最新河北省邯郸市2018-2019年最新中考第3次模拟考试数学试卷(含答案)

合集下载

【附5套中考模拟试卷】河北省邯郸市2019-2020学年中考数学三模试卷含解析

【附5套中考模拟试卷】河北省邯郸市2019-2020学年中考数学三模试卷含解析

河北省邯郸市2019-2020学年中考数学三模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,AB是⊙O的直径,C,D是⊙O上位于AB异侧的两点.下列四个角中,一定与∠ACD互余的角是()A.∠ADC B.∠ABD C.∠BAC D.∠BAD2.如图,在ABC中,BC边上的高是()A.EC B.BH C.CD D.AF3.如图是由五个相同的小立方块搭成的几何体,则它的俯视图是()A.B.C.D.4.7的相反数是( )A.7 B.-7 C.17D.-175.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M、N,再分别以点M、N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=18,则△ABD的面积是()A.18 B.36 C.54 D.72 6.等腰三角形的一个外角是100°,则它的顶角的度数为()7.如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B,他的影长y随他与点A之间的距离x 的变化而变化,那么表示y与x之间的函数关系的图象大致为()A.B.C.D.8.如图,△ABC中,DE∥BC,13ADAB,AE=2cm,则AC的长是()A.2cm B.4cm C.6cm D.8cm9.在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点.对于一条直线,当它与一个圆的公共点都是整点时,我们把这条直线称为这个圆的“整点直线”.已知⊙O是以原点为圆心,半径为22圆,则⊙O的“整点直线”共有()条A.7 B.8 C.9 D.1010.从1、2、3、4、5、6这六个数中随机取出一个数,取出的数是3的倍数的概率是()A.16B.13C.12D.2311.下列说法:①;②数轴上的点与实数成一一对应关系;③﹣2是的平方根;④任何实数不是有理数就是无理数;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,其中正确的个数有( )A.2个B.3个C.4个D.5个A .33a a +B .82a a ÷C .23•a aD .()32a -二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若一条直线经过点(1,1),则这条直线的解析式可以是(写出一个即可)______. 14.请写出一个比2大且比4小的无理数:________. 15.有三个大小一样的正六边形,可按下列方式进行拼接: 方式1:如图1; 方式2:如图2;若有四个边长均为1的正六边形,采用方式1拼接,所得图案的外轮廓的周长是_______.有n 个边长均为1的正六边形,采用上述两种方式的一种或两种方式混合拼接,若得图案的外轮廓的周长为18,则n 的最大值为__________.16.因式分解:323x y x -=_______________.17.如图所示一棱长为3cm 的正方体,把所有的面均分成3×3个小正方形.其边长都为1cm ,假设一只蚂蚁每秒爬行2cm ,则它从下底面点A 沿表面爬行至侧面的B 点,最少要用_____秒钟.18.已知1A n n =-23B n n =--(3n ≥),请用计算器计算当3n ≥时,A 、B 的若干个值,并由此归纳出当3n ≥时,A 、B 间的大小关系为______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)已知抛物线y=ax 2+ c(a≠0).(1)若抛物线与x 轴交于点B(4,0),且过点P(1,–3),求该抛物线的解析式;(2)若a>0,c =0,OA 、OB 是过抛物线顶点的两条互相垂直的直线,与抛物线分别交于A 、B 两点,求证:直线AB 恒经过定点(0,1a); (3)若a>0,c <0,抛物线与x 轴交于A ,B 两点(A 在B 左边),顶点为C ,点P 在抛物线上且位于第四象限.直线PA 、PB 与y 轴分别交于M 、N 两点.当点P 运动时,OCOM ON+是否为定值?若是,试求出该定值;若不是,请说明理由.20.(6分)在Rt ABC ∆中,90ACB ∠=o ,CD 是AB 边的中线,DE BC ⊥于E ,连结CD ,点P 在射线CB 上(与B ,C 不重合)(1)如果30A ∠=o ①如图1,DCB ∠=o②如图2,点P 在线段CB 上,连结DP ,将线段DP 绕点D 逆时针旋转60o ,得到线段DF ,连结BF ,补全图2猜想CP 、BF 之间的数量关系,并证明你的结论; (2)如图3,若点P 在线段CB 的延长线上,且()090A αα∠=<<o o,连结DP ,将线段DP 绕点逆时针旋转2α得到线段DF ,连结BF ,请直接写出DE 、BF 、BP 三者的数量关系(不需证明) 21.(6分)如图,矩形ABCD 中,点E 为BC 上一点,DF ⊥AE 于点F ,求证:∠AEB =∠CDF.22.(8分)如图是一副扑克牌中的三张牌,将它们正面向下洗均匀,甲同学从中随机抽取一张牌后放回,乙同学再从中随机抽取一张牌,用树状图(或列表)的方法,求抽出的两张牌中,牌面上的数字都是偶数的概率.23.(8分)随着移动计算技术和无线网络的快速发展,移动学习方式越来越引起人们的关注,某校计划将这种学习方式应用到教育学中,从全校1500名学生中随机抽取了部分学生,对其家庭中拥有的移动设备的情况进行调查,并绘制出如下的统计图①和图②,根据相关信息,解答下列问题:本次接受随机抽样调查的学生人数为 ,图①中m 的值为 ;求本次调查获取的样本数据的众数、中位数和平均数;根据样本数据,估计该校1500名学生家庭中拥有3台移动设备的学生人数.24.(10分)在数学活动课上,老师提出了一个问题:把一副三角尺如图摆放,直角三角尺的两条直角边分别垂直或平行,60°角的顶点在另一个三角尺的斜边上移动,在这个运动过程中,有哪些变量,能研究它们之间的关系吗?小林选择了其中一对变量,根据学习函数的经验,对它们之间的关系进行了探究.下面是小林的探究过程,请补充完整:(1)画出几何图形,明确条件和探究对象;如图2,在Rt△ABC中,∠C=90°,AC=BC=6cm,D是线段AB上一动点,射线DE⊥BC于点E,∠EDF=60°,射线DF与射线AC交于点F.设B,E两点间的距离为xcm,E,F两点间的距离为ycm.(2)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm 0 1 2 3 4 5 6y/cm 6.9 5.3 4.0 3.3 4.5 6(说明:补全表格时相关数据保留一位小数)(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(4)结合画出的函数图象,解决问题:当△DEF为等边三角形时,BE的长度约为cm.25.(10分)在围棋盒中有x 颗黑色棋子和y 颗白色棋子,从盒中随机地取出一个棋子,如果它是黑色棋子的概率是38;如果往盒中再放进10 颗黑色棋子,则取得黑色棋子的概率变为12.求x 和y 的值.26.(12分)小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B、C两点的俯角分别为45°、35°.已知大桥BC与地面在同一水平面上,其长度为100m,求热气球离地面的高度.(结果保留整数)(参考数据:sin35°=0.57,cos35°=0.82,tan35°=0.70)27.(12分)如图1,一枚质地均匀的正六面体骰子的六个面分别标有数字,,,,,,如图2,正方形的顶点处各有一个圈,跳圈游戏的规则为:游戏者每掷一次骰子,骰子朝上的那面上的数字是几,就沿正方形的边按顺时针方向连续跳几个边长。

精品河北省邯郸市2018-2019年精品中考第3次模拟考试数学试卷(含答案)

精品河北省邯郸市2018-2019年精品中考第3次模拟考试数学试卷(含答案)

初三第三次模拟考试数学试题一、 选择题(本大题共16小题,1~10小题每题3分;11~16小题每题2分,共42分。

在每小题给出的四个选项中,只有一项是符合题目要求的) 1.2014-等于( ) A. ﹣2014B.2014C.±2014D.201412. 下面的计算正确的是( )A. 156=-a aB.3232a a a =+C.b a b a +-=--)(D. b a b a +=+2)(23. 一个几何体的三视图如图所示,则这个几何体是( )A.B.C.D.4. 下面四条直线,其中直线上每个点的坐标都是二元一次方程22=-y x 的解的是( )A. B. C. D.5. 一组数据:10,5,15,5,20,则这组数据的平均数和中位数分别是( )A. 10,10B.10,12.5C.11,12.5D. 11,10 6. 估计18-的值在( )A.0到1之间B. 1到2之间C. 2到3之间D.3到4之间7. 用配方法解一元二次方程0542=-+x x ,此方程可变形为( )A.9)2(2=+xB. 9)2(2=-xC. 1)2(2=+xD. 1)2(2=-x8. 如图,在△ABC 中,AB =AC ,∠ABC =70°,以B 为圆心,任意长为半径画弧交AB ,BC 于点E ,F ,再分别以点E ,F 为圆心、以大于EF 21长为半径画弧,两弧交于点P ,作射线BP 交AC 于点D ,则∠BDC 为( )度 A.65 B.75 C.80 D.85 9. 如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD 变形为以A 为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形DAB 的面积为( ) A.6 B.7 C.8 D.910. 不等式组⎩⎨⎧-≥->+203x x 的整数解有( )A.0个B.5个C.6个D.无数个11. 如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心在格点上,则∠AED 的余弦值等于( )A.55 B.552 C.2 D.21 12. 如图,圆P 的半径为2,圆心P 在函数)0(6>=x xy 的图象上运动,当圆P 与x 轴相切时,点P 的坐标为( ) A.(2,3) B.(3,2) C.(6,1) D.(4,1.5) 13. 如图是王老师去公园锻炼及原路返回时离家的距离y (千米)与时间t (分钟)之间的函数图象,根据图象信息,下列说法正确的是( )A.王老师去时所用的时间少于回家的时间B.王老师在公园锻炼了40分钟C.王老师去时走上坡路,回家时走下坡路D.王老师去时速度比回家时的速度慢14. 如图,从点A (0,2)发出的一束光,经x 轴反射,过点B (5,3),则这束光从点A 到点B 所经过的路径的长为( )A.4B.25C.35D.515. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB =4,∠BED =120°,则图中阴影部分的面积之和为( )A.3B.32C.23D.116. 如图,已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,有下列5个结论:①0<abc ;②c a b +<;③024>++c b a ;④b c 32<; ⑤)1()(的实数≠+<+n b an n b a 其中正确的结论有( ) A. ①②③B. ①③④C.③④⑤D. ①③⑤二、 填空题(本大题共4小题,每小题3分,共12分) 17. PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学记数法表示为_________________。

河北省邯郸市2019年中考数学模拟试卷及答案(word解析版)

河北省邯郸市2019年中考数学模拟试卷及答案(word解析版)

河北省邯郸市2019年中考数学模拟试卷一、选择题(每题3分,共24分))..4.(3分)(2019•邯郸模拟)如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()5.(3分)(2019•邯郸模拟)在一个不透明的袋子中装有4个除颜色外完全相同的小球,其6.(3分)(2019•邯郸模拟)一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半7.(3分)(2019•邯郸模拟)不等式组的解在数轴上表示为()B8.(3分)(2019•邯郸模拟)下列函数:①y=﹣x;②y=2x;③y=﹣;④y=x2(x<0),y二、填空题(每题3分,共18分)9.(3分)(2019•邯郸模拟)分解因式:x2﹣9=(x+3)(x﹣3).10.(3分)(2019•邯郸模拟)如图,已知AB为⊙O的直径,∠CAB=30°,则∠D=60°.11.(3分)(2019•邯郸模拟)如图,⊙A和⊙B都与x轴和y轴相切,圆心A和圆心B都在反比例函数y=的图象上,则图中阴影部分的面积等于π(结果保留π).12.(3分)(2019•邯郸模拟)把一张矩形纸片ABCD按如图方式折叠,使顶点B和顶点D 重合,折痕为EF.若BF=4,FC=2,则∠DEF的度数是60°.13.(3分)(2019•邯郸模拟)如图(1),在宽为20m,长为32m的矩形耕地上修建同样宽的三条道路(横向与纵向垂直),把耕地分成若干小矩形块,作为小麦试验田,假设试验田面积为570m2,求道路宽为多少?设宽为x m,从图(2)的思考方式出发列出的方程是(32﹣2x)(20﹣x)=570.14.(3分)(2019•邯郸模拟)用同样大小的小圆按下图所示的方式摆图形,第1个图形需要1个小圆,第2个图形需3个小圆,第3个图形需要6个小圆,第4个图形需要10个小圆,按照这样的规律摆下去,则第n个图形需要小圆()或个(用含n的代数式表示).三、解答题(每题5分,共20分)15.(5分)(2019•邯郸模拟)先化简,再求值:,其中a=﹣1.•﹣﹣1+1=16.(5分)(2019•邯郸模拟)学校组织各班开展“阳光体育”活动,某班体育委员第一次到时商店购买了5个毽子和8根跳绳,花费34元,第二次又去购买了3个毽子和4根跳绳,花费18元,求每个毽子和每个跳绳各多少元?.17.(5分)(2019•邯郸模拟)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种可能性大小相同,现有两辆汽车经过这个十字路口.(1)试用树状图或列表法中的一种列举出这辆汽车行驶方向所有可能的结果;(2)求至少有一辆汽车向左转的概率.18.(5分)(2019•邯郸模拟)已知,如图E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE,四边形ABCD是平行四边形吗?请说明理由.四、解答题(每题6分,共12分)19.(6分)(2019•邯郸模拟)如图所示,网格中每个小正方形的边长为1,请你认真观察图(1)中的三个网格中阴影部分构成的图案,解答下列问题:(1)这三个图案都具有以下共同特征:都是中心对称图形,都不是轴对称图形.(2)请在图(2)中设计出一个面积为4,且具备上述特征的图案,要求所画图案不能与图(1)中所给出的图案相同.20.(6分)(2019•邯郸模拟)生活经验表明,靠墙摆放的梯子,当50°≤α≤70°时(α为梯子与地面所成的角),能够使人安全攀爬.现在有一长为6米的梯子AB,试求能够使人安全攀爬时,梯子的顶端能达到的最大高度AC.(结果保留两个有效数字,sin70°≈0.94,sin50°≈0.77,cos70°≈0.34,cos50°≈0.64)五、解答题(每题6分,共12分)21.(6分)(2019•邯郸模拟)某中学学生为了解该校学生喜欢球类活动的情况,随机抽取了若干名学生进行问卷调查(要求每位学生只能填写一种自己喜欢的球类),并将调查的结果绘制成如下的两幅不完整的统计图.请根据图中提供的信息,解答下面的问题:(1)参加调查的学生共有300人,在扇形图中,表示“其他球类”的扇形的圆心角为36度;(2)将条形图补充完整;(3)若该校有2000名学生,则估计喜欢“篮球”的学生共有800人.×=36×=80022.(6分)(2019•邯郸模拟)如图,AB是⊙O的直径,AC是弦,CD是⊙O的切线,C 为切点,AD⊥CD于点D.求证:(1)∠AOC=2∠ACD;(2)AC2=AB•AD.六、解答题:(每小题7分,共14分)23.(7分)(2019•邯郸模拟)如图,已知直线AB与x轴交于点C,与双曲线交于A (3,)、B(﹣5,a)两点.AD⊥x轴于点D,BE∥x轴且与y轴交于点E.(1)求点B的坐标及直线AB的解析式;(2)判断四边形CBED的形状,并说明理由.)∵双曲线,)代入,得),==24.(7分)(2019•邯郸模拟)在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD 于点F,取FD的中点G,连接EG、CG,如图(1),易证EG=CG且EG⊥CG.(1)将△BEF绕点B逆时针旋转90°,如图(2),则线段EG和CG有怎样的数量关系和位置关系?请直接写出你的猜想.(2)将△BEF绕点B逆时针旋转180°,如图(3),则线段EG和CG又有怎样的数量关系和位置关系?请写出你的猜想,并加以证明.七、解答题:(每小题10分,共20分)25.(10分)(2019•邯郸模拟)如图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形铁块立放其中(圆柱形铁块的下底面完全落在乙槽底面上).现将甲槽中的水匀速注人乙槽,甲、乙两个水槽中水的深度y(厘米)与注水时间x(分钟)之间的关系如图2所示.根据图象提供的信息,解答下列问题:(1)图2中折线ABC表示乙槽中水的深度与注水时间之间的关系,线段DE表示甲槽中水的深度与注水时间之间的关系(以上两空选塡“甲”或“乙”),点B的纵坐标表示的实际意义是乙槽中铁块的高度为14cm.(2)注水多长时间时,甲、乙两个水槽中水的深度相同?(3)若乙槽底面积为36平方厘米(壁厚不计),求乙槽中铁块的体积;(4)若乙槽中铁块的体积为112立方厘米,求甲槽底面积(壁厚不计).(直接写成结果)的水的体积和乙槽中流入的水的体积分别相等列二元一次方程组26.(10分)(2019•邯郸模拟)在梯形OABC中,CB∥OA,∠AOC=60°,∠OAB=90°,OC=2,BC=4,以点O为原点,OA所在的直线为x轴,建立平面直角坐标系,另有一边长为2的等边△DEF,DE在x轴上(如图(1)),如果让△DEF以每秒1个单位的速度向左作匀速直线运动,开始时点D与点A重合,当点D到达坐标原点时运动停止.(1)设△DEF运动时间为t,△DEF与梯形OABC重叠部分的面积为S,求S关于t的函数关系式.(2)探究:在△DEF运动过程中,如果射线DF交经过O、C、B三点的抛物线于点G,是否存在这样的时刻t,使得△OAG的面积与梯形OABC的面积相等?若存在,求出t的值;若不存在,请说明理由.s=s=﹣ts=))﹣x xxy=k=y=x+×h=代入﹣x+。

河北省邯郸市中考数学三模试卷

河北省邯郸市中考数学三模试卷

河北省邯郸市中考数学三模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2017·平塘模拟) ﹣5的倒数的相反数是()A . 5B .C . ﹣5D .2. (2分) (2019八下·长春期中) 下列所述图形中,既是轴对称图形又是中心对称图形的是()A . 等腰三角形B . 平行四边形C . 正五边形D . 矩形3. (2分)(2017·虞城模拟) 下列运算正确的是()A . a3+a3=a6B . 2(a+1)=2a+1C . (a﹣b)2=a2﹣b2D . a6÷a3=a34. (2分)(2016·景德镇模拟) 算式(3.0×106)•(5.0×10﹣3)的结果用科学记数法表达正确的是()A . 15×103B . 15×104C . 1.5×103D . 1.5×1045. (2分)如图,在平面直角坐标系中,点A在第一象限,AB⊥x轴于点B,点C是线段AB上一点,函数y=(k>0,x>0)的图象与线段AC交于点D(不与点A、C重合).若△AOB和△COB的面积分别为2和1,则k的值可能是()A . 1B . 2C . 3D . 46. (2分)下列四个命题中,真命题是()A . 对角线互相垂直平分的四边形是正方形B . 对角线相等且互相平分的四边形是矩形C . 对角线垂直相等的四边形是菱形D . 四边都相等的四边形是正方形7. (2分) (2018八上·江北期末) 如图,平分交于点,平分交于点,若,,则的度数为()A .B .C .D .8. (2分)七年级部分学生在小会议室开会,若每排座位坐10人,则有2人无处坐;如果每排座位坐11人,则最后一排空3个座儿,则参加会议的学生人数是()A . 52B . 62C . 5D . 69. (2分)(2018·滨州) 已知半径为5的⊙O是△ABC的外接圆,若∠ABC=25°,则劣弧的长为()A .B .C .D .10. (2分) (2017八下·仁寿期中) 如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则当x=9时,点R应运动到()A . N处B . P处C . Q处D . M处二、填空题 (共8题;共8分)11. (1分)(2017·吴忠模拟) 分解因式:x﹣xy2=________.12. (1分) (2020八下·绍兴月考) 如果y= ,那么 =________.13. (1分)(2018·内江) 已知, , , , 是反比例函数图象上四个整数点(横、纵坐标均为整数),分别过这些点向横轴或纵轴作垂线段,以垂线段所在的正方形(如图)的边长为半径作四分之一圆周的两条弧,组成四个橄榄形(阴影部分),则这四个橄榄形的面积总和是________(用含的代数式表示).14. (1分)(2016·新化模拟) 如图,分别过等边△ABC的顶点A、B作直线a,b,使a∥b.若∠1=40°,则∠2的度数为________.15. (1分)△ABC中,∠C=90°,G为其重心,若CG=2,那么AB=________ .16. (1分) (2019九上·萧山期中) 如图,四边形ABCD内接于⊙O ,AE⊥CB交CB的延长线于点E ,若BA平分∠DBE , AD=5,CE=,则AE=________.17. (1分)如图,某校的围墙由一段相同的凹曲拱组成,其拱状图形为抛物线的一部分,栅栏的跨径AB间,按相同间隔0.2米用5根立柱加固,拱高OC为0.36米,则立柱EF的长为________米.18. (1分)如图所示的是由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n(n>1)盆花,每个图案中花盆的总数是s,按此规律推断,以s,n为未知数的二元一次方程是________.三、解答题 (共8题;共75分)19. (5分)计算:(﹣2)0+()﹣1+4cos30°﹣|﹣|20. (5分)(2013·深圳) 解不等式组:,并写出其整数解.21. (10分) (2017八下·兴化期中) 已知:反比例函数的图像过点A(,).(1)求的值;(2)过点A作AB⊥x轴于点B,求△OAB的周长.22. (15分) (2017九下·海宁开学考) 为深化义务教育课程改革,某校积极开展拓展性课程建设,计划开设艺术、体育、劳技、文学等多个类别的拓展性课程,要求每一位学生都自主选择一个类别的拓展性课程.为了了解学生选择拓展性课程的情况,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图(部分信息未给出):根据统计图中的信息,解答下列问题:(1)求本次被调查的学生人数.(2)将条形统计图补充完整.(3)若该校共有1600名学生,请估计全校选择体育类的学生人数.23. (10分)有一些分别标有3,6,9,12…的卡片,后一张卡片上的数比前一张卡片上的数大3,小华拿到了相邻的5张卡片,这些卡片之和为150.(1)小华拿到了哪5张卡片?(2)你能拿到5张相邻卡片,使得这些卡片上的数之和为100吗?24. (10分)(2018·济宁) 如图,在正方形ABCD中,点E,F分别是边AD,BC的中点,连接DF,过点E作EH⊥DF,垂足为H,EH的延长线交DC于点G.(1)猜想DG与CF的数量关系,并证明你的结论;(2)过点H作MN∥CD,分别交AD,BC于点M,N,若正方形ABCD的边长为10,点P是MN上一点,求△PDC 周长的最小值.25. (10分) (2019九上·龙湖期末) 如图,以AB边为直径的⊙O经过点P,C是⊙O上一点,连结PC交AB 于点E,且∠ACP=60°,PA=PD.(1)试判断PD与⊙O的位置关系,并说明理由;(2)若点C是弧AB的中点,已知AB=4,求CE·CP的值.26. (10分)(2014·深圳) 如图,直线AB的解析式为y=2x+4,交x轴于点A,交y轴于点B,以A为顶点的抛物线交直线AB于点D,交y轴负半轴于点C(0,﹣4).(1)求抛物线的解析式;(2)将抛物线顶点沿着直线AB平移,此时顶点记为E,与y轴的交点记为F,①求当△BEF与△BAO相似时,E点坐标;②记平移后抛物线与AB另一个交点为G,则S△EFG与S△ACD是否存在8倍的关系?若有请直接写出F点的坐标.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共75分)19-1、20-1、21-1、21-2、22-1、22-2、22-3、23-1、23-2、24-1、24-2、25-1、25-2、26-1、。

