函数及其表示题型

合集下载

函数及其表示练习题

函数及其表示练习题

函数及其表示练习题一、选择题1. 函数f(x)=3x^2-2x+1在x=2处的导数是()。

A. 10B. 12C. 14D. 162. 已知函数f(x)=x^3-2x^2+x-2,求f'(1)的值是()。

A. -1B. 0C. 1D. 23. 函数y=sin(x)+cos(x)的值域是()。

A. [-1, 1]B. [0, √2]C. [1, √2]D. [-√2, √2]4. 若函数g(x)=x^2+1在区间[-1,1]上是增函数,则g(x)的导数g'(x)在该区间内()。

A. 恒为正B. 恒为负C. 恒等于0D. 变化不定5. 函数h(x)=ln(x)的定义域是()。

A. (0, +∞)B. (-∞, 0)C. (-∞, +∞)D. [0, +∞)二、填空题6. 函数f(x)=x^3-6x^2+11x-6的零点个数是_________。

7. 函数f(x)=1/x在x=2处的导数f'(2)是_________。

8. 函数f(x)=x^2+bx+c,当b^2-4ac=0时,该二次函数的图像是_________。

9. 函数f(x)=sin(x)在[0, π]区间内的值域是_________。

10. 若函数f(x)=x^3-3x^2+2x+1在x=1处取得极值,则f'(1)=_________。

三、解答题11. 已知函数f(x)=2x^3-3x^2-12x+5,求其导数f'(x),并找出f'(x)=0时的x值。

12. 给定函数g(x)=x^4-4x^3+6x^2-4x+1,求其在x=0和x=1时的值,并讨论g(x)在区间[0,1]上的单调性。

13. 函数h(x)=e^x-1的图像在x=0处的切线方程是什么?14. 若函数p(x)=x^5-5x^3+3x,求其在x=-1处的二阶导数p''(-1)。

15. 证明函数f(x)=x^3在R上是严格递增的。

高中函数题型及解题方法

高中函数题型及解题方法

高中函数题型及解题方法
一、高中函数题型
1、一元函数:一元函数是一种函数,它将一个变量映射到另
一个变量。

它只有一个自变量,只有一个因变量。

2、二元函数:二元函数是一种函数,它将两个变量映射到另
一个变量。

它有两个自变量,只有一个因变量。

3、指数函数:指数函数是一种函数,它将一个变量映射到另
一个变量,并且满足指数关系。

4、对数函数:对数函数是一种函数,它将一个变量映射到另
一个变量,并且满足对数关系。

5、反比例函数:反比例函数是一种函数,它将一个变量映射
到另一个变量,并且满足反比例关系。

6、三角函数:三角函数是一种函数,它将一个变量映射到另
一个变量,并且满足三角关系。

二、解题方法
1、分析问题:首先要仔细阅读题目,把握问题的内容,如果
是函数的问题,要确定函数的类型,以及函数的定义域和值域。

2、解方程:如果是求函数的值,要先把函数表示出来,然后
根据给出的条件解出方程,最后求出函数的值。

3、画图:如果需要求函数的图像,可以根据函数的定义,画出一些点,然后连接这些点,就可以得到函数的图像了。

4、总结:最后,要总结出问题的结果,把函数的定义域和值域,以及函数的图像都写出来。

函数及其表示题型归纳总结

函数及其表示题型归纳总结

函数及其表示函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.求函数定义域的策略(1)确定函数的定义域常从解析式本身有意义,或从实际出发.(2)如果函数y=f(x)是用表格给出,则表格中x的集合即为定义域.(3)如果函数y=f(x)是用图象给出,则图象在x轴上的投影所覆盖的x集合为定义域.(2)函数的三要素:定义域、值域和对应关系.相等函数:如果两个函数的定义域和对应关系完全一致,这两个函数相等,这是判断两函数相等的依据. 两函数值域与对应关系相同时,两函数不一定相同.函数的表示法:表示函数的常用方法有:解析法、图象法、列表法.分段函数:若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.关于分段函数的3个注意(1)分段函数虽然由几个部分构成,但它表示同一个函数.(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.(3)各段函数的定义域不可以相交.题型一、函数概念例1. (2019秋•桥西区校级月考)设A={x|0≤x≤2},B={y|1≤y≤2},能表示集合A到集合B的函数关系的是()A.B.C.D.解:A不是函数(一个x对应两个y),排除;B中y∈[0,2],不是集合A到集合B的函数关系,排除;C不是函数(x=1时对应两个函数值),排除;D符合要求,故选:D变式1、(2013秋•南开区校级月考)函数y=f(x)的图象与直线x=6的交点个数为()A.至少一个B.至多一个C.恰好一个D.零个解:根据函数的定义可知,设函数的定义域为A,若6∉A,此时交点个数为0个,若6∈A,此时交点个数为1个,综上函数y=f(x)的图象与直线x=6的交点个数为至多一个,故选:B变式2、下列图形能表示函数y=f(x)的图象的是()A.B.C.D.解:根据题意,对于A、C两图,可以找到一个x与两个y对应的情形;对于B图,当x=0时,有两个y值对应;对于D图,每个x都有唯一的y值对应.因此,D图可以表示函数y=f(x),故选:D 例2、下列哪一组中的函数f(x)与g(x)是相同函数()A.f(x)=x﹣1,g(x)=﹣1B.C.f(x)=x2,g(x)=D.y=解:对于A,要使g(x)有意义,则x≠0,两个函数的定义域不相同,此时g(x)=x﹣1,∴f(x)与g(x)不是同一函数;对于B,要使g(x)有意义,则x≥0,两个函数的定义域不相同,此时g(x)=x2,∴f(x)与g(x)不是同一函数;对于C,g(x)=x2,f(x)与g(x)的定义域和对应法则相同,是同一函数;对于D,f(x)的定义域为{x|x>1},g(x)的定义域为{x|x≤﹣1或x≥1},两个函数的定义域不相同,∴f(x)与g(x)不是同一函数.故选:C变式1、(2019秋•重庆月考)下列各组函数中,f(x)与g(x)相等的是()A.f(x)=3﹣x,g(x)=3﹣|x|B.C.f(x)=+1,g(x)=1+x D.解:根据函数的定义可知,f(x)=3﹣x与g(x)=3﹣|x|的对应关系不同,根据函数的定义可知,f(x)=x2与g(x)==x对应关系不同,根据f(x)==x+1(x≠0),g(x)=x+1的定义域不同,f(x)==x﹣2与g(x)==x﹣2的定义域都为{x|x≠0},对应关系也相同,故为同一函数.选:D变式2、(2019秋•梅河口市月考)在下列函数中,f(x)与g(x)表示同一函数的是()A.f(x)=x﹣1,g(x)=B.f(x)=|x+1|,g(x)=C.D.解:A.f(x)=x﹣1的定义域为R,的定义域为{x|x≠﹣1},定义域不同,不是同一函数;B.的定义域为R,的定义域为R,定义域和解析式都相同,是同一函数;C.的定义域为{x|x≤﹣3,或x≥3},的定义域为{x|x≥3},定义域不同,不是同一函数;D.,解析式不同,不是同一函数.故选B题型二、定义域1、具体函数定义域例1、(2019秋•桥西区校级月考)函数的定义域为()A.[﹣2,3)∪(3,4]B.(﹣∞,3)∪(3,4]C.[﹣2,4]D.(﹣∞,4]解:由题意可得,﹣2≤x≤4且x≠3,定义域为[﹣2,3)∪(3,4].故选:A 变式1、函数的定义域为()A.B.C.D.解:由,解得x且x≠﹣2.∴定义域为.故选:C变式2、函数f(x)=﹣的定义域为解:要使f(x)有意义,则,解得2≤x<6,∴f(x)的定义域为[2,6).故答案为:[2,6)2、含参定义域问题例1、函数的定义域为R,则实数m的取值范围是解:函数的定义域为R,则mx2+mx+1>0恒成立,当m=0时,1>0恒成立;当m≠0时,应满足,解得0<m<4;综上,实数m的取值范围是[0,4).故答案为:[0,4)例2、已知函数f(x)=(a∈R)定义域为R,求实数a的取值范围.解:若函数y=f(x)定义域为R,①当a=0时,显然成立;②当a≠0时,则,解得0,综上a为[0,].例3、函数的定义域是R,则m的取值范围是()A.m≠4B.m<0或C.D.[3,+∞)解:函数的定义域是R,则mx2+4mx+3≠0恒成立;当m=0时,化为3≠0恒成立;当m≠0时,应满足△<0,即16m2﹣12m<0,解得0<m<;综上,m的取值范围是0≤m<.选:C 变式1、函数y=的定义域为R,则k的取值范围是()A.(﹣∞,9)∪[0,+∞)B.[1,+∞)C.[﹣9,1)D.(0,1]解:∵的定义域为R,∴不等式kx2﹣6x+k+8≥0的解集为R ∴,解得k≥1,∴k的取值范围是[1,+∞).故选:B.3、抽象函数定义域问题例1、已知函数f(x)的定义域为{x|﹣1<x<1},则函数f(2x+1)的定义域为()A.{x|﹣1<x<1} B.{x|﹣1<x<0} C.{x|0<x<1} D.解:∵函数f(x)的定义域为{x|﹣1<x<1},∴﹣1<2x+1<1,解可得,﹣1<x<0,则函数f(2x+1)的定义域为(﹣1,0).故选:B例2、已知函数y=f(x+1)的定义域是[﹣1,2],则函数y=f(﹣x)的定义域为()A.[﹣3,0]B.[﹣1,2]C.[0,3] D.[﹣2,1]解:∵y=f(x+1)的定义域是[﹣1,2],∴﹣1≤x≤2,∴0≤x+1≤3,∴y=f(﹣x)需满足0≤﹣x≤3,∴﹣3≤x≤0,∴y=f(﹣x)的定义域为[﹣3,0].故选:A变式1、若函数f(x)的定义域是[0,3],则函数的定义域为()A. [0,3 ] B.[﹣1,2] C.[0,1)∪(1,3] D.[﹣1,1)∪(1,2]解:函数f(x)的定义域是[0,3],即,解得,所以函数的定义域为[﹣1,1)∪(1,2].故选:D变式2、已知函数y=f(x+1)定义域是[﹣2,5],则y=f(3x﹣1)的定义域是()A.[﹣10,13]B.[﹣1,4]C.[0,]D.[﹣1,]解:函数y=f(x+1)的定义域为[﹣2,5],令﹣1≤x+1≤6,则﹣1≤3x﹣1≤6,所以0≤x≤,所以函数y=f(3x﹣1)定义域是[0].选:C题型三、解析式1、待定系数法:适合于已知函数类型求解析式的问题,可设定函数的解析式,根据条件列出方程(组)求出待定系数得解析式.例1、已知函数f(x)为二次函数,且f(x﹣1)+f(x)=2x2+4,求f(x)的解析式解:设f(x)=ax2+bx+c(a≠0)∴a(x﹣1)2+b(x﹣1)+c+ax2+bx+c=2ax2+(2b﹣2a)x+a﹣b+2c=2x2+4∴,解得.∴f (x )=x 2+x +2变式1、已知函数f (x )是二次函数,若f (0)=0,且f (x +1)=f (x )+x +1,求f (x )的解析式.解:设f (x )=ax 2+bx +c (a ≠0),若f (0)=0,且f (x +1)=f (x )+x +1,∴c =0且a (x +1)2+b (x +1)+c =ax 2+bx +c +x +1, ∴,解得.∴.变式2、已知二次函数f (x )满足f (x +1)﹣f (x )=2x 且f (0)=1.求f (x )解析式. 解:设二次函数f (x )=ax 2+bx +c (a ≠0),∵f (0)=1,∴c =1,∴f (x )=ax 2+bx +1;又∵f (x +1)﹣f (x )=[a (x +1)2+b (x +1)+1]﹣[ax 2+bx +1]=2ax +a +b =2x ,∴2a =2且a +b =0,∴a =1,b =﹣1;∴f (x )=x 2﹣x +1.2、 换元法:已知[()]()f g x F x ,求f(x)的问题,可以设 t=g(x),从中解出x,代入g(x)进行换元,最后把t 换成x.例1、已知函数,则f (x )=____________ 解:设,则x =(t ﹣1)2=t 2﹣2t +1, 因为,所以f (t )=t 2﹣2t +3,即f (x )=x 2﹣2x +3(x ≥1).故选:B例2、已知函数f (x+1)=x 2+6x ,则f (x )=________解:令t =x +1,则x =t ﹣1,∴f (t )=(t ﹣1)2+6(t ﹣1)=t 2+4t ﹣5,即f (x )=x 2+4x ﹣5,答案为:x 2+4x ﹣5 例3、已知,求函数f (x )的解析式. 解:令得x =,t ≠1, ∵∴f (t )=﹣2•+1=∴f (x )=,x ≠1 变式1、已知函数f (+1)=x ﹣4,则f (x )的解析式为 解:令,则x =(t ﹣1)2,故f (t )=(t ﹣1)2﹣4=t 2﹣2t ﹣3(t ≥1),故答案为:f (x )=x 2﹣2x ﹣3(x ≥1)变式2、已知f (2x +3)=x 2,则f (x )=_________解:令2x +3=t ,求得x =,代入已知式子, 可得f (t )==,故有f (x )=(x 2﹣6x +9).3、函数方程法:已知f(x)满足某个等式,这个等式除f(x)是未知量外,还出现其他量,如f(-x),1()f x 可再构造其它等式组成方程组,解方程组求f(x).例1、已知f (x )满足,求f (x )的解析式. 解:用替换x 得:, 消去可得,故.变式1、已知函数f (x )满足,则f (3)=_______ 解:根据题意,函数f (x )满足, 当x =3时,2f (3)=3f ()+,①,当x =时,2f ()=f (3)+3,②,①②解可得:f (3)=;思考:已知3()2()3f x f x x +-=+,求()f x ?4、配凑法:由已知条件[()]()f g x F x =,可将F(x)改写成g(x)的表达式,然后以x 代替g(x),便得f(x)的表达式.例1、.已知函数,则f (3)=( ) A .8B .9C .10D .11 解:∵, ∴f (x +)=+1, 故f (x )=x 2+1,故f (3)=9+1=10,故选:C.题型四、分段函数例1、若函数,则f(﹣3)的值为()A.B.C.2D.8解:∵函数,∴f(﹣3)=f(﹣3+2)=f(﹣1)=f(﹣1+2)=f(1)=f(1+2)=2﹣3=,故选:A例2、已知函数y=,若f(a)=10,则a的值是()A.3或﹣3B.﹣3或5C.﹣3D.3或﹣3或5 解:若a≤0,则f(a)=a2+1=10,∴a=﹣3(a=3舍去)若a>0,则f(a)=2a=10,∴a=5综上可得,a=5或a=﹣3,故选:B变式1、设函数若f(a)=a,则实数a的值为()A.±1B.﹣1C.﹣2或﹣1D.±1或﹣2解:由题意知,f(a)=a;当a≥0时,有,解得a=﹣2,(不满足条件,舍去);当a<0时,有,解得a=1(不满足条件,舍去)或a=﹣1.所以实数a的值是:a=﹣1.故选:B变式2、设f(x)=,则f(5)的值为()A.10B.11C.12D.13解析:∵f(x)=,∴f(5)=f[f(11)]=f(9)=f[f(15)]=f(13)=11.故选:B。

