【人教版】精美省优课件七下数学:5.3.1.2-平行线的性质和判定及其综合运用ppt课件

合集下载

【人教版】精美省优课件七下数学:5.3.1.1-平行线的性质ppt课件

【人教版】精美省优课件七下数学:5.3.1.1-平行线的性质ppt课件

应用格式:
∵a∥b(已知)
a
1
∴∠1=∠2
b
2
(两直线平行,同位角相等)
c
二、平行线的基本性质2
思考:在上一节中,我们利用“同位角相等,两直线平 行线”推出了“内错角相等,两直线平行线”,类似地, 已知两直线平行,同位角相等, 能否得到内错角之间 的数量关系?
如图,已知a//b,那么2与3相等吗?为什么?
班主任: 我觉得何旋今天取得这样的成绩, 我觉得,很重要的是,何旋是土生土长的北京 二中的学生,二中的教育理念是综合培养学生 的素质和能力。我觉得何旋,她取得今天这么 好的成绩,一个来源于她的扎实的学习上的基 础,还有一个非常重要的,我觉得特别想提的, 何旋是一个特别充满自信,充满阳光的这样一 个女孩子。在我印象当中,何旋是一个最爱笑 的,而且她的笑特别感染人的。所以我觉得她 很阳光,而且充满自信,这是她突出的这样一 个特点。所以我觉得,这是她今天取得好成绩 当中,心理素质非常好,是非常重要的。
c
三、平行线的基本性质3
思考:类似地,已知两直线平行,能否得到同旁内角
之间的数量关系? 如图,已知a//b,那么2与4有什么关系呢?为什么?
解: ∵a//b (已知),
∴ 1= 2
(两直线平行,同位角相等).
∵ 1+ 4=180°
a
1
(邻补角的性质),
b
4 2
∴ 2+ 4=180°
青 春 风 采
高考总分:
692分(含20分加分) 语文131分 数学145分 英语141分 文综255分
毕业学校:北京二中 报考高校:
北京大学光华管理学 院
北京市文科状元 阳光女孩--何旋

【人教版】精美省优课件七下数学:5.2.1-平行线ppt课件

【人教版】精美省优课件七下数学:5.2.1-平行线ppt课件

孙老师说,杨蕙心学习效率很高,认真执行老师 的复习要求,往往一个小时能完成别人两三个小 时的作业量,而且计划性强,善于自我调节。此 外,学校还有一群与她实力相当的同学,他们经 常在一起切磋、交流,形成一种良性的竞争氛围。
谈起自己的高考心得,杨蕙心说出了“听话” 两个字。她认为在高三冲刺阶段一定要跟随老师 的脚步。“老师介绍的都是多年积累的学习方法, 肯定是最有益的。”高三紧张的学习中,她常做 的事情就是告诫自己要坚持,不能因为一次考试 成绩就否定自己。高三的几次模拟考试中,她的 成绩一直稳定在年级前5名左右。
坚持做好每个学习步骤
武亦文的高考高分来自于她日常严谨的学习 态度,坚持认真做好每天的预习、复习。 “高中三年,从来没有熬夜,上课跟着老师 走,保证课堂效率。”武亦文介绍,“班主 任王老师对我的成长起了很大引导作用,王 老师办事很认真,凡事都会投入自己所有精 力,看重做事的过程而不重结果。每当学生 没有取得好结果,王老师也会淡然一笑,鼓 励学生注重学习的过程。”
青 春 风 采
高考总分:
692分(含20分加分) 语文131分 数学145分 英语141分 文综255分
毕业学校:北京二中 报考高校:
北京大学光华管理学 院
北京市文科状元 阳光女孩--何旋
来自北京二中,高考成绩672分,还有20 分加分。“何旋给人最深的印象就是她 的笑声,远远的就能听见她的笑声。” 班主任吴京梅说,何旋是个阳光女孩。 “她是学校的摄影记者,非常外向,如 果加上20分的加分,她的成绩应该是 692。”吴老师说,何旋考出好成绩的秘 诀是心态好。“她很自信,也很有爱心。 考试结束后,她还问我怎么给边远地区 的学校捐书”。
( 如果两条直线都与第三条直线平行,那么 这两条直线互相平行 ) 因为 c∥d,所以 a ∥d

人教版七年级数学下册第五章平行线的判定和性质复习课件(共14张PPT)

人教版七年级数学下册第五章平行线的判定和性质复习课件(共14张PPT)

