人教版九年级上册 第22章 二次函数复习知识点总结和题型讲解

合集下载

(人教版新课标)九年级数学第22章《二次函数》知识小结

(人教版新课标)九年级数学第22章《二次函数》知识小结

函数是初中数学知识的主线,而二次函数是这条主线上的高潮.我们通过探索二次函数与方程的关系,让我们领悟到事物之间相互联系的辨证关系.我们能够利用二次函数解决实际问题,培养数学建模的能力. 【知识结构】【知识梳理】1、定义:形如 c bx ax y ++=2(a 、b 、c 是常数,a≠0)的函数叫做x 的二次函数. 二次函数的一般形式是c bx ax y ++=2(a≠0),还可以用配方法化为k h x a y +-=2)(的形式,它可直接看出其顶点坐标为(k h ,),故把k h x a y +-=2)(叫做二次函数的顶点式.2、图象:二次函数的图象是抛物线,它是轴对称图形,其对称轴平行于y 轴. 注意:二次函数c bx ax y ++=2的图象的形状、大小、开口方向只与a 有关,所以,c bx ax y ++=2的图象可通过2ax y =的 图象平移得到.平移可按照如下口诀进行:上加下减,左加右减,即向上或向左用加,向下或向右用减.例如,将22x y =向左平移1个单位为()212+=x y ,再向下平移3个单位为()3122-+=x y .3、性质注意:二次函数的性质要结合图象,认真理解,灵活应用,不要死记硬背. 4、二次函数与一元二次方程的关系对于二次函数c bx ax y ++=2(a≠0),当y =0时,就变成了一元二次方程02=++c bx ax .二次函数c bx ax y ++=2(a≠0)的图象与x 轴的交点有三种情况: 当ac b 42-﹥0时,有两个交点; 当ac b 42-=0时,有一个交点; 当ac b 42-﹤0时,无交点.当二次函数c bx ax y ++=2(a≠0)的图象与x 轴的有交点时,其交点横坐标就是方程02=++c bx ax 的根. 【易错点剖析】一、忽略二次项系数不等于0例1已知二次函数263y kx x =-+的图象与x 轴有交点,则k 的取值范围 是( )(A )k <3 (B) k <3 且k ≠0 (C) k ≤3 (D) k ≤3 且k ≠0 错解:选C.由题意,得△=()26--4 k ×3≥0,解得k ≤3,故选C.错解分析:当k =0时,二次项系数为0,此时原函数不是二次函数.欲求k 的取值范围,须同时满足:①函数是二次函数;②图象与x 轴有交点,上面的解法只注重了△≥0而忽略了二次项系数不等于0的条件.正解: 选D.由题意,得△=()26--4 k ×3≥0且k ≠0,即k ≤3 且k ≠0,故应选D. 二、忽略隐含条件例2如图,已知二次函数2y x bx c =++的图象与y 轴交于点A, 与x 轴正半轴交于B,C 两点,且BC =2,ABC S ∆ =3,则b 的值为( )(A )-5 (B)4或-4 (C) 4 (D)-4错解: 选 B.依题意BC =2,ABC S ∆ =3,得点A(0,3),即c =3.又BC =2,得方程20x bx c ++=的两根之差为2,2-=,解得b =±4.故选B.错解分析:上面的解法忽略了“抛物线的对称轴x =-2b在y 轴的右侧”这一隐含条件,正确的解法应是同时考虑-2b>0,得b <0,∴b =4应舍去,故应选D. 正解: 选D.例3 若y 关于x 的函数y =(a -2)x 2-(2a -1)x +a 的图象与坐标轴有两个交点,则a 可取的值是多少?错解:因为函数y =(a -2)x 2-(2a -1)x +a 的图象与坐标轴有两个交点,而其中与y 轴有一个交点(0,a ),则与x 轴就只有一个交点,所以关于x 的一元二次方程y =(a -2)x 2-(2a -1)x +a有两个相等的实数根,所以判别式[-(2a-1)]2-4×(a-2)a=0,解得a=-14.错解分析:本题关于函数的描述是“y关于x的函数”,并没有指明是二次函数,所以需要分“y关于x的一次函数”和“y关于x的二次函数”两种情况进行讨论.当函数y是关于x的二次函数时,函数y=(a-2)x2-(2a-1)x+a的图象与y轴有一个交点(0,a),与坐标轴三、忽略数形结合思想方法的应用例4 求二次函数y=2x+4x+5(-3≤x≤0)的最大值和最小值.错解:当x=-3时,y=2; 当x=0时,y=5;所以,-3≤x≤0时,y最小=2,y最大=5.错解分析:上面的解法错在忽略了数形结合思想方法的应用,误以为端点的值就是这段函数的最值.解决此类问题,画出函数图象,借助图象的直观性求解即可.四、求顶点坐标时混淆符号例5 求二次函数y =-x 2+2x -2的顶点坐标. 错解1 用配方法y =-x 2+2x -2=-(x 2-2x )-2=-(x 2-2x +1-1)-2=-(x 2-2x +1) -1=-(x -1) 2-1所以二次函数y =-x 2+2x -2的顶点坐标为(-1,-1).错解2 用公式法 在二次函数y =-x 2+2x -2中,a =-1,b =2,c =-2,则2122(1)b a ==-⨯-,22424(1)(2)142(1)b ac a --⨯-⨯-==⨯- 所以二次函数y =-x 2+2x -2的顶点坐标为(-1,1).错解分析:二次函数y =a (x -h )2+k 的顶点坐标为(h ,k ),即横坐标与配方后完全平方式中的常数项互为相反数,而非相等,也就是说不是(-h ,k ).二次函数y =ax 2+bx +c (a ≠0)的顶点坐标为(-2b a ,244b ac a-),横坐标前面带“-”,纵坐标的分子为4ac -b 2,不要与一元二次方程根的判别式b 2-4ac 混淆.另外,把一般式转化为顶点式,常用配方法,如果二次项系数是1,则常数项为一次项系数一半的平方;如果二次项系数不是1,则先提出二次项系数(注意:不能像解方程一样把二次项系数消去),使括号中的二次项系数变为1,再对括号中进行配方.五、忽视根的判别式的作用例6 已知抛物线y=-12x2)x+m-3与x轴有两个交点A,B,且A,B关于y轴对称,求此抛物线解析式.错解:因为A与B关于y轴对称,所以抛物线对称轴为y轴,即直线x=-02ba==.解得m=6或m=-6.当m=6时,方程抛物线解析式为y=-12x2+3.错解分析:抛物线与x轴有两个交点为A,B,等价于:相应的一元二次方程有两个不相等的实数根,所以b2-4ac>0.如果忽视根的判别式在解题中的作用,就不能排除不符合题意的解,扩大了解的范围,导致错误.。

九年上第二十二章 二次函数全章知识点总结

九年上第二十二章 二次函数全章知识点总结

二次函数二次函数的定义:一般地,形如()0,,2≠++=a c b a c bx ax y 是常数的函数,叫做二次函数,x 是自变量,c b a ,,分别是函数解析式的二次项系数、一次项系数和常数项。

开口方向:二次函数c bx ax y ++=2图像是一条抛物线,二次项系数()0≠a a 决定二次函数图像的开口方向,当0>a ,二次函数图像开口向上,当0<a ,二次函数图像开口向下。