函数典型题型集锦

函数典型题型集锦

函数典型题型集锦一、 函数的表示法,分段函数,区间。

1.用“零点法”把绝对值符号去掉,将函数31--+=x x y 化为分段函数的形式。

31--+=x x y =⎪⎩⎪⎨⎧--4224x 3311>≤<--≤x x x二、函数的解析式1、已知⎪⎩⎪⎨⎧+=10)(x x f π )0()0()0(>=<x x x 则:1)]}1([{)0(;0)1(;2)1(+=-==-=ππf f f f f f2、已知f (x )=x 2-1 g (x )=1+x 求f [g (x )]解:f [g (x )]=(1+x )2-1=x +2x3.若)21(x x x f +=+,求f (x )。

解法一(换元法):令t =1+x 则x =t 2-1, t ≥1代入原式有1)1(2)1()(22-=-+-=t t t t f ∴1)(2-=x x f (x ≥1)解法二(定义法):1)1(22-+=+x x x ∴1)1()1(2-+=+x x f1+x ≥1 ∴f (x )=x 2-1 (x ≥1)4.若xxx f -=1)1( 求f (x ) 解: 令x t 1= 则tx 1= (t ≠0) 则11111)(-=-=t tt t f∴f (x )=11-x (x ≠0且x ≠1)5.已知f (x )=ax +b ,且af (x )+b =ax +8 求f (x )解:(待定系数法)∵af (x )+b =a (ax +b )+b =a 2x +ab +b ∴⎩⎨⎧=+=892b ab a解之⎩⎨⎧==23b a 或 ⎩⎨⎧-=-=43b a ∴f (x )=3x +2或f (x )=-3x -46.已知f (x )是一次函数, 且f [f (x )]=4x -1, 求f (x )的解析式。

解:(待定系数法)设f (x )=kx +b 则 k (kx +b )+b =4x -1则⎪⎩⎪⎨⎧-==⇒⎩⎨⎧-=+=3121)1(42b k b k k 或 ⎩⎨⎧=-=12b k ∴312)(-=x x f 或12)(+-=x x f 7.[]221)(,21)(x x x g f x x g -=-= (x ≠0) 求)21(f 解一:令x t 21-= 则 21t x -= ∴222221234)1(4)1(1)(tt t t t t t f +--+=---= ∴1541114113)21(=+--+=f 8.动点P 从边长为1的正方形ABCD 的顶点A 出发顺次经过B 、C 、D 再回到A 。

高中数学最全必修一函数性质详解及知识点总结及题型详解

高中数学最全必修一函数性质详解及知识点总结及题型详解

(经典)高中数学最全必修一函数性质详解及知识点总结及题型详解分析一、函数的概念与表示1、映射:(1)对映射定义的理解。

(2)判断一个对应是映射的方法。

一对多不是映射,多对一是映射集合A ,B 是平面直角坐标系上的两个点集,给定从A→B 的映射f:(x,y)→(x 2+y 2,xy),求象(5,2)的原象.3.已知集合A 到集合B ={0,1,2,3}的映射f:x→11-x ,则集合A 中的元素最多有几个?写出元素最多时的集合A.2、函数。

构成函数概念的三要素 ①定义域②对应法则③值域函 数 解 析 式 的 七 种 求 法 待定系数法:在已知函数解析式的构造时,可用待定系数法。

例1 设是一次函数,且,求)(x f 34)]([+=x x f f )(x f 配凑法:已知复合函数的表达式,求的解析式,的表达式容易配成的运算形[()]f g x ()f x [()]f g x ()g x 式时,常用配凑法。

但要注意所求函数的定义域不是原复合函数的定义域,而是的值域。

()f x ()g x 例2 已知 ,求 的解析式221)1(xx x x f +=+)0(>x ()f x 三、换元法:已知复合函数的表达式时,还可以用换元法求的解析式。

与配凑法一样,要[()]f g x ()f x 注意所换元的定义域的变化。

例3 已知,求x x x f 2)1(+=+)1(+x f四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。

例4已知:函数的图象关于点对称,求的解析式)(2x g y x x y =+=与)3,2(-)(x g 五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。

例5 设求,)1(2)()(x x f x f x f =-满足)(x f 例6 设为偶函数,为奇函数,又试求的解析式)(x f )(x g ,11)()(-=+x x g x f )()(x g x f 和六、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。

高中函数题型汇总及典型例题

高中函数题型汇总及典型例题

高中函数专题
基础知识
1. 函数的基本性质: (1)函数的单调性:① f ' ( x) 0 (或 0 ) f ( x) 单调递增(或单调递减) ; ② f ( x) 单调递增(或单调递减) f ' ( x) 0 (或 0 ) 。 (2)函数的周期性: f ( x T ) f ( x ) ,则称 T 为 f ( x) 的一个为期;若 T0 是所有 周期中一个最小的正周期,则称 f ( x) 的周期是 T0 。 (3)函数的奇偶性:① f ( x) f ( x) f ( x) 是偶函数; ② f ( x ) f ( x) f ( x) 是奇函数。 (注:定义域需关于原点对称) 。 (4)函数的连续性: f ( x) 在 x x0 处连续 lim f ( x) f ( x0 ) (常数) 。
15 函数 y f ( x ) 在区间 (0, ) 内可导,导函数 f ' ( x) 是减函数,且 f ' ( x) 0 。 设 x0 (0, ) , y kx m 是曲线 y f ( x ) 在点 ( x0 , f ( x0 )) 处的切线方程,并设函数
g ( , f ( x0 ) , f ( x0 ) 表示 m ;
(II)证明:当 x (0, ) 时, g ( x ) f ( x ) ;
16 已知 a,b 是实数,函数 f(x)=x3+ax,g(x)=x2+bx,f'(x)和 g'(x)是 f(x),g(x)的导函数,若 f'(x)g'(x)≥0 在区间 I 上恒成 立,则称 f(x)和 g(x)在区间 I 上单调性一致 (1)设 a>0,若函数 f(x)和 g(x)在区间[-1,+∞)上单调性一致,求实数 b 的取值范围; (2)设 a<0,且 a≠b,若函数 f(x)和 g(x)在以 a,b 为端点的开区间上单调性一致,求|a-b|的最大值.

