高中数学解析几何压轴题专项拔高训练(二)
高考数学《解析几何》专项训练及答案解析
高考数学《解析几何》专项训练一、单选题1.已知直线l 过点A (a ,0)且斜率为1,若圆224x y +=上恰有3个点到l 的距离为1,则a 的值为( )A .B .±C .2±D .2.已知双曲线2222:1x y C a b-=(0,0)a b >>,过右焦点F 的直线与两条渐近线分别交于A ,B ,且AB BF =uu u r uu u r,则直线AB 的斜率为( ) A .13-或13B .16-或16C .2D .163.已知点P 是圆()()22:3cos sin 1C x y θθ--+-=上任意一点,则点P 到直线1x y +=距离的最大值为( )AB .C 1D 2+4.若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( )A .⎡⎣B .(C .33⎡-⎢⎣⎦D .33⎛⎫- ⎪ ⎪⎝⎭5.已知抛物线C :22x py =的焦点为F ,定点()M ,若直线FM 与抛物线C 相交于A ,B 两点(点B 在F ,M 中间),且与抛物线C 的准线交于点N ,若7BN BF =,则AF 的长为( )A .78B .1C .76D6.已知双曲线2222:1x y C a b-=(0,0)a b >>的两个焦点分别为1F ,2F ,以12F F 为直径的圆交双曲线C 于P ,Q ,M ,N 四点,且四边形PQMN 为正方形,则双曲线C 的离心率为( )A .2-BC .2D7.已知抛物线C :22(0)y px p =>的焦点F ,点00(2p M x x ⎛⎫>⎪⎝⎭是抛物线上一点,以M 为圆心的圆与直线2p x =交于A 、B 两点(A 在B 的上方),若5sin 7MFA ∠=,则抛物线C 的方程为( )A .24y x =B .28y x =C .212y x =D .216y x =8.已知离心率为2的椭圆E :22221(0)x y a b a b +=>>的左、右焦点分别为1F ,2F ,过点2F 且斜率为1的直线与椭圆E 在第一象限内的交点为A ,则2F 到直线1F A ,y 轴的距离之比为( )A .5B .35C .2D二、多选题9.已知点A 是直线:0l x y +=上一定点,点P 、Q 是圆221x y +=上的动点,若PAQ ∠的最大值为90o ,则点A 的坐标可以是( )A .(B .()1C .)D .)1,110.已知抛物线2:2C y px =()0p >的焦点为F ,F ,直线l 与抛物线C交于点A 、B 两点(点A 在第一象限),与抛物线的准线交于点D ,若8AF =,则以下结论正确的是( ) A .4p = B .DF FA =uuu r uu rC .2BD BF = D .4BF =三、填空题11.已知圆C 经过(5,1),(1,3)A B 两点,圆心在x 轴上,则C 的方程为__________.12.已知圆()2239x y -+=与直线y x m =+交于A 、B 两点,过A 、B 分别作x 轴的垂线,且与x轴分别交于C 、D 两点,若CD =m =_____.13.已知双曲线()2222:10,0x y C a b a b-=>>的焦距为4,()2,3A 为C 上一点,则C 的渐近线方程为__________.14.已知抛物线()220y px p =>,F 为其焦点,l 为其准线,过F 任作一条直线交抛物线于,A B 两点,1A 、1B 分别为A 、B 在l 上的射影,M 为11A B 的中点,给出下列命题: (1)11A F B F ⊥;(2)AM BM ⊥;(3)1//A F BM ;(4)1A F 与AM 的交点的y 轴上;(5)1AB 与1A B 交于原点. 其中真命题的序号为_________.四、解答题15.