江苏省高中数学第一章三角函数第15课时1.3.4三角函数的应用1教案苏教版必修15
高中数学 第一章 三角函数 1.3.3 函数y=Asin(ωx+φ)的图象(二)学案 苏教版必修4-
1.3.3 函数y =Asin(ωx+φ)的图象(二)[学习目标] 1.会用“五点法”画函数y =A sin(ωx +φ)的图象.2.能根据y =A sin(ωx +φ)的部分图象,确定其解析式.[知识链接]由函数y =sin x 的图象经过怎样的变换得到函数y =sin(ωx +φ)(ω>0)的图象? 答 y =sin x 的图象变换成y =sin(ωx +φ)(ω>0)的图象一般有两个途径: 途径一:先相位变换,再周期变换先将y =sin x 的图象向左(φ>0)或向右(φ<0)平移|φ|个单位长度,再将得到的图象上各点的横坐标变为原来的1ω倍(纵坐标不变),得y =sin(ωx +φ)的图象.途径二:先周期变换,再相位变换先将y =sin x 的图象上各点的横坐标变为原来的1ω倍(纵坐标不变),再将得到的图象向左(φ>0)或向右(φ<0)平移|φ|ω个单位长度,得y =sin(ωx +φ)的图象.[预习导引]函数y =A sin(ωx +φ) (A >0,ω>0)的性质如下:定义域 R 值域 [-A ,A ]周期性T =2πω奇偶性φ=k π (k ∈Z )时是奇函数;φ=π2+k π (k ∈Z )时是偶函数;当φ≠k π2(k ∈Z )时是非奇非偶函数单调性单调增区间可由2k π-π2≤ωx +φ≤2k π+π2(k ∈Z )得到,单调减区间可由2k π+π2≤ωx +φ≤2k π+3π2(k ∈Z )得到要点一 “五点法”作y =A sin(ωx +φ)的简图例1 用“五点法”作出函数y =2sin ⎝ ⎛⎭⎪⎫2x +π3的简图,并指出该函数的单调区间. 解 (1)列表如下:2x +π30 π2 π 3π2 2π x -π6π12 π3 7π12 5π6 y2-2(2)描点、连线,如图由图象知,在一个周期内,函数在⎣⎢⎡⎦⎥⎤π12,7π12上单调递减,函数在⎣⎢⎡⎦⎥⎤-512π,π12上单调递增.又因为函数的周期为π,所以函数的单调递减区间为⎣⎢⎡⎦⎥⎤π12+k π,7π12+k π(k ∈Z );单调递增区间为⎣⎢⎡⎦⎥⎤-5π12+k π,π12+k π(k ∈Z ).规律方法 用“五点法”画函数y =A sin (ωx +φ)(x ∈R )的简图,先作变量代换,令X =ωx +φ,再用方程思想由X 取0,π2,π,32π,2π来确定对应的x 值,最后根据x ,y 的值描点、连线画出函数的图象.跟踪演练1 作出函数y =32sin ⎝ ⎛⎭⎪⎫13x -π3在长度为一个周期的闭区间上的图象.解 列表:X =13x -π3π2 π3π2 2πxπ 5π24π 11π27πy =32sin ⎝ ⎛⎭⎪⎫13x -π332-32描点画图(如图所示):要点二 求函数y =A sin(ωx +φ)的解析式例2 函数y =A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的图象的一部分如图所示,求此函数的解析式.解 方法一 (逐一定参法)由图象知A =3,T =5π6-⎝ ⎛⎭⎪⎫-π6=π,∴ω=2πT=2,∴y =3sin(2x +φ).∵点⎝ ⎛⎭⎪⎫-π6,0在函数图象上,且为第一个特值点, ∴0=3sin ⎝ ⎛⎭⎪⎫-π6×2+φ.∴-π6×2+φ=k π,得φ=π3+k π(k ∈Z ).∵|φ|<π2,∴φ=π3.∴y =3sin ⎝ ⎛⎭⎪⎫2x +π3.方法二 (待定系数法)由图象知A =3.∵图象过点⎝ ⎛⎭⎪⎫π3,0和⎝ ⎛⎭⎪⎫5π6,0,∴⎩⎪⎨⎪⎧πω3+φ=π,5πω6+φ=2π,解得⎩⎪⎨⎪⎧ω=2,φ=π3.∴y =3sin ⎝⎛⎭⎪⎫2x +π3.方法三 (图象变换法)由A =3,T =π,点⎝ ⎛⎭⎪⎫-π6,0在图象上,可知函数图象由y =3sin 2x 向左平移π6个单位长度而得,所以y =3sin 2⎝ ⎛⎭⎪⎫x +π6,即y =3sin ⎝⎛⎭⎪⎫2x +π3.规律方法 给出y =A sin(ωx +φ)的图象的一部分,确定A ,ω,φ的方法:(1)第一零点法:如果从图象可直接确定A 和ω,则选取“第一零点”(即“五点法”作图中的第一个点)的数据代入“ωx +φ=0”(要注意正确判断哪一点是“第一零点”)求得φ. (2)特殊值法:通过若干特殊点代入函数式,可以求得相关待定系数A ,ω,φ.这里需要注意的是,要认清所选择的点属于五个点中的哪一点,并能正确代入列式.(3)图象变换法:运用逆向思维的方法,先确定函数的基本解析式y =A sin ωx ,再根据图象平移规律确定相关的参数.跟踪演练2 如图,函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π)的图象,根据图中条件,写出该函数解析式.解 由图象知A =5.由T 2=5π2-π=3π2,得T =3π, ∴ω=2πT =23.∴y =5sin(23x +φ).下面用两种方法求φ: 方法一 (单调性法)∵点(π,0)在递减的那段曲线上, ∴2π3+φ∈[π2+2k π,32π+2k π](k ∈Z ).由sin(2π3+φ)=0,得2π3+φ=2k π+π(k ∈Z ),∴φ=2k π+π3(k ∈Z ).∵|φ|<π,∴φ=π3.方法二 (最值点法)将最高点坐标(π4,5)代入y =5sin(23x +φ),得5sin(π6+φ)=5,∴π6+φ=2k π+π2(k ∈Z ),∴φ=2k π+π3(k ∈Z ). ∵|φ|<π,∴φ=π3.所以该函数式为y =5sin(23x +π3).1.若函数y =A sin(ωx +φ)(A >0,ω>0)为偶函数,则φ满足的条件是________. 答案 φ=k π+π2(k ∈Z )2.函数y =sin(ωx +φ)(x ∈R ,ω>0,0≤φ<2π)的部分图象如图,则ω=________,φ=________.答案π4 π4解析 由所给图象可知,T4=2,∴T =8.又∵T =2πω,∴ω=π4.∵图象在x =1处取得最高点,∴π4+φ=π2+2k π(k ∈Z ), ∴φ=2k π+π4(k ∈Z ),∵0≤φ<2π,,∴φ=π4.3.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π3(ω>0)的最小正周期为π,则该函数的图象说法正确的有________.①关于点⎝ ⎛⎭⎪⎫π3,0对称;②关于直线x =π4对称;③关于点⎝ ⎛⎭⎪⎫π4,0对称; ④关于直线x =π12对称.答案 ①④4.作出y =3sin ⎝ ⎛⎭⎪⎫12x -π4在一个周期上的图象.解 (1)列表:12x -π40 π2 π 32π 2π xπ2 32π 52π 72π 92π 3sin ⎝ ⎛⎭⎪⎫12x -π43-3描点、连线,如图所示:1.由函数y =A sin(ωx +φ)的部分图象确定解析式关键在于确定参数A ,ω,φ的值. (1)一般可由图象上的最大值、最小值来确定|A |.(2)因为T =2π|ω|,所以往往通过求周期T 来确定ω,可通过已知曲线与x 轴的交点从而确定T ,即相邻的最高点与最低点之间的距离为T2;相邻的两个最高点(或最低点)之间的距离为T .(3)从寻找“五点法”中的第一零点⎝ ⎛⎭⎪⎫-φω,0(也叫初始点)作为突破口.以y =A sin(ωx +φ)(A >0,ω>0)为例,位于单调递增区间上离y 轴最近的那个零点最适合作为“五点”中的第一个点.2.在研究y =A sin(ωx +φ)(A >0,ω>0)的性质时,注意采用整体代换的思想.例如,它在ωx +φ=π2+2k π (k ∈Z )时取得最大值,在ωx +φ=3π2+2k π (k ∈Z )时取得最小值.一、基础达标1.已知简谐运动f (x )=2sin ⎝⎛⎭⎪⎫π3x +φ(|φ|<π2)的图象经过点(0,1),则该简谐运动的最小正周期T 和初相φ分别为T =________,φ=________. 答案 6π6解析 T =2πω=2ππ3=6,代入(0,1)点得sin φ=12.∵-π2<φ<π2,∴φ=π6.2.函数图象的一部分如下图所示,则符合题意的解析式是__________________.①y =sin ⎝ ⎛⎭⎪⎫x +π6;②y =sin ⎝ ⎛⎭⎪⎫2x -π6;③y =cos ⎝ ⎛⎭⎪⎫4x -π3;④y =cos ⎝ ⎛⎭⎪⎫2x -π6. 答案 ④解析 由图知T =4×⎝ ⎛⎭⎪⎫π12+π6=π,∴ω=2πT =2. 又x =π12时,y =1,经验证只有④符合.3.若函数y =sin(ωx +φ)(ω>0)的部分图象如图,则ω=________.答案 4解析 设函数的最小正周期为T , 由函数图象可知T 2=⎝ ⎛⎭⎪⎫x 0+π4-x 0=π4,所以T =π2.又因为T =2πω,可解得ω=4.4.已知a 是实数,则函数f (x )=1+a sin ax 的图象可能是________.答案 ①②③解析 当a =0时f (x )=1,③符合,当0<|a |<1时T >2π,且最小值为正数,①符合, 当|a |>1时T <2π,②符合.5.函数y =12sin ⎝ ⎛⎭⎪⎫2x -π6与y 轴最近的对称轴方程是__________. 答案 x =-π6解析 令2x -π6=k π+π2(k ∈Z ),∴x =k π2+π3(k ∈Z ). 由k =0,得x =π3;由k =-1,得x =-π6.6.函数y =cos(2x +φ)(-π≤φ<π)的图象向右平移π2个单位后,与函数y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象重合,则φ=________. 答案5π6解析 函数y =cos(2x +φ)向右平移π2个单位,得到y =sin ⎝ ⎛⎭⎪⎫2x +π3,即y =sin ⎝ ⎛⎭⎪⎫2x +π3向左平移π2个单位得到函数y =cos(2x +φ),y =sin ⎝⎛⎭⎪⎫2x +π3向左平移π2个单位,得y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π2+π3=sin ⎝ ⎛⎭⎪⎫2x +π+π3=-sin ⎝ ⎛⎭⎪⎫2x +π3=cos ⎝ ⎛⎭⎪⎫π2+2x +π3=cos ⎝ ⎛⎭⎪⎫2x +5π6,即φ=5π6.7.已知曲线y =A sin(ωx +φ) (A >0,ω>0)上的一个最高点的坐标为⎝⎛⎭⎪⎫π8,2,此点到相邻最低点间的曲线与x 轴交于点⎝ ⎛⎭⎪⎫38π,0,若φ∈⎝ ⎛⎭⎪⎫-π2,π2.(1)试求这条曲线的函数表达式;(2)用“五点法”画出(1)中函数在[0,π]上的图象. 解 (1)由题意知A =2,T =4×⎝ ⎛⎭⎪⎫38π-π8=π,ω=2πT=2,∴y =2sin(2x +φ).又∵sin ⎝ ⎛⎭⎪⎫π8×2+φ=1,∴π4+φ=2k π+π2,k ∈Z , ∴φ=2k π+π4,k ∈Z ,又∵φ∈⎝ ⎛⎭⎪⎫-π2,π2,∴φ=π4,∴y =2sin ⎝⎛⎭⎪⎫2x +π4.