函数图像的切线问题(可编辑修改word版)
导数切线方程练习题文科(可编辑修改word版)
1 n 12 n1、曲线y =1x2在点导数切线方程练习题1 处切线的倾斜角为22、曲线y =x(1, )2在点(1,1) 处的切线方程为.2x -13、曲线y =x3在点(1,1) 处的切线与x 轴、直线x = 2 所围成的三角形面积为.4.函数f (x)=e x cos x 的图像在点(0, f (0))处的切线的倾斜角为5.曲线y =e x在点(2,e2)处的切线与坐标轴所围三角形的面积为6.曲线y = e x在点A 处的切线与直线x -y + 3 = 0 平行,则点A 的坐标为7.设曲线y =x +1在点(3, 2) 处的切线与直线ax +y +1 = 0 垂直,则a 等于x -18.曲线y=2sinx 在点P(π,0)处的切线方程为9.设曲线y =x n+1(n ∈N *) 在点(1,1)处的切线与 x 轴的交点的横坐标为x ,则x ⋅x ⋅ ⋅x 的值为20.函数y=f(x)的图像在点M(1,f(1))处的切线方程为y =x + 2 ,则2f (1) +f '(1) =10.直线y = 2x +b 与曲线y =-x + 3ln x 相切,则b 的值为.11.已知函数f (x) =xe x.(1)求这个函数的导数;(2)求这个函数的图象在点x =1 处的切线方程.12.已知函数f (x)=x +a+b(x ≠ 0),其中a, b ∈R .若曲线y = xy = 3x + 1,求函数f (x)的解析式;f (x)在点P(2, f (2))处的切线方程为13.已知函数 f (x) =x3+x -16 .(1)求曲线y = f (x) 在点(2, -6) 处的切线方程;(2)直线l 为曲线y =f (x) 的切线,且经过原点,求直线l 的方程及切点坐标.14.已知函数f (x) =x2+ax +b ,g(x) =e x(cx +d ) 若曲线y =f (x) 和曲线y =g(x) 都过点P(0,2) ,且在点P 处有相同的切线y = 4x + 2 . 求a ,b ,c ,d 的值;15.设函数f (x) =ae x 求a, b ln x +be x-1x,曲线y = f (x) 在点(1, f (1))处的切线方程为y =e(x - 1) + 216.已知函数f (x) =x3+ax2+bx +c ,g(x) =12x - 4 ,若f (-1) = 0 ,且f (x) 的图象在点(1, f (1)) 处的切线方程为y =g(x) .(1)求实数a ,b,c的值;17. 已知f (x) = 2x2- 1,求过点(1, 0) 的与函数的切线方程。
专题14 与切线有关的恒成立问题(解析版)
备战2022高考数学冲刺秘籍之恒成立与有解问题解法大全第二篇专题十四 与切线有关的恒成立问题一、问题指引与切线有关的恒成立问题,包括根据恒成立求参数范围与证明不等式,前者常利用切线找出临界点,后者常利用切线型不等式进行放缩.二、方法详解(一)借组曲线的切线求参数范围【例】(2020·江西高二期末(文))已知函数f (x )=e x +ax 2+bx (e 为自然对数的底,a ,b 为常数),曲线y =f (x )在x =0处的切线经过点A (﹣1,﹣1) (1)求实数b 的值;(2)是否存在实数a ,使得曲线y =f (x )所有切线的斜率都不小于2?若存在,求实数a 的取值集合,若不存在,说明理由.【答案】(1)b =1;(2)存在,{12-}. 【解析】 【分析】(1)求出原函数的导函数,得到()0f ',再求出()0f ,由两点求斜率公式列式可得b ;(2)记()()21xg x f x e ax '==++,曲线()y f x =所有切线的斜率都不小于2等价于()2g x ≥对任意的实数R 恒成立,,求函数()g x 的导函数,分0a ≥和0a <分类求解的答案. 【详解】(1)2()x f x e ax bx =++,()2x f x e ax b '∴=++,(0)1f b '∴=+,又(0)1f =,又曲线()y f x =在0x =处的切线经过点(1,1)A --,1(1)120(1)b --∴+==--,则1b =;(2)记()()21xg x f x e ax '==++,曲线()y f x =所有切线的斜率都不小于2等价于()2g x ≥对任意的实数R 恒成立,()2xg x e a '=+,当0a ≥时,()0g x '>,()g x 单调递增,∴当0x <时,()(0)2g x g <=;0a ∴≥时不成立,当0a <时,由()0g x '=,得ln(2)x a =-,且ln(2)x a <-时,()0g x '<,ln(2)x a >-时,()0g x '>,∴函数()g x 的极小值点为ln(2)a -,又(0)2g =,ln(2)0a ∴-=,得12a =-. ∴存在实数a ,使得曲线y =f (x )所有切线的斜率都不小于2,则实数a 的集合为{12-}. 【点睛】本题主要考查的是导数的几何意义的应用,利用导数求函数的极值和最值,分类讨论思想和转化思想的应用,考查学生的分析问题解决问题的能力以及计算能力,是中档题.【类题展示】【河北省2020届高三期末】对任意m ∈[1e ,e 2],都存在x 1,x 2(x 1,x 2∈R,x 1≠x 2),使得ax 1−e x 1=ax 2−e x 2=mlnm −m ,其中e 为自然对数的底数,则实数a 的取值范围是() A .(e 2,+∞) B .(1,+∞) C .(1,e 2) D .(0,1)【答案】A【分析】首先求函数f(x)=xlnx −x (1e ≤x ≤e 2)的值域,将原问题转化为方程ax −e x =k,k ∈[−1,e]至少有两个实数根,利用切线的性质考查临界条件可得实数a 的取值范围.【解析】令f(x)=xlnx −x (1e ≤x ≤e 2),则f ′(x)=lnx ,据此可得函数在区间(1e ,1)上单调递减,在区间(1,e 2)上单调递增,注意到f (1e )=−2e ,f(1)=−1,f(e 2)=e 2,故函数的值域为[−1,e 2].则原问题等价于方程ax −e x =k,k ∈[−1,e]至少有两个实数根,即e x =ax −k,k ∈[−1,e 2]至少有两个实数根,考查临界情况,当k =e 2时,直线y =ax −e 2与指数函数y =e x 相切,由y =e x 可得y′=e x ,则切点坐标为(x 0,e x 0),切线斜率k =y ′|x=x 0=e x 0,切线方程为:y −e x 0=e x 0(x −x 0),切线过点(0,−e 2),故−e −e x 0=e x 0(0−x 0),很明显方程的根为x 0=2,此时切线的斜率k =e 2.据此可得实数a 的取值范围是(e 2,+∞). 【评注】若能把恒成立问题,转化为直线与曲线的位置关系,常可通过直线与曲线相切求参数的临界值。
第3讲 导数中八大切线问题题型总结(解析版)
第3讲 导数中八大切线问题题型总结【考点预测】 1.在点的切线方程切线方程000()()()y f x f x x x '-=-的计算:函数()y f x =在点00(())A x f x ,处的切线方程为000()()()y f x f x x x '-=-,抓住关键000()()y f x k f x =⎧⎨'=⎩.2.过点的切线方程设切点为00()P x y ,,则斜率0()k f x '=,过切点的切线方程为:000()()y y f x x x '-=-, 又因为切线方程过点()A m n ,,所以000()()n y f x m x '-=-然后解出0x 的值.(0x 有几个值,就有几条切线)注意:在做此类题目时要分清题目提供的点在曲线上还是在曲线外. 【题型目录】题型一:导数与切线斜率的关系题型二:在点P 处切线(此类题目点P 即为切点)题型三:过点P 的切线(此类题目点P 不一定为切点,需要设切点为()00,y x ) 题型四:已知切线求参数问题题型五:切线的条数问题(判断切线条数以及由切线条数求范围) 题型六:公切线问题题型七:切线平行、垂直、重合问题 题型八:与切线相关的最值问题 【典例例题】题型一:导数与切线斜率的关系【例1】(2022·全国·高三专题练习(文))函数()y f x =的图像如图所示,下列不等关系正确的是( )A .0(2)(3)(3)(2)f f f f ''<<<-B .0(2)(3)(2)(3)f f f f ''<<-<C .0(3)(3)(2)(2)f f f f ''<<-<D .0(3)(2)(2)(3)f f f f ''<-<<【解析】 【分析】根据导数的几何意义和函数平均变化率的定义,结合图象,即可求解. 【详解】如图所示,根据导数的几何意义,可得()2f '表示切线1l 斜率10k >,()3f '表示切线3l 斜率30k >, 又由平均变化率的定义,可得(3)(2)(3)(2)32f f f f -=--,表示割线2l 的斜率2k ,结合图象,可得3210k k k <<<,即()()()()03322f f f f <<-<''. 故选:C.【例2】函数()y f x =的图象如图所示,()f x '是函数()f x 的导函数,则下列大小关系正确的是( )A .()()()()244222f f f f '<-<'B .()()()()224224f f f f '<-<'C .()()()()242242f f f f '<'<-D .()()()()422422f f f f -<'<'【答案】B 【解析】 【分析】由导数的几何意义判断由图象可知()f x 在(0,)+∞上单调递增,12AB k k k <<, 故(4)(2)(2)(4)42f f f f -'<<'-,即()()()()224224f f f f '<-<'故选:B 【题型专练】1.(2021·福建·泉州鲤城北大培文学校高三期中)(多选题)已知函数()f x 的图象如图所示,()f x '是()f x 的导函数,则下列数值的排序正确的是( )A .()()32f f ''<B .()()()332f f f '<-C .()()()232f f f '<-D .()()320f f -<【答案】AB 【解析】 【分析】根据导数的几何意义可得()()23f f ''>,记()()22A f ,,()()33B f ,,作直线AB ,根据两点坐标求出直线AB 的斜率,结合图形即可得出()()()323f f f '->. 【详解】由函数的图象可知函数()f x 是单调递增的,所以函数图象上任意一点处的导函数值都大于零,并且由图象可知,函数图象在2x =处的切线斜率1k 大于在3x =处的切线斜率2k ,所以()()23f f ''>;记()()22A f ,,()()33B f ,,作直线AB ,则直线AB 的斜率()()()()323232f f k f f -==--,由函数图象,可知120k k k >>>,即()()()()23230f f f f ''>->>. 故选:AB2.(2022·黑龙江齐齐哈尔·高二期末)函数()y f x =的图象如图所示,f x 是函数()f x 的导函数,则下列数值排序正确的是( )A .()()()()235325f f f f ''<-<B .()()()()232553f f f f ''<<-C .()()()()532325f f f f ''-<<D .()()()()232553f f f f ''<<-【答案】A【分析】由()y f x =图象的变化趋势,结合导函数的定义有(5)(3)(3)(5)53f f f f -''<<-,即可得答案.【详解】由图知:(5)(3)(3)(5)53f f f f -''<<-,即2(3)(5)(3)2(5)f f f f ''<-<.故选:A题型二:在点P 处切线(此类题目点P 即为切点)【例1】【2019年新课标3卷理科】已知曲线e ln x y a x x =+在点()1,ae 处的切线方程为2y x b =+,则 A .,1a e b ==- B .,1a e b == C .1,1a e b -== D .1,1a e b -==-【答案】D 【解析】通过求导数,确定得到切线斜率的表达式,求得a ,将点的坐标代入直线方程,求得b . 【详解】详解:ln 1,x y ae x '=++ 1|12x k y ae ='==+=,1a e -∴=将(1,1)代入2y x b =+得21,1b b +==-,故选D . 【点睛】本题关键得到含有a ,b 的等式,利用导数几何意义和点在曲线上得到方程关系. 【例2】(2022·全国·高三专题练习(文))已知函数()f x 是定义在R 上的奇函数,且32()23(1)f x x ax f x '=-+-,则函数()f x 的图象在点(2,(2))f --处的切线的斜率为( )A .21-B .27-C .24-D .25-【答案】A 【解析】 【分析】求导数得出(1)f ',结合奇函数定义得函数解析式,然后计算(2)f '-即可. 【详解】()f x 是奇函数,3232()23(1)()23(1)f x x ax f x f x x ax f x ''-=++=-=-+恒成立,所以0a =,3()2(1)f x x f x '=--,2()6(1)f x x f ''=--,所以(1)6(1)f f ''=--,(1)3f '=-,即2()63f x x '=-+, 2(2)6(2)321f '-=-⨯-+=-.故选:A .【例3】(2022·河南省浚县第一中学模拟预测(理))曲线ln(25)y x x =+在2x =-处的切线方程为( ) A .4x -y +8=0 B .4x +y +8=0 C .3x -y +6=0 D .3x +y +6=0【答案】B 【解析】将2x =-代入曲线方程求得切点坐标,利用导数的几何意义求解切线斜率,利用直线方程点斜式求解即可. 【详解】解:因为ln(25)y x x =+,所以()()2ln 25ln 2525x y x x x x ''=+=++⎡⎤⎣⎦+,所以24x y =-=-'. 又当2x =-时,ln10y x ==,故切点坐标为(2,0)-,所以切线方程为480x y ++=. 故选:B.【例4】过函数21()2xf x e x =-图像上一个动点作函数的切线,则切线领斜角范围为( )A .30,4π⎡⎫⎪⎢⎣⎭B .30,,24πππ⎡⎫⎛⎫⎪ ⎪⎢⎣⎭⎝⎭C .3,4ππ⎛⎫⎪⎝⎭D .3,24ππ⎛⎫ ⎪⎝⎭【答案】B 【解析】 【分析】求得2()1x f x e '=-,根据指数函数的性质,得到211x e ->-,即切线的斜率1k >-,进而得到tan 1θ>-,即可求解. 【详解】由题意,函数21()2xf x e x =-,可得2()1x f x e '=-,因为20x e >,所以211x e ->-,即切线的斜率1k >-, 设切线的倾斜角为θ,则tan 1θ>- 又因为0θπ≤<,所以02πθ≤<或34πθπ<<, 即切线的倾斜角的范围为30,,24πππ⎡⎫⎛⎫⎪ ⎪⎢⎣⎭⎝⎭.故选:B.【例5】(2022·安徽·巢湖市第一中学模拟预测(文))曲线22x ay x +=+在点()1,b 处的切线方程为60kx y -+=,则k 的值为( ) A .1- B .23-C .12D .1【答案】A 【解析】依据题意列出关于a b k 、、的方程组,即可求得k 的值 【详解】由切点()1,b 在曲线上,得23ab +=①; 由切点()1,b 在切线上,得60k b -+=②; 对曲线求导得()242ay x -'=+,∴2143x ay k ='-==,即49a k -=③, 联立①②③236049a b k b a k+⎧=⎪⎪-+=⎨⎪-=⎪⎩,解之得1351a b k =⎧⎪=⎨⎪=-⎩故选:A.【例6】(2022·江西·丰城九中高二期末(理))已知函数()()()⎪⎩⎪⎨⎧<>-=0,0,322x x g x x x f x f 图像关于原点对称,则()f x 在1x =-处的切线方程为( ) A .320x y -+= B .320x y --= C .340x y ++= D .340x y +-=【答案】A【分析】令2x =先求出(2)f 的值,再利用函数关于原点对称可求出()g x ,再利用导函数的几何意义即可求出()f x 在1x =-处的切线方程. 【详解】由题意知:2(2)(2)22(2)63f f f =⨯-⇒=. 所以22,0()(),0x x x f x g x x ⎧->=⎨<⎩; 令0x <,则0x ->. 所以2()2x x f x -=+.又函数()f x 图像关于原点对称,即()()f x f x -=-. 所以当0x <时,2()2f x x x =--. 所以当0x <时,)4(1x f x '=--.(14)13f '-=-=,(1)211f -=-+=-;所以()f x 在1x =-处的切线方程为:13(1)320y x x y +=+⇒-+=. 故选:A. 【题型专练】1.【2018年新课标1卷理科】设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( )A .2y x =-B .y x =-C .2y x =D .y x =【答案】D 【解析】 【详解】分析:利用奇函数偶次项系数为零求得1a =,进而得到()f x 的解析式,再对()f x 求导得出切线的斜率k ,进而求得切线方程.详解:因为函数()f x 是奇函数,所以10a -=,解得1a =, 所以3()f x x x =+,2()31x f 'x =+, 所以'(0)1,(0)0f f ==,所以曲线()y f x =在点(0,0)处的切线方程为(0)'(0)y f f x -=, 化简可得y x =,故选D.点睛:该题考查的是有关曲线()y f x =在某个点00(,())x f x 处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得'()f x ,借助于导数的几何意义,结合直线方程的点斜式求得结果. 2.【2021年甲卷理科】曲线212x y x -=+在点()1,3--处的切线方程为__________. 【答案】520x y -+= 【解析】 【分析】先验证点在曲线上,再求导,代入切线方程公式即可. 【详解】由题,当1x =-时,3y =-,故点在曲线上. 求导得:()()()()222221522x x y x x +--==++',所以1|5x y =-='.故切线方程为520x y -+=. 故答案为:520x y -+=.3.【2019年新课标1卷理科】曲线23()e x y x x =+在点(0,0)处的切线方程为___________. 