高三数学函数及其表示试题答案及解析

高三数学函数及其表示试题答案及解析

高三数学函数及其表示试题答案及解析1.设常数,函数,若,则.【答案】3【解析】由题意,则,所以.【考点】函数的定义.2.在函数y=|x|(x∈[-1,1])的图象上有一点P(t,|t|),此函数与x轴、直线x=-1及x=t围成图形(如图阴影部分)的面积为S,则S与t的函数关系图象可表示为()【答案】B【解析】当t∈[-1,0]时,S增速越来越平缓,当t∈[0,1]时,S增速越来越快,选B项.3.若函数f(x)=,则(1)=________.(2)f(3)+f(4)+…+f(2 012)+++…+=________.【答案】(1)-1(2)0【解析】(1)∵f(x)+f=+=0,∴=-1(x≠±1),∴=-1.(2)又f(3)+f=0,f(4)+=0,…f(2 012)+f=0,∴f(3)+f(4)+…+f(2 012)+f+…+f=0.4.已知复数z+i,在映射f下的象是,则﹣1+2i的原象为()A.﹣1+3i B.2﹣i C.﹣2+i D.2【答案】D【解析】由题意:z+i→∴﹣1+2i=,z=2﹣i所以z+i=2﹣i+i=2.故选D.5.下列图象表示函数关系y=f(x)的有________.(填序号)【答案】①④【解析】根据函数定义,定义域内任意的一个自变量x的值都有唯一一个y与之对应.6.设函数f(x)=其中b>0,c∈R.当且仅当x=-2时,函数f(x)取得最小值-2.(1)求函数f(x)的表达式;(2)若方程f(x)=x+a(a∈R)至少有两个不相同的实数根,求a取值的集合.【答案】(1)f(x)=(2)【解析】(1)∵当且仅当x=-2时,函数f(x)取得最小值-2.∴二次函数y=x2+bx+c的对称轴是x=-=-2.且有f(-2)=(-2)2-2b+c=-2,即2b-c=6.∴b=4,c=2.∴f(x)=(2)记方程①:2=x+a(x>0),方程②:x2+4x+2=x+a(x≤0).分别研究方程①和方程②的根的情况:(ⅰ)方程①有且仅有一个实数根a<2,方程①没有实数根a≥2.(ⅱ)方程②有且仅有两个不相同的实数根,即方程x2+3x+2-a=0有两个不相同的非正实数根.∴-<a≤2;方程②有且仅有一个实数根,即方程x2+3x+2-a=0有且仅有一个非正实数根.∴2-a<0或Δ=0,即a>2或a=-.综上可知,当方程f(x)=x+a(a∈R)有三个不相同的实数根时,-<a<2;当方程f(x)=x+a(a∈R)有且仅有两个不相同的实数根时,a=-或a=2.∴符合题意的实数a取值的集合为7.已知函数,对任意都有,且是增函数,则【答案】6【解析】本题看起来很难,好像没处下手,事实上,我们只要紧紧抓住函数的定义,从的初始值开始,如,首先,否则不合题意,其次若,则与是增函数矛盾,当然更不可能(理由同上),因此,,.【考点】函数的定义与性质.8.是上的奇函数,当时,,则当时,()A.B.C.D.【答案】C【解析】∵,∴,∴,又∵是上的奇函数,∴,∴.【考点】1.函数的奇偶性;2.函数解析式.9.设函数的定义域为,若存在闭区间,使得函数满足:①在上是单调函数;②在上的值域是,则称区间是函数的“和谐区间”.下列结论错误的是()A.函数()存在“和谐区间”B.函数()不存在“和谐区间”C.函数)存在“和谐区间”D.函数()不存在“和谐区间”【答案】B【解析】根据“和谐区间”的定义,我们只要寻找到符合条件的区间即可,对函数(),“和谐区间”,函数是增函数,若存在“和谐区间” ,则,因为方程有两个不等实根和,故,即区间是函数的“和谐区间”,B错误,选B,根据选择题的特征,下面C,D显然应该是正确的(事实上,函数)的“和谐区间”为,在其定义域内是单调增函数,若有“和谐区间”,则方程有两个不等实根,但此方程无实根,因此函数不存在“和谐区间”).【考点】新定义的理解,函数的单调性,方程的解.10.设函数的定义域为,若存在闭区间,使得函数满足:①在上是单调函数;②在上的值域是,则称区间是函数的“和谐区间”.下列结论错误的是()A.函数()存在“和谐区间”B.函数()不存在“和谐区间”C.函数)存在“和谐区间”D.函数(,)不存在“和谐区间”【答案】D【解析】根据“和谐区间”的定义,我们只要寻找到符合条件的区间即可,对函数(),“和谐区间”,函数是增函数,若存在“和谐区间” ,则,因此方程至少有两个不等实根,考虑函数,由,得,可得在时取得最小值,而,即的最小值为正,无实根,题设要求的不存在,因此函数()不存在“和谐区间”,函数)的“和谐区间”为,当然此时根据选择题的设置方法,知道应该选D,事实上,在其定义域内是单调增函数,“和谐区间”为,故D中的命题是错误的.【考点】新定义的理解,函数的单调性,方程的解.11.若对任意,,(、)有唯一确定的与之对应,称为关于、的二元函数. 现定义满足下列性质的二元函数为关于实数、的广义“距离”:(1)非负性:,当且仅当时取等号;(2)对称性:;(3)三角形不等式:对任意的实数z均成立.今给出个二元函数:①;②;③;④.则能够成为关于的、的广义“距离”的函数的所有序号是 .【答案】(1)【解析】对于①,f(x,y)=|x-y|≥0满足(1),f(x,y)=|x-y|=f(y,x)=|y-x|满足(2);f(x,y)=|x-y|=|(x-z)+(z-y)|≤|x-z|+|z-y|=f(x,z)+f(z,y)满足(3)故①能够成为关于的x、y的广义“距离”的函数;对于②不满足(3);对于③不满足(2);对于④不满足(1)(2),故答案为①【考点】1.函数的概念及其构成要素.12.已知函数的导函数为偶函数,则()A.0B.1C.2D.3【答案】A【解析】对所给函数求导得:,由偶函数定义知:,即,所以.【考点】1.函数的导数;2.偶函数的定义13.已知函数, 则的值是 .【答案】【解析】由分段函数解析式得.【考点】1.分段函数;2.函数值的求法14.若曲线y=上存在三点A,B,C,使得,则称曲线有“中位点”,下列曲线(1)y=cosx,,(2),(3),(4)有“中位点”的是()A.(2)(4)B.(1)(3)(4)C.(1)(2)(4) C.(2)(3)D.(2)(3)(4)【答案】B【解析】若曲线y=上存在三点A,B,C,使得,则称曲线有“中位点”,此时函数图象上必然有三点共线,函数y=cosx的图象上(0,1),(,0),(π,-1)三点显然共线,函数的图象上(-1,-4),(0,-2),(1,0)三点和函数的图象上(-1,-1),(0,0),(1,1)三点显然共线,均有三点共线,而没有,故选B.【考点】1.数形结合的思想方法;2.新定义的理解15.已知函数且,其中为奇函数, 为偶函数,若不等式对任意恒成立,则实数的取值范围是 .【答案】【解析】∵h(x)为定义在R上的偶函数,g(x)为定义在R上的奇函数∴g(-x)=-g(x),h(-x)=h(x), 又∵由h(x)+g(x)=2x, h(-x)+g(-x)=h(x)-g(x)=2-x,∴h(x)= (2x+2−x),g(x)=(2x−2−x), 不等式2ag(x)+h(2x)≥0在[1,2]上恒成立,化简为:a(2x−2−x)+(22x+2−2x)≥0,x∈[1,2], ∵1≤x≤2∴2x-2-x>0,令t=2-x-2x,整理得:,由t=2-x-2x得在上单调递增,故意当时,即实数a的取值范围为.【考点】1.函数不等式的恒成立问题;2.换元法;3.基本不等式16.设为实常数,是定义在R上的奇函数,当时,.若“,”是假命题,则的取值范围为 .【答案】【解析】是定义在R上的奇函数,故可求解析式为又“”是假命题,则是真命题,当时,,解得,①当时,,结合均值不等式有,得或,②①②取交集得的取值范围是.【考点】1.根据奇偶性求函数解析式;2.特称命题的否定;3.不等式恒成立问题.17.已知,则___________.【答案】2【解析】因为,所以,又因为,所以.【考点】求分段函数的函数值.18.已知,则的值等于.【答案】2014【解析】令,则所以,,故【考点】指数式与对数式的互化.19.已知函数满足.(1)求常数的值;(2)解不等式.【答案】(1) ;(2)【解析】(1)显然,所以,代入相应解析式求出;(2)由(1)确定函数解析式,对在不同段上的讨论.试题解析:(1)因为,所以;由,即,. 4分(2)由(1)得,由得, 6分当时,解得; 8分当时,解得. 10分所以的解集为. 12分【考点】1.分段函数;2.不等式.20.下列各组函数是同一函数的是()①与;②与;③与;④与。

高二数学函数及其表示试题答案及解析

高二数学函数及其表示试题答案及解析

高二数学函数及其表示试题答案及解析1.若函数f(x+2)=,则等于()A.B.-C.2D.-2【答案】D【解析】因为,所以,;所以.考点:分段函数求值.2.已知函数,则下列哪个函数与表示同一个函数( )A.B.C.D.【答案】B【解析】去绝对值可得:所以D错误,同一个函数要求定义域,解析式相同,所以即选B.【考点】函数相等必要三要素相等.3.下列各组函数是同一函数的是()A.与B.与C.与D.与【答案】D【解析】函数的要素由两个:定义域与对应法则。

=x(x-1),所以,是同一函数的是与,选D。

【考点】函数的概念点评:简单题,函数的要素由两个:定义域与对应法则。

4.下列各组函数中,表示同一函数的是( )A.B.C.D.【答案】B【解析】根据题意,对于A,定义域不同,故不成立,对于B,由于定义域和对应法则相同,因此成立,对于C,由于定义域不同,前者是x>1,后者是-1 1 ,故错误,对于D,由于定义域不同,前者是R,后者是,故选B.【考点】同一函数点评:本题考查函数的三要素:定义域、对应法则、值域,只有三要素完全相同,才能判断两个函数是同一个函数,这是判定两个函数为同一函数的标准.5.下列各组函数是同一函数的是①与;②与;③与;④与。

A.①②B.①③C.②③④D.①④【答案】C【解析】根据题意,对于①与,由于定义域分别是R,不同,错误,对于③与;定义域为x ,对应关系式为y=1,故可知是同一函数,那么对②与和④与。

,定义域和对应法则相同,一定为同一函数,故选C.【考点】同一个函数点评:本题考查判断两个函数是否是同一个函数,考查根式的定义域,主要考查函数的三要素,即定义域,对应法则和值域.6.已知函数,函数①当时,求函数的表达式;②若,函数在上的最小值是2 ,求的值;③在②的条件下,求直线与函数的图象所围成图形的面积.【答案】⑴.⑵.⑶=.【解析】⑴∵,∴当时,; 当时,∴当时,; 当时,.∴当时,函数.⑵∵由⑴知当时,,∴当时, 当且仅当时取等号.∴函数在上的最小值是,∴依题意得∴.⑶由解得∴直线与函数的图象所围成图形的面积=.【考点】本题主要考查导数计算,应用导数研究函数的单调性、最值,定积分计算。

函数的表示法重难点题型(举一反三)(解析版)

函数的表示法重难点题型(举一反三)(解析版)