在直角坐标系中画出二次函数221x y =,2x y =,22x y =的图像,观察图像可知三个二次函数图像的顶点坐标,对称轴都相同,开口大小逐渐减小。

规律:0>a ,a 越大,抛物线的开口越小。

在直角坐标系中画出二次函数221x y -=,2x y -=,22x y -=的图像,观察图像可知三个二次函数图像的顶点坐标,对称轴都相同,开口大小逐渐减小。

规律:0<a ,a 越小,抛物线的开口越小。

抛物线的开口大小与a 有关,a 越大,开口越小;a 越小,开口越大。

对称轴:二次函数()0,,2≠++=a c b a c bx ax y 是常数图像是轴对称图形,关于对称轴对称。

它的对称轴是ab x 2-= 二次函数的单调性:二次函数图像在对称轴左、右两边单调性是相反的。

0>a ,当a b x 2-<时,y 随x 的增大而减小,当a bx 2->时,y 随x 的增大而增大。

0<a ,当abx 2-<时,y 随x 的增大而增大,当abx 2->时,y 随x 的增大而减小。

二次函数的顶点:二次函数对称轴与二次函数图像的交点便是二次函数的顶点。

二次函数的顶点坐标是⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22,当0>a 时,二次函数的顶点是图像的最低点。

0<a 时,二次函数的顶点是图像的最高点。

二次函数的最值:若二次函数的自变量是全体实数,二次函数在图像的顶点处取得最值。

人教版九年级上册第22章二次函数图像与性质知识点题型总结

人教版九年级上册第22章二次函数图像与性质知识点题型总结

二次函数图像及性质【二次函数的定义】一般地,形如y = ax2+bx + c Wc为常数,“工0)的函数称为兀的二次函数,其中兀为自变量,为因变量,J b、c分别为二次函数的二次项、一次项和常数项系数.注意:和一元二次方程类似,二次项系数“工0,而b、c可以为零.二次函数的自变量的取值范朗是全体实数.【二次函数的图象】1.二次函数图象与系数的关系(1)“决左抛物线的开口方向当“>0时,抛物线开口向上;当“<0时,抛物线开口向下.反之亦然.同决过抛物线的开口大小:同越大,抛物线开口越小;同越小,抛物线开口越大.温馨提示:几条抛物线的解析式中,若问相等,则其形状相同,即若"相等,则开口及形状相同,若a互为相反数,则形状相同、开口相反.(2)〃和"共同决左抛物线对称轴的位置(抛物线的对称轴:S2a当b=o时,抛物线的对称轴为y轴;当方同号时,对称轴在轴的左侧;当〃异号时,对称轴在y轴的右侧・(3)“的大小决泄抛物线与y轴交点的位置(抛物线与y轴的交点坐标为(o,C)当c=o时,抛物线与y轴的交点为原点:当c>o时,交点在轴的正半轴:当c<0时,交点在y轴的负半轴.2•二次函数图象的画法五点绘图法:利用配方法将二次函数y = ax2 +bx + c化为顶点式y = a(x-h)2 +k,确泄其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y轴的交点(0, c)、以及(0, c)关于对称轴对称的点(2力,c)、与x轴的交点(占,0) , (x2 , 0)(若与x 轴没有交点,则取两组关于对称轴对称的点)・画草图时应抓住以下几点:开口方向,对称轴,顶点,与X轴的交点,与y轴的交点.3•点的坐标设法(1)一次函数y = ax + h图像上的任意点可设为(“与+“)•其中再=0时.该点为直线与y轴交点.(2)二次函数y = ax2+bx + c(心0)图像上的任意一点可设为(石,妙?+站+可.再=0时,该点为抛物线与y轴交点,当x=-A时,该点为抛物线顶点.2a⑶ 点(召,yj关于(兀2,x2)的对称点为(2兀-若,2比-)・4•二次函数的图象信息(1)根据抛物线的开口方向判断a的正负性.(2)根据抛物线的对称轴判断-仝的大小.2a(3)根据抛物线与y轴的交点,判断。

人教版九年级数学上册第22章二次函数知识点汇总

人教版九年级数学上册第22章二次函数知识点汇总

★二次函数知识点汇总★XX :1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数.2.二次函数2ax y =的性质(1)抛物线2ax y =)(0≠a 的顶点是坐标原点,对称轴是y 轴.(2)函数2ax y =的图像与a 的符号关系.①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;②当0<a 时⇔抛物线开口向下⇔顶点为其最高点3.二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线.4.二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,.5.二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2.6.抛物线的三要素:开口方向、对称轴、顶点. ①a 决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状一样. ②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 一样,那么抛物线的开口方向、开口大小完全一样,只是顶点的位置不同. 8.求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线abx 2-=.(2)配方法:运用配方法将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是h x =.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.★用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失★ 9.抛物线c bx ax y ++=2中,c b a ,,的作用(1)a 决定开口方向与开口大小,这与2ax y =中的a 完全一样.(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线ab x 2-=,故:①0=b 时,对称轴为y 轴;②0>ab (即a 、b 同号)时,对称轴在y 轴左侧;③0<ab (即a 、b 异号)时,对称轴在y 轴右侧.(3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ):①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则 0<a b .11.用待定系数法求二次函数的解析式根据条件确定二次函数表达式的几种基本思路。

第二十二章《二次函数》知识点总结人教版数学九年级上册

第二十二章《二次函数》知识点总结人教版数学九年级上册

《二次函数》知识点总结【知识点1 二次函数的表达式】1. 一般式: . 顶点坐标: . 对称轴: .2. 顶点式: .顶点坐标: . 对称轴: . 【知识点2 二次函数的图象与性质】 1. 二次项系数a 决定抛物线的 开口方向 ;①当0>a 时,抛物线的 ; ②当0<a 时,抛物线的 ; ③ ||a 越大,抛物线的开口 .3.常数项c 决定抛物线 与y 轴 交点的位置 . ①当0=c ,抛物线与y 轴交于 ; ②当0>c ,抛物线与y 轴交于 ; ③当0<c ,抛物线与y 轴交于 .5.根据a 、b 、c 的符号,画出二次函数的草图:①已知 a <0、b <0、c <0 ②已知 a>0、b <0、c >0 6.描述下面二次函数c bx ax y ++=2的增减性: 【知识点3 抛物线与坐标轴的交点】 1. 抛物线c bx ax y ++=2与x 轴的交点个数,即02=++c bx ax . ①当 ,抛物线与x 轴有两个交点; ②当 ,抛物线与x 轴有1个交点; ③当 ,抛物线与x 轴有没有交点;2.求抛物线c bx ax y ++=2与x 轴的交点的过程: 3.求抛物线c bx ax y ++=2与y 轴的交点的过程:4.函数 y = ax 2 + bx + c 的图象如图,那么 ①方程 ax 2 + bx + c =2 的根是 ______________;2.系数a 和b 共同决定抛物线 对称轴的位置 . ①a 和b 同号,对称轴在原点的 ; ②a 和b 异号, .4.根据图象判断出a 、b 、c 的符号:方法总结:第一步:求出对称轴;第二步:用箭头在对称轴两侧标出上升和下降;第三步:描述增减性.①当 时,随的增大而减小; ②当 时, 随的增大而增大;∵轴上的点, 为零,∴ . ∵轴上的点, 为零,∴ .②不等式 ax 2 + bx + c >0 的解集是 ___________; ③不等式 ax 2 + bx + c <2 的解集是 _________.④ a + b + c 0 ,4a 2 b + c 0 , 9a +3 b + c 0 .【知识点4 抛物线的平移】二次函数 y = ax 2 + bx + c 的平移口诀:“上下平移, ;左右平移, .” 【 * *知识点5 抛物线的对称 ** 】抛物线c bx ax y ++=2关于x 轴对称的解析式为 . 抛物线c bx ax y ++=2关于y 轴对称的解析式为 . 【 * *知识点6 二次函数图象的画法 ** 】 画出二次函数3-2-2x x y =的的图象.【典型例题 】1.m2+1+2x −是二次函数,则m 的值为( )C. −1D. 1或−12.【求顶点坐标 】抛物线y =2(x −3)4的顶点坐标是( ) A. (3,4)B. (−3,4)C. (3,−4)D. (2,4)3.【与坐标轴的交点 】抛物线y =−x 2+4x −4与坐标轴的交点个数为( ) A. 0B. 1C. 2D. 34.【平移】将函数y =x 2的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是( ) A. 向左平移1个单位 B. 向右平移3个单位C. 向上平移3个单位D. 向下平移1个单位5.【平移】抛物线y =x 2+6x +7可由抛物线y =x 2如何平移得到的( )A. 先向左平移3个单位,再向下平移2个单位B. 先向左平移6个单位,再向上平移7个单位C. 先向上平移2个单位,再向左平移3个单位D. 先向右平移3个单位,再向上平移2个单位 6.【图象与性质】对于抛物线y =−3(x +1)2−2,下列说法正确的是( ) A. 抛物线开口向上 B. 当x >−1时,y 随x 的增大而减小 C. 函数最小值为−2D. 顶点坐标为(1,−2)7.【增减性】已知(−3,y 1),(−1,y 2),(2,y 3)是抛物线y =−3x 2+6x +m 上的三个点.则( ) A. y 1<y 3<y 2B. y 3<y 2<y 1C. y 1<y 2<y 3D. y 2<y 1<y 38.【最值】已知二次函数y=x2−4x+2,关于该函数在−1≤x≤3的取值范围内,下列说法正确的是( )A. 有最大值−1,有最小值−2B. 有最大值0,有最小值−1C. 有最大值7,有最小值−1D. 有最大值7,有最小值−29.【系数与图象】二次函数y=ax2+bx+c(a≠0)与一次函数y=ax+c在同一坐标系中的图象大致为( )A. B. C. D.10.【求解析式】如图所示,已知二次函数y=ax2+bx+c的图象,求二次函数的解析式.11.如图,已知二次函数y=ax2−4x+c的图象经过点A(−1,−1)和点B(3,−9).(1)求该二次函数的解析式、对称轴及顶点坐标;(2)点C是抛物线与x轴的一个交点,点D是抛物线与y轴的交点,求三角形ACD 的面积;(3)已知点M(x1,y1)和N(1+x1,y2)在抛物线对称轴的右侧,判段y1和y2的大小.12.在运动会比赛时,九年级的一名男同学推铅球,已知铅球经过的路线是某二次函数图象的一部分(如图所示),如果这名男同学的出手处A点的坐标为(0,2),铅球路线的最高处B点的坐标为(6,5).(1)求出这个二次函数的解析式;(2)请求出这名男同学比赛时的成绩?13.如图是抛物线形拱桥,当拱顶离水面2m时,水面宽4m.(1)建立平面直角坐标系,求抛物线的解析式;(2)如果水面下降1m,则水面宽度是多少米?14.某商场一种商品的进价为每件30元,售价为每件50元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件40.5元,求两次下降的百分率;(2)经调查,若该商品每降价2元,每天可多销售16件,那么每天要想获得最大利润,每件售价应多少元?最大利润是多少?。