(2)列出x 、y 的对应值表:x-π8 π8 38π 58π 78π 2x +π40 π2 π 32π 2π y2-2描点、连线,如图所示:二、能力提升8.如果函数y =sin 2x +a cos 2x 的图象关于直线x =-π8对称,那么a =________.答案 -1解析 方法一 ∵函数y =sin 2x +a cos 2x 的图象关于x =-π8对称,设f (x )=sin 2x +a cos 2x ,则f ⎝ ⎛⎭⎪⎫-π4=f (0), ∴sin ⎝ ⎛⎭⎪⎫-π2+a cos ⎝ ⎛⎭⎪⎫-π2=sin 0+a cos 0. ∴a =-1.方法二 由题意得f ⎝ ⎛⎭⎪⎫-π8-x =f ⎝ ⎛⎭⎪⎫-π8+x ,令x =π8,有f ⎝ ⎛⎭⎪⎫-π4=f (0),即a =-1.9.函数f (x )=2sin(ωx +φ),⎝ ⎛⎭⎪⎫ω>0,-π2<φ<π2的部分图象如图所示,则ω,φ的值分别是________.答案 2,-π3解析 由图象知34T =5π12-⎝ ⎛⎭⎪⎫-π3=3π4,解得T =π. 由T =2πω=π,解得ω=2, 得函数表达式为f (x )=2sin(2x +φ)又因为当x =5π12时取得最大值2, 所以2sin ⎝ ⎛⎭⎪⎫2×5π12+φ=2, 可得5π6+φ=π2+2k π(k ∈Z ) 因为-π2<φ<π2,所以取k =0,得φ=-π3. 10.关于f (x )=4sin ⎝ ⎛⎭⎪⎫2x +π3 (x ∈R ),有下列命题: ①由f (x 1)=f (x 2)=0可得x 1-x 2是π的整数倍;②y =f (x )的表达式可改写成y =4cos ⎝⎛⎭⎪⎫2x -π6; ③y =f (x )图象关于⎝ ⎛⎭⎪⎫-π6,0对称; ④y =f (x )图象关于x =-π6对称. 其中正确命题的序号为________.答案 ②③解析 对于①,由f (x )=0,可得2x +π3=k π (k ∈Z ). ∴x =k 2π-π6,∴x 1-x 2是π2的整数倍,∴①错;对于②,f (x )=4sin ⎝⎛⎭⎪⎫2x +π3利用公式得: f (x )=4cos ⎣⎢⎡⎦⎥⎤π2-⎝⎛⎭⎪⎫2x +π3=4cos ⎝ ⎛⎭⎪⎫2x -π6. ∴②对;对于③,f (x )=4sin ⎝⎛⎭⎪⎫2x +π3的对称中心满足2x +π3=k π,k ∈Z ,∴x =k 2π-π6,k ∈Z . ∴⎝ ⎛⎭⎪⎫-π6,0是函数y =f (x )的一个对称中心,∴③对; 对于④,函数y =f (x )的对称轴满足2x +π3=π2+k π,k ∈Z .∴x =π12+k π2,k ∈Z ,∴④错. 11.函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的最小值为-2,其图象相邻的最高点与最低点横坐标差是3π,又图象过点(0,1),求函数的解析式.解 由于最小值为-2,所以A =2.又相邻的最高点与最低点横坐标之差为3π.故T =2×3π=6π,从而ω=2πT =2π6π=13, y =2sin ⎝ ⎛⎭⎪⎫13x +φ. 又图象过点(0,1),所以sin φ=12, 因为|φ|<π2,所以φ=π6. 故所求解析式为y =2sin ⎝ ⎛⎭⎪⎫13x +π6. 12.已知函数y =A sin(ωx +φ),(A >0,ω>0,|φ|<π2)的图象过点P (π12,0),图象与P 点最近的一个最高点坐标为(π3,5). (1)求函数解析式;(2)指出函数的增区间;(3)求使y ≤0的x 的取值范围.解 (1)∵图象最高点坐标为(π3,5),∴A =5.∵T 4=π3-π12=π4,∴T =π. ∴ω=2πT=2. ∴y =5sin(2x +φ).代入点(π3,5), 得sin(23π+φ)=1. ∴23π+φ=2k π+π2(k ∈Z ). 由|φ|<π2,得φ=-π6, ∴y =5sin(2x -π6). (2)∵函数的增区间满足2k π-π2≤2x -π6≤2k π+π2(k ∈Z ),∴2k π-π3≤2x ≤2k π+2π3(k ∈Z ).∴k π-π6≤x ≤k π+π3(k ∈Z ). ∴增区间为[k π-π6,k π+π3](k ∈Z ). (3)∵5sin(2x -π6)≤0, ∴2k π-π≤2x -π6≤2k π(k ∈Z ), ∴k π-512π≤x ≤k π+π12(k ∈Z ). 三、探究与创新13.已知函数f (x )=sin(ωx +φ) (ω>0,0≤φ≤π)是R 上的偶函数,其图象关于点M ⎝ ⎛⎭⎪⎫3π4,0对称,且在区间⎣⎢⎡⎦⎥⎤0,π2上是单调函数,求φ和ω的值. 解 ∵f (x )在R 上是偶函数,∴当x =0时,f (x )取得最大值或最小值.即sin φ=±1,得φ=k π+π2,k ∈Z ,又0≤φ≤π,∴φ=π2. 由图象关于M ⎝⎛⎭⎪⎫3π4,0对称可知, sin ⎝ ⎛⎭⎪⎫3π4ω+π2=0,解得ω=43k -23,k ∈Z . 又f (x )在⎣⎢⎡⎦⎥⎤0,π2上是单调函数, ∴T ≥π,即2πω≥π,∴ω≤2,又ω>0,∴当k =1时,ω=23;当k =2时,ω=2. 综上,φ=π2,ω=23或2.。
高中数学苏教版教材目录(必修+选修)
高中数学苏教版教材目录(必修+选修)苏教版-----------------------------------必修1-----------------------------------第1章集合1.1集合的含义及其表示1.2子集、全集、补集1.3交集、并集第2章函数2.1函数的概念2.1.1函数的概念和图象2.1.2函数的表示方法2.2函数的简单性质2.2.1函数的单调性2.2.2函数的奇偶性2.3映射的概念第3章指数函数、对数函数和幂函数3.1指数函数3.1.1分数指数幂3.1.2指数函数3.2对数函数3.2.1对数3.2.2对数函数3.3幂函数3.4函数的应用3.4.1函数与方程3.4.2函数模型及其应用-----------------------------------必修2-----------------------------------第1章立体几何初步1.1空间几何体1.1.1棱柱、棱锥和棱台1.1.2圆柱、圆锥、圆台和球1.1.3中心投影和平行投影1.1.4直观图画法1.2点、线、面之间的位置关系1.2.1平面的基本性质1.2.2空间两条直线的位置关系1.平行直线2.异面直线1.2.3直线与平面的位置关系1.直线与平面平行2.直线与平面垂直1.2.4平面与平面的位置关系1.两平面平行2.平面垂直1.3空间几何体的表面积和体积1.3.1空间几何体的表面积1.3.2空间几何体的体积第2章平面解析几何初步2.1直线与方程2.1.1直线的斜率2.1.2直线的方程1.点斜式2.两点式3.一般式2.1.3两条直线的平行与垂直2.1.4两条直线的交点2.1.5平面上两点间的距离2.1.6点到直线的距离2.2圆与方程2.2.1圆的方程2.2.2直线与圆的位置关系2.2.3圆与圆的位置关系2.3空间直角坐标系2.3.1空间直角坐标系2.3.2空间两点间的距离-----------------------------------必修3-----------------------------------第1章算法初步1.1算法的意义1.2流程图1.2.1顺序结构1.2.2选择结构1.2.3循环结构1.3基本算法语句1.3.1赋值语句1.3.2输入、输出语句1.3.3条件语句1.3.4循环语句1.4算法案例第2章统计2.1抽样方法2.1.1简单随机抽样1.抽签法2.随机数表法2.1.2系统抽样2.1.3分层抽样2.2总体分布的估计2.2.1频率分布表2.2.2频率分布直方图与折线图2.2.3茎叶图2.3总体特征数的估计2.3.1平均数及其估计2.3.2方差与标准差2.4线性回归方程第3章概率3.1随机事件及其概率3.1.1随机现象3.1.2随机事件的概率3.2古典概型3.3几何概型3.4互斥事件-----------------------------------必修4-----------------------------------第1章三角函数1.1任意角、弧度1.1.1任意角1.1.2弧度制1.2任意角的三角函数1.2.1任意角的三角函数1.2.2同角三角函数关系1.2.3三角函数的诱导公式1.3三角函数的图象和性质1.3.1三角函数的周期性1.3.2三角函数的图象与性质1.3.3函数y=Asin(ωx+ψ)的图象1.3.4三角函数的应用第2章平面向量2.1向量的概念及表示2.2向量的线性运算2.2.1向量的加法2.2.2向量的减法2.2.3向量的数乘2.3向量的坐标表示2.3.1平面向量基本定理2.3.2平面向量的坐标运算2.4向量的数量积2.5向量的应用第3章三角恒等变换3.1两角和与差的三角函数3.1.1两角和与差的余弦3.1.2两角和与差的正弦3.1.3两角和与差的正切 3.2二倍角的三角函数 3.3几个三角恒等式-----------------------------------必修5----------------------------------- 第1章 解三角形 1.1正弦定理 1.2余弦定理1.3正弦定理、余弦定理的应用 第2章 数列 2.1数列2.2等差数列2.2.1等差数列的概念2.2.2等差数列的通项公式2.2.3等差数列的前n 项和2.3等比数列2.3.1等比数列的概念2.3.2等比数列的通项公式2.3.3等比数列的前n 项和 第3章 不等式 3.1不等关系3.2一元二次不等式3.3二元一次不等式组与简单的线性规划问题3.3.1二元一次不等式表示的平面区域3.3.2二元一次不等式组表示的平面区域3.3.3简单的线性规划问题3.4基本不等式2b a ab +≤)0,0(≥≥b a 3.4.1基本不等式的证明3.4.2基本不等式的应用-----------------------------------选修1-1----------------------------------- 第1章 常用逻辑用语1.1命题及其关系1.1.1四种命题1.1.2充分条件和必要条件 1.2简单的逻辑联结词1.3全称量词与存在量词1.3.1量词1.3.2含有一个量词的命题的否定 第2章 圆锥曲线与方程 2.1圆锥曲线2.2椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质 2.4抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质 2.5圆锥曲线的共同性质 第3章 导数及其应用3.1导数的概念3.1.1平均变化率3.1.2瞬时变化率——导数3.2导数的运算3.2.1常见函数的导数3.2.2函数的和、差、积、商的导数 3.3导数在研究函数中的应用3.3.1单调性3.3.2极大值和极小值3.3.3最大值和最小值3.4导数在实际生活中的应用-----------------------------------选修1-2----------------------------------- 第1章 统计案例 1.1独立性检验 1.2回归分析第2章 推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.1.3推理案例欣赏 