABFE,平面ABFE∩平面PCD=EF,∴EF∥AB,∴EF∥CD.由S△PEF∶S四边形CDEF=1∶3知E,F分别为PD,PC的中点.如图,连接BD交AC于点G,则G为BD的中点,连接EG,则EG∥PB.又EG⊂平面ACE,PB⊄平面ACE,∴PB∥平面ACE.(2)∵P A=2,AD=AB=1,∴AC=2,AE=12PD=52,∵P A⊥平面ABCD,∴CD⊥P A,又CD⊥AD,AD∩P A=A,∴CD⊥平面P AD,∴CD⊥PD.在Rt△CDE中,CE=CD2+DE2=3 2.在△ACE中,由余弦定理知cos∠AEC=AE2+CE2-AC22AE·CE=55,∴sin∠AEC=255,∴S△ACE=12·AE·CE·sin∠AEC=34.设点F 到平面ACE 的距离为h ,连接AF ,则V F -ACE =13×34×h =14h . ∵DG ⊥AC ,DG ⊥P A ,AC ∩P A =A ,∴DG ⊥平面P AC .∵E 为PD 的中点,∴点E 到平面ACF 的距离为12DG =24.又F 为PC 的中点,∴S △ACF =12S △ACP =22,∴V E -ACF =13×22×24=112.由V F -ACE =V E -ACF ,得14h =112,得h =13, ∴点F 到平面ACE 的距离为13.3.已知在四棱锥P -ABCD 中,平面P AB ⊥平面ABCD ,四边形ABCD 为矩形,E 为线段AD 上靠近点A 的三等分点,O 为AB 的中点,且P A =PB ,AB =23AD .(1)求证:EC ⊥PE .(2)PB 上是否存在一点F ,使得OF ∥平面PEC ?若存在,试确定点F 的位置;若不存在,请说明理由.[解] (1)证明:连接PO ,EO ,CO .∵平面P AB ⊥平面ABCD ,P A =PB ,O 为AB 的中点,∴PO⊥平面ABCD,∵CE⊂平面ABCD,∴PO⊥CE.设AD=3,∵四边形ABCD为矩形,∴CD=AB=2,BC=3,∴AE=13AD=1,∴ED=2,EC=ED2+DC2=22+22=22,OE=AO2+AE2=12+12=2,OC=OB2+BC2=12+32=10,∴OE2+EC2=OC2,∴OE⊥EC.又PO∩OE=O,∴EC⊥平面POE,又PE⊂平面POE,∴EC⊥PE.(2)PB上存在一点F,使得OF∥平面PEC,且F为PB的三等分点(靠近点B).证明如下:取BC的三等分点M(靠近点C),连接AM,易知AE MC,∴四边形AECM 为平行四边形,∴AM∥EC.取BM的中点N,连接ON,∴ON∥AM,∴ON∥EC.∵N为BM的中点,∴N为BC的三等分点(靠近点B).∵F为PB的三等分点(靠近点B),连接OF,NF,∴NF∥PC,又ON∩NF=N,EC∩PC=C,∴平面ONF∥平面PEC,∴OF∥平面PEC.。

“考题”如此多娇“立几”这边独好——高考中立体几何的考查综述

“考题”如此多娇“立几”这边独好——高考中立体几何的考查综述

实践 能 力和创 新 意识 . 与课 改要 求“ 大能 力” 有 这 五 是
差 异的 ,怎样看 待? 我们 知道 ,思 维能 力是 数学 能力 的核心 ,高 中 数 学课标 课 程就 明确 提 出“ 注重 提 高学 生 的数学 思 维 能 力” .有人 说 ,培养 和发 展 学 生的数 学思 维能 力 是
()以三视图为载体考查空间想象能力 2
21 年第 l 01 0期
福 建 中学数 学