【答案】30x y -=. 【解析】 【分析】本题根据导数的几何意义,通过求导数,确定得到切线的斜率,利用直线方程的点斜式求得切线方程 【详解】详解:/223(21)3()3(31),x x x y x e x x e x x e =+++=++所以,/0|3x k y ===所以,曲线23()e x y x x =+在点(0,0)处的切线方程为3y x =,即30x y -=. 【点睛】准确求导数是进一步计算的基础,本题易因为导数的运算法则掌握不熟,二导致计算错误.求导要“慢”,计算要准,是解答此类问题的基本要求.4.【2018年新课标2卷理科】曲线2ln(1)y x =+在点(0,0)处的切线方程为__________. 【答案】2y x = 【解析】 【分析】先求导数,再根据导数几何意义得切线斜率,最后根据点斜式求切线方程. 【详解】 2222101y k y x x =∴==∴=+'+ 【点睛】求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点.5.【2018年新课标3卷理科】曲线()1e xy ax =+在点()01,处的切线的斜率为2-,则=a ________. 【答案】3- 【解析】 【分析】求导,利用导数的几何意义计算即可. 【详解】解:()y 1x xae ax e =++'则()f 012a =+=-' 所以3a =- 故答案为-3. 【点睛】本题主要考查导数的计算和导数的几何意义,属于基础题题型三:过点P 的切线(此类题目点P 不一定为切点,需要设切点为()00,y x )【例1】【2022年新高考2卷】曲线y =ln|x|过坐标原点的两条切线的方程为____________,____________.【答案】 y =1ex y =−1ex【解析】 【分析】分x >0和x <0两种情况,当x >0时设切点为(x 0,lnx 0),求出函数的导函数,即可求出切线的斜率,从而表示出切线方程,再根据切线过坐标原点求出x 0,即可求出切线方程,当x <0时同理可得; 【详解】解: 因为y =ln |x |,当x >0时y =lnx ,设切点为(x 0,lnx 0),由y ′=1x ,所以y ′|x=x 0=1x 0,所以切线方程为y −lnx 0=1x 0(x −x 0),又切线过坐标原点,所以−lnx 0=1x 0(−x 0),解得x 0=e ,所以切线方程为y −1=1e(x −e ),即y =1ex ;当x <0时y =ln (−x ),设切点为(x 1,ln (−x 1)),由y ′=1x ,所以y ′|x=x 1=1x 1,所以切线方程为y −ln (−x 1)=1x 1(x −x 1),又切线过坐标原点,所以−ln (−x 1)=1x 1(−x 1),解得x 1=−e ,所以切线方程为y −1=1−e(x+e ),即y =−1ex ;故答案为:y =1ex ;y =−1ex【例2】(2022·四川·广安二中二模(文))函数()2e xf x x =过点()0,0的切线方程为( )A .0y =B .e 0x y +=C .0y =或e 0x y +=D .0y =或e 0x y +=【答案】C 【解析】 【分析】设切点2(,e )m m m ,利用导数的几何意义求该切点上的切线方程,再由切线过()0,0代入求参数m ,即可得切线方程. 【详解】由题设2()(2)e x f x x x '=+,若切点为2(,e )m m m ,则2()(2)e m f m m m '=+, 所以切线方程为22(2))e e (m m y m m m x m +-=-,又切线过()0,0,则22(2e )e m m m m m +=,可得0m =或1m =-,当0m =时,切线为0y =;当1m =-时,切线为e 1(1)y x --=+,整理得e 0x y +=. 故选:C【例3】(2022·四川省成都市郫都区第一中学高三阶段练习(文))若过点1(,0)2的直线与函数()e x f x x =的图象相切,则所有可能的切点横坐标之和为( ) A .e 1+ B .12-C .1D .12【答案】D 【解析】 【分析】由已知,设出切点,写出切线方程,然后把点1(,0)2代入方程,解出切点坐标即可完成求解.【详解】因为函数()e x f x x =,所以()(1)e xf x x =+',设切点为000(,e )x x x ,则切线方程为:00000e (+1)e ()x xy x x x x -=-,将点1(,0)2代入得000001e (+1)e ()2x x x x x -=-,即0001(+1)()2x x x -=-,解得012x =-或01x =,所以切点横坐标之和为11122-+=故选:D.【例4】(2022·广东·佛山市南海区九江中学高二阶段练习)直线12y x b =-与曲线1ln 2y x x =-+相切,则b 的值为( )A .2B .-2C .-1D .1【答案】D【分析】求出112y x '=-+,设切点()00,x y ,由()012'=y x 求出()00,x y ,代入12y x b =-可得答案.【详解】112y x'=-+,设切点()00,x y ,由()0011122y x x '=-+=,所以0011,2x y ==-,代入12y x b =-,得1b =.故选:D.【题型专练】1.(2022·陕西安康·高三期末(文))曲线2ln 3y x x =+过点1,02⎛⎫- ⎪⎝⎭的切线方程是( )A .210x y ++=B .210x y -+=C .2410x y ++=D .2410x y -+=【答案】B 【解析】 【分析】设出切点,结合导数列方程,由此求出切点坐标并求出切线的斜率,进而可得切线方程. 【详解】由题意可得点1,02⎛⎫- ⎪⎝⎭不在曲线2ln 3y x x =+上,设切点为()00,x y ,因为2ln 2y x '=+, 所以所求切线的斜率0000022ln 21212y y k x x x =+==++,所以000002ln 2ln 1y x x x x =+++.因为点()00,x y 是切点,所以0002ln 3y x x =+,所以0000002ln 2ln 12ln 3x x x x x x +++=+,即002ln 20x x +-=. 设()2ln 2f x x x =+-,明显()f x 在()0,∞+上单调递增,且()10f =, 所以002ln 20x x +-=有唯一解01x =,则所求切线的斜率2k =, 故所求切线方程为12212y x x ⎛⎫=+=+ ⎪⎝⎭.故选:B.2.(2022·广东茂名·二模)过坐标原点作曲线ln y x =的切线,则切点的纵坐标为( ) A .e B .1CD .1e【答案】B 【解析】 【分析】设出切点()()000,ln 0P x x x >,利用导数得到切线的斜率,写出切线方程,将原点坐标代入切线方程,解出即可. 【详解】解:设切点()()000,ln 0P x x x >,由ln y x =,得1y x'=,所以001x x y x ='=,∴曲线在点P 处的切线l 方程为()0001ln y x x x x -=-, 又l 过(0,0),∴()0001ln x x x -=-,解得0x e =, ∴切点(),1P e ,纵坐标为1. 故选:B .3.过点(0,-1)作曲线()ln f x x x =的切线,则切线方程为 A .x +y +1=0 B .x -y -1=0 C .x +2y +2=0 D .2x -y -1=0【答案】B 【解析】设切点为00(,)x y ,再求出切点坐标,即得切线的斜率,再写出切线的方程即得解. 【详解】 ()'f x =ln x +1,设切点为00(,)x y ,∴000ln y x x =, ∴001y x +=ln x 0+1, ∴x 0ln x 0+1=x 0ln x 0+x 0,∴x 0=1,∴y 0=0, 所以k =0()f x '=1,∴切线方程为y =x -1,即x -y -1=0, 故选:B . 【点睛】本题主要考查导数的几何意义,考查曲线的切线方程的求法,意在考查学生对这些知识的理解掌握水平.4.已知2()f x x =,则过点P (-1,0)且与曲线()y f x =相切的直线方程为( ) A .0y =B .440x y ++=C .0y =或440x y ++=D .0y =或440x y -+=【答案】C 【解析】设切点为()00,x y 则切线方程为()20002y x x x x -=-,将点()1,0P -代入解0x ,即可求切线方程. 【详解】设切点为()00,x y ,则200y x =,切线斜率为()002k f x x '==所以切线方程为()20002y x x x x -=-,因为过点()1,0P - 则()200021x x x -=--解得00x =或02x =-,所以切线方程为0y =或440x y ++= 故选:C题型四:已知切线求参数问题【例1】.(2022·湖南·模拟预测)已知P 是曲线)2:ln C y x x a x =++上的一动点,曲线C 在P 点处的切线的倾斜角为θ,若32ππθ≤<,则实数a 的取值范围是( )A .)⎡⎣ B .)⎡⎣C .(,-∞D .(,-∞【答案】D 【解析】 【分析】对函数求导,利用导数的几何意义以及给定倾斜角的范围,转化为恒成立问题求解a 的范围即可. 【详解】因为)2ln y x x a x =++,所以12y x a x'=+, 因为曲线在M 处的切线的倾斜角ππ,32θ⎡⎫∈⎪⎢⎣⎭,所以πtan3y ≥'=0x >恒成立,即12x a x+≥对任意0x >恒成立,即12a x x≤+,又12x x +≥12x x =,即x =a ≤所以a 的取值范围是(,-∞. 故选:D .【例2】(2022·广东·石门高级中学高二阶段练习)若直线1ln 2y kx =+-是曲线ln 2y x =+的切线,则k =________. 【答案】2【分析】设切点()111,P x y ,根据导数的几何意义列式求解即可. 【详解】对函数ln 2y x =+求导得1y x'=,设直线1ln 2y kx =+-与曲线ln 2y x =+相切于点()111,P x y ,则11ln 2y x =+,由点()111,P x y 在切线上得()()1111ln 2y x x x x -+=-,即111ln 1y x x x =++,所以1111ln 1ln 2k x x ⎧=⎪⎨⎪+=-⎩,解得112x =,2k =. 故答案为:2【例3】(2022·陕西·千阳县中学高三阶段练习(文))已知曲线e ln x y a x x =+在点()1,e a 处的切线方程为2y x b =+,则b =_____ 【答案】1-【分析】先对函数求导,根据导数的几何意义,由题中条件,列出方程,求解,即可得出1e a -=,再由切点坐标,即可求出结果.【详解】因为e ln x y a x x =+的导数为e ln 1x y a x '=++, 又函数e ln x y a x x =+在点()1,e a 处的切线方程为2y x b =+, 可得e 012a ++=,解得1e a -=, 又切点为()1,1,可得12b =+,即1b =-. 故答案为:1-.【例4】(2022·江苏苏州·模拟预测)已知奇函数()()()()220f x x x ax b a =-+≠在点()(),a f a 处的切线方程为()y f a =,则b =( ) A .1-或1 B.C .2-或2 D.【答案】D 【解析】 【分析】由函数为奇函数可得2b a =,根据切线的斜率为0建立方程求出a 即可得解. 【详解】由()()()()220f x x x ax b a =-+≠可得32()(2)2f x ax b a x bx =+--,因为()()f x f x -=-,所以20b a -=,解得2b a =.所以()424y f a a a ==-,故切线斜率()0k f a '==,又2()(34)f x a x '=-,所以2()(34)0f a a a '=-=,解得a =a =,所以b =故选:D【题型专练】1.(2022·云南·丽江市教育科学研究所高二期末)已知曲线()()e x f x x a =+在点(1,(1))f --处的切线与直线210x y +-=垂直,则实数a 的值为_________.【答案】e 2【分析】由已知可得切线斜率,根据导数的几何意义列方程求解即可.【详解】因为()(1)e x f x x a '=++,所以切线的斜率为()1'1k f ae -=-=,而切线与直线210x y +-=垂直,所以12)1ae -⋅-=-(,解得e2a =, 故答案为:e2.2.(2022·云南昆明·模拟预测(文))若函数()ln f x x =的图象在4x =处的切线方程为y x b =+,则( )A .3a =,2ln 4b =+B .3a =,2ln 4b =-+C .32a =,1ln 4b =-+ D .32a =,1ln 4b =+ 【答案】A 【解析】 【分析】利用导数的几何意义可求出结果. 【详解】()f x 的定义域为(0,)+∞,1()f x x'=, 由题意可得(4)1(4)4f f b =⎧⎨=+'⎩,即114ln 44a b+==+⎩,解得32ln 4a b =⎧⎨=+⎩,故选:A3.(2022·河南·方城第一高级中学模拟预测(理))已知直线l 的斜率为2,l 与曲线1C :()1ln y x x =+和圆2C :2260x y x n +-+=均相切,则n =( )A .-4B .-1C .1D .4【答案】D 【解析】 【分析】设曲线1C 的切点,利用曲线的几何意义可得切点坐标,进而求得切线方程,再利用圆心到直线的距离等于半径即可求得n 值. 【详解】设直线l :20x y m -+=与曲线1C 相切,切点为()()000,1ln x x x +,因为()1ln y x x =+的导数为2ln y x '=+,由02ln 2x +=,解得01x =,所以切点为()1,1,代入20x y m -+=得1m =-,所以切线方程为210x y --=.将2260xy x n +-+=化为标准方程为()()22399x y n n -+=-<,因为l 与圆2C =4n =.故选:D题型五:切线的条数问题(判断切线条数以及由切线条数求范围)【例1】(2022·河南洛阳·三模(文))若过点()1,0P 作曲线3y x =的切线,则这样的切线共有( ) A .0条 B .1条 C .2条 D .3条【答案】C 【解析】 【分析】设切点为()300,x x ,求出函数的导函数,即可求出切线方程,再根据点P 在切线上,即可代入切线方程,解得0x ,即可得解; 【详解】解:设切点为()300,x x ,由3y x =,所以23y x '=,所以020|3x x y x ='=,所以切线方程为()320003y x x x x -=-,即230032y x x x =-,因为切线过点()1,0P ,所以3200032x x =-,解得00x =或032x =, 所以过点()1,0P 作曲线3y x =的切线可以作2条, 故选:C【例2】(2022·全国·高三专题练习)若过点(,)a b 可以作曲线ln y x =的两条切线,则( ) A .ln a b < B .ln b a <C .ln b a <D .ln a b <【答案】D 【解析】 【分析】设切点坐标为00(,)x y ,由切点坐标求出切线方程,代入坐标(,)a b ,关于0x 的方程有两个不同的实数解,变形后转化为直线与函数图象有两个交点,构造新函数由导数确定函数的图象后可得. 【详解】设切点坐标为00(,)x y ,由于1y x'=,因此切线方程为0001ln ()y x x x x -=-,又切线过点(,)a b ,则000ln a x b x x --=,001ln a b x x +=+, 设()ln a f x x x =+,函数定义域是(0,)+∞,则直线1y b =+与曲线()ln af x x x =+有两个不同的交点,221()a x af x x x x-'=-=, 当0a ≤时,()0f x '>恒成立,()f x 在定义域内单调递增,不合题意;当0a >时,0x a <<时,()0f x '<,()f x 单调递减,x a >时,()0f x '>,()f x 单调递增,所以min ()()ln 1f x f a a ==+,结合图像知1ln 1b a +>+,即ln b a >. 故选:D.【例3】【2021年新高考1卷】若过点(),a b 可以作曲线e x y =的两条切线,则( ) A .e b a < B .e a b < C .0e b a << D .0e a b <<【答案】D 【解析】 【分析】解法一:根据导数几何意义求得切线方程,再构造函数,利用导数研究函数图象,结合图形确定结果;解法二:画出曲线x y e =的图象,根据直观即可判定点(),a b 在曲线下方和x 轴上方时才可以作出两条切线. 【详解】在曲线x y e =上任取一点(),tP t e ,对函数x y e =求导得e x y '=,所以,曲线x y e =在点P 处的切线方程为()t t y e e x t -=-,即()1t ty e x t e =+-, 由题意可知,点(),a b 在直线()1t t y e x t e =+-上,可得()()11t t tb ae t e a t e =+-=+-, 令()()1t f t a t e =+-,则()()tf t a t e '=-.当t a <时,()0f t '>,此时函数()f t 单调递增, 当t a >时,()0f t '<,此时函数()f t 单调递减,所以,()()max af t f a e ==,由题意可知,直线y b =与曲线()y f t =的图象有两个交点,则()max ab f t e <=,当1t a <+时,()0f t >,当1t a >+时,()0f t <,作出函数()f t 的图象如下图所示:由图可知,当0a b e <<时,直线y b =与曲线()y f t =的图象有两个交点. 故选:D.解法二:画出函数曲线x y e =的图象如图所示,根据直观即可判定点(),a b 在曲线下方和x 轴上方时才可以作出两条切线.由此可知0a b e <<.故选:D. 【点睛】解法一是严格的证明求解方法,其中的极限处理在中学知识范围内需要用到指数函数的增长特性进行估计,解法二是根据基于对指数函数的图象的清晰的理解与认识的基础上,直观解决问题的有效方法.【例4】(2022·河南洛阳·三模(理))若过点()1,P t 可作出曲线3y x =的三条切线,则实数t 的取值范围是( ) A .(),1-∞ B .()0,∞+ C .()0,1 D .