2.2直接证明与间接证明2.2.1直接证明2.2.2间接证明 第3章 数系的扩充与复数的引入 3.1数系的扩充3.2复数的四则运算 3.3复数的几何意义 第4章 框图 4.1流程图 4.2结构图-----------------------------------选修2-1----------------------------------- 第1章 常用逻辑用语1.1命题及其关系1.1.1四种命题1.1.2充分条件和必要条件 1.2简单的逻辑联结词1.3全称量词与存在量词1.3.1量词1.3.2含有一个量词的命题的否定 第2章 圆锥曲线与方程 2.1圆锥曲线2.2椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质 2.4抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质 2.5圆锥曲线的统一定义2.6曲线与方程2.6.1曲线与方程2.6.2求曲线的方程2.6.3曲线的交点 第3章 空间向量与立体几何3.1空间向量及其运算3.1.1空间向量及其线性运算3.1.2共面向量定理3.1.3空间向量基本定理3.1.4空间向量的坐标表示3.1.5空间向量的数量积3.2空间向量的应用3.2.1直线的方向向量与平面的法向量3.2.2空间线面关系的判定3.2.3空间的角的计算-----------------------------------选修2-2-----------------------------------第一章导数及其应用1.1导数的概念1.1.1平均变化率1.1.2瞬时变化率——导数1.2导数的运算1.2.1常见函数的导数1.2.2函数的和、差、积、商的导数1.2.3简单复合函数的导数1.3导数在研究函数中的应用1.3.1单调性1.3.2极大值和极小值1.3.3最大值和最小值1.4导数在实际生活中的应用1.5定积分1.5.1曲边梯形的面积1.5.2定积分1.5.3微积分基本定理第二章推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.1.3推理案例欣赏2.2直接证明与间接证明2.2.1直接证明2.2.2间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1数系的扩充3.2复数的四则运算3.3复数的几何意义-----------------------------------选修2-3-----------------------------------第一章计数原理1.1两个基本原理1.2排列1.3组合1.4计数应用题1.5二项式定理1.5.1二项式定理1.5.2二项式系数的性质及用第二章概率2.1随机变量及其概率分布2.2超几何分布2.3独立性2.3.1条件概率2.3.2事件的独立性2.4二项分布2.5随机变量的均值与方差2.5.1离散型随机变量的均值2.5.2离散型随机变量的方差与标准差2.6正态分布第三章统计案例3.1独立性检验3.2回归分析-----------------------------------选修4-1-----------------------------------1.1 相似三角形的进一步认识1.1.1平行线分线段成比例定理1.1.2相似三角形1.2 圆的进一步认识1.2.1圆周角定理1.2.2圆的切线1.2.3圆中比例线段1.2.4圆内接四边形1.3 圆锥截线1.3.1球的性质1.3.2圆柱的截线1.3.3圆锥的截线学习总结报告-----------------------------------选修4-2-----------------------------------2.1 二阶矩阵与平面向量2.1.1矩阵的概念2.1.2二阶矩阵与平面列向量的乘法2.2 几种常见的平面变换2.2.1恒等变换2.2.2伸压变换2.2.3反射变换2.2.4旋转变换2.2.5投影变换2.2.6切变变换2.3 变换的复合与矩阵的乘法2.3.1矩阵乘法的概念2.3.2矩阵乘法的简单性质2.4 逆变换与逆矩阵2.4.1逆矩阵的概念2.4.2二阶矩阵与二元一次方程组2.5 特征值与特征向量2.6 矩阵的简单应用学习总结报告-----------------------------------选修4-4-----------------------------------4.1 直角坐标系4.1.1直角坐标系4.1.2极坐标系4.1.3球坐标系与柱坐标系4.2 曲线的极坐标方程4.2.1曲线的极坐标方程的意义4.2.2常见曲线的极坐标方程4.3 平面坐标系中几种常见变换4.3.1平面直角坐标系中的平移变换4.3.2平面直角坐标系中的伸缩变换4.4 参数方程4.4.1参数方程的意义4.4.2参数方程与普通方程的互化4.4.3参数方程的应用4.4.4平摆线与圆的渐开线学习总结报告-----------------------------------选修4-5-----------------------------------5.1 不等式的基本性质5.2 含有绝对值的不等式5.2.1含有绝对值的不等式的解法5.2.2含有绝对值的不等式的证明5.3 不等式的证明5.3.1比较法5.3.2综合法和分析法5.3.3反证法5.3.4放缩法5.4 几个著名的不等式5.4.1柯西不等式5.4.2排序不等式5.4.3算术-几何平均值不等式5.5 运用不等式求最大(小)值5.5.1运用算术-几何平均值不等式求最大(小)值5.5.2运用柯西不等式求最大(小)值5.6 运用数学归纳法证明不等式学习总结报告感谢您使用本店文档您的满意是我们的永恒的追求!(本句可删)------------------------------------------------------------------------------------------------------------。
高中数学第一章三角函数1.3三角函数的图象和性质1.3.3函数y=Asin(ωx+φ)的图象课件苏教
中的第三点和第五点),有
π3ω+φ=π,
ω=2.
56πω+φ=2π,解得φ=π3.
∴y=3sin(2x+π3).
法三:(图象变换法)
由 T=π,点(-π6,0),A=3 可知图象由 y=3sin 2x 向左
平移π6个单位长度而得,所以有 y=3sin 2(x+π6),
即 y=3sin(2x+π3),且 ω=2,φ=π3.
2
第八页,共42页。
2.(2014·高考江苏卷)已知函数 y=cos x 与 y=sin(2x+ φ)(0≤φ<π),它们的图象有一个横坐标为π3的交点,则 φ 的
π 值是____6____. 解析:利用函数 y=cos x 与 y=sin(2x+φ)(0≤φ<π)的交点横 坐标,列方程求解.
由题意,得 sin2×π3+φ=cos π3,因为 0≤φ<π,所以 φ=π6.
2.已知函数 y=Asin(ωx+φ),ω>0,且|φ|<π2的图象的一段 如图所示,求此函数的解析式.
第二十七页,共42页。
解:由图易知 A= 2,T2=|10-2|=8,所以 T=16. 又因为 T=|2ωπ|,ω>0,所以 ω=π8. 因为点(2, 2)在图象上,所以 y= 2sin(π8×2+φ)= 2, 所以 sin(π4+φ)=1,所以π4+φ=2kπ+π2(k∈Z), 又|φ|<π2,所以 φ=π4,所以 y= 2sin(π8x+π4).
第十五页,共42页。
法二:①把 y=sin x 的图象上所有点的横坐标伸长到原来 的 2 倍(纵坐标不变),得到 y=sin12x 的图象; ②把 y=sin12x 图象上所有的点向右平移π2个单位长度,得到 y=sin12(x-π2)=sin(12x-π4)的图象; ③把 y=sin(12x-π4)的图象上所有点的纵坐标伸长到原来的 3 倍(横坐标不变),就得到 y=3sin(12x-π4)的图象.
高中数学 第一章 三角函数 1.3.4 三角函数的应用学案 苏教版必修4
1.3.4 三角函数的应用[学习目标] 1.会用三角函数解决一些简单的实际问题.2.体会三角函数是描述周期变化现象的重要函数模型.[知识链接]1.数学模型是什么?什么是数学模型的方法?答 简单地说,数学模型就是把实际问题用数学语言抽象概括,再从数学角度来反映或近似地反映实际问题时,所得出的关于实际问题的数学描述.数学模型的方法是把实际问题加以抽象概括,建立相应的数学模型,利用这些模型来研究实际问题的一般数学方法. 2.上述的数学模型建立的一般程序是什么? 答 解决问题的一般程序是:(1)审题:逐字逐句的阅读题意,审清楚题目条件、要求、理解数学关系; (2)建模:分析题目变化趋势,选择适当函数模型; (3)求解:对所建立的数学模型进行分析研究得到数学结论; (4)还原:把数学结论还原为实际问题的解答. [预习导引]1.三角函数的周期性y =A sin(ωx +φ) (ω≠0)的周期是T =2π|ω|; y =A cos(ωx +φ) (ω≠0)的周期是T =2π|ω|; y =A tan(ωx +φ) (ω≠0)的周期是T =π|ω|. 2.函数y =A sin(ωx +φ)+k (A >0,ω>0)的性质 (1)y max =A +k ,y min =-A +k . (2)A =y max -y min2,k =y max +y min2.(3)ω可由ω=2πT确定,其中周期T 可观察图象获得.(4)由ωx 1+φ=0,ωx 2+φ=π2,ωx 3+φ=π,ωx 4+φ=32π,ωx 5+φ=2π中的一个确定φ的值. 3.三角函数模型的应用三角函数作为描述现实世界中周期现象的一种数学模型,可以用来研究很多问题,在刻画周期变化规律、预测其未来等方面都发挥着十分重要的作用.要点一 三角函数图象的应用例1 作出函数y =|cos x |,x ∈R 的图象,判断它的奇偶性并写出其周期和单调区间. 解 y =|cos x |=⎩⎪⎨⎪⎧cos x ,x ∈⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k πk ∈Z ,-cos x ,x ∈⎣⎢⎡⎦⎥⎤π2+2k π,3π2+2k πk ∈Z .作出函数y =cos x 的图象后,将x 轴下方部分沿x 轴翻折到x 轴上方,如图:由图可知,y =|cos x |是偶函数,T =π,单调递增区间为⎣⎢⎡⎦⎥⎤-π2+k π,k π(k ∈Z ),单调递减区间为⎣⎢⎡⎦⎥⎤k π,π2+k π(k ∈Z ).规律方法 翻折法作函数图象(1)要得到y =|f (x )|的图象,只需将y =f (x )的图象在x 轴下方的部分沿x 轴翻折到上方,即“下翻上”.(2)要得到y =f (|x |)的图象,只需将y =f (x )的图象在y 轴右边的部分沿y 轴翻折到左边,即“右翻左”,同时保留右边的部分.跟踪演练1 函数f (x )=3sin ⎝⎛⎭⎪⎫2x +π6的部分图象如图所示.(1)写出f (x )的最小正周期及图中x 0,y 0的值; (2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π2,-π12上的最大值和最小值.