A
B
C
D
E
F
练习
1.如图,直线m∥n,直角三角板ABC的顶点A在直线m上, 则∠α的等于( ) A.19° B.38° C.42° D.52°
2.直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为( ) A.60°B.50° C.40° D.30°
3.如图,AB∥EF,CD⊥EF,∠ACD=130°, 则∠BAC=( )
例1.如图,若AB//CD,∠B=32°,∠D=48°, 求∠BED 的大小.
解: 过点E做EF∥AB
A
∵ AB ∥ EF
∴ ∠BEF = ∠B=32°
(ห้องสมุดไป่ตู้直线平行,内错角相等)
C
∵ AB//CD
∴ EF //CD (如果两条直线都与第三条直线平行, 那么这两条直线也互相平行)
∴ ∠FED= ∠D = 48° (两直线平行,内错角相等)
平行线的判定和性质
复习课
平行线的判定与性质的关系图
判定 同位角相等
性质 同位角相等
内错角相等
两直线平行 内错角相等
同旁内角互补
同旁内角互补
(数量关系) (位置关系) (数量关系)
数形转化
导入
如图: 已知:AB∥EF,∠B=30°, ∠F=40°,∠D=100°,则∠C=_______
A
B
C
D
E
F
1 光线 C2 a25
好好想一想,
哪两个角和光 线C1、光线 C2的平行有 关??
光线 C1
63 4
b
下课了!
结束寄语
• 由“因”导“果”,言必有据.是初
平 行
学证明者谨记和遵循的原则.

【最新】人教版七年级数学下册第五章《平行线的性质》精品课件 (4).ppt

【最新】人教版七年级数学下册第五章《平行线的性质》精品课件 (4).ppt


THE END 17、一个人如果不到最高峰,他就没有片刻的安宁,他也就不会感到生命的恬静和光荣。2021/1/112021/1/112021/1/112021/1/11
谢谢观看
任选一个加以说明.
A
B
A
B
P
P
C
D
(1)
P
A
B
C (2)
A
C
D B D
C
D
(3)
P
(4)
• 9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。 2021/1/112021/1/11Monday, January 11, 2021
GB
7.如图所示,已知AB∥CD,∠ABE=130°, ∠CDE=152°,求∠BED的度数.
A
B
E
C
D
8.如图所示,把一张长方形纸片ABCD沿EF 折叠,若∠EFG=50°,求∠DEG的度数.
A
E
D
G B
M
FC N
9.如图所示,已知AB∥CD,分别探索下列四个图形
中∠P与∠A,∠C的关系,•请你从所得的四个关系中
• 10、人的志向通常和他们的能力成正比例。2021/1/112021/1/112021/1/111/11/2021 2:11:47 PM • 11、夫学须志也,才须学也,非学无以广才,非志无以成学。2021/1/112021/1/112021/1/11Jan-2111-Jan-21 • 12、越是无能的人,越喜欢挑剔别人的错儿。2021/1/112021/1/112021/1/11Monday, January 11, 2021 • 13、志不立,天下无可成之事。2021/1/112021/1/112021/1/112021/1/111/11/2021