已知圆22:(2)1M x y ++=,圆22:(2)49N x y -+=,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C . (1)求曲线C 的方程;(2)设不经过点(0,Q 的直线l 与曲线C 相交于A ,B 两点,直线QA 与直线QB 的斜率均存在且斜率之和为-2,证明:直线l 过定点.16.已知椭圆方程为22163x y +=.(1)设椭圆的左右焦点分别为1F 、2F ,点P 在椭圆上运动,求1122PF PF PF PF +⋅u u u r u u u u r的值;(2)设直线l 和圆222x y +=相切,和椭圆交于A 、B 两点,O 为原点,线段OA 、OB 分别和圆222x y +=交于C 、D 两点,设AOB ∆、COD ∆的面积分别为1S 、2S ,求12S S 的取值范围.参考答案1.D 【解析】 【分析】因为圆224x y +=上恰有3个点到l 的距离为1,所以与直线l 平行且距离为1的两条直线,一条与圆相交,一条与圆相切,即圆心到直线l 的距离为1,根据点到直线的距离公式即可求出a 的值. 【详解】直线l 的方程为:y x a =-即0x y a --=.因为圆224x y +=上恰有3个点到l 的距离为1,所以与直线l 平行且距离为1的两条直线,一条与圆相交,一条与圆相切,而圆的半径为2,即圆心到直线l 的距离为1.1=,解得a =故选:D . 【点睛】本题主要考查直线与圆的位置关系的应用,以及点到直线的距离公式的应用,解题关键是将圆上存在3个点到l 的距离为1转化为两条直线与圆的位置关系,意在考查学生的转化能力与数学运算能力,属于中档题. 2.B 【解析】 【分析】根据双曲线的离心率求出渐近线方程,根据AB BF =u u u r u u u r,得到B 为AF 中点,得到B 与A 的坐标关系,代入到渐近线方程中,求出A 点坐标,从而得到AB 的斜率,得到答案. 【详解】因为双曲线2222:1x y C a b-=(0,0)a b >>,又222c e a =22514b a =+=,所以12b a =,所以双曲线渐近线为12y x =± 当点A 在直线12y x =-上,点B 在直线12y x =上时, 设(),A A Ax y (),B B B x y ,由(c,0)F 及B 是AF 中点可知22A B A B x c x y y +⎧=⎪⎪⎨⎪=⎪⎩,分别代入直线方程,得121222A A A A y x y x c ⎧=-⎪⎪⎨+⎪=⋅⎪⎩,解得24A Ac x c y ⎧=-⎪⎪⎨⎪=⎪⎩,所以,24c c A ⎛⎫-⎪⎝⎭, 所以直线AB 的斜率AB AFk k =42cc c =--16=-,由双曲线的对称性得,16k =也成立. 故选:B. 【点睛】本题考查求双曲线渐近线方程,坐标转化法求点的坐标,属于中档题. 3.D 【解析】 【分析】计算出圆心C 到直线10x y +-=距离的最大值,再加上圆C 的半径可得出点P 到直线10x y +-=的距离的最大值. 【详解】圆C 的圆心坐标为()3cos ,sin θθ+,半径为1,点C 到直线10x y +-=的距离为sin 14d πθ⎛⎫===++≤+ ⎪⎝⎭因此,点P 到直线1x y +=距离的最大值为12122++=+. 故选:D. 【点睛】本题考查圆上一点到直线距离的最值问题,当直线与圆相离时,圆心到直线的距离为d ,圆的半径为r ,则圆上一点到直线的距离的最大值为d r +,最小值为d r -,解题时要熟悉这个结论的应用,属于中等题. 4.D 【解析】设直线方程为(4)y k x =-,即40kx y k --=,直线l 与曲线22(2)1x y -+=有公共点,圆心到直线的距离小于等于半径22411k k d k -=≤+,得222141,3k k k ≤+≤,选择C 另外,数形结合画出图形也可以判断C 正确. 5.C 【解析】 【分析】由题意画出图形,求出AB 的斜率,得到AB 的方程,求得p ,可得抛物线方程,联立直线方程与抛物线方程,求解A 的坐标,再由抛物线定义求解AF 的长. 