解 (1)f (x )的最小正周期为π,x 0=7π6,y 0=3.(2)因为x ∈⎣⎢⎡⎦⎥⎤-π2,-π12,所以2x +π6∈⎣⎢⎡⎦⎥⎤-5π6,0.于是,当2x +π6=0,即x =-π12时,f (x )取得最大值0;当2x +π6=-π2,即x =-π3时,f (x )取得最小值-3.要点二 应用函数模型解题例2 已知电流I 与时间t 的关系为I =A sin(ωt +φ).(1)如图所示的是I =A sin(ωt +φ)(ω>0,|φ|<π2)在一个周期内的图象,根据图中数据求I =A sin(ωt +φ)的解析式;(2)如果t 在任意一段1150秒的时间内,电流I =A sin(ωt +φ)都能取得最大值和最小值,那么ω的最小正整数值是多少? 解 (1)由图知A =300,设t 1=-1900,t 2=1180, 则周期T =2(t 2-t 1)=2⎝ ⎛⎭⎪⎫1180+1900=175. ∴ω=2πT=150π.又当t =1180时,I =0,即sin ⎝ ⎛⎭⎪⎫150π·1180+φ=0, 而|φ|<π2,∴φ=π6.故所求的解析式为I =300sin ⎝ ⎛⎭⎪⎫150πt +π6.(2)依题意,周期T ≤1150,即2πω≤1150(ω>0),∴ω≥300π>942,又ω∈N *, 故所求最小正整数ω=943.规律方法 例题中的函数模型已经给出,观察图象和利用待定系数法可以求出解析式中的未知参数,从而确定函数解析式.此类问题解题关键是将图形语言转化为符号语言,其中,读图、识图、用图是数形结合的有效途径.跟踪演练2 弹簧挂着的小球做上下振动,它在时间t (s)内离开平衡位置(静止时的位置)的距离h (cm)由下面的函数关系式表示:h =3sin ⎝⎛⎭⎪⎫2t +π4.(1)求小球开始振动的位置;(2)求小球第一次上升到最高点和下降到最低点时的位置; (3)经过多长时间小球往返振动一次? (4)每秒内小球能往返振动多少次? 解 (1)令t =0,得h =3sin π4=322,所以开始振动的位置为⎝⎛⎭⎪⎫0,322.(2)由题意知,当h =3时,t =π8,即最高点为⎝ ⎛⎭⎪⎫π8,3;当h =-3时,t =5π8,即最低点为⎝ ⎛⎭⎪⎫5π8,-3.(3)T =2π2=π≈3.14,即每经过约3.14秒小球往返振动一次.(4)f =1T≈0.318,即每秒内小球往返振动约0.318次.要点三 构建函数模型解题例 3 某“帆板”集训队在一海滨区域进行集训,该海滨区域的海浪高度y (米)随着时间t (0≤t ≤24,单位:小时)而周期性变化,每天各时刻t 的浪高数据的平均值如下表:t (时) 0 3 6 9 12 15 18 21 24 y (米)1.01.41.00.61.01.40.90.51.0(1)(2)观察图,从y =at +b ,y =A sin(ωt +φ)+b ,y =A cos(ωt +φ)中选择一个合适的函数模型,并求出该拟合模型的解析式;(3)如果确定在一天内的7时至19时之间,当浪高不低于0.8米时才进行训练,试安排恰当的训练时间.解 (1)描出所给点如图所示:(2)由(1)知选择y =A sin(ωt +φ)+b 较合适. 令A >0,ω>0,|φ|<π.由图知,A =0.4,b =1,T =12,所以ω=2πT =π6.把t =0,y =1代入y =0.4sin(π6t +φ)+1,得φ=0.故所求拟合模型的解析式为y =0.4sin π6t +1(0≤t ≤24).(3)由y =0.4sin π6t +1≥0.8,得sin π6t ≥-12,则-π6+2k π≤πt 6≤7π6+2k π(k ∈Z ),即12k -1≤t ≤12k +7(k ∈Z ), 注意到t ∈[0,24],所以0≤t ≤7,或11≤t ≤19,或23≤t ≤24.再结合题意可知,应安排在11时到19时训练较恰当.规律方法 数据拟合问题实质上是根据题目提供的数据画出简图,求相关三角函数的解析式进而研究实际问题.在求解具体问题时需弄清A ,ω,φ的具体含义,只有把握了这三个参数的含义,才可以实现符号语言(解析式)与图形语言(函数图象)之间的相互转化. 处理曲线拟合与预测问题时,通常需要以下几个步骤: 1.根据原始数据给出散点图.2.通过考察散点图,画出与其“最贴近”的直线或曲线,即拟合直线或拟合曲线. 3.根据所学函数知识,求出拟合直线或拟合曲线的函数关系式.4.利用函数关系式,根据条件对所给问题进行预测和控制,以便为决策和管理提供依据. 跟踪演练3 某港口水深y (米)是时间t (0≤t ≤24,单位:小时)的函数,下面是水深数据:t (小时) 0 3 6 9 12 15 18 21 24 y (米)10.013.09.97.010.013.010.17.010.0+B 的图象.(1)试根据数据表和曲线,求出y =A sin ωt +B 的解析式;(2)一般情况下,船舶航行时船底与海底的距离不小于4.5米是安全的,如果某船的吃水度(船底与水面的距离)为7米,那么该船在什么时间段能够安全进港?若该船欲当天安全离港,它在港内停留的时间最多不能超过多长时间?(忽略离港所用的时间)解 (1)从拟合的曲线可知,函数y =A sin ωt +B 的一个周期为12小时,因此ω=2πT =π6.又y min =7,y max =13,∴A =12(y max -y min )=3,B =12(y max +y min )=10.∴函数的解析式为y =3sin π6t +10 (0≤t ≤24).(2)由题意,得水深y ≥4.5+7, 即y =3sin π6t +10≥11.5,t ∈[0,24],∴sin π6t ≥12,π6t ∈⎣⎢⎡⎦⎥⎤2k π+π6,2k π+5π6,k =0,1,∴t ∈[1,5]或t ∈[13,17],所以,该船在1∶00至5∶00或13∶00至17∶00能安全进港. 若欲于当天安全离港,它在港内停留的时间最多不能超过16小时.1.方程|x |=cos x 在(-∞,+∞)内有________个根. 答案 22.如图所示,设点A 是单位圆上的一定点,动点P 从点A 出发在圆上按逆时针方向旋转一周,点P 所旋转过的弧AP 的长为l ,弦AP 的长为d ,则函数d =f (l )的图象大致是________.答案 ③解析 d =f (l )=2sin l2.3.据市场调查,某种商品一年内每件出厂价在7千元的基础上,按月呈f (x )=A sin (ωx +φ)+B (A >0,ω>0,|φ|<π2)的模型波动(x 为月份),已知3月份达到最高价9千元,7月份价格最低为5千元,根据以上条件可确定f (x )的解析式为__________________.答案 f (x )=2sin ⎝ ⎛⎭⎪⎫π4x -π4+7解析 由条件可知⎩⎪⎨⎪⎧A +B =9,-A +B =5,∴B =7,A =2.又T =2(7-3)=8,∴ω=π4, 令3×π4+φ=π2,∴φ=-π4,∴f (x )=2sin ⎝ ⎛⎭⎪⎫π4x -π4+7.4.如图所示,一个摩天轮半径为10 m ,轮子的底部在地面上2 m 处,如果此摩天轮按逆时针转动,每30 s 转一圈,且当摩天轮上某人经过点P 处(点P 与摩天轮中心高度相同)时开始计时.(1)求此人相对于地面的高度关于时间的关系式;(2)在摩天轮转动的一圈内,约有多长时间此人相对于地面的高度不小于17 m.解 (1)设在t s 时,摩天轮上某人在高h m 处.这时此人所转过的角为2π30 t =π15t ,故在t s 时,此人相对于地面的高度为h =10sin π15t +12(t ≥0).(2)由10sin π15t +12≥17,得sin π15t ≥12,则52≤t ≤252.故此人有10 s 相对于地面的高度不小于17 m.1.三角函数模型是研究周期现象最重要的数学模型.三角函数模型在研究物理、生物、自然界中的周期现象(运动)有着广泛的应用. 2.三角函数模型构建的步骤(1)收集数据,观察数据,发现是否具有周期性的重复现象. (2)制作散点图,选择函数模型进行拟合. (3)利用三角函数模型解决实际问题.(4)根据问题的实际意义,对答案的合理性进行检验.一、基础达标1.动点A (x ,y )在圆x 2+y 2=1上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周,已知时间t =0时,点A 的坐标是(12,32),则当0≤t ≤12时,动点A 的纵坐标y 关于t (单位:秒)的函数的单调递增区间是________. 答案 [0,1]和[7,12]解析 ∵T =12,∴ω=2π12=π6,从而设y 关于t 的函数为y =sin(π6t +φ).又∵t =0时,y =32,∴可取φ=π3,∴y =sin(π6t +π3), ∴当2k π-π2≤π6t +π3≤2k π+π2(k ∈Z ),即12k -5≤t ≤12k +1(k ∈Z )时,函数递增.∵0≤t ≤12,∴函数的单调递增区间为[0,1]和[7,12].2.一物体相对于某一固定位置的位移y (cm)和时间t (s)之间的一组对应值如下表所示:t 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 y-4.0-2.80.02.84.02.80.0-2.8-4.0答案 y =-4.0cos 52πt解析 设y =A sin(ωx +φ),则A =4.0,ω=2πT =2π0.8=5π2,又t =0时,y =-4.0,∴-4.0=4.0sin φ,∴可取φ=-π2,∴y =4.0sin ⎝ ⎛⎭⎪⎫52πt -π2,即y =-4.0cos 52πt .3.下图显示相对于平均海平面的某海弯的水面高度h (米)在某天24小时的变化情况,则水面高度h 关于从夜间零时开始的小时数t 的函数关系式为________.答案 h =6sin ⎝ ⎛⎭⎪⎫π6t +π⎝⎛⎭⎪⎫或h =-6sin π6t4.设y =f (t )是某港口水的深度y (米)关于时间t (时)的函数,其中0≤t ≤24.下表是该港口某一天从0时至24时记录的时间t 与水深y 的关系:t 0 3 6 9 12 15 18 21 24 y1215.112.19.111.914.911.98.912.1下面的函数中,最能近似表示表中数据间对应关系的函数是________. ①y =12+3sin π6t ,t ∈[0,24];②y =12+3sin ⎝ ⎛⎭⎪⎫π6t +π,t ∈[0,24]; ③y =12+3sin π12t ,t ∈[0,24];④y =12+3sin ⎝ ⎛⎭⎪⎫π12t +π2,t ∈[0,24].答案 ①解析 在给定的四个选项①②③④中我们不妨代入t =0及t =3,容易看出最能近似表示表中数据间对应关系的函数是①.5.函数y =2sin ⎝ ⎛⎭⎪⎫m 3x +π3的最小正周期在⎝ ⎛⎭⎪⎫23,34内,则正整数m 的值是________. 答案 26,27,28解析 ∵T =6πm ,又∵23<6πm <34,∴8π<m <9π,且m ∈Z ,∴m =26,27,28.6.函数y =f (x )的图象与直线x =a ,x =b 及x 轴所围成图形的面积称为函数f (x )在[a ,b ]上的面积.