{}0,1【答案】C 【解析】 【分析】由已知,设出切点,然后写出切线方程,把点P 带入切线方程中,然后对式子进行整理,分别设出两个函数,y t =与23()32g x x x =-,借助导数研究函数()g x 的单调性和极值,然后作图,看两个函数图象的交点情况即可完成求解. 【详解】由已知,曲线3y x =,即令3()f x x =,则()23f x x '=, 设切点为300(,)x x ,切线方程的斜率为()2003f x x '=,所以切线方程为:00320(3)y x x x x -=-,将点()1,P t 代入方程得:320003(1)t x x x -=-,整理得230032t x x =-,设函数23()32g x x x =-,过点()1,P t 可作出曲线3y x =的三条切线, 可知两个函数图像y t =与23()32g x x x =-有三个不同的交点, 又因为()266g x x x =-',由()0g x '=,可得0x =或1x =,所以函数()g x 在(,0)-∞,(1,)+∞上单调递减,在(0,1)上单调递增,所以函数()g x 的极大值为(1)321g =-=,函数()g x 的极小值为(0)000g =-=, 如图所示,当()0,1t ∈时,两个函数图像有三个不同的交点. 故选:C.【例5】(2022·河北·高三阶段练习)若过点(1,)P m 可以作三条直线与曲线:e xxC y =相切,则m 的取值范围为( )A .23,e ⎛⎫-∞ ⎪⎝⎭B .10,e ⎛⎫⎪⎝⎭C .(,0)-∞D .213,e e ⎛⎫ ⎪⎝⎭【答案】D 【解析】 【分析】本题为过点P 的切线,切点为000,e x x x ⎛⎫⎪⎝⎭,可得切线方程()000001e e x x x x y x x --=-, 代入点P 坐标整理为02001e x x x m -+=,即y m =与21()e xx x f x -+=有三个交点. 【详解】 由e x x y =,则1e x x y -'=,设切点为000,e x x x ⎛⎫⎪⎝⎭,则切线斜率001e x x k -=则在点000,e x x x ⎛⎫ ⎪⎝⎭的切线方程为()000001e e x x x x y x x --=-,代入点P 坐标得()0000011e ex x x x m x --=- 整理为02001e x x x m -+=,即这个方程有三个不等式实根,令21()e x x x f x -+=,则 232()e x x x f x '-+-=,令()0f x '>则12x <<函数()f x 在(,1)-∞上单调递减,在(1,2)上单调递增,在(2,)+∞上单调递减, 故得(1)(2)f m f <<,即213,e e m ⎛⎫∈ ⎪⎝⎭,故选:D .【例6】(2022·黑龙江·哈尔滨市第六中学校高二期末)过直线1y x =-上一点P 可以作曲线()ln f x x x =-的两条切线,则点P 横坐标t 的取值范围为( )A .01t <<B .1t e <<C .0t e <<D .11t e<<【答案】C【分析】根据导数的几何意义得出切线方程,再将方程0002ln t x x x =-的根的个数问题转化为函数y t =与函数()2ln g x x x x =-的图象的交点个数问题,结合图象,即可得出答案. 【详解】解:由题意得(,1)P t t -,设切点为()00,A x y ,00x >, 1()1f x x '=-,()000111x f x x x -'=-=, 则过点P 的切线方程为()000001ln x y x x x x x --+=-,整理得0001ln 1x y x x x -=-+, 由点P 在切线上,则00011ln 1x t t x x --=-+,即0002ln t x x x =-, 因为过直线1y x =-上一点P 可以作曲线()ln f x x x =-两条切线, 所以关于0x 的方程0002ln t x x x =-有两个不等的实数根, 即函数y t =与函数()2ln g x x x x =-的图象有两个交点, ()2ln 11ln g x x x '=--=-,()()00e,0e g x x g x x >⇒<<⇒'',则函数()g x 在()0e ,上单调递增,在()e,∞+上单调递减,且(e)e g =,0x →时,()0g x →;x →+∞时,()g x →-∞,则函数y t =与函数()ln 2g x x x x =-+的图象如下图所示:由图可知,0e t <<, 【题型专练】1.(2022·内蒙古呼和浩特·二模(理))若过点()1,P m -可以作三条直线与曲线C :e x y x =相切,则m 的取值范围是( ) A .23,e ⎛⎫-+∞ ⎪⎝⎭B .1,0e ⎛⎫- ⎪⎝⎭C .211,e e ⎛⎫-- ⎪⎝⎭D .231,ee ⎛⎫-- ⎪⎝⎭【答案】D 【解析】 【分析】求出导函数,利用导数的几何意义列出方程,即可求解. 【详解】设切点为()00,x y ,过点P 的切线方程为()()000001e e xxy x x x x =+-+,代入点P 坐标,化简为()02001e x m x x =---,即这个方程有三个不等根即可.令()()21e x f x x x =---,求导得:()()()12e xf x x x '=--+.令()0f x '>,解得:21x -<<-,所以()f x 在()2,1--上递增;令()0f x '<,解得:2x <-或1x >-,所以()f x 在(),2-∞-和()1,-+∞上递增.要使方程()02001e x m x x =---有三个不等根即可.只需()()21f m f -<<-,即231e ex -<<-. 故选:D2.(2022·广东深圳·二模)已知0a >,若过点(,)a b 可以作曲线3y x =的三条切线,则( ) A .0b < B .30b a << C .3b a >D .()30b b a -=【答案】B 【解析】 【分析】设切点为()300,x x ,切线方程为()y k x a b =-+,求出函数的导函数,即可得到()23003k x k x a b x ⎧=⎪⎨-+=⎪⎩,整理得3200230x ax b -+=,令()3223g x x ax b =-+,利用导数说明函数的单调性,即可求出函数的极值,依题意()g x 有三个零点,即可得到不等式组,从而得解; 【详解】解:设切点为()300,x x ,切线方程为()y k x a b =-+,由3y x =,所以23y x '=,所以020|3x x y x ='=,则()23003k x k x a b x ⎧=⎪⎨-+=⎪⎩,所以3200230x ax b -+=, 令()3223g x x ax b =-+,则()()2666x ax g x x x a '=-=-,因为0a >,所以当0x <或x a >时()0g x '>,当0x a <<时()0g x '<, 所以()g x 在(),0∞-和(),a +∞上单调递增,在()0,a 上单调递减,所以当0x =时()g x 取得极大值,当x a =时()g x 取得极小值,即()()0g x g b ==极大值,()()3g x g a b a ==-极小值,依题意()3223g x x ax b =-+有三个零点,所以()()00g x g b ==>极大值且()()30g x g a b a ==-<极小值,即30b a <<;故选:B3.(2022·安徽·安庆市第二中学高二期末)若过点()(),0a b a >可以作曲线e x y x =的三条切线,则() A .0e b a b << B .e 0a a b -<<C .20e 4a b <<+D .()24e 0a b -+<<【答案】D【分析】设切点为()000,e xx x ,利用导数的几何意义及条件可得关于0x 的方程()0200e x xax a b --=-有三个不同的解,构造函数()()2e x f x x ax a =--,利用导数研究函数的性质利用数形结合即得. 【详解】由题可得()1e xy x '=+,设切点()00,ex x x ,则()00000e 1e x x x b x x a-+=-,整理得()0200e x x ax a b --=-,由题意知关于0x 的方程()0200e x x ax a b --=-有三个不同的解,设()()2e x f x x ax a =--,()()()2e xx x f x a '=+-,由0f x ,得2x =-或x a =,又0a >,所以当2x <-时,0fx,()f x 单调递增,当2x a -<<时,0fx,()f x 单调递减,当x a >时0f x,()f x 单调递增,当x →-∞时()0f x →,当x →+∞时,()f x →+∞,且()242eaf +-=,()e 0a f a a =-<, 函数()f x 的大致图像如图所示,因为()f x 的图像与直线y b =-有三个交点, 所以240ea b +<-<,即()24e 0a b -+<<. 故选:D.【点睛】利用导数研究零点问题:(1)确定零点的个数问题:可利用数形结合的办法判断交点个数,如果函数较为复杂,可用导数知识确定极值点和单调区间从而确定其大致图像;(2)方程的有解问题就是判断是否存在零点的问题,可参变分离,转化为求函数的值域问题处理.可以通过构造函数的方法,把问题转化为研究构造的函数的零点问题;(3)利用导数研究函数零点或方程根,通常有三种思路:∴利用最值或极值研究;∴利用数形结合思想研究;∴构造辅助函数研究.4.(2022·山东枣庄·高二期末)已知函数()()1e xf x x =+,过点M (1,t )可作3条与曲线()y f x =相切的直线,则实数t 的取值范围是( )A .24,0e ⎛⎫- ⎪⎝⎭B .242,e e ⎛⎫- ⎪⎝⎭C .36,2e e ⎛⎫- ⎪⎝⎭D .36,0e ⎛⎫- ⎪⎝⎭【答案】D【分析】设切点为(,(1)e )a a a +,利用导数的几何意义求出切线的斜率()k f a '=,利用点斜式写出切线方程,将点M 的坐标代入切线方程,可得关于a 的方程有三个不同的解,利用参变分离可得2(3)e a t a =-,令2()(3)e x g x x =-,利用导数求出()g x 的单调性和极值,则根据()y g x =与y t =有三个不同的交点,即可求出实数t 的取值范围【详解】设切点为(,(1)e )a a a +,由()()1e x f x x =+,得()()()e 1e 2e x x xf x x x '=++=+,所以切线的斜率为()()2e ak f a a '==+,所以切线方程为(1)e (2)e ()a a y a a x a -+=+-, 因为点M (1,t )在切线上, 所以(1)e (2)e (1)a a t a a a -+=+-, 化简整理得2(3)e a t a =-,令2()(3)e x g x x =-,则2()(32)e (1)(3)e x x g x x x x x '=--=--+, 所以当3x <-或1x >时,()0g x '<,当31x -<<时,()0g x '>, 所以()g x 在(,3)-∞-和(1,)+∞上递减,在(3,1)-上递增,所以()g x 的极小值为336(3)(39)e eg --=-=-,极大值为(1)2e g =, 当3x <-时,()0g x <, 所以()g x 的图象如图所示,因为过点M (1,t )可作3条与曲线()y f x =相切的直线, 所以()y g x =的图象与直线y t =有三个不同的交点, 所以由图象可得360e t -<<, 故选:D5.(2022·山东潍坊·三模)过点()()1,P m m ∈R 有n 条直线与函数()e xf x x =的图像相切,当n 取最大值时,m 的取值范围为( )A .25e e m -<< B .250e m -<< C .10em -<<D .e m <【答案】B 【解析】 【分析】求导分析()e xf x x =的图象可得3n =,再设切点坐标为()00,x y ,由题可得()02001e x m x x =-++⋅有三根,再构造函数()()2e 1x g x x x =-++⋅求导分析图象单调性与最值即可 【详解】由()e x f x x =,()()1e xf x x '=+,故当1x <-时,()0f x '<,()f x 单调递减,且()0f x <;当1x >-时,()0f x '>,()f x 单调递增,结合图象易得,过点()()1,P m m ∈R 至多有3条直线与函数()xf x xe =的图像相切,故3n =.此时,设切点坐标为()00,x y ,则切线斜率()001e xk x =+⋅,所以切线方程为()()00000e e 1x x y x x x x -=+⋅-,将()1,P m 代入得()0201e x m x x =-++⋅,存在三条切线即函数()21e x m x x =-++⋅有三个不同的根,又()()()1e 2xg x x x '=--+⋅,易得在()2,1-上,()0g x '>,()g x 单调递增;在(),2-∞-和()1,+∞上,()0g x '<,()g x 单调递减,画出图象可得当()20g m -<<,即250e m -<<时符合题意故选:B【点睛】本题主要考查了利用导数解决切线的问题,同时也考查了构造函数,求导分析单调性,进而确定根的个数与参数取值范围的问题,属于难题 题型六:公切线问题【例1】(2023届贵州省遵义市新高考协作体高三上学期入学质量监测数学(理)试题)若直线y kx b =+是曲线1e x y +=的切线,也是e 2x y =+的切线,则k =( ) A .ln 2 B .ln 2- C .2 D .2-【答案】C【分析】设直线y kx b =+与e 2x y =+和1e x y +=的切点分别为()11,2e x x +,()212,e x x +,分别求出切点处的直线方程,由已知切线方程,可得方程组,解方程可得切点的横坐标,即可得到k 的值.【详解】设直线y kx b =+与e 2x y =+和1e x y +=的切点分别为()11,2e x x +,()212,e x x +,则切线方程分别为,()()1112e e x x y x x +--=,()22112e e x x y x x ++--=,化简得,11112e e e x x x y x x -=++ 2221112e e +e x x x y x x +++-=依题意上述两直线与y kx b =+是同一条直线,所以,12112211112e e e 2e e +e x x x x x x x x +++⎧=⎨+-=-⎩,解得1ln 2x =, 所以1ln 22e e x k ===. 故选:C .【例2】(2022·全国·高三专题练习)若函数()ln f x x =与函数2()(0)g x x x a x =++<有公切线,则实数a 的取值范围是( ) A .1ln ,2e ⎛⎫+∞ ⎪⎝⎭B .()1,-+∞C .()1,+∞D .()2,ln +∞【答案】B 【解析】 【分析】分别求出导数,设出各自曲线上的切点,得出两个切线方程,由两个切线方程可整理成a 关于一个变量1x 的函数,利用导数求出函数的取值范围即可求解. 【详解】设公切线与函数()ln f x x =切于点111(ln )(0)A x x x >,, ()1f x x'=,切线的斜率为11x ,则切线方程为1111ln ()-=-y x x x x ,即111ln 1y x x x =+-设公切线与函数2()g x x x a =++切于点22222()(),0B x x x a x ++<,()21g x x '=+,切线的斜率为221x +,则切线方程为22222()(21)()y x x a x x x -++=+-,即222(21)y x x x a =+-+所以有21212121ln 1x x x x a ⎧=+⎪⎨⎪-=-+⎩ 因为1>0x ,所以2210x +>,可得2102x -<<,21210x <+<,即1101x <<, 由21121x x =+可得:211122x x -=, 所以22112111211111ln ln 1ln 111224a x x x x x x ⎛⎫⎛⎫=+--=-+--⎪ ⎪⎝⎭⎝⎭+-=, 令11t x =,则()0,1t ∈,()22111311ln ln 4424a t t t t t =---=---, 设()()2113ln 01424h t t t t t =---<<,则22192111()0222242h t t t t tt t t =--==⎛⎫-- ⎪-⎝⎭'<-, 所以()h t 在()0,1上为减函数, 则()()11311424h t h >=--=-,所以1a >-, 所以实数a 的取值范围是()1,-+∞, 故选:B . 【点睛】方法点睛:求曲线过点(),A a b 的切线的方程的一般步骤是: (1)设切点P 00(,())x f x(2)求出()y f x =在0x x =处的导数()0f x ',即()y f x =在点P 00(,())x f x 处的切线斜率; (3)构建关系()000()f x bf x x a-'=-解得0x ;(4)由点斜式求得切线方程0()()y b f x x a '-=⋅-.【例3】(2022·河北石家庄·高二期末)若两曲线21y x =-与ln 1y a x =-存在公切线,则正实数a 的取值可能是( ) A .1.2 B .4 C .5.6 D .2e【答案】ABD【分析】分别设切点分别为()11,A x y ,()22,B x y ,由导数的几何意义分别写出切线方程,由题意切线方程相同,从而可得出()2224ln 1a x x =--,设()2244ln g x x x x =-由导数求出其值域即可.【详解】由21y x =-,则2y x '=,由ln 1y a x =-,则a y x'=设切线与曲线21y x =-相切于点()11,A x y ,则斜率为12x ,所以切线方程为()()211112y x x x x --=-,即21121y x x x =-- ∴设切线与曲线ln 1y a x =-相切于点()22,B x y ,则斜率为:2ax , 则切线方程为()()222ln 1ay a x x x x --=-,即22ln 1a y x a x a x=+--,∴ 根据题意方程∴,∴表示同一条直线,则122212ln a x x a x a x⎧=⎪⎨⎪-=-⎩所以()2224ln 1a x x =--,令()2244ln g x x x x =-(0x >),则()()412ln g x x x '=-,所以()g x在(上单调递增,在)+∞上单调递减,()max 2g x ge ==,由题意(]0,2e a ∈.故答案为:ABD【例4】(2022·全国·高三专题练习)已知曲线()1:=e x C f x a +和曲线()()22:ln(),C g x x b a a b =++∈R ,若存在斜率为1的直线与1C ,2C 同时相切,则b 的取值范围是( ) A .9,4⎡⎫-+∞⎪⎢⎣⎭B .[)0,+∞C .(],1-∞D .9,4⎛⎤-∞ ⎥⎝⎦【答案】D 【解析】 【分析】分别求出两函数的导函数,再分别设直线与两曲线的切点的横坐标,由于斜率为1即导数值为1分别求出切点横坐标,可得切线方程,再根据切线方程系数相等得b 与a 的关系式,再。