河北省邯郸市2019-2020学年中考第三次适应性考试数学试题含解析

河北省邯郸市2019-2020学年中考第三次适应性考试数学试题含解析

河北省邯郸市2019-2020学年中考第三次适应性考试数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图所示,在平面直角坐标系中,抛物线y=-x 2+23x 的顶点为A 点,且与x 轴的正半轴交于点B ,P 点为该抛物线对称轴上一点,则OP +12AP 的最小值为( ).A .3B .23C .32214+D .3232+ 2.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22k y (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC V 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-3.下列说法正确的是( )A .掷一枚均匀的骰子,骰子停止转动后,5点朝上是必然事件B .明天下雪的概率为12,表示明天有半天都在下雪 C .甲、乙两人在相同条件下各射击10次,他们成绩的平均数相同,方差分别是S 甲2=0.4,S 乙2=0.6,则甲的射击成绩较稳定D .了解一批充电宝的使用寿命,适合用普查的方式4.民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是( )A .B .C .D .5.如图,ABC ∆中,6AB =,4BC =,将ABC ∆绕点A 逆时针旋转得到AEF ∆,使得//BC AF ,延长BC 交AE 于点D ,则线段CD 的长为( )A.4 B.5 C.6 D.76.估计41的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.方程的解为()A.x=﹣1 B.x=1 C.x=2 D.x=38.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.9.2cos 30°的值等于()A.1 B.2C.3D.210.如图是由5个大小相同的正方体组成的几何体,则该几何体的主视图是()A.B.C.D.11.如图,在矩形ABCD中,连接BD,点O是BD的中点,若点M 在AD边上,连接MO并延长交BC边于点M’,连接MB,DM’则图中的全等三角形共有()A.3对B.4对C.5对D.6对12.如图,已知射线OM,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,那么∠AOB的度数是()A.90°B.60°C.45°D.30°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,请根据这组数的规律写出第10个数是______.14.如图,在△ABC中,AD、BE分别是边BC、AC上的中线,AB=AC=5,cos∠C=45,那么GE=_______.15.抛掷一枚均匀的硬币,前3次都正面朝上,第4次正面朝上的概率为________.16.如图,若正五边形和正六边形有一边重合,则∠BAC=_____.17.已知:如图,矩形ABCD中,AB=5,BC=3,E为AD上一点,把矩形ABCD沿BE折叠,若点A 恰好落在CD上点F处,则AE的长为_____.18.如图,在矩形ABCD中,AD=2,CD=1,连接AC,以对角线AC为边,按逆时针方向作矩形ABCD 的相似矩形AB1C1C,再连接AC1,以对角线AC1为边作矩形AB1C1C的相似矩形AB2C2C1,…,按此规律继续下去,则矩形AB n C n C n-1的面积为________________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知等边△ABC,AB=4,以AB为直径的半圆与BC边交于点D,过点D作DE⊥AC,垂足为E,过点E作EF⊥AB,垂足为F,连接FD.(2)求EF的长.20.(6分)某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+1.设这种产品每天的销售利润为W 元.(1)该农户想要每天获得150元得销售利润,销售价应定为每千克多少元?(2)如果物价部门规定这种农产品的销售价不高于每千克28元,销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?21.(6分)如图,∠AOB=45°,点M,N在边OA上,点P是边OB上的点.(1)利用直尺和圆规在图1确定点P,使得PM=PN;(2)设OM=x,ON=x+4,①若x=0时,使P、M、N构成等腰三角形的点P有个;②若使P、M、N构成等腰三角形的点P恰好有三个,则x的值是____________.22.(8分)为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米?23.(8分)如图,在△ABC中,(1)求作:∠BAD=∠C,AD交BC于D.(用尺规作图法,保留作图痕迹,不要求写作法).(2)在(1)条件下,求证:AB2=BD•BC.24.(10分)小方与同学一起去郊游,看到一棵大树斜靠在一小土坡上,他想知道树有多长,于是他借来测角仪和卷尺.如图,他在点C处测得树AB顶端A的仰角为30°,沿着CB方向向大树行进10米到达点D,测得树AB顶端A的仰角为45°,又测得树AB倾斜角∠1=75°.(1)求AD的长.(2)求树长AB.25.(10分)为进一步打造“宜居重庆”,某区拟在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M到广场的两个入口A、B的距离相等,且到广场管理处C的距离等于A和B之间距离的一半,A、B、C的位置如图所示.请在答题卷的原图上利用尺规作图作出音乐喷泉M的位置.(要求:不写已知、求作、作法和结论,保留作图痕迹,必须用铅笔作图)26.(12分)某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.2008年,A市在省财政补助的基础上投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2010年该市计划投资“改水工程”1176万元.求A市投资“改水工程”的年平均增长率;从2008年到2010年,A市三年共投资“改水工程”多少万元?27.(12分)某校七年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题中选择一个,七年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.(1)将上面的条形统计图补充完整;(2)在扇形统计图中,选择“爱国”主题所对应的圆心角是多少度?(3)如果该校七年级共有1200名考生,请估计选择以“友善”为主题的七年级学生有多少名?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】连接AO,AB,PB,作PH ⊥OA 于H,BC ⊥AO 于C,解方程得到-x 2+23x=0得到点B,再利用配方法得到点A ,得到OA 的长度,判断△AOB 为等边三角形,然后利用∠OAP=30°得到PH=12AP,利用抛物线的性质得到PO=PB,再根据两点之间线段最短求解.【详解】连接AO,AB,PB,作PH ⊥OA 于H,BC ⊥AO 于C,如图当y=0时-x 2+3,得x 1=0,x 23,所以B (3),由于y=-x 2+33)2+3,所以A 3),所以3,AO=AB=OB ,所以三角形AOB 为等边三角形,∠OAP=30°得到PH= 12AP,因为AP 垂直平分OB,所以PO=PB ,所以OP +12AP=PB+PH ,所以当H,P,B 共线时,PB+PH 最短,而3,所以最小值为3. 故选A.【点睛】本题考查的是二次函数的综合运用,熟练掌握二次函数的性质和最短途径的解决方法是解题的关键. 2.A 【解析】【分析】设()A a,h ,()B b,h ,根据反比例函数图象上点的坐标特征得出1ah k =,2bh k .=根据三角形的面积公式得到()()()ABC A 121111S AB y a b h ah bh k k 42222=⋅=-=-=-=V ,即可求出12k k 8-=. 【详解】AB//x Q 轴,设()A a,h ,()B b,h ,则1ah k =,2bh k =,()()()ABC A 121111S AB y a b h ah bh k k 42222=⋅=-=-=-=V Q , 12k k 8∴-=,故选A .【点睛】本题考查了反比例函数图象上点的坐标特征,三角形的面积,熟知点在函数的图象上,则点的坐标满足函数的解析式是解题的关键.3.C【解析】【分析】根据必然事件、不可能事件、随机事件的概念、方差和普查的概念判断即可.【详解】A. 掷一枚均匀的骰子,骰子停止转动后,5点朝上是随机事件,错误;B. “明天下雪的概率为12”,表示明天有可能下雪,错误; C. 甲、乙两人在相同条件下各射击10次,他们成绩的平均数相同,方差分别是S 甲2=0.4,S 乙2=0.6,则甲的射击成绩较稳定,正确;D. 了解一批充电宝的使用寿命,适合用抽查的方式,错误;故选:C【点睛】考查方差, 全面调查与抽样调查, 随机事件, 概率的意义,比较基础,难度不大.4.C【解析】分析:根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,A 、不是轴对称图形,是中心对称图形,故本选项错误;B 、是轴对称图形,也是中心对称图形,故本选项错误;C 、不是轴对称图形,也不是中心对称图形,故本选项正确;D 、是轴对称图形,也是中心对称图形,故本选项错误.故选C .5.B【解析】【分析】先利用已知证明BAC BDA :△△,从而得出BA BC BD BA =,求出BD 的长度,最后利用CD BD BC =-求解即可.【详解】 //AF BC QFAD ADB ∴∠=∠BAC FAD ∠=∠QBAC ADB ∴∠=∠B B ∠∠=QBAC BDA ∴V :VBA BC BD BA∴= 646BD ∴= 9BD ∴=945CD BD BC ∴=-=-=故选:B .【点睛】本题主要考查相似三角形的判定及性质,掌握相似三角形的性质是解题的关键.6.C【解析】∵364149<< , ∴6417<<.即41的值在6和7之间.故选C.7.B【解析】【分析】观察可得最简公分母是(x-3)(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【详解】方程的两边同乘(x−3)(x+1),得(x−2) (x+1)=x(x−3),,检验:把x=1代入(x−3)(x+1)=-4≠0.∴原方程的解为:x=1.故选B.【点睛】本题考查的知识点是解分式方程,解题关键是注意解得的解要进行检验.8.B【解析】由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A、C、D都不是中心对称图形,只有B是中心对称图形.故选B.9.C【解析】分析:根据30°角的三角函数值代入计算即可.详解:2cos30°=2×3=3.故选C.点睛:此题主要考查了特殊角的三角函数值的应用,熟记30°、45°、60°角的三角函数值是解题关键. 10.A【解析】试题分析:观察图形可知,该几何体的主视图是.故选A.考点:简单组合体的三视图.11.D【解析】【分析】根据矩形的对边平行且相等及其对称性,即可写出图中的全等三角形的对数.【详解】图中图中的全等三角形有△ABM≌△CDM’,△ABD≌△CDB, △OBM≌△ODM’,△OBM’≌△ODM, △M’BM≌△MDM’, △DBM≌△BDM’,故选D.【点睛】此题主要考查矩形的性质及全等三角形的判定,解题的关键是熟知矩形的对称性.12.B【分析】首先连接AB,由题意易证得△AOB是等边三角形,根据等边三角形的性质,可求得∠AOB的度数.【详解】连接AB,根据题意得:OB=OA=AB,∴△AOB是等边三角形,∴∠AOB=60°.故答案选:B.【点睛】本题考查了等边三角形的判定与性质,解题的关键是熟练的掌握等边三角形的判定与性质.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】解:3=2+1;5=3+2;8=5+3;13=8+5;…可以发现:从第三个数起,每一个数都等于它前面两个数的和.则第8个数为13+8=21;第9个数为21+13=34;第10个数为34+21=1.故答案为1.点睛:此题考查了数字的有规律变化,解答此类题目的关键是要求学生通对题目中给出的图表、数据等认真进行分析、归纳并发现其中的规律,并应用规律解决问题.此类题目难度一般偏大.14.17 2【分析】过点E作EF⊥BC交BC于点F,分别求得AD=3,BD=CD=4,EF=32,DF=2,BF=6,再结合△BGD∽△BEF即可.【详解】过点E作EF⊥BC交BC于点F.∵AB=AC,AD为BC的中线∴AD⊥BC ∴EF为△ADC的中位线.又∵cos∠C=45,AB=AC=5,∴AD=3,BD=CD=4,EF=32,DF=2∴BF=6∴在Rt△BEF中22BF EF317又∵△BGD∽△BEF∴BG BD=BE BF,即171717.【点睛】本题考查的知识点是三角形的相似,解题的关键是熟练的掌握三角形的相似.15.1 2【解析】【分析】根据概率的计算方法求解即可.【详解】∵第4次抛掷一枚均匀的硬币时,正面和反面朝上的概率相等,∴第4次正面朝上的概率为1 2 .故答案为:1 2 .【点睛】此题考查了概率公式的计算方法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m 种结果,那么事件A 的概率P (A )=m n. 16.132°【解析】 解:∵正五边形的内角=180°-360°÷5=108°,正六边形的内角=180°-360°÷6=120°,∴∠BAC=360°-108°-120°=132°.故答案为132°.17.53【解析】【分析】根据矩形的性质得到CD=AB=5,AD=BC=3,∠D=∠C=90°,根据折叠得到BF =AB =5,EF =EA ,根据勾股定理求出CF ,由此得到DF 的长,再根据勾股定理即可求出AE.【详解】∵矩形ABCD 中,AB =5,BC =3,∴CD=AB=5,AD=BC=3,∠D=∠C=90°,由折叠的性质可知,BF =AB =5,EF =EA ,在Rt △BCF 中,CF 4,∴DF =DC ﹣CF =1,设AE =x ,则EF =x ,DE =3﹣x ,在Rt △DEF 中,EF 2=DE 2+DF 2,即x 2=(3﹣x )2+12,解得,x =53, 故答案为:53. 【点睛】此题考查矩形的性质,勾股定理,折叠的性质,由折叠得到BF 的长度是解题的关键.18.2152nn -或52()4n ⨯ 【解析】试题分析:,∴1S =2×1=2,2S =212S ,3S =222S =412S =42)2⨯,...,n S =212n S -=...=222n ⨯=254n n ⨯=2152n n -.故答案为2152nn . 考点:1.相似多边形的性质;2.勾股定理;3.规律型;4.矩形的性质;5.综合题.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19. (1)见解析;(2)332. 【解析】【分析】(1)连接OD ,根据切线的判定方法即可求出答案;(2)由于OD ∥AC ,点O 是AB 的中点,从而可知OD 为△ABC 的中位线,在Rt △CDE 中,∠C =60°,CE =12CD =1,所以AE =AC−CE =4−1=3,在Rt △AEF 中,所以EF =AE•sinA =3×sin60°=33. 【详解】(1)连接OD ,∵△ABC 是等边三角形,∴∠C=∠A=∠B=60°,∵OD=OB ,∴△ODB 是等边三角形,∴∠ODB=60°∴∠ODB=∠C ,∴OD ∥AC ,∴DE ⊥AC∴OD ⊥DE ,∴DE 是⊙O 的切线(2)∵OD ∥AC ,点O 是AB 的中点,∴OD 为△ABC 的中位线,∴BD=CD=2在Rt △CDE 中,∠C=60°,∴∠CDE=30°,∴CE=12CD=1∴AE=AC﹣CE=4﹣1=3在Rt△AEF中,∠A=60°,∴【点睛】本题考查圆的综合问题,涉及切线的判定,锐角三角函数,含30度角的直角三角形的性质,等边三角形的性质,本题属于中等题型.20.(1)该农户想要每天获得150元得销售利润,销售价应定为每千克25元或35元;(2)192元.【解析】【分析】(1)直接利用每件利润×销量=总利润进而得出等式求出答案;(2)直接利用每件利润×销量=总利润进而得出函数关系式,利用二次函数增减性求出答案.【详解】(1)根据题意得:(x﹣20)(﹣2x+1)=150,解得:x1=25,x2=35,答:该农户想要每天获得150元得销售利润,销售价应定为每千克25元或35元;(2)由题意得:W=(x﹣20)(﹣2x+1)=﹣2(x﹣30)2+200,∵a=﹣2,∴抛物线开口向下,当x<30时,y随x的增大而增大,又由于这种农产品的销售价不高于每千克28元∴当x=28时,W最大=﹣2×(28﹣30)2+200=192(元).∴销售价定为每千克28元时,每天的销售利润最大,最大利润是192元.【点睛】此题主要考查了一元二次方程的应用以及二次函数的应用,正确应用二次函数增减性是解题关键.21.(1)见解析;(2)①1;②:x=0或﹣4或4<x<;【解析】【分析】(1)分别以M、N为圆心,以大于12MN为半径作弧,两弧相交与两点,过两弧交点的直线就是MN的垂直平分线;(2)①分为PM=PN,MP=MN,NP=NM三种情况进行判断即可;②如图1,构建腰长为4的等腰直角△OMC,和半径为4的⊙M,发现M在点D的位置时,满足条件;如图4,根据等腰三角形三种情况的画法:分别以M、N为圆心,以MN为半径画弧,与OB的交点就是满足条件的点P,再以MN为底边的等腰三角形,通过画图发现,无论x取何值,以MN为底边的等腰三角形都存在一个,所以只要满足以MN为腰的三角形有两个即可.【详解】解:(1)如图所示:(2)①如图所示:故答案为1.②如图1,以M为圆心,以4为半径画圆,当⊙M与OB相切时,设切点为C,⊙M与OA交于D,∴MC⊥OB,∵∠AOB=45°,∴△MCO是等腰直角三角形,∴MC=OC=4,∴42OM,当M 与D 重合时,即424x OM DM =-=-时,同理可知:点P 恰好有三个;如图4,取OM=4,以M 为圆心,以OM 为半径画圆.则⊙M 与OB 除了O 外只有一个交点,此时x=4,即以∠PMN 为顶角,MN 为腰,符合条件的点P 有一个,以N 圆心,以MN 为半径画圆,与直线OB 相离,说明此时以∠PNM 为顶角,以MN 为腰,符合条件的点P 不存在,还有一个是以NM 为底边的符合条件的点P ;点M 沿OA 运动,到M 1时,发现⊙M 1与直线OB 有一个交点;∴当442x <<时,圆M 在移动过程中,则会与OB 除了O 外有两个交点,满足点P 恰好有三个; 综上所述,若使点P ,M ,N 构成等腰三角形的点P 恰好有三个,则x 的值是:x=0或424x =-或442x <<.故答案为x=0或424x =-或442x <<.【点睛】本题考查了等腰三角形的判定,有难度,本题通过数形结合的思想解决问题,解题的关键是熟练掌握已知一边,作等腰三角形的画法.22.1平方米【解析】【分析】设原计划平均每天施工x 平方米,则实际平均每天施工1.2x 平方米,根据时间=工作总量÷工作效率结合提前11天完成任务,即可得出关于x 的分式方程,解之即可得出结论.【详解】解:设原计划平均每天施工x 平方米,则实际平均每天施工1.2x 平方米,根据题意得:﹣=11,解得:x=500,经检验,x=500是原方程的解,∴1.2x=1.答:实际平均每天施工1平方米.【点睛】考查了分式方程的应用,解题的关键是找准等量关系,正确列出分式方程.23.(1)作图见解析;(2)证明见解析;【解析】【分析】(1)①以C为圆心,任意长为半径画弧,交CB、CA于E、F;②以A为圆心,CE长为半径画弧,交AB于G;③以G为圆心,EF长为半径画弧,两弧交于H;④连接AH并延长交BC于D,则∠BAD=∠C;(2)证明△ABD∽△CBA,然后根据相似三角形的性质得到结论.【详解】(1)如图,∠BAD为所作;(2)∵∠BAD=∠C,∠B=∠B∴△ABD∽△CBA,∴AB:BC=BD:AB,∴AB2=BD•BC.【点睛】本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了相似三角形的判定与性质. ;(2)102.24.(1)5652【解析】试题分析:(1)过点A作AE⊥CB于点E,设AE=x,分别表示出CE、DE,再由CD=10,可得方程,解出x的值,在Rt△ADE中可求出AD;(2)过点B作BF⊥AC于点F,设BF=y,分别表示出CF、AF,解出y的值后,在Rt△ABF中可求出AB的长度.试题解析:(1)如图,过A作AH⊥CB于H,设AH=x,CH=3x,DH=x.∵CH―DH=CD ,∴3x―x=10,∴x=()531+. ∵∠ADH=45°,∴AD=2x=5652+.(2)如图,过B 作BM ⊥AD 于M .∵∠1=75°,∠ADB=45°,∴∠DAB=30°.设MB=m ,∴AB=2m ,AM=3m ,DM=m .∵AD=AM +DM ,∴5652+=3m +m .∴m=52.∴AB=2m=102.25.解:作AB 的垂直平分线,以点C 为圆心,以AB 的一半为半径画弧交AB 的垂直平分线于点M 即可.【解析】【详解】易得M 在AB 的垂直平分线上,且到C 的距离等于AB 的一半.26. (1) 40%;(2) 2616.【解析】【分析】(1)设A 市投资“改水工程”的年平均增长率是x .根据:2008年,A 市投入600万元用于“改水工程”,2010年该市计划投资“改水工程”1176万元,列方程求解;(2)根据(1)中求得的增长率,分别求得2009年和2010年的投资,最后求和即可.【详解】解:(1)设A 市投资“改水工程”年平均增长率是x ,则2600(1)1176x +=.解之,得0.4x =或 2.4x =-(不合题意,舍去).所以,A 市投资“改水工程”年平均增长率为40%.(2)600+600×1.4+1176=2616(万元).A 市三年共投资“改水工程”2616万元.27.(1)条形统计图如图所示,见解析;(2)选择“爱国”主题所对应的圆心角是144°;(3)估计选择以“友善”为主题的七年级学生有360名.【解析】【分析】(1)根据诚信的人数和所占的百分比求出抽取的总人数,用总人数乘以友善所占的百分比,即可补全统计图;(2)用360°乘以爱国所占的百分比,即可求出圆心角的度数;(3)用该校七年级的总人数乘以“友善”所占的百分比,即可得出答案.【详解】÷=(名)解:(1)本次调查共抽取的学生有36%50⨯=(名)选择“友善”的人数有5030%15∴条形统计图如图所示:÷=,(2)∵选择“爱国”主题所对应的百分比为205040%⨯︒=︒;∴选择“爱国”主题所对应的圆心角是40%360144⨯=名. (3)该校七年级共有1200名学生,估计选择以“友善”为主题的七年级学生有120030%360故答案为:(1)条形统计图如图所示,见解析;(2)选择“爱国”主题所对应的圆心角是144°;(3)估计选择以“友善”为主题的七年级学生有360名.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.。

河北省邯郸市2019-2020学年第三次中考模拟考试数学试卷含解析

河北省邯郸市2019-2020学年第三次中考模拟考试数学试卷含解析

河北省邯郸市2019-2020学年第三次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,把一个矩形纸片ABCD沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′为()。