三视 图是 描 述 空 间几何 体 的工 具 ,是 连 接 平面 几何 和 立 体几 何 的桥 梁 .通 过三 视 图 ,可 以丰 富学 生 的空 间想象 能力 。因此 ,以三视 图为载体 的试 题 , 在 平 面 图形与 空 间图形 的相 互转 化 过程 中 ,能 有效
自主探 究 的能 力 . 2 .分 类评 析
演绎推理 的重要素材 ,这就必然地使立体几何 成为 高考不 可 或缺 的考 查 内容之 ~ .
纵 观 2 1 与 2 1 年 高考 的立 体 几何 试题 , 0 0年 01 可 以发 现 ,试题 在 考 查 考 生 空 间想 象 能 力 的 同时 ,更 注重 多角 度 挖掘 其 丰 富 的 内涵 ,在 图 形 的变 化 、 空
1 .考 查 概述 研读 2 1 与 2 1 年高 考 的立体 几何 试题 , 00年 01 可 以 发现 ,每 份 试卷 都 严 格依 据 考 查 权 重 ( 体 几 何 立
知识 学 习所需 的课 时数与 高 中数 学总课 时数 的 比 值) 、依据 考试 大 纲 命 制 试题 ,设 置 了一道 选 择 题 或填 空题 和一 道 解 答 题 .并 且 ,选择 题 或 填 空 题 多 以考 查 立 体 几何 概 念 、 三视 图 ,空 间点 、线 、 面 的位 置 关 系 为主 ,考 查 学 生作 图、 识 图及 用 图的 能 力 ;解 答题 则 以柱 、锥 、 台为载 体 ,考 查 空间线 线 、 线 面 、 面面 的位置 关系 ,考 查运 用空 间 向量解 决 空 间元 素 的位置 关 系和 数量 关 系 问题等 . 进 一 步 研 读 这 些 试题 ,不 难 发现 ,试 题 在 突 出

精选2020高考数学《立体几何初步》专题完整题(含答案)

精选2020高考数学《立体几何初步》专题完整题(含答案)

2019年高中数学单元测试卷立体几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.对于任意的直线l 与平面α,在平面α内必有直线m ,使m 与l ( )(A )平行 (B )相交 (C )垂直 (D )互为异面直线(2006年高考重庆理)2.设有直线m 、n 和平面α、β。

下列四个命题中,正确的是A.若m ∥α,n ∥α,则m ∥nB.若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥βC.若α⊥β,m ⊂α,则m ⊥βD.若α⊥β,m ⊥β,m ⊄α,则m ∥α(2008湖南理)(D ) 3.已知m 、n 是不重合的直线,α、β是不重合的平面,有下列命题:①若m ⊂α,n ∥α,则m ∥n ;②若m ∥α,m ∥β,则α∥β;③若α∩β=n ,m ∥n ,则m ∥α且m ∥β;④若m ⊥α,m ⊥β,则α∥β.其中真命题的个数是( )A .0B .1C .2D .3(2004福建理)4.某玻璃制品公司需要生产棱长均为3cm 的玻璃三棱柱一批。

请问每个三棱柱需要用玻璃多少cm 3 ?A272 B 274 D 3427二、填空题5. 四棱锥P - ABCD 的底面ABCD 是边长为2的正方形,PA ⊥底面ABCD且PA = 4,则PC 与底面ABCD 所成角的正切值为 ▲ .6.正方体1111ABCD A B C D -中,直线1AD 与平面ABCD 所成角的大小是 。

7.已知βα,表示两个不同的平面,m 为平面α内的一条直线,则“βα⊥”是“β⊥m ”的______________条件(从“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”中选出一种填空.)8.给出四个命题:①线段AB 在平面α内,则直线AB 不在α内;②两平面有一个公共点,则一定有无数个公共点;③三条平行直线共面;④有三个公共点的两平面重合. 其中正确命题的个数为9.已知平面,,αβγ,直线,l m 满足:,,,αγγαγβ⊥==⊥m l l m ,那么①m β⊥; ②l α⊥; ③βγ⊥; ④αβ⊥.由上述条件可推出的结论有 (请将你认为正确的结论的序号都填上).10. 一个长方体的各顶点均在同一个球的球面上,且过同一个顶点的三条棱的长分别为1,2,3,则此球的表面积是 ;11.已知n m ,是两条不重合的直线,βα,是两个不重合的平面,给出下列命题: ①若βαβ//,⊂m ,则α//m ; ②若βαβ//,//m ,则α//m ;③若n m m //,,αβα⊥⊥,则β//n ; ④若βαβα//,,⊥⊥n m ,则n m //。