1.2.2 函数的表示法重难点题型【举一反三系列】知识链接举一反三【考点1 函数的三种表示方法】【练 1】某种笔记本的单价是 5 元,买x(x ∈{1,2,3,4,5}) 本笔记本需要y 元,试用三种方法表示函数y =f (x) .【思路分析】利用函数的三种表示方法,即可将y表示成x的函数.【答案】解:(1)列表法:x12345y510152025(2)图象法(3)解析法:y=5x,x∈{1,2,3,4,5}.【点睛】本题考查函数的三种表示方法,列表法,图象法以及解析法,比较基础.【练 1.1】已知函数f(x),g(x)分别由下表给出:x123f(x) 211x123g(x) 321则f(g(1))的值为;当g(f(x))=2 时,x=.【思路分析】根据表格先求出g(1)=3,再求出f(3)=1,即f[g(1)]的值;由g(x)=2 求出x =2,即f(x)=2,再求出x的值.【答案】解:由题意得,g(1)=3,则f[g(1)]=f(3)=1∵g[f(x)]=2,即f(x)=2,∴x=1.故答案为:1,1.【点睛】本题是根据表格求函数值或自变量的值,看清楚函数关系和自变量对照表格求出.【练 1.2】在函数y=|x|(x∈[-1,1])的图象上有一点P(t,|t|),此函数与x轴、直线x=-1 及x=t围成图形(如图阴影部分)的面积为S,则S与t的函数关系图可表示为( )【思路分析】利用在y轴的右侧,S的增长会越来越快,切线斜率会逐渐增大,从而选出正确的选项.【答案】解:由题意知,当t>0 时,S的增长会越来越快,ƒ(3) ƒ(3) 故函数 S 图象在 y 轴的右侧的切线斜率会逐渐增大, 故选:B .【点睛】本题考查函数图象的变化特征,函数的增长速度与图象的切线斜率的关系,体现了数形结合的 数学思想.【练 1.3】如图,函数 f (x )的图象是曲线 O A B ,其中点 O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则 f ⎡ 1 ⎤ ⎢f (3) ⎥ ⎣ ⎦的值等于.【思路分析】先求出 f (3)=1,从而 ƒu 1] =f (1),由此能求出结果.【答案】解:函数 f (x )的图象是曲线 OAB ,其中点 O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),∴f (3)=1,ƒu 1] =f (1)=2.故答案为:2.【点睛】本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.【考点 2 描点法作函数图象】【练 2】作出下列函数的图象并写出定义域、值域.(1)y =2x ;(2)y =(x ﹣2)2+1;(3)y = 2;x(4)y=2x+1,x∈Z 且|x|<2.【思路分析】分别根据函数的单调性进行求解即可.【答案】解:(1)y=2x的定义域(﹣∞,+∞),值域(﹣∞,+∞);(2)函数y=(x﹣2)2+1≥1;定义域为(﹣∞,+∞),值域[1,+∞).(3)y= 2的定义域为(﹣∞,0)∪(0,+∞),值域为(﹣∞,0)∪(0,+∞);x(4)y=2x+1,x∈Z 且|x|<2.的定义域为{﹣1,0,1},此时y=﹣1,1,3,即值域为{﹣1,1,3},对应的图象为:【点睛】本题主要考查函数定义域和值域的求解,比较基础.【练 2.1】画下列函数图象并求值域.(1)y=﹣x2+2x+3;(2)y=|﹣x2+2x+3|;(3)y=|x﹣2|﹣|x﹣1|;(4)y=﹣x2+2|x|+3;(5)y=|x﹣2|+|x﹣1|.【思路分析】利用绝对值的几何意义,画出图象并求值域.【答案】解:(1)y=﹣x2+2x+3,如图所示,值域为(﹣∞,4](2)y=|﹣x2+2x+3|,如图所示,值域为[0,+∞),(3)y=|x﹣2|﹣|x﹣1|,如图所示,值域为[﹣1,1](4)y=﹣x2+2|x|+3,如图所示,值域为(﹣∞,4](5)y=|x﹣2|+|x﹣1|,如图所示,值域为[1,+∞)【点睛】本题考查函数的图象与性质,考查学生的作图能力,考查学生的计算能力,正确作出函数的图象是关键.【练 2.2】作出下列函数的图象并写出它们的值域.(1)y=|x﹣1|+|x+1|;(2)y=x,x∈z且|x|≤2.【思路分析】(1)运用分段函数化简函数y,即可得到所求图象和值域;(2)求得整点坐标,即可得到所求图象和值域.【答案】解:(1)y=|x﹣1|+|x+1|2x,x ≤ 1= 2,— 1<x<1,— 2x,x ≤— 1值域为[2,+∞);(2)y=x,x∈z且|x|≤2,可得x=﹣2,y=﹣2;x=﹣1,y=﹣1;x=0,y=0;x=1,y=1;x=2,y=2.值域为{﹣2,﹣1,0,1,2}.【点睛】本题考查函数的图象的画法和运用:求值域,考查运算能力,属于基础题.【练2.3】画出二次函数f(x)=﹣x2+2x+3的图象,并根据图象回答下列问题:(1)比较f(0)、f(1)、f(3)的大小;(2)若x1<x2<1,比较f(x1)与f(x2)的大小;(3)求函数f(x)的值域.【思路分析】先画出函数的图象,由图象即可得到相应的答案.【答案】解:图象如图所示:(1)由图象可得f(1)>f(0)>f(3),(2)x1<x2<1,函数在(﹣∞,1)上为增函数,∴f(x1)<f(x2),(3)由函数图象可得函数的值域为(﹣∞,4].【点睛】本题考查了二次函数图象的画法和识别,属于基础题.【考点3 求函数解析式—待定系数法】【练 3】设二次函数f (x) 满足 f (0) = 1,且f (x + 1) -f (x) = 4x ,求f (x) 的解析式.【思路分析】用待定系数法设出f(x)=a x2+b x+c=0(a≠0),再通过已知条件列方程可解得;【答案】解设所求二次函数为f(x)=a x2+b x+c=0(a≠0),∵f(0)=1,∴c=1,则f(x)=a x2+b x+1=0,(a≠0),又∵f(x+1)﹣f(x)=4x,∴a(x+1)2+b(x+1)+1﹣(a x2+b x+1)=4x,即 2ax+a+b=4x,得,2t = 4t 䘞= 䕼∴t = 2䘞 =— 2∴f(x)=2x2﹣2x+1,【点睛】本题考查了函数解析式的求解及常用方法,属中档题.【练 3.1】已知二次函数f (x) 满足条件f (0) = 1和 f (x + 1) -f (x) = 2x ,求 f (x) 的解析式;【思路分析】据二次函数的形式设出f(x)的解析式,将已知条件代入,列出方程,令方程两边的对应系数相等解得【答案】解:设y=f(x)=a x2+b x+c∵f(0)=1,f(x+1)﹣f(x)=2x∴c=1;a(x+1)2+b(x+1)+c﹣(a x2+b x+c)=2x∴∴2a=2,a+b=0解得a=1,b=﹣1函数f(x)的表达式为f(x)=x2﹣x+1【点睛】本题考查利用待定系数法,方程组法,换元法求函数的解析式,属于基础题.【练 3.2】已知y =f (x) 是一次函数,且有 f [ f (x)] = 9x + 8 ,求 f (x) 的解析式.【思路分析】设f(x)=ax+b(a≠0),由f[f(x)]=9x+8.比较对应项系数可得方程组,解出即得a,b.从而得到函数解析式.【答案】解:设f(x)=ax+b(a≠0),则f[f(x)]=a f(x)+b=a(a x+b)+b=a2x+a b+b=9x+8∴a2=9且a b+b=8,解得,a=3,b=2 或a=﹣3,b=﹣4,∴一次函数的解析式为:f(x)=3x+2 或f(x)=﹣3x﹣4.【点睛】本题考查一次函数的性质及图象,属基础题,若已知函数类型,可用待定系数法求其解析式.属于基础题.【练 3.3】已知二次函数f (x) =x2 +ax +b ,A = {x | f (x) = 2x} = {22} ,试求f (x) 的解析式.【思路分析】由已知中二次函数f(x)=x2+a x+b,A={x|f(x)=2x}={22},可得方程(x)=x2+a x+b=2x有两个相等的实根 22,由韦达定理求出a,b的值得答案.【答案】解:∵二次函数f(x)=x2+a x+b,A={x|f(x)=2x}={22},故方程(x)=x2+a x+b=2x有两个相等的实根22,即方程x2+(a﹣2)x+b=0有两个相等的实根22,即22+22=﹣(a﹣2)且22×22=b,解得:a=﹣42,b=484,故f(x)=x2﹣42x+484.【点睛】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质是答案的关键,是基础题.【考点4 求函数解析式—换元法】【练 4】设函数f (x) 满足f (2x - 3) =x2 +x -1 ,求 f (x) 的解析式;【思路分析】可设2x﹣3=t,从而求得x=1t3,代入f(2x﹣3)=x2+x﹣1并整理可得出ƒ(t)=1t22 2 42t 11,从而得出ƒ(x) = 1 x2 2x 11;4 4 4【答案】解:设2x﹣3=t,则x=1t3,带入f(2x﹣3)=x2+x﹣1得:ƒ(t)=(1t3)21t3—1=1t22 22 2 2 2 42t 11;4∴ƒ(x) = 1 x2 2x 11;4 4【点睛】考查换元求函数解析式的方法.x x【练 4.1】已知f ( +1) =x + 2 ,求 f (x) 的解析式【思路分析】令x—1=t,则x=t+1,x=(t+1)2,(t≥﹣1),代入函数的表达式求出即可;【答案】解:令x—1=t,则x=t+1,x=(t+1)2,(t≥﹣1),∴ 由f(x —1)=x+2 x,得:f(t)=(t+1)2+2(t+1)=t2+4t+3,(t≥﹣1),∴f(x)=x2+4x+3,(x≥﹣1).【点睛】本题考查的是函数的解析式求法,用待定系数法求解,本题难度不大,属于基础题.【练 4.2】已知函数f (x) 满足关系式f (x + 2) = 2x + 5 ,求f (x) 的解析式;【思路分析】将f(x+2)=2x+5 中的x+2 看作整体,解得x,代入其解析式,则解得f(x).【答案】解:令t=x+2,∴x=t﹣2∴f(t)=2t+1令x=t∴f(x)=2x+1【点睛】本题主要考查用换元法求函数解析式,要注意等价转化,即要注意换元前后的取值范围.【练4.3】已知f(1—x)=2x,求f(x)的解析式;1x【思路分析】令1—x =t,然后,用t表示x,利用换元法求解其解析式;1x【答案】解:令1—x =t,1x∴x= 1—t,1t∴f(t)=21—t,1t∴f(x)=21—x;1x【点睛】本题重点考查了换元法求解函数的解析式,【考点5 求函数解析式—代入法】【练5】已知f(x)=3x2+1,g(x)=2x﹣1,求f[g(x)]和g[f(x)]的解析式.【思路分析】分别把g(x)和f(x)整体代入到f(x)和g(x)的解析式化简可得.【答案】解:∵f(x)=3x2+1,g(x)=2x﹣1,∴f[g(x)]=3(2x﹣1)2+1=12x2﹣12x+4;∴g[f(x)]=2(3x2+1)﹣1=6x2+1【点睛】本题考查复合函数的解析式,属基础题.【练5.1】已知函数f(x)=2x+1,g(x)=3x2﹣5(1)求f(1),g(2)的值(2)求g(a+1)的表达式(3)求f(g(x))的表达式.【思路分析】(1)根据函数f(x)、g(x)的对应法则,分别将x=1、x=2 代入,即可求出f(1),g(2)的值;(2)根据g(x)的对应法则,用a+1 代替x,化简即可得出g(a+1)的表达式;(3)先在f(x)表达式中用g(x)代替x,得f(g(x))=2g(x)+1,再将g(x)表达式代入即可得到所求.【答案】解:根据题意,得(1)f(1)=2×1+1=3,g(2)=3×22﹣5=7;(2)g(a+1)=3(a+1)2﹣5=3a2+6a﹣2;(3)f(g(x))=2g(x)+1=2[3x2﹣5]+1=6x2﹣9.【点睛】本题给出函数f(x)、g(x)的表达式,求f(g(x)的表达式.着重考查了函数的定义和解析式的求法等知识,属于基础题.【练5.2】已知f(x)=2x﹣1,g(x)1=1x2(1)求f(x+1),g (1),f(g (x));x(2)写出函数f(x)与g(x)定义域和值域.【思路分析】(1)分别代入化简即可;(2)直接写出定义域与值域.【答案】解:(1)f(x+1)=2(x+1)﹣1=2x+1;g(1)= 1 = x2 ,x 111x22xf(g(x))=f( 1 )=2 1 —1;1x2 1x2(2)函数f(x)的定义域为R,值域R;g(x)的定义域为R,值域为(0,1].【点睛】本题考查了函数的定义域与值域的求法,属于基础题.【练5.3】函数f(x)=3x﹣1,若f[g(x)]=2x+3,则g(x)=.【思路分析】直接利用函数的解析式,求解即可.【答案】解:函数f(x)=3x﹣1,若f[g(x)]=2x+3,可得 3g(x)﹣1=2x+3,解得g(x)= 2 x 4.3 3故答案为:2 x 4.3 3【点睛】本题考查函数的解析式的求法,考查计算能力.【考点6 求函数解析式—方程组法】【练 6】已知函数f(x)对任意的x∈R 都满足f(x)+2f(﹣x)=3x﹣2,求f(x)的解析式.【思路分析】利用方程思想求解函数的解析式即可.【答案】解:函数f(x)对任意的x∈R 都满足f(x)+2f(﹣x)=3x﹣2,…①,则f(﹣x)+2f(x)=﹣3x﹣2,…②,①﹣2×②可得:﹣3f(x)=9x+2,可得f(x)=﹣3x—2.3f(x)的解析式:f(x)=﹣3x—2.3【点睛】本题考查函数的解析式的求法,考查函数与方程的思想的应用,考查计算能力.【练 6.1】已知f(x)是一次函数,且f[f(x)]=9x+4,求f(x)的解析式.【思路分析】由题意,设f(x)=a x+b,代入f[f(x)]中,利用多项式相等,对应系数相等,求出a、b的值即可;【答案】解:∵f(x)是一次函数,∴设f(x)=ax+b,(a≠0),则f[f(x)]=f[a x+b]=a(a x+b)+b=a2x+a b+b,又∵f[f(x)]=9x+4,∴a2x+a b+b=9x+4,即t2 = 9 ,t䘞䘞= 4解得t = 3或t =— 3,䘞 = 1 䘞 =— 2∴f(x)=3x+1 或f(x)=﹣3x﹣2;【点睛】本题考查了求函数解析式的问题,解题时应用待定系数法,设出函数的解析式,求出系数即可,是中档题.【练6.2】已知f(x)﹣2f(1)=3x﹣2,求f(x)的解析式.x【思路分析】根据f(x)﹣2f(1)=3x﹣2,用1代替x,得出另一方程,解方程组,求出f(x)的解析x x式.【答案】解:∵f(x)﹣2f(1)=3x﹣2…①,x∴f(1)﹣2f(x)=3•1—2…②,x x②×2,得;2f(1)﹣4f(x)= 6—4…③,x x③+①,得;﹣3f (x )=3x 6 —6,x∴f (x )=﹣x — 2 —2.x【点睛】本题考查了利用方程组求函数解析式的应用问题,是基础题目.【练 6.3】已知 f (x )是一次函数,且 2f (1)+3f (2)=3,2f (﹣1)﹣f (0)=﹣1,求 f (x )的解析式;【思路分析】根据题意,设f (x )=k x +b ,结合题意可得 2(m 䘞) 3(2m 䘞) = 3,解可得 k 、b 的值,2( — m 䘞) — 䘞 =— 1 代入函数的解析式即可得答案;【答案】解:根据题意,设 f (x )=kx +b , 若 2f (1)+3f (2)=3,2f (﹣1)﹣f (0)=﹣1,则有 2(m 䘞) 3(2m 䘞) = 3, 2( — m 䘞) — 䘞 =— 1解可得:k = 4,b =— 1;99则 f (x )= 4x — 1;99【点睛】本题考查待定系数法求函数的解析式,注意待定系数法的应用,属于基础题.【考点 7 分段函数求值】⎧1 x -1,x ≤ 0【练 7】设函数 f (x ) = ⎪ 2若 f (a ) = a ,则实数 a 的值为()⎨ 1 ⎪ ,x > 0 ⎩ xA. ±1B. -1 C . -2 或-1 D . ±1 或-2【思路分析】由分段函数的解析式知,当 x ≥0 时,f (X )= 1 x — 1;当 x <0 时,f (x )= 1;分别令 f2x(a )=a ,即得实数 a 的取值.【答案】解:由题意知,f (a )=a ;当 a ≥0 时,有1t — 1 = t ,解得 a =﹣2,(不满足条件,舍去);2当 a <0 时,有1= t ,解得 a =1(不满足条件,舍去)或 a =﹣1.t⎨ 所以实数 a 的值是:a =﹣1. 故选:B .【点睛】本题考查了分段函数中用解析式解方程的简单问题,需要分段讨论,是分段函数的常用方法.⎧ 1x +1,x ≤ 0【练 7.1】已知 f (x ) = ⎪ 2⎪⎩- (x -1)2,x > 0使 f (x ) ≥ -1 成立的 x 的取值范围是( )A .[-4 , 2)B .[-4 , 2]C . (0 , 2]D . (-4 , 2]【思路分析】由分段函数,讨论 x ≤0,x >0,由一次不等式和二次不等式的解法,解不等式,求并集即可得到所求范围.【答案】解:f (x )=1 x 1,x ≤ 䕼2,— (x — 1)2,x >䕼由 f (x )≥﹣1,x ≤ 䕼x >䕼可得 1 x 1 ≤— 1或2— (x — 1)2 ≤— 1,即x ≤ 䕼x ≤— 2 或 x >䕼 , 䕼 ≤ x ≤ 2即有﹣4≤x ≤0 或 0<x ≤2, 可得﹣4≤x ≤2. 即 x 的取值范围是[﹣4,2]. 故选:B .【点睛】本题考查分段函数的运用:解不等式,考查一次不等式和二次不等式的解法,考查运算能力, 属于中档题.⎧⎪x 2 + 4x + 3,x ≤ 0 【练 7.2】已知函数 f (x ) = ⎨则 f ( f (5) ) = ( )⎩⎪ 3 - x ,x > 0A .0B . -2 C. -1 D .1【思路分析】分段函数是指在定义域的不同阶段上对应法则不同,因此分段函数求函数值时,一定要看清楚自变量所处阶段,例如本题中,5∈{x |x >0},而 f (5)=﹣2∈{x |x ≤0},分别代入不同的对应法则求值即可得结果【答案】解:因为 5>0,代入函数解析式 f (x )=x 2 4x 3,x ≤ 䕼得 f (5)=3﹣5=﹣2,3 — x ,x >䕼⎨- x - 2a ,x ≥ 1所以 f (f (5))=f (﹣2),因为﹣2<0,代入函数解析式 f (x )==(﹣2)2+4×(﹣2)+3=﹣1故选:C .x 2 4x3,x ≤ 䕼3 — x ,x >䕼得 f (﹣2)【点睛】本题考查了分段函数的定义,求分段函数函数值的方法,解题时要认真细致,准确运算.【练 7.3】已知实数 a ≠ 0 ,函数 f (x ) = ⎧ 2x + a ,x < 1,若 f (1 - a ) = f (1 + a ) ,则 a 的值为()⎩A. - 34B. 34 C. - 35D. 35【思路分析】若 a >0,则 1﹣a <1,1+a >1,由 f (1﹣a )=f (1+a ),得 2(1﹣a )+a =﹣(1+a )﹣ 2a ;若 a <0,则 1﹣a >1,1+a <1,由 f (1﹣a )=f (1+a ),得 2(1+a )+a =﹣(1﹣a )﹣2a .由此能求出 a 的值.【答案】解:∵实数 a ≠0,函数 f (x )=2xt ,x <1— x — 2t ,x ≤ 1,f (1﹣a )=f (1+a ),∴若 a >0,则 1﹣a <1,1+a >1,又 f (1﹣a )=f (1+a ),∴2(1﹣a )+a =﹣(1+a )﹣2a ,解得 a =— 3,不成立;2若 a <0,则 1﹣a >1,1+a <1,又 f (1﹣a )=f (1+a ),∴2(1+a )+a =﹣(1﹣a )﹣2a ,解得 a =— 3.4∴a =— 3.4故选:B .【点睛】本题考查实数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.。