A.70°B.65°C.50°D.25°2.下列计算正确的是()A.2224()39b bc c=B.0.00002=2×105C.2933xxx-=--D.3242·323x yy x x=3.一个正多边形的内角和为900°,那么从一点引对角线的条数是()A.3 B.4 C.5 D.64.如图,长度为10m的木条,从两边各截取长度为xm的木条,若得到的三根木条能组成三角形,则x 可以取的值为()A.2m B.52m C.3m D.6m5.如图,点M是正方形ABCD边CD上一点,连接MM,作DE⊥AM于点E,BF⊥AM于点F,连接BE,若AF=1,四边形ABED的面积为6,则∠EBF的余弦值是()A 213B.313C.23D136.在学校演讲比赛中,10名选手的成绩折线统计图如图所示,则下列说法正确的是( )A.最高分90 B.众数是5 C.中位数是90 D.平均分为87.57.关于x的一元二次方程(m﹣2)x2+(2m﹣1)x+m﹣2=0有两个不相等的正实数根,则m的取值范围是()A.m>34B.m>34且m≠2C.﹣12<m<2 D.54<m<28.在实数﹣3.5、、0、﹣4中,最小的数是()A.﹣3.5 B.C.0 D.﹣49.如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE1=1(AD1+AB1)﹣CD1.其中正确的是()A.①②③④B.②④C.①②③D.①③④10.化简16的结果是()A.±4 B.4 C.2 D.±211.如图,已知点A(0,1),B(0,﹣1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则∠BAC等于()A.90°B.120°C.60°D.30°12.对于有理数x、y定义一种运算“”:,其中a、b、c为常数,等式右边是通常的加法与乘法运算,已知,,则的值为()A.-1 B.-11 C.1 D.11二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,AB∥CD,点E是CD上一点,∠AEC=40°,EF平分∠AED交AB于点F,则∠AFE=___度.14.如图,四边形ABCD内接于⊙O,AD、BC的延长线相交于点E,AB、DC的延长线相交于点F.若∠E+∠F=80°,则∠A=____°.15.如图,在△ABC中,AB≠AC.D,E分别为边AB,AC上的点.AC=3AD,AB=3AE,点F为BC边上一点,添加一个条件:______,可以使得△FDB与△ADE相似.(只需写出一个)16.被历代数学家尊为“算经之首”的《九章算术》是中国古代算法的扛鼎之作.《九章算术》中记载:“今有.一雀一燕交而处,衡适平.并燕、雀重一斤.问燕、雀一枚各重五雀、六燕,集称之衡,雀俱重,燕俱轻几何?”.将一只雀、一只燕交换译文:“今有5只雀、6只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻位置而放,重量相等.5只雀、6只燕重量为1斤.问雀、燕毎只各重多少斤?”设每只雀重x斤,每只燕重y斤,可列方程组为______.17.大连市内与庄河两地之间的距离是160千米,若汽车以平均每小时80千米的速度从大连市内开往庄河,则汽车距庄河的路程y(千米)与行驶的时间x(小时)之间的函数关系式为_____.18.如图是“已知一条直角边和斜边作直角三角形”的尺规作图过程已知:线段a、b,求作:Rt ABC∆.使得斜边AB=b,AC=a作法:如图.(1)作射线AP,截取线段AB=b;(2)以AB为直径,作⊙O;(3)以点A为圆心,a的长为半径作弧交⊙O于点C;(4)连接AC、CB.ABC∆即为所求作的直角三角形.请回答:该尺规作图的依据是______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知Rt△ABC中,∠C=90°,D为BC的中点,以AC为直径的⊙O交AB于点E.(1)求证:DE是⊙O的切线;(2)若AE:EB=1:2,BC=6,求⊙O的半径.20.(6分)如图,抛物线与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0).(1)求直线AB的函数关系式;(2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点P作PN⊥x轴,交直线AB 于点M,交抛物线于点N. 设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围;(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由21.(6分)先化简,再求值:(2xx x +﹣1)÷22121xx x-++,其中x=1.22.(8分)“食品安全”受到全社会的广泛关注,济南市某中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对食品安全知识达到“了解”和“基本了解”程度的总人数;(4)若从对食品安全知识达到“了解”程度的2个女生和2个男生中随机抽取2人参加食品安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.23.(8分)全民学习、终身学习是学习型社会的核心内容,努力建设学习型家庭也是一个重要组成部分.为了解“学习型家庭”情况,对部分家庭五月份的平均每天看书学习时间进行了一次抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图,请根据图中提供的信息,解答下列问题:本次抽样调查了个家庭;将图①中的条形图补充完整;学习时间在2~2.5小时的部分对应的扇形圆心角的度数是度;若该社区有家庭有3000个,请你估计该社区学习时间不少于1小时的约有多少个家庭?24.(10分)如图,已知AB是⊙O上的点,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.求证:CD是⊙O的切线;若∠D=30°,BD=2,求图中阴影部分的面积.25.(10分)顶点为D的抛物线y=﹣x2+bx+c交x轴于A、B(3,0),交y轴于点C,直线y=﹣x+m 经过点C,交x轴于E(4,0).求出抛物线的解析式;如图1,点M为线段BD上不与B、D重合的一个动点,过点M作x轴的垂线,垂足为N,设点M的横坐标为x,四边形OCMN的面积为S,求S与x之间的函数关系式,并求S的最大值;点P为x轴的正半轴上一个动点,过P作x轴的垂线,交直线y=﹣34x+m于G,交抛物线于H,连接CH,将△CGH沿CH翻折,若点G的对应点F恰好落在y轴上时,请直接写出点P的坐标.26.(12分)先化简:224424242x x xxx x-+-⎛⎫÷-+⎪-+⎝⎭,然后从67x<<数作为x的值代入求值.27.(12分)某区对即将参加中考的5000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和频数分布直方图的一部分.请根据图表信息回答下列问题:视力频数(人)频率4.0≤x<4.3 20 0.14.3≤x<4.6 40 0.24.6≤x<4.9 70 0.354.9≤x<5.2 a 0.35.2≤x<5.5 10 b(1)本次调查的样本为,样本容量为;在频数分布表中,a=,b=,并将频数分布直方图补充完整;若视力在4.6以上(含4.6)均属正常,根据上述信息估计全区初中毕业生中视力正常的学生有多少人?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】首先根据AD∥BC,求出∠FED的度数,然后根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,则可知∠DEF=∠FED′,最后求得∠AED′的大小.【详解】解:∵AD∥BC,∴∠EFB=∠FED=65°,由折叠的性质知,∠DEF=∠FED′=65°,∴∠AED′=180°-2∠FED=50°,故选:C.【点睛】此题考查了长方形的性质与折叠的性质.此题比较简单,解题的关键是注意数形结合思想的应用.2.D【解析】【分析】在完成此类化简题时,应先将分子、分母中能够分解因式的部分进行分解因式.有些需要先提取公因式,而有些则需要运用公式法进行分解因式.通过分解因式,把分子分母中能够分解因式的部分,分解成乘积的形式,然后找到其中的公因式约去.【详解】解:A 、原式=2249b c;故本选项错误;B 、原式=2×10-5;故本选项错误;C 、原式=()()3333x x x x +-=+- ;故本选项错误;D 、原式=223x;故本选项正确; 故选:D . 【点睛】分式的乘除混合运算一般是统一为乘法运算,如果有乘方,还应根据分式乘方法则先乘方,即把分子、分母分别乘方,然后再进行乘除运算.同样要注意的地方有:一是要确定好结果的符号;二是运算顺序不能颠倒. 3.B 【解析】 【分析】n 边形的内角和可以表示成(n-2)•180°,设这个多边形的边数是n ,就得到关于边数的方程,从而求出边数,再求从一点引对角线的条数. 【详解】设这个正多边形的边数是n ,则 (n-2)•180°=900°, 解得:n=1.则这个正多边形是正七边形.所以,从一点引对角线的条数是:1-3=4. 故选B 【点睛】本题考核知识点:多边形的内角和.解题关键点:熟记多边形内角和公式. 4.C 【解析】 【分析】依据题意,三根木条的长度分别为x m ,x m ,(10-2x) m ,在根据三角形的三边关系即可判断. 【详解】解:由题意可知,三根木条的长度分别为x m ,x m ,(10-2x) m , ∵三根木条要组成三角形, ∴x-x<10-2x<x+x,解得:552x <<. 故选择C. 【点睛】本题主要考察了三角形三边的关系,关键是掌握三角形两边之和大于第三边,两边之差的绝对值小于第三边. 5.B 【解析】 【分析】首先证明△ABF ≌△DEA 得到BF=AE ;设AE=x ,则BF=x ,DE=AF=1,利用四边形ABED 的面积等于△ABE 的面积与△ADE 的面积之和得到12•x•x+•x×1=6,解方程求出x 得到AE=BF=3,则EF=x-1=2,然后利用勾股定理计算出BE ,最后利用余弦的定义求解. 【详解】∵四边形ABCD 为正方形, ∴BA =AD ,∠BAD =90°,∵DE ⊥AM 于点E ,BF ⊥AM 于点F , ∴∠AFB =90°,∠DEA =90°,∵∠ABF+∠BAF =90°,∠EAD+∠BAF =90°, ∴∠ABF =∠EAD , 在△ABF 和△DEA 中BFA DEA ABF EAD AB DA ∠=∠⎧⎪∠=⎨⎪=⎩∴△ABF ≌△DEA (AAS ), ∴BF =AE ;设AE =x ,则BF =x ,DE =AF =1, ∵四边形ABED 的面积为6, ∴111622x x x ⋅⋅+⋅⨯=,解得x 1=3,x 2=﹣4(舍去), ∴EF =x ﹣1=2,在Rt △BEF中,BE ==∴cos BF EBF BE ∠===故选B .【点睛】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.会运用全等三角形的知识解决线段相等的问题.也考查了解直角三角形.6.C【解析】试题分析:根据折线统计图可得:最高分为95,众数为90;中位数90;平均分=(80×2+85+90×5+95×2)÷(2+1+5+2)=88.5.7.D【解析】【分析】根据一元二次方程的根的判别式的意义得到m-2≠0且Δ=(2m-1)2-4(m-2)(m-2) >0,解得m>54且m≠﹣2,再利用根与系数的关系得到2mm-1-2,m﹣2≠0,解得12<m<2,即可求出答案.【详解】解:由题意可知:m-2≠0且Δ=(2m﹣1)2﹣4(m﹣2)2=12m﹣15>0,∴m>54且m≠﹣2,∵(m﹣2)x2+(2m﹣1)x+m﹣2=0有两个不相等的正实数根,∴﹣2mm-1-2>0,m﹣2≠0,∴12<m<2,∵m>54,∴54<m<2,故选:D.【点睛】本题主要考查对根的判别式和根与系数的关系的理解能力及计算能力,掌握根据方程根的情况确定方程中字母系数的取值范围是解题的关键.8.D【解析】【分析】根据任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小进行比较即可【详解】在实数﹣3.5、、0、﹣4中,最小的数是﹣4,故选D.【点睛】掌握实数比较大小的法则9.A【解析】分析:只要证明△DAB≌△EAC,利用全等三角形的性质即可一一判断;详解:∵∠DAE=∠BAC=90°,∴∠DAB=∠EAC∵AD=AE,AB=AC,∴△DAB≌△EAC,∴BD=CE,∠ABD=∠ECA,故①正确,∴∠ABD+∠ECB=∠ECA+∠ECB=∠ACB=45°,故②正确,∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=45°+45°=90°,∴∠CEB=90°,即CE⊥BD,故③正确,∴BE1=BC1-EC1=1AB1-(CD1-DE1)=1AB1-CD1+1AD1=1(AD1+AB1)-CD1.故④正确,故选A.点睛:本题考查全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.10.B【解析】【分析】根据算术平方根的意义求解即可.【详解】4,故选:B.【点睛】本题考查了算术平方根的意义,一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a 的算术平方根,正数a有一个正的算术平方根,0的算术平方根是0,负数没有算术平方根.11.C【解析】解:∵A(0,1),B(0,﹣1),∴AB=1,OA=1,∴AC=1.在Rt△AOC中,cos∠BAC=OAAC=12,∴∠BAC=60°.故选C.点睛:本题考查了垂径定理的应用,关键是求出AC、OA的长.解题时注意:垂直弦的直径平分这条弦,并且平分弦所对的两条弧.12.B【解析】【分析】先由运算的定义,写出3△5=25,4△7=28,得到关于a、b、c的方程组,用含c的代数式表示出a、b.代入2△2求出值.【详解】由规定的运算,3△5=3a+5b+c=25,4a+7b+c=28所以解这个方程组,得所以2△2=a+b+c=-35-2c+24+c+c=-2.故选B.【点睛】本题考查了新运算、三元一次方程组的解法.解决本题的关键是根据新运算的意义,正确的写出3△5=25,4△7=28,2△2.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.70°.【解析】【分析】由平角求出∠AED的度数,由角平分线得出∠DEF的度数,再由平行线的性质即可求出∠AFE的度数. 【详解】∵∠AEC=40°,∴∠AED=180°﹣∠AEC=140°,∵EF平分∠AED,∴1702DEF AED∠=∠=︒,又∵AB∥CD,∴∠AFE=∠DEF=70°.故答案为:70【点睛】本题考查的是平行线的性质以及角平分线的定义.熟练掌握平行线的性质,求出∠DEF的度数是解决问题14.50 【解析】试题分析:连结EF ,如图,根据圆内接四边形的性质得∠A+∠BCD=180°,根据对顶角相等得∠BCD=∠ECF ,则∠A+∠ECF=180°,根据三角形内角和定理得∠ECF+∠1+∠2=180°,所以∠1+∠2=∠A ,再利用三角形内角和定理得到∠A+∠AEB+∠1+∠2+∠AFD=180°,则∠A+80°+∠A=180°,然后解方程即可.试题解析:连结EF ,如图,∵四边形ABCD 内接于⊙O , ∴∠A+∠BCD=180°, 而∠BCD=∠ECF , ∴∠A+∠ECF=180°, ∵∠ECF+∠1+∠2=180°, ∴∠1+∠2=∠A ,∵∠A+∠AEF+∠AFE=180°,即∠A+∠AEB+∠1+∠2+∠AFD=180°, ∴∠A+80°+∠A=180°, ∴∠A=50°.考点:圆内接四边形的性质. 15.//DF AC 或BFD A ∠=∠ 【解析】因为3AC AD =,3AB AE =,A A ∠=∠ ,所以ADE ∆ACB ~∆ ,欲使FDB ∆与ADE ∆相似,只需要FDB ∆与ACB ∆相似即可,则可以添加的条件有:∠A=∠BDF ,或者∠C=∠BDF,等等,答案不唯一.【方法点睛】在解决本题目,直接处理FDB ∆与ADE ∆,无从下手,没有公共边或者公共角,稍作转化,通过ADE ∆ACB ~∆,FDB ∆得与ACB ∆相似.这时,柳暗花明,迎刃而解. 16.{561340x y x y +=-=【解析】设雀、燕每1只各重x 斤、y 斤,根据等量关系:今有5只雀、6只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻.将一只雀、一只燕交换位置而放,重量相等.5只雀、6只燕重量为1斤,列出方程组求解即可. 【详解】设雀、燕每1只各重x 斤、y 斤,根据题意,得45561x y y xx y +=+⎧⎨+=⎩整理,得340.561x y x y -=⎧⎨+=⎩故答案为340.561x y x y -=⎧⎨+=⎩【点睛】考查二元一次方程组得应用,解题的关键是分析题意,找出题中的等量关系. 17.y =160﹣80x(0≤x≤2) 【解析】 【分析】根据汽车距庄河的路程y (千米)=原来两地的距离﹣汽车行驶的距离,解答即可. 【详解】解:∵汽车的速度是平均每小时80千米, ∴它行驶x 小时走过的路程是80x ,∴汽车距庄河的路程y =160﹣80x (0≤x≤2),故答案为:y =160﹣80x(0≤x≤2). 【点睛】本题考查了根据实际问题确定一次函数的解析式,找到所求量的等量关系是解题的关键. 18.等圆的半径相等,直径所对的圆周角是直角,三角形定义 【解析】 【分析】根据圆周角定理可判断△ABC 为直角三角形. 【详解】根据作图得AB 为直径,则利用圆周角定理可判断∠ACB=90°,从而得到△ABC 满足条件. 故答案为:等圆的半径相等,直径所对的圆周角是直角,三角形定义. 【点睛】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了圆周角定理.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析;(1)【解析】试题分析:(1)求出∠OED=∠BCA=90°,根据切线的判定即可得出结论;(1)求出△BEC∽△BCA,得出比例式,代入求出即可.试题解析:(1)证明:连接OE、EC.∵AC是⊙O的直径,∴∠AEC=∠BEC=90°.∵D为BC的中点,∴ED=DC=BD,∴∠1=∠1.∵OE=OC,∴∠3=∠4,∴∠1+∠3=∠1+∠4,即∠OED=∠ACB.∵∠ACB=90°,∴∠OED=90°,∴DE是⊙O的切线;(1)由(1)知:∠BEC=90°.在Rt△BEC与Rt△BCA中,∵∠B=∠B,∠BEC=∠BCA,∴△BEC∽△BCA,∴BE:BC=BC:BA,∴BC1=BE•BA.∵AE:EB=1:1,设AE=x,则BE=1x,BA=3x.∵BC=6,∴61=1x•3x,解得:x=,即AE=,∴AB=,∴AC==,∴⊙O的半径=.点睛:本题考查了切线的判定和相似三角形的性质和判定,能求出∠OED=∠BCA和△BEC∽△BCA是解答此题的关键.20.(1)112y x=+;(2)251544s t t=-+(0≤t≤3);(3)t=1或2时;四边形BCMN为平行四边形;t=1时,平行四边形BCMN是菱形,t=2时,平行四边形BCMN不是菱形,理由见解析.【解析】【分析】(1)由A、B在抛物线上,可求出A、B点的坐标,从而用待定系数法求出直线AB的函数关系式.(2)用t表示P、M、N 的坐标,由等式MN NP MP=-得到函数关系式.(3)由平行四边形对边相等的性质得到等式,求出t.再讨论邻边是否相等.【详解】解:(1)x=0时,y=1,∴点A的坐标为:(0,1),∵BC⊥x轴,垂足为点C(3,0),∴点B 的横坐标为3, 当x=3时,y=52, ∴点B 的坐标为(3,52), 设直线AB 的函数关系式为y=kx+b ,1532b k b =⎧⎪⎨+=⎪⎩ ,解得,121k b ⎧=⎪⎨⎪=⎩,则直线AB 的函数关系式112y x =+ (2)当x=t 时,y=12t+1, ∴点M 的坐标为(t ,12t+1),当x=t 时,2517144y t t =-++ ∴点N 的坐标为2517(,1)44t t t -++ 2251715151(1)44244s t t t t t =-++-+=-+ (0≤t≤3);(3)若四边形BCMN 为平行四边形,则有MN=BC , ∴25155=442t t -+, 解得t 1=1,t 2=2,∴当t=1或2时,四边形BCMN 为平行四边形, ①当t=1时,MP=32,PC=2, ∴MC=52=MN ,此时四边形BCMN 为菱形, ②当t=2时,MP=2,PC=1,∴,此时四边形BCMN 不是菱形. 【点睛】本题考查的是二次函数的性质、待定系数法求函数解析式、菱形的判定,正确求出二次函数的解析式、利用配方法把一般式化为顶点式、求出函数的最值是解题的关键,注意菱形的判定定理的灵活运用. 21.-1. 【解析】 【分析】先化简题目中的式子,再将x 的值代入化简后的式子即可解答本题. 【详解】 解:原式=2(1)(1)[1](1)(1)x x x x x x +--÷++,=111)111x x x x x ++-⨯++-(, =111x x x x -+⨯+-, =﹣1x x -,当x=1时, 原式=﹣221-=﹣1. 【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则 22.(1)60, 90°;(2)补图见解析;(3)300;(4)23. 【解析】分析:(1)根据了解很少的人数除以了解很少的人数所占的百分百求出抽查的总人数,再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所对应扇形的圆心角的度数;(2)用调查的总人数减去“基本了解”“了解很少”和“基本了解”的人数,求出了解的人数,从而补全统计图;(3)用总人数乘以“了解”和“基本了解”程度的人数所占的比例,即可求出达到“了解”和“基本了解”程度的总人数;(4)根据题意列出表格,再根据概率公式即可得出答案. 详解:(1)60;90°. (2)补全的条形统计图如图所示.(3)对食品安全知识达到“了解”和“基本了解”的学生所占比例为1551603+=,由样本估计总体,该中学学生中对食品安全知识达到“了解”和“基本了解”程度的总人数为19003003⨯=.(4)列表法如表所示,男生 男生 女生 女生 男生 男生男生 男生女生 男生女生 男生 男生男生 男生女生 男生女生 女生 男生女生 男生女生 女生女生 女生男生女生男生女生女生女生所有等可能的情况一共12种,其中选中1个男生和1个女生的情况有8种,所以恰好选中1个男生和1个女生的概率是82123P ==. 点睛:本题考查了条形统计图、扇形统计图以及用列表法或树状图法求概率,根据题意求出总人数是解题的关键;注意运用概率公式:概率=所求情况数与总情况数之比.23. (1)200;(2)见解析;(3)36;(4)该社区学习时间不少于1小时的家庭约有2100个. 【解析】 【分析】(1)根据1.5~2小时的圆心角度数求出1.5~2小时所占的百分比,再用1.5~2小时的人数除以所占的百分比,即可得出本次抽样调查的总家庭数;(2)用抽查的总人数乘以学习0.5-1小时的家庭所占的百分比求出学习0.5-1小时的家庭数,再用总人数减去其它家庭数,求出学习2-2.5小时的家庭数,从而补全统计图;(3)用360°乘以学习时间在2~2.5小时所占的百分比,即可求出学习时间在2~2.5小时的部分对应的扇形圆心角的度数;(4)用该社区所有家庭数乘以学习时间不少于1小时的家庭数所占的百分比即可得出答案. 【详解】解:(1)本次抽样调查的家庭数是:30÷54360=200(个); 故答案为200;(2)学习0.5﹣1小时的家庭数有:200×108360=60(个), 学习2﹣2.5小时的家庭数有:200﹣60﹣90﹣30=20(个), 补图如下:(3)学习时间在2~2.5小时的部分对应的扇形圆心角的度数是:360×20200=36°; 故答案为36; (4)根据题意得: 3000×903020200++=2100(个).答:该社区学习时间不少于1小时的家庭约有2100个. 【点睛】本题考查条形统计图、扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.24.(1)证明见解析;(2)阴影部分面积为43π 【解析】【分析】(1)连接OC ,易证∠BCD=∠OCA ,由于AB 是直径,所以∠ACB=90°,所以∠OCA+OCB=∠BCD+∠OCB=90°,CD 是⊙O 的切线;(2)设⊙O 的半径为r ,AB=2r ,由于∠D=30°,∠OCD=90°,所以可求出r=2,∠AOC=120°,BC=2,由勾股定理可知:△OAC 的面积以及扇形OAC 的面积即可求出阴影部分面积.【详解】(1)如图,连接OC ,∵OA=OC , ∴∠BAC=∠OCA , ∵∠BCD=∠BAC , ∴∠BCD=∠OCA , ∵AB 是直径, ∴∠ACB=90°,∴∠OCA+OCB=∠BCD+∠OCB=90° ∴∠OCD=90° ∵OC 是半径, ∴CD 是⊙O 的切线 (2)设⊙O 的半径为r , ∴AB=2r ,∵∠D=30°,∠OCD=90°, ∴OD=2r ,∠COB=60° ∴r+2=2r ,∴r=2,∠AOC=120°∴BC=2,∴由勾股定理可知:AC=23,易求S△AOC=12×23×1=3S扇形OAC=12044 3603ππ⨯=,∴阴影部分面积为43 3π-.【点睛】本题考查圆的综合问题,涉及圆的切线判定,勾股定理,含30度的直角三角形的性质,等边三角形的性质等知识,熟练掌握和灵活运用相关知识是解题的关键.25.(1)y=﹣x2+2x+3;(2)S=﹣(x﹣94)2+8116;当x=94时,S有最大值,最大值为8116;(3)存在,点P的坐标为(4,0)或(32,0).【解析】【分析】(1)将点E代入直线解析式中,可求出点C的坐标,将点C、B代入抛物线解析式中,可求出抛物线解析式.(2)将抛物线解析式配成顶点式,可求出点D的坐标,设直线BD的解析式,代入点B、D,可求出直线BD的解析式,则MN可表示,则S可表示.(3)设点P的坐标,则点G的坐标可表示,点H的坐标可表示,HG长度可表示,利用翻折推出CG=HG,列等式求解即可.【详解】(1)将点E代入直线解析式中,0=﹣34×4+m,解得m=3,∴解析式为y=﹣34x+3,∴C(0,3),∵B(3,0),则有3093c b c=⎧⎨=-++⎩, 解得23b c =⎧⎨=⎩, ∴抛物线的解析式为:y =﹣x 2+2x+3;(2)∵y =﹣x 2+2x+3=﹣(x ﹣1)2+4,∴D(1,4),设直线BD 的解析式为y =kx+b ,代入点B 、D ,304k b k b +=⎧⎨+=⎩, 解得26k b =-⎧⎨=⎩, ∴直线BD 的解析式为y =﹣2x+6,则点M 的坐标为(x ,﹣2x+6),∴S =(3+6﹣2x)•x•12=﹣(x ﹣94)2+8116, ∴当x =94时,S 有最大值,最大值为8116. (3)存在,如图所示,设点P 的坐标为(t ,0),则点G(t ,﹣34t+3),H(t ,﹣t 2+2t+3), ∴HG =|﹣t 2+2t+3﹣(﹣34t+3)|=|t 2﹣114t|CG 54t,∵△CGH沿GH翻折,G的对应点为点F,F落在y轴上,而HG∥y轴,∴HG∥CF,HG=HF,CG=CF,∠GHC=∠CHF,∴∠FCH=∠CHG,∴∠FCH=∠FHC,∴∠GCH=∠GHC,∴CG=HG,∴|t2﹣114t|=54t,当t2﹣114t=54t时,解得t1=0(舍),t2=4,此时点P(4,0).当t2﹣114t=﹣54t时,解得t1=0(舍),t2=32,此时点P(32,0).综上,点P的坐标为(4,0)或(32,0).【点睛】此题考查了待定系数法求函数解析式,点坐标转换为线段长度,几何图形与二次函数结合的问题,最后一问推出CG=HG为解题关键.26.1x-,当x=1时,原式=﹣1.【解析】【分析】先化简分式,然后将x的值代入计算即可.【详解】解:原式=22(2)244 (2)(2)22x x xx x x x⎛⎫---÷-⎪-+++⎝⎭=22222222(2)1x x xx xx xx x xx--=÷++-+=⋅+--=-.2240,20,20x x x x-≠+≠-≠Qx2∴≠±且x0≠,67x-<<Q∴x的整数有21012﹣,﹣,,,,∴取x1=,当x1=时,原式1=﹣.【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.27.200名初中毕业生的视力情况200 60 0.05【解析】【分析】(1)根据视力在4.0≤x<4.3范围内的频数除以频率即可求得样本容量;(2)根据样本容量,根据其对应的已知频率或频数即可求得a,b的值;(3)求出样本中视力正常所占百分比乘以5000即可得解.【详解】(1)根据题意得:20÷0.1=200,即本次调查的样本容量为200,故答案为200;(2)a=200×0.3=60,b=10÷200=0.05,补全频数分布图,如图所示,故答案为60,0.05;(3)根据题意得:5000×706010200++=3500(人),则全区初中毕业生中视力正常的学生有估计有3500人.。