【详解】解:如图,过B 作'BB 垂直于准线,垂足为'B ,则'BF BB =,由7BN BF =,得7'BN BB =,可得1sin 7BNB '∠=, 3cos 7BNB '∴∠=-,tan 43BNB '∠=又()23,0M ,AB ∴的方程为2343y x =-, 取0x =,得12y =,即10,2F ⎛⎫ ⎪⎝⎭,则1p =,∴抛物线方程为22x y =. 联立223432y x x y ⎧=-⎪⎨⎪=⎩,解得23A y =.12172326A AF y ∴=+=+=. 故选:C . 【点睛】本题考查抛物线的简单性质,考查直线与抛物线位置关系的应用,考查计算能力,是中档题. 6.D 【解析】 【分析】设P 、Q 、M 、N 分别为第一、二、三、四象限内的点,根据对称性可得出22,22P c ⎛⎫⎪ ⎪⎝⎭,将点P 的坐标代入双曲线C 的方程,即可求出双曲线C 的离心率. 【详解】设双曲线C 的焦距为()20c c >,设P 、Q 、M 、N 分别为第一、二、三、四象限内的点, 由双曲线的对称性可知,点P 、Q 关于y 轴对称,P 、M 关于原点对称,P 、N 关于x 轴对称,由于四边形PQMN 为正方形,则直线PM 的倾斜角为4π,可得,22P c ⎛⎫ ⎪ ⎪⎝⎭, 将点P 的坐标代入双曲线C 的方程得2222122c c a b -=,即()22222122c c a c a -=-, 设该双曲线的离心率为()1e e >,则()2221221e e e -=-,整理得42420e e -+=,解得22e =,因此,双曲线C 故选:D. 【点睛】本题考查双曲线离心率的计算,解题的关键就是求出双曲线上关键点的坐标,考查计算能力,属于中等题. 7.C 【解析】 【分析】根据抛物线的定义,表示出MF ,再表示出MD ,利用5sin 7MFA ∠=,得到0x 和p 之间的关系,将M 点坐标,代入到抛物线中,从而解出p 的值,得到答案.【详解】抛物线C :22(0)y px p =>, 其焦点,02p F ⎛⎫⎪⎝⎭,准线方程2p x =-,因为点(002p M x x ⎛⎫> ⎪⎝⎭是抛物线上一点, 所以02p MF x =+AB所在直线2p x =, 设MD AB ⊥于D ,则02p MD x =-, 因为5sin 7MFA ∠=,所以57 MD MF=,即5272pxpx-=+整理得03x p=所以()3,66M p将M点代入到抛物线方程,得()26623p p=⨯,0p>解得6p=,所以抛物线方程为212y x=故选:C.【点睛】本题考查抛物线的定义,直线与圆的位置关系,求抛物线的标准方程,属于中档题.8.A【解析】【分析】结合椭圆性质,得到a,b,c的关系,设2AF x=,用x表示112,AF F F,结合余弦定理,用c表示x,结合三角形面积公式,即可。
高二数学拔高的练习题
高二数学拔高的练习题一、函数与方程1. 已知函数 f(x) = x^3 - 3x + 2,求 f(x) 的倒数函数 f^(-1)(x) 的表达式。
2. 解方程 4^(x+1) - 2^(x+2) + 9^(x-1) = 0。
3. 设函数 f(x) = a^x - 2b^x + c,其中 a > 0,b > 0,c > 0。
已知 f(1)= 1,f(3) = 9,f(5) = 25,求函数 f(x) 的解析式。
二、立体几何与向量4. 已知点 A(1, -2, 3),B(4, -1, -2),C(-1, 1, 4),D(2, 4, -1)。
判断四边形 ABCD 是否为平行四边形,若是,写出证明过程。
5. 设点 A(-3, 2, -1),B(4, -1, 5),C(2, 3, k) 为一三角形的三个顶点,求 k 的值使得三角形 ABC 为等腰直角三角形。
6. 在空间直角坐标系中,已知点 P(4, -2, 1),Q(2, 3, -1),R(-1, -4, 2)。
求向量∠PQR 的余弦值。
三、数列与级数7. 求等差数列 {an} 的第 n 项通项公式,已知 a_3 = 3,a_5 = 9。