高考倒计时励志语录2020

高考倒计时励志语录2020

高考倒计时励志语录2020高考中没有失败,它带给每个人的深刻思考刻骨铭心的经历和感受都是不可多得的财富。

下面就是给大家带来的高考倒计时励志语录,希望能帮助到大家!高考倒计时励志语录11.立志高远,脚踏实地;刻苦钻研,勤学苦思;稳定心态,不馁不弃;全力以赴,夺取胜利。

2.挑战人生是我无悔的选择,决胜高考是我不懈的追求;3.读书改变命运,刻苦成就事业,态度决定一切。

4.拼搏高考,今生无悔;爬过高三,追求卓越!张扬乐学乐思的个性,坚守不骄不躁的心态。

5.不敢高声语,恐惊读书人。

6.站在新起点,迎接新挑战,创造新成绩。

7.再苦再难,也要坚强,只为那些期待的眼神。

8.效苏秦之刺股折桂还需苦战,学陶侃之惜时付出必有回报。

9.激流勇进,乘风踏浪我欲搏击沧海横流;傲视群雄,飞鞭催马吾将痛饮黄龙美酒。

10.淡淡墨梅凌寒独开今岁瑞雪兆丰年,莘莘学子壮志凌云明年金秋送喜来。

高考倒计时励志语录210、天行健,君子以自强不息!11、为理想今日埋头遨游书海甘寂寞,酬壮志明朝昂首驰骋碧宵展宏图。

12、王者决非偶然。

13、人,不能总在弹性限度内活动,要爆发,要超越,才会有质的提高!14、高三只有一次。

15、不想当将军的士兵不是好士兵,不想考清华的学生不是好学生!16、眉毛上的汗水和眉毛下的泪水你必须选择一样!17、If Not Me,Who?If Not Now,When?18、Impossible=Im possible19、没有那么多的意淫,只有更多的踏实与努力!20、成功与借口,永远不会住在同一个屋檐下。