平行线及其判定和性质课件

平行线及其判定和性质课件

1:如图,直线AB、CD被直线EF所截,量 得∠1=60°∠2=120°就可以判定AB∥CD。 它的根据是什么?
分析:证明AB∥CD
平行线的定理
同旁内角互补,两直线平行 即∠1+∠5 =180°
对顶角的定义
∠5 = ∠2
等量代换
证明:∵∠1=60° ∠2=120° (已知) ∴ ∠1+∠2= 180° ∵ ∠2=∠5 (对顶角相等) ∴∠1+∠5= 180°(等量代换) ∴AB∥CD (同旁内角互补、两直线平行)
∵∠1=60° ∠2=120° (已知) ∴∠1+∠2 =180°
2:如图已知∠1=72°,∠2=72°, ∠3=60°,求∠4的度数。
4 3
分析:求∠4的度数
两角关系
2 1
∠3与∠4互为同旁内角
平行线性质
a b
∠3+∠4=180°
即需证
解:∵∠1=72°∠2=72°(已知) ∴a∥b(内错角相等,两直线平行) ∴ ∠4+∠3 =180° (两直线平行,同旁内角互补) 又∠3=60°(已知) ∴ ∠4=180°-∠3 =180°-60°=120°
证明两直线平行
平行线判定
∵∠1=72°∠2=72°(已知) ∴a∥b(内错角相等,两直线平行)
变式:将原题改为已知∠1=72°,∠2=72°, 证明∠5=∠6
4
6
3
5
证:∵∠1=72°∠2=72°(已知) ∴ ∠1=∠2 ∴a∥b(内错角相等,两直线平行) ∵∠4=∠5,两直线平行,同位角相等 ∠4=∠6(对顶角相等) ∴∠5=∠6
2 1
a b
练习巩固
1、对于图1中标记的各角,下列条件能够推理得到a∥b的是(
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解法2:作∠APE =∠BAP. ∴ EP∥AB,∵AB∥CD ∴ EP∥CD,∴∠EPC=∠PCD ∴ ∠APE+∠APC= ∠PCD 即∠BAP+∠APC =∠PCD.
E P
Aห้องสมุดไป่ตู้
B
C
D
例3:如图,若AB//CD,你能确定∠B、∠D与 ∠BED 的大小关系吗?说说你的看法.
解:过点E 作EF//AB.
∴ ∠C=∠AED =40°.
练一练 已知:AB∥CD,∠1 = ∠2.试说明:BE∥CF.
证明:∵AB ∥ CD
∴∠ABC=∠BCD (两直线平行,内错角相等)
∵∠1=∠2 ∴∠ABC -∠1=∠BCD- ∠2 即∠3=∠4
∴ BE∥CF
(内错角相等,两直线平行)
例2:如图,AB∥CD,猜想∠A、∠P 、∠PCD的数 量关系,并说明理由.
孙老师说,杨蕙心学习效率很高,认真执行老师 的复习要求,往往一个小时能完成别人两三个小 时的作业量,而且计划性强,善于自我调节。此 外,学校还有一群与她实力相当的同学,他们经 常在一起切磋、交流,形成一种良性的竞争氛围。
谈起自己的高考心得,杨蕙心说出了“听话” 两个字。她认为在高三冲刺阶段一定要跟随老师 的脚步。“老师介绍的都是多年积累的学习方法, 肯定是最有益的。”高三紧张的学习中,她常做 的事情就是告诫自己要坚持,不能因为一次考试 成绩就否定自己。高三的几次模拟考试中,她的 成绩一直稳定在年级前5名左右。
∴∠D +∠DEF=180°.
C
∴∠B+∠D+∠DEB
=∠B+∠D+∠BEF+∠DEF
=360°.
即∠B+∠D+∠DEB=360°.
B
E D
变式2:如图,AB∥CD,则 :
A
B
A
B
A
B
E1
E
E1
E2
E2
E3
C
D
C
D
C
D
当有一个拐点时: ∠A+∠E+∠C= 360°
当有两个拐点时: ∠A+∠ E1 + ∠ E2 +∠C = 540°
解:作∠PCE =∠APC,交AB于E.
∴ AP∥CE ∴ ∠AEC=∠A,∠P=∠PCE.
∴ ∠A+∠P=∠PCE+∠AEC,
A
∵AB∥CD ∴ ∠ECD=∠AEC,
∴∠A+∠P =∠PCE+∠ECD=∠PCD. C
P EB
D
还可以怎样作辅助线?
例2:如图,AB∥CD,猜想∠BAP、∠APC 、 ∠PCD的数量关系,并说明理由.
高考总分:711分 毕业学校:北京八中 语文139分 数学140分 英语141分 理综291分 报考高校: 北京大学光华管理学院
北京市理科状元杨蕙心
班主任 孙烨:杨蕙心是一个目标高远 的学生,而且具有很好的学习品质。学 习效率高是杨蕙心的一大特点,一般同 学两三个小时才能完成的作业,她一个 小时就能完成。杨蕙心分析问题的能力 很强,这一点在平常的考试中可以体现。 每当杨蕙心在某科考试中出现了问题, 她能很快找到问题的原因,并马上拿出 解决办法。
同位角 相等 两直线平行
内错角相等 两直线平行 同旁内角互补 两直线平行
∵∠1=∠2
∴a∥b
∵ ∠3=∠2
∴a∥b
∵∠2+∠4=180°
∴a∥b
图形
c
1a 34
2 b
2.平行线的其它判定方法
方法4:如图1,若a∥b,b∥c,则a∥c.
(平行于同一条直线的两条直线平行)
方法5:如图2,若a⊥b,a⊥c,则b∥c.
B E1
E2 D
当左边有两个角,右边有两个角时: ∠A+∠F= ∠E +∠D
当左边有三个角,右边有两个角时:∠A+∠ F1 +∠C = ∠ E1 +∠ E2
若左边有n个角,右边有m个角;你能找到规律吗?