(word完整版)高等数学同步练习题(2021年整理)
(word完整版)高等数学同步练习题(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((word完整版)高等数学同步练习题(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(word完整版)高等数学同步练习题(word版可编辑修改)的全部内容。
高等数学同步练习题 第一部分 函数1。
求下列函数的定义域: (1)1)1ln(12++-=x x y ; (2) ][1a x y +=。
2。
讨论下列哪些函数相同: (1) x ln 2与2ln x ; (2) 2x 与x ;(3) x 与x x sgn . 3.讨论下列函数奇偶性:(1) )1ln(2x x y ++=; (2) x e x y 2=; 4。
(1) 设52)2(2+-=+x x x f ,求)2(-x f ; (2) 设x e f x =+)1(,求)(x f ;(3)设221)1(x x x x f +=+,求)(x f .5。
设⎪⎩⎪⎨⎧>-=<=111011)(x x x x f ,x e x g =)(,求)]([x g f 和)]([x f g 并作出这两个函数的图形。
第二部分 一元微分学一、求导数1. 若函数)(x f 在a 可导,计算 (1)ah a f h f ah --→)()(lim;(2)h h a f a f h )()(lim 0--→;(3)ha f h a f h )()2(lim-+→;(4)hh a f h a f h 2)()2(lim+-+→。
2。
求导数: (1) x y =;(2) 53x x y =.(3) xy 1=(4) 531xxy =3. 求下列曲线在指定点的切线及法线方程 (1) )1,1(1在点xy =处;(2) )21,3(cos π在点xy =处.(3) 求2x y =在点)0,1(-处的切线4. 若函数)(x f 在a 处可导,计算)]()1([lim a f n a f n n -+∞→。
高中数学一轮复习训练:函数(Ⅱ) Word版含答案
高三数学单元练习题:函数(Ⅱ)一、填空题: 1、函数y =的定义域为 ▲ 。
2、已知全集U =AB 中有m 个元素,()()u uC A C B ⋃中有n 个元素.若A B ⋂非空,则A B ⋂的元素个数为 ▲ 个。
3、设函数2()()f x g x x =+,曲线()y g x =在点(1,(1))g 处的切线方程为21y x =+,则曲线()y f x =在点(1,(1))f 处切线的斜率为 ▲ 。
4、函数)86(log 221+-=x x y 的单调递增区间是 ▲ 。
5、函数21)(++=x ax x f 在区间()+∞-,2上是增函数,那么a 的取值范围是 ▲ 。
6、已知偶函数()f x 在区间[0,)+∞单调增加,则满足(21)f x -<1()3f 的x 取值范围是▲ 。
7、()(21),f x a x b R =-+设函数是上的减函数则a 的范围为 . 8、已知二次函数f(x)=4x2-2(p -2)x -2p2-p +1,若在区间[-1,1]内至少存在一个实数c ,使f(c)>0,则实数p 的取值范围是 ▲ 。
9、二次函数f(x)的二次项系数为正,且对任意实数x 恒有f(2+x)=f(2-x),若 f(1-2x2)<f(1+2x -x2),则x 的取值范围是 ▲ 。
10、函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点 ▲ 个。
11、设函数()0)f x a =<的定义域为D ,若所有点(,())(,)s f t s t D ∈构成一个正方形区域,则a 的值为 ▲ 。
12、(2)k x ≤+[],a b ,且2b a -=,则k = ▲ 。
二、解答题:13、设函数()x e f x x=(1)求函数()f x 的单调区间; (2)若0k >,求不等式()(1)()0f x k x f x '+->的解集。
09:三次函数图像的切线
高考总复习09:三次函数图像的切线1.(1)求平行于直线910x y -+=,且与曲线3231y x x =+-相切的直线方程.(2)求垂直于直线320x y -+=,且与曲线3231y x x =+-相切的直线方程.2.(1)求函数3()2f x x =的图像在点(1,2)P 处的切线l 方程;(2)设函数3()2f x x =的图像为C ,求曲线C 与其在点(1,2)P 处的切线l 的所有交点坐标. 3.(1)求函数3()2f x x =的图像经过点(1,2)P 的切线方程.(2)求函数3()2f x x =的图像经过点(1,10)P 的切线方程.4.已知直线y x =是函数32()31f x x x ax =-+-图像的一条切线,求实数a 的值.5.已知0a >,且过点(,)P a b 可作函数3()f x x x =-图像的三条切线,证明:()a b f a -<<.6.设函数3211()32f x x ax bx c =-++(0)a >的图像C 在点(0,(0))P f 处的切线为1y =. (1)确定,b c 的值;(2)设曲线C 在1122(,()),(,())A x f x B x f x 处的切线都过(0,2)Q ,证明:若12x x ≠,则12'()'()f x f x ≠;(3)若过点(0,2)Q 可作曲线C 的三条不同切线,求a 的取值范围.7.已知函数3211()32f x x ax bx =++在区间[11)-,,(13],内各有一个极值点. (1)求24a b -的最大值;(2)当248a b -=时,设曲线C :()y f x =在点(1(1))A f ,处的切线l 穿过曲线C (穿过是指:动点在点A 附近沿曲线C 运动,当经过点A 时,从l 的一侧进入另一侧),求()f x 的表达式.8.由坐标原点(0,0)O 向曲线x x x y +-=233引切线,切于不同于点O 的点111(, )P x y ,再由1P 引切线切于不同于1P 的点222(,)P x y ,如此继续下去……,得到点(,)n n n P x y ,求1n x +与n x 的关系,及n x 的表达式.。
正切函数的图像和性质 (精致版)
2 对称轴: x k , k Z
2 对称中心: (k ,0) k Z
2
对称轴: x k , k Z 对称中心:( k , 0) k Z
2
探索一 你可以从一个新的角度来研究正 切函数的性质吗?
正弦函数 正切函数
定义+三角函数线
三角函数图象
课后练习
作业:
P45.2、3、4
课后思考
思考1:我们分别从什么角度讨论了正切函数 的性质?这两种讨论方法分别有什么特点? 思考2:你能用同样的方法去讨论正、余弦 函数的性质吗?
想一想? 得到y tan x最小正周期为__ ____
由y tan x最小正周期为
反馈练习:求下列函数的周期:
x (1) y 5 tan 2
2
(2) y tan(4 x ) 3
4
巩固练习 1、比较下列每组数的大小。
13π 11π tan() 与 tan() (2) 4 5
正切函数的对称中心
正 切 函 数 图 像
性质 :
渐 进 线
渐 进 线
⑴ ⑵ ⑶ ⑷
定义域: {x | x k, k Z} 2 值域: R 周期性: 奇偶性: 奇函数,图象关于原点对称。
⑸ 单调性: 在每一个开区间 ( k , k ) , k Z 内都是增函数。 2 2 kZ x k , (7)对称中心 (6)渐近线方程: 2
kπ ( ,0) 2
问题:
(1)正切函数是整个定义域上的增函数吗?为什么?
(2)正切函数会不会在某一区间内是减函数?为什么?
A
B
导数之切线题型归纳总结教师版
切线题型归纳总结学习目标理解导数与函数之间的联系,掌握导数的几何意义,及其作为工具在解决有关函数问题的作用,核心是利用导数研究函数单调性及其极值最值.知识点函数()x f y =在0x x =处导数()0x f '是曲线()x f y =在点()()00x f ,x 处切线l 的斜率,切线l 的方程是()()()000x x x f x f y -'=-.注意:直线与曲线有且只有一个公共点,直线不一定是曲线的切线;反之直线是曲线的切线,但直线不一定与曲线有且只有一个公共点.热身训练1.已知曲线x ln x y 342-=的一条切线斜率是21,则切点的横坐标为______; 3 2.设0>a ,()c bx ax x f ++=2,曲线()x f y =在点()()00x f ,x P 处切线的倾斜角的取值范围为⎥⎦⎤⎢⎣⎡40π,,则P 到曲线()x f y =对称轴距离的取值范围为______.⎥⎦⎤⎢⎣⎡a 210, 3.曲线113+=x y 在点()121,P 处的切线与y 轴交点的纵坐标是________. 94.若点P 是曲线x ln x y -=2上任意一点,则点P 到直线2-=x y 的最小值为______. 解析:由已知x x y 12-=',令112=-xx ,解得1=x .曲线x ln x y -=2在1=x 处的切线方程为x y =.两直线x y =,2-=x y 之间的距离为21.切线问题常见题型(1)求切线方程:①在曲线上一点的切线方程;②过一点的切线方程. (2)求切点坐标;(3)求切线方程的参数值或者范围;(4)求公切线(公切点或者两个切点); (5)判断切线的条数;2.切线的应用(1)研究最值极值; (2)判断位置关系 (3)讨论方程的根的情况 (一)求切线方程例1.【例3】已知函数()3f x x x =-.(1)求曲线()y f x =在点()1,0处的切线方程; (2)求过点()1,0且与曲线()y f x =相切的直线方程.【解析】(1)由()231f x x '=-,()12f '=,则曲线()y f x =在点()1,0处的切线方程为22y x =-.(2)设切点的坐标为()3000,x x x -,则所求切线方程为()()()32000031y x x x x x --=--代入点()1,0的坐标得()()320000311x x x x -+=--,解得01x =或012x =-当012x =-时,所求直线方程为1144y x =-+由(1)知过点()1,0且与曲线()y f x =相切的直线方程为22y x =-或1144y x =-+. 总结:求曲线在某点处的切线方程的步骤过点(x 1,y 1)的曲线y =f (x )的切线方程的求法步骤 (1)设切点(x 0,f (x 0)).(2)建立方程f ′(x 0)=y 1-f (x 0)x 1-x 0.(3)解方程得k =f ′(x 0),x 0,y 0,从而写出切线方程. 变式训练1:已知曲线2:2C y x x =-+. (1)求曲线C 在点()1,2处的切线方程,(2)求过点()2,3且与曲线C 相切的直线的方程. 【答案】(1) 10x y -+=(2)10x y -+=或570x y --=.变式训练2:设函数()x ln x x f -+=12在点()()00x f ,x 处的切线为l ,若垂直于函数()x f的图像在点()()11f ,处的切线,求直线l 的方程解析:因为()()()⎪⎩⎪⎨⎧<<-+≥+-=e x ,x ln x e x ,x ln x x f 01122,故()21=f ,而()11='f ,又当e x ≥时,()x x x f 12+=',得()x f y '=在[)+∞,e 上单调递增,此时()ee xf 12+≥',故当e x ≥时,()x f 的图像上任意一点的切线都不垂直于函数在点()()11f ,处的切线,当e x <<0时,由于函数()x ln x x f -+=12在点()()00x f ,x 处的切线l 垂直于函数()x f 的图像在点()()11f ,处的切线,故()10-='x f ,则210=x ,故直线l 的方程为024744=--+ln y x(二)求切线方程的参数例1.已知直线y x m =-+ 是曲线23ln y x x =-的一条切线,则m 的值为( )A .0B .2C .1D .3 【解析】设切点为00(,)x y 因为切线y x m =-+,所以0003|21x x y x x ='=-=-, 解得0031,2x x ==-(舍去)代入曲线23ln y x x =-得01y =, 所以切点为1,1()代入切线方程可得11m =-+,解得2m =.例2.(2015全国卷1(21)) 已知函数()413++=ax x x f ,当a 为何值时,x 轴为曲线()x f y =的切线.答案:43-=a 例3.设曲线()xe ax y 1-=在点()10y ,x 处的切线为1l ,曲线()xe x y --=1在点()20y ,x 处的切线为2l ,若存在⎥⎦⎤⎢⎣⎡∈2300,x ,使得21l l ⊥,则实数a 的取值范围是________解析:函数()x e ax y 1-=的导数:()xe a ax y 1-+=',故1l 的斜率为:()0101xe a ax k -+=,函数()xex y --=1的导数:()xe x y --='2,故2l 的斜率:()0202x ex k --=,可得121-=k k ,从而()010x e a ax -+()1200-=--x e x ,故()32002-=--x x x a ,由⎥⎦⎤⎢⎣⎡∈2300,x 得,02020≠--x x ,故230200---=x x x a ,令()⎪⎭⎫ ⎝⎛≤≤---=230232x x x x x f ,则()()()()22251-----='x xx x x f ,令导数大于0,得510<<x ,故在()10,是减函数,在⎪⎭⎫⎝⎛231,上是增函数,00=x 时取得最大值为23;10=x 时取得最小值为1,故231≤≤a . 变式训练1: 设曲线(1)ln y a x x =--在点()1,0处的切线方程为33y x =-,则a =( )A .1B .2C .3D .4【解析】因为1y a x'=-,且在点()1,0处的切线的斜率为3,所以13a -=,即4a =. 变式训练2: 已知函数()2f x x =的图象在1x =处的切线与函数()e xg x a=的图象相切,则实数a =( ) AB.2C. 【解析】由()2f x x =,得()2f x x '=,则()12f '=,又(1)1f =,所以函数()2f x x =的图象在1x =处的切线为12(1)y x -=-,即21y x =-.设21y x =-与函数()e xg x a=的图象相切于点00(,)x y ,由e ()xg x a '=,可得00000e ()2,e ()21,x x g x ag x x a ⎧==⎪⎪⎨⎪==-⎩'⎪解得32031,e =222x a ==.故选:B.变式训练3:已知b ,a 为正实数,直线a x y -=与曲线()b x ln y +=相切,则ba -22的取值范围是( C )()+∞,.A 0 ()10,.B ⎪⎭⎫ ⎝⎛210,.C [)+∞,.D 1(三)公切线问题 题型一:公切点 例1.曲线221x y =与x ln e y =相切于点⎪⎭⎫ ⎝⎛e ,e 21.求切线方程解析:设曲线221x y =在1x x =处的切线方程为()112121x x x x y -=-①,曲线x ln e y =在2x x =处的切线方程为()222x x x ex ln ye -=②,由两曲线有公切线知,联立①②,消掉2x 得02121=-x ln e x ,设(),x ln e x x g 22-=则()()()e x e x xx g -+='2,可得()()0==e g x g min ,即e x x ==21,因此公切线方程为e x e y 21-=.变式训练1.已知函数()12-=x x f 与函数()()0≠=a x ln a x g ,若曲()x f y =,()x g y =的图像在点()01,处有公共的切线,则实数a =_______.2变式训练2.若一直线与曲线x ln y =和曲线()02>=a ay x 相切于同一点P ,则=a ___.2e题型二:两个切点例2.(2016全国卷1理16)若直线b kx y +=是曲线2+=x ln y 的切线,也是曲线()1+=x ln y 的切线,则b =_____解析:设2+=x ln y 在切点()11y ,x 处的切线方程为:1111++⋅=x ln x x y ; ()1+=x ln y 在切点()22y ,x 处的切线方程为:()11112222+-+++=x xx ln x x y , 联立得()⎪⎪⎩⎪⎪⎨⎧+-+=++=111111222121x x x ln x ln x x,解得212121-==x ,x ,∴2111ln x ln b -=+=.变式训练1:曲线12-=x y 和1-=x ln a y 存在公切线,则正实数a 取值范围是_()e ,20__变式训练2.若函数2()1f x x =+的图象与曲线C:()()10xg x ae a =+>存在公共切线,则实数a 的取值范围为A .240,e ⎛⎤⎥⎝⎦ B .280,e ⎛⎤ ⎥⎝⎦C .22e ⎡⎫+∞⎪⎢⎣⎭,D .26e ⎡⎫+∞⎪⎢⎣⎭, 【解析】设公切线与f (x )=x 2+1的图象切于点(x 1,21x +1),与曲线C :g (x )=ae x +1切于点(x 2,21x ae +),∴2x 1=2x ae=()()222211212111x x aex aex x x x x +-+-=--,化简可得,2x 1=211212x x x x --,得x 1=0或2x 2=x 1+2,∵2x 1=2x ae ,且a >0,∴x 1>0,则2x 2=x 1+2>2,即x 2>1,由2x 1=1x ae 得a =()2221412x x x x ae ae-=, 设h (x )=()41xx e-(x >1),则h′(x )=()42xx e-,∴h (x )在(1,2)上递增,在(2,+∞)上递减,∴h (x )max =h (2)=24e ,∴实数a 的取值范围为(0,24e ] (四)切线条数问题例1.