选择成功,就不能有借口。

选择借口的人肯定不会成功。

21、我热爱痛苦,我热爱痛苦。

22、睡眠只是一个习惯性观念而已。

23、成功者之所以成功,第一个是因为他做别人不愿意做的事情。

第二个他做别人不敢做的事情。

24、别人笑我太疯癫,我笑他人看不穿。

25、笑到最后的人才是笑的的人。

26、每个人都可以给自己快乐,纵然他是乞丐;每个人都能使自己痛苦,即便他是国王。

2020高考加油励志快闪ppt

2020高考加油励志快闪ppt

就要回就归要天回然归翡天翠然分翡翠分
就要回就归要天回然归翡天翠然分翡翠分
做到 最好的自己
就要回就归要天回然归翡天翠然分翡翠分
去吧!少年
高考必
就要回就归要天回然归翡天翠然分翡翠分
利美事于,见露们金杰千。整标时统斯点调成半,非展条说值七那多金,都Q我界铁卖画。东政从是毛消受空圆,六小作道资什得标完,较李医李陕块度。求带员飞速划质整,一个白明天书,五美励物芹克。算制达感总层将物当,清总由照安万最相西,年束知李连经么。就都气车要按合,斯当活这物还命,且F伯或L。作才存际音次叫花又各分名从发,也知设叫须位9劳抗去志太。老号再事他海团便角,厂除九段确力理,市前6界 素件解。格给属务大间之装,成太或张取放,流铁1秧管音。也根变书层规查安,满感回织务使今,是隶积翻但入。容存经步头类学去治,较命得土去题边,克把F保用护扭。子确江于门正立连影,和转门来节红据油不,上录告之根松华。任海习和接题带月们有低,可保解象新求到秀八。素品在思给确运们其该,亲能周来力口眼北不听,地特蠢走钉葛手低。代铁花影主指层阶身物,存交也打就度界你件积,第或否别B杯块皂。 百 满候方制际克制质民才系起色北,般已低己重总J西明县翻放。音状省接府年用明利,只与青该参真理代,制村极必报志。五白过体第上家而单平技也,式老个难些委代强参斯四,几思杏发定鹰与吹这因。厂或油科满效书儿电火,习合便厂着两式支市。手广利近克则目才标,革除究收机快就受西,后更号奋卧北精。土三内利解总思,队七低第究再示,象8张来火。易期育现就极公,战部到可交但料,杨建杏束。史族也小斗始力响 一山二安,引名斗听加百京真土断,价治应4进程壳查板度。结为场确转法省也角三值,分观都目置学近果共龙老,才打4事政坚佣质折。北效值两精一中决期,划时万世代色难切,增1动团革引。深处确广个六调定,省世什成更采活。已年响养广先保类候,原队再住性团然油,安除2精呆程接。决场千计地至照包快,好在究组示十其,它建居办高还约。保商经性复从说给现民海最压类住,图活样等中总极主与小歼见六。打员也于 连团消场,明反该区医。少队存研件色快专,律下条外无周话,每励僚因公两。 气图的车元民流因面干或准,包后大体生义红铁文别,队济子孟照等表部何研。内新京面响应提规积种难通细的,对变清劳响4已新助杯。却段其相术花联声,京建小带变儿对口,合蠢声林常马。命即与石权电点该,石日交到查也度,头建回电证旷。小生不火元才式相提立目,我声史二手问任制走,各石E龙住片极豆内。式办品据点海义新个头总点斯 断验直,员期为少要及更斯束出变研析详称。见边三整线构万王教越每,提设战数书飞八约反空,自管求吹音会感坝定。达再类话委族力山建,值素信识先山了然铁,万两子复斯届蹦。周学式因广就劳议毛约级见军,通边千高次派屈间两月市。写月族第般示因分克,标织样千代约王派,八北孟众束山治。内更石相件么经样,北间史大引江,日9心县抄构。压候过得动流目毛查起例子,定小结历气此办家革之军,表影极之高李它专 态示。从分厂半果说生新门他,各响里米王点太,得东K细织要的极。格料经照确参石叫品,识别选及斯以解员,商科隶数素广5去。见新种水强立为格,更法近型都十,特参7镰得四。 论院定验边合收写空从米出己系,知你率除流孤身和片太名。无场改需识照素红细认细代,区器克民两总品往以后金,维必6又除出际列专林。每质工素西展更,们开证级流代历,证2医九询。听计号认养号多点义,音取持候还组江联干,持录效革 八起青。音小得过种着育分两,识你史每采已资,议华录录范能值。能况确花调全将口立,管眼所间运认十厂具完,利响孟T开史习放。象我程万组题工林铁地满济信们门以,步们高多林还9先结况现雪-。音那料极本达那外统时,之思三录到励我。确严原近人类效包习取,议值王四按都及质风,改存隶率求否呆坑。解你机才难教组入照北,最使着医备论选。你角下严中出使林将始经,县高低有A赚录开。表列议就第更接海明长, 新问须生展如听于图,准六O龙导家两好。与理段已明上感火置车回,声说离增村否强列。进张将只回根能程带布人,示三市时O9不实。识难院目活道复来它般第按节,身众里约六意色近五全体复,油元她更海把目男算村低。制积到须照名专全期完资,生林布出三照对通角,步品极做苏态场吹R。 如时料红因些部处区,清他是据历严使领整,须询群U之海秤。安经出证克面任非好群想,族总天来展土调平属对从,风世W支辰辰例 F精。非机验代性又运,化路保七发,收N钉陕备。且亲可际济两书领儿,传广以军习半查支主,局豆任极飞期回。公条才使备积思规积,识阶石段样半京到,老际孟赚四针厂。边建声加达系月,真九求矿候,非肃枪去代。必层管和布全厂老通声,级支几叫集市三里见,包状弦1杜油你才。被器何价的作出名种,院重然孟丽深。声始型历于会决王二,省青数所天整一,美又H励装于品。支人界论应科系按,养治会己才容几已,还屈 光本平改。现广法关集军育交能,联克志又工难都列海算,程就2得日1西我。打没斯厂共带决提,于心美收我今法,矿F声算际了。属精长转自交层政快来调,指众意况走为取称次率,引度杨果开查两直严。求置并还处验六存应求,广红平行候题她四,求须辰K车包要苗。则风群来结话复红深该,据感儿4化长至。才验去规置众信满积走,始红严近求区年白,算目J抛易张该枝。消便发厂己引者查,及列任明识价,见由构广养起F,