2019年河北省邯郸市邯郸县中考数学三模试卷

2019年河北省邯郸市邯郸县中考数学三模试卷

2019年河北省邯郸市邯郸县中考数学三模试卷一、选择题1.下列计算结果为正数的是()A.(﹣2)﹣2B.﹣(﹣2)0C.﹣|﹣2|D.(﹣2)32.如图,∠1=55°,∠3=108°,则∠2的度数为()A.52°B.53°C.54°D.55°3.下列等式一定成立的是()A.2a2﹣3a2=﹣a2B.(a+2)2=a2+4 C.a6÷a3=a2D.(a+3)(a﹣3)=a2﹣3 4.若|x﹣2y|+=0,则xy=()A.﹣4 B.2 C.5 D.85.如图,已知在Rt△ABC中,∠C=90°,BC=1,AC=2,则tanA的值为()A.2 B.C. D.6.若单项式2x3y a+b与﹣x a﹣b y5是同类项,则a,b的值分别为()A.a=﹣4,b=﹣1 B.a=﹣4,b=1 C.a=4,b=﹣1 D.a=4,b=17.某班班长统计去年1﹣8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()A.平均数是58B.众数是42C.中位数是58D.每月阅读数量超过40的有4个月8.如图,将正方形纸片ABCD折叠,使边AB、CB均落在对角线BD上,得折痕BE、BF,则∠EBF的大小为()A.15°B.30°C.45°D.60°9.某制药厂两年前生成1吨某种药品的成本是100万元,随着生产技术的进步,现在生产1吨这种药品的成本为81万元,设这种药品成本的年平均下降率为x,根据题意所列方程为()A.100(1+x)2=81 B.100(1﹣x)2=81 C.81(1+x)2=100 D.81(1﹣x)2=100 10.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD、则∠P=()A.65°B.60°C.55°D.50°11.(2分)如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,4),顶点C 在x轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为()A.﹣12 B.﹣27 C.﹣32 D.﹣3612.(2分)如图,两个菱形,两个等边三角形,两个矩形,两个正方形,各成一组,每组中的一个图形在另一个图形的内部,对应边平行,且对应边之间的距离都相等,那么两个图形不相似的一组是()A.B.C.D.二、填空题13 .一次函数y=kx+3的图象与坐标轴的两个交点之间的距离为5,则k的值为.14.已知|ab﹣2|+|a﹣1|=0,则++…+=.15.若x2﹣3x+1=0,则的值为.16.已知实数a,b,c满足a+b+c=10,且,则的值是.17.若+b2+2b+1=0,则a2+﹣|b|=.18.已知M、N两点关于y轴对称,且点M在双曲线上,点N在直线y=﹣x+3上,设点M坐标为(a,b),则y=﹣abx2+(a+b)x的顶点坐标为.三、解答题19.如图,△AEF中,∠EAF=45°,AG⊥EF于点G,现将△AEG沿AE折叠得到△AEB,将△AFG沿AF折叠得到△AFD,延长BE和DF相交于点C.(1)求证:四边形ABCD是正方形;(2)连接BD分别交AE、AF于点M、N,将△ABM绕点A逆时针旋转,使AB与AD重合,得到△ADH,试判断线段MN、ND、DH之间的数量关系,并说明理由.(3)若EG=4,GF=6,BM=3,求AG、MN的长.20.为深化“携手节能低碳,共建碧水蓝天”活动,发展“低碳经济”,某单位进行技术革新,让可再生资源重新利用.今年1月份,再生资源处理量为40吨,从今年1月1日起,该单位每月再生资源处理量每一个月将提高10吨.月处理成本(元)与月份之间的关系可近似地表示为:p=50x2+100x+450,每处理一吨再生资源得到的新产品的售价定为100元.若该单位每月再生资源处理量为y(吨),每月的利润为w(元).(1)分别求出y与x,w与x的函数关系式;(2)在今年内该单位哪个月获得利润达到5800元?21.已知关于x的一元二次方程(a﹣1)x2+(2﹣3a)x+3=0.(1)求证:当a取不等于1的实数时,此方程总有两个实数根;(2)若m,n(m<n)是此方程的两根,并且.直线l:y=mx+n交x轴于点A,交y轴于点B.坐标原点O关于直线l的对称点O′在反比例函数的图象上,求反比例函数的解析式;(3)在(2)成立的条件下,将直线l绕点A逆时针旋转角θ(0°<θ<90°),得到直线l′,l′交y轴于点P,过点P作x轴的平行线,与上述反比例函数的图象交于点Q,当四边形APQO′的面积为时,求θ的值.22.如图,在平面直角坐标系xoy中,直线y=x+3交x轴于A点,交y轴于B点,过A、B两点的抛物线y=﹣x2+bx+c交x轴于另一点C,点D是抛物线的顶点.(1)求此抛物线的解析式;(2)点P是直线AB上方的抛物线上一点,(不与点A、B重合),过点P作x轴的垂线交x轴于点H,交直线AB于点F,作PG⊥AB于点G.求出△PFG的周长最大值;(3)在抛物线y=ax2+bx+c上是否存在除点D以外的点M,使得△ABM与△ABD的面积相等?若存在,请求出此时点M的坐标;若不存在,请说明理由.2019年河北省邯郸市邯郸县中考数学三模试卷参考答案与试题解析一、选择题1.下列计算结果为正数的是()A.(﹣2)﹣2B.﹣(﹣2)0C.﹣|﹣2|D.(﹣2)3【考点】负整数指数幂;绝对值;有理数的乘方;零指数幂.【分析】分别利用负整数指数幂的性质以及零指数幂的性质和有理数的乘方运算法则、绝对值的性质化简求出答案.【解答】解:A、(﹣2)﹣2==,故此选项正确;B、﹣(﹣2)0=﹣1,故此选项错误;C、﹣|﹣2|=﹣2,故此选项错误;D、(﹣2)3=﹣8,故此选项错误;故选:A.【点评】此题主要考查了负整数指数幂的性质以及零指数幂的性质和有理数的乘方运算、绝对值的性质等知识,正确掌握运算法则是解题关键.2.如图,∠1=55°,∠3=108°,则∠2的度数为()A.52°B.53°C.54°D.55°【考点】三角形的外角性质.【分析】直接根据三角形外角的性质进行解答即可.【解答】解:∵∠3是△ABC的外角,∠1=55°,∠3=108°,∴∠2=∠3﹣∠1=108°﹣55°=53°.故选B.【点评】本题考查的是三角形外角的性质,即三角形的外角等于与之不相邻的两个内角的和.3.下列等式一定成立的是()A.2a2﹣3a2=﹣a2B.(a+2)2=a2+4 C.a6÷a3=a2D.(a+3)(a﹣3)=a2﹣3 【考点】平方差公式;合并同类项;同底数幂的除法;完全平方公式.【分析】A、原式合并同类项得到结果,即可作出判断;B、原式利用完全平方公式计算得到结果,即可作出判断;C、原式利用同底数幂的除法法则计算得到结果,即可作出判断;D、原式利用平方差公式计算得到结果,即可作出判断.【解答】解:A、原式=﹣a2,正确;B、原式=a2+4a+4,错误;C、原式=a3,错误;D、原式=a2﹣9,错误,故选A【点评】此题考查了平方差公式,幂的乘方与积的乘方,完全平方公式,以及同底数幂的除法,熟练掌握公式及运算法则是解本题的关键.4.若|x﹣2y|+=0,则xy=()A.﹣4 B.2 C.5 D.8【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】根据非负数的性质列方程求出x、y的值,然后相乘计算即可得解.【解答】解:由题意得,x﹣2y=0,y+2=0,解得x=﹣4,y=﹣2,所以,xy=(﹣4)×(﹣2)=8.故选D.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.5.如图,已知在Rt△ABC中,∠C=90°,BC=1,AC=2,则tanA的值为()A.2 B.C. D.【考点】锐角三角函数的定义.【分析】根据tanA是角A的对边比邻边,直接得出答案tanA的值.【解答】解:∵∠C=90°,BC=1,AC=2,∴tanA==.故选B.【点评】此题主要考查了锐角三角函数的定义,熟练记忆锐角三角函数的定义是解决问题的关键.6.若单项式2x3y a+b与﹣x a﹣b y5是同类项,则a,b的值分别为()A.a=﹣4,b=﹣1 B.a=﹣4,b=1 C.a=4,b=﹣1 D.a=4,b=1【考点】同类项.【分析】结合同类项的定义:所含字母相同,并且相同字母的指数也相同,分别求出a、b的值.【解答】解:∵单项式2x3y a+b与﹣x a﹣b y5是同类项,∴,解得.故选D.【点评】本题考查了同类项的知识,解答本题的关键在于结合同类项中所含字母相同,并且相同字母的指数也相同,分别求出a和b的值.7.某班班长统计去年1﹣8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()A.平均数是58B.众数是42C.中位数是58D.每月阅读数量超过40的有4个月【考点】众数;折线统计图;加权平均数;中位数.【分析】根据平均数的计算方法,可判断A;根据众数的定义,可判断B;根据中位数的定义,可判断C;根据折线统计图中的数据,可判断D.【解答】解:A、每月阅读数量的平均数是=56.625,故A错误;B、出现次数最多的是58,众数是58,故B错误;C、由小到大顺序排列数据28,36,42,58,58,70,78,83,中位数是58,故C正确;D、由折线统计图看出每月阅读量超过40天的有6个月,故D错误;故选:C.【点评】本题考查的是折线统计图、平均数、众数和中位数.要注意,当所给数据有单位时,所求得的平均数、众数和中位数与原数据的单位相同,不要漏单位,关键是根据折线统计图获得有关数据.8.如图,将正方形纸片ABCD折叠,使边AB、CB均落在对角线BD上,得折痕BE、BF,则∠EBF的大小为()A.15°B.30°C.45°D.60°【考点】翻折变换(折叠问题);正方形的性质.【分析】利用翻折变换的不变量,可以得到∠EBF为直角的一半.【解答】解:∵将正方形纸片ABCD折叠,使边AB、CB均落在对角线BD上,得折痕BE、BF,∴∠ABE=∠DBE=∠DBF=∠FBC,∴∠EBF=∠ABC=45°,故选C.【点评】本题考查的是翻折变换及正方形的性质,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.9.某制药厂两年前生成1吨某种药品的成本是100万元,随着生产技术的进步,现在生产1吨这种药品的成本为81万元,设这种药品成本的年平均下降率为x,根据题意所列方程为()A.100(1+x)2=81 B.100(1﹣x)2=81 C.81(1+x)2=100 D.81(1﹣x)2=100 【考点】由实际问题抽象出一元二次方程.【分析】本题可设这种药品成本的年平均下降率为x,则一年前生成1吨这种药品的成本为100(1﹣x)万元,今年在100(1﹣x)万元的基础之又下降x,变为100(1﹣x)(1﹣x)即100(1﹣x)2万元,进而可列出方程.【解答】解:设这种药品成本的年平均下降率为x,则今年生成1吨这种药品的成本为100(1﹣x)2万元,根据题意得,100(1﹣x)2=81.故选B.【点评】本题考查了由实际问题抽象出一元二次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.10.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD、则∠P=()A.65°B.60°C.55°D.50°【考点】多边形内角与外角;三角形内角和定理.【分析】先根据五边形内角和求得∠ECD+∠BCD,再根据角平分线求得∠PDC+∠PCD,最后根据三角形内角和求得∠P的度数.【解答】解:∵在五边形ABCDE中,∠A+∠B+∠E=300°,∴∠ECD+∠BCD=240°,又∵DP、CP分别平分∠EDC、∠BCD,∴∠PDC+∠PCD=120°,∴△CDP中,∠P=180°﹣(∠PDC+∠PCD)=180°﹣120°=60°.故选(B)【点评】本题主要考查了多边形的内角和以及角平分线的定义,解题时注意:多边形内角和=(n﹣2)•180 (n≥3且n为整数).11.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,4),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为()A.﹣12 B.﹣27 C.﹣32 D.﹣36【考点】菱形的性质;反比例函数图象上点的坐标特征.【分析】根据点C的坐标以及菱形的性质求出点B的坐标,然后利用待定系数法求出k 的值即可.【解答】解:∵A(﹣3,4),∴OC==5,∵四边形OABC是菱形,∴AO=CB=OC=AB=5,则点B的横坐标为﹣3﹣5=﹣8,故B的坐标为:(﹣8,4),将点B的坐标代入y=得,4=,解得:k=﹣32.故选C.【点评】本题考查了菱形的性质以及利用待定系数法求反比例函数解析式,解答本题的关键是根据菱形的性质求出点B的坐标.12.如图,两个菱形,两个等边三角形,两个矩形,两个正方形,各成一组,每组中的一个图形在另一个图形的内部,对应边平行,且对应边之间的距离都相等,那么两个图形不相似的一组是()A.B.C.D.【考点】相似图形.【分析】根据相似多边形的性质逐一进行判断后即可确定正确的选项.【解答】解:由题意得,B中三角形对应角相等,对应边成比例,两三角形相似;A,D中菱形、正方形四条边均相等,所以对应边成比例,又角也相等,所以正方形,菱形相似;而C中矩形四个角相等,但对应边不一定成比例,所以B中矩形不是相似多边形故选C.【点评】考查相似多边形的判定问题,其对应角相等,对应边成比例.二、填空题13 .一次函数y=kx+3的图象与坐标轴的两个交点之间的距离为5,则k的值为或.【考点】待定系数法求一次函数解析式.【专题】压轴题.【分析】首先求出一次函数y=kx+3与y轴的交点坐标;由于函数与x轴的交点的纵坐标是0,可以设横坐标是a,然后利用勾股定理求出a的值;再把(a,0)代入一次函数的解析式y=kx+3,从而求出k的值.【解答】解:在y=kx+3中令x=0,得y=3,则函数与y轴的交点坐标是:(0,3);设函数与x轴的交点坐标是(a,0),根据勾股定理得到a2+32=25,解得a=±4;当a=4时,把(4,0)代入y=kx+3,得k=﹣;当a=﹣4时,把(﹣4,0)代入y=kx+3,得k=.故k的值为或.【点评】解决本题的关键是求出函数与y轴的交点坐标,然后根据勾股定理求得函数与x轴的交点坐标,进而求出k的值.14.已知|ab﹣2|+|a﹣1|=0,则++…+=.【考点】有理数的混合运算;非负数的性质:绝对值.【专题】计算题;实数.【分析】由绝对值的结果为非负数,且两非负数之和为0可得两个绝对值同时为0,可得ab=2且a=1,把a=1代入ab=2可求出b的值为2,把求出的a与b代入所求的式子中,利用拆项法把所求式子的各项拆项后,去括号合并即可求出值.【解答】解:∵|ab﹣2|≥0,|a﹣1|≥0,且|ab﹣2|+|a﹣1|=0,∴ab﹣2=0且a﹣1=0,解得ab=2且a=1,把a=1代入ab=2中,解得b=2,则原式=(1﹣)+(﹣)+(﹣)+…+(﹣)=1﹣=.故答案为:【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.15.若x2﹣3x+1=0,则的值为.【考点】分式的化简求值.【专题】压轴题.【分析】将x2﹣3x+1=0变换成x2=3x﹣1代入逐步降低x的次数出现公因式,分子分母同时除以公因式.【解答】解:由已知x2﹣3x+1=0变换得x2=3x﹣1将x2=3x﹣1代入==== ==故答案为.【点评】解本类题主要是将未知数的高次逐步降低,从而求解.代入时机比较灵活16.已知实数a,b,c满足a+b+c=10,且,则的值是.【考点】比例的性质.【分析】根据已知条件把所求的式子进行整理,即可求出答案;【解答】解∵a+b+c=10,∴a=10﹣(b+c),b=10﹣(a+c),c=10﹣(a+b),∴=﹣+﹣+﹣=﹣1+﹣1+﹣1=++﹣3,∵,∴原式=×10﹣3=﹣3=.故填:.【点评】本题是基础题,考查了比例的基本性质,比较简单.17.若+b2+2b+1=0,则a2+﹣|b|=0.【考点】配方法的应用;非负数的性质:偶次方;非负数的性质:算术平方根.【分析】首先利用完全平方公式变形得出+(b+1)2=0,利用非负数的性质得出a=1,b=﹣1,进一步代入求得答案即可.【解答】解:∵+b2+2b+1=0,∴+(b+1)2=0,∴a﹣1=0,b+1=0,∴a=1,b=﹣1,∴a2+﹣|b|=0.故答案为:0.【点评】此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.18.已知M、N两点关于y轴对称,且点M在双曲线上,点N在直线y=﹣x+3上,设点M坐标为(a,b),则y=﹣abx2+(a+b)x的顶点坐标为(±,).【考点】二次函数的性质.【分析】根据反比例函数和一次函数的性质解题.【解答】解:∵M、N两点关于y轴对称,∴M坐标为(a,b),N为(﹣a,b),分别代入相应的函数中得,b=①,a+3=b②,∴ab=,(a+b)2=(a﹣b)2+4ab=11,a+b=±,∴y=﹣x2±x,∴顶点坐标为(=±,=),即(±,).故答案为:(±,).【点评】主要考查了函数的性质和求抛物线的顶点坐标、对称轴的方法.解题关键是先求出ab,a+b的值,整体代入求出函数的解析式.三、解答题19.如图,△AEF中,∠EAF=45°,AG⊥EF于点G,现将△AEG沿AE折叠得到△AEB,将△AFG沿AF折叠得到△AFD,延长BE和DF相交于点C.(1)求证:四边形ABCD是正方形;(2)连接BD分别交AE、AF于点M、N,将△ABM绕点A逆时针旋转,使AB与AD重合,得到△ADH,试判断线段MN、ND、DH之间的数量关系,并说明理由.(3)若EG=4,GF=6,BM=3,求AG、MN的长.【考点】翻折变换(折叠问题);一元二次方程的应用;勾股定理;正方形的判定.【专题】探究型.【分析】(1)由图形翻折变换的性质可知∠ABE=∠AGE=∠BAD=∠ADC=90°,AB=AD 即可得出结论;(2)连接NH,由△ABM≌△ADH,得AM=AH,BM=DH,∠ADH=∠ABD=45°,故∠NDH=90°,再证△AMN≌△AHN,得MN=NH,由勾股定理即可得出结论;(3)设AG=x,则EC=x﹣4,CF=x﹣6,在Rt△ECF中,利用勾股定理即可得出AG 的值,同理可得出BD的长,设NH=y,在Rt△NHD,利用勾股定理即可得出MN的值.【解答】(1)证明:∵△AEB由△AED翻折而成,∴∠ABE=∠AGE=90°,∠BAE=∠EAG,AB=AG,∵△AFD由△AFG翻折而成,∴∠ADF=∠AGF=90°,∠DAF=∠FAG,AD=AG,∵∠EAG+∠FAG=∠EAF=45°,∴∠ABE=∠AGE=∠BAD=∠ADC=90°,∴四边形ABCD是矩形,∵AB=AD,∴四边形ABCD是正方形;(2)MN2=ND2+DH2,理由:连接NH,∵△ADH由△ABM旋转而成,∴△ABM≌△ADH,∴AM=AH,BM=DH,∵由(1)∠BAD=90°,AB=AD,∴∠ADH=∠ABD=45°,∴∠NDH=90°,∵,∴△AMN≌△AHN,∴MN=NH,∴MN2=ND2+DH2;(3)设AG=BC=x,则EC=x﹣4,CF=x﹣6,在Rt△ECF中,∵CE2+CF2=EF2,即(x﹣4)2+(x﹣6)2=100,x1=12,x2=﹣2(舍去)∴AG=12,∵AG=AB=AD=12,∠BAD=90°,∴BD===12,∵BM=3,∴MD=BD﹣BM=12﹣3=9,设NH=y,在Rt△NHD中,∵NH2=ND2+DH2,即y2=(9﹣y)2+(3)2,解得y=5,即MN=5.【点评】本题考查的是翻折变换及勾股定理,解答此类题目时常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.20.为深化“携手节能低碳,共建碧水蓝天”活动,发展“低碳经济”,某单位进行技术革新,让可再生资源重新利用.今年1月份,再生资源处理量为40吨,从今年1月1日起,该单位每月再生资源处理量每一个月将提高10吨.月处理成本(元)与月份之间的关系可近似地表示为:p=50x2+100x+450,每处理一吨再生资源得到的新产品的售价定为100元.若该单位每月再生资源处理量为y(吨),每月的利润为w(元).(1)分别求出y与x,w与x的函数关系式;(2)在今年内该单位哪个月获得利润达到5800元?【考点】二次函数的应用.【分析】(1)根据“今年1月份,再生资源处理量为40吨,从今年1月1日起,该单位每月再生资源处理量每一个月将提高10吨”写出y与x的关系式;然后根据每月利润=月销售额﹣月处理成本,可得到w与x的函数关系式;(2)把w=5800代入(1)中w与x的函数关系式求得相应的x的值即可;【解答】解:(1)设y=kx+b,根据题意,将(1,40),(2,50)代入y=kx+b,得:,解得:,故每月再生资源处理量y(吨)与x月份之间的关系式为:y=10x+30,w=100y﹣p=100(10x+30)﹣(50x2+100x+450)=﹣50x2+900x+2550;(2)由﹣50x2+900x+2550=5800得:x2﹣18x+65=0∴x1=13,x2=5∵x≤12,∴x=5,∴在今年内该单位第5个月获得利润达到5800元.【点评】本题主要考查了一次函数、二次函数解析式的求法和用方程解决实际应用题,根据题意理清变量间的联系是解题的根本,准确抓住相等关系列函数关系式是关键.21.已知关于x的一元二次方程(a﹣1)x2+(2﹣3a)x+3=0.(1)求证:当a取不等于1的实数时,此方程总有两个实数根;(2)若m,n(m<n)是此方程的两根,并且.直线l:y=mx+n交x轴于点A,交y轴于点B.坐标原点O关于直线l的对称点O′在反比例函数的图象上,求反比例函数的解析式;(3)在(2)成立的条件下,将直线l绕点A逆时针旋转角θ(0°<θ<90°),得到直线l′,l′交y轴于点P,过点P作x轴的平行线,与上述反比例函数的图象交于点Q,当四边形APQO′的面积为时,求θ的值.【考点】根的判别式;根与系数的关系;坐标与图形性质;反比例函数的图象;旋转的性质.【专题】综合题.【分析】(1)由方程(a﹣1)x2+(2﹣3a)x+3=0为一元二次方程,所以a≠0;要证明方程总有两个实数根,即证明当a取不等于1的实数时,△>0,而△=(2﹣3a)2﹣4×(a﹣1)×3=(3a﹣4)2,即可得到△≥0.(2)先利用求根公式求出两根3,,再代入,可得到a=2,则m=1,n=3,直线l:y=x+3,这样就可得到坐标原点O关于直线l的对称点,代入反比例函数,即可确定反比例函数的解析式;(3)延长PQ,AO′交于点G,设P(0,p),则Q(﹣,p).四边形APQO'的面积=S△APG﹣S△QGO′=,这样可求出p;可得到OP,PA,可求出∠PAO=60°,这样就可求出θ.【解答】(1)证明:∵方程(a﹣1)x2+(2﹣3a)x+3=0是一元二次方程,∴a﹣1≠0,即a≠1.∴△=(2﹣3a)2﹣4×(a﹣1)×3=(3a﹣4)2,而(3a﹣4)2≥0,∴△≥0.所以当a取不等于1的实数时,此方程总有两个实数根;(2)解:∵m,n(m<n)是此方程的两根,∴m+n=﹣,mn=.∵,=,∴﹣=,∴a=2,即可求得m=1,n=3.∴y=x+3,则A(﹣3,0),B(0,3),∴△ABO为等腰直角三角形,∴坐标原点O关于直线l的对称点O′的坐标为(﹣3,3),把(﹣3,3)代入反比例函数,得k=﹣9,所以反比例函数的解析式为y=﹣;(3)解:设点P的坐标为(0,p),延长PQ和AO′交于点G.∵PQ∥x轴,与反比例函数图象交于点Q,∴四边形AOPG为矩形.∴Q的坐标为(﹣,p),∴G(﹣3,P),当0°<θ<45°,即p>3时,∵GP=3,GQ=3﹣,GO′=p﹣3,GA=p,=S△APG﹣S△QGO′=×p×3﹣×(3﹣)×(p﹣3)=9﹣,∴S四边形APQO′∴=9﹣,∴p=.(合题意)∴P(0,).则AP=6,OA=3,所以∠PAO=60°,∠θ=60°﹣45°=15°;当θ=45°时,直线l于y轴没有交点;当45°<θ<90°,则p<﹣3,用同样的方法也可求得p=,这与p<﹣3相矛盾,舍去.所以旋转角度θ为15°.【点评】题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.同时考查了反比例函数的性质和一些几何图形的性质.22.如图,在平面直角坐标系xoy中,直线y=x+3交x轴于A点,交y轴于B点,过A、B两点的抛物线y=﹣x2+bx+c交x轴于另一点C,点D是抛物线的顶点.(1)求此抛物线的解析式;(2)点P是直线AB上方的抛物线上一点,(不与点A、B重合),过点P作x轴的垂线交x轴于点H,交直线AB于点F,作PG⊥AB于点G.求出△PFG的周长最大值;(3)在抛物线y=ax2+bx+c上是否存在除点D以外的点M,使得△ABM与△ABD的面积相等?若存在,请求出此时点M的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)将已知点的坐标代入二次函数的解析式利用待定系数法确定二次函数的解析式即可;(2)首先根据△PFG是等腰直角三角形,设P(m,﹣m2﹣2m+3)得到F(m,m+3),进而得到PF=﹣m2﹣2m+3﹣m﹣3=﹣m2﹣3m,从而得到△PFG周长为:﹣m2﹣3m+(﹣m2﹣3m),配方后即可确定其最大值;(3)当DM1∥AB,M3M2∥AB,且与AB距离相等时,根据同底等高可以确定△ABM 与△ABD的面积相等,分别求得直线DM1解析式为:y=x+5和直线M3M2解析式为:y=x+1,联立之后求得交点坐标即可.【解答】解:(1)∵直线AB:y=x+3与坐标轴交于A(﹣3,0)、B(0,3),代入抛物线解析式y=﹣x2+bx+c中,∴∴抛物线解析式为:y=﹣x2﹣2x+3;(2)∵由题意可知△PFG是等腰直角三角形,设P(m,﹣m2﹣2m+3),∴F(m,m+3),∴PF=﹣m2﹣2m+3﹣m﹣3=﹣m2﹣3m,△PFG周长为:﹣m2﹣3m+(﹣m2﹣3m),=﹣(+1)(m+)2+,∴△PFG周长的最大值为:.(3)点M有三个位置,如图所示的M1、M2、M3,都能使△ABM的面积等于△ABD 的面积.此时DM1∥AB,M3M2∥AB,且与AB距离相等,∵D(﹣1,4),∴E(﹣1,2)、则N(﹣1,0)∵y=x+3中,k=1,∴直线DM1解析式为:y=x+5,直线M3M2解析式为:y=x+1,∴x+5=﹣x2﹣2x+3或x+1=﹣x2﹣2x+3,∴x1=﹣1,x2=﹣2,x3=,x4=,∴M1(﹣2,3),M2(,),M3(,).【点评】本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求二次函数、一次函数的解析式,二次函数的性质,三角形的面积,综合性较强,难度适中.。