人教版九年级二次函数章节知识点及典型例题

人教版九年级二次函数章节知识点及典型例题

22. 二次函数知识点一:二次函数的概念1.一般地,如果y=ax2+bx+c(a, b, c是常数,a≠0),那么y叫做x的二次函数。

其中,x是自变量,a, b, c分别是函数解析式的二次项系数、一次项系数和常数项。

2.注意以下几点:(1)y=ax2+bx+c(a, b, c是常数,a≠0)叫做二次函数的一般式,任何一个二次函数的解析式都可以化为此形式;(2)在二次函数y=ax2+bx+c(a≠0)中,a必须不等于0,因为若a=0的话,此式子则变为y= bx+c的形式,就不是二次函数了;(3)在二次函数y=ax2+bx+c(a≠0)中,若y =0,则二次函数可以转化为一元二次方程ax2+bx+c=0(a≠0)。

例1. 下列各式中,y是x的二次函数的是( )A.y=x(x+1)B. x2y=1C. y=2x2−2(x−1)2D. y=x-0.5例2. 有下列函数:①y=x2+8;②y=2x(1-x);③y=ax2+bx+c;④y=3x2+3x2;⑤y=(m2+1)x2−x+3;⑥y=2x2−12x(4x−3)其中一定是二次函数的有______(从小到大填序号对应的数字,用逗号隔开)例3. 把二次函数y=(x+3)(2x-5)+x(3x-1)化为一般形式______,二次项系数为______,一次项系数为______,常数项为______,b2−4ac =______.例4. 若y=(2a+4)x3|a|−4+10x+12是二次函数,则a的值为______.例5. 已知函数y=(2m2+5m)x2+3mx−8为二次函数,则m的取值范围是______.知识点二:实际问题中的二次函数关系由实际问题列二次函数关系式,一般分四步完成:一找:根据实际问题的意义,找出等量关系;二列:由等量关系列出函数关系式;三化:把关系式化为二次函数的一般形式;四定:根据实际意义,确定自变量的取值范围。

例1. 在下列4个不同的情境中,两个变量所满足的函数关系属于二次函数关系的有______个。

人教版数学九年级上册第二十二章知识归纳:二次函数

人教版数学九年级上册第二十二章知识归纳:二次函数

二次函数1.二次函数的一般形式:y=ax2+bx+c.(a≠0)2.关于二次函数的几个概念:二次函数的图象是抛物线,所以也叫抛物线y=ax2+bx+c;抛物线关于对称轴对称且以对称轴为界,一半图象上坡,另一半图象下坡;其中c叫二次函数在y轴上的截距, 即二次函数图象必过(0,c)点.3.y=ax2(a≠0)的特性:当y=ax2+bx+c (a≠0)中的b=0且c=0时二次函数为y=ax2 (a≠0);这个二次函数是一个特殊的二次函数,有下列特性:(1)图象关于y轴对称;(2)顶点(0,0);4.求二次函数的解析式:已知二次函数图象上三点的坐标,可设解析式y=ax2+bx+c,并把这三点的坐标代入,解关于a、b、c的三元一次方程组,求出a、b、c的值, 从而求出解析式-------待定系数法.5.二次函数的顶点式:y=a(x-h)2+k (a≠0);由顶点式可直接得出二次函数的顶点坐标(h, k),对称轴方程x=h 和函数的最值y= k.最值6.求二次函数的解析式:已知二次函数的顶点坐标(h,k)和图象上的另一点的坐标,可设解析式为y=a(x -h)2+ k,再代入另一点的坐标求a,从而求出解析式.7.二次函数图象的平行移动:二次函数一般应先化为顶点式,然后才好判断图象的平行移动;y=a(x-h)2+k的图象平行移动时,改变的是h, k的值, a值不变,具体规律如下:k值增大<=> 图象向上平移;k值减小<=> 图象向下平移;(x-h)值增大<=> 图象向左平移;(x-h)值减小<=> 图象向右平移.8.二次函数y=ax2+bx+c (a≠0)的图象及几个重要点的公式:9.二次函数y=ax2+bx+c (a≠0)中,a、b、c与Δ的符号与图象的关系:(1) a>0 <=> 抛物线开口向上;a<0 <=> 抛物线开口向下;(2) c>0 <=> 抛物线从原点上方通过;c=0 <=> 抛物线从原点通过;c<0 <=> 抛物线从原点下方通过;(3) a, b异号<=> 对称轴在y轴的右侧;a, b同号<=> 对称轴在y轴的左侧;b=0 <=> 对称轴是y轴;(4) b2-4ac>0 <=> 抛物线与x轴有两个交点;b2-4ac =0 <=> 抛物线与x轴有一个交点(即相切);b2-4ac<0 <=> 抛物线与x轴无交点.10.二次函数图象的对称性:已知二次函数图象上的点与对称轴,可利用图象的对称性求出已知点的对称点,这个对称点也一定在图象上.。

人教版九年级数学上册知识点总结:第二十二章二次函数

人教版九年级数学上册知识点总结:第二十二章二次函数

人教版九年级数学上册知识点总结 第22章 二次函数知识点归纳及相关典型题第一部分 基础知识1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数.2.二次函数2ax y =的性质(1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2ax y =的图像与a 的符号关系.①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;②当0<a 时⇔抛物线开口向下⇔顶点为其最高点.(3)顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为2ax y =)(0≠a .3.二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线.4.二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,.5. 二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2.6.抛物线的三要素:开口方向、对称轴、顶点.①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 越大,抛物线的开口越小;a 越小,抛物线的开口越大。