已知三次函数()()2613+-+=x x x f ,若过点()m ,A 1()4≠m 可作曲线()x f y =的三条切线,求实数m 的取值范围.解析:()()6132-+='x x f ,由题意知点A 不在曲线上,过点A 作曲线()x f y =的切线,设切点()00y ,x M ,则切线方程为()()()000x x x f x f y -'=-,代入点A 化简得062030=+-m x x ,若有三条切线,则方程有三个不等的实根,设()m x x x g +-=030062,则()66200-='x x g ,由()00>'x g 可得,10>x 或10-<x ,故()0x g 在区间()1-∞-,和()∞+,1上单调递增,即得极大值()1-g ,极小值为()1g ;方程满足有三个实根的充要条件是()()⎩⎨⎧<>-0101g g ,即44<<-m变式训练:设函数()c bx x a x x f ++-=23231,其中0>a ,曲线()x f y =在点 ()()00f P ,处的切线方程为1=y(1)确定c ,b 的值(2)若过点()20,可作曲线()x f y =的三条不同切线,求a 的取值范围. 答案:(1)10==c ,b(2)()∞+,332 (五)切线综合问题例1.设曲线()x e x f x--=上任意一点处的切线为1l ,总存在过曲线()x cos ax x g 2+=上一点处的切线2l ,使得21l l ⊥,则实数a 的取值范围是( )(]32,.A - ()32,.B - []21,.C - ()21,.D -解析:由()x e x f x--=,得()1--='xe xf ,∵11>+xe ,∴()1011,e x∈+,由()x cos ax x g 2+=,得()x sin a x g 2-=',又∵[]222,x sin -∈-,∴[]a ,a x sin a ++-∈-222,要满足题意,则得⎩⎨⎧≥+≤+-1202a a ,得21≤≤-a .变式训练1.若函数()x sin ax x f +=的图像上存在互相垂直的切线,则实数a 的值____.0 变式训练2.已知函数()2ax x f =,若存在两条过点()21-,P 且互相垂直的直线与函数()x f的图像都没有公共点, 则实数a 的取值范围为______. 81>a 课后训练1.若直线kx y =与曲线x x x y 2323+-=相切,试求k 的值. 答案:412或解析:设kx y =与x x x y 2323+-=相切于()00y ,x P ,则00kx y =,02030023x x x y +-= ∵2632+-='x x y ,()2630200+-='=x x x f k ,联立得()02030002023263x x x x x x+-=+-,解得00=x 或23-,即2=k 或41-=k2. 已知函数()ax e x f x2-=与()()x a ax x x g 1223+-+-=的图像不存在互相平行或者重合的切线,则实数a 的取值范围为_______.[]33,-3.曲线()01<-=x xy 与曲线x ln y =(切线相同)的条数为______. 答案:14.直线l 与曲线()02>=x x y 和()03>=x x y 均相切,切点分别为()11y ,x A ,()22y ,x B ,则21x x 的值为______. 答案:34.5.已知()x x x f 33-=,过点()m ,A 1可作曲线的三条切线,则m 的取值范围是___.()23--,6.直线b x y +=是曲线x ln a y =的切线,则当0>a 时,实数b 的最小值是_____. 1-。
(完整word版)高中数学极值点偏移问题
(完整word版)⾼中数学极值点偏移问题极值点偏移问题沈阳市第⼗⼀中学数学组:赵拥权⼀:极值点偏移(俗称峰⾕偏)问题的定义对于可导函数y=f(x)在区间(a,b)上只有⼀个极⼤(⼩)值点x0,⽅程f(x)=0(f(x)=m)的解分别为x1,x2且a 若x1+x22≠x0,,则称函数f(x)在区间(a,b)上极值点x0偏移;(1)x1+x22>x0,则称函数f(x)在区间(a,b)上极值点x0左偏移;(2)x1+x22⼆:极值点偏移的判定定理对于可导函数y=f(x)在区间(a,b)上只有⼀个极⼤(⼩)值点x0,⽅程f(x)=0(f(x)=m)的解分别为x1,x2且a (1)若f(x1)2(2)若f(x1)2>x0即函数f(x)在区间上(a,b)极⼩值点x0左偏;(即⾕偏左)(3)若f(x1)>f(2x0?x2)则x1+x22>x0即函数f(x)在区间上(a,b)极⼤值点x0左偏;(即峰偏左)(4)若f(x1)>f(2x0?x2)则x1+x22拓展:1)若)()(x b f x a f -=+,则)(x f 的图象关于直线2ba x +=①f(x)在(0,a)递增,在(a,2a)递减,且f(a -x)<(>)f(a+x)(f(x)<(>)f(2a -x)) ②f(x)在(0,a)递减,在(a,2a)递增,且f(a -x)>(<)f(x+a)(f(x)> (<)f(2a -x))则函数f(x)在(0,2a)的图象关于直线x=a 偏移(偏对称)(俗称峰⾕偏函数)其中①极⼤值左偏(或右偏)也称峰偏左(或右)②极⼩值偏左(或偏右)也称⾕偏左(或右);性质:1) )(x f 的图象关于直线a x =对称若x 1,x 2∈(0,2a)x 1≠x 2则 x 1+x 2=2a <=>f (x 1)=f(x 2),(f ′(x 1)+f ′(x 2)=0,f ′(x 1+x 22)=0);2)已知函数是满⾜条件的极⼤值左偏(峰偏左)若x 1,x 2∈(0,2a)x 1≠x 2则f (x 1)=f(x 2)则x 1+x 2>2a ,及f ′(x 1+x 22)<0极值点偏移解题步骤:①求函数f(x)的极值点x 0;②构造函数F(x)=f(x+x 0)-f(x 0?x) (F(x)=f(x 0?x )-f(x 0+x), F(x)=f(x+2x 0)-f(?x) , F(x)=f(x)-f(2x 0?x))确定F(x)单调性③结合F(0)=0(F(-x 0)=0,F(x 0)=0)判断F(x)符号从⽽确定f(x+x 0),f(x 0?x)( f(x+2x 0)与f(?x); f(x)与f(2x 0?x))的⼤⼩关系; 答题模式:已知函数y=f(x)满⾜f (x 1)=f(x 2),x 0为函数y=f(x)的极值点,求证:x 1+x 2<2x 0 ①求函数f(x)的极值点x 0;②构造函数F(x)=f(x+x 0)-f(x 0?x) 确定F(x)单调性③判断F(x)符号从⽽确定f(x+x 0),f(x 0?x) 的⼤⼩关系;假设F(x)在(0,+∞)上单调递增则F(x)>F(0)=0,从⽽得到x>0时f(x+x 0)>f(x 0?x) ④1.(2016年全国I ⾼考)已知函数有两个零点. 设x 1,x 2是的两个零点,证明:+x 2<2.2. (2010年⾼考天津卷理科21)(本⼩题满分14分)已知函数f(x)=xe -x(x ∈R ).(Ⅰ) 求函数f(x)的单调区间和极值;(Ⅱ)已知函数y=g(x)的图象与函数y=f(x)的图象关于直线x=1对称,证明当x>1时,f(x)>g(x)(Ⅲ)如果12,x x ≠且12()(),f x f x =证明122x x +> 证明:由题意可知g(x)=f(2-x),得g(x)=(2-x)2x e-令F(x)=f(x)-g(x),即2()(2)xx F x xe x e --=+-于是22'()(1)(1)x x F x x ee --=--当x>1时,2x-2>0,从⽽2x-2e 10,0,F x e -->>⼜所以’(x)>0,从⽽函数F (x )在[1,+∞)是增函数。
(完整word版)高考数学函数专题
专题 1函数(理科 )一、考点回首1.理解函数的看法,认识映照的看法.2.认识函数的单一性的看法,掌握判断一些简单函数的单一性的方法.3.认识反函数的看法及互为反函数的函数图象间的关系,会求一些简单函数的反函数.4.理解分数指数幂的看法,掌握有理指数幂的运算性质,掌握指数函数的看法、图象和性质 .5.理解对数的看法,掌握对数的运算性质,掌握对数函数的看法、图象和性质.二、6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的本质问题经典例题分析.考点一:函数的性质与图象函数的性质是研究初等函数的基石,也是高考观察的要点内容.在复习中要肯于在对定义的深入理解上下功夫.复习函数的性质,能够从“数”和“形”两个方面,从理解函数的单一性和奇偶性的定义下手,在判断和证明函数的性质的问题中得以稳固,在求复合函数的单一区间、函数的最值及应用问题的过程中得以深入.详细要求是:1.正确理解函数单一性和奇偶性的定义,能正确判断函数的奇偶性,以及函数在某一区间的单一性,能娴熟运用定义证明函数的单一性和奇偶性.2.从数形联合的角度认识函数的单一性和奇偶性,深入对函数性质几何特点的理解和运用,归纳总结求函数最大值和最小值的常用方法.3.培育学生用运动变化的看法分析问题,提升学生用换元、转变、数形联合等数学思想方法解决问题的能力.这部分内容的要点是对函数单一性和奇偶性定义的深入理解.函数的单一性只好在函数的定义域内来议论.函数y=f( x) 在给定区间上的单一性,反应了函数在区间上函数值的变化趋向,是函数在区间上的整体性质,但不必定是函数在定义域上的整体性质.函数的单一性是对某个区间而言的,所以要遇到区间的限制.对函数奇偶性定义的理解,不可以只逗留在 f( - x) = f( x) 和 f( - x) =- f( x) 这两个等式上,要明确对定义域内随意一个 x,都有 f( -x) = f( x) ,f( - x) =- f( x) 的本质是:函数的定义域对于原点对称.这是函数具备奇偶性的必需条件.略加推行,可得函数 f( x) 的图象对于直线x=a 对称的充要条件是对定义域内的随意 x,都有 f( x+a) = f( a- x) 成立.函数的奇偶性是其相应图象的特别的对称性的反应.这部分的难点是函数的单一性和奇偶性的综合运用.依据已知条件,调换有关知识,选择适合的方法解决问题,是对学生能力的较高要求.函数的图象是函数性质的直观载体,函数的性质能够经过函数的图像直观地表现出来。
微重点02 函数的公切线问题(4大考点+强化训练)(习题版)
微重点02 函数的公切线问题(4大考点+强化训练) 函数的公切线问题,是导数的重要应用之一,利用导数的几何意义,通过双变量的处理,从而转化为零点问题,主要利用消元与转化,考查构造函数、数形结合能力,培养逻辑推理、数学运算素养.【知识导图】【考点分析】考点一:求两函数的公切线规律方法 求切线方程时,注意区分曲线在某点处的切线和曲线过某点的切线,曲线y =f (x )在点P (x 0,f (x 0))处的切线方程是y -f (x 0)=f ′(x 0)·(x -x 0);求过某点的切线方程,需先设出切点坐标,再依据已知点在切线上求解.【例1】已知抛物线21:2C y x x =+和22:C y x a =-+,如果直线l 同时是1C 和2C 的切线,称l 是1C 和2C 的公切线,公切线上两个切点之间的线段,称为公切线段. (1)a 取什么值时,1C 和2C 有且仅有一条公切线?写出此公切线的方程;(2)若1C 和2C 有两条公切线,证明相应的两条公切线段互相平分.考点二:与公切线有关的求值问题规律方法 利用导数的几何意义解题,关键是切点,要充分利用切点既在曲线上又在切线上构造方程. 【例2】(2024下·重庆·高三重庆一中校考开学考试)已知()e sin x f x x =+,()ln(1)1g x a x =+-.(1)若()f x 在(0,(0))f 处的切线也与()g x 的图象相切,求a 的值;(2)若()()0f x g x +≥在(1,)∈-+∞x 恒成立,求a 的取值集合.【变式】设0t ≠,点(),0P t 是函数()3f x x ax =+与2()g x bx c =+的图象的一个公共点,两函数的图象在点P 处有相同的切线.(1)用t 表示a ,b ,c ;(2)若函数()()y f x g x =-在()1,3-上单调递减,求t 的取值范围.考点三:判断公切线条数规律方法 运用导数与斜率之间的关系可以将两曲线公切线的切点表示出来,构造新的函数,通过零点存在定理判断函数零点个数,即方程解的情况.【例3】曲线C 1:x y e =与曲线C 2:y =ln x 公切线的条数是 。
导数的几何意义(切线问题)(可编辑修改word版)
导数的⼏何意义(切线问题)(可编辑修改word版)导数的⼏何意义——切线问题解题模板:计算切线⽅程三部曲1.写出切点坐标(x0 , f (x0));注意:若切点已知,直接表⽰,切点未知,设参表⽰2.计算切线斜率f '(x0);3.计算切线⽅程为y -f (x0 )=f '(x0 )(x -x0 ).例. (2016 新课标 2)若直线y =kx +b 是曲线y = ln x + 2 的切线,也是曲线y = ln(x +1) 的切线,则b =.练习:1.(2019 新课标1)曲线y = 3(x2+x)e x在点(0, 0) 处的切线⽅程为.2.(2019 新课标2)曲线y = 2 s in x + cos x 在点(, -1) 处的切线⽅程为( )A. x -y --1 = 0B. 2x -y - 2-1 =0C. 2x +y - 2+1 = 0D. x +y -+1 = 03.(2015 陕西)设曲线y=e x在点(0,1)处的切线与曲线y=1(x>0)上点P 处的切线垂x直,则P 的坐标为.4.(2018 全国卷Ⅲ)曲线y = (ax +1)e x在点(0,1) 处的切线的斜率为-2 ,则a =.5.(2014 新课标Ⅰ)设曲线y =ax - ln(x +1) 在点(0, 0) 处的切线⽅程为y = 2x ,则a = ()A.0 B.1 C.2 D.36(2014 江苏).在平⾯直⾓坐标系xoy 中,若曲线y =ax2+b(a, b 为常数)过点P(2, -5) x,且该曲线在点P 处的切线与直线7x + 2 y + 3 = 0 平⾏,则a +b =.涉及复合函数f (ax +b)的导函数问题1.(2016 北京)设函数f (x) =xe a -x +bx ,曲线y = f (x) 在点(2, f (2)) 处的切线⽅程为y = (e -1)x + 4 ,a = , b =2.(2014 ⼴东)曲线y =e-5x+ 2 在点(0,3) 处的切线⽅程为.3.(2014 江西)若曲线y=e-x上点P 处的切线平⾏于直线2x+y+1=0,则点P 的坐标是.4. (2009 安徽)已知函数f (x) 在 R 上满⾜f (x) = 2 f (2 -x) -x2+ 8x - 8 ,则曲线y =f (x) 在点(1, f (1)) 处的切线⽅程是( )(A)y = 2x -1 (B)y =x (C)y = 3x - 2 (D)y =-2x + 3与函数奇偶性结合考查1.(2018 全国卷Ⅰ)设函数f (x) =x3+ (a -1)x2+ax ,若f (x) 为奇函数,则曲线y =f (x)在点(0, 0) 处的切线⽅程为()A.y =-2xB.y =-xC.y = 2xD.y =x2.(2016 年全国Ⅲ) 已知f (x) 为偶函数,当x < 0 时,f (x) = ln(-x) + 3x ,则曲线y =f (x) ,在点(1, -3) 处的切线⽅程是.与最值问题(基本不等式)结合考查41.(2010 辽宁)已知点P 在曲线y= 上,为曲线在点P 处的切线的倾斜⾓,则的e x+1取值范围是()33A.[0, ) B.[ , ) C.( , ] D.[ ,)4 4 2 2 4 4在点P 处切线与过点P 处切线区别求曲线切线时,要分清在点P 处的切线与过P 点的切线的区别,前者(切点确定)只有⼀条,⽽后者(切点待定)包括了前者.1. 已知函数f(x)=x3-4x2+5x-4.(1)求曲线f(x)在点(2,f(2))处的切线⽅程;(2)求经过点A(2,-2)的曲线f(x)的切线⽅程.。
《高等数学》练习题库及答案,DOC(word版可编辑修改)
A、xarctan1/xB、arctan1/x C、tan1/xD、cos1/x 13、设 f(x)在点 x0 连续,g(x)在点 x0 不连续,则下列结论成立是() A、f(x)+g(x)在点 x0 必不连续 B、f(x)×g(x)在点 x0 必不连续须有 C、复合函数 f[g(x)]在点 x0 必不连续 D、在点 x0 必不连续
C、-1/2D、1
48、两椭圆曲线 x2/4+y2=1 及(x—1)2/9+y2/4=1 之间所围的平面图形面积等于()
A、лB、2лC、4лD、6л
49、曲线 y=x2—2x 与 x 轴所围平面图形绕轴旋转而成的旋转体体积是()
A、лB、6л/15
C、16л/15D、32л/15
50、点(1,0,-1)与(0,-1,1)之间的距离为()
5.下列命题正确的是()
A.发散数列必无界 B.两无界数列之和必无界
C.两发散数列之和必发散 D.两收敛数列之和必收敛
6. lim sin(x2 1) ()
x1 x 1
A.1B。0
C。2D.1/2
7.设 lim(1 k )x e 6 则 k=()
x
x
A。1B.2
C.6D。1/6
8。当 x 1 时,下列与无穷小(x-1)等价的无穷小是()
7、已知ρ=ψsinψ+cosψ/2,求 dρ/dψ|ψ=л/6=()
8、已知 f(x)=3/5x+x2/5,求 f`(0)=()
9、设直线 y=x+a 与曲线 y=2arctanx 相切,则 a=()
《高等数学》练习题库及答案,DOC(word 版可编辑修改) 10、函数 y=x2-2x+3 的极值是 y(1)=()
(完整版)函数图像的切线问题