邯郸市中考三模数学考试试卷

邯郸市中考三模数学考试试卷

邯郸市中考三模数学考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019七下·仙桃期末) 如图,在数轴上,已知点A,B分别表示数1,,那么数轴上表示数的点应落在()A . 点A的左边B . 线段AB上C . 点B的右边D . 数轴的任意位置2. (2分)下列计算中,正确的是()A . (a3b)2=a6b2B . a•a4=a4C . a6÷a2=a3D . 3a+2b=5ab3. (2分) (2019八下·枣庄期中) 剪纸是最古老的汉族民间艺术之一.剪纸作为一种镂空艺术,在视觉上给人以透空的感觉和艺术享受.下列四幅剪纸图案中,是中心对称图形的是()A .B .C .D .4. (2分)(2020·长春模拟) 如图,点,分别在反比例函数,的图象上.若,,则的值为()A .B .C .D .5. (2分)(2017·眉山) 如图所示的几何体的主视图是()A .B .C .D .6. (2分)一个布袋里放有红色、黄色、黑色三种球,它们除颜色外其余都相同,红球、黄球、黑球的个数之比为5:3:1,则从布袋里任意摸出一个球是黄球的概率是()A .B .C .D .7. (2分)如图,在梯形ABCD中,AD∥BC,∠A=90°,AD=2,AB=BC=4,在线段AB上有一动点E,设BE=x,S△DEC=y,则y与x之间的函数关系式是()A . y=20-xB . y=16-2xC . y=8-xD . y=4-x8. (2分)已知:如图,菱形ABCD中,对角线AC与BD相交于点O,OE∥DC交BC于点E,AD=6cm,则OE的长为()A . 6 cmB . 4 cmC . 3 cmD . 2 cm9. (2分)(2020·拱墅模拟) 如图所示,点A是半径为2的⊙O外一点,OA=4,AB是⊙O的切线,B为切点,弦BC∥OA,连接AC,则图中阴影部分的面积为()A . 2B . 2C . 3D .10. (2分)函数(1)y=2x+1,(2)y=﹣,(3)y=x2+2x+2,y值随x值的增大而增大的有()个.A . 0个B . 1个C . 2个D . 3个二、填空题 (共10题;共11分)11. (1分)(2017·景泰模拟) 据了解,地下综合管廊是建于城市地下用于敷设市政公用管线的公用设施,该系统不仅解决城市交通拥堵问题,还极大方便了电力、通信、燃气、供排水等市政设施的维护和检修.2015年4月8日,白银市被国家确定为全国地下综合管廊试点城市,8月9日,项目采取政府和社会资本合作的PPP模式开工建设,项目总投资22.38亿元.请将22.38亿元用科学记数法表示并保留3个有效数字为________ 元.12. (1分) (2017八上·金华期中) 函数y= 中的自变量的取值范围是________.13. (1分)计算:=________ .14. (1分)因式分解:=________15. (1分)(2019·秦安模拟) 如图,弧AD是以等边三角形ABC一边AB为半径的四分之一圆周, P为弧AD 上任意一点,若AC=5,则四边形ACBP周长的最大值是________16. (1分)从﹣2,﹣1,0,1,2这5个数中,随机抽取一个数记为a,则使关于x的不等式组有解,且使关于x的一元一次方程+1=的解为负数的概率为________ .17. (1分) (2020八下·哈尔滨月考) 如图,在矩形中,,,若在上,,则四边形的面积是________.18. (1分)如图,△ABC内接于⊙O,AB是直径,BC=4,AC=2,CD平分∠ACB,则弦AD长为________.19. (2分)(1)菱形的边长1,面积为,则的值为________A.B.C.D.(2)如图,ABCD是正方形,E是CF上一点,若DBEF是菱形,则∠EBC=________20. (1分)(2019·锦州) 如图,边长为4的等边△ABC,AC边在x轴上,点B在y轴的正半轴上,以OB为边作等边△OBA1 ,边OA1与AB交于点O1 ,以O1B为边作等边△O1BA2 ,边O1A2与A1B交于点O2 ,以O2B 为边作等边△O2BA3 ,边O2A3与A2B交于点O3 ,…,依此规律继续作等边△On﹣1BAn ,记△OO1A的面积为S1 ,△O1O2A1的面积为S2 ,△O2O3A2的面积为S3 ,…,△On﹣1OnAn﹣1的面积为Sn ,则Sn=________.(n≥2,且n为整数)三、解答题 (共7题;共68分)21. (5分)(2018·泸县模拟) 先化简,再求值:()÷ ,其中x= +1.22. (3分) (2018八上·镇江月考) 在△ABC中, AB、BC、AC三边的长分别为,,,求这个三角形的面积.小明同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.图1 图2 备用图(1)△ABC的面积为________.(2)若△DEF的三边DE、EF、DF长分别为,,,请在图2的正方形网格中画出相应的△DEF,并求出△DEF的面积为________.(3)在△ABC中, AB=2 ,AC=4,BC=2,以AB为边向△ABC外作△ABD(D与C在AB异侧),使△ABD为等腰直角三角形,则线段CD的长为________.23. (10分)(2012·玉林) 某奶品生产企业,2010年对铁锌牛奶、酸牛奶、纯牛奶三个品种的生产情况进行了统计,绘制了图1、2的统计图,请根据图中信息解答下列问题:(1)酸牛奶生产了多少万吨?把图1补充完整;酸牛奶在图2所对应的圆心角是多少度?(2)由于市场不断需求,据统计,2011年的生产量比2010年增长20%,按照这样的增长速度,请你估算2012年酸牛奶的生产量是多少万吨?24. (10分) (2016九上·永登期中) 在正方形ABCD中,AC为对角线,E为AC上一点,连接EB、ED.(1)求证:△BEC≌△DEC;(2)延长BE交AD于F,当∠BED=120°时,求∠EFD的度数.25. (10分)(2020·温州) 某经销商3月份用18000元购进一批T恤衫售完后,4月份用39000元购进一批相同的恤衫,数量是3月份的2倍,但每件进价涨了10元。