高一数学函数及其表示试题答案及解析

高一数学函数及其表示试题答案及解析

高一数学函数及其表示试题答案及解析1.下列各组函数是同一函数的是①与;②与;③与;④与。

A.①②B.①③C.③④D.①④【答案】C【解析】①中两函数定义域相同,值域不同,分别为;②中两函数定义域不同,分别为;③、④中两函数定义域、值域都相同。

【考点】函数的概念,即函数的三要素:定义域、对应法则、值域。

2.设计下列函数求值算法程序时需要运用条件语句的函数为().A.B.C.D.【答案】C.【解析】因为分段函数在求值时,不同范围内的自变量对应不同的函数,所以在编写函数求值的算法程序需运用条件语句,故本题选C.【考点】基本算法语句中的条件语句的理解.3.二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1.(1)求f(x)的解析式;(2)在区间[-1,1]上,y=f(x)的图象恒在y=2x+m的图象上方,求实数m的取值范围【答案】(1)f(x)=x2-x+1,(2)【解析】(1)求二次函数解析式,一般方法为待定系数法.二次函数解析式有三种设法,本题设一般式f(x)=ax2+bx+1,再利用等式恒成立,求出项的系数.由a(x+1)2+b(x+1)-ax2-bx=2x得2ax+a+b=2x,所以.(2)恒成立问题一般转化为最值问题.先构造不等式,再变量分离,这样就转化为求函数的最小值问题.试题解析:(1)设f(x)=ax2+bx+1a(x+1)2+b(x+1)-ax2-bx=2x2ax+a+b=2xf(x)=x2-x+1(2)考点:二次函数解析式,二次函数最值,不等式恒成立4.已知函数,那么的值是()A.B.C.D.【答案】D【解析】表示当自变量时对应的函数值;根据分段函数的定义,当时,;因为 , 所以.故选D【考点】1、函数的概念;2、分段函数.5.下列函数中,与函数有相同图象的一个是A.B.C.D.【答案】B【解析】选项A中函数的定义域为,定义域不相同,故选项A错;选项B中函数可化为,故B正确;选项C中函数的定义域为,故选项C错;选项D中函数的定义域为,故选项D 错.所以正确答案为B.【考点】函数相等.6.设集合A=B=,从A到B的映射在映射下,B中的元素为(4,2)对应的A中元素为()A.(4,2)B.(1,3)C.(6,2)D.(3,1)【答案】D【解析】集合A=B=,从A到B的映射在映射下,B中的元素为,所以,解得,所以集合中的元素为故选D.【考点】本题主要考查了映射的定义.7.下列四组函数,表示同一函数的是( )A.,B.C.D.【答案】D【解析】 A选项两个函数的定义域相同,但至于分别是[0,+∞)和R,所以排除A.B选项的定义域分别为x≠0和x>0,所以排除B.C选项中的定义域分别为R和x≠0,所以排除C.D选项的两函数化简后都是y=x,所以选D.【考点】 1.常见函数的定义域,值域问题.2.同一函数的判定方法.8.下列4对函数中表示同一函数的是( )A.,=B.,=C.=,D.,=【答案】B【解析】A.与=定义域不同;B.与=定义域、值域、对应法则完全相同,所以是同一函数;C.=与的定义域不同;D.与=的值域不同。

函数经典题型50道

函数经典题型50道

函数经典题型50道一、函数定义域题型(10道)1. 求函数y = (1)/(√(x - 1))的定义域。

- 解析:要使函数有意义,则分母不为零且根号下的数大于零。

对于√(x - 1),x-1>0,解得x > 1。

所以函数的定义域为(1,+∞)。

2. 求函数y=√(2x + 3)的定义域。

- 解析:根号下的数必须大于等于零,即2x+3≥0,2x≥ - 3,解得x≥-(3)/(2)。

定义域为[-(3)/(2),+∞)。

3. 函数y=(√(x + 2))/(x - 1)的定义域是多少?- 解析:分子中根号下x + 2≥0,解得x≥ - 2;分母x-1≠0,即x≠1。

所以定义域为[ - 2,1)∪(1,+∞)。

4. 求函数y=log_2(x^2-4)的定义域。

- 解析:对数函数中真数大于零,即x^2-4>0,(x + 2)(x-2)>0。

解得x < - 2或x>2。

定义域为(-∞,-2)∪(2,+∞)。

5. 求函数y = (1)/(ln(x - 2))的定义域。

- 解析:分母ln(x - 2)≠0且x-2>0。

由ln(x - 2)≠0得x-2≠1,即x≠3;由x - 2>0得x>2。

所以定义域为(2,3)∪(3,+∞)。

6. 函数y=√(log_frac{1){2}(3x - 2)}的定义域。

- 解析:首先3x - 2>0,解得x>(2)/(3)。

又因为log_(1)/(2)(3x -2)≥0=log_(1)/(2)1,由于对数函数y = log_(1)/(2)x是减函数,所以3x-2≤1,3x≤3,x≤1。