函数图像的切线问题要点梳理归纳1.求曲线y =f(x)的切线方程的三种类型及其方法(1)已知切点P(x 0,f(x 0)),求y =f(x)在点P 处的切线方程:切线方程为 y -f(x 0)=f′(x 0)(x -x 0). (2)已知切线的斜率为k ,求y =f(x)的切线方程:设切点为P(x 0,y 0),通过方程k =f′(x 0)解得x 0,再由点斜式写出方程. (3)已知切线上一点(非切点)A(s,t),求y =f(x)的切线方程:设切点为P(x 0,y 0),利用导数将切线方程表示为y -f(x 0)=f′(x 0)(x -x 0),再将A(s,t)代入求出x 0.2.两个函数图像的公切线函数y=f(x)与函数y=g(x) 存在公切线,若切点为同一点P(x 0,y 0),则有 ⎩⎪⎨⎪⎧f ′(x 0)=g ′(x 0),f (x 0)=g (x 0).若切点分别为(x 1,f(x 1)),(x 2,g(x 2)),则有212121)()()()(x x x g x f x g x f --='='.题型分类解析题型一 已知切线经过的点求切线方程例1.求过点(2,2)P 与已知曲线3:3S y x x =-相切的切线方程. 解:点P 不在曲线S 上.设切点的坐标()00,x y ,则30003y x x =-,函数的导数为2'33y x =-,切线的斜率为020'33x x k y x ===-,2000(33)()y y x x x ∴-=--切线方程为,Q 点(2,2)P 在切线上,20002(33)(2)y x x ∴-=--,又30003y x x =-,二者联立可得001,1x x ==或相应的斜率为0k =或9k =-±∴切线方程为2y =或(9(2)2y x =-±-+.例 2. 设函数()()2f x g x x =+,曲线()y g x =在点()()1,1g 处的切线方程为21y x =+,则曲线()y f x =在点()()1,1f 处的切线方程为________解析:由切线过()()1,1g 可得:()13g =,所以()()21114f g =+=,另一方面,()'12g =,且()()''2f x g x x =+,所以()()''1124f g =+=,从而切线方程为:()4414y x y x -=-⇒=例3. 已知直线1y kx =+与曲线3y x ax b =++切于点(1,3),则b 的值为_________ 解析:代入(1,3)可得:2k =,()'23f x x a =+,所以有()()'113132f a b f a =++=⎧⎪⎨=+=⎪⎩,解得13a b =-⎧⎨=⎩题型二 已知切线方程(或斜率),求切点坐标(或方程、参数)例4.已知函数()ln 2f x x x =+,则:(1)在曲线()f x 上是否存在一点,在该点处的切线与直线420x y --=平行 (2)在曲线()f x 上是否存在一点,在该点处的切线与直线30x y --=垂直 解:设切点坐标为()00,x y ()'0012fx x ∴=+ 由切线与420x y --=平行可得: ()'00011242f x x x =+=⇒= 011ln 122y f ⎛⎫∴==+ ⎪⎝⎭∴切线方程为:11ln 244ln 212y x y x ⎛⎫-+=-⇒=-- ⎪⎝⎭(2)设切点坐标()00,x y ()'0012fx x ∴=+,直线30x y --=的斜率为1 ()'00011213f x x x ∴=+=-⇒=- 而()00,x ∈+∞ 013x ∴=-不在定义域中,舍去∴不存在一点,使得该点处的切线与直线30x y --=垂直例5.函数()2ln f x a x bx =-上一点()()2,2P f 处的切线方程为32ln22y x =-++,求,a b 的值思路:本题中求,a b 的值,考虑寻找两个等量条件进行求解,P 在直线32ln22y x =-++上,322ln222ln24y ∴=-⋅++=-,即()2=2ln24f -,得到,a b 的一个等量关系,在从切线斜率中得到2x =的导数值,进而得到,a b 的另一个等量关系,从而求出,a b 解:P Q 在32ln22y x =-++上,()2322ln222ln24f ∴=-⋅++=-()2ln242ln24f a b ∴=-=-又因为P 处的切线斜率为3- ()'2afx bx x=- ()'2432a f b ∴=-=-, ln 242ln 2421432a b a a b b -=-⎧=⎧⎪∴⇒⎨⎨=-=-⎩⎪⎩例6.设函数()()32910f x x ax x a =---<,若曲线()y f x =的斜率最小的切线与直线126x y +=平行,求a 的值思路:切线斜率最小值即为导函数的最小值,已知直线的斜率为12-,进而可得导函数的最小值为12-,便可求出a 的值解:()2'2222221111329393939333f x x ax x a a a x a a ⎛⎫⎛⎫=--=-+--=--- ⎪ ⎪⎝⎭⎝⎭()'2min 11933f x f a a ⎛⎫∴==-- ⎪⎝⎭Q 直线126x y +=的斜率为12-,依题意可得:2191233a a --=-⇒=± 0a <Q 3a ∴=- 题型三 公切线问题例7.若存在过点(1,0)的直线与曲线3y x =和21594y ax x =+-都相切,则a 等于( ) A.1-或2564-B. 1-或214C. 74-或2564-D. 74-或7 思路:本题两条曲线上的切点均不知道,且曲线21594y ax x =+-含有参数,所以考虑先从常系数的曲线3y x =入手求出切线方程,再考虑在利用切线与曲线21594y ax x =+-求出a 的值.设过()1,0的直线与曲线3y x =切于点()300,x x ,切线方程为()320003y x x x x -=-,即230032y x x x =-,因为()1,0在切线上,所以解得:00x =或032x =,即切点坐标为()0,0或327,28⎛⎫⎪⎝⎭.当切点()0,0时,由0y =与21594y ax x =+-相切可得()21525490464a a ⎛⎫∆=--=⇒=- ⎪⎝⎭,同理,切点为327,28⎛⎫ ⎪⎝⎭解得1a =-答案:A小炼有话说:(1)涉及到多个函数公切线的问题时,这条切线是链接多个函数的桥梁.所以可以考虑先从常系数的函数入手,将切线求出来,再考虑切线与其他函数的关系 (2)在利用切线与21594y ax x =+-求a 的过程中,由于曲线21594y ax x =+-为抛物线,所以并没有利用导数的手段处理,而是使用解析几何的方法,切线即联立方程后的0∆=来求解,减少了运算量.通过例7,例8可以体会到导数与解析几何之间的联系:一方面,求有关导数的问题时可以用到解析的思想,而有些在解析中涉及到切线问题时,若曲线可写成函数的形式,那么也可以用导数来进行处理,(尤其是抛物线)例8.若曲线21x y C =:与曲线xae y C =:2存在公切线,则a 的最值情况为( ) A .最大值为28e B .最大值为24e C .最小值为28e D .最小值为24e 解析:设公切线与曲线1C 切于点()211,x x ,与曲线2C 切于点()22,x x ae ,由''2xy xy ae ⎧=⎪⎨=⎪⎩可得:22211212x x ae x x ae x x -==-,所以有221111221122222x x x x x x x x x ae ⎧-=⇒=-⎪-⎨⎪=⎩,所以2244x ae x =-,即()2241x x a e -=,设()()41xx f x e -=,则()()'42xx fx e -=.可知()f x 在()1,2单调递增,在()2,+∞单调递减,所以()max 242a f e==例10.曲线xy e =在点()22,e 处的切线与坐标轴所围三角形的面积为( )A.2eB. 22e C. 24eD.22e思路:()'x f x e = 由图像可得三角形的面积可用切线的横纵截距计算,进而先利用求出切线方程 ()'22f e ∴=所以切线方程为:()222y e e x -=-即220e x y e --=,与两坐标轴的交点坐标为()()21,00,e - 221122e S e ∴=⨯⨯=例11.一点P 在曲线323y x x =-+上移动,设点P 处切线的倾斜角为α,则角α的取值范围是( ). A.0,2π⎡⎤⎢⎥⎣⎦ B.30,,24πππ⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭U C.3,4ππ⎡⎫⎪⎢⎣⎭ D.3,24ππ⎛⎤⎥⎝⎦思路:倾斜角的正切值即为切线的斜率,进而与导数联系起来.'231y x =-,对于曲线上任意一点P ,斜率的范围即为导函数的值域:[)'2=311,y x -∈-+∞,所以倾斜角的范围是30,,24πππ⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭U .答案:B 例12.已知函数()323f x x x =-,若过点()1,P t 存在3条直线与曲线()y f x =相切,求t 的取值范围思路:由于并不知道3条切线中是否存在以P 为切点的切线,所以考虑先设切点()00,x y ,切线斜率为k ,则满足()3000'2002363y x x k f x x ⎧=-⎪⎨==-⎪⎩,所以切线方程为()00y y k x x -=-,即()()()3200002363y x x x x x --=--,代入()1,P t 化简可得:3200463t x x =-+-,所以若存在3条切线,则等价于方程3200463t x x =-+-有三个解,即y t =与()32463g x x x =-+-有三个不同交点,数形结合即可解决解:设切点坐标()00,x y ,切线斜率为k ,则有:()3000'2002363y x x k f x x ⎧=-⎪⎨==-⎪⎩∴ 切线方程为:()()()3200002363y x x x x x --=-- 因为切线过()1,P t ,所以将()1,P t 代入直线方程可得:()()()32000023631t x x x x --=-- ()()()23000063123t x x x x ⇒=--+-233320000000636323463x x x x x x x =--++-=-+-所以问题等价于方程3200463t x x =-+-,令()32463g x x x =-+-即直线y t =与()32463g x x x =-+-有三个不同交点()()'21212121g x x x x x =-+=--令()'0g x >解得01x << 所以()g x 在()(),0,1,-∞+∞单调递减,在()0,1单调递增()()()()11,03g x g g x g ==-==-极大值极小值所以若有三个交点,则()3,1t ∈--所以当()3,1t ∈--时,过点()1,P t 存在3条直线与曲线()y f x =相切例13. 已知曲线C:x 2=y ,P 为曲线C 上横坐标为1的点,过P 作斜率为k(k ≠0)的直线交C 于另一点Q ,交x 轴于M ,过点Q 且与PQ 垂直的直线与C 交于另一点N ,问是否存在实数k ,使得直线MN 与曲线C 相切?若存在,求出K 的值,若不存在,说明理由.思路:本题描述的过程较多,可以一步步的拆解分析.点()1,1P ,则可求出:1PQ y kx k =-+,从而与抛物线方程联立可解得()()21,1Q k k --,以及M 点坐标,从而可写出QN 的方程,再与抛物线联立得到N 点坐标.如果从,M N 坐标入手得到MN 方程,再根据相切()0∆=求k ,方法可以但计算量较大.此时可以着眼于N 为切点,考虑抛物线2x y =本身也可视为函数2y x =,从而可以N 为入手点先求出切线,再利用切线过M 代入M 点坐标求k ,计算量会相对小些. 解:由P 在抛物线上,且P 的横坐标为1可解得()1,1P∴设():11PQ y k x -=-化简可得:1y kx k =-+ 1,0k M k -⎛⎫∴ ⎪⎝⎭21y x y kx k ⎧=∴⎨=-+⎩ 消去y :210x kx k -+-= 121,1x x k ∴==- ()()21,1Q k k ∴--设直线()()21:11QN y k x k k --=---⎡⎤⎣⎦即()()2111y k x k k =----⎡⎤⎣⎦ ∴ 联立方程:()()22111y x y k x k k ⎧=⎪⎨=----⎡⎤⎪⎣⎦⎩()211110x x k k k k ⎛⎫∴+---+= ⎪⎝⎭ ()11111Q N N x x k k x k k k ⎛⎫⎛⎫∴⋅=---+⇒=--+ ⎪ ⎪⎝⎭⎝⎭2111,1N k k k k ⎛⎫⎛⎫⎛⎫∴--+-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭由2y x =可得:'2y x =∴切线MN 的斜率'1|21N MN x x k y k k =⎛⎫==--+ ⎪⎝⎭2111:1211MN y k k x k k k k ⎡⎤⎛⎫⎛⎫⎛⎫∴--+=--++-+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦代入1,0k M k -⎛⎫⎪⎝⎭得: 2111112111k k k k k k k ⎡⎤⎛⎫⎛⎫⎛⎫--+=--+-+-+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦211210k k k k k∴-+=⇒+-=,12k -±∴=小炼有话说:(1)如果曲线的方程可以视为一个函数(比如开口向上或向下的抛物线,椭圆双曲线的一部分),则处理切线问题时可以考虑使用导数的方法,在计算量上有时要比联立方程计算0∆=简便(2)本题在求N 点坐标时,并没有对方程进行因式分解,而是利用韦达定理,已知Q 的横坐标求出N 的横坐标.这种利用韦达定理求点坐标的方法在解析几何中常解决已知一交点求另一交点的问题.例14.设函数f(x)=x 3+2ax 2+bx +a ,g(x)=x 2-3x +2,其中x ∈R ,a 、b 为常数,已知曲线y =f(x)与y =g(x)在点(2,0)处有相同的切线l.(1)求a 、b 的值,并写出切线l 的方程;(2)若方程f(x)+g(x)=mx 有三个互不相同的实根0、x 1、x 2,其中x 1<x 2,且对任意的x ∈[x 1,x 2],f(x)+g(x)<m(x -1)恒成立,求实数m 的取值范围.【解答】 (1)f′(x)=3x 2+4ax +b ,g′(x)=2x -3. 由于曲线y =f(x)与y =g(x)在点(2,0)处有相同的切线, 故有f(2)=g(2)=0,f′(2)=g′(2)=1.由此得⎩⎪⎨⎪⎧8+8a +2b +a =0,12+8a +b =1,解得⎩⎪⎨⎪⎧a =-2,b =5.所以a =-2,b =5,切线l 的方程为x -y -2=0. (2)由(1)得f(x)=x 3-4x 2+5x -2, 所以f(x)+g(x)=x 3-3x 2+2x.依题意,方程x(x 2-3x +2-m)=0有三个互不相同的实根0、x 1、x 2, 故x 1、x 2是方程x 2-3x +2-m =0的两相异的实根. 所以Δ=9-4(2-m)>0,即m>-14.又对任意的x ∈[x 1,x 2],f(x)+g(x)<m(x -1)恒成立. 特别地,取x =x 1时,f(x 1)+g(x 1)-mx 1<-m 成立,得m<0. 由韦达定理,可得x 1+x 2=3>0,x 1x 2=2-m>0,故0<x 1<x 2. 对任意的x ∈[x 1,x 2],有x -x 2≤0,x -x 1≥0,x>0,则f(x)+g(x)-mx =x(x -x 1)(x -x 2)≤0,又f(x 1)+g(x 1)-mx 1=0,所以函数f(x)+g(x)-mx 在x ∈[x 1,x 2]的最大值为0. 于是当-14<m<0时,对任意的x ∈[x 1,x 2],f(x)+g(x)<m(x -1)恒成立. 综上,m 的取值范围是⎝ ⎛⎭⎪⎫-14,0. 例15.如图3-1,有一正方形钢板AB CD 缺损一角(图中的阴影部分),边缘线OC 是以直线AD 为对称轴,以线段AD 的中点O 为顶点的抛物线的一部分.工人师傅要将缺损一角切割下来,使剩余的部分成为一个直角梯形.若正方形的边长为2米,问如何画切割线EF ,可使剩余的直角梯形的面积最大?并求其最大值.解法一:以O 为原点,直线AD 为y 轴,建立如图所示的直角坐标系,依题意,可设抛物线弧OC 的方程为y =ax 2(0≤x ≤2),∵点C 的坐标为(2,1),∴22a =1,a =14, 故边缘线OC 的方程为y =14x 2(0≤x ≤2), 要使梯形ABEF 的面积最大,则EF 所在的直线必与抛物线弧OC 相切,设切点坐标为P ⎝ ⎛⎭⎪⎫t ,14t 2(0<t <2), ∵y ′=12x ,∴直线EF 的方程可表示为y -14t 2=t 2(x -t ), 即y =12tx -14t 2.由此可求得E ⎝ ⎛⎭⎪⎫2,t -14t 2,F ⎝⎛⎭⎪⎫0,-14t 2.∴|AF |=⎪⎪⎪⎪⎪⎪-14t 2--1=1-14t 2, |BE |=⎪⎪⎪⎪⎪⎪t -14t 2--1=-14t 2+t +1. 设梯形ABEF 的面积为S (t ),则S (t )=-12(t -1)2+52≤52,∴当t =1时,S (t )=52, 故S (t )的最大值为2.5,此时|AF |=0.75,|BE |=1.75.答:当AF =0.75 m ,BE =1.75 m 时,可使剩余的直角梯形的面积最大,其最大值为2.5 m 2.解法二:以A 为原点,直线AD 为y 轴,建立如图所示的直角坐标系,依题意可设抛物线的方程为y =ax 2+1(0≤x ≤2).∵点C 的坐标为(2,2),∴22a +1=2,a =14, 故边缘线OC 的方程为y =14x 2+1(0≤x ≤2). 要使梯形ABEF 的面积最大,则EF 所在的直线必与抛物线弧OC 相切,设切点坐标为P ⎝ ⎛⎭⎪⎫t ,14t 2+1(0<t <2), ∵y ′=12x ,∴直线EF 的方程可表示为y -14t 2-1=12t (x -t ), 即y =12tx -14t 2+1,由此可求得E ⎝ ⎛⎭⎪⎫2,t -14t 2+1,F ⎝ ⎛⎭⎪⎫0,-14t 2+1. ∴|AF |=1-14t 2,|BE |=-14t 2+t +1, 设梯形ABEF 的面积为S (t ),则S (t )=12|AB |·(|AF |+|BE |) =1-14t 2+⎝ ⎛⎭⎪⎫-14t 2+t +1=-12t 2+t +2 =-12(t -1)2+52≤52. ∴当t =1时,S (t )=52, 故S (t )的最大值为2.5.此时|AF |=0.75,|BE |=1.75.答:当AF =0.75 m ,BE =1.75 m 时,可使剩余的直角梯形的面积最大,其最大值为2.5 m 2.【点评】 与切线有关的多边形的最值问题,首先应该面积建立关于动点P 的函数,再选择相关的方法求解所得函数的最值,复杂函数可以用求导进行研究.。
函数图像的切线问题(最新整理)
设切点为 P(x0,y0),利用导数将切线方程表示为 y-f(x0)=f′(x0)(x-x0),再将
A(s,t)代入求出 x0. 2.两个函数图像的公切线
函数 y=f(x)与函数 y=g(x) 存在公切线,
若切点为同一点 P(x0,y0),则有 Error!