8. 设数列 {an} 满足 a_1 = 1,a_n+1 = a_n + 2n + 1,求 {an} 的前 n项和 Sn。
9. 已知等比数列 {bn} 的前 n 项和 Sn = 3(1 - 2^n),求 bn 的通项公式。
四、概率与统计10. 一组数据为:8, 5, 9, 7, 6, 4, 10, 6,求这组数据的方差。
11. 设事件 A 发生的概率为 0.4,事件 B 发生的概率为 0.6,事件 A和 B 同时发生的概率为 0.3,求事件 A 发生时事件 B 发生的条件概率。
12. 甲班有男生10人、女生15人;乙班有男生15人、女生20人。
现已知甲班和乙班的男生中有不爱运动的学生各占总人数的30%;甲班和乙班的女生中有不爱运动的学生各占总人数的40%。
压轴题06 解析几何压轴题(解析版)--2023年高考数学压轴题专项训练(全国通用)
压轴题06解析几何压轴题题型/考向一:直线与圆、直线与圆锥曲线题型/考向二:圆锥曲线的性质综合题型/考向三:圆锥曲线的综合应用一、直线与圆、直线与圆锥曲线热点一直线与圆、圆与圆的位置关系1.直线与圆的位置关系:相交、相切和相离.判断方法:(1)点线距离法(几何法).(2)判别式法:设圆C:(x-a)2+(y-b)2=r2,直线l:Ax+By+C=0(A2+B2≠0),+By+C=0,x-a)2+(y-b)2=r2,消去y,得到关于x的一元二次方程,其根的判别式为Δ,则直线与圆相离⇔Δ<0,直线与圆相切⇔Δ=0,直线与圆相交⇔Δ>0.2.圆与圆的位置关系,即内含、内切、相交、外切、外离.热点二中点弦问题已知A(x1,y1),B(x2,y2)为圆锥曲线E上两点,AB的中点C(x0,y0),直线AB 的斜率为k.(1)若椭圆E的方程为x2a2+y2b2=1(a>b>0),则k=-b2a2·x0y0;(2)若双曲线E的方程为x2a2-y2b2=1(a>0,b>0),则k=b2a2·x0y0;(3)若抛物线E的方程为y2=2px(p>0),则k=py0.热点三弦长问题已知A(x1,y1),B(x2,y2),直线AB的斜率为k(k≠0),则|AB|=(x1-x2)2+(y1-y2)2=1+k2|x1-x2|=1+k2(x1+x2)2-4x1x2或|AB|=1+1k2|y1-y2|=1+1k2(y1+y2)2-4y1y2.热点四圆锥曲线的切线问题1.直线与圆锥曲线相切时,它们的方程组成的方程组消元后所得方程(二次项系数不为零)的判别式为零.2.椭圆x2a2+y2b2=1(a>b>0)在(x0,y0)处的切线方程为x0xa2+y0yb2=1;双曲线x2a2-y2b2=1(a>0,b>0)在(x0,y0)处的切线方程为x0xa2-y0yb2=1;抛物线y2=2px(p>0)在(x0,y0)处的切线方程为y0y=p(x+x0).热点五直线与圆锥曲线位置关系的应用直线与圆锥曲线位置关系的判定方法(1)联立直线的方程与圆锥曲线的方程.(2)消元得到关于x或y的一元二次方程.(3)利用判别式Δ,判断直线与圆锥曲线的位置关系.二、圆锥曲线的性质综合热点一圆锥曲线的定义与标准方程1.圆锥曲线的定义(1)椭圆:|PF1|+|PF2|=2a(2a>|F1F2|).(2)双曲线:||PF1|-|PF2||=2a(0<2a<|F1F2|).(3)抛物线:|PF|=|PM|,l为抛物线的准线,点F不在定直线l上,PM⊥l于点M.2.求圆锥曲线标准方程“先定型,后计算”所谓“定型”,就是确定曲线焦点所在的坐标轴的位置;所谓“计算”,就是指利用待定系数法求出方程中的a2,b2,p的值.热点二椭圆、双曲线的几何性质1.求离心率通常有两种方法(1)椭圆的离心率e=ca=1-b2a2(0<e<1),双曲线的离心率e=ca=1+b2a2(e>1).(2)根据条件建立关于a,b,c的齐次式,消去b后,转化为关于e的方程或不等式,即可求得e的值或取值范围.2.与双曲线x2a2-y2b2=1(a>0,b>0)共渐近线的双曲线方程为x2a2-y2b2=λ(λ≠0).