②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. 8.求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=, ∴顶点是),(a b ac a b 4422--,对称轴是直线abx 2-=.(2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.(3)抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称点的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. 9.抛物线c bx ax y ++=2中,c b a ,,的作用(1)a 决定开口方向及开口大小,这与2ax y =中的a 完全一样.(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线a b x 2-=,故:①0=b 时,对称轴为y 轴;②0>a b (即a 、b 同号)时,对称轴在y 轴左侧;③0<ab (即a 、b 异号)时,对称轴在y 轴右侧,“左同右异”. (3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ):①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴. 10.几种特殊的二次函数的图像特征如下: 函数解析式开口方向对称轴顶点坐标2ax y = 当0>a 时 开口向上 当0<a 时 开口向下0=x (y 轴) (0,0) k ax y +=2 0=x (y 轴)(0, k ) ()2h x a y -=h x = (h ,0) ()k h x a y +-=2h x =(h ,k )c bx ax y ++=2 ab x 2-= (ab ac a b 4422--,) 11.用待定系数法求二次函数的解析式(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式.(2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. 12.直线与抛物线的交点(1)y 轴与抛物线c bx ax y ++=2得交点为(0, c ).(2)与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah ++2).(3)抛物线与x 轴的交点二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离. (4)平行于x 轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.(5)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组cbx ax y n kx y ++=+=2的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点; ②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.(6)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故acx x a b x x =⋅-=+2121,()()a a ac b a c a b x x x x x x x x AB ∆=-=-⎪⎭⎫⎝⎛-=--=-=-=444222122122121中考回顾1.(2017天津中考)已知抛物线y=x 2-4x+3与x 轴相交于点A ,B (点A 在点B 左侧),顶点为M.平移该抛物线,使点M 平移后的对应点M'落在x 轴上,点B 平移后的对应点B'落在y 轴上,则平移后的抛物线解析式为( A ) A.y=x 2+2x+1B.y=x 2+2x-1C.y=x 2-2x+1D.y=x 2-2x-12.(2017四川成都中考)在平面直角坐标系xOy 中,二次函数y=ax 2+bx+c 的图象如图所示,下列说法正确的是( B )A. abc<0, b 2-4ac>0B. abc>0, b 2-4ac>0C. abc<0, b 2-4ac<0D. abc>0, b 2-4ac<03.(2017内蒙古赤峰中考)如果关于x 的方程x 2-4x+2m=0有两个不相等的实数根,那么m 的取值范围是m<2 .4.(2017内蒙古赤峰中考)如图,二次函数y=ax 2+bx+c (a ≠0)的图象交x 轴于A ,B 两点,交y 轴于点D ,点B 的坐标为(3,0),顶点C 的坐标为(1,4).备用图(1)求二次函数的解析式和直线BD 的解析式;(2)点P是直线BD上的一个动点,过点P作x轴的垂线,交抛物线于点M,当点P在第一象限时,求线段PM长度的最大值;(3)在抛物线上是否存在异于B,D的点Q,使△BDQ中BD边上的高为2,若存在求出点Q的坐标;若不存在请说明理由.解:(1)设二次函数的解析式为y=a(x-1)2+4.∵点B(3,0)在该二次函数的图象上,∴0=a(3-1)2+4,解得:a=-1.∴二次函数的解析式为y=-x2+2x+3.∵点D在y轴上,所以可令x=0,解得:y=3.∴点D的坐标为(0,3).设直线BD的解析式为y=kx+3,把(3,0)代入得3k+3=0,解得:k=-1.∴直线BD的解析式为y=-x+3.(2)设点P的横坐标为m(m>0), 则P(m,-m+3), M(m,-m2+2m+3),PM=-m2+2m+3-(-m+3)=-m2+3m=-, PM最大值为(3)如图,过点Q作QG∥y轴交BD于点G,作QH⊥BD于点H,则QH=2设Q(x,-x2+2x+3),则G(x,-x+3),QG=|-x2+2x+3-(-x+3)|=|-x2+3x|.∵△DOB是等腰直角三角形,∴∠3=45°,∴∠2=∠1=45°.∴sin∠1=,∴QG=4.得|-x2+3x|=4,当-x2+3x=4时,Δ=9-16<0,方程无实数根.当-x2+3x=-4时,解得:x1=-1,x2=4,Q1(4,-5),Q2(-1,0).模拟预测1.已知二次函数y=kx2-6x+3的图象与x轴有交点,则k的取值范围是(D)A.k<3B.k<3,且k≠0C.k≤3D.k≤3,且k≠02.若点M(-2,y1),N(-1,y2),P(8,y3)在抛物线y=-x2+2x上,则下列结论正确的是(C)A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y2解:x=-2时,y1=-x2+2x=-(-2)2+2×(-2)=-2-4=-6,x=-1时,y2=-x2+2x=-(-1)2+2×(-1)=--2=-2,x=8时,y3=-x2+2x=-82+2×8=-32+16=-16.∵-16<-6<-2,∴y3<y1<y2.故选C.3.已知一元二次方程ax2+bx+c=0(a>0)的两个实数根x1,x2满足x1+x2=4和x1·x2=3,则二次函数y=ax2+bx+c(a>0)的图象有可能是()解析:∵x1+x2=4,∴-=4.∴二次函数的对称轴为x=-=2.∵x 1·x2=3,=3.当a>0时,c>0,∴二次函数图象交于y轴的正半轴.4.小明在用“描点法”画二次函数y=ax2+bx+c的图象时,列了如下表格:x…-2 -1 0 1 2 …y…-6-4 -2-2 -2…根据表格中的信息回答问题:该二次函数y=ax2+bx+c在x=3时,y=-4.5.若关于x的函数y=kx2+2x-1与x轴仅有一个公共点,则实数k的值为k=0或k=-1.6.抛物线y=-x2+bx+c的图象如图,若将其向左平移2个单位长度,再向下平移3个单位长度,则平移后的解析式为.解析:由题中图象可知,对称轴x=1, 所以- =1,即b=2.把点(3,0)代入y=-x2+2x+c,得c=3.故原图象的解析式为y=-x2+2x+3,即y=-(x-1)2+4,然后向左平移2个单位,再向下平移3个单位,得y=-(x-1+2)2+4-3,即y=-x2-2x. 答案:y=-x2-2x7.如图①,若抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1上(点A与点B不重合),我们把这样的两抛物线L1,L2互称为“友好”抛物线,可见一条抛物线的“友好”抛物线可以有很多条.(1)如图②,已知抛物线L3:y=2x2-8x+4与y轴交于点C,试求出点C关于该抛物线对称轴对称的对称点D的坐标;(2)请求出以点D为顶点的L3的“友好”抛物线L4的解析式,并指出L3与L4中y同时随x增大而增大的自变量的取值范围;(3)若抛物线y=a1(x-m)2+n的任意一条“友好”抛物线的解析式为y=a2(x-h)2+k,请写出a1与a2的关系式,并说明理由.解:(1)∵抛物线L3:y=2x2-8x+4,∴y=2(x-2)2-4.∴顶点为(2,-4),对称轴为x=2,设x=0,则y=4,∴C(0,4).∴点C关于该抛物线对称轴对称的对称点D的坐标为(4,4).(2)∵以点D(4,4)为顶点的L3的友好抛物线L4还过点(2,-4),∴L4的解析式为y=-2(x-4)2+4.∴L3与L4中y同时随x增大而增大的自变量的取值范围是2≤x≤4.(3)a1=-a2,理由如下:∵抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1上,∴可以列出两个方程由①+②,得(a1+a2)(m-h)2=0,∴a1=-a2.。