综合得(2)/(3),定义域为((2)/(3),1]。

7. 求函数y=(1)/(1 - tan x)的定义域。

- 解析:分母1-tan x≠0,即tan x≠1,且x≠ kπ+(π)/(2),k∈ Z。

由tan x≠1得x≠ kπ+(π)/(4),k∈ Z。

函数的三种表示方法对应典型练习题(图像法、列表法、解析法)

函数的三种表示方法对应典型练习题(图像法、列表法、解析法)

函数的三种表示方法对应典型练习题(图像法、列表法、解析法)祖π数学之高分速成新人教八年级下册基础知识3 函数的表示1.函数的表示方法可以用解析式法、列表法和图像法。

解析式法是用公式表示函数,列表法是将函数的定义域和值域列成表格,图像法是用函数的图像来表示函数。

2.描点法画函数图形的一般步骤是先确定定义域和值域,然后选择若干个自变量值,计算出相应的函数值,最后在平面直角坐标系中标出这些点,连接起来就是函数的图形。

题型1】图像法表示函数1.2008年5月12日,四川汶川发生8.0级大地震,我解放军某部火速向灾区推进。

官兵们坐车以某一速度匀速前进,但中途被阻停下。

为了尽快赶到灾区救援,官兵们下车急行军匀速步行前往。

根据函数的图像,可以判断出官兵们行进的距离S与行进时间t之间的关系。

2.故事中的乌鸦喝水问题可以用函数的图像来表示。

设从乌鸦看到瓶的那刻起向后的时间为x,瓶中水位的高度为y,可以画出函数的图像来表示乌鸦喝水的情景。

3.在矩形ABCD中,动点E从点B出发,沿BADC方向运动至点C处停止。

设点E运动的路程为x,△BCE的面积为y。

根据函数的图像,可以求出当x=7时,点E应运动到哪个位置。

4.在矩形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B-C-D作匀速运动。

根据函数的图像,可以求出△ABP的面积S与点P运动的路程x之间的函数图像。

5.XXX骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,加快了骑车速度。

根据XXX到学校剩下的路程s关于时间t的函数图像,可以判断出符合XXX行驶情况的图像。

6.XXX每天坚持体育锻炼,星期天从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家。

根据XXX离家的距离y(米)与时间t(分钟)之间关系的函数图像,可以判断出当天XXX的运动情况。

7.小以400米/分叶的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地。

高中数学必修1函数及其表示题型总结

高中数学必修1函数及其表示题型总结

函数及其表示考点一求定义域的几种情况①若 f(x)是整式,则函数的定义域是实数集R;②若 f(x)是分式,则函数的定义域是使分母不等于0 的实数集;③若 f(x)是二次根式,则函数的定义域是使根号内的式子大于或等于0 的实数集合;④若 f(x)是对数函数,真数应大于零。

⑤.因为零的零次幂没有意义,所以底数和指数不能同时为零。

⑥若 f(x)是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合;⑦若 f(x)是由实际问题抽象出来的函数,则函数的定义域应符合实际问题考点二映射个数公式mCard(A)=m,card(B)=n, m,n N ,则从 A 到 B 的映射个数为n。

简单说成“前指后底” 。

方法技巧清单方法一函数定义域的求法1.(2009江西卷文)函数y x23x4 的定义域为()xA.[4,1]B.[4, 0)C.(0,1] D .[ 4, 0) (0,1]解析由x00 或 0 x 1,故选D. x2 3x得 4 x4 02.(2009江西卷理)函数y ln( x1)的定义域为()x23x4A.( 4,1)B.(4,1)C.( 1,1) D .(1,1]解析x10x11 x1.故选C 由23x 404xx13.( 2009福建卷文)下列函数中,与函数y 1()有相同定义域的是xA . f ( x)ln x B. f ( x)1 C. f (x) | x | D. f ( x) e xx解析由 y1可得定义域是 x0. f (x)ln x 的定义域 x0 ; f ( x)1的定义域是 x ≠0;f ( x) | x | x x的定义域是 x R; f ( x)e x 定义域是 xR 。

故选 A.4.( 2007年上海) 函数 y lg( 4x )的定义域是.答案x x4 且 x3x325.求下列函数的定义域。

① y= x2x 2 .②y=x 1.③y= x 1 1xx x6.已知函数 f(x)的定义域为 1,5 ,求函数 F(x)=f(3x-1)-f(3x+1)的定义域。

初中数学函数知识点和常见题型总结

初中数学函数知识点和常见题型总结

函数知识点及常见题型总结函数在初中数学中考中分值大约有20~25分,一次函数、二次函数和反比例函数都会考查,其中一次函数和反比例函数分值共约占其中的50%,二次函数约占另一半。

函数的题型以下归纳总结了11种,当然这并不包括所有可能出现的情况,仅仅只是较为常见的。

函数有时是以下题型组合起来构成的较为复杂的题型,因此,我们必须掌握住以下题型才能寻求突破。

换句话说,我们掌握住以下题型,复杂的题型分解开来,我们也能各个突破,最终解决掉。

一、核心知识点总结1、函数的表达式1)一次函数:y=kx+b(,k b 是常数,0k ≠) 2)反比例函数:函数xky =(k 是常数,0k ≠)叫做反比例函数。

注意:0x ≠ 3)二次函数:)0,,(2≠++=a c b a c bx ax y 是常数,, 2、点的坐标与函数的关系1)点的坐标用(),a b 表示,横坐标在前,纵坐标在后,中间有“,”分开。

平面内点的坐标是有序实数对,当b a ≠时,(),a b 和(),b a 是两个不同点的坐标。

2)点的坐标:从点向x 轴和y 轴引垂线,横纵坐标的绝对值对应相对应线段的长度。

3)若某一点在某一函数图像上,则该点的坐标可代入函数的表达式中,要将函数图像上的点与坐标一一联系起来。

3、函数的图像 1)一次函数一次函数by=的=的图像是经过点(0,b)的直线;正比例函数kxy+kx图像是经过原点(0,0)的直线。

2)反比例函数3)二次函数4、函数图像的平移① 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ② 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:③平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位二、常见题型:1、求函数的表达式常见求函数表达式的方法是待定系数法,假设出函数解析式,将函数上的点的坐标代入函数,求出未知系数。

函数的表示法题型及解析

函数的表示法题型及解析

函数的表示法题型及解析1.某种笔记本的单价是5元,买x 本(x ∈{1,2,3,4,5})笔记本需要y 元,试用函数的三种表示法表示函数y=f (x )分析:利用函数的三种表示方法,即可将y 表示成x 的函数解:(1)列表法: (2)图象法 (3)解析法:y=5x ,x ∈{1,2,3,4,5}2.一种笔记本的单价是x 元,圆珠笔的单价是y 元.小红买这种笔记本4本,买圆珠笔3支;小强买这种笔记本3本,买圆珠笔2支,①买这些笔记本和圆珠笔,两人一共花费多少钱?②请结合生活实际选取适当的x ,y 值,计算两人的总花费.分析:①分别求出小红和小强的花费,然后相加;②结合实际,笔记本的单价为3元,圆珠笔的单价为1元,代入求解.解:①小红的花费为:4x+3y ,小强的花费为:3x+2y ,总花费为:4x+3y+3x+2y=7x+5y ;②当x=3,y=1时,原式=7×3+5×1=26(元).答:两人的总花费为26元.3.市内电话费是这样规定的,每打一次电话不超过3分钟付电话费0.18元,超过3分钟而不超过6分钟的付电话费0.36元,依此类推,每次打电话x (0<x ≤10)分钟应付话费y 元,写出函数解析式并画出函数图象 分析:这是一道分段函数的应用的数学题.由已知中,每打一次电话不超过3分钟付电话费0.18元,超过3分钟而不超过6分钟的付电话费0.36元,依此类推,即可得到0<x ≤10时,应付话费y 元,进而根据分段函数图象分段法,即可得到答案.解:由题意可知:y=,其图象如图所示:4.已知函数f (x )的图象是两条线段(如图,不含端点),求f (f ())分析:由图象可得函数f (x )=.即可得出解:由图象可得函数f (x )=.∴=,=.∴f (f ())==.5.下列集合A 到集合B 的对应f 是映射的是( )A .A={﹣1,0,1},B={﹣1,0,1},f :A 中的数平方;B .A={0,1},B={﹣1,0,1},f :A 中的数开方;C .A=Z ,B=Q ,f :A 中的数取倒数;D .A=R ,B=R +,f :A 中的数取绝对值分析:根据映射的概念,对于集合A 中的每一个元素在集合B 中都有唯一的元素与它对应,观察几个对应,得到B ,C ,D 三个选项都有元素在象的集合中没有对应.解:根据映射的概念,对于集合A中的每一个元素在集合B中都有唯一的元素与它对应,对于B选项A集合中的1对应B集合中的两个元素,对于选项C,集合A中的元素0在集合B中没有元素对应,对于选项D,集合A中的元素0在集合B中没有元素对应,故选A6.对应f:A→B是集合A到集合B的映射,若集合A={﹣1,0},B={1,2},则这样的映射有多少个?分析:按照映射定义,只需给A中每个元素找唯一的象,看有几种找法,即有几个映射.解:由映射定义知,对A中每个元素,在B中都有唯一确定的元素与之对应,建立A到B的映射,即给A中每个元素找象,先给A中元素﹣1找象,有两种方法;再给A中元素0找象,有两种方法,按照分步乘法原理,得共有2×2=4种方法,即有4个映射.7.对应f:x→2x﹣1是集合A到集合B的映射,若集合B={﹣3,﹣1,3},求集合A分析:根据映射的定义,分别令2x﹣1=﹣3,﹣1,3,解得 x的对应值,即可得到集合A解:根据映射的定义,分别令2x﹣1=﹣3,﹣1,3,解得 x=﹣1,0,2,从而得到集合A={﹣1,0,2},8.已知集合A=R,B={(x,y)|x,y∈R},f:A→B是从A到B的映射;f:x→(x+1,x2+1),求A中元素在B中的对应元素和B中元素(,)在A中的对应元素分析:由已知中集合A=R,B={(x,y)|x,y∈R},f:A→B是从A到B的映射;f:x→(x+1,x2+1),直接代入计算可得A中元素在B中的对应元素和B中元素(,)在A中的对应元素.解:∵集合A=R,B={(x,y)|x,y∈R},f:A→B是从A到B的映射;f:x→(x+1,x2+1),当x=时,x+1=+1,x2+1=3,故A中元素在B中的对应元素为(+1,3),由x+1=,且x2+1=得x=,故B中元素(,)在A中的对应元素为9.若集合A={1,2,3,4,5}且对应关系f:x→y=x(x﹣4)是从A到B的映射,问集合B中至少有几个元素?分析:把A中的5个元素分别代入计算可得.解:由题意把A中的5个元素分别代入计算可得:当x=1时,y=x(x﹣4)=﹣3;当x=2时,y=x(x﹣4)=﹣4;当x=3时,y=x(x﹣4)=﹣3;当x=4时,y=x(x﹣4)=0;当x=5时,y=x(x﹣4)=5;∴集合B中至少有4个元素﹣3,﹣4,0,510.已知2f(﹣x)+f(x)=x,求f(x).分析:以﹣x代替x,得2f(x)+f(﹣x)=﹣x为②式,已知为①式;由①②组成方程组,求出f(x)即可解:∵2f(﹣x)+f(x)=x,①;令以﹣x代替x,得2f(x)+f(﹣x)=﹣x,②;再由①﹣②×2,得:﹣3f (x)=3x;∴f(x)=﹣x11.已知函数f(x)=x2+1,求f(2x+1)解:∵f(x)=x2+1,∴f(2x+1)=(2x+1)2+1=4x2+4x+212.已知f()=2x,求f(x)分析:本题考察函数解析式求解及方法,可以用如下方法,令=t,求出x=,代入函数的表达式即可解:令=t,∴x=,∴f(t)=2(),∴f(x)=.(x∈R,x≠﹣1)13.已知f(x﹣2)=4x+3,求f(x)解析式.分析:本题为典型的换元法,引入新的变量进行替换原来的变量,从而实现形式的转化,令x﹣2=t,则x=t+2,代入原函数替换x,化简即可解:令x﹣2=t,则x=t+2,代入原函数得f(t)=4(t+2)+3=4t+11则函数f(x)的解析式为f(x)=4x+1114.设函数f(x)=2x+3,函数g(x)=3x-5,求不等式g(f(x))>22的解集解:∵函数f(x)=2x+3,函数g(x)=3x-5,∴g(f(x))=3[f(x)]-5=3(2x+3)-5=6x+9-5=6x+4,则不等式g(f(x))>22可化为6x+4>22.即6x>18.解得x>3.∴不等式g(f(x))>22的解集为(3,+∞)。