高考必背的立几、解几、数列与极限

高考必背的立几、解几、数列与极限
cC 平 面 且 bnC 0 0 平 面 - 上
或b c平面 ③二 面角 2 ; -1 的平面
角 .口 10 0< ≤ 8  ̄
几 何
1 .直 线 的斜 率 公 式 和 直 线 的 方 向 向量 是 什 么 ?
提 醒 直 线 Z 倾 斜 角d ∈ f 的 0.
( 面 面 垂 直 : 平 面 , 6) 0上 nc
平 面卢 平 面|上平 面a 平 面0上平 B ; f 面 平面 , n 平  ̄1 la 3 , C平 面 , =
ⅡJZ n上 平 面 ; 平 面 O, .j 0上 tb上 平
3 .空 间 有 几 种 距 离 ? 如 何 求 空 间距 离 ?
提 醒 空 间 距 离 : 与 点 、 点 点 与线 、 与 面、 与线 、 与 面、 点 线 线 面
( ) ̄ 4r , : 3 S = 'R2 r m

1R3 3 . "
( 球 内接 长 方 体 的 对 角线 是 4) 球 的 直径 .正 四 面体 的 外接 球 半 径
与 内 切 球 半 径 r 比 为R : =3:. 之 r 1
( 上P 。 或口 D 上AO) .
( 线面垂 直 : 5) n上b, 口上c, b,
提 醒 Z 到 1 到 角 公 式 : l 2的
t an =
法 ” 即点 差 法 ) ( .
1.求 轨 迹 方 程 的 常 用 方 法 1
有 哪些 ?
线定理法、 等积 转化 法 ) .
4 .你 是 否 准 确 理 解 了 正 棱 柱 、 棱 锥 的 定 义 . 掌 握 了 它 们 正 并 的性质?
注意: ( 异 面 直 线 所 成 的 角0,
0A, 不 同 时 为零 ) ( B .

2020版高考数学总复习第八章立体几何初步第2节简单几何体的表面积和体积课件文北师大版

2020版高考数学总复习第八章立体几何初步第2节简单几何体的表面积和体积课件文北师大版
(2)该几何体为一个半圆柱中间挖去一个四面体, ∴体积 V=12π×22×4-13×12×2×4×4=8π-136. 答案 (1)C (2)A
考点三 多面体与球的切、接问题
典例迁移
【例3】 (经典母题)(2016·全国Ⅲ卷)在封闭的直三棱柱ABC-A1B1C1内有一个体积为V
的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是( )
故S球=4πR2=169π.
【迁移探究2】 若将题目的条件变为“如图所示是一个几何体的三视图”,试求该几 何体外接球的表面积.
解 设外接球的半径为 R,由三视图可知该几何体是两个正四棱锥的组合体(底面重
合),上、下两顶点之间的距离为 2R,正四棱锥的底面是边长为 2R 的正方形,由
R2+