人教版九年级上册数学 第二十二章二次函数 小结与复习

人教版九年级上册数学  第二十二章二次函数 小结与复习

人教版九年级上册数学二次函数小结与复习一、基础训练:根据下列条件,求出二次函数的解析式。

(待定系数法)(1) 抛物线顶点P(-1,-8),且过点A(0,-6)。

(2) 已知二次函数y=ax2+bx+c的图象经过一次函数3y32x=-+的图象与x轴、y轴的交点;且过点(1,1),求这个二次函数解析式,并把它化为y=a(x-h)2+k的形式。

(3) 已知二次函数y=ax2+bx+c的图象过(3,0),(2,-3)两点,并且以x=1为对称轴。

(4) 抛物线y=ax2+bx+c经过点(0,1),(1,3),(-1,1)三点。

强化练习:已知二次函数的图象过点A(1,0)和B(2,1),且与y轴交点纵坐标为m。

(1)若m为定值,求此二次函数的解析式;(2)若二次函数的图象与x轴还有异于点A的另一个交点,求m的取值范围。

二、综合应用1.如图,抛物线y=ax2+bx+c过点A(-1,0),且经过直线y=x-3与坐标轴的两个交点B、C。

(1)求抛物线的解析式;(2)求抛物线的顶点坐标,(3)若点M在第四象限内的抛物线上,且OM⊥BC,垂足为D,求点M的坐标。

强化练习:已知二次函数y=2x2-(m+1)x+m-1。

(1)求证不论m为何值,函数图象与x轴总有交点,并指出m为何值时,只有一个交点。

(2)当m为何值时,函数图象过原点,并指出此时函数图象与x轴的另一个交点。

(3)若函数图象的顶点在第四象限,求m的取值范围。

2、重庆市某区地理环境偏僻,严重制约经济发展,丰富的花木产品只能在本地销售,区政府对该花木产品每投资x万元,所获利润为P=-150(x-30)2+10万元,为了响应我国西部大开发的宏伟决策,区政府在制定经济发展的10年规划时,拟开发此花木产品,而开发前后可用于该项目投资的专项资金每年最多50万元,若开发该产品,在前5年中,必须每年从专项资金中拿出25万元投资修通一条公路,且5年修通,公路修通后,花木产品除在本地销售外,还可运往外地销售,运往外地销售的花木产品,每投资x万元可获利润Q=-4950(50-x)2+1945(50-x)+308万元。

人教版九年级数学上册第22章 二次函数考点

人教版九年级数学上册第22章  二次函数考点

第22章二次函数考点☆考点1、二次函数的定义定义:y=ax2+bx+c(a、b、c是常数,aH0)定义要点:①aH0②最高次数为2③代数式一定是整式练习:1、y=-x2,y=2x2-2/x,y=100-5x2,y=3x2-2x3+5,其中是二次函数的有个。

m2-m2._____ 当m时,函数y=(m+1)x-2x+1是二次函数?☆考点2、二次函数的图像及性质表达式、对称轴、顶点坐标、位置、增减性、最值、练习:1、已知二次函数(1)求抛物线开口方向,对称轴和顶点M的坐标。

(2)设抛物线与y轴交于C点,与x轴交于A、B两点,求C,A,B的坐标。

(3)x为何值时,y随的增大而减少,x为何值时,y有最大(小)值,这个最大(小)值是多少?(4)x为何值时,y<0?x为何值时,y>0?2、直线y=ax+c与抛物线y=ax2+bx+c在同一坐标系内大致的图象是()1,一般式:已知抛物线上的三点,通常设解析式y=ax2+bx+c(aH0)2,顶点式:已知抛物线顶点坐标(h,k),通常设抛物线解析式y=a(x-h)2+k(aH0)3,交点式:已知抛物线与x轴的两个交点(x1,0)、(x2,0),通常设解析式y=a(x-x1)(x-x2)(aH0)练习:1、根据下列条件,求二次函数的解析式。

(1)、图象经过(0,0),(1,-2),(2,3)三点;(2)、图象的顶点(2,3),且经过点(3,1);(3)、图象经过(0,0),(12,0),且最高点的纵坐标是3。

2、已知二次函数y=ax2+bx+c的最大值是2,图象顶点在直线y=x+1上,并且图象经过点(3,—6)。

求a、b、c。

☆考点4、a,b,c符号的确定。

九年级上册数学二次函数知识点汇总

九年级上册数学二次函数知识点汇总

九年级上册数学二次函数知识点汇总新人教版九年级上二次函数知识点总结知识点一:二次函数的定义一般地,形如y=ax^2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数。

其中a是二次项系数,b是一次项系数,c是常数项。

知识点二:二次函数的图象与性质抛物线的三要素:开口、对称轴、顶点。

二次函数y=a(x-h)^2+k的图象与性质如下:1)二次函数基本形式y=ax^2的图象与性质:a的绝对值越大,抛物线的开口越小。

2)y=ax^2+c的图象与性质:上加下减。

3)y=a(x-h)的图象与性质:左加右减。

4)二次函数y=a(x-h)^2+k的图象与性质:顶点坐标为(h,k),开口方向由a的正负决定。

知识点三:二次函数的顶点式与标准式的相互转化二次函数y=a(x-h)^2+k和y=ax^2+bx+c可以通过配方法相互转化。

知识点四:二次函数的平移二次函数图象的平移可以通过改变顶点坐标实现。

具体平移方法如下:向上(k>0)或向下(k<0)平移|k|个单位。

向右(h>0)或向左(h<0)平移|k|个单位。

知识点五:二次函数的解析式求解可以通过配方法、公式法、图像法等方式求解二次函数的解析式。

知识点六:二次函数的应用二次函数在物理、经济、生物等领域中有广泛的应用,如自由落体运动、抛体运动、成本函数、收益函数、生长模型等。

4)根据问题所求,利用函数的性质或图象求解;5)对结果进行检验和解释,看是否符合实际情况。

例如,某物体从高度为h的地方自由落下,经过t秒后落地,求物体的落地速度v。

建立平面直角坐标系,以落下的方向为正方向,设物体在t秒时下落的距离为s,则有s=1/2gt^2(g为重力加速度),又因为物体从高度为h落下,所以s=h-1/2gt^2.将s与t的关系式代入二次函数y=h-1/2gt^2中,得到二次函数y=h-1/2gt^2,利用函数的性质求出y=0时的t即为物体落地时的时间,再利用s=1/2gt^2求出物体落地时的下落距离,最后利用物理公式v=gt求出物体落地时的速度v。

人教版九年级数学上册第二十二章二次函数知识点总结与例题分析学案(附答案)

人教版九年级数学上册第二十二章二次函数知识点总结与例题分析学案(附答案)

1.

a
0
时,抛物线开口向上,对称轴为
x
b 2a
,顶点坐标为
b 2a
,4ac 4a
b2

当 x b 时, y 随 x 的增大而减小;当 x b 时, y 随 x 的增大而增大;当 x b 时, y 有最小
2a
2a
2a
值 4ac b2 . 4a
2.

a
0
时,抛物线开口向下,对称轴为
当 b 0 时, b 0 ,即抛物线对称轴在 y 轴的右侧. 2a
⑵ 在 a 0 的前提下,结论刚好与上述相反,即 当 b 0 时, b 0 ,即抛物线的对称轴在 y 轴右侧; 2a 当 b 0 时, b 0 ,即抛物线的对称轴就是 y 轴; 2a 当 b 0 时, b 0 ,即抛物线对称轴在 y 轴的左侧. 2a
总结起来, a 决定了抛物线开口的大小和方向, a 的正负决定开口方向, a 的大小决定开口的大小.
2. 一次项系数 b 在二次项系数 a 确定的前提下, b 决定了抛物线的对称轴. ⑴ 在 a 0 的前提下, 当 b 0 时, b 0 ,即抛物线的对称轴在 y 轴左侧; 2a 当 b 0 时, b 0 ,即抛物线的对称轴就是 y 轴; 2a
人教版九年级数学上册第二十二章二次函数知识点总结与例题分析学案
(附答案)初三数学 二次函ຫໍສະໝຸດ 知识点总结一、二次函数概念:
1.二次函数的概念:一般地,形如 y ax2 bx c( a,b,c 是常数,a 0 )的函数,叫做二次函数。