函数及其表示和函数性质高考题

函数及其表示和函数性质高考题

函数及其表示与基本性质 历年高考题汇编耐心做题,认真思考,你一定能行的,加油!1. (陕西文2)函数21lg)(x x f -=的定义域为(A )[0,1](B )(-1,1) (C )[-1,1](D )(-∞,-1)∪(1,+∞)2、(广东卷)函数2()lg(31)f x x =++的定义域是 A.1(,)3-+∞ B. 1(,1)3- C. 11(,)33- D. 1(,)3-∞-3. (江西文3)函数1()lg 4x f x x -=-的定义域为()A.(14),B.[14),C.(1)(4)-∞+∞,,D.(1](4)-∞+∞,,4、(06湖北卷)设2()lg 2x f x x +=-,则2()()2x f f x+的定义域为 A .(4,0)(0,4)- B .(4,1)(1,4)-- C .(2,1)(1,2)-- D .(4,2)(2,4)--5.(湖南卷)函数y =( )A.(3,+∞)B.[3, +∞)C.(4, +∞)D.[4, +∞)6、(全国1)函数y ) A .{}|0x x ≥B .{}|1x x ≥C .{}{}|10x x ≥D .{}|01x x ≤≤7、(湖北卷4)函数1()f x x=的定义域为( )A. (,4][2,)-∞-+∞B. (4,0)(0.1)-C. [-4,0)(0,1]D. [4,0)(0,1)-8、(2009福建卷文)下列函数中,与函数y=有相同定义域的是( ) A .()ln f x x = B.1()f x x=C. ()||f x x =D.()x f x e = 9、.(2010全国卷Ⅰ理)函数()f x 的定义域为R ,若(1)f x +与(1)f x -都是奇函数,则( ) A.()f x 是偶函数 B.()f x 是奇函数 C.()(2)f x f x =+ D.(3)f x +是奇函数10、(浙江文)若函数2()()af x x a x=+∈R ,则下列结论正确的是( ) A.a ∀∈R ,()f x 在(0,)+∞上是增函数 B.a ∀∈R ,()f x 在(0,)+∞上是减函数 C.a ∃∈R ,()f x 是偶函数 D.a ∃∈R ,()f x 是奇函数11. (2010山东卷理)函数x xx xe e y e e--+=-的图像大致为 ( ).12.(山东卷理)定义在R 上的函数f(x )满足f(x)= ⎩⎨⎧>---≤-0),2()1(0),1(log 2x x f x f x x ,则f (2009)的值为( )A.-1B. 0C.1D. 213. (山东卷文)定义在R 上的函数f(x )满足f(x)= ⎩⎨⎧>---≤-0),2()1(0),4(log 2x x f x f x x ,则f (3)的值为( )A.-1B. -2C.1D. 214.(2009山东卷文)已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,则( ).A.(25)(11)(80)f f f -<<B. (80)(11)(25)f f f <<-C. (11)(80)(25)f f f <<-D. (25)(80)(11)f f f -<< 15.(2009全国卷Ⅱ文)函数(x ≤0)的反函数是( )(A )2y x =(x ≥0) (B )2y x =-(x ≥0) (B )2y x =(x ≤0) (D )2y x =-(x ≤0)D16.(2009全国卷Ⅱ文)函数y=22log 2xy x-=+的图像 ( )(A ) 关于原点对称 (B )关于主线y x =-对称 (C ) 关于y 轴对称 (D )关于直线y x =对称17.(2009广东卷理)已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为v v 乙甲和(如图2所示).那么对于图中给定的01t t 和,下列判断中一定正确的是( )A. 在1t 时刻,甲车在乙车前面B. 1t 时刻后,甲车在乙车后面C. 在0t 时刻,两车的位置相同D. 0t 时刻后,乙车在甲车前面18.(2009安徽卷理)设a <b,函数2()()y x a x b =--的图像可能是( )19.(2009安徽卷文)设,函数的图像可能是 ( )20.(江西卷文)函数234x x y x--+=的定义域为 ( )A .[4,1]-B .[4,0)-C .(0,1]D .[4,0)(0,1]-21.(江西卷文)已知函数()f x 是(,)-∞+∞上的偶函数,若对于0x ≥,都有(2()f x f x +=),且当[0,2)x ∈时,2()log (1f x x =+),则(2008)(2009)f f -+的值为( )A .2-B .1-C .1D .222.(江西卷文)如图所示,一质点(,)P x y 在xOy 平面上沿曲线运动, 速度大小不变,其在x 轴上的投影点(,0)Q x 的运动速度()V V t =的图象大致为 ( )A B C D23.(江西卷理)函数2ln(1)34x y x x +=--+的定义域为 ( )A .(4,1)--B .(4,1)-C .(1,1)-D .(1,1]-24.(江西卷理)设函数2()(0)f x ax bx c a =++<的定义域为D ,若所有点(,())(,)s f t s t D ∈构成一个正方形区域,则a 的值为( )A .2-B .4-C .8-D .不能确定25.(2009天津卷文)设函数⎩⎨⎧<+≥+-=0,60,64)(2x x x x x x f 则不等式)1()(f x f >的解集是( )A.),3()1,3(+∞⋃-B.),2()1,3(+∞⋃-C.),3()1,1(+∞⋃-D.)3,1()3,(⋃--∞26.(天津卷文)设函数f(x)在R 上的导函数为f ’(x),且2f(x)+xf ’(x)>x 2,x 下面的不等式在R 内恒成立的是( )A.0)(>x fB.0)(<x fC.x x f >)(D.x x f <)(27.(全国Ⅰ卷理) 函数(1)y x x x =-+的定义域为( )A .{}|0x x ≥B .{}|1x x ≥C .{}{}|10x x ≥D .{}|01x x ≤≤28.(四川文)函数()f x 满足()()213f x f x ⋅+=,若()12f =,则()99f =( )yxO(,)P x y (,0)Q x O ()t t O ()V t tO ()V t tO()V t t(A)13 (B)2 (C)132 (D)21329( 广东文)若函数f(x)=x 3(x ∈R),则函数y=f(-x)在其定义域上是( )A .单调递减的偶函数 B.单调递减的奇函数 C .单调递增的偶函数 D .单调递增的奇函数、 30.(辽宁文)若函数()y f x =的图象按向量a 平移后,得到函数(1)2y f x =--的图象,则向量a =( ) A .()2,1-- B .(12), C .(12)-, D .(12)-,31.(浙江理科)设f (x )=2|1|2,||1,1, ||11x x x x --≤⎧⎪⎨>⎪+⎩,则f [f (21)]=( ) (A) 21 (B)413 (C)-95 (D) 254132.(天津)函数1(0)y x =<的反函数是( )A.0)y x =<B.0)y x =<C.2)y x =>D.2)y x =>33.(山东文)已知定义在R 上的奇函数f (x )满足f (x+2)=-f (x ),则,f (6)的值为( )(A)-1 (B) 0 (C) 1 (D)234.(重庆文)若函数)(x f 是定义在R 上的偶函数,在]0,(-∞上是减函数,且0)2(=f ,则使得0)(<x f 的x 的取值范围是( ) A .)2,(-∞ B .),2(+∞ C .),2()2,(+∞--∞ D .(-2,2)35.(福建文))(x f 是定义在R 上的以3为周期的奇函数,且0)2(=f ,则方程)(x f =0在区间(0,6)内解的个数的最小值是 ( ) A .2 B .3 C .4 D .536.(全国)函数11-=y 的图象是( )37.(全国Ⅰ卷文) 汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )38.(江西)设集合A 和B 都是坐标平面上的点集(){}R y R x y x ∈∈,|,,映射B A f →:把集合A 中的元素()y x ,映射成集合B 中的元素()y x y x -+ ,,则在映射f 下,象()1,2的原象是( )(A )()1 ,3 (B )⎪⎭⎫ ⎝⎛21 ,23 (C )⎪⎭⎫⎝⎛-21 ,23 (D )()3 ,139 .(上海理)已知函数0()(2≠+=x xa x x f ,常数)a ∈R .(1)讨论函数)(x f 的奇偶性,并说明理由;(2)若函数)(x f 在[2)x ∈+∞,上为增函数,求a 的取值范围.40已知a 是实数,函数2()223f x ax x a =+--.如果函数()y f x =在区间[-1,1]上有零点,求a 的取值范围.sA .sssB .C .D .。

函数及其表示类型题归纳

函数及其表示类型题归纳

函数及其表示类型题归纳题型一:函数的三要素【例1】判断下列函数中是否为同一函数:(1)=)(x f 122-+x x ,)(x g =122-+t t ;(2)=)(x f 112--x x ,)(x g =1+x ;(3)=)(x f ⋅x 1+x ,)(x g =x x +2;(4)=)(x f ,12-x )(x g =,12+x Z x ∈。

题型二:函数定义域的求法【例2】求下列函数的定义域并用区间表示:⑴ 函数=)(x f xx x -+--4132; (2)函数=)(x f .)2(0xx x +-【例3】(1)已知函数)(x f 的定义域是[-1,1],则函数)12(-x f 的定义域为 .已知函数()f x 的定义域为[]15-,,求(35)f x -的定义域. (2)如果函数)34(-=x f y 的定义域为[1,5],则函数)(x f 的定义域是 .已知函数2(22)f x x -+的定义域为[]03,,求函数()f x 的定义域. 题型三:函数值的求法【例4】(1)已知函数=)(x f ⎩⎨⎧<≥-)1(1)1(1x x x 求)]}.2([{)],2([),2(),0(f f f f f f f 的值。