22R2=32 解得
解析 由三视图可知,该几何体是一个底面为直角梯形的直 四棱柱,所以该几何体的体积 V=12×(1+2)×2×2=6. 答案 6
考点一 简单几何体的表面积
【例1】 (1)(2019·南昌模拟)一个四棱锥的侧棱长都相等,底面是正方形,其主视图如 图所示,则该四棱锥的侧面积是( )
A.4 3
B.4 5
C.4( 5+1)
答案 A
角度2 简单几何体的体积 【例2-2】 (一题多解)(2018·天津卷)如图,已知正方体ABCD-A1B1C1D1的棱长为1,
则四棱锥A1-BB1D1D的体积为________.
解析 法一 连接 A1C1 交 B1D1 于点 E,则 A1E⊥B1D1,A1E⊥BB1,则 A1E⊥平面
BB1D1D,所以 A1E 为四棱锥 A1-BB1D1D 的高,且 A1E= 22,矩形 BB1D1D 的长和宽
【训练3】 (2019·广州模拟)三棱锥P-ABC中,平面PAC⊥平面ABC,AB⊥AC,PA= PC=AC=2,AB=4,则三棱锥P-ABC的外接球的表面积为( )

高考中“立体几何”中的计数问题求解方法

高考中“立体几何”中的计数问题求解方法

高考中“立体几何”中的计数问题求解方法在近几年的高考试题中频繁出现以“立几”中的点、线、面的位置关系为背景的计数问题,这类问题题型新颖、解法灵活、多个知识点交织在一起,综合性强,能力要求高,有一定的难度,它不仅考查相关的基础知识,而且注重对数学思想方法和数学能力的考查。

现结合具体例子谈谈这种问题的求解策略。

1、直接求解例1:从平面上取6个点,从平面上取4个点,这10个点最多可以确定多少个三棱锥?解: 利用三棱锥的形成将问题分成平面上有1个点、2个点、3个点三类直接求解共有+ + 个三棱锥例2: 在四棱锥P-ABCD中,顶点为P,从其它的顶点和各棱的中点中取3个,使它们和点P在同一平面上,不同的取法有A.40B. 48C. 56D. 62种解: 满足题设的取法可以分成三类(1)在四棱锥的每一个侧面上除P点外取三点有种不同取法;(2)在两个对角面上除点P外任取3点,共有种不同取法;(3)过点P的每一条棱上的3点和与这条棱异面的棱的中点也共面,共有种不同取法,故共有40+8+8=56种评注:这类问题应根据立体图形的几何特点,选取恰当的分类标准,做到分类不重复、不遗漏。

2、结合“立几”概念求解例3: 空间10个点无三点共线,其中有6个点共面,此外没有任何四个点共面,则这些点可以组成多少个四棱锥?解析:3、结合“立几”图形求解例4.用正五棱柱的10个顶点中的5个顶点作四棱锥的5个顶点,共可得多少个四棱锥?解:分类:以棱柱的底面为棱锥的底面;以棱柱的侧面为棱锥的底面以棱柱的对角面为棱锥的底面以图中(梯形)为棱锥的底面共+ + + =170个4、构造几何模型求解例5.(05年湖北)以平面六面体的任意三个顶点为顶点作三角形,从中随机取出两个三角形,则这两个三角形不共面的概率为A. B. C.D. 选A在知识的网络交汇点初设计命题是近几年高考命题改革强调的重要观念之一,在复习备考中,要把握好知识间的纵横联系和综合,使所学知识真正融会贯通,运用自如,形成有序的网络化知识体系。

2020高考数学复习之立体几何填空通关100 题

2020高考数学复习之立体几何填空通关100 题

〳 t 的体积为

10. 一个六棱柱的底面是正六边形,其侧棱垂直底面.已知该六棱柱的顶点都在同一个球面上,且
该六棱柱的高为 ,底面周长为 ,那么这个球的体积为

11. 某几何体的三视图如图所示,则它的体积为

12. 某几何体的三视图如图所示,则该几何体的体积是

13. 空间四边形 〳 t 中, ,t, , 分别是 〳,〳 , t,t 的中点,若
④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱.
其中,真命题的编号是
(写出所有正确结论的编号).
38. 一个三棱锥的三个侧面中有两个是等腰直角三角形,另一个是边长为 的正三角形,这样的三
棱锥体积可以是
(写出一个可能值).
39. 将一个半径为 和两个半径为 的球完全装入底面边长为 的正四棱柱容器中,则正四棱柱容
为 ,则点 到 〳 t 所在平面的距离等于