里需要强调:和一元二次方程类似,二次项系数 a 0 ,而 b,c 可以为零.二次函数的定义域是全体实 数.
y a(x m)2 b(x m) c (或 y a(x m)2 b(x m) c )

第22章二次函数全章知识点归纳总结人教版九年级数学上册

第22章二次函数全章知识点归纳总结人教版九年级数学上册

初三上学期二次函数全章知识点归纳总结【例1】下列函数是二次函数的有()①y=(x+1)2﹣x2;②y=﹣3x2+5;③y=x3﹣2x;④y=x2−1x+3.A.1个B.2个C.3个D.4个【变式11】下列函数中,是二次函数的有()①y=√x2+2;②y=﹣x2﹣3x;③y=x(x2+x+1);④y=11+x2;⑤y=﹣x+x2.A.1个B.2个C.3个D.4个【例2】若y=(a+1)x|a+3|﹣x+3是关于x的二次函数,则a的值是()A.1B.﹣5C.﹣1D.﹣5或﹣1【变式21】函数y=(a﹣5)x a2+4a+5+2x﹣1,当a=时,它是一次函数;当a=时,它是二次函数.【例3】关于函数y=(500﹣10x)(40+x),下列说法不正确的是()A.y是x的二次函数B.二次项系数是﹣10C.一次项是100D.常数项是20000【例4】下列具有二次函数关系的是()A.正方形的周长y与边长x B.速度一定时,路程s与时间tC.正方形的面积y与边长x D.三角形的高一定时,面积y与底边长x【例5】某种商品的价格是2元,准备进行两次降价.如果每次降价的百分率都是x,经过两次降价后的价格y(单位:元)随每次降价的百分率x的变化而变化,则y关于x的函数解析式是()A.y=2(x+1)2B.y=2(1﹣x)2C.y=(x+1)2D.y=(x﹣1)2【变式51】据省统计局公布的数据,合肥市2021年第一季度GDP总值约为2.4千亿元人民币,若我市第三季度GDP总值为y千亿元人民币,平均每个季度GDP增长的百分率为x,则y关于x的函数表达式是()A.y=2.4(1+2x)B.y=2.4(1﹣x)2C.y=2.4(1+x)2D.y=2.4+2.4(1+x)+2.4(1+x)【例1】用配方法将下列函数化成y=a(x+h)2+k的形式,并指出抛物线的开口方向,对称轴和顶点坐标.(1)y=12x2﹣2x+3;(2)y=(1﹣x)(1+2x).【变式11】把下列二次函数化成顶点式,即y=a(x+m)2+k的形式,并写出他们顶点坐标及最大值或最小值.(1)y=﹣2x﹣3+12x2(2)y=﹣2x2﹣5x+7【变式12】用配方法可以解一元二次方程,还可以用它来解决很多问题例如:因为5a2≥0,所以5a2+1≥1,即:当a=0时,5a2+1有最小值1.同样,因为﹣5(a2+1)≤0,所以﹣5(a2+1)+6≤6有最大值1,即当a=1时,﹣5(a2+1)+6有最大值6.(1)当x=时,代数式﹣3(x﹣2)2+4有最(填写大或小)值为.(2)当x=时,代数式﹣x2+4x+4有最(填写大或小)值为.(3)矩形花园的一面靠墙,另外三面的栅栏所围成的总长度是14m,当花园与墙相邻的边长为多少时,花园的面积最大?最大面积是多少?利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 【例2】已知二次函数y =ax 2+bx +c 中,函数y 与自变量x 的部分对应值如下表:x … 0 1 2 3 4 … y…52125…(1)求该二次函数的表达式; (2)当x =6时,求y 的值;(3)在所给坐标系中画出该二次函数的图象.【变式21】如图,已知二次函数y =−12x 2+bx +c 的图象经过A (2,0)、B (0,﹣6)两点. (1)求这个二次函数的解析式;(2)求该二次函数图象的顶点坐标、对称轴以及二次函数图象与x 轴的另一个交点; (3)在右图的直角坐标系内描点画出该二次函数的图象及对称轴. 【知识点3 二次函数的图象与各系数之间的关系】在y 轴的右侧则0<ab ,概括的说就是“左同右异” ③常数项c :总结起来,c 决定了抛物线与y 轴交点的位置. 【知识点4 二次函数图象的平移变换】 (1)平移步骤:变式21例2①将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ①保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【例4】把抛物线y =ax 2+bx +c 的图象先向右平移2个单位,再向上平移2个单位,所得的图象的解析式是y =(x ﹣3)2+5,则a +b +c = .【变式41】要得到函数y =﹣(x ﹣2)2+3的图象,可以将函数y =﹣(x ﹣3)2的图象( ) A .向右平移1个单位,再向上平移3个单位 B .向右平移1个单位,再向下平移3个单位 C .向左平移1个单位,再向上平移3个单位 D .向左平移1个单位,再向下平移3个单位 【知识点5 二次函数图象的对称变换】 (1)关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;(2)关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;(3)关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; (4)关于顶点对称(即:抛物线绕顶点旋转180°)()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.向上 向下【例1】已知二次函数y =x 2﹣2x ﹣3的自变量x 1,x 2,x 3对应的函数值分别为y 1,y 2,y 3.当﹣1<x 1<0,1<x 2<2,x 3>3时,y 1,y 2,y 3三者之间的大小关系是( ) A .y 1<y 2<y 3B .y 2<y 3<y 1C .y 3<y 1<y 2D .y 2<y 1<y 3【例2】在二次函数y =﹣x 2+bx +c 中,函数y 与自变量x 的部分对应值如下表:则m 、n 的大小关系为x … ﹣1 1 3 4 … y … ﹣6m n﹣6…A .m <nB .m >nC .m =nD .无法确定0a >0a <【变式21】二次函数y=ax2+bx+c(a≠0)中x,y的部分对应值如下表:x…﹣2﹣1012…y…0﹣4﹣6﹣6﹣4…则该二次函数图象的对称轴为()A.y轴B.直线x=12C.直线x=1D.直线x=32【知识点1 二次函数图象与x轴的交点情况决定一元二次方程根的情况】二次函数的图象【例1】抛物线y=(x﹣x1)(x﹣x2)+mx+n与x轴只有一个交点(x1,0).下列式子中正确的是()A.x1﹣x2=m B.x2﹣x1=m C.m(x1﹣x2)=n D.m(x1+x2)=n【变式11】抛物线y=x2+2x﹣3与坐标轴的交点个数有()A.0个B.1个C.2个D.3个【例2】二次函数与一元二次方程有着紧密的联系,一元二次方程问题有时可以转化为二次函数问题.请你根据这句话所提供的思想方法解决如下问题:若s,t(s<t)是关于x的方程1+(x﹣m)(x﹣n)=0的两根,且m<n,则m,n,s,t的大小关系是()A.s<m<n<t B.m<s<n<t C.m<s<t<n D.s<m<t<n【知识点1 解二次函数的实际应用问题的一般步骤】审:审清题意,弄清题中涉及哪些量,已知量有几个,已知量与变量之间的基本关系是什么,找出等量关系(即函数关系);设:设出两个变量,注意分清自变量和因变量,同时还要注意所设变量的单位要准确;列:列函数解析式,抓住题中含有等量关系的语句,将此语句抽象为含变量的等式,这就是二次函数;解:按题目要求结合二次函数的性质解答相应的问题;检:检验所得的解,是否符合实际,即是否为所提问题的答案;答:写出答案.【例1】为优化迪荡湖公园的灯光布局,需要在一处岸堤(岸堤足够长)为一边,用总长为80m的灯带在湖中围成了如图所示的①②③三块灯光喷泉的矩形区域,且要求这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?【变式11】爱动脑筋的小明在学过用配方法解一元二次方程后,他发现二次三项式也可以配方,从而解决一些问题.例如:x2﹣6x+10=(x2﹣6x+9﹣9)+10=(x﹣3)2﹣9+10=(x﹣3)2+1≥1;因此x2﹣6x+10有最小值是1,只有当x=3时,才能得到这个式子的最小值1.同样﹣3x2﹣6x+5=﹣3(x2+2x+1﹣1)+5=﹣3(x+1)2+8,因此﹣3x2﹣6x+5有最大值是8,只有当x=﹣1时,才能得到这个式子的最小值8.(1)当x=时,代数式﹣2(x﹣3)2+5有最大值为.(2)当x=时,代数式2x2+4x+3有最小值为.(3)矩形自行车场地ABCD一边靠墙(墙长10m),在AB和BC边各开一个1米宽的小门(不用木板),现有能围成14m长的木板,当AD长为多少时,自行车场地的面积最大?最大面积是多少?【例2】如图,在矩形ABCD中,AB=12cm,BC=9cm.P、Q两点同时从点B、D出发,分别沿BA、DA 方向匀速运动(当P运动到A时,P、Q同时停止运动),已知P点的速度比Q点大1cm/s,设P点的运动时间为x秒,△P AQ的面积为ycm2,(1)经过3秒△P AQ的面积是矩形ABCD面积的1时,求P、Q两点的运动速度分别是多少?3(2)以(1)中求出的结论为条件,写出y与x的函数关系式,并求出自变量x的取值范围.【变式31】廊桥是我国古老的文化遗产,如图,是某座抛物线型的廊桥示意图.已知水面AB宽40米,抛物线最高点C到水面AB的距离为10米,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,求这两盏灯的水平距离EF.(结果保留根号)。