已知函数y =sin nx 在[0,πn ]上的面积的2n(n ∈N *),则(1)函数y =sin 3x 在[0,2π3]上的面积为________;(2)函数y =sin(3x -π)+1在[π3,4π3]上的面积为________.答案 (1)43 (2)π+23解析 (1)取n =3,由已知,函数y =sin 3x 在[0,π3]上的面积为23.∵函数y =sin 3x 的周期为2π3,∴函数y =sin 3x 在(π3,2π3)上的面积也是23,∴函数y =sin 3x 在[0,2π3]上的面积为43.(2)y =sin(3x -π)+1=-sin 3x +1,作这个函数在区间[π3,4π3]上的图象如图所示:由(1)知S 1=S 2=S 3=23,直线x =π3,x =4π3,y =1及x 轴所围成的矩形面积为π.将S 2割下补在S 3处,则图中阴影部分的面积为π+23,∴函数y =sin(3x -π)+1在[π3,4π3]上的面积为π+23.7.如图所示,某地夏天从8~14时的用电量变化曲线近似满足函数y =A sin(ωx +φ)+b . (1)求这一天的最大用电量及最小用电量; (2)写出这段曲线的函数解析式.解 (1)最大用电量为50万kW·h,最小用电量为30万kW·h.(2)观察图象可知从8~14时的图象是y =A sin(ωx +φ)+b 的半个周期的图象, ∴A =12×(50-30)=10,b =12×(50+30)=40.∵12×2πω=14-8,∴ω=π6.∴y =10sin ⎝ ⎛⎭⎪⎫π6x +φ+40. 将x =8,y =30代入上式,解得φ=π6.∴所求解析式为y =10sin ⎝ ⎛⎭⎪⎫π6x +π6+40,x ∈[8,14].二、能力提升8.已知A 1,A 2,…A n 为凸多边形的内角,且lgsin A 1+lgsin A 2+……+lgsin A n =0,则这个多边形是________. 答案 矩形解析 由题意,得sin A 1·sin A 2·…·sin A n =1, ∴sin A 1=sin A 2=…=sin A n =1, ∴A 1=A 2=…=A n =90°.根据多边形的内角和得n ×90°=(n -2)×180°,解得n =4.9.已知某种交流电电流I (A)随时间t (秒)的变化规律可以用函数I =52sin ⎝ ⎛⎭⎪⎫100πt -π2表示,t ∈[0,+∞),则这种交流电电流在0.5秒内往复运行________次. 答案 25解析 周期T =2π100π=150(秒),从而频率为每秒50次,0.5秒往复运行25次.10.电流强度I (安培)随时间t (秒)变化的函数I =A sin(ωt +φ)的图象如图所示,则t =7120秒时的电流强度为______.答案 0解析 根据图象得A =10,由⎩⎪⎨⎪⎧1300ω+φ=π2,4300ω+φ=32π,∴⎩⎪⎨⎪⎧ω=100π,φ=π6,∴I =10sin ⎝⎛⎭⎪⎫100πt +π6.当t =7120秒时,I =10sin 6π=0.11.某时钟的秒针端点A 到中心点O 的距离为5 cm ,秒针均匀地绕点O 旋转,当时间t =0时,点A 与钟面上标12的点B 重合,将A 、B 两点的距离d (cm)表示成t (s)的函数,则d =__________,其中t ∈[0,60]. 答案 10sin πt60解析 将解析式可写为d =A sin(ωt +φ)的形式,由题意易知A =10,当t =0时,d =0,得φ=0;当t =30时,d =10,可得ω=π60,所以d =10sin πt60.12.如图,一个水轮的半径为4 m ,水轮圆心O 距离水面2 m ,已知水轮每分钟转动5圈,如果当水轮上点P 从水中浮现时(图中点P 0)开始计算时间. (1)将点P 距离水面的高度z (m)表示为时间t (s)的函数; (2)点P 第一次到达最高点大约需要多少时间?解 (1)如图所示建立直角坐标系,设角φ⎝ ⎛⎭⎪⎫-π2<φ<0是以Ox 为始边,OP 0为终边的角.OP 每秒钟内所转过的角为5×2π60=π6. 则OP 在时间t (s)内所转过的角为π6t .由题意可知水轮逆时针转动, 得z =4sin ⎝⎛⎭⎪⎫π6t +φ+2.当t =0时,z =0,得sin φ=-12,即φ=-π6.故所求的函数关系式为z =4sin ⎝ ⎛⎭⎪⎫π6t -π6+2.(2)令z =4sin ⎝ ⎛⎭⎪⎫π6t -π6+2=6,得sin ⎝⎛⎭⎪⎫π6t -π6=1,令π6t -π6=π2,得t =4, 故点P 第一次到达最高点大约需要4 s. 三、探究与创新13.已知某海滨浴场海浪的高度y (米)是时间t (0≤t ≤24,单位:小时)的函数,记作:y =f (t ),下表是某日各时的浪高数据:(1)根据以上数据,求函数y =A cos ωt +b 的最小正周期T ,振幅A 及函数表达式; (2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8:00时至晚上20:00时之间,有多少时间可供冲浪者进行运动? 解 (1)由表中数据知周期T =12,∴ω=2πT =2π12=π6,由t =0,y =1.5,得A +b =1.5. 由t =3,y =1.0,得b =1.0. ∴A =0.5,b =1,∴y =12cos π6t +1.(2)由题知,当y >1时才可对冲浪者开放 ∴12cos π6t +1>1, ∴cos π6t >0,∴2k π-π2<π6t <2k π+π2,k ∈Z即12k -3<t <12k +3,k ∈Z .①∵0≤t ≤24,故可令①中k 分别为0,1,2, 得0≤t <3或9<t <15或21<t ≤24.∴在规定时间上午8:00至晚上20:00之间,有6个小时时间可供冲浪者运动,即上午9:00至下午3:00.。
高中数学苏教版《三角函数》教案
高中数学苏教版《三角函数》教案教案一:引言本教案旨在帮助高中数学学生系统学习苏教版《三角函数》内容,掌握相关概念、性质和应用。
通过合理的教学设计,帮助学生建立扎实的数学基础,提升解决实际问题的能力。
教案二:知识概述1. 什么是三角函数- 引入三角函数的概念和表达形式- 讲解正弦、余弦和正切的定义及特点2. 三角函数的基本性质- 解释周期性、奇偶性、单调性等概念- 探究正弦函数、余弦函数的周期、奇偶性质- 讨论正切函数的周期、奇偶性质及其渐近线教案三:三角函数的图像1. 正弦函数和余弦函数的图像- 利用单位圆介绍正弦函数和余弦函数的图像- 讲解振幅、周期、相位等概念- 分析正弦函数和余弦函数的变化规律及性质2. 正切函数的图像和性质- 探究正切函数的图像及其特点- 研究正切函数的渐近线和周期性- 讨论正切函数的单调性及零点教案四:三角函数的基本关系式1. 三角函数的基本关系式- 推导正弦函数、余弦函数和正切函数之间的基本关系 - 解释三角函数之间的互相转化关系及性质2. 三角函数的诱导公式- 推导正弦函数、余弦函数和正切函数的诱导公式- 利用诱导公式简化三角函数的计算教案五:三角函数的应用1. 三角函数在几何中的应用- 介绍正弦定理和余弦定理的概念和原理- 解答相关几何问题,如求解三角形的边长和角度2. 三角函数在物理中的应用- 探究三角函数在周期性振动中的应用- 分析简谐振动、声波等实际问题的数学模型教案六:综合应用题通过选取若干典型应用题,让学生综合运用所学的三角函数知识解决实际问题,提高应用能力和解决问题的思维方式。
教案七:知识总结与拓展总结各单元的要点和重难点,对学生进行知识的回顾和巩固。
提供相关拓展题目或探究性问题,引导学生进行拓展思考和自主学习。
教案八:教学反思与评价针对本教案的教学过程及效果进行反思和评价,总结教学经验,提出改进建议。
教案九:教学资源推荐与本教案相关的教学资源,包括教材、参考书、电子教学资源等。
高中数学第一章三角函数1.3.4三角函数的应用(1)课件苏教版必修4
) A>0, 0 例1 已知函数 y A sin( x ( )一个周期内 的函数图象,如下图所示,求函数的一个解析式.
3
O
3
5 6
3
0 )的 例2 已知函数 y A cos( x )( A>0 , 0, 最小值是 5 , 图象上相邻两个最高点与最低 5 点的横坐标相差 4 ,且图象经过点(0, 2 ), 求这个函数的解析式.
高中数学 必修4
复习提问
1.由函数 y sin x 的图象到图象 y A sin(x ) 的变换方法: 方法一:先移相位,再作周期变换,再作振幅变换; 方法二:先作周期变换,再作相位变换,再作振幅变换. 2.如何用五点法作 y A sin(x ) 的图象?
3. A、、 对函数 y A sin(x ) 图象的影响.
例3.函数f(x)的横坐标伸长为原来的2倍,再向左平
1 移 2 个单位所得的曲线是 y sin x 的图象,试求
2
f(x)的解析式.
例4 求下列函数的最大值、最小值,以及达到 最大值、最小值时x的集合. (1) y 1 cos(3x )
2 4
(2) y 4 sin 1 x
3 2
(3)
y sin x 2
内部文件,请勿外传
归纳小结
1.学生总结:请学生回顾本节课所学过的知识内容有哪些?所涉及到主 要数学思想方法有哪些?在本节课的学习过程中,还有哪些不太明白 的地方,请向老师提出. 2.师总结:由 y A sin(x ) 的图象求其函数式:一般来说,在这类由图 不加限制(如A、ω 象求函数式的问题中,如对所求函数式中的A、ω、 的正负,角 的范围等),那么所求的函数式应有无数多个不同的形式 (这是由于所求函数是周期函数所致),因此这类问题多以选择题的形 式出现,我们解这类题的方法往往因题而异,但逆用“五点法”作图 的思想却渗透在各不同解法之中.常见的问题形式有:(1)由已知 函数图象求解析式;(2)由已知条件求解析式.内部文ຫໍສະໝຸດ ,请勿外传内部文件,请勿外传
高中数学苏教版必修4课件 第一章 三角函数 1.3.4 三角函数的应用课件1
30分左右出港口,最多 能在港内停留17小时 左右。
第十六页,编辑于星期一:点 二十七分。
典例剖析
8.若某船的吃水深度为4米,安全间隙为1.5米,该船在2:00开始
卸货,吃水深度以每小时0.3米的速度减ห้องสมุดไป่ตู้,那么该船在什么时间 必须停止卸货,将船驶向较深的水域?
第十四页,编辑于星期一:点 二十七分。
5.给出在整点时的水深的近似数值;(精确到0.001)
6.一条货船的吃水深度(船底与水面的距离)为4米,安全条例
规定至少要有1.5米的安全间隙(船底与洋底的距离),该船何时能进 入港口?在港口能呆多久?
在货船的安全水深 正好与港口水深相 等时,该船能进入
港口?
向左平行移动 个单位,得到图象 的解析式为____________,再把所 得函数y的 A图sin(象x 上 )(各A 点0,的 0,横 坐 标0)伸 长 12到原来的3倍(6纵坐标不变),得
第十二页,编辑于星期一:点 二十七分。
典例剖析
1.依据规定,当海浪高度高于1m时才对冲浪爱好者开放,请设计一天内 从上午到晚上之间,开放冲浪场所的具体时间段,有多少时间可供冲浪 者进行活动? 2.按安全条例规定,船何时安全进出港(潮汐对轮船进出港口产生什 么影响?)上述的变化过程中,哪些量在发生变化?哪个是自变量?哪
个是因变量?