A
F1 F2 Fn
B E1
E2
Em
几何画板:探究平行线中动点问题.gsp
C
D
当左边有n个角,右边有m个角时: ∠A+∠F1 + ∠ F2 +…+ ∠Fn= ∠E1 +∠E2 +…+ ∠Em+ ∠D
∵AB⊥BF,CD⊥BF,
∴AB∥CD
E
(垂直于同一条直线的两条直线平行).
∴EF∥CD
(平行于同一条直线的两条直线平行).
∴ ∠3= ∠E (两直线平行,同位角相等).
B
D 2
F
5.如图,EF∥AD,∠1=∠2,∠BAC=70 °,求∠AGD
的度数.
C
解:∵EF∥AD, (已知)
∴∠2=∠3.(两直线平行,同位角相等) D 1 G
讲授新课
平行线的性质和判定及其综合应用
例1:如图,三角形ABC中,D是AB上一点,E是AC上
一点,∠ADE=60°,∠B = 60°,∠AED=40°A.
(1)DE和BC平行吗?为什么?
(2)∠C是多少度?为什么?
D
E
解:(1) DE∥BC.理由如下:
∵ ∠ADE=60°,∠B = 60° B
C
∴ ∠ADE=∠B
∴ DE∥BC
(同位角相等,两直线平行 ).
如图,三角形ABC中,D是AB上一点,E是AC上一点,
∠ADE=60°,∠B = 60°,∠AED=40°.
(2)∠C是多少度?为什么?
A
解:∠C =40°.理由如下:
由(1)得DE∥BC,
D
E
∴ ∠C=∠AED
B
C
(两直线平行,同位角相等)
又∵∠AED=40°
当有三个拐点时: ∠A+∠ E1 + ∠ E2 +∠ E3 +∠C = 720°
若有n个拐点,你能找到规律吗?
A
B
E1
E2 …
En
C
D
当有n个拐点时: ∠A+∠ E1 + ∠ E2 +…+∠ En +∠C = 180°(n+1)
变式3:如图,若AB∥CD, 则:
A
BA
E
F
BA
E
F1
C
DC
DC
当左边有两个角,右边有一个角时: ∠A+∠C= ∠E
曹杨二中高三(14)班学生
班级职务:学习委员
高考志愿:北京 大学中文系
高考成绩:语文121分数学146分
英语146分历史134分
综合28分总分
575分
(另有附加分10
分)
上海高考文科状元--常方舟
“我对竞赛题一样发怵”
总结自己的成功经验,常方舟认为学习的高 效率是最重要因素,“高中三年,我每天晚 上都是10:30休息,这个生活习惯雷打不动。 早晨总是6:15起床,以保证八小时左右的睡 眠。平时功课再多再忙,我也不会‘开夜 车’。身体健康,体力充沛才能保证有效学 习。”高三阶段,有的同学每天学习到凌晨 两三点,这种习惯在常方舟看来反而会影响 次日的学习状态。每天课后,常方舟也不会 花太多时间做功课,常常是做完老师布置的 作业就算完。
F
又∵∠1=∠2, (已知) ∴∠1=∠3.(等量代换)
B
2
3
E
A
∴DG∥AB(. 内错角相等,两直线平行)
∴∠BAC+∠AGD=180°.
(两直线平行,同旁内角互补)
∴∠AGD=180°-∠BAC=180°-70°=110°.
课堂小结
平行线的“判定”与“性质”有什么不同:
判定:已知角的关系得平行的关系. 推平行,用判定. 性质:已知平行的关系得角的关系. 知平行,用性质.
第五章 相交线与平行线
5.3 平行线的性质
5.3.1 平行线的性质
第2课时 平行线的性质和判定及其综合运用
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.进一步熟悉平行线的判定方法和性质; 2.运用平行线的性质和判定进行简单的推理和计算; (重点、难点)
导入新课
回顾与思考 1.平行线的判定
文字叙述
符号语言
又∵∠A=100°,∠C=110°(已知),
∴∠ 1 = 80 °, ∠ 2 = 70 °.
∴∠AEC=∠1+∠2= 80 °+ 70 ° = 150 °.
4.已知AB⊥BF,CD⊥BF,∠1= ∠2,试说明∠3=∠E.
解:∵∠1=∠2 (已知),
A
∴AB∥EF
(内错角相等,两直线平行). C
3
1
青 春 风 采
高考总分:
692分(含20分加分) 语文131分 数学145分 英语141分 文综255分
毕业学校:北京二中 报考高校:
北京大学光华管理学 院
北京市文科状元 阳光女孩--何旋
来自北京二中,高考成绩672分,还有20 分加分。“何旋给人最深的印象就是她 的笑声,远远的就能听见她的笑声。” 班主任吴京梅说,何旋是个阳光女孩。 “她是学校的摄影记者,非常外向,如 果加上20分的加分,她的成绩应该是 692。”吴老师说,何旋考出好成绩的秘 诀是心态好。“她很自信,也很有爱心。 考试结束后,她还问我怎么给边远地区 的学校捐书”。
上海 2006 高考 理科 状元-武亦 文
武亦文 格致中学理科班学生 班级职务:学习委员 高考志愿:复旦经济 高考成绩:语文127分 数学142分 英语144分
物理145分 综合27分 总分585分
“一分也不能少”
“我坚持做好每天的预习、复习,每 天放学回家看半小时报纸,晚上10: 30休息,感觉很轻松地度过了三年 高中学习。”当得知自己的高考成 绩后,格致中学的武亦文遗憾地说 道,“平时模拟考试时,自己总有 一门满分,这次高考却没有出现, 有些遗憾。”
相关文档
最新文档