人教版数学九年级上册 第二十二章《二次函数》章节知识点归纳总结

人教版数学九年级上册 第二十二章《二次函数》章节知识点归纳总结

《二次函数》章节知识点归纳总结一、二次函数概念:1.二次函数的概念:(1)一般地,形如2y ax bx c =++(a b c ,,是常数,a ≠0)的函数,叫做二次函数。

(2)这里需要强调:和一元二次方程类似,二次项系数a ≠0,而b c ,可以为零.二次函数的定义域(x)是全体实数.2. 二次函数 2y ax bx c =++ 的结构特征:(1)等号左边是函数,右边是关于自变量x的二次式,x 的最高次数是2.(2)a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.3. 二次函数解析式的几种形式(1)一般式:y=ax 2+bx+c (a ,b ,c 为常数,a ≠0) (2)顶点式:y=a(x-h)2+k [抛物线的顶点P ( h ,k )](3)交点式:y=a(x-x 1)(x-x 2)[仅限于与x 轴有交点A (x 1,0)和 B (x 2,0)的抛物线]其中x 1,x 2是抛物线与x 轴的交点的横坐标,即一元二次方程ax 2+bx+c =0的两个根,a ≠0. x 1,x 2 = (-b ±ac 4b 2-)/2a 在三种形式的互相转化中,有如下关系:h= -b / 2a ; k=(4ac-b 2) / 4a ; x 1,x 2 = (-b ±ac 4b 2-) / 2a说明:(1)任何一个二次函数通过配方都可以化为顶点式y =a(x-h)2+k ,抛物线的顶点坐标是(h,k);(2) 当h =0时,抛物线y =ax 2+k 的顶点在y 轴上;当k =0时,抛物线a(x-h)2的顶点在x 轴上;当h =0且k =0时,抛物线y =ax 2的顶点在原点;(3) 如果图像经过原点,并且对称轴是y 轴,则设y=ax 2;如果对称轴是y 轴,但不过原点,则设y=ax 2+k4、抛物线的性质: (1).抛物线是轴对称图形。

对称轴为直线 x = -b/2a 。

人教版九年级数学上册第二十二章二次函数 知识点总结

人教版九年级数学上册第二十二章二次函数 知识点总结

第二十二章二次函数一、二次函数得有关概念:1、二次函数得定义:一般地,形如(就是常数,)得函数,叫做二次函数。

2、二次函数解析式得表示方法(1) 一般式:(,,为常数,);(2) 顶点式:(,,为常数,);(3)两根式:(,,就是抛物线与轴两交点得横坐标)、二、二次函数图象得画法1、基本方法:描点法注:五点绘图法。

利用配方法将二次函数化为顶点式,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图、一般我们选取得五点为:顶点、与轴得交点、以及关于对称轴对称得点、与轴得交点,(若与轴没有交点,则取两组关于对称轴对称得点)、2、画草图抓住以下几点:开口方向,对称轴,顶点,与轴得交点,与轴得交点、三、二次函数得图像与性质1、二次函数得性质(1)、当时,抛物线开口向上,对称轴为,顶点坐标为.当时,随得增大而减小;当时,随得增大而增大;当时,有最小值.(2)、当时,抛物线开口向下,对称轴为,顶点坐标为.当时,随得增大而增大;当时,随得增大而减小;当时,有最大值.2、二次函数得性质:概括成八个字“左加右减,上加下减”.五、二次函数与一元二次方程:一元二次方程就是二次函数当函数值时得特殊情况、图象与轴得交点个数:① 当时,图象与轴交于两点,其中得就是一元二次方程得两根.这两点间得距离、② 当时,图象与轴只有一个交点;③ 当时,图象与轴没有交点、当时,图象落在轴得上方,无论为任何实数,都有;当时,图象落在轴得下方,无论为任何实数,都有.六、二次函数中得符号问题1、二次项系数决定了抛物线开口大小与方向,得正负决定开口方向,得大小决定开口得大小.2、一次项系数在二次项系数确定得前提下,决定了抛物线得对称轴.⑴在得前提下,当时,,即抛物线得对称轴在轴左侧;当时,,即抛物线得对称轴就就是轴;当时,,即抛物线对称轴在轴得右侧.⑵在得前提下,结论刚好与上述相反,即当时,,即抛物线得对称轴在轴右侧;当时,,即抛物线得对称轴就就是轴;当时,,即抛物线对称轴在轴得左侧.总结起来,在确定得前提下,决定了抛物线对称轴得位置.总结:“左同右异”3、常数项⑴当时,抛物线与轴得交点在轴上方,即抛物线与轴交点得纵坐标为正;⑵当时,抛物线与轴得交点为坐标原点,即抛物线与轴交点得纵坐标为;⑶当时,抛物线与轴得交点在轴下方,即抛物线与轴交点得纵坐标为负.总结起来,决定了抛物线与轴交点得位置.七、二次函数解析式得确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数得解析式必须根据题目得特点,选择适当得形式,才能使解题简便.一般来说,有如下几种情况:1、已知抛物线上三点得坐标,一般选用一般式;2、已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3、已知抛物线与轴得两个交点得横坐标,一般选用两根式;4、已知抛物线上纵坐标相同得两点,常选用顶点式.。

人教版九年级数学上第22章二次函数知识点、考点、典型题集锦(带详细解析答案)

人教版九年级数学上第22章二次函数知识点、考点、典型题集锦(带详细解析答案)

二次函数知识点、考点、典型试题集锦(带详细解析答案)考点1:二次函数的图象和性质一、考点讲解:1.二次函数的定义:形如c bx axy ++=2(a ≠0,a ,b ,c 为常数)的函数为二次函数. 2.二次函数的图象及性质:⑴ 二次函数y=ax 2 (a ≠0)的图象是一条抛物线,其顶点是原点,对称轴是y 轴;当a >0时,抛物线开口向上,顶点是最低点;当a <0时,抛物线开口向下,顶点是最高点;a 越小,抛物线开口越大.y=a(x -h)2+k 的对称轴是x=h ,顶点坐标是(h ,k )。