热点三抛物线的几何性质抛物线的焦点弦的几个常见结论:设AB是过抛物线y2=2px(p>0)的焦点F的弦,若A(x1,y1),B(x2,y2),α是弦AB的倾斜角,则(1)x1x2=p24,y1y2=-p2.(2)|AB|=x1+x2+p=2psin2α.(3)1|FA|+1|FB|=2p.(4)以线段AB为直径的圆与准线x=-p2相切.三、圆锥曲线的综合应用求解范围、最值问题的常见方法(1)利用判别式来构造不等关系.(2)利用已知参数的范围,在两个参数之间建立函数关系.(3)利用隐含或已知的不等关系建立不等式.(4)利用基本不等式.○热○点○题○型一直线与圆、直线与圆锥曲线一、单选题1.过圆224x y +=上的动点作圆221x y +=的两条切线,则连接两切点线段的长为()A .2B .1C 32D 3【答案】D【详解】令点P 是圆224x y +=上的动点,过点P 作圆221x y +=的两条切线,切点分别为A ,B ,如图,则OA PA ⊥,而1||||12OA OP ==,于是260APB OPA ∠=∠= ,又||||3PB PA ==,因此PAB 为正三角形,||||3AB PA ==,所以连接两切点线段的长为3.故选:D2.过抛物线:()的焦点的直线交抛物线于,两点,若2AF BF AB ⋅=,则抛物线C 的标准方程是()A .28y x=B .26y x=C .24y x=D .22y x=3.若直线0x y a +-=与曲线A .[12,12]-+B .(1C .[2,12)+D .(1【答案】B4.已知抛物线22y px =的焦点为4x =A .4B .42C .8D .【答案】D5.已知抛物线2:2(0)C y px p =>的焦点为F ,准线为l ,过FC 交于A ,B 两点,D 为AB 的中点,且DM l ⊥于点M ,AB 的垂直平分线交x 轴于点N ,四边形DMFN的面积为,则p =()A.B .4C.D.因为30DN DF DFN ⊥∠=︒,,故223DF DE p ==,FN6.已知圆22:4C x y +=,直线l经过点3,02P ⎛⎫⎪⎝⎭与圆C 相交于A ,B 两点,且满足关系OM =(O 为坐标原点)的点M 也在圆C 上,则直线l 的斜率为()A .1B .1±C .D .±故选:D.7.已知椭圆()222210x y a b a b+=>>的上顶点为B ,斜率为32的直线l 交椭圆于M ,N 两点,若△BMN 的重心恰好为椭圆的右焦点F ,则椭圆的离心率为()A .22BC .12D8.已知双曲线()22:10,0C a b a b-=>>的左、右焦点分别为1F ,2F ,直线y =与C的左、右两支分别交于A ,B 两点,若四边形12AF BF 为矩形,则C 的离心率为()AB .3C1D 1+二、多选题9.在平面直角坐标系xOy 中,已知圆()()()222:210C x y r r -+-=>,过原点O 的直线l 与圆C 交于A ,B 两点,则()A .当圆C 与y 轴相切,且直线l 的斜率为1时,2AB =B .当3r =时,存在l ,使得CA CB⊥C .若存在l ,使得ABC 的面积为4,则r 的最小值为D .若存在两条不同l ,使得2AB =,则r 的取值范围为()1,3故选:BC10.已知0mn ≠,曲线22122:1x y E m n +=,曲线22222:1x y E m n-=,直线:1x y l m n +=,则下列说法正确的是()A .当3n m =时,曲线1E 离心率为3B .当3n m =时,曲线2E 离心率为103C .直线l 与曲线2E 有且只有一个公共点D .存在正数m ,n ,使得曲线1E 截直线l11.已知抛物线:4C x y =,过焦点F 的直线l 与交于1122两点,1与F 关于原点对称,直线AB 和直线AE 的倾斜角分别是,αβ,则()A .cos tan 1αβ⋅>B .AEF BEF∠=∠C .90AEB ∠>︒D .