(2)已知函数=)(x f ,)2(2)21()1(22⎪⎩⎪⎨⎧≥<<--≤+x x x x x x 且=)(x f 8,则x =.(3)已知函数=)(x f 12-x ,)(x g =⎩⎨⎧<-≥0,10,2x x x ,求)]([)]([x f g x g f 和;(4)设函数k n f =)(()*∈Nn ,k 是2的小数点后第n 位数,2=1。

4142135623…,则()()ff f f 个88的值等于 .【例5】设函数=)(x f 221+x,(1)求证)1()(x f x f -+=22;(2)利用(1)中的结论计算)6()5()0()4()5(f f f f f +++++-+- 的值题型四:解含分段函数的不等式【例6】已知函数=)(x f ⎩⎨⎧<-≥)0(1)0(1x x ,则不等式5)2()2(≤+++x f x x 的解集是 .【例7】已知函数=)(x f ⎪⎩⎪⎨⎧>+-≤<+≤+)1(5)10(3)0(32x x x x x x ,解不等式1)1(+≥-x x f 。

函数知识点及基本题型集锦

函数知识点及基本题型集锦

第二章:函数1、函数的概念:一般地,设A 、B 是两个非空的数集,如果按某种对应法则f ,对于集合A 中的每一个元素x ,在集合中B 中都有唯一的元素y 和它对应,那么这样的对应叫做从A 到B 的一个函数。

记为y=f(x),x A y B ∈∈ (从映射的角度看,函数其实就是非空数集A 到非空数集B 的一个特殊的映射)2、定义域:自变量x 的取值范围,即:集合A ,(对于用解析式表示的函数,若没有指明定义域,那么就认为函数的定义域是使函数表达式有意义的x 的集合。

) 定义域的求法:主要遇到的是(1)、分式函数的分母不为0。

例如:11y x =- 定义域为:{}/1x x ≠(写成集合的形式)(2)、含偶次根式的函数,根号底下的大于等于0。

例如:y = 有220x -≥求得其函数定义域的为:{/x x x ≥≤练习:7、求()f x =3、值域:函数值的取值范围,记做C ,显然C B ⊆值域的求法:(值域的求法是比较难的内容,同学们暂时只要了解和掌握比较常见的值域求法就可以了)主要有以下几种:A 、观察法:只要适合于比较简单的函数,比如:1,00,01,0x y x x >⎧⎪==⎨⎪-<⎩值域就为{}1,0,1-。

练习:8、函数A 到B 的函数():21f x x x →-集合{}1,2,3A =,{}0,1,2,3,4,5,6B =求()f x 的值域。

B 、配方法求二次函数的值域(通常和函数图像一起来求解)例如:已知函数223y x x =+-分别求出下列区间上的值域,(1)x R ∈,(2)、[2,2)x ∈-(3)、[1,3]x ∈ (这里给出的x 的范围主要有三种:整个定义域R ,区间介于对称轴的两边,区间在函数图像对称轴的一边,) 解:第一步:先进行配方。

第二步:作出函数的大致图像(要标出图像与坐标轴的交点和定点坐标、对称轴、要求的区间的端点坐标)第三步:从图像上分析,在要求的区间上的函数值域是多少 练习:9 函数2()41f x x x =-+,求(1,3)-上的值域。

函数题型总结

函数题型总结

函数题型总结函数题是高中数学中常见的一种题型,也是相对较难的一种题型。

函数题考察的是学生对函数的理解和运用能力,需要掌握函数的基本概念、性质以及函数的应用。

函数题主要分为以下几种类型:1. 函数的定义与性质题:这类题目要求学生根据给定的函数定义或性质,判断函数的取值范围、单调性等性质,或者求函数值、函数的表达式等。

例题1:已知函数$f(x)=2x^2-3x+1$,求函数的零点。

解析:零点即函数取值为0的点,即$f(x)=2x^2-3x+1=0$。

将方程化简,得到$x=\frac{1}{2}$。

所以函数的零点为$\left\{\frac{1}{2}\right\}$。

2. 函数的图象题:这类题目要求学生根据函数的解析式或性质,画出函数的图象或根据图象,判断函数的性质。

例题2:画出函数$f(x)=x^2$的图象。

解析:首先确定图象的范围,然后确定坐标轴的刻度,根据函数的解析式,计算各个点的函数值,最后连接这些点,即可得到函数的图象。

函数$f(x)=x^2$的图象是一个抛物线,开口朝上,顶点在原点(0,0)处。

3. 函数的求最值题:这类题目要求学生根据函数的解析式或性质,求函数的最大值或最小值。

例题3:已知函数$f(x)=x^2-2x+3$,求函数的最小值。

解析:对于二次函数$f(x)=x^2-2x+3$,可以通过求导数的方法得到临界点。

首先求导得到$f'(x)=2x-2$,令导数为0,得到$x=1$。

再代入函数中计算最小值:$f(1)=(1)^2-2(1)+3=2$。

所以函数的最小值为2。

4. 函数的复合题:这类题目要求学生根据已知的函数关系,求出复合函数的表达式。

例题4:已知函数$f(x)=x+3$,$g(x)=2x-1$,求复合函数$(f\circ g)(x)$。

解析:复合函数$(f\circ g)(x)$表示先计算$g(x)$的值,再将$g(x)$的值代入$f(x)$中。

所以$(f\circ g)(x)=f(g(x))=f(2x-1)=(2x-1)+3=2x+2$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数及其表示
题型一 含参数的函数的定义域的求法
例1 已知-b <a <0,且函数f (x )的定义域是[a ,b ],则函数F (x )=f (x )+f (-x )的定义域是( )
A .[a ,b ]
B .[-b ,-a ]
C .[-b ,b ]
D .[a ,-a ]
例1【解析】 ∵⎩⎪⎨⎪⎧ a ≤x ≤b ,a ≤-x ≤b ,∴⎩⎪⎨⎪⎧
a ≤x ≤
b ,-b ≤x ≤-a . 又∵-b <a <0,∴a ≤x ≤-a ,∴选D.
【答案】 D
题型二 已知原函数的定义域,求复合函数的定义域
例2 已知函数f (x )的定义域为[-1,3],求函数f (2x -1)的定义域.
【思路】 函数f (x )的定义域为[a ,b ]指a ≤x ≤b ,即在同一对应法则f 的作用下,接受法则的对象无论是什么代数式时,必受a ≤x ≤b 制约.
例2【解析】 因为函数f (x )的定义域为[-1,3],所以对于函数f (2x -1),有-1≤2x -1≤3,解得0≤x ≤2.
故函数f (2x -1)的定义域是[0,2].
探究1 (1)此题比较抽象,理解关键在于:由于函数的定义域是自变量的范围,而f (x )的自变量是x ,对于函数f [g (x )]而言,自变量也是x ,但同时有f (x )中的“x ”的范围与f [g (x )]中的“g (x )”的范围是相同的.
(2)法则“f ”相当于一间屋子,任何“人”住进来,空间都不变!
(3)已知f (x )定义域为[a ,b ],求f [g (x )]定义域.
只需解不等式a ≤g (x )≤b ,即得f [g (x )]的定义域.
思考题1 已知f (x )的定义域为[0,2],f (x 2)的定义域为________.
【答案】 [-2,2]
题型三 已知复合函数的定义域,求原函数的定义域
例3 已知函数f (x +3)的定义域为[-1,3],求函数f (x )的定义域. 例3【思路】 由于函数f (x +3)的定义域[-1,3],所以-1≤x ≤3,得到2≤x +3≤6,故可以得到函数f (x )的定义域.
【解析】 因为函数f (x +3)的定义域为[-1,3],
所以由-1≤x ≤3,得到2≤x +3≤6.
所以函数f (x )的定义域是[2,6].
探究2 已知f [g (x )]定义域为[a ,b ],求f (x )定义域只需根据a ≤x ≤b ,求出g (x )的范围即得f (x )的定义域.
思考题2 (1)(2013·大纲全国)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( )
A .(-1,1)
B .(-1,-12)
C .(-1,0)
D .(12,1)
【解析】 由-1<2x +1<0,解得-1<x <-12.故函数f (2x +1)的定
义域为(-1,-12).
【答案】 B
(2)已知f (x 2
)的定义域为⎣⎢⎡⎦⎥⎤-12,2,则y =f (x )的定义域为________. 【答案】 [0,4]
(3)已知函数f (x +2)的定义域为[1,3],求函数f (1-x )的定义域.
【解析】 ∵f (x +2)的定义域为[1,3],
∴3≤x +2≤5,∴f (x )的定义域为[3,5].
要使f (1-x )有意义则,3≤1-x ≤5,∴-4≤x ≤-2.
∴f (1-x )的定义域为{x |-4≤x ≤-2}.
题型四 图像法求函数的值域
例4 作出下列函数的图像并写出它们的值域.
(1)y =|x -1|+|x +1|; (2)y =x ,x ∈Z 且|x |≤2;
(3)y =|x 2-2x |; (4)y =2x 2-4x -3(0≤x <3).
例4【解析】 (1)y =|x -1|+|x +1|=⎩⎪⎨⎪⎧ -2x (x ≤-1),2 (-1<x ≤1),2x (x >1).
图像下左图.由图像可得值域为[2,+∞).
(2)显然x =-2,-1,0,1,2相应地有y =-2,-1,0,1,2.函数的图像是由五个点构成的,见下右图.值域为:{-2,-1,0,1,2}.
(1)图
(2)图 (3)

(3)y =|x 2-2x |=⎩⎪⎨⎪⎧
x 2-2x (x ≤0或x ≥2),-(x 2-2x ) (0<x <2). 图像如下左图,值域为[0,+∞).
(4)y =2(x 2-2x +1)-5=2(x -1)2-5,
图像见下右图.y ∈[-5,3).
(4)图
题型五抽象函数的求值
例5设函数y=f(x),x∈R,f(x)≠0,对任意的实数x,y均有f(x+y)=f(x)·f(y)成立.
(1)求f(0);
(2)求证:f(-1)=1
f(1)

(3)求证:f(x)>0对任意x都成立.
【解析】(1)令x=y=0,得f(0)=f2(0),∵f(x)≠0,∴f(0)=1.
(2)令x=1,y=-1,得f(-1)=1
f(1)
.
(3)f(x)=f(x
2+x
2)=f
2(x
2)>0.
探究3此类抽象函数的求值问题往往采取赋值法.
题型六函数图像的应用
例6向高为H的水瓶中注水,注满为止,如果注水量V与水深h的函数关系的图像如图所示,那么水瓶形状是()
【解析】方法1:根据题意,V=f(h)的图像是一段曲线,V随
h 的增加而增加,而且开始阶段V 的增加较快,以后渐渐变慢,故水瓶的形状必是下口大上口小,于是答案选B.
方法2:设注水量V 与水深h 的关系为V =f (h ),则由图可知,f ⎝ ⎛⎭
⎪⎫H 2>12f (H ),即当用水达到一半时,水上升的高度还未达到一半,也就是开始阶段用水较多,从而有水瓶的形状为下口大上口小,答案选
B.
【答案】 B
例7 当m 为怎样的实数时,方程x 2-4|x |+5=m 有四个互不相等的实数根?
【解析】 先作出y =x 2-4|x |+5的图像.
y =⎩⎪⎨⎪⎧
x 2-4x +5,x ≥0,x 2+4x +5,x <0. 如下图所示,从图上可以直接看出,
当1<m <5时,方程有四个互不相等的实根.
探究4 函数图像直观,能够帮助我们正确理解概念和有关性质,数形结合是研究数学的一个重要手段,是解题的一个有效途径,用数形结合解题比较直观,便于发现问题,启发思考,有助于培养综合运用数学知识来解决问题的能力.。

相关文档
最新文档