若切点分别为(x1,f(x1)),(x2,g(x2)),则有
y
kx
与曲线
y
l8n
x
有公共点,则
k
6
的最大值为
15 5
30
20 10
.
解:根据题8意画出右图,由图可知,当直线和曲线相切时, k 取8 得最大值.
设切点坐标为 x0,
y0
,则
y0
ln
x0
,
y
'
1 x
y ' 1 ,切线方程为
x 10x0
x0
y
ln
x0
1 x0
(x
x0 ) ,原点在切线上,ln
x0
4
A. 1 或 25 64
B. 1 或 21 4
C. 7 或 25 4 64
D. 7 或 7 4
思路:本题两条曲线上的切点均不知道,且曲线 y ax2 15 x 9 含有参数,所以考虑 4
先 从 常 系 数 的 曲 线 y x3入 手 求 出 切 线 方 程 , 再 考 虑 在 利 用 切 线 与 曲 线
1, x0
e12
斜率的最大值为
1
.
e
例 10.曲线 y ex 在点 2, e2 处的切线与坐标轴所围三角形的面积为( )
A. e2
B. 2e2
C. 4e2
e2
D.
高考数学之利用切线法破解函数恒成立问题(导函数零点问题)
关于对切线法破解导函数隐零点问题的一点理解导函数隐零点问题是常考压轴题类型。
即是关于函数恒成立的一类问题,这种题往往在解答的时候,最后要转化为对函数单调区间的讨论,从而探索出函数的极值点,也就是导函数的零点。
常规的方法往往讨论比较复杂,而且容易卡在某一步上。
而利用切线法,可以完美规避掉对原函数含参区间的单调性讨论,解答比较简洁,真可谓是破解导函数隐零点问题的一大利器。
然而切线法的难点在于该方法的理解,思维层次较高,同时也有点跳跃。
因此笔者赶紧有必要仔细的把关于切线法的前因后果好好分析一下,以求牢固掌握,同时也算是对想了解并运用该方法的读者朋友尽上一点绵薄的帮助。
限于笔者水平有限,有些疏漏,以及不严谨的地方,欢迎大家批评指正以及补充完善。
一、从一道例题说起题目:若k(k−2)<k+k ln k,∀k>2,求整数k的最大值.分析:∀k>2,k(k−2)<k+k ln k,等价于∀k>2,k(k−2)−k−k ln k<0,令g(x)=k(k−2)−k−k ln k,当x>2时,明显可以看出k越小,g(x)的值就会越小,所以问题不在于k能取多小,而在于k能取多大,即本题里面我们关于的应该是k的上限。
所以我们最后求得的关于k的范围,一定是一个小于某一个值的情况。
另外,g(x)显然代表了一族函数,因此每一个具体的k的值都会对应于一个具体的g(x)。
下面我们具体来分析下g(x)的图像特点。
由前面的分析可知,当k超过某一个值时,g(x)必定会出现大于0的部分,也就是出现位于x轴上方的部分。
现在把f(x)看成一族函数,显然这个大家族里面会出现无数个图像位于x轴上方的g(x),也会出现无数个图像位于x轴下方的g(x)。
而每一个g(x)都是连续的函数,那么根据连续函数的介值定理(在这里应该是广义的介值定理,需要一点高等数学的知识才能理解透),既然图像位于x轴上方和x轴下方都有可能存在,那么就一定存在一个临界状态,即g(x)的图像位于x轴下方(这是我们的题目要求),而且恰好切于x轴。
(word完整版)高中高考数学所有二级结论《完整版》(2021年整理)
(word完整版)高中高考数学所有二级结论《完整版》(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((word完整版)高中高考数学所有二级结论《完整版》(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(word完整版)高中高考数学所有二级结论《完整版》(word版可编辑修改)的全部内容。
高中数学二级结论1.任意的简单n 面体内切球半径为表S V3(V 是简单n 面体的体积,表S 是简单n 面体的表面积) 2.在任意ABC △内,都有tan A +tan B +tan C =tan A ·tan B ·tan C推论:在ABC △内,若tan A +tan B +tan C 〈0,则ABC △为钝角三角形3.斜二测画法直观图面积为原图形面积的42倍 4.过椭圆准线上一点作椭圆的两条切线,两切点连线所在直线必经过椭圆相应的焦点5.导数题常用放缩1+≥x e x、1ln 11-≤≤-<-x x xx x 、)1(>>x ex e x 6.椭圆)0,0(12222>>=+b a by a x 的面积S 为πab S =7.圆锥曲线的切线方程求法:隐函数求导推论:①过圆222)()(r b y a x =-+-上任意一点),(00y x P 的切线方程为200))(())((r b y b y a x a x =--+--②过椭圆)0,0(12222>>=+b a b y a x 上任意一点),(00y x P 的切线方程为12020=+b yy a xx③过双曲线)0,0(12222>>=-b a by a x 上任意一点),(00y x P 的切线方程为12020=-b yy a xx8.切点弦方程:平面内一点引曲线的两条切线,两切点所在直线的方程叫做曲线的切点弦方程①圆022=++++F Ey Dx y x 的切点弦方程为0220000=++++++F E yy D x x y y x x ②椭圆)0,0(12222>>=+b a b y a x 的切点弦方程为12020=+b yy a x x③双曲线)0,0(12222>>=-b a b y a x 的切点弦方程为12020=-byy a x x④抛物线)0(22>=p px y 的切点弦方程为)(00x x p y y +=⑤二次曲线的切点弦方程为0222000000=++++++++F yy E x x D y Cy x y y x Bx Ax 9.①椭圆)0,0(12222>>=+b a b y a x 与直线)0·(0≠=++B A C By Ax 相切的条件是22222C b B a A =+②双曲线)0,0(12222>>=-b a by a x 与直线)0·(0≠=++B A C By Ax 相切的条件是22222C b B a A =-10.若A 、B 、C 、D 是圆锥曲线(二次曲线)上顺次四点,则四点共圆(常用相交弦定理)的一个充要条件是:直线AC 、BD 的斜率存在且不等于零,并有0=+BD AC k k ,(AC k ,BD k 分别表示AC 和BD 的斜率)11.已知椭圆方程为)0(12222>>=+b a b y a x ,两焦点分别为1F ,2F ,设焦点三角形21F PF 中θ=∠21F PF ,则221cos e -≥θ(2m ax 21cos e -=θ)12.椭圆的焦半径(椭圆的一个焦点到椭圆上一点横坐标为0x 的点P 的距离)公式02,1ex a r ±=13.已知1k ,2k ,3k 为过原点的直线1l ,2l ,3l 的斜率,其中2l 是1l 和3l 的角平分线,则1k ,2k ,3k 满足下述转化关系:3222223321212k k k k k k k k +-+-=,31231231312)()1(1k k k k k k k k k +++-±-=,2122221123212k k k k k k k k +-+-=14.任意满足r by ax nn=+的二次方程,过函数上一点),(11y x 的切线方程为r y by x ax n n =+--111115.已知f (x )的渐近线方程为y=ax+b ,则a xx f x =∝+→)(lim,b ax x f x =-∝+→])([lim16.椭圆)0(12222>>=+b a b y a x 绕Ox 坐标轴旋转所得的旋转体的体积为πab V 34=17.平行四边形对角线平方之和等于四条边平方之和18.在锐角三角形中C B A C B A cos cos cos sin sin sin ++>++19.函数f (x )具有对称轴a x =,b x =)(b a ≠,则f (x )为周期函数且一个正周期为|22|b a -20.y=kx+m 与椭圆)0(12222>>=+b a b y a x 相交于两点,则纵坐标之和为22222bk a mb + 21.已知三角形三边x ,y ,z ,求面积可用下述方法(一些情况下比海伦公式更实用,如27,28,29)AC C B B A S zA C y CB x B A ⋅+⋅+⋅==+=+=+222222.圆锥曲线的第二定义:椭圆的第二定义:平面上到定点F 距离与到定直线间距离之比为常数e (即椭圆的偏心率,ace =)的点的集合(定点F 不在定直线上,该常数为小于1的正数) 双曲线第二定义:平面内,到给定一点及一直线的距离之比大于1且为常数的点的轨迹称为双曲线23.到角公式:若把直线1l 依逆时针方向旋转到与2l 第一次重合时所转的角是θ,则21121tan k k k k θ=⋅+-24.A 、B 、C 三点共线⇔OD nm OB OC n OA m OD +=+=1,(同时除以m+n ) 25.过双曲线)0,0(12222>>=-b a by a x 上任意一点作两条渐近线的平行线,与渐近线围成的四边形面积为2ab 26.反比例函数)0(>=k xky 为双曲线,其焦点为)2,2(k k 和)2,2(k k --,k 〈0 27。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0 0 0 00 0 0 0 0 0 x = x 0 0 0 0x 1函数图像的切线问题要点梳理归纳1. 求曲线 y =f(x)的切线方程的三种类型及其方法(1) 已知切点 P(x 0,f(x 0)),求 y =f(x)在点 P 处的切线方程:切线方程为 y -f(x 0)=f′(x 0)(x -x 0).(2) 已知切线的斜率为 k ,求 y =f(x)的切线方程:设切点为 P(x 0,y 0),通过方程 k =f′(x 0)解得 x 0,再由点斜式写出方程. (3)已知切线上一点(非切点)A(s,t),求 y =f(x)的切线方程:设切点为 P(x 0,y 0),利用导数将切线方程表示为 y -f(x 0)=f′(x 0)(x -x 0),再将A(s,t)代入求出 x 0.2. 两个函数图像的公切线函数 y=f(x)与函数 y=g(x) 存在公切线, 若切点为同一点 P(x 0,y 0),则有 Error!若切点分别为(x ,f(x )),(x ,g(x )),则有 f '(x ) = g '(x ) =f (x 1 ) -g (x 2 ) .1 12 2题型分类解析1 2- x题型一已知切线经过的点求切线方程例 1.求过点 P (2, 2) 与已知曲线 S : y = 3x - x 3 相切的切线方程. 解:点 P 不在曲线 S 上.设切点的坐标( x , y ) ,则 y = 3x - x 3,函数的导数为 y ' = 3 - 3x 2 , 切线的斜率为k = y '= 3 - 3x 2 ,∴切线方程为y - y = (3 - 3x 2 )( x - x ) , 0点 P (2, 2) 在切线上,∴2 - y = (3 - 3x 2 )(2 - x ) ,又 y = 3x - x 3 ,二者联立可得 x 0 = 1,或x 0 = 1 ± 3, 相应的斜率为k = 0 或k = -9 ± 6 32⎩ ⎨2 2 0∴切线方程为 y = 2 或 y = (-9 ± 6 3)( x - 2) + 2 .例 2. 设函数 f ( x ) = g ( x ) + x 2 ,曲线 y = g ( x ) 在点(1, g (1))处的切线方程为 y = 2x + 1,则曲线 y = f ( x ) 在点(1, f (1))处的切线方程为解析: 由切线过 (1, g (1))可得: g (1) = 3 , 所以 f (1) = g (1) + 12 = 4 , 另一方面,g ' (1) = 2 , 且f ' ( x ) =g ' ( x ) + 2x , 所以 f ' (1) = g ' (1) + 2 = 4 , 从而切线方程为:y - 4 = 4( x - 1) ⇒ y = 4x例 3. 已知直线 y = kx +1与曲线 y = x 3 + ax + b 切于点(1, 3) ,则b 的值为解析:代入(1, 3) 可得: k = 2 , f ' ( x ) = 3x 2 + a ,⎧⎪ f (1) = a + b + 1 = 3⎧a = -1 所以有⎨⎪ f ' (1) = 3 + a = 2 ,解得 ⎩b = 3题型二已知切线方程(或斜率),求切点坐标(或方程、参数)例 4.已知函数 f ( x ) = ln x + 2x ,则:(1) 在曲线 f ( x ) 上是否存在一点,在该点处的切线与直线4x - y - 2 = 0 平行 (2) 在曲线 f ( x ) 上是否存在一点,在该点处的切线与直线 x - y - 3 = 0 垂直解:设切点坐标为( x 0, y 0 ) ∴ f '(x ) = 1+ 2 x 0由切线与4x - y - 2 = 0 平行可得:f ' ( x ) = 1 + 2 = 4 ⇒ x = 1∴ y = f ⎛ 1 ⎫= ln 1 + 1 00 ⎪⎝ ⎭ 2∴切线方程为: y - 1 + ln 2 = 4 ⎛ x - 1 ⎫⇒ y = 4x - ln 2 - 12 ⎪ ⎝ ⎭0 x⎩(2)设切点坐标( x 0, y 0 ) ∴ f '(x ) = 1 x 0+ 2 ,直线 x - y - 3 = 0 的斜率为1∴ f '( x ) =1x 0 + 2 = -1 ⇒ x 0 = - 13 而 x 0 ∈(0, +∞)∴ x 0= - 1不在定义域中,舍去 3∴不存在一点,使得该点处的切线与直线 x - y - 3 = 0 垂直例 5.函数 f ( x ) = a ln x - bx 2 上一点 P (2, f (2))处的切线方程为 y = -3x + 2 ln 2 + 2 ,求a , b 的值思路:本题中求a , b 的值,考虑寻找两个等量条件进行求解, P 在直线y = -3x + 2 l n 2 + 2 上,∴ y = -3⋅ 2 + 2 l n 2 + 2 = 2 l n 2 - 4 ,即 f (2) =2ln2 - 4 ,得到a , b 的一个等量关系,在从切线斜率中得到 x = 2 的导数值,进而得到a , b 的另一个等量关系,从而求出a , b解: P 在 y = -3x + 2 ln 2 + 2 上,∴ f (2) = -3⋅ 2 + 2 ln 2 + 2 = 2 ln 2 - 4∴ f (2) = a ln 2 - 4b = 2 ln 2 - 4又因为 P 处的切线斜率为-3af ' ( x ) = a - 2bx x⎧a ln 2 - 4b = 2 ln 2 - 4 ⎧a = 2 ∴ f ' (2) = - 4b = -3 , 2 ⎪⎨ a ⎪⎩ 2- 4b = -3 ⇒ ⎨b = 1例 6.设函数 f ( x ) = x 3 - ax 2 - 9x - 1(a < 0) ,若曲线 y = 线12x + y = 6 平行,求a 的值f ( x ) 的斜率最小的切线与直思路:切线斜率最小值即为导函数的最小值,已知直线的斜率为-12 ,进而可得导函数的0 0 ∴⎪ -最小值为-12 ,便可求出a 的值解: f ' ( x ) = 3x 2- 2ax - 9 = 3⎛x 2- ⎝2 a + 13 9 a 2 ⎫ - ⎭ 1a 2 - 9 = 3⎛ x - 3 ⎝1 ⎫2 a ⎪3 ⎭- 1 a 2 - 93∴ f ' ( x ) = f ⎛ 1 a ⎫= - 1 a 2 - 9 直线12x + y = 6 的斜率为-12 ,依题意可得:min3 ⎪ 3⎝ ⎭- 1a 2 - 9 = -12 ⇒ a = ±3 3 题型三公切线问题a < 0 ∴a = -3 例 7.