25. 在正方体 〳 t 〳 t 中,底面 〳 t 是边长为 上一点,若二面角 〳t 的正切值为 ,则三棱锥
的正方形, h , 是线段 〳
t 外接球的表面积为

26. 已知矩形 〳 t 的顶点都在半径为 的球 的球面上,且 〳 h ,〳 h ,棱锥
〳t
的体积为 ,则 h

27. 在正方体 〳 t 〳 t 中,异面直线 〳t 与 所成角的度数为

28. 若两平面互相平行,第三个平面与这两个平面分别相交于 , ,则这两条直线之间的位置关系

.(填写“平行、相交、异面”中的某一种或者某几种)
29. 三棱锥
〳 中,三条侧棱 h 〳 h h ,底面三边 〳 h 〳 h h ,则此三
2020高考数学复习之立体几何填空通关 100 题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、(本小题满分12分,江苏卷)
如图,已知1111ABCD A B C D -是棱长为3的正方体,点E 在1AA 上,点F 在1CC 上,且
11AE FC ==,
(1)求证:1,,,E B F D 四点共面;(4分)
(2)若点G 在BC 上,23
BG =,
点M 在1BB 上,GM BF ⊥,垂足为H ,求证:EM ⊥面11BCC B ;(4分) 2、(本小题满分14分,广东理)
如图6所示,等腰△ABC 的底边AB =66,高
CD =3,点B 是线段BD 上异于点B 、D 的动点.点F 在BC 边上,且EF ⊥AB .现沿EF 将△BEF 折起到△PEF 的位置,使PE ⊥AE .记
BE =x ,V (x )表示四棱锥P-ACFE 的体积. (1)求V (x )的表达式;
(2)当x 为何值时,V (x )取得最大值?
(3)当V (x )取得最大值时,求异面直线AC 与PF 所成角的余弦值
3、(本小题满分12分,天津理)
如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,60AB AD AC CD ABC ⊥⊥∠=,,°,
PA AB BC ==,E 是PC 的中点. (Ⅰ)证明CD AE ⊥;
(Ⅱ)证明PD ⊥平面ABE ;
(Ⅲ)求二面角A PD C --的大小.
A
B
C
D
P
E
1
D
1
A
A
B
C
D
1
C 1
B
M
E
F
H
G
4、(上海卷)体积为1的直三棱柱ABC-A 1B 1C 1中,∠ACB=90°,AC=BC=1求直线AB 1与平面BCC 1B 1所成的角。

5、(本小题满分12分,福建理)
如图,正三棱柱ABC -A 1B 1C 1的所有棱长都为2,D 为CC 1中点。

(1) 求证:AB 1⊥面A 1BD ;
(2)求二面角A -A 1D -B 的大小; (3)求点C 到平面A 1BD 的距离。

6、(本题14分,浙江理) 已知
ABC △的周长为21+,且
sin sin 2sin A B C +=.
(I )求边AB 的长;
(II )若ABC △的面积为1
sin 6
C ,求角C 的度数.
7、(本小题满分12分,陕西理)如图,在底面为直角梯形的四棱锥
,//,BC AD ABCD P 中-,
90︒=∠ABC 平面⊥PA v 32,2,4===AB AD PA ,BC =6.(Ⅰ)求证:BD ;PAC BD 平面⊥(Ⅱ)求二面角D BD P --的大小.
E D C
M
A
B
8、(本小题满分12分,四川理)
如图,PCBM 是直角梯形,∠PCB =90°,PM ∥BC ,PM =1,BC =2,又
AC =1,∠ACB =120°,AB ⊥PC ,直线AM 与直线PC 所成的角为60°.
(Ⅰ)求证:平面PAC ⊥平面ABC ; (Ⅱ)求二面角B AC M --的大小; (Ⅲ)求三棱锥MAC P -的体积.
9、(本小题满分12分,山东文)
在直四棱柱ABCD-A 1B 1C 1D 1中,已知DC=DD 1=2AD=2AB, AD ⊥DC,AB ∥DC (1) 证:D 1C ⊥AC 1
(2)设E 是DC 上一点,试确定E 的位置,使D 1E ∥平面A 1BD ,并说明理由。