第十三页,编辑于星期一:点 二十七分。
某港口在某季节每天的时间与水深关系表:
时刻
水深/米
7.50
时刻 5.00
水深/米2.50
时刻 0 水深/米
0:00
5.0
9:00
2.5
318:600 9
21.苏教版·高中数学必修Ⅳ教案_§1.3.4 三角函数的应用
图1 §1.3.4 三角函数的应用课标重难点1.会用三角函数模型解决一些简单的具有周期性的实际问题.2.进一步掌握函数模型的应用,培养独立思考的能力,增强应用数学的意识,学会将实际问题抽象为数学问题,提高运用数学知识解决实际问题的能力.3.体验三角函数也是描述宏观世界变化规律的基本数学模型,感受三角函数与现实世界的密切联系及其在刻画现实问题中的作用.课前练习1.2.如图,某地一天从6时至14时的温度变 化曲线近似满足函数sin()y A x b ωϕ=++. (Ⅰ)求这段时间的最大温差; (Ⅱ)写出这段曲线的函数解析式.分析:根据函数sin()y A x ωϕ=+的图象求出ϕ,ω,A ,关键是要确定已知的点对应的是函数图象上的哪些点.解析:(1)由图示,这段时间的最大温差是301020-=℃(2)图中从6时到14时的图象是函数sin()y A x b ωϕ=++的半个周期.∴614221-=⋅ωπ,解得8πω=. 由图示,10)1030(21=-=A 20)3010(21=+=b 这时,20)8sin(10++=ϕπx y将6,10x y ==代入上式,可取43πϕ= 综上,所求的解析式为310sin(2084y x ππ=++([6,14]x ∈)3.题型探究例1 在图1中,点O 为做简谐运动的物体的平衡位置,取向右的方向为物体位移的正方向,若已知振幅为3cm ,周期为3s ,且物体向右运动到距平衡位置最远处时开始计时.(1)求物体对平衡位置的位移()x cm 和时间()t s 之间的函数关系;(2)求该物体在5t s =时的位置.解析: (1)设x 和t 之间的函数关系为3sin() (0,02)x t ωϕωϕπ=+>≤<.则由23T πω==,可得23πω=.当0t =时,有3sin 3x ϕ==,即sin 1ϕ=.又02ϕπ≤<,故可得2πϕ=.所以所求函数关系为23sin() 32x t ππ=+,即23cos 3x t π=. (2)令5t =,得23cos3x t π= 1.5=-,故该物体在5t s =时的位置是在O 点的左侧且距O 点1.5处.练习1.在图1中, 点O 为做简谐运动的物体的平衡位置,取向右的方向为物体位移的正方向,若已知振幅为5cm ,周期为4s ,且物体向右运动到距平衡位置最远处时开始计时.(1) 求物体对平衡位置的位移()x cm 和时间()t s 之间的函数关系;(2)求该物体在7.5t s =时的位置. 答案:(1) 5sin2x t π= ;(2)当7.5t =时,155sin7.55sin5sin(4)5sin 2444x πππππ=⨯==-=-=即物体在平衡位置的左方,cm 处. 例2解析小结 实际问题的背景往往比较复杂,而且需要综合应用多学科的知识才能解决它.因此,在应用数学知识解决实际问题时,应当注意从复杂的背景中抽取基本的数学关系,还要调动相关学科知识来帮助理解问题. 练习2.例3分析:(用《几何画板》演示港口水位变化情况)观察问题中给出的数据可以看出,(用《顺势用光滑曲线连接.从曲线的形状可以判断,这个港口的水深与时间的关系可以用形如sin()y A x h ωϕ=++的函数来刻画,其中x 是时间,y 是水深,根据数据可以具体确定A ,ω,ϕ,h 的值.在得到函数解析式以后,我们计算出每一个整点时水深的近似值,或计算出水深为某个指定值时所对应的时刻.解析小结三角函数作为描述现实世界中周期现象的一种数学模型,可以用来研究很多问题,在刻画周期变化规律、预测其未来等方面都发挥着十分重要的作用.我们可以利用收集到的数据作出相应的“散点图”,通过观察散点图并进行函数拟合而获得具体的函数模型,最后利用这个函数模型来解决相应的实际问题.练习3. (课本P45练习3)答案:(1) 65.6 2.8cos (2)37d t π=+- (2) 8.24 m(3) 从0时到3时47分,从12时37分到16时7分. 例4 解析 小结 练习4.课堂演练1. 2. 3.4.5.6.§1.3.4 三角函数的应用学习目标:⒈会用三角函数模型解决一些简单的具有周期性的实际问题.⒉进一步掌握函数模型的应用,培养独立思考的能力,增强应用数学的意识,学会将实际问题抽象为数学问题,提高运用数学知识解决实际问题的能力.⒊体验三角函数也是描述宏观世界变化规律的基本数学模型,感受三角函数与现实世界的密切联系及其在刻画现实问题中的作用.教学重点:建立三角函数解决具有周期性的实际问题. 教学难点:根据已知数据得出拟合函数,进一步研究解决实际问题. 教学方法:讲、练结合. 教具准备:《几何画板》演示例3、例4的实际意义;用《Excel 》列出例4的已知数据,划出散点图及近似曲线,在得出拟合函数后,计算港口在整点时水深的近似值.教学过程:(Ⅰ)新课引入:师:函数是描述宏观世界变化规律的基本数学模型,不同的变化规律需要用不同的函数模型来描述.如果某种变化着的现象具有周期性,我们就可以借助三角函数来描述.本节课我们就通过几个实例,来说明三角函数模型的简单应用.课前练习(2002年全国高考试题)如图,某地一天从6时至14时的温度变化曲线近似满足函数b x A y ++=)sin(ϕω.(Ⅰ)求这段时间的最大温差; (Ⅱ)写出这段曲线的函数解析式.分析:根据函数sin()y A x ωϕ=+的图象求出ϕ,ω,A ,关键是要确定已知的点对应的是函数图象上的哪些点.解析:(1)由图示,这段时间的最大温差是201030=-℃ (2)图中从6时到14时的图象是函数b x A y ++=)sin(ϕω的半个周期. ∴614221-=⋅ωπ,解得8πω=. 由图示,10)1030(21=-=A 20)3010(21=+=b 这时,20)8sin(10++=ϕπx y将10,6==y x 代入上式,可取43πϕ=综上,所求的解析式为20)438sin(10++=ππx y (]14,6[∈x )(Ⅱ)讲授新课:例1(课本P42例1)练习: (课本P45练习1)答案:(1) 5sin2x t π= ;(2)当7.5t =时,155sin 7.55sin 5sin(4)5sin 2442x πππππ=⨯==-=-=-即物体在平衡位置的左方,距平衡位置2cm 处.练习: (课本P45练习2)简解: sin()6y A x B πϕ=++29.4518.3 5.5752A -== , 29.4518.323.8752B +== ,即 5.575sin()23.8756y x πϕ=++将点(6,29.45)代入可得5.575sin()23.87529.45πϕ++= , ∴2ππϕ+=即2πϕ=-,∴ 5.575sin()23.87523.875 5.575cos 626y x x πππ=-+=-.例2.点评:实际问题的背景往往比较复杂,而且需要综合应用多学科的知识才能解决它.因此,在应用数学知识解决实际问题时,应当注意从复杂的背景中抽取基本的数学关系,还要调动相关学科知识来帮助理解问题.例3分析:(用《几何画板》演示港口水位变化情况)观察问题中给将所得到的点依次顺势用光滑曲线连接.从曲线的形状可以判断,这个港口的水深与时间的关系可以用形如sin()y A x h ωϕ=++的函数来刻画,其中x 是时间,y 是水深,根据数据可以具体确定A ,ω,ϕ,h 的值.在得到函数解析式以后,我们计算出每一个整点时水深的近似值,或计算出水深为某个指定值时所对应的时刻.练习: (课本P45练习3)答案:(1) 65.6 2.8cos (2)37d t π=+- (2) 8.24 m(3) 从0时到3时47分,从12时37分到16时7分.(Ⅲ)课后练习:(Ⅳ)课时小结:三角函数作为描述现实世界中周期现象的一种数学模型,可以用来研究很多问题,在刻画周期变化规律、预测其未来等方面都发挥着十分重要的作用.具体的,我们可以利用收集到的数据作出相应的“散点图”,通过观察散点图并进行函数拟合而获得具体的函数模型,最后利用这个函数模型来解决相应的实际问题.(Ⅴ)课后作业:⒉预习课本P44,思考下列问题:⑴本章所学习的知识有怎样的结构?⑵本章所学习的各部分内容有哪些知识点?⑶本章知识所涉及的数学思想方法有哪些?⑷三角函数与物理、生物、自然界的周期现象(运动),以学习过的指数函数、对数函数、幂函数,以及锐角三角函数之间有什么联系?板书设计:教学后记:。
高中数学 第一章 三角函数 1.3.3 函数y=Asin(ωx+φ)的图象(一)学案 苏教版必修4-
1.3.3 函数y =Asin(ωx+φ)的图象(一)[学习目标] 1.理解y =A sin(ωx +φ)中ω、φ、A 对图象的影响.2.掌握y =sin x 与y =A sin(ωx +φ)图象间的变换关系,并能正确地指出其变换步骤.[知识链接] 1.“五点法”作图画正弦函数y =sin x ,x ∈[0,2π]的图象,五个关键点是(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫32π,-1,(2π,0).2.交流电电流随时间变化的图象与正弦曲线有何关系? 答 交流电电流随时间变化的图象与正弦曲线很相似,从解析式来看,函数y =sin x 就是函数y =A sin(ωx +φ)在A =1,ω=1,φ=0时的情况. [预习导引]1.函数s =A sin(ωx +φ)的振幅、周期、频率等在s =A sin(ωx +φ)(A >0,ω>0)中,其中A 为物体振动时离开平衡位置的最大距离,称为振动的振幅;往复振动一次所需的时间T =2πω,称为这个振动的周期;单位时间内往复振动的次数f =1T =ω2π,称为振动的频率;ωx +φ称为相位,x =0时的相位φ称为初相.2.φ、ω、A 对y =A sin(ωx +φ)图象的影响(1)函数y =sin(x +φ)(其中φ≠0)的图象,可以看做是将函数y =sin x 上所有点向左(当φ>0时)或向右(当φ<0时)平移|φ|个单位而得到的.(2)函数y =sin(ωx +φ)的图象,可以看做是把y =sin(x +φ)的图象上的所有点的横坐标变为原来的1ω倍(纵坐标不变)而得到的.(3)函数y =A sin(ωx +φ)的图象,可以看做是把y =sin(ωx +φ)的图象上所有点的纵坐标变为原来的A 倍(横坐标不变)而得到的.3.函数y =sin x 与y =A sin(ωx +φ)图象间的变换函数y =A sin(ωx +φ)(其中A >0,ω>0)的图象可以看做是由下面的方法得到:先画出函数y =sin x 的图象;再把正弦曲线向左(当φ>0时)或右(当φ<0时)平移|φ|个单位长度,得到函数y =sin(x +φ)的图象;然后使曲线上各点的横坐标变为原来的1ω倍(纵坐标不变),得到函数y =sin(ωx +φ)的图象;最后把曲线上各点的纵坐标变为原来的A 倍(横坐标不变),这时的曲线就是函数y =A sin(ωx +φ)的图象.要点一 三角函数图象的平移变换例1 要得到函数y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象,只要将y =sin 2x 的图象________. ①向左平移π3个单位;②向右平移π3个单位;③向左平移π6个单位;④向右平移π6个单位.答案 ③解析 因为y =sin ⎝ ⎛⎭⎪⎫2x +π3=sin 2⎝⎛⎭⎪⎫x +π6, 所以把y =sin 2x 的图象上所有点向左平移π6个单位,就得到y =sin 2⎝ ⎛⎭⎪⎫x +π6=sin ⎝ ⎛⎭⎪⎫2x +π3的图象.规律方法 已知两个函数的解析式,判断其图象间的平移关系的步骤:①将两个函数解析式化简成y =A sin ωx 与y =A sin(ωx +φ),即A 、ω及名称相同的结构. ②找到ωx →ωx +φ,变量x “加”或“减”的量,即平移的单位为⎪⎪⎪⎪⎪⎪φω. ③明确平移的方向.跟踪演练1 要得到y =cos ⎝ ⎛⎭⎪⎫2x -π4的图象,只要将y =sin 2x 的图象________.①向左平移π8个单位;②向右平移π8个单位;③向左平移π4个单位;④向右平移π4个单位.答案 ①解析 y =sin 2x =cos ⎝ ⎛⎭⎪⎫π2-2x =cos ⎝⎛⎭⎪⎫2x -π2 =cos ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π8-π4若设f (x )=sin 2x =cos ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π8-π4,则f ⎝ ⎛⎭⎪⎫x +π8=cos ⎝ ⎛⎭⎪⎫2x -π4,所以向左平移π8个单位.