河北省邯郸市2019-2020学年中考数学第三次押题试卷含解析

河北省邯郸市2019-2020学年中考数学第三次押题试卷含解析

河北省邯郸市2019-2020学年中考数学第三次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图是测量一物体体积的过程:步骤一:将180 mL 的水装进一个容量为300 mL 的杯子中;步骤二:将三个相同的玻璃球放入水中,结果水没有满;步骤三:再将一个同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测一个玻璃球的体积在下列哪一范围内?(1 mL=1 cm 3)( ).A .10 cm 3以上,20 cm 3以下B .20 cm 3以上,30 cm 3以下C .30 cm 3以上,40 cm 3以下D .40 cm 3以上,50 cm 3以下2.如图,ABC ∆中,6AB =,4BC =,将ABC ∆绕点A 逆时针旋转得到AEF ∆,使得//BC AF ,延长BC 交AE 于点D ,则线段CD 的长为( )A .4B .5C .6D .73.下列“数字图形”中,既是轴对称图形,又是中心对称图形的有( )A .1个B .2个C .3个D .4个4.上体育课时,小明5次投掷实心球的成绩如下表所示,则这组数据的众数与中位数分别是( )1 2 3 4 5 成绩(m )8.2 8.0 8.2 7.5 7.8 A .8.2,8.2 B .8.0,8.2C .8.2,7.8D .8.2,8.0 5.已知关于x 的二次函数y =x 2﹣2x ﹣2,当a≤x≤a+2时,函数有最大值1,则a 的值为( ) A .﹣1或1 B .1或﹣3 C .﹣1或3 D .3或﹣36.如图是由四个相同的小正方体堆成的物体,它的正视图是( )A .B .C .D .7.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有( )A .103块B .104块C .105块D .106块8.若关于x 的不等式组324x a x a <+⎧⎨>-⎩无解,则a 的取值范围是( ) A .a≤﹣3 B .a <﹣3 C .a >3 D .a≥39.已知二次函数y=ax 2+2ax+3a 2+3(其中x 是自变量),当x≥2时,y 随x 的增大而增大,且−2≤x≤1时,y 的最大值为9,则a 的值为A .1或−2B .−或C .D .1 10.若一元二次方程x 2﹣2kx+k 2=0的一根为x =﹣1,则k 的值为( )A .﹣1B .0C .1或﹣1D .2或011.如图,四边形ABCD 中,AB=CD ,AD ∥BC ,以点B 为圆心,BA 为半径的圆弧与BC 交于点E ,四边形AECD 是平行四边形,AB=3,则»AE 的弧长为( )A .2πB .πC .32πD .312.如图,在△ABC 中,点D 在BC 上,DE ∥AC ,DF ∥AB ,下列四个判断中不正确的是( )A .四边形AEDF 是平行四边形B .若∠BAC =90°,则四边形AEDF 是矩形C .若AD 平分∠BAC ,则四边形AEDF 是矩形D .若AD ⊥BC 且AB =AC ,则四边形AEDF 是菱形二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知式子13x x -+有意义,则x 的取值范围是_____ 14.已知二次函数y =ax 2+bx +c (a≠0)中,函数值y 与自变量x 的部分对应值如下表:x… -5 -4 -3 -2 -1 … y … 3 -2 -5 -6 -5 …则关于x 的一元二次方程ax 2+bx +c =-2的根是______.15.因式分解:9a 3b ﹣ab =_____.16.矩形ABCD 中,AB=6,BC=8.点P 在矩形ABCD 的内部,点E 在边BC 上,满足△PBE ∽△DBC ,若△APD 是等腰三角形,则PE 的长为数___________.17.如图,O 是坐标原点,菱形OABC 的顶点A 的坐标为(﹣3,﹣4),顶点C 在x 轴的负半轴上,函数y =k x(x <0)的图象经过菱形OABC 中心E 点,则k 的值为_____.18.分解因式:mx 2﹣6mx+9m=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某种商品每天的销售利润y 元,销售单价x 元,间满足函数关系式:y x bx c =-++,其图象如图所示.(1)销售单价为多少元时,该种商品每天的销售利润最大? 最大利润为多少元?(2)销售单价在什么范围时,该种商品每天的销售利润不低于21 元?20.(6分)在围棋盒中有 x 颗黑色棋子和 y 颗白色棋子,从盒中随机地取出一个棋子,如果它是黑色棋子的概率是38;如果往盒中再放进 10 颗黑色棋子,则取得黑色棋子的概率变为12.求 x 和 y 的值. 21.(6分)已知关于x 的一元二次方程2(3)0x m x m ---=.求证:方程有两个不相等的实数根;如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.22.(8分)计算:+()﹣2﹣|1﹣|﹣(π+1)0.23.(8分)如图,在平面直角坐标系中,一次函数y=﹣x+3的图象与反比例函数y=(x>0,k是常数)的图象交于A(a,2),B(4,b)两点.求反比例函数的表达式;点C是第一象限内一点,连接AC,BC,使AC∥x轴,BC∥y轴,连接OA,OB.若点P在y轴上,且△OPA的面积与四边形OACB的面积相等,求点P的坐标.24.(10分)进入冬季,某商家根据市民健康需要,代理销售一种防尘口罩,进货价为20元/包,经市场销售发现:销售单价为30元/包时,每周可售出200包,每涨价1元,就少售出5包.若供货厂家规定市场价不得低于30元/包.试确定周销售量y(包)与售价x(元/包)之间的函数关系式;试确定商场每周销售这种防尘口罩所获得的利润w(元)与售价x(元/包)之间的函数关系式,并直接写出售价x的范围;当售价x(元/包)定为多少元时,商场每周销售这种防尘口罩所获得的利润w(元)最大?最大利润是多少?25.(10分)在连接A、B两市的公路之间有一个机场C,机场大巴由A市驶向机场C,货车由B市驶向A市,两车同时出发匀速行驶,图中线段、折线分别表示机场大巴、货车到机场C的路程y(km)与出发时间x(h)之间的函数关系图象.直接写出连接A、B两市公路的路程以及货车由B市到达A市所需时间.求机场大巴到机场C的路程y(km)与出发时间x(h)之间的函数关系式.求机场大巴与货车相遇地到机场C的路程.26.(12分)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.求证:△AEC≌△BED;若∠1=40°,求∠BDE的度数.27.(12分)某学校为弘扬中国传统诗词文化,在九年级随机抽查了若干名学生进行测试,然后把测试结果分为4个等级;A、B、C、D,对应的成绩分别是9分、8分、7分、6分,并将统计结果绘制成两幅如图所示的统计图.请结合图中的信息解答下列问题:(1)本次抽查测试的学生人数为,图①中的a的值为;(2)求统计所抽查测试学生成绩数据的平均数、众数和中位数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】分析:本题可设玻璃球的体积为x,再根据题意列出不等式组求得解集得出答案即可.详解:设玻璃球的体积为x,则有3300180 4300180 xx-⎧⎨-⎩<>解得30<x<1.故一颗玻璃球的体积在30cm3以上,1cm3以下.故选C.点睛:此题考查一元一次不等式组的运用,解此类题目常常要根据题意列出不等式组,再化简计算得出x的取值范围.2.B【解析】【分析】先利用已知证明BAC BDA :△△,从而得出BA BC BD BA=,求出BD 的长度,最后利用CD BD BC =-求解即可.【详解】 //AF BC QFAD ADB ∴∠=∠BAC FAD ∠=∠QBAC ADB ∴∠=∠B B ∠∠=QBAC BDA ∴V :VBA BC BD BA∴= 646BD ∴= 9BD ∴=945CD BD BC ∴=-=-=故选:B .【点睛】本题主要考查相似三角形的判定及性质,掌握相似三角形的性质是解题的关键.3.C【解析】【分析】根据轴对称图形与中心对称图形的概念判断即可.【详解】第一个图形不是轴对称图形,是中心对称图形;第二、三、四个图形是轴对称图形,也是中心对称图形;故选:C .【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.D【解析】【分析】【详解】解:按从小到大的顺序排列小明5次投球的成绩:7.5,7.8,8.2,8.1,8.1.其中8.1出现1次,出现次数最多,8.2排在第三,∴这组数据的众数与中位数分别是:8.1,8.2.故选D .【点睛】本题考查众数;中位数.5.A【解析】分析:详解:∵当a≤x≤a +2时,函数有最大值1,∴1=x 2-2x -2,解得:123,1x x ==- ,即-1≤x≤3, ∴a=-1或a+2=-1, ∴a=-1或1,故选A.点睛:本题考查了求二次函数的最大(小)值的方法,注意:只有当自变量x 在整个取值范围内,函数值y 才在顶点处取最值,而当自变量取值范围只有一部分时,必须结合二次函数的增减性及对称轴判断何处取最大值,何处取最小值.6.A【解析】【分析】根据正视图是从物体的正面看得到的图形即可得.【详解】从正面看可得从左往右2列正方形的个数依次为2,1,如图所示:故选A .【点睛】本题考查了三视图的知识,正视图是从物体的正面看得到的视图.7.C【解析】试题分析:根据题意设出未知数,列出相应的不等式,从而可以解答本题.设这批手表有x 块, 550×60+(x ﹣60)×500>55000 解得,x >104 ∴这批电话手表至少有105块考点:一元一次不等式的应用8.A【解析】【分析】利用不等式组取解集的方法,根据不等式组无解求出a的取值范围即可.【详解】∵不等式组324x ax a<+⎧⎨>-⎩无解,∴a﹣4≥3a+2,解得:a≤﹣3,故选A.【点睛】本题考查了一元一次不等式组的解集,熟知一元一次不等式组的解集的确定方法“同大取大、同小取小、大小小大中间找、大大小小无处找”是解题的关键.9.D【解析】【分析】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a>0,然后由-2≤x≤1时,y的最大值为9,可得x=1时,y=9,即可求出a.【详解】∵二次函数y=ax2+2ax+3a2+3(其中x是自变量),∴对称轴是直线x=-=-1,∵当x≥2时,y随x的增大而增大,∴a>0,∵-2≤x≤1时,y的最大值为9,∴x=1时,y=a+2a+3a2+3=9,∴3a2+3a-6=0,∴a=1,或a=-2(不合题意舍去).故选D.【点睛】本题考查了二次函数的性质,二次函数y=ax2+bx+c(a≠0)的顶点坐标是(-,),对称轴直线x=-,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<-时,y随x的增大而减小;x>-时,y随x的增大而增大;x=-时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<-时,y随x的增大而增大;x >-时,y 随x 的增大而减小;x=-时,y 取得最大值,即顶点是抛物线的最高点. 10.A【解析】【分析】把x =﹣1代入方程计算即可求出k 的值.【详解】解:把x =﹣1代入方程得:1+2k+k 2=0,解得:k =﹣1,故选:A .【点睛】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.11.B【解析】∵四边形AECD 是平行四边形,∴AE=CD ,∵AB=BE=CD=3,∴AB=BE=AE ,∴△ABE 是等边三角形,∴∠B=60°,∴AE u u u r 的弧长=6023360ππ⨯⨯=. 故选B.12.C【解析】A 选项,∵在△ABC 中,点D 在BC 上,DE ∥AC ,DF ∥AB ,∴DE ∥AF ,DF ∥AE ,∴四边形AEDF 是平行四边形;即A 正确;B 选项,∵四边形AEDF 是平行四边形,∠BAC=90°,∴四边形AEDF 是矩形;即B 正确;C 选项,因为添加条件“AD 平分∠BAC”结合四边形AEDF 是平行四边形只能证明四边形AEDF 是菱形,而不能证明四边形AEDF 是矩形;所以C 错误;D 选项,因为由添加的条件“AB=AC ,AD ⊥BC”可证明AD 平分∠BAC ,从而可通过证∠EAD=∠CAD=∠EDA 证得AE=DE ,结合四边形AEDF 是平行四边形即可得到四边形AEDF 是菱形,所以D正确.故选C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.x≤1且x≠﹣1.【解析】根据二次根式有意义,分式有意义得:1﹣x≥0且x+1≠0,解得:x≤1且x≠﹣1.故答案为x≤1且x≠﹣1.14.x1=-4,x1=2【解析】解:∵x=﹣3,x=﹣1的函数值都是﹣5,相等,∴二次函数的对称轴为直线x=﹣1.∵x=﹣4时,y=﹣1,∴x=2时,y=﹣1,∴方程ax1+bx+c=3的解是x1=﹣4,x1=2.故答案为x1=﹣4,x1=2.点睛:本题考查了二次函数的性质,主要利用了二次函数的对称性,读懂图表信息,求出对称轴解析式是解题的关键.15.ab(3a+1)(3a-1).【解析】试题分析:原式提取公因式后,利用平方差公式分解即可.试题解析:原式=ab(9a2-1)=ab(3a+1)(3a-1).考点: 提公因式法与公式法的综合运用.16.3或1.2【解析】【分析】由△PBE∽△DBC,可得∠PBE=∠DBC,继而可确定点P在BD上,然后再根据△APD是等腰三角形,分DP=DA、AP=DP两种情况进行讨论即可得.【详解】∵四边形ABCD是矩形,∴∠BAD=∠C=90°,CD=AB=6,∴BD=10,∵△PBE∽△DBC,∴∠PBE=∠DBC,∴点P在BD上,如图1,当DP=DA=8时,BP=2,∵△PBE∽△DBC,∴PE:CD=PB:DB=2:10,∴PE:6=2:10,∴PE=1.2;如图2,当AP=DP时,此时P为BD中点,∵△PBE∽△DBC,∴PE:CD=PB:DB=1:2,∴PE:6=1:2,∴PE=3;综上,PE的长为1.2或3,故答案为:1.2或3.【点睛】本题考查了相似三角形的性质,等腰三角形的性质,矩形的性质等,确定出点P在线段BD上是解题的关键.17.8【解析】【分析】根据反比例函数的性质结合点的坐标利用勾股定理解答.【详解】解:菱形OABC的顶点A的坐标为(-3,-4),OA=OC=22345,+=则点B的横坐标为-5-3=-8,点B的坐标为(-8,-4),点C的坐标为(-5,0)则点E的坐标为(-4,-2),将点E的坐标带入y=kx(x<0)中,得k=8.给答案为:8.【点睛】此题重点考察学生对反比例函数性质的理解,掌握坐标轴点的求法和菱形性质是解题的关键. 18.m(x﹣3)1.【解析】【分析】先把提出来,然后对括号里面的多项式用公式法分解即可。

2018年河北省邯郸市中考一模数学试卷附答案

2018年河北省邯郸市中考一模数学试卷附答案

2018年邯郸市初三升学模拟考试(一)数学试卷一、选择题(本大题共16小题,共42分。

1-10题小题各3分;11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、 下列各数中,比-1小的数是( )A. 0B. 0.5C. -0.5D. -2 2、 如图,“中国天眼”即500米口径球面射电望远镜(FAST ),是具有我国自主知识产权、世界最大单口径、最灵敏的射电望远镜,由4600个反射单元组成一个球面,把4600表示成na 10⨯(其中,1≤a <10,n 为整数)的形式,则n 为( ) A. -1 B. 2 C. 3 D. 43、 如图,若∠1=50°,则∠2的度数为( )A. 30°B. 40°C. 50°D. 90° 4、 下列运算中,正确的是( )A. ()933a a =B. 2222a a a =⋅C. a a a -=-2D. ()22ab ab =5、 如图,在R t △ABC 中,∠ACB =90°,AC =6,BC =8,则R t△ABC 的中线CD 的长为( ) A. 5 B.6 C. 8 D. 106、 已知面积为8的正方形边长是x ,则关于x 的结论中,正确的是( )A. x 是有理数B. x 不能在数轴上表示C. x 是方程4x =8的解D. x 是8的算术平方根7、 如图,△ABC 中,∠BCD =∠A ,DE ∥BC ,与△ABC 相似的三角形(△ABC 自身除外)的个数是( ) A. 1个 B. 2个 C. 3个 D. 4个 8、 用配方法解一元二次方程12422=--x x 的过程中,变形正确的是( )A. ()1122=-xB. ()5222=-xC. ()2512=-x D. ()2522=-x 9、 已知□ABCD ,根据图中尺规作图的痕迹,判断下列结论中不一定成立的是( )A. ∠DAE =∠BAEB. ∠DEA =21∠DABC. DE =BED. BC =DE10、 某工厂计划生产1500个零件,但是在实际生产时,……,求实际每天生产零件的个数,在这个题目中,若设实际每天生产零件x 个,可得方程10150051500=--xx ,则题目中用“……”表示的条件应是( )A. 每天比原计划多生产5个,结果延期10天完成B. 每天比原计划多生产5个,结果提前10天完成C. 每天比原计划少生产5个,结果延期10天完成D. 每天比原计划少生产5个,结果提前10天完成11、 由7个大小相同的正方体搭成的几何体如图所示,则以下结论:①主视图既是轴对称图形,又是中心对称图形; ②俯视图是中心对称图形 ③左视图不是中心对称图形 ④俯视图和左视图都不是轴对称图形 其中正确结论是( ) A. ①③ B. ①④ C. ②③ D. ②④12、 如图,在半径为4的⊙O 中,弦AB ∥OC ,∠BOC =30°,则AB 的长为( )A. 2B. 32C. 4D. 3413、 在一个不透明的袋子里装有2个红球1个黄球,这3个小球除颜色不同外,其它都相同,贝贝同学摸出一个球后放回口袋再摸一个;莹莹同学一次摸2个球,两人分别记录下小球的颜色,关于两人摸到1个红球1个黄球和2个红球的概率的描述中,正确的是( )A. ()黄红莹莹摸到黄红贝贝摸到1111P P =B. ()黄红莹莹摸到黄红贝贝摸到>1111P PC. ()红莹莹摸到红贝贝摸到22P P =D. ()红莹莹摸到红贝贝摸到>22P P14、 如图,在平面直角坐标系中,A (1,2),B (1,-1),C (2,2),抛物线2ax y =(a ≠0)经过△ABC 区域(包括边界),则a 的取值范围是( )A. a ≤-1或a ≥2B. -1≤a <0或0<a ≤2C. -1≤a <0或1<a ≤21D.21≤a ≤2 15、 如图,R t △ABC 中,∠ACB =90°,∠BAC =30°,∠BAC 的平分线交BC 于点D ,过点D 作DE ⊥AB ,垂足为E ,连接CE 交AD 于点F ,则以下结论: ①AB =2CE ; ②AC =4CD ; ③CE ⊥AD ; ④△DBE 与△ABC 的面积比是:1:(347+) 其中正确结论是( )A. ①②B. ②③C. ③④D. ①④16、 一个数学游戏,正六边形被平均分为6格(其中1格涂有阴影),规则如下:若第一个正六边形下面标的数字为a (a 为正整数),则先绕正六边形的中心顺时针旋转a 格;再沿某条边所在的直线l 翻折,得到第二个图形。

河北省邯郸市数学中考三模试卷

河北省邯郸市数学中考三模试卷

河北省邯郸市数学中考三模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2019七上·剑河期中) 有理数a、b在数轴上的位置如图所示,则a+b的值A . 大于0B . 小于0C . 小于D . 大于2. (2分)(2019·抚顺模拟) 下列图形中,既是轴对称图形又是中心对称图形的是A .B .C .D .3. (2分)下列运算正确的是()A . 2x+3y=5xyB . 5m2•m3=5m5C . a6÷a3=a2D . (m2)3=m54. (2分) (2019八下·淮安月考) 以下问题,最适合用普查的是()A . 了解我国初中学生视力状况的调查B . 对“3·15”晚会收视率的调查C . 对量子通信卫星上某种零部件的检查D . 对一批节能灯使用寿命的调查5. (2分)下列叙述中,正确的有()①三角形的一个外角等于两个内角的和;②一个五边形最多有3个内角是直角;③任意一个三角形的三条高所在的直线相交于一点,且这点一定在三角形的内部;④△ABC中,若∠A=2∠B=3∠C,则这个三角形ABC为直角三角形.A . 0个B . 1个C . 2个D . 3个6. (2分)如图,a∥b,若∠1=50°,则∠2的度数为()A . 50°B . 120°C . 130°D . 140°7. (2分)(2018·宜昌) 计算4+(﹣2)2×5=()A . ﹣16B . 16C . 20D . 248. (2分) (2020九上·长兴期末) 如图,AC是⊙O的直径,弦BD⊥AO于点E,连结BC,过点O作OF⊥BC 于点F,若BD=8cm,AE=2cm,则OF的长度是()A . cmC . 2.5cmD . 3cm9. (2分) (2017九上·商水期末) 在一个口袋中装有4个完全相同的小球,它们的标号分别为1、2、3、4,从中随机摸出一个小球记下标号放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和大于4的概率为()A .B .C .D .10. (2分)用若干张大小相同的黑白两种颜色的正方形纸片,按下列拼图的规律拼成一列图案,则第6个图案中黑色正方形纸片的张数是()A . 22B . 21C . 20D . 1911. (2分)如图,已知斜坡AB的水平宽度是8米,斜坡AB的坡度为1:2,则斜坡AB的长为()A . 4B . 4C . 1812. (2分) (2019九上·开州月考) 若整数a使关于x的分式方程的解为负数,且使关于x的不等式组无解,则所有满足条件的整数a的值之和是()A . 5B . 7C . 9D . 10二、填空题 (共6题;共6分)13. (1分)(2018·江都模拟) 两会期间,百度APP以图文、图案、短视频、直播等多种形式展现两会内容,据统计,直播内容237场,峰值观看人数一度达3800000人,将3800000用科学记数法表示________.14. (1分)(2017·新野模拟) 计算﹣|﹣2|=________.16. (1分)(2017·开封模拟) 如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是________.17. (1分)已知平面直角坐标系中,O为坐标原点,点A坐标为(0,8),点B坐标为(4,0),点E是直线y=x+4上的一个动点,若∠EAB=∠ABO,则点E的坐标为________18. (1分)(2017·营口模拟) 如图,边长为2的正方形ABCD内接于⊙O,过点D作⊙O的切线交BA延长线于点E,连接EO,交AD于点F,则EF长为________.三、解答题 (共8题;共80分)19. (5分) (2016八上·济源期中) 已知:AB=CD,AE⊥BC,DF⊥BC,垂足分别为E、F,AE=DF.求证:AB∥CD.20. (10分) (2019七上·深圳期末) 某校八年级学生全部参加“初二生物地理会考”,从中抽取了部分学生的生物考试成绩,将他们的成绩进行统计后分为A、B、C、D四个等级,并将统计结果绘制成如下的统计图,请结合图中所给的信息解答下列问题:(1)抽取了________名学生成绩;(2)请把频数分布直方图补充完整;(3)扇形统计图中A等级所在的扇形的圆心角度数是________;(4)若A,B,C三个等级为合格,该校初二年级有900名学生,估计全年级生物合格的学生人数.21. (10分)计算。

河北省邯郸市2019年中考数学模拟试卷(含答案)

河北省邯郸市2019年中考数学模拟试卷(含答案)