若存在过点(1,0)的直线与曲线 y = x 3 和 y = ax 2 +15x - 9 都相切,则a 等于( )4A. -1 或-2521 B. 1 或C. - 7 或-25 D. - 7或76444 644思路:本题两条曲线上的切点均不知道,且曲线 y = ax 2 +15 x - 9 含有参数,所以考虑4先 从 常 系 数 的 曲 线 y = x 3 入 手 求 出 切 线 方 程 , 再 考 虑 在 利 用 切 线 与 曲 线y = ax 2 + 15 x - 9 求出 a 的值.设过(1,0) 的直线与曲线 y = x 3 切于点(x , x 3 ),切线方4程为 y - x 3= 3x 2( x - x 0 0) ,即 y = 3x 2 x - 2x 3 ,因为(1,0) 在切线上,所以解得: x = 00 0 0或 x = 3, 即 切 点 坐 标 为 (0,0) 或⎛ 3 , 27 ⎫ .当 切 点(0,0) 时 , 由 y = 0 与22 8 ⎪y = ax 2 + 15x - 9 相切可得4⎛ 15 ⎫2⎝ ⎭25 ⎛ 3 27 ⎫∆ = 4 ⎪ - 4a (-9) = 0 ⇒ a = - 64 ,同理,切点为 , ⎪ 解得a = -1⎝ ⎭ ⎝ 2 8 ⎭答案:A小炼有话说:(1)涉及到多个函数公切线的问题时,这条切线是链接多个函数的桥梁.所以可以考虑先从常系数的函数入手,将切线求出来,再考虑切线与其他函数的关系 (2)在利用切线与 y = ax 2 +15 x - 9 求a 的过程中,由于曲线 y = ax 2 +15 x - 9 为抛物44线,所以并没有利用导数的手段处理,而是使用解析几何的方法,切线即联立方程后的∆ = 0 来求解,减少了运算量.通过例 7,例 8 可以体会到导数与解析几何之间的联系:一方面,求有关导数的问题时可以用到解析的思想,而有些在解析中涉及到切线问题时,若曲线可写成函数的形式,那么也可以用导数来进行处理,(尤其是抛物线) 例 8.若曲线C :y = x 2 与曲线C :y = ae x 存在公切线,则a 的最值情况为()18A. 最大值为e 224B. 最大值为e 28C. 最小值为e 24D.最小值为 e2⎧⎪ y '= 2x解析:设公切线与曲线C 切于点(x , x 2),与曲线C 切于点(x , ae x 2) ,由⎨ 可得:1 1 12 2⎧ 2x - x 2⎪⎩ y ' = ae xae x 2- x 2⎪2x = 1 1 ⇒ x = 2x - 2 2x = ae x 2 = 1 ,所以有⎨ 1 x - x 1 2 ,所以 ae x 2 = 4x - 4 , 1x - x 2 1 2 2 1 ⎪2x = ae x 2⎩ 1即 a =4( x 2 - 1) ,设 f ( x ) =4( x -1) ,则 f '( x ) =4(2 - x ) .可知 f ( x ) 在(1, 2) 单调递e x 2e xe x增,在(2, +∞) 单调递减,所以 a max = f (2) = 4e2题型四切线方程的应用例 9.已知直线 y = kx 与曲线 y = ln x 有公共点,则k 的最大值为 . 解:根据题意画出右图,由图可知,当直线和曲线相切时, k 取得最大值.设切点坐标为( x 0, y 0 ) ,则 y 0 = ln x 0, y ' = 1 x y ' x = x 0= 1,∴切线方程为 x 0y - ln x = 1( x - x ) , 原点在切线上,∴ln x = 1, x = e ∴斜率的最大值为0 0 01 .e例 10.曲线 y = e x 在点(2, e 2 )处的切线与坐标轴所围三角形的面积为()A. e 2B. 2e 2C. 4e 2D. e 2思路: f' ( x ) = e x由图像可得三角形的面积可用切线的横纵截距计算,进而先利用求出切线方程 ∴ f ' (2) = e 2 所以切线方程为: y - e 2 = e 2 ( x - 2) 即e 2 x - y - e 2 = 0 ,2与两坐标轴的交点坐标为(1, 0) (0, -e 2)∴ S = 1⨯1⨯ e 2= e2 2例 11.一点 P 在曲线 y = x 3 - x + 2上移动,设点 P 处切线的倾斜角为,则角的取值3范围是( ).0 2O526104826x^24a5l2ae^xx^2 a2 ae^x5542x 2⎨0 0 0 0 0 0 00 00 0 00 00 0 0 0 00 0 0A. ⎡0,⎤B. ⎡0,⎫ ⎡ 3,⎫C.⎡ 3,⎫D. ⎛3⎤⎢ 2 ⎥ ⎢ 2 ⎪ ⎢ 4⎪ ⎢ 4 ⎪ ,⎥⎣ ⎦⎣ ⎭ ⎣ ⎭⎣ ⎭⎝ 2 4 ⎦思路:倾斜角的正切值即为切线的斜率,进而与导数联系起来. y ' = 3x 2 - 1 ,对于曲线上任意一点 P ,斜率的范围即为导函数的值域: y ' =3x 2 - 1∈[-1, +∞) ,所以倾斜角的范围 是⎡0,⎫ ⎡ 3,⎫.答案:B ⎣⎢ 2 ⎪ ⎢ 4⎪ ⎭ ⎣ ⎭例 12.已知函数 f ( x ) = 2x 3 - 3x ,若过点 P (1, t ) 存在 3 条直线与曲线 y = 求t 的取值范围f ( x ) 相切, 思路:由于并不知道 3 条切线中是否存在以 P 为切点的切线,所以考虑先设切点( x 0 , y 0 ) ,切线斜率为k ,则满足 ⎧⎪ y = 2x 3 - 3x ,所以切线方程为 y - y = k ( x - x ) ,即⎪k = f ' ( x ) = 6x 2 - 3 0 0 ⎩0 0 y - (2x 3 - 3x ) = (6x 2- 3)( x - x ) ,代入 P (1, t ) 化简可得: t = -4x 3 + 6x 2 - 3 ,所以 若 存 在 3 条 切 线 , 则 等 价 于 方 程 t = -4x 3 + 6x 2 - 3 有 三 个 解 , 即g ( x ) = -4x 3 + 6x 2 - 3 有三个不同交点,数形结合即可解决解:设切点坐标( x 0 , y 0 ) ,切线斜率为k ,则有:y = t 与⎧⎪ y ⎨ = 2x 3 - 3x ∴ 切线方程为: y - (2x 3 - 3x ) = (6x 2 - 3)( x - x ) ⎪k = f ' ( x ) = 6x 2 - 30 0 0 0 ⎩0 0 因为切线过 P (1, t ) ,所以将 P (1, t ) 代入直线方程可得:t - (2x 3 - 3x ) = (6x 2- 3)(1 - x )⇒ t = (6x 2 - 3)(1 - x ) + (2x 3 - 3x )= 6x 2 - 3 - 6x 3 + 3x + 2x 3 - 3x = -4x 3 + 6x 2 - 30 0 极大值 极小值 所以问题等价于方程t = -4x 3 + 6x 2 - 3 ,令 g ( x ) = -4x 3 + 6x 2 - 3 即直线 y = t 与 g ( x ) = -4x 3 + 6x 2 - 3 有三个不同交点g ' ( x ) = -12x 2 + 12x = -12x ( x - 1)令 g ' ( x ) > 0 解得0 < x < 1所以 g ( x ) 在(-∞, 0) , (1, +∞) 单调递减,在(0,1) 单调递增g ( x ) = g (1) = -1, g ( x ) = g (0) = -3所以若有三个交点,则t ∈ (-3, -1)所以当t ∈ (-3, -1) 时,过点 P (1, t ) 存在 3 条直线与曲线 y =f ( x ) 相切例 13. 已知曲线 C:x 2=y ,P 为曲线 C 上横坐标为1 的点,过 P 作斜率为 k(k ≠0)的直线交 C于另一点 Q ,交 x 轴于 M ,过点 Q 且与 PQ 垂直的直线与 C 交于另一点 N ,问是否存在实数 k , 使得直线 MN 与曲线 C 相切?若存在,求出 K 的值,若不存在,说明理由.思路: 本题描述的过程较多, 可以一步步的拆解分析.点 P (1,1) , 则可求出PQ : y = kx - k + 1,从而与抛物线方程联立可解得Q (k - 1,(k - 1)2),以及 M 点坐标,从而可写出QN 的方程,再与抛物线联立得到 N 点坐标.如果从 M , N 坐标入手得到 MN 方程,再根据相切(∆ = 0) 求 k ,方法可以但计算量较大.此时可以着眼于 N 为切点,考虑抛物线 x 2 = y 本身也可视为函数 y = x 2 ,从而可以 N 为入手点先求出切线,再利用切线过 M 代入 M 点坐标求k ,计算量会相对小些.解:由 P 在抛物线上,且 P 的横坐标为 1 可解得 P (1,1)∴设 PQ : y - 1 = k ( x - 1) 化简可得: y = kx - k + 1∴ M ⎛ k - 1,0⎫k⎪ ⎝⎭⎨ y = kx - k + 1⎪ ∴⎧ y = x 2 ⎩消去 y : x 2 - kx + k - 1 = 0 ∴ x = 1, x = k - 1 ∴Q (k - 1,(k - 1)2)12设直线QN : y - (k - 1)2= - 1 ⎡⎣ x - (k - 1)⎤⎦ 即 y = (k - 1)2- 1⎡⎣ x - (k - 1)⎤⎦kk⎧ y = x 2∴ 联立方程: ⎨ y = (k - 1)2 - 1 ⎡ x - (k - 1)⎤ ⎩⎪ k ⎣ ⎦∴ x 2 + 1 x - (k - 1)⎛ k - 1 + 1 ⎫ = 0 k k ⎪⎝ ⎭∴ x ⋅ x = -(k - 1)⎛ k - 1 + 1 ⎫ ⇒ x= -⎛ k - 1 + 1 ⎫Q N k ⎪ N k ⎪⎝ ⎭ ⎝ ⎭⎛ ⎛ 1 ⎫ ⎛ 1 ⎫2 ⎫ ∴ N - k - 1 + k ⎪, k - 1 + k ⎪ ⎪ ⎝ ⎝ ⎭ ⎝ ⎭ ⎭由 y = x 2 可得: y ' = 2x∴切线 MN 的斜率k= y ' |= -2 ⎛k - 1 + 1 ⎫MNx = x Nk ⎪⎝ ⎭⎛ 1 ⎫2⎛1 ⎫ ⎡ ⎛ 1 ⎫⎤ ∴ MN : y - k - 1 + k ⎪ = -2 k - 1 + k ⎪ ⎢ x + k - 1 + k ⎪⎥⎝ ⎭ ⎝⎭ ⎣ ⎝ ⎭⎦⎛ 1 - k ⎫代入 M k ,0⎪ 得:⎝ ⎭⎛ 1 ⎫2⎛1 ⎫ ⎡ 1 ⎛1 ⎫⎤ - k - 1 + k ⎪ = -2 k - 1 + k ⎪ ⎢1 - k + k - 1 + k ⎪⎥⎝ ⎭ ⎝⎭ ⎣ ⎝ ⎭⎦∴k -1 +1= 2k ⇒k 2+k -1 = 0 ,∴k =-1 ±5 k 2小炼有话说:(1)如果曲线的方程可以视为一个函数(比如开口向上或向下的抛物线,椭圆双曲线的一部分),则处理切线问题时可以考虑使用导数的方法,在计算量上有时要比联立方程计算∆= 0 简便(2)本题在求N 点坐标时,并没有对方程进行因式分解,而是利用韦达定理,已知Q 的横坐标求出N 的横坐标.这种利用韦达定理求点坐标的方法在解析几何中常解决已知一交点求另一交点的问题.例14.设函数 f(x)=x3+2ax2+bx+a,g(x)=x2-3x+2,其中x∈R,a、b 为常数,已知曲线 y=f(x)与y=g(x)在点(2,0)处有相同的切线 l.(1)求a、b 的值,并写出切线 l 的方程;(2)若方程 f(x)+g(x)=mx 有三个互不相同的实根 0、x1、x2,其中 x1<x2,且对任意的x∈[x1,x2],f(x)+g(x)<m(x-1)恒成立,求实数 m 的取值范围.【解答】(1)f′(x)=3x2+4ax+b,g′(x)=2x-3.由于曲线 y=f(x)与y=g(x)在点(2,0)处有相同的切线,故有 f(2)=g(2)=0,f′(2)=g′(2)=1.由此得Error!解得Error!所以 a=-2,b=5,切线 l 的方程为 x-y-2=0.(2)由(1)得f(x)=x3-4x2+5x-2,所以 f(x)+g(x)=x3-3x2+2x.依题意,方程 x(x2-3x+2-m)=0 有三个互不相同的实根 0、x1、x2,故x1、x2是方程 x2-3x+2-m=0 的两相异的实根.1所以Δ=9-4(2-m)>0,即 m>- .4又对任意的x∈[x1,x2],f(x)+g(x)<m(x-1)恒成立.特别地,取 x=x1时,f(x1)+g(x1)-mx1<-m 成立,得 m<0.由韦达定理,可得 x1+x2=3>0,x1x2=2-m>0,故 0<x1<x2.对任意的x∈[x1,x2],有 x-x2≤0,x-x1≥0,x>0,则 f(x)+g(x)-mx=x(x-x1)(x-x2)≤0,4 4 又 f(x 1)+g(x 1)-mx 1=0,所以函数 f(x)+g(x)-mx 在 x∈[x 1,x 2]的最大值为 0.1 于是当- <m<0 时,对任意的 x∈[x 1,x 2],f(x)+g(x)<m(x -1)恒成立. 4 1综上,m 的取值范围是(- ,0).4 例 15.如图 3-1,有一正方形钢板 AB CD 缺损一角(图中的阴影部分),边缘线 OC 是以直线 AD 为对称轴,以线段 AD 的中点 O 为顶点的抛物线的一部分.工人师傅要将缺损一角切割下来, 使剩余的部分成为一个直角梯形.若正方形的边长为 2 米,问如何画切割线 EF ,可使剩余的直角梯形的面积最大?并求其最大值.解法一:以 O 为原点,直线 AD 为 y 轴,建立如图所示的直角坐标系,依题意,可设抛物线弧 OC 的方程为y =ax 2(0≤x ≤2),∵点 C 的坐标为(2,1),1 ∴22a =1,a = , 4 1 故边缘线 OC 的方程为 y = x 2(0≤x ≤2), 4要使梯形 ABEF 的面积最大,则 EF 所在的直线必与抛物线1 弧 OC 相切,设切点坐标为 P (t , t 2)(0<t <2),4 1 1 t ∵y ′= x ,∴直线 EF 的方程可表示为 y - t 2= (x -t ), 2 4 21 1 1 1 即 y = tx - t 2.由此可求得 E (2,t - t 2),F (0,- t 2).∴ 2 4 4 4 1 1|AF |=|- t 2- -1 |=1- t 2,4 4 1 1 |BE |=|t - t 2- -1 |=- t 2+t +1. 设梯形 ABEF 的面积为 S (t ),则 15 5 5 S (t )=- (t -1)2+ ≤ ,∴当 t =1 时,S (t )= ,2 2 2 2故 S (t )的最大值为 2.5,此时|AF |=0.75,|BE |=1.75.答:当 AF =0.75 m ,BE =1.75 m 时,可使剩余的直角梯形的面积最大,其最大值为 2.5 m 2.解法二:以 A 为原点,直线 AD 为 y 轴,建立如图所示的直角坐标系,依题意可设抛物线的方程为y=ax2+1(0≤x≤2).1∵点C 的坐标为(2,2),∴22a+1=2,a=,41故边缘线OC 的方程为y=x2+1(0≤x≤2).4要使梯形ABEF 的面积最大,则EF 所在的直线必与抛物线弧OC 相切,设切点坐标为P 1(t,t2+1)(0<t<2),41 1 1∵y′=x,∴直线EF 的方程可表示为y-t2-1=t(x-t),2 4 21 1即y=tx-t2+1,2 41 1由此可求得E(2,t-t2+1),F(0,-t2+1).4 41 1∴|AF|=1-t2,|BE|=-t2+t+1,4 4设梯形ABEF 的面积为S(t),则1S(t)= |AB|·(|AF|+|BE|)21 1 1=1-t2+(-t2+t+1)=-t2+t+24 4 21 5 5=- (t-1)2+≤ .2 2 25∴当t=1 时,S(t)=,2故S(t)的最大值为 2.5.此时|AF|=0.75,|BE|=1.75.答:当AF=0.75 m,BE=1.75 m 时,可使剩余的直角梯形的面积最大,其最大值为2.5 m2.【点评】与切线有关的多边形的最值问题,首先应该面积建立关于动点P 的函数,再选择相关的方法求解所得函数的最值,复杂函数可以用求导进行研究.。