要点二 三角函数图象的伸缩变换例2 把函数y =sin x (x ∈R )的图象上所有的点向左平行移动π3个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数解析式是__________________. 答案 y =sin ⎝⎛⎭⎪⎫2x +π3,x ∈R 解析 把函数y =sin x 的图象上所有的点向左平行移动π3个单位长度后得到函数y =sin ⎝ ⎛⎭⎪⎫x +π3的图象,再把所得图象上所有的点的横坐标缩短到原来的12倍,得到函数y =sin ⎝⎛⎭⎪⎫2x +π3的图象. 规律方法 三角函数图象变换容易出错,尤其是既涉及平移变换又涉及伸缩变换.平移时,若x 的系数不是1,需把x 的系数先提出,提出后括号中的x 加或减的那个数才是平移的量,即x 的净增量.方向的规律是“左加右减”.伸缩时,只改变x 的系数ω,其余的量不变化,伸长时系数|ω|减小,缩短时|ω|增大.跟踪演练2 把函数y =sin x (x ∈R )的图象上所有的点向左平移π3个单位长度,再把所得图象上所有点的横坐标扩大到原来的2倍(纵坐标不变),得到的图象所表示的函数解析式是__________________.答案 y =sin ⎝ ⎛⎭⎪⎫x 2+π3,x ∈R 解析 将y =sin x 图象上的所有的点向左平移π3个单位长度得到y =sin ⎝⎛⎭⎪⎫x +π3.再将图象上所有点的横坐标扩大到原来的2倍,得y =sin ⎝ ⎛⎭⎪⎫x 2+π3.要点三 三角函数图象的综合变换例3 把函数y =f (x )的图象上各点向右平移π6个单位,再把横坐标伸长到原来的2倍,再把纵坐标缩短到原来的23倍,所得图象的解析式是y =2sin ⎝ ⎛⎭⎪⎫12x +π3,求f (x )的解析式.解 y =2sin ⎝ ⎛⎭⎪⎫12x +π3――――――――――→横坐标缩短到原来的32倍y =3sin ⎝ ⎛⎭⎪⎫12x +π3――――――――――→横坐标缩短到原来的12倍y =3sin ⎝⎛⎭⎪⎫x +π3――――――――→向左平移π6个单位y =3sin ⎝⎛⎭⎪⎫x +π6+π3=3sin ⎝ ⎛⎭⎪⎫x +π2=3cos x .∴f (x )=3cos x .规律方法 (1)本例已知变换途径及变换后的函数解析式,求变换前函数图象的解析式,宜采用逆变换的方法.(2)已知函数f (x )图象的伸缩变换情况,求变换前后图象的解析式.要明确伸缩的方向及量,然后确定出A 或ω即可.跟踪演练3 将y =f (x )的图象上所有点的横坐标缩短到原来的12倍,然后再将整个图象沿x轴向右平移π2个单位,得到的曲线与y =12sin x 图象相同,则y =f (x )的函数解析式为________.答案 y =12sin ⎝ ⎛⎭⎪⎫12x +π2⎝ ⎛⎭⎪⎫或y =12cos x 21.为了得到函数y =sin(2x +1)的图象,只需把函数y =sin 2x 的图象上所有的点________________________. 答案 向左平行移动12个单位长度解析 y =sin 2x 的图象向左平移12个单位长度得到函数y =sin 2(x +12)的图象,即函数y =sin(2x +1)的图象.2.由y =3sin x 的图象变换到y =3sin ⎝ ⎛⎭⎪⎫12x +π3的图象主要有两个过程:先平移后伸缩和先伸缩后平移,前者需向左平移________个单位,后者需向左平移________个单位. 答案π3 23π 3.函数y =cos x 图象上各点的纵坐标不变,把横坐标变为原来的2倍,得到图象的解析式为y =cos ωx ,则ω的值为________. 答案 ±124.将函数y =sin(-2x )的图象向左平移π4个单位,所得函数图象的解析式为__________________. 答案 y =-cos 2x解析 y =sin(-2x )――――――――→左移π4个单位y =sin ⎣⎢⎡⎦⎥⎤-2⎝ ⎛⎭⎪⎫x +π4,即y =sin ⎝ ⎛⎭⎪⎫-2x -π2=-sin ⎝⎛⎭⎪⎫2x +π2=-cos 2x .1.由y =sin x 的图象,通过变换可得到函数y =A sin(ωx +φ)(A >0,ω>0)的图象,其变化途径有两条:(1)y =sin x ――→相位变换y =sin(x +φ)――→周期变换y =sin(ωx +φ)――→振幅变换y =A sin(ωx +φ).(2)y =sin x ――→周期变换y =sin ωx ――→相位变换y =sin[ω(x +φω)]=sin(ωx +φ)――→振幅变换y =A sin(ωx +φ).注意:两种途径的变换顺序不同,其中变换的量也有所不同: (1)先相位变换后周期变换,平移|φ|个单位. (2)先周期变换后相位变换,平移|φ|ω个单位.2.类似地,y =A cos(ωx +φ) (A >0,ω>0)的图象也可由y =cos x 的图象变换得到.一、基础达标1.函数y =sin 2x 图象上所有点的横坐标变为原来的2倍,纵坐标不变,所得图象的函数解析式为f (x )=________. 答案 sin x2.要得到y =sin ⎝⎛⎭⎪⎫x -π3的图象,只要将y =sin x 的图象________.①向左平移π3个单位长度;②向右平移π3个单位长度;③向左平移π6个单位长度;④向右平移π6个单位长度.答案 ②3.将函数y =sin 2x 的图象向左平移π4个单位,再向上平移1个单位,所得图象的函数解析式是__________________. 答案 y =1+cos 2x解析 将函数y =sin 2x 的图象向左平移π4个单位,得到函数y =sin 2(x +π4),即y =sin(2x+π2)=cos 2x 的图象,再向上平移1个单位,所得图象的函数解析式为y =1+cos 2x . 4.将函数y =3sin(2x +π3)的图象向右平移π2个单位长度,所得图象对应的函数________.①在区间[π12,7π12]上单调递减;②在区间[π12,7π12]上单调递增;③在区间[-π6,π3]上单调递减;④在区间[-π6,π3]上单调递增.答案 ②解析 y =3sin(2x +π3)的图象向右平移π2个单位长度得到y =3sin[2(x -π2)+π3]=3sin(2x -23π).令2k π-π2≤2x -23π≤2k π+π2得k π+π12≤x ≤k π+712π,k ∈Z ,则y =3sin(2x -23π)的增区间为[k π+π12,k π+712π],k ∈Z .令k =0得其中一个增区间为[π12,712π],故②正确.画出y =3sin(2x -23π)在[-π6,π3]上的简图,如图,可知y =3sin(2x -23π)在[-π6,π3]上不具有单调性,故③④错误.5.将函数y =sin x 的图象向左平移π2个单位,得到函数y =f (x )的图象,则下列说法正确的是________. ①y =f (x )是奇函数; ②y =f (x )的周期为π;③y =f (x )的图象关于直线x =π2对称;④y =f (x )的图象关于点(-π2,0)对称. 答案 ④解析 由题意知,f (x )=cos x ,所以它是偶函数,①错;它的周期为2π,②错;它的对称轴是直线x =k π,k ∈Z ,③错;它的对称中心是点⎝ ⎛⎭⎪⎫k π+π2,0,k ∈Z ,④对.6.为了得到函数y =sin ⎝ ⎛⎭⎪⎫2x -π6的图象,可以将函数y =cos 2x 的图象________.①向右平移π6个单位长度;②向右平移π3个单位长度;③向左平移π6个单位长度;④向左平移π3个单位长度.答案 ②解析 y =sin ⎝ ⎛⎭⎪⎫2x -π6=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫2x -π6=cos ⎝⎛⎭⎪⎫2π3-2x =cos ⎝ ⎛⎭⎪⎫2x -2π3=cos 2⎝⎛⎭⎪⎫x -π3.7.怎样由函数y =sin x 的图象变换得到y =sin ⎝ ⎛⎭⎪⎫2x -π3的图象,试叙述这一过程.解 方法一 y =sin x ――→向右平移π3个单位y =sin ⎝ ⎛⎭⎪⎫x -π3――→纵坐标不变横坐标缩短为原来的12y =sin ⎝ ⎛⎭⎪⎫2x -π3. 方法二 y =sin x ――→纵坐标不变横坐标缩短为原来的12y =sin 2x ――→向右平移π6个单位y =sin ⎝ ⎛⎭⎪⎫2x -π3. 二、能力提升8.要得到函数y =2cos x 的图象,只需将函数y =2sin ⎝ ⎛⎭⎪⎫2x +π4图象上的所有点的________.①横坐标缩短到原来的12(纵坐标不变),再向左平行移动π8个单位长度;②横坐标缩短到原来的12(纵坐标不变),再向右平行移动π4个单位长度;③横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动π4个单位长度;④横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动π8个单位长度.答案 ③解析 ∵y =2cos x =2sin ⎝⎛⎭⎪⎫x +π2,∴y =2sin ⎝ ⎛⎭⎪⎫2x +π4――→纵坐标不变横坐标伸长到原来的2倍 y =2sin ⎝⎛⎭⎪⎫x +π4―――――――――――→向左平移π4个单位长度 y =2sin ⎝⎛⎭⎪⎫x +π2. 9.某同学给出了以下论断:①将y =cos x 的图象向右平移π2个单位,得到y =sin x 的图象;②将y =sin x 的图象向右平移2个单位,可得到y =sin(x +2)的图象; ③将y =sin(-x )的图象向左平移2个单位,得到y =sin(-x -2)的图象; ④函数y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象是由y =sin 2x 的图象向左平移π3个单位而得到的. 其中正确的结论是______(将所有正确结论的序号都填上). 答案 ①③10.将函数f (x )=sin(ωx +φ)(ω>0,-π2≤φ<π2)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y =sin x 的图象,则f (π6)=________.答案22解析 将y =sin x 的图象向左平移π6个单位长度可得y =sin(x +π6)的图象,保持纵坐标不变,横坐标变为原来的2倍可得y =sin(12x +π6)的图象,故f (x )=sin(12x +π6),所以f (π6)=sin(12×π6+π6)=sin π4=22.11.已知函数f (x )=sin ⎝⎛⎭⎪⎫π3-2x (x ∈R ).经过怎样的图象变换使f (x )的图象关于y 轴对称?(仅叙述一种方案即可).解 f (x )=sin ⎝ ⎛⎭⎪⎫π3-2x =cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π3-2x=cos ⎝ ⎛⎭⎪⎫2x +π6=cos 2⎝ ⎛⎭⎪⎫x +π12.∵y =cos 2x 是偶函数,图象关于y 轴对称, ∴只需把y =f (x )的图象向右平移π12个单位即可.12.使函数y =f (x )图象上每一点的纵坐标保持不变,横坐标缩小到原来的12倍,然后再将其图象沿x 轴向左平移π6个单位得到的曲线与y =sin 2x 的图象相同,求f (x )的表达式.解 方法一 正向变换y =f (x )――→横坐标缩小到原来的12y =f (2x )――→沿x 轴向左平移π6个单位y =f ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π6,即y =f ⎝⎛⎭⎪⎫2x +π3, ∴f ⎝ ⎛⎭⎪⎫2x +π3=sin 2x . 令2x +π3=t ,则2x =t -π3,∴f (t )=sin ⎝ ⎛⎭⎪⎫t -π3,即f (x )=sin ⎝⎛⎭⎪⎫x -π3.方法二 逆向变换据题意,y =sin 2x ――→沿x 轴向右平移π6个单位y =sin ⎝ ⎛⎭⎪⎫2x -π3――→横坐标伸长到原来的2倍纵坐标不变 y =sin ⎝⎛⎭⎪⎫x -π3.三、探究与创新13.已知函数f (x )=2sin ωx ,其中常数ω>0;(1)若y =f (x )在⎣⎢⎡⎦⎥⎤-π4,2π3上单调递增,求ω的取值范围;(2)令ω=2,将函数y =f (x )的图象向左平移π6个单位,再向上平移1个单位,得到函数y =g (x )的图象,区间[a ,b ](a ,b ∈R 且a <b )满足:y =g (x )在[a ,b ]上至少含有30个零点,在所有满足上述条件的[a ,b ]中,求b -a 的最小值.解 (1)因为ω>0,根据题意有⎩⎪⎨⎪⎧-π4ω≥-π2,2π3ω≤π2,解得0<ω≤34. (2)f (x )=2sin 2x , g (x )=2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π6+1=2sin ⎝ ⎛⎭⎪⎫2x +π3+1 g (x )=0⇒sin ⎝ ⎛⎭⎪⎫2x +π3=-12⇒x =k π-π4或x =k π-712π,k ∈Z ,即g (x )的零点相离间隔依次为π3和2π3, 故若y =g (x )在[a ,b ]上至少含有30个零点,则b -a 的最小值为14×2π3+15×π3=43π3.。