2019年河北省邯郸市中考数学模拟试卷一.选择题(1-10题,每题3分,11-16题,每题2分,共42分)1.如图,点O为直线AB上一点,∠COB=27°29′,则∠1=()A.152°31′B.153°31′C.162°31′D.163°31′2.随着电子技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占有面积0.00000065mm2,0.00000065用科学记数法表示为()A.6.5×107B.6.5×10﹣6C.6.5×10﹣8D.6.5×10﹣73.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.如图,平行四边形ABCD中,对角线AC、BD相交于点O,E、F是AC上的两点,当E、F 满足下列哪个条件时,四边形DEBF不一定是平行四边形()A.∠ADE=∠CBF B.∠ABE=∠CDF C.DE=BF D.OE=OF5.函数y=kx+b与y=(kb≠0)的图象可能是图中的()A.B.C.D.6.内角和等于外角和的多边形是()A.三角形B.四边形C.五边形D.六边形7.中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图①表示的是(+2)+(﹣2),根据刘徵的这种表示法,可推算图②中所表示的算式为()A.(+3)+(+6)B.(﹣3)+(﹣6)C.(﹣3)+(+6)D.(+3)+(﹣6)8.计算的结果估计在()A.7与8之间B.8与9之间C.9与10之间D.10与11之间9.八年级一班五个合作学习小组人数如下:5,7,6,x,8.已知这组数据的平均数是6,则这组数据的方差是()A.10 B.C.2 D.10.已知a2﹣3=2a,那么代数式(a﹣2)2+2(a+1)的值为()A.﹣9 B.﹣1 C.1 D.911.下列图形中,可能是右面正方体的展开图的是()A.B.C.D.12.如图,数轴上A,B,C,D四点中,与对应的点距离最近的是()A.点A B.点B C.点C D.点D13.下列一元二次方程中,没有实数根的是()A.x2﹣2x=0 B.x2﹣2x+1=0 C.2x2﹣x﹣1=0 D.2x2﹣x+1=0 14.如图,在Rt△ABC中,∠ACB=90°,分别以点B和点C为圆心,大于BC的长为半径作弧,两弧相交于D、E两点,作直线DE交AB于点F,交BC于点G,连结CF.若AC=3,CG=2,则CF的长为()A.B.3 C.2 D.15.如图,有一块三角形余料ABC,它的面积为36cm2,边BC=12cm,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上,则加工成的正方形零件的边长为()cm.A.8 B.6 C.4 D.316.二次函数y=2x2﹣4x﹣6的最小值是()A.﹣8 B.﹣2 C..0 D.6二.填空题(共12分)17.﹣2019的倒数是.18.当a=2018时,代数式(﹣)÷的值是.19.如图,连接在一起的两个等边三角形的边长都为2cm,一个微型机器人由点A开始按A →B→C→D→E→C→A→B→C…的顺序沿等边三角形的边循环移动.当微型机器人移动了2018cm后,它停在了点上.三.解答题20.(8分)(1)计算:(3﹣π)0﹣38÷36+()﹣1;(2)因式分解:3x2﹣12y2.21.(9分)如图,在△ABC中,∠ACB=45°,过点A作AD⊥BC于点D,点E为AD上一点,且ED=BD.(1)求证:△ABD≌△CED;(2)若CE为∠ACD的角平分线,求∠BAC的度数.22.(9分)某校为了开展“阳光体育运动”,计划购买篮球和足球,已知购买20个篮球和40个足球的总金额为4600元;购买30个篮球和50个足球的总金额为6100元.(1)每个篮球、每个足球的价格分别为多少元?(2)若该校购买篮球和足球共60个,且购买篮球的总金额不超过购买足球的总金额,则该校最多可购买多少个篮球?23.(9分)(1)在浙江卫视全新推出的大型户外竞技真人秀节目﹣﹣《奔跑吧兄弟》中,七位主持人邓超、王祖蓝、王宝强、李晨、陈赫、郑凯及Angelababy(杨颖)在“撕名牌环节”的成绩分别为:8,5,7,8,6,8,5,则这组数据的众数和中位数分别是.(2)某学校想了解学生对撕名牌游戏的喜欢程度,对学校部分学生进行了抽样调查,就学生对游戏的喜欢程度(A:喜欢;B:一般;C:不喜欢;D:无所谓)进行数据统计,并绘制了如下两幅不完整的统计图.①此次调查的样本容量为;②条形统计图中存在的错误是(填A、B、C中的一个);③在图2中补画条形统计图中不完整的部分;④若从该校喜欢撕名牌游戏的学生中抽取10人进行比赛,则喜欢撕名牌游戏的小明被抽中的概率是多少?24.(10分)如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.25.(10分)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC、AB相交于点D、E,连接AD,已知∠CAD=∠B(1)求证:AD是⊙O的切线;(2)若∠B=30°,AC=,求劣弧BD与弦BD所围图形的面积.(3)若AC=4,BD=6,求AE的长.26.在平面直角坐标系中,点A(a,0),B(0,b),且a,b满足a2﹣2ab+b2+(b﹣4)2=0,点C为线段AB上一点,连接OC.(1)直接写出a=,b=;(2)如图1,P为OC上一点,连接PA,PB,若PA=BO,∠BPC=30°,求点P的纵坐标;(3)如图2,在(2)的条件下,点M是AB上一动点,以OM为边在OM的右侧作等边△OMN,连接CN.若OC=t,求ON+CN的最小值(结果用含t的式子表示)参考答案一.选择题1.解:∠1=180°﹣∠AOB=180°﹣27°29′=179°60′﹣27°29′=152°31′故选:A.2.解:0.00000065=6.5×10﹣7.故选:D.3.解:A、是轴对称图形,又是中心对称图形,故此选项正确;B、不是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误;故选:A.4.解:A、在平行四边形ABCD中,∵AO=CO,DO=BO,AD∥BC,AD=BC,∴∠DAE=∠BCF,若∠ADE=∠CBF,在△ADE与△BCF中,,∴△ADE≌△BCF,∴AE=CF,∴OE=OF,∴四边形DEBF是平行四边形;B、若∠ABE=∠CDF,在△ABE与△CDF中,,∴△ABE≌△CDF,∴AE=CF,∵AO=CO,∴OE=OF,∵OD=OB,∴四边形DEBF是平行四边形;C、若DE与AC不垂直,则满足AC上一定有一点DM=DE,同理有一点N使BF=BN,则四边形DEBF不一定是平行四边形,则选项错误;D、若OE=OF,∵OD=OB,∴四边形DEBF是平行四边形;故选:C.5.解:A、首先由反比例函数y=的图象位于第一、三象限,得出k>0,所以函数y=kx+b 的图象过第一、三象限;正确;B、首先由反比例函数y=的图象位于第二、四象限,得出k<0,所以函数y=kx+b的图象过第二、四象限;错误;C、首先由反比例函数y=的图象位于第一、三象限,得出k>0,所以函数y=kx+b的图象过第一、三象限;错误;D、函数y=kx+b的图象过原点,即b=0;而已知b≠0,错误.应选A.6.解:设所求n边形边数为n,则360°=(n﹣2)•180°,解得n=4.∴外角和等于内角和的多边形是四边形.故选:B.7.解:根据题意知,图②表示的数值为(+3)+(﹣6)=﹣3.故选:D.8.解:原式=,∵,∴,故选:A.9.解:由题意得,5+7+6+x+8=6×5,解得:x=4,S2= [(4﹣6)2+(5﹣6)2+(6﹣6)2+(7﹣6)2+(8﹣6)2]=2,故选:C.10.解:∵a2﹣3=2a,即a2﹣2a=3,∴原式=a2﹣4a+4+2a+2=a2﹣2a=3+6=9,故选:D.11.解:A、折叠后,圆不是与两个空白小正方形相邻,故与原正方体不符,故此选项错误;B、折叠后,圆与三角形成对面,与原正方体不符,故此选项错误;C、折叠后与原正方体相同,与原正方体符和,故此选项正确;D、折叠后,两个三角形的短边不是与两个空白小正方形相邻,与原正方体不符,故此选项错误.故选:C.12.解:∵<<,即1<<2,∴由数轴知,与对应的点距离最近的是点D.故选:D.13.解:(A)△=4,故选项A有两个不同的实数根;(B)△=4﹣4=0,故选项B有两个相同的实数根;(C)△=1+4×2=9,故选项C有两个不同的实数根;(D)△=1﹣8=﹣7,故选项D有两个不同的实数根;故选:D.14.解:由作法得GF垂直平分BC,∴FB=FC,CG=BG=2,FG⊥BC,∵∠ACB=90°,∴FG∥AC,∴BF=CF,∴CF为斜边AB上的中线,∵AB==5,∴CF=AB=.故选:A.15.解:作BC边上的高AM交EF于点N,∵面积为36cm2,边BC=12cm,∴AM=6cm,设正方形的边长为xmm,则EF=FP=NM=x,∴AN=AM﹣M N=6﹣x,∵EF∥BC,∴△AEF∽△ABC,∴,即,解得x=4.故选:C.16.解:y=2x2﹣4x﹣6=2(x﹣1)2﹣8,因为图象开口向上,故二次函数的最小值为﹣8.故选:A.二.填空题17.解:﹣2019的倒数是.故答案为:.18.解:(﹣)÷==a+1,当a=2018时,原式=2018+1=2019,故答案为:2019.19.解:∵两个全等的等边三角形的边长为2cm,∴机器人由A点开始按ABCDBEA的顺序沿等边三角形的边循环运动一圈,即为12cm,∵2018=12×168+2,即行走了168圈又2cm,∴行走2016cm后,则这个微型机器人停在A点,再走2cm,则停在B点,故答案为:B.三.解答题(共7小题,满分55分)20.解:(1)原式=1﹣32+3=1﹣9+3=﹣5;(2)原式=3(x2﹣4y2)=3(x+2y)(x﹣2y).21.(1)证明:∵AD⊥BC,∠ACB=45°,∴∠ADB=∠CDE=90°,△ADC是等腰直角三角形,∴AD=CD,∠CAD=∠ACD=45°,在△ABD与△CED中,,∴△ABD≌△CED(SAS);(2)解:∵CE为∠ACD的角平分线,∴∠ECD=∠ACD=22.5°,由(1)得:△ABD≌△CED,∴∠BAD=∠ECD=22.5°,∴∠BAC=∠BAD+∠CAD=22.5°+45°=67.5°.22.解:(1)设每个篮球、足球的价格分别是x元,y元,根据题意得:,解得:,答:每个篮球、足球的价格分别是70元,80元;(2)设购买了篮球m个,根据题意得:70m≤80(60﹣m),解得:m≤32,∴m最多取32,答:最多可购买篮球32个.23.解:(1)这组数据按照从小到大的顺序排列为:5,5,6,7,8,8,8,则众数为:8,中位数为:7.故答案为:8,7;(2)①由条形统计图知A类40人,由扇形统计图知它占抽查人数的20%,∴此次调查的样本容量为:40÷20%=200,故答案为:200;②C类所占的百分比为:1﹣40%﹣20%﹣15%=25%,所以C类共有200×25%=50人,∴C错误,故答案为C;③D类的共有200×15%=30人,正确的条形统计图为:④200人中喜欢撕名牌游戏的学生40人,抽取10人的概率为:10÷40=.24.解:(1)把A点(1,4)分别代入反比例函数y=,一次函数y=x+b,得k=1×4,1+b=4,解得k=4,b=3,∵点B(﹣4,n)也在反比例函数y=的图象上,∴n==﹣1;(2)如图,设直线y=x+3与y轴的交点为C,∵当x=0时,y=3,∴C(0,3),∴S△AOB =S△AOC+S△BOC=×3×1+×3×4=7.5;(3)∵B(﹣4,﹣1),A(1,4),∴根据图象可知:当x>1或﹣4<x<0时,一次函数值大于反比例函数值.25.(1)证明:连接OD,如图1所示:∵OB=OD,∴∠3=∠B,∵∠B=∠1,∴∠1=∠3,在Rt△ACD中,∠1+∠2=90°,∴∠4=180°﹣(∠2+∠3)=90°,∴OD⊥AD,则AD为⊙O的切线;(2)解:连接OD,作OF⊥BD于F,如图2所示:∵OB=OD,∠B=30°,∴∠ODB=∠B=30°,∴∠DOB=120°,∵∠C=90°,∠CAD=∠B=30°,∴CD=AC=1,BC=AC=3,∴BD=BC﹣CD=2,∵OF⊥BD,∴DF=BF=BD=1,OF=BF=,∴OB=2OF=,∴劣弧BD与弦BD所围图形的面积=扇形ODB的面积﹣△ODB的面积=﹣×2×=﹣;(3)解:∵∠CAD=∠B,∠C=∠C,∴△ACD∽△BCA,∴==,∴AC2=CD×BC=CD(CD+BD),即42=CD(CD+6),解得:CD=2,或CD=﹣8(舍去),∴CD=2,∴AD==2,∵=,∴=,∴AB=4,∵AD是⊙O的切线,∴AD2=AE×AB,∴AE===.26.解:(1)∵a2﹣2ab+b2+(b﹣4)2=0,∴(a﹣b)2+(b﹣4)2=0,∵(a﹣b)2≥0,(b﹣4)2≥0,∴a=b.b﹣4=0,∴a=4,b=4,故答案为4,4.(2)如图1中,分别过A,B作OC的垂线,垂足分别为D,E.∵∠BEO=∠ADO=∠AOB=90°,∴∠BOE+∠OBE=90°,∠BOE+∠AOD=90°,∴∠AOD=∠OBE,∵BO=AO,∴△ADO≌△OEB(AAS),∴OD=BE,∵∠BPC=30°,∴PB=2BE=2OD,∵AP=BO=AO,AD⊥OP,∴OD=DP,∴PB=PO,过P作PF⊥OB,∴OF=OB=2,即点P的纵坐标的为2.(3)如图2中,以OA为边在x轴下方作等边△OAG,连接GN.∵∠MON=∠AOG=60°,∴∠MOA=∠NOG,∵OM=ON,OA=OG,∴△OMA≌△ONG(SAS),∴∠OGN=∠OAM=45°,即点N在y轴与OG夹角为45°的直线GN上运动,作OH⊥OC交CA的延长线于H,连接NH.GH.由(2)可知∠ACO=60°,在四边形ACOG中,∠COG=360°﹣60°﹣60°﹣45°﹣60°=135°,∴OC∥NG,∵OC⊥OH,∴OH⊥NG,∵∠OHC=30°=∠AGO,∴点G在以G为圆心GO为半径的⊙G上,∴GO=GA,∴NH垂直平分线段OH,∴O,H关于GN对称,∴ON+NC=NH+NC≥CH,∵CH=2OC=2t,∴ON+NC≥2t,∴ON+CN的最小值为2t.。

河北省邯郸市2019-2020学年中考数学三模考试卷含解析

河北省邯郸市2019-2020学年中考数学三模考试卷含解析

河北省邯郸市2019-2020学年中考数学三模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在⊙O 中,弦AC ∥半径OB ,∠BOC=50°,则∠OAB 的度数为( )A .25°B .50°C .60°D .30°2.在平面直角坐标系中,将点P (4,﹣3)绕原点旋转90°得到P 1,则P 1的坐标为( ) A .(﹣3,﹣4)或(3,4)B .(﹣4,﹣3)C .(﹣4,﹣3)或(4,3)D .(﹣3,﹣4)3.如图 1 是某生活小区的音乐喷泉, 水流在各个方向上沿形状相同的抛物线路径落下,其中一个喷水管喷水的最大高度为 3 m ,此时距喷水管的水平距离为 1 m ,在如图 2 所示的坐标系中,该喷水管水流喷出的高度y (m )与水平距离x (m )之间的函数关系式是( )A .()213y x =--+B .()2213y x =-+ C .()2313y x =-++ D .()2313y x =--+ 4.如图,已知AB 是⊙O 的直径,弦CD ⊥AB 于E ,连接BC 、BD 、AC ,下列结论中不一定正确的是( )A .∠ACB=90°B .OE=BEC .BD=BCD .»»AD AC =5.钟鼎文是我国古代的一种文字,是铸刻在殷周青铜器上的铭文,下列钟鼎文中,不是轴对称图形的是( ) A . B . C . D .6.已知关于x 的二次函数y =x 2﹣2x ﹣2,当a≤x≤a+2时,函数有最大值1,则a 的值为( )A .﹣1或1B .1或﹣3C .﹣1或3D .3或﹣37.两个一次函数1y ax b =+,2y bx a =+,它们在同一直角坐标系中的图象大致是( )A .B .C .D .8.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是x 米/秒,则所列方程正确的是( )A .4 1.2540800x x ⨯-=B .800800402.25x x -=C .800800401.25x x -=D .800800401.25x x -= 9.估计40的值在 ( )A .4和5之间B .5和6之间C .6和7之间D .7和8之间10.如图,一次函数y =x ﹣1的图象与反比例函数2y x=的图象在第一象限相交于点A ,与x 轴相交于点B ,点C 在y 轴上,若AC =BC ,则点C 的坐标为( )A .(0,1)B .(0,2)C .50,2⎛⎫ ⎪⎝⎭D .(0,3)11.下列图形中,是正方体表面展开图的是( )A .B .C .D .12.如图,已知直线 PQ ⊥MN 于点 O ,点 A ,B 分别在 MN ,PQ 上,OA=1,OB=2,在直线 MN 或直线 PQ 上找一点 C ,使△ABC 是等腰三角形,则这样的 C 点有( )A .3 个B .4 个C .7 个D .8 个二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,点A ,B ,C 在⊙O 上,四边形OABC 是平行四边形,OD ⊥AB 于点E ,交⊙O 于点D ,则∠BAD=_______°.14.因式分解:3a 3﹣6a 2b+3ab 2=_____.15.计算:12×(﹣2)=___________. 16.一位小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm 的圆盘,如图所示,AB 与CD 水平,BC 与水平面的夹角为60°,其中AB=60cm ,CD=40cm ,BC=40cm ,那么该小朋友将圆盘从A 点滚动到D 点其圆心所经过的路线长为____cm .17.如图,在O e 中,AB 为直径,点C 在O e 上,ACB ∠的平分线交O e 于D ,则ABD ∠=______.o18.已知a ,b ,c ,d 是成比例的线段,其中3cm a =,2cm b =,6cm c =,则d =_______cm .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)(1)计算:|﹣3|162sin30°+(﹣12)﹣2 (2)化简:22222()x x y x y x y x y x y +--÷++-. 20.(6分)科技改变世界.2017年底,快递分拣机器人从微博火到了朋友圈,据介绍,这些机器人不仅可以自动规划最优路线,将包裹准确地放入相应的格口,还会感应避让障碍物,自动归队取包裹.没电的时候还会自己找充电桩充电.某快递公司启用80台A种机器人、300台B种机器人分拣快递包裹.A,B 两种机器人全部投入工作,1小时共可以分拣1.44万件包裹,若全部A种机器人工作3小时,全部B种机器人工作2小时,一共可以分拣3.12万件包裹.(1)求两种机器人每台每小时各分拣多少件包裹;(2)为了进一步提高效率,快递公司计划再购进A,B两种机器人共200台,若要保证新购进的这批机器人每小时的总分拣量不少于7000件,求最多应购进A种机器人多少台?21.(6分)据调查,超速行驶是引发交通事故的主要原因之一.小强用所学知识对一条笔直公路上的车辆进行测速,如图所示,观测点C到公路的距离CD=200m,检测路段的起点A位于点C的南偏东60°方向上,终点B位于点C的南偏东45°方向上.一辆轿车由东向西匀速行驶,测得此车由A处行驶到B处的时间为10s.问此车是否超过了该路段16m/s的限制速度?(观测点C离地面的距离忽略不计,参考数据:2≈1.41,3≈1.73)22.(8分)正方形ABCD的边长是10,点E是AB的中点,动点F在边BC上,且不与点B、C重合,将△EBF沿EF折叠,得到△EB′F.(1)如图1,连接AB′.①若△AEB′为等边三角形,则∠BEF等于多少度.②在运动过程中,线段AB′与EF有何位置关系?请证明你的结论.(2)如图2,连接CB′,求△CB′F周长的最小值.(3)如图3,连接并延长BB′,交AC于点P,当BB′=6时,求PB′的长度.23.(8分)已知一次函数y=x+1与抛物线y=x2+bx+c交A(m,9),B(0,1)两点,点C在抛物线上且横坐标为1.(2)判断△ABC 的形状,并证明你的结论;(3)平面内是否存在点Q 在直线AB 、BC 、AC 距离相等,如果存在,请直接写出所有符合条件的Q 的坐标,如果不存在,说说你的理由.24.(10分)26?32-⨯+--(12)-1+3tan60° 25.(10分) 先化简,再求值:2213242x x x x --⎛⎫÷-- ⎪--⎝⎭,其中x 是满足不等式﹣12(x ﹣1)≥12的非负整数解.26.(12分)某市扶贫办在精准扶贫工作中,组织30辆汽车装运花椒、核桃、甘蓝向外地销售.按计划30辆车都要装运,每辆汽车只能装运同一种产品,且必须装满,根据下表提供的信息,解答以下问题: 产品名称核桃 花椒 甘蓝 每辆汽车运载量(吨)10 6 4 每吨土特产利润(万元) 0.7 0.8 0.5若装运核桃的汽车为x 辆,装运甘蓝的车辆数是装运核桃车辆数的2倍多1,假设30辆车装运的三种产品的总利润为y 万元.求y 与x 之间的函数关系式;若装花椒的汽车不超过8辆,求总利润最大时,装运各种产品的车辆数及总利润最大值.27.(12分)对于方程=1,某同学解法如下:解:方程两边同乘6,得3x ﹣2(x ﹣1)=1 ①去括号,得3x ﹣2x ﹣2=1 ②合并同类项,得x ﹣2=1 ③解得x =3 ④∴原方程的解为x =3 ⑤上述解答过程中的错误步骤有 (填序号);请写出正确的解答过程.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】如图,∵∠BOC=50°,∴∠BAC=25°,∵AC ∥OB ,∴∠OBA=∠BAC=25°,∵OA=OB ,∴∠OAB=∠OBA=25°.故选A.2.A【解析】【分析】分顺时针旋转,逆时针旋转两种情形求解即可.【详解】解:如图,分两种情形旋转可得P′(3,4),P″(−3,−4),故选A.【点睛】本题考查坐标与图形变换——旋转,解题的关键是利用空间想象能力.3.D【解析】【分析】根据图象可设二次函数的顶点式,再将点(0,0)代入即可.【详解】解:根据图象,设函数解析式为()2y a x h k =-+由图象可知,顶点为(1,3)∴()213y a x =-+,将点(0,0)代入得()20013a =-+解得3a =-∴()2313y x =--+故答案为:D .【点睛】本题考查了是根据实际抛物线形,求函数解析式,解题的关键是正确设出函数解析式.4.B【解析】【分析】根据垂径定理及圆周角定理进行解答即可.【详解】∵AB 是⊙O 的直径,∴∠ACB=90°,故A 正确;∵点E 不一定是OB 的中点,∴OE 与BE 的关系不能确定,故B 错误;∵AB ⊥CD ,AB 是⊙O 的直径, ∴»»BDBC =, ∴BD=BC ,故C 正确;∴AD AC =u u u r u u u r ,故D 正确.故选B .【点睛】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键. 5.A【解析】根据轴对称图形的概念求解.解:根据轴对称图形的概念可知:B ,C ,D 是轴对称图形,A 不是轴对称图形,故选A .“点睛”本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 6.A【解析】详解:∵当a≤x≤a +2时,函数有最大值1,∴1=x 2-2x -2,解得:123,1x x ==- ,即-1≤x≤3, ∴a=-1或a+2=-1, ∴a=-1或1,故选A.点睛:本题考查了求二次函数的最大(小)值的方法,注意:只有当自变量x 在整个取值范围内,函数值y 才在顶点处取最值,而当自变量取值范围只有一部分时,必须结合二次函数的增减性及对称轴判断何处取最大值,何处取最小值.7.B【解析】【分析】根据各选项中的函数图象判断出a 、b 的符号,然后分别确定出两直线经过的象限以及与y 轴的交点位置,即可得解.【详解】解:由图可知,A 、B 、C 选项两直线一条经过第一三象限,另一条经过第二四象限,所以,a 、b 异号,所以,经过第一三象限的直线与y 轴负半轴相交,经过第二四象限的直线与y 轴正半轴相交, B 选项符合,D 选项,a 、b 都经过第二、四象限,所以,两直线都与y 轴负半轴相交,不符合.故选:B .【点睛】本题考查了一次函数的图象,一次函数y=kx+b (k≠0),k >0时,一次函数图象经过第一三象限,k <0时,一次函数图象经过第二四象限,b >0时与y 轴正半轴相交,b <0时与y 轴负半轴相交.8.C【解析】【分析】先分别表示出小进和小俊跑800米的时间,再根据小进比小俊少用了40秒列出方程即可.【详解】小进跑800米用的时间为8001.25x秒,小俊跑800米用的时间为800x 秒, ∵小进比小俊少用了40秒, 方程是800800401.25x x-=, 故选C .【点睛】本题考查了列分式方程解应用题,能找出题目中的相等关系式是解此题的关键.9.C【解析】【分析】,可以估算出位于哪两个整数之间,从而可以解答本题.【详解】<即67<<故选:C.【点睛】本题考查估算无理数的大小,解题的关键是明确估算无理数大小的方法.10.B【解析】【分析】根据方程组求出点A坐标,设C(0,m),根据AC=BC,列出方程即可解决问题.【详解】由1{2y xyx=-=,解得21xy=⎧⎨=⎩或12xy=-⎧⎨=-⎩,∴A(2,1),B(1,0),设C(0,m),∵BC=AC,∴AC2=BC2,即4+(m-1)2=1+m2,∴m=2,故答案为(0,2).【点睛】本题考查了反比例函数与一次函数的交点坐标问题、勾股定理、方程组等知识,解题的关键是会利用方程组确定两个函数的交点坐标,学会用方程的思想思考问题.11.C【解析】【分析】利用正方体及其表面展开图的特点解题.解:A、B、D经过折叠后,下边没有面,所以不可以围成正方体,C能折成正方体.故选C.【点睛】本题考查了正方体的展开图,解题时牢记正方体无盖展开图的各种情形.12.D【解析】试题分析:根据等腰三角形的判定分类别分别找寻,分AB可能为底,可能是腰进行分析.解:使△ABC是等腰三角形,当AB当底时,则作AB的垂直平分线,交PQ,MN的有两点,即有两个三角形.当让AB当腰时,则以点A为圆心,AB为半径画圆交PQ,MN有三点,所以有三个.当以点B为圆心,AB为半径画圆,交PQ,MN有三点,所以有三个.所以共8个.故选D.点评:本题考查了等腰三角形的判定;解题的关键是要分情况而定,所以学生一定要思维严密,不可遗漏.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.15【解析】【分析】根据圆的基本性质得出四边形OABC为菱形,∠AOB=60°,然后根据同弧所对的圆心角与圆周角之间的关系得出答案.【详解】解:∵OABC为平行四边形,OA=OC=OB,∴四边形OABC为菱形,∠AOB=60°,∵OD⊥AB,∴∠BOD=30°,∴∠BAD=30°÷2=15°.故答案为:15.本题主要考查的是圆的基本性质问题,属于基础题型.根据题意得出四边形OABC 为菱形是解题的关键.14.3a (a ﹣b )1【解析】【分析】首先提取公因式3a ,再利用完全平方公式分解即可.【详解】3a 3﹣6a 1b+3ab 1,=3a (a 1﹣1ab+b 1),=3a (a ﹣b )1.故答案为:3a (a ﹣b )1.【点睛】此题考查多项式的因式分解,多项式分解因式时如果有公因式必须先提取公因式,然后再利用公式法分解因式,根据多项式的特点用适合的分解因式的方法是解题的关键.15.-1【解析】【分析】根据“两数相乘,异号得负,并把绝对值相乘”即可求出结论.【详解】()1212⨯-=-, 故答案为 1.-【点睛】本题考查了有理数的乘法,牢记“两数相乘,同号得正,异号得负,并把绝对值相乘”是解题的关键. 16.20310(140)33cm π-+ 【解析】试题解析:如下图,画出圆盘滚动过程中圆心移动路线的分解图象.可以得出圆盘滚动过程中圆心走过的路线由线段OO 1,线段O 1O 2,圆弧¼23O O ,线段O 3O 4四部分构成. 其中O 1E ⊥AB ,O 1F ⊥BC ,O 2C ⊥BC ,O 3C ⊥CD ,O 4D ⊥CD .∵BC 与AB 延长线的夹角为60°,O 1是圆盘在AB 上滚动到与BC 相切时的圆心位置,∴此时⊙O 1与AB 和BC 都相切.则∠O 1BE=∠O 1BF=60度.此时Rt △O 1BE 和Rt △O 1BF 全等,在Rt △O 1BE 中,cm .∴OO 1=AB-BE=()cm .∵BF=BE=3cm ,∴O 1O 2=BC-BF=(40-3)cm . ∵AB ∥CD ,BC 与水平夹角为60°,∴∠BCD=120度.又∵∠O 2CB=∠O 3CD=90°,∴∠O 2CO 3=60度.则圆盘在C 点处滚动,其圆心所经过的路线为圆心角为60°且半径为10cm 的圆弧¼23O O . ∴¼23O O 的长=60360×2π×10=103πcm . ∵四边形O 3O 4DC 是矩形,∴O 3O 4=CD=40cm .综上所述,圆盘从A 点滚动到D 点,其圆心经过的路线长度是:()+()+103π+40=(103π)cm . 17.1【解析】【分析】由AB 为直径,得到ACB 90∠=o ,由因为CD 平分ACB ∠,所以ACD 45∠=o ,这样就可求出ABD ∠.【详解】解:AB Q 为直径,ACB 90∠∴=o ,又CD Q 平分ACB ∠,ACD 45∠∴=o ,ABD ACD 45o ∠∠∴==.故答案为1.【点睛】本题考查了圆周角定理:在同圆和等圆中,同弧或等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.同时考查了直径所对的圆周角为90度.18.4【解析】【分析】如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.根据定义ad =cb ,将a ,b 及c 的值代入即可求得d .【详解】已知a ,b ,c ,d 是成比例线段,根据比例线段的定义得:ad =cb ,代入a =3,b =2,c =6,解得:d =4,则d =4cm .故答案为:4【点睛】本题主要考查比例线段的定义.要注意考虑问题要全面.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19. (1)2;(2) x ﹣y .【解析】分析:(1)本题涉及了二次根式的化简、绝对值、负指数幂及特殊三角函数值,在计算时,需要针对每个知识 点分别进行计算,然后根据实数的运算法则求得计算结果.(2)原式括号中两项利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.详解:(1)原式=3﹣4﹣2×+4=2;(2)原式=•=x ﹣y .点睛:(1)本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、二次根式的化简、绝对值及特殊三角函数值等考点的运算;(2)考查了分式的混合运算,熟练掌握运算法则是解本题的关键.20.(1)A 种机器人每台每小时各分拣30件包裹,B 种机器人每台每小时各分拣40件包裹(2)最多应购进A 种机器人100台【解析】(1)A 种机器人每台每小时各分拣x 件包裹,B 种机器人每台每小时各分拣y 件包裹,根据题意列方程组即可得到结论;(2)设最多应购进A 种机器人a 台,购进B 种机器人(200−a )台,由题意得,根据题意两不等式即可得到结论.【详解】(1)A 种机器人每台每小时各分拣x 件包裹,B 种机器人每台每小时各分拣y 件包裹,由题意得,80300 1.4410000{3802300 3.1210000x y x y +=⨯⨯+⨯=⨯, 解得,3040x y =⎧⎨=⎩, 答:A 种机器人每台每小时各分拣30件包裹,B 种机器人每台每小时各分拣40件包裹;(2)设最多应购进A 种机器人a 台,购进B 种机器人(200﹣a )台,由题意得,30a+40(200﹣a )≥7000,解得:a≤100,则最多应购进A 种机器人100台.【点睛】本题考查了二元一次方程组,一元一次不等式的应用,正确的理解题意是解题的关键.21.此车没有超过了该路段16m/s 的限制速度.【解析】分析:根据直角三角形的性质和三角函数得出DB ,DA ,进而解答即可.详解:由题意得:∠DCA=60°,∠DCB=45°,在Rt △CDB 中,tan ∠DCB=1200DB DB DC ==, 解得:DB=200,在Rt △CDA 中,tan ∠DCA=3200DA DA DC == 解得:3∴AB=DA ﹣3200≈146米, 轿车速度14614.61610AB v t ===<, 答:此车没有超过了该路段16m/s 的限制速度.点睛:本题考查了解直角三角形的应用﹣方向角问题,解答本题的关键是利用三角函数求出AD 与BD 的长度,难度一般.22.(1)①∠BEF =60°;②A B'∥EF ,证明见解析;(2)△CB′F 周长的最小值5(3)PB′=87. 【解析】(1)①当△AEB′为等边三角形时,∠AE B′=60°,由折叠可得,∠BEF=12∠BE B′=12×120°=60°;②依据AE=B′E,可得∠EA B′=∠E B′A,再根据∠BEF=∠B′EF,即可得到∠BEF=∠BA B′,进而得出EF∥A B′;(2)由折叠可得,CF+ B′F=CF+BF=BC=10,依据B′E+ B′C≥CE,可得B′C≥CE﹣B′E=5,进而得到B′C最小值为5,故△CB′F周长的最小值=﹣5=(3)将△ABB′和△APB′分别沿AB、AC翻折到△ABM和△APN处,延长MB、NP相交于点Q,由∠MAN =2∠BAC=90°,∠M=∠N=90°,AM=AN,可得四边形AMQN为正方形,设PB′=PN=x,则BP=6+x,BQ=8﹣6=2,QP=8﹣x.依据∠BQP=90°,可得方程22+(8﹣x)2=(6+x)2,即可得出PB′的长度.【详解】(1)①当△AE B′为等边三角形时,∠AE B′=60°,由折叠可得,∠BEF=12∠BE B′=12×120°=60°,故答案为60;②A B′∥EF,证明:∵点E是AB的中点,∴AE=BE,由折叠可得BE=B′E,∴AE=B′E,∴∠EA B′=∠E B′A,又∵∠BEF=∠B′EF,∴∠BEF=∠BA B′,∴EF∥A B′;(2)如图,点B′的轨迹为半圆,由折叠可得,BF=B′F,∴CF+ B′F=CF+BF=BC=10,∵B′E+ B′C≥CE,∴B′C≥CE﹣B′E=5,∴B′C最小值为5,∴△CB′F周长的最小值=5=;(3)如图,连接A B′,易得∠A B′B=90°,将△AB B′和△AP B′分别沿AB、AC翻折到△ABM和△APN处,延长MB、NP相交于点Q,由∠MAN=2∠BAC=90°,∠M=∠N=90°,AM=AN,可得四边形AMQN为正方形,由AB=10,B B′=6,可得A B′=8,∴QM=QN=A B′=8,设P B′=PN=x,则BP=6+x,BQ=8﹣6=2,QP=8﹣x.∵∠BQP=90°,∴22+(8﹣x)2=(6+x)2,解得:x=87,∴P B′=x=87.【点睛】本题属于四边形综合题,主要考查了折叠的性质,等边三角形的性质,正方形的判定与性质以及勾股定理的综合运用,解题的关键是设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.23.(1)y=x2﹣7x+1;(2)△ABC为直角三角形.理由见解析;(3)符合条件的Q的坐标为(4,1),(24,1),(0,﹣7),(0,13).【解析】【分析】(1)先利用一次函数解析式得到A(8,9),然后利用待定系数法求抛物线解析式;(2)先利用抛物线解析式确定C(1,﹣5),作AM⊥y轴于M,CN⊥y轴于N,如图,证明△ABM和△BNC都是等腰直角三角形得到∠MBA=45°,∠NBC=45°,AB=,BN=,从而得到∠ABC =90°,所以△ABC为直角三角形;(3)利用勾股定理计算出AC=,根据直角三角形内切圆半径的计算公式得到Rt△ABC的内切圆的半径=,设△ABC的内心为I,过A作AI的垂线交直线BI于P,交y轴于Q,AI交y轴于G,如图,则AI、BI为角平分线,BI⊥y轴,PQ为△ABC的外角平分线,易得y轴为△ABC的外角平分线,根据角平分线的性质可判断点P、I、Q、G到直线AB、BC、AC距离相等,由于BI×=4,则I(4,1),接着利用待定系数法求出直线AI的解析式为y=2x﹣7,直线AP的解析式为y=﹣12x+13,然后分别求出P、Q、G的坐标即可.【详解】解:(1)把A(m,9)代入y=x+1得m+1=9,解得m=8,则A(8,9),把A(8,9),B(0,1)代入y=x2+bx+c得64+8+91b cc=⎧⎨=⎩,解得-71bc=⎧⎨=⎩,∴抛物线解析式为y=x2﹣7x+1;故答案为y=x2﹣7x+1;(2)△ABC为直角三角形.理由如下:当x=1时,y=x2﹣7x+1=31﹣42+1=﹣5,则C(1,﹣5),作AM⊥y轴于M,CN⊥y轴于N,如图,∵B(0,1),A(8,9),C(1,﹣5),∴BM=AM=8,BN=CN=1,∴△ABM和△BNC都是等腰直角三角形,∴∠MBA=45°,∠NBC=45°,AB=,BN=,∴∠ABC=90°,∴△ABC为直角三角形;(3)∵AB=BN=,∴AC=,∴Rt△ABC的内切圆的半径=2设△ABC的内心为I,过A作AI的垂线交直线BI于P,交y轴于Q,AI交y轴于G,如图,∵I为△ABC的内心,∴AI、BI为角平分线,∴BI⊥y轴,而AI⊥PQ,∴PQ为△ABC的外角平分线,易得y轴为△ABC的外角平分线,∴点I、P、Q、G为△ABC的内角平分线或外角平分线的交点,它们到直线AB、BC、AC距离相等,BI=2×22=4,而BI⊥y轴,∴I(4,1),设直线AI的解析式为y=kx+n,则41 89k nk n+=⎧⎨+=⎩,解得27 kn=⎧⎨=-⎩,∴直线AI的解析式为y=2x﹣7,当x=0时,y=2x﹣7=﹣7,则G(0,﹣7);设直线AP的解析式为y=﹣12x+p,把A(8,9)代入得﹣4+n=9,解得n=13,∴直线AP的解析式为y=﹣12x+13,当y=1时,﹣12x+13=1,则P(24,1)当x=0时,y=﹣12x+13=13,则Q(0,13),综上所述,符合条件的Q的坐标为(4,1),(24,1),(0,﹣7),(0,13).【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、角平分线的性质和三角形内心的性质;会利用待定系数法求函数解析式;理解坐标与图形性质是解题的关键.24.0【解析】【分析】根据二次根式的乘法、绝对值、负整数指数幂和特殊角的三角函数值计算,然后进行加减运算.【详解】原式【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂、负整数指数幂和特殊角的三角函数值.25.-12【解析】【分析】先根据分式的运算法则进行化简,然后再求出不等式的非负整数解,最后把符合条件的x 的值代入化简后的结果进行计算即可.【详解】原式=()()()()()()112232222x x x x x x x x ⎡⎤+-+--÷-⎢⎥+---⎣⎦, =()()()()()()112·2211x x x x x x x +--+-+-, =21+-x , ∵﹣12(x ﹣1)≥12, ∴x ﹣1≤﹣1,∴x≤0,非负整数解为0,∴x=0,当x=0时,原式=-12. 【点睛】本题考查了分式的化简求值,解题的关键是熟练掌握分式的运算法则.26. (1)y=﹣3.4x+141.1;(1)当装运核桃的汽车为2辆、装运甘蓝的汽车为12辆、装运花椒的汽车为1辆时,总利润最大,最大利润为117.4万元.【解析】【分析】(1)根据题意可以得装运甘蓝的汽车为(1x+1)辆,装运花椒的汽车为30﹣x ﹣(1x+1)=(12﹣3x )辆,从而可以得到y 与x 的函数关系式;(1)根据装花椒的汽车不超过8辆,可以求得x 的取值范围,从而可以得到y 的最大值,从而可以得到总利润最大时,装运各种产品的车辆数.【详解】(1)若装运核桃的汽车为x 辆,则装运甘蓝的汽车为(1x+1)辆,装运花椒的汽车为30﹣x ﹣(1x+1)=(12﹣3x )辆,根据题意得:y=10×0.7x+4×0.5(1x+1)+6×0.8(12﹣3x )=﹣3.4x+141.1. (1)根据题意得:()29382130x x x -≤⎧⎨++≤⎩, 解得:7≤x≤293, ∵x 为整数,∴7≤x≤2.∵10.6>0,∴y 随x 增大而减小,∴当x=7时,y 取最大值,最大值=﹣3.4×7+141.1=117.4,此时:1x+1=12,12﹣3x=1.答:当装运核桃的汽车为2辆、装运甘蓝的汽车为12辆、装运花椒的汽车为1辆时,总利润最大,最大利润为117.4万元.【点睛】本题考查了一次函数的应用,解题的关键是熟练的掌握一次函数的应用.27.(1)错误步骤在第①②步.(2)x =4.【解析】【分析】(1)第①步在去分母的时候,两边同乘以6,但是方程右边没有乘,另外在去括号时没有注意到符号的变化,所以出现错误;(2)注重改正错误,按以上步骤进行即可.【详解】解:(1)方程两边同乘6,得3x ﹣2(x ﹣1)=6 ①去括号,得3x ﹣2x+2=6 ②∴错误步骤在第①②步.(2)方程两边同乘6,得3x ﹣2(x ﹣1)=6去括号,得3x ﹣2x+2=6合并同类项,得x+2=6解得x =4∴原方程的解为x =4【点睛】本题考查的解一元一次方程,注意去分母与去括号中常见错误,符号也经常是出现错误的原因.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三第三次模拟考试数学试题一、 选择题(本大题共16小题,1~10小题每题3分;11~16小题每题2分,共42分。