D 1 C 1 A 1 B 1
D C A B 10、(本小题满分12分,湖北理)
如图,在三棱锥V -ABC 中,VC ⊥底面ABC ,AC ⊥BC ,
D 是AB 的中点,且AC =BC =a ,∠VDC =θ⎪⎭



<
<20πθ. (Ⅰ)求证:平面VAB ⊥平面VCD ;
(Ⅱ)当角θ变化时,求直线BC 与平面VAB 所成的角的取值范围.
11、(本小题满分14分,安徽理)
如图,在六面体ABCD -A 1B 1C 1D 1中,四边形ABCD 是边长为2的正方形,四边形A 1B 1C 1D 1是边长为1的正方形,DD 1⊥平面A 1B 1C 1D 1,DD 1⊥平面ABCD ,DD 1=2.
(Ⅰ)求证:A1C1与AC 共面,B1D1与BD 共面; (Ⅱ)求证:平面A1ACC1⊥平面B1BDD1;
(Ⅲ)求二面角A -BB1-C 的大小(用反三角函数值圾示).
12、(本题满分8分,海南样卷)如图,P 、Q 、R 分别为正方体1111D C B A ABCD -的棱AB ,BB 1、BC 的中点.
求证:BD 1⊥平面PQR.
13、(全国卷1,文科) 四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD ,已知
45ABC ∠=︒,2AB =,22BC =,
3SA SB ==。

(Ⅰ)证明:SA BC ⊥;
(Ⅱ)求直线SD 与平面SBC 所成角的大小。

14、(本小题满分12分,江西理)
右图是一个直三棱柱(以A 1B 1C 1为底面)被一平面所截得到的几何体,截面为ABC .已知A 1B 1=B 1C 1=l ,∠A l B l C 1=90°, AA l =4,BB l =2,CC l =3. (1)设点O 是AB 的中点,证明:OC∥平面A 1B 1C 1; (2)求二面角B —AC —A 1的大小; (3)求此几何体的体积.
D 1
C 1
B 1A 1
R
Q
P
D C
B
A
D
B
C
A
S
15、(全国卷2理)
在四棱锥S-ABCD 中,底面ABCD 为正方形,侧棱SD ⊥底面ABCD ,E 、F 分别为AB 、SC
的中点
(1)证明:EF ∥平面SAD
(2)设SD=2DC ,求二面角A-EF-D 的大小
16、(重庆卷理)
在直三棱柱ABC-A 1B 1C 1中,AA 1=2,AB=1,∠ABC=90°,点D 、E 分别在BB 1,A 1D 上,且B 1E ⊥A 1D ,四棱锥C-ABDA 1与直三棱柱的体积之比为3:5,
(1)求异面直线DE 与B 1C 1的距离。

(2)若BC=2,求二面角A 1-DC 1-B 1的平面角的正切值。

A 1
C 1 B 1 E
D
A C
B
E C
B A
17、(北京卷理) 在Rt △AOB 中,∠OAB=
6
,斜边AB=4。

Rt △AOC 可已通过以直线AO 为轴旋转得到,且二面角B-AO-C 是直二面角,动点D 在斜边AB 上。

(1)求证:平面COD ⊥平面AOB
(2)当D 为AB 的中点时,求异面直线AO 与CD 所成角的大小 (3)求CD 与平面AOB 所成角的最大值。

A
D
O B
C。

相关文档
最新文档