π22βα-<【答案】BD【详解】作AD y ⊥轴于D ,作BC y ⊥轴于C ,则,DAF DAEαβ=∠=∠由()()1122,,,A x y B x y ,则()()120,,0,D y C y ,故选:BD.12.已知双曲线22:145x y C -=的左、右焦点分别为12,F F ,过点2F 的直线与双曲线C 的右支交于,A B 两点,且1AF AB ⊥,则下列结论正确的是()A .双曲线C 的渐近线方程为2y x =±B .若P 是双曲线C 上的动点,则满足25PF =的点P 共有两个C .12AF =D .1ABF 2○热○点○题○型二圆锥曲线的性质综合一、单选题1.设1F ,2F 分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,过2F 的直线交双曲线右支于A ,B 两点,若1123AF BF =,且223AF BF =,则该双曲线的离心率为()A B .2C D .32.已知双曲线()22:10,0C a b a b-=>>的左、右焦点分别为1F ,2F ,12F F =P为C 上一点,1PF 的中点为Q ,2PF Q △为等边三角形,则双曲线C 的方程为().A .2212y x -=B .2212x y -=C .2222133x y -=D .223318y x -=A .6B .3或C .D .或4.已知双曲线221(0,0)a b a b-=>>的实轴为4,抛物线22(0)y px p =>的准线过双曲线的左顶点,抛物线与双曲线的一个交点为(4,)P m ,则双曲线的渐近线方程为()A .y x =B .y =C .23y x =±D .4y x =±故选:A5.2022年卡塔尔世界杯会徽(如图)正视图近似伯努利双纽线.在平面直角坐标系xOy中,把到定点()1,0F a -,()2,0F a 距离之积等于()20a a >的点的轨迹称为双纽线.已知点00(,)P x y 是双纽线C 上一点,有如下说法:①双纽线C 关于原点O 中心对称;②022a a y -≤≤;③双纽线C 上满足12PF PF =的点P 有两个;④PO .其中所有正确的说法为()A .①②B .①③C .①②③D .①②④6.如图所示,1F ,2F 是双曲线22:1(0,0)C a b a b-=>>的左、右焦点,双曲线C 的右支上存在一点B 满足12BF BF ⊥,1BF 与双曲线C 的左支的交点A 平分线段1BF ,则双曲线C 的离心率为()A .3B .C D7.已知椭圆1和双曲线2的焦点相同,记左、右焦点分别为1,2,椭圆和双曲线的离心率分别为1e ,2e ,设点P 为1C 与2C 在第一象限内的公共点,且满足12PF k PF =,若1211e e k =-,则k 的值为()A .3B .4C .5D .6个焦点射出的光线,经椭圆反射,其反射光线必经过椭圆的另一焦点.设椭圆()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,若从椭圆右焦点2F 发出的光线经过椭圆上的点A 和点B 反射后,满足AB AD ⊥,且3cos 5ABC ∠=,则该椭圆的离心率为().A .12B 22C D则113cos 5AB ABF BF ∠==,sin ABF ∠可设3AB k =,14AF k =,1BF =由1122AB AF BF AF BF AF ++=++二、多选题9.已知曲线E :221mx ny -=,则()A .当0mn >时,E 是双曲线,其渐近线方程为y =B .当0n m ->>时,E 是椭圆,其离心率为eC .当0m n =->时,E 是圆,其圆心为()0,0D .当0m ≠,0n =时,E是两条直线x =10.2022年卡塔尔世界杯会徽(如图)的正视图可以近似看成双纽线,在平面直角坐标系中,把到定点()1,0F a -和()2,0F a 距离之积等于()20a a >的点的轨迹称为双纽线,已知点()00,P x y 是双纽线C 上一点,则下列说法正确的是()A .若12F PF θ∠=,则12F PF △的面积为sin 2aθB .022a a y -≤≤C .