在每小题给出的四个选项中,只有一项是符合题目要求的) 1.2014-等于( ) A. ﹣2014B.2014C.±2014D.201412. 下面的计算正确的是( )A. 156=-a aB.3232a a a =+C.b a b a +-=--)(D. b a b a +=+2)(23. 一个几何体的三视图如图所示,则这个几何体是( )A. B. C.D.4. 下面四条直线,其中直线上每个点的坐标都是二元一次方程22=-y x 的解的是( )A.B.C.D.5. 一组数据:10,5,15,5,20,则这组数据的平均数和中位数分别是( )A. 10,10B.10,12.5C.11,12.5D. 11,106. 估计18-的值在( )7. 用配方法解一元二次方程0542=-+x x ,此方程可变形为( )A.9)2(2=+xB. 9)2(2=-xC. 1)2(2=+xD. 1)2(2=-x8. 如图,在△ABC 中,AB =AC ,∠ABC =70°,以B为圆心,任意长为半径画弧交AB ,BC 于点E ,F ,再分别以点E ,F 为圆心、以大于EF 21长为半径画弧,两弧交于点P ,作射线BP 交AC 于点D ,则∠BDC 为( )度 A.65B.75C.80D.859. 如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD 变形为以A 为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形DAB 的面积为( ) A.6B.7C.8D.910. 不等式组⎩⎨⎧-≥->+203x x 的整数解有( )A.0个B.5个C.6个D.无数个11. 如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心在格点上,则∠AED 的余弦值等于( ) A.55B.552 C.2 D.21 12. 如图,圆P 的半径为2,圆心P 在函数)0(6>=x xy 的图象上运动,当圆P 与x 轴相切时,点P 的坐标为( )A.(2,3)B.(3,2)C.(6,1)D.(4,1.5)13. 如图是王老师去公园锻炼及原路返回时离家的距离y (千米)与时间t(分钟)之间的函数图象,根据图象信息,下列说法正确的是( ) A.王老师去时所用的时间少于回家的时间 B.王老师在公园锻炼了40分钟 C.王老师去时走上坡路,回家时走下坡路D.王老师去时速度比回家时的速度慢14. 如图,从点A (0,2)发出的一束光,经x 轴反射,过点B (5,3),则这束光从点A 到点B 所经过的路径的长为( ) A.4B.25C.35D.515. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB =4,∠BED =120°,则图中阴影部分的面积之和为( ) A.3B.32C.23D.116. 如图,已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,有下列5个结论: ①0<abc ;②c a b +<;③024>++c b a ;④b c 32<;⑤)1()(的实数≠+<+n b an n b a 其中正确的结论有( ) A. ①②③B. ①③④C.③④⑤D. ①③⑤ 二、 填空题(本大题共4小题,每小题3分,共12分)17. PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学记数法表示为_________________。

18. 分解因式:=-2233y x _________________。

19. 如图,直线AB 与⊙O 相切于点A ,AC 、CD 是⊙O 的两条弦,且CD ∥AB ,若⊙O 的半径为25,CD =4,则弦AC 的长为20. 图1是一个八角星形纸板,图中有八个直角,八个相等的钝角,每条边都相等。

如图2将纸板沿虚线进行切割,无缝隙无重叠的拼成图3所示的大正方形,其面积为248+,则图3中线段AB 的长为______________。

三、解答题(本大题共6小题,共66分。

) 21. (10分)计算:20)1()3(845cos 4-+-+-︒π22. (10分)假期,市教育局组织部分教师分别到A 、B 、C 、D 四个地方进行新课程培训,教育局按定额购买了前往四地的车票。

如图1是未制作完成的车票种类和数量的条形统计图,请根据统计图回答下列问题:(1) 若去C 地的车票占全部车票的30%,则去C 地的车票数量是__________张,补全统计图.(2) 若教育局采用随机抽取的方式分发车票,每人一张(所有车票的形状、大小、(3) 若有一张去A 地的车票,张老师和王老师都想要,决定采取旋转转盘的方式来确定.其中甲转盘被分成四等份且标有数字1、2、3、4,乙转盘分成三等份且标有数字7、8、9,如图2所示.具体规定是:同时转动两个转盘,当指针指向的两个数字之和是偶数时,票给李老师,否则票给张老师(指针指在线上重转).试用“列表法”或“树状图”的方法分析这个规定对双方是否公平23. (10分)已知A 、B 两地相距630千米,在A 、B 之间有汽车站C 站,如图1所示。

客车由A 地驶向C 站、货车由B 地驶向A 地,两车同时出发,匀速行驶,货车的速度是客车速度的43。

图2是客车、货车离C 站的路程y 1、y 2与行驶时间x (小时)之间的函数关系图象。

(1) 求客、货两车的速度;(2) 求两小时后,货车离C 站的路程y 2与行驶时间x 之间的函数关系式; (3) 求E 点坐标,并说明点E 的实际意义。

24.(11分)如图1,在菱形ABCD中,AC=2,BD=32,AC,BD相交于点O。

(1)AB的长为__________;(2)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD的顶点A处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F,连接EF与AC相交于点G。

①求证:△ABE≌△ACF;②判断△AEF是哪一种特殊三角形,并说明理由。

25.(11分)一个边长为4的等边三角形ABC的高与⊙O的直径相等,如图放置,⊙O与BC相切于点C,⊙O与AC相交于点E,(1)求等边三角形的高;(2)求CE的长度;α,求α为(3)若将等边三角形ABC绕点C顺时针旋转,旋转角为)︒α<0(︒<360多少时,等边三角形的边所在的直线与圆相切。

26.(14分)如图,在直角坐标系中,点P的坐标是(n,0)(n>0),抛物线c+=2经过原-y+xbx点O和点P。

已知正方形ABCD的三个顶点为A(2,2),B(3,2),D(2,3)。

(1)求c,b的值,并写出抛物线对称轴及y的最大值(用含有n的代数式表示);(2)若抛物线与直线AD交于点N,求n为何值时,△NPO的面积为1;(3)若抛物线经过正方形区域ABCD(含边界),请直接写出n的取值范围。

答案一、 选择题(本大题共16小题,1~10小题每题3分;11~16小题每题2分,共42分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.2014-等于( B )A. ﹣2014B.2014C.±2014D.201412. 下面的计算正确的是( C )A. 156=-a aB.3232a a a =+ C.b a b a +-=--)(D. b a b a +=+2)(23. 一个几何体的三视图如图所示,则这个几何体是( D )A.B.C.D.4. 下面四条直线,其中直线上每个点的坐标都是二元一次方程22=-y x 的解的是( C )A.B.C.D.5. 一组数据:10,5,15,5,20,则这组数据的平均数和中位数分别是( D )A. 10,10B.10,12.5C.11,12.5D. 11,106. 估计18-的值在( B )A.0到1之间B. 1到2之间C. 2到3之间D.3到4之间7. 用配方法解一元二次方程0542=-+x x ,此方程可变形为( A )A.9)2(2=+xB. 9)2(2=-xC. 1)2(2=+xD. 1)2(2=-x8. 如图,在△ABC 中,AB =AC ,∠ABC =70°,以B 为圆心,任意长为半径画弧交AB ,BC 于点E ,F ,再分别以点E ,F 为圆心、以大于EF 21长为半径画弧,两弧交于点P ,作射线BP 交AC 于点D ,则∠BDC 为( B )度 A.65B.75C.80D.859. 如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形(忽略铁丝的粗细),则所得的扇形DAB 的面积为( D ) A.6B.7C.8D.910. 不等式组⎩⎨⎧-≥->+203x x 的整数解有( B )A.0个B.5个C.6个D.无数个11. 如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心在格点上,则∠AED 的余弦值等于( B ) A.55 B.552 C.2 D.21 12. 如图,圆P 的半径为2,圆心P 在函数)0(6>=x xy 的图象上运动,当圆P 与x 轴相切时,点P 的坐标为( B ) A.(2,3) B.(3,2) C.(6,1)D.(4,1.5)13. 如图是王老师去公园锻炼及原路返回时离家的距离y (千列说法正确的是( D )A.王老师去时所用的时间少于回家的时间B.王老师在公园锻炼了40分钟C.王老师去时走上坡路,回家时走下坡路D.王老师去时速度比回家时的速度慢14. 如图,从点A (0,2)发出的一束光,经x 轴反射,过点B (5,3),则这束光从点A 到点B 所经过的路径的长为( B ) A.4 B.25C.35D.515. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB =4,∠BED =120°,则图中阴影部分的面积之和为( A ) A.3 B.32C.23D.116. 如图,已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,有下列5个结论:①0<abc ;②c a b +<;③024>++c b a ;④b c 32<; ⑤)1()(的实数≠+<+n b an n b a 其中正确的结论有( B ) A. ①②③B. ①③④C.③④⑤D. ①③⑤二、 填空题(本大题共4小题,每小题3分,共12分)6105.2-⨯。

18. 分解因式:=-2233y x ))((3y x y x -+。

19. 如图,直线AB 与⊙O 相切于点A ,AC 、CD 是⊙O 的两条弦,且CD ∥AB ,若⊙O 的半径为25,CD =4,则弦AC 的长为52。

相关文档
最新文档