⑵ 二次函数c bx ax y ++=2的图象是一条抛物线.顶点为(-2b a ,244ac b a -),对称轴x=-2b a ;当a >0时,抛物线开口向上,图象有最低点,且x >-2b a ,y 随x的增大而增大,x <-2b a ,y 随x 的增大而减小;当a <0时,抛物线开口向下,图象有最高点,且x >-2b a ,y 随x 的增大而减小,x <-2b a ,y 随x 的增大而增大.⑶ 当a >0时,当x=-2b a 时,函数有最小值244ac b a -;当a <0时,当 x=-2ba 时,函数有最大值244ac b a -。

3.图象的平移:将二次函数y=ax 2 (a ≠0)的图象进行平移,可得到y=ax 2+c ,y=a(x -h)2,y=a(x -h)2+k 的图象.⑴ 将y=ax 2的图象向上(c >0)或向下(c< 0)平移|c|个单位,即可得到y=ax 2+c 的图象.其顶点是(0,c ),形状、对称轴、开口方向与抛物线y=ax 2相同.⑵ 将y=ax 2的图象向左(h<0)或向右(h >0)平移|h|个单位,即可得到y=a(x -h)2的图象.其顶点是(h ,0),对称轴是直线x=h ,形状、开口方向与抛物线y=ax 2相同.⑶ 将y=ax 2的图象向左(h<0)或向右(h >0)平移|h|个单位,再向上(k>0)或向下(k<0)平移|k|个单位,即可得到y=a(x -h)2 +k 的图象,其顶点是(h ,k ),对称轴是直线x=h ,形状、开口方向与抛物线y=ax 2相同.注意:二次函数y=ax 2 与y =-ax 2 的图像关于x 轴对称。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数复习知识点一、二次函数概念:1.二次函数的概念:一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数a≠0,而b c,可以为零.二次函数的定义域是全体实数.2. 二次函数y=ax2+bx+c的结构特征:⑴等号左边是函数,右边是关于自变量x的二次多项式。

(①含自变量的代数式是整式,②自变量的最高次数是2,③二次项系数不为0.)⑵a b c,,是常数,a是二次项系数,b是一次项系数,c是常数项.二、二次函数的基本形式1. y=ax2的性质:2. y=ax2+k的性质:(k上加下减)3. y=a(x-h)2的性质:(h左加右减)4. y =a (x -h)2+k 的性质:5. y =ax2+bx+c 的性质:三、二次函数的图象与各项系数之间的关系1. 二次项系数a.(a 决定了抛物线开口的大小和方向)二次函数2y ax bx c =++中,a 作为二次项系数,显然a ≠0 ① 当0a >时,抛物线开口向上,当0a <时,抛物线开口向下;②a 的绝对值越大,开口越小,反之a 的绝对值越小,开口越大。

总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b (a 和b 共同决定抛物线对称轴的位置).抛物线c bx ax y ++=2的对称轴是直线abx 2-=,故:①0=b 时,对称轴为y 轴;② (即a 、b 同号)时,对称轴在y 轴左侧;③ (即a 、b 异号)时,对称轴在y 轴右侧.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异”3. 常数项c(c 决定了抛物线与y 轴交点的位置)⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 四、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿x 轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)五、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 六、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.七、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1. 关于x 轴对称2y a x b x c =++关于x 轴对称后,得到的解析式是2y ax bx c =---; ()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y a x b x c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+; ()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y a x b x c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.八、二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠),适用条件:已知抛物线上三点的坐标,一般选用一般式;2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠),适用条件:已知图像上点两坐标,且其中一点为抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 交点式(两根式):12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标), 适用条件:已知图像上三点坐标,其中两点为抛物线与x 轴的两个交点(1x ,0),(2x ,0),一般选用交点式;九、二次函数的最值如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当abx 2-=时,a b ac y 442-=最值。

如果自变量的取值范围是21x x x ≤≤,那么,首先要看ab2-是否在自变量取值范围21x x x ≤≤内,若在此范围内,则当x=ab2-时,a b ac y 442-=最值;若不在此范围内,则需要考虑函数在21x x x ≤≤范围内的增减性,如果在此范围内,y随x 的增大而增大,则当2x x =时,c bx ax y ++=222最大,当1x x =时,c bx ax y ++=121最小;如果在此范围内,y 随x 的增大而减小,则当1x x =时,c bx ax y ++=121最大,当2x x =时,c bx ax y ++=222最小。

十、 掌握二次函数与一元二次方程、一元二次不等式的关系(以a>0为例,a<0请同学们自己补充)判别式▲抛物线上两点1020(,),(,)A x y B x y ,则抛物线对称轴为直线122x =十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少十二、二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值利用顶点坐标公式2424b ac b a a ⎛⎫-- ⎪⎝⎭,,即当a b x 2-=时,ab ac y 442-=最值;或先配方利用顶点式求最值。

⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.二次函数考查重点与常见题型1、 已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2.写出一个开口向上,顶点坐标是(2,-3)的函数解析式 。

3. 将二次函数5x 6x 2y 2-+-=配成k )h x (y 2+-=的形式是_____________________. 4.抛物线6x 5x y 2+-=与x 轴交点的坐标是__ .5. 已知函数m x 3x y 2+-=,当x =1时,y =-5,则x =-1时,y 的值是_____。

6.王翔同学在一次跳高训练中采用了背跃式,跳跃路线正好和抛物线3x 3x 2y 2++=相吻合,那么他能跳过的最大高度为 _________m .7.将抛物线1x 3y 2+=的图象向左平移2个单位,再向下平移3个单位,得到的抛物线是()。

A .3)2x (3y 2-+= B .2)2x (3y 2-+= C .3)2x (3y 2--= D .2)2x (3y 2--= 8.下列描述抛物线)2x )(x 1(y +-=的开口方向及其最值情况正确的是(C )。

A .开口向上,y 有最大值 B .开口向上,y 有最小值 C .开口向下,y 有最大值 D .开口向下,y 有最小值 9.如图,一边靠墙(墙有足够长),其他三边用12米长的篱笆围成 一个矩形(ABCD )花园,这个花园的最大面积是( )平方米。

10、如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )11、二次函数2y ax bx c =++的图像如图1,则点),(ac b M 在()A .第一象限B .第二象限C .第三象限D .第四象限12、已知二次函数y=ax 2+bx+c (a ≠0)的图象如图2所示,•则下列结论:①a 、b 同号;②当x=1和x=3时,函数值相等;③4a+b=0;④当y=-2时,x 的值只能取0.其中正确的个数是( )A .1个B .2个C .3个D .4个图(1) 图(2)13、已知二次函数y=ax 2+bx+c 的图象与x 轴交于点(-2,O)、(x 1,0),且1<x 1<2,与y 轴的正半轴的交点在点(O ,2)的下方.下列结论:①a<b<0;②2a+c>O;③4a+c<O;④2a -b+1>O ,其中正确结论的个数为( )A 1个 B. 2个 C. 3个 D .4个14、已知:关于x 的一元二次方程ax 2+bx+c=3的一个根为x=2,且二次函数y=ax 2+bx+c 的对称轴是直线x=2,则抛物线的顶点坐标为( ) A(2,-3) B.(2,1) C(2,3) D .(3,2) 15、你知道吗?平时我们在跳大绳时,绳甩到最高处的形状可近似地看为抛物线.如图所示,正在甩绳的甲、乙两名学生拿绳的手间距为4 m ,距地面均为1m ,学生丙、丁分别站在距甲拿绳的手水平距离1m 、2.5 m 处.绳子在甩到最高处时刚好通过他们的头顶.已知学生丙的身高是1.5 m ,则学生丁的身高为(建立的平面直角坐标系如右图所示)( )A .1.5 mB .1.625 mC .1.66 mD .1.67 m16、已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。

相关文档
最新文档