三角函数的应用一教案1 苏教版必修4.doc
第14课时:§1.3.4三角函数的应用(一)【三维目标】:一、知识与技能1.会山函数y = Asin((ax + (p)的图像讨论其性质;能解决一些综合性的问题。
2.会根据函数图象写出解析式;能根据已知条件写出y = Asin^x +(p)中的待定系数A,a),(p.3.培养学生用已有的知识解决实际问题的能力二、过程与方法1.通过具体例题和学生练习,使学生能根据函数图象写出解析式;能根据已知条件写出y = 4sin((»x + 0)中的待定系数A,a),(p .2.并根据图像求解关系性质的问题;讲解例题,总结方法,巩固练习。
三、情感、态度与价值观通过本节的学习,渗透数形结合的思想;通过学生的亲身实践,引发学生学习兴趣;创设问题情景,激发学生分析、探求的学习态度;让学生感受数学的严谨性,培养学生逻辑思维的缜密性。
【教学重点与难点】:重点:待定系数法求三角函数解析式;难点:根据函数图象写解析式;根据已知条件写出y = Asm(,ax +(p)中的待定系数A,a),(p.【学法与教学用具】:1.学法:2.教学用具:多媒体、实物投影仪.【授课类型】:新授课【课时安排】:1课时【教学思路】:一、创设情景,揭示课题复习:1.山函数y = sinx的图象到y = A sin((y.r + cp)的图象的变换方法:方法一:先移相位,再作周期变换,再作振幅变换;方法二:先作周期变换,再作相位变换,再作振幅变换。
2.如何用五点法作y = A sin((a.r + cp)的图象?3.4、3、0对函数y = A sin(t«x + cp)图象的影响作用二、研探新知函数y = Asin(fflr + ^),xe [0,+oo),(其中A > 0, ® > 0)的物理意义:函数表示一个振动量时:A:这个量振动时离开平衡位置的最大距离,称为“振幅”2兀r:T =—往复振动一次所需的时间,称为“周期”cof : f =—= 单位时间内往返振动的次数,称为"频率”T 2兀cox +(p :称为相位(p : x二0时的相位,称为“初相”三、质疑答辩,排难解惑,发展思维1.根据函数图象求解析式例1已知函数y = A sin(^x + (p) ( A > 0 , >0 ) 一个周期内的函数图象,如下图所示,求函数的一个解析式。
江苏省南京市高一数学苏教版必修4教学案:第1章14三角函数的应用
江苏省泰兴中学高一数学教学案(50)必修4_01 三角函数的应用班级 姓名目标要求1. 掌握三角函数的图象与性质;2. 利用三角函数的图象与性质解决一些简单的实际问题,体会三角函数是描述周期现象的重要数学模型.重点难点:建立三角函数的模型. 典例剖析例1 如图所示,某地一天从2时到14时的温度变化曲线近似满足函数()sin()p t y A x b ωϕ==++,(1)求这一天的最大温差; (2)写出这段曲线的函数解析式.例2 在图中,点O 为做简谐运动的物体的平衡位置,取向右的方向为物体位移的正方向,若已知振幅为3cm ,周期为3s ,且物体向右运动到距平衡位置最远处时开始计时. (1) 求物体对平衡位置的位移x (cm )和时间t (s )之间的函数关系; (2) 求该物体在t=5s 时的位置.例3 一半径为4m 的水轮如图所示,水轮圆心O距离水面2m,已知水轮每分钟按逆时针转动4圈,如果当水轮上点P从水中浮现时(图中点P)开始计算时间.(1)将点P距离水面的高度z(m)表示为时间t(s)的函数;(2)点P第一次到达最高点大约要多长时间?4 课堂练习1.图中是一弹簧振子做简谐运动的图象,横轴表示振动 的时间,纵轴表示振动的位移,则这个振子振动的 函数解析式________________________.2.甲、乙两楼相距60米,从乙楼底望甲楼顶的仰角为45, 从甲楼顶望乙楼顶的俯角为30,则甲、乙两楼的高度 分别为__________________________.课堂小结1.三角函数能够模拟现实中的许多周期现象,如物理中简谐振动、交流电中的电流、潮汐等,都可以建立三角函数模型,利用三角函数性质解决;2.解决三角函数应用问题主要分三步:第一步把实际问题化归为数学问题;第二步解决数学问题;第三步把数学问题还原成实际问题.江苏省泰兴中学高一数学作业(50)班级 姓名 得分1、如图所示,单摆从某点开始来回摆动,离开平衡位置O 的距离s(单位 cm )和时间t (单位s )的函数关系式为6sin(2)6s t ππ=+,那么单摆来回摆动一次所需的时间为 __________s2、 如图中,点O 为做简谐运动的物体的平衡位置,取向右的方向为物体位移的正方向.若已知振幅为5cm ,周期为4s ,且物体向右运动到平衡位置时开始计时,(1)求物体对平O衡位置的位移x(cm)和时间t(s)之间的函数关系;(2)求该物体在t=7.5s时的位置.3、心脏跳动时,血压在增加或减小,血压的最大值、最小值分别称为收缩压和舒张压,血压计上的读数就是收缩压和舒张压,读数120/80 mmHg为标准值.设某人的血压满足函数式()11525sin(160)p t为血压(mmHg),t为时间(min), 试回答下=+,其中()p t tπ列问题:(1)求函数()p t的周期;(2)此人每分钟心跳的次数;(3)画出函数()p t的草图;(4)求出此人的血压在血压计上的读数,并与标准值比较.4、一个大风车的半径为8 m,12min旋转一周,它的最低点离地面2m(如图所示),求风车翼片的一个端点P离地面距离h(m) 与时间t(min)之间的函数关系,其中点P的起始位置在最低点处.5、如图,ABCD是一块边长为100米的正方形地皮,其中ATPS是一半径为90米的扇形小山,P是弧TS上一点,其余部分都是平地.现一开发商想在平地上建一个有边落在BC与CD上的矩形停车场PQCR,写出矩形停车场面积S关于 的函数关系式..。
江苏省泰州市高中数学第1章三角函数1.3.4三角函数的应用导学案苏教版必修4
1.3.4 三角函数的应用一、【学习目标】1.会用三角函数解决一些简单的实际问题.2.体会三角函数是描述周期变化现象的重要函数模型.二、【自学要点】利用三角函数模型解释自然现象梳理 利用三角函数模型解决实际问题的一般步骤:第一步:阅读理解,审清题意.第二步:收集、整理数据,建立数学模型.第三步:利用所学的三角函数知识对得到的三角函数模型予以解答.第四步:将所得结论转译成实际问题的答案.三、【合作探究】1.已知电流I 与时间t 的关系为I =A sin(ωt +φ).(1)如图所示的是I =A sin(ωt +φ)⎝⎛⎭⎪⎫ω>0,|φ|<π2在一个周期内的图象,根据图中数据求I =A sin(ωt +φ)的解析式;(2)如果t 在任意一段1150的时间内,电流I =A sin(ωt +φ)都能取得最大值和最小值,那么ω的最小正整数值是多少?2.某游乐园的摩天轮最高点距离地面108米,直径长是98米,匀速旋转一圈需要18分钟.如果某人从摩天轮的最低处登上摩天轮并开始计时,那么:(1)当此人第四次距离地面692米时用了多少分钟? (2)当此人距离地面不低于⎝ ⎛⎭⎪⎫59+4923米时可以看到游乐园的全貌,求摩天轮旋转一圈中有多少分钟可以看到游乐园的全貌?四、【当堂巩固】1.一根细线的一端固定,另一端悬挂一个小球,当小球来回摆动时,离开平衡位置的位移S (单位:cm)与时间t (单位:s)的函数关系是S =6sin ⎝ ⎛⎭⎪⎫2πt +π6. (1)画出它的图象;(2)回答以下问题:①小球开始摆动(即t =0)时,离开平衡位置多少?②小球摆动时,离开平衡位置的最大距离是多少?③小球来回摆动一次需要多少时间?2.如图所示,一个摩天轮半径为10 m ,轮子的底部在距离地面2 m 处,如果此摩天轮按逆时针转动,每300 s 转一圈,且当摩天轮上某人经过点P 处(点P 与摩天轮中心高度相同)时开始计时.(1)求此人相对于地面的高度关于时间的关系式;(2)在摩天轮转动的一圈内,大约有多长时间此人相对于地面的高度不小于17 m.五、【课堂小结】:六、【教学反思】:。
高中数学新苏教版精品教案《苏教版高中数学必修4 1.3.4 三角函数的应用》
江苏省高考应用题的解题策略探究-----江苏省锡东高级中学华佳一、考情分析:1 应用题是高考考查的重要题型,主要呈现的方式是一道大题。
2 涉及的数学模型主要有:体积问题, 修路问题,古桥问题,相遇问题,射程问题,包装问题,测量问题,满意问题,排污问题。
3,应用题命题特点:〔1〕背景材料是提供图形的命题方式;〔3〕均为寻找变量之间的等式关系;〔4〕解模方法大多为函数求导和根本不等式的应用;〔5〕标准表达、定义域、作答等节要求严格二、教学目标:1,学生对应用题进行审题,标注关键词、关键条件、关注隐含条件,寻找条件和结论的关系。
从自然语言、图形语言和数学语言之间的转化。
2,建立函数关系,合理选择变量,构建等量关系、关注定义域。
3,处理函数关系,运用函数求导、根本不等式、分式不等式、参变别离、整体代换等方法进行求解。
4,完善过程,标准书写、回归实际、准确作答。
学生如何审题,实现由实际问题向数学问题的转化〔数学建模〕,最后通过已有的数学知识解决问题〔数学解模〕例1〔2021江苏〕某地有三家工厂,分别位于矩形ABCD的定点A,B及CD的中点,CB=10m,为了处理三家工厂的污水,现要在矩形ABCD的区域上〔含边界〕,且A,B与等距离的一点O处建造一个污水处理厂,并铺设排污管道AO,BO,O。
1请你确定污水处理厂的位置,使三条排污管道总长度最短?2如何求函数的最小值?例2,如图,一块弓形薄铁片EMF,点M为弧EF的中点,其所在圆0的半径为4dm〔圆心O在弓形EMF内〕,将弓形薄铁片裁剪成尽可能大的矩形铁片ABCD 〔不计损耗〕,,且点A,D在弧EF上,设1求矩形铁片ABCD的面积S关于的函数关系式;2当裁出的矩形铁片ABCD的面积最大时,求 co的值。
例3,如图,现要在边长为100m的正方形ABCD内建一个交通“环岛〞。
以正方形的四个顶点为圆心在四个角分别建半径为 m〔不小于9〕的扇形花坛,以正方形的中心为圆心建一个半径为m的圆形草地。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十五课时 §1.3.4 三角函数的应用(1)
【教学目标】
一、知识与技能:
会用三角函数的图象与性质解决一些简单的实际问题;体会三角函数是描述周期现象的重要数学模型
二、过程与方法
从实际的应用中体会数学与生活是相关的,不是完全脱离现实的,同时理解三角函数在描述周期性现象时的重要作用
三、情感态度价值观:
培养学生应用数学的能力,让学生体会到数学在实际生活中的应用,意识到只要认真观察思考,会发现数学来源于生活
教学重点难点:建立三角函数的模型
【教学过程】
一.复习回顾
1、 回顾课本 “三角函数的周期性”
2、 求函数sin()y A x k ωϕ=++的解析式
3、查阅物理中“单摆运动”
二.新课讲解:
一定条件下,单摆运动是一种周期性的运动,从而引出对具有周期性现象的问题的研究,可用具有周期性规律的三角函数来描述。
实际上,三角函数能够描述、模拟许多周期现象,因此在解决实际问题中有着广泛的应用。
三、例题分析:
例1、 (教材P42例1)
点评:本题是简谐运动的问题,在利用三角函数描述问题时,首先分析此现象具有周期性,其次结合题意作出函数草图,然后根据图象用“待定系数法”求出sin()y A x k ωϕ=++。
例2、 (教材P43例2)
点评:①本题是圆周运动的问题;②寻找变量间的关系是关键,结合图形建立恰当的直角坐标系,将几何问题代数化
已知函数sin()y A x ωϕ=+(0A >,0ω>)一个周期内的函数图象,如下图
例3、如图所示,求函数的一个解析式。
例4、已知函数cos()y A x ωϕ=+(0A >,0ω>,0ϕπ<<)的最小值是5-,
图象上相邻两个最高点与最低点的横坐标相差
4
π,且图象经过点5(0,)2-,求这个函数的解析式。
例5、已知函数sin()y A x B ωϕ=++(0A >,0ω>,||ϕπ<)的最大值为23π,且图象过点(0,4-,求这个函数的解析式 x 3- 3π 56π 3
O。