双纽线C 关于原点O 对称D .双纽线上C 满足12PF PF =的点P 有三个【答案】BC11.已知椭圆()2:1039C b b+=<<的左、右焦点分别为1F 、2F ,点2M在椭圆内部,点N 在椭圆上,椭圆C 的离心率为e ,则以下说法正确的是()A .离心率e 的取值范围为0,3⎛ ⎝⎭B .存在点N ,使得124NF NF =C .当6e =时,1NF NM +的最大值为62+D .1211NF NF +的最小值为1如上图示,当且仅当2,,M N F12.已知P ,Q 是双曲线221x y a b-=上关于原点对称的两点,过点P 作PM x ⊥轴于点M ,MQ 交双曲线于点N ,设直线PQ 的斜率为k ,则下列说法正确的是()A .k 的取值范围是b bk a a-<<且0k ≠B .直线MN 的斜率为2kC .直线PN 的斜率为222b kaD .直线PN 与直线QN 的斜率之和的最小值为ba2222PN QNb k b k k ka a +=+≥,当且仅当但PN QN k k ≠,所以等号无法取得,选项○热○点○题○型三圆锥曲线的综合应用1.已知椭圆()2222:10x y C a b a b+=>>2倍,且右焦点为()1,0F .(1)求椭圆C 的标准方程;(2)直线():2l y k x =+交椭圆C 于A ,B 两点,若线段AB 中点的横坐标为23-.求直线l 的方程.【详解】(1)由椭圆C 的长轴长是短轴长的2倍,可得2a b =.所以()2222bb c =+.又()1,0F ,所以()2221bb =+,解得1b =.所以2a =.所以椭圆C 的标准方程为2212x y +=.(2)设()11,A x y ,()22,B x y ,由()22122x y y k x ⎧+=⎪⎨⎪=+⎩,得()2222218820k x k x k +++-=.则2122821k x x k -+=+,21228221k x x k -=+.因为线段AB 中点的横坐标为23-,所以2122422213x x k k +-==-+.2.已知抛物线:2=2的焦点为(1,0),过的直线交抛物线于,两点,直线AO,BO分别与直线m:x=-2相交于M,N两点.(1)求抛物线C的方程;(2)求证:△ABO与△MNO的面积之比为定值.3.已知双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,右焦点F 到其中一条渐近线的距离(1)求双曲线C 的标准方程;(2)(2)过右焦点F 作直线AB 交双曲线于,A B 两点,过点A 作直线1:2l x =的垂线,垂足为M ,求证直线MB 过定点.4.如图,平面直角坐标系中,直线l 与轴的正半轴及轴的负半轴分别相交于两点,与椭圆22:143x y E +=相交于,A M 两点(其中M 在第一象限),且,QP PM N = 与M关于x 轴对称,延长NP 交㮋圆于点B .(1)设直线,AM BN 的斜率分别为12,k k ,证明:12k k 为定值;(2)求直线AB 的斜率的最小值.5.已知双曲线C :221a b-=(0a >,0b >)的右焦点为F ,一条渐近线的倾斜角为60°,且C 上的点到F 的距离的最小值为1.(1)求C 的方程;(2)设点()0,0O ,()0,2M ,动直线l :y kx m =+与C 的右支相交于不同两点A ,B ,且AFM BFM ∠=∠,过点O 作OH l ⊥,H 为垂足,证明:动点H 在定圆上,并求该圆的方程.。
2019届高考数学二轮复习压轴大题高分练二解析几何(B组)
压轴大题高分练2.解析几何(B组)压轴大题集训练,练就慧眼和规范,筑牢高考高分根基!1.设动圆P(圆心为P)经过定点(0,2),(t+2,0)和(t-2,0),当t变化时,P的轨迹为曲线C.(1)求C的方程.(2)过点(0,2)且不垂直于坐标轴的直线l与C交于A,B两点,B点关于y轴的对称点为D,求证:直线AD经过定点.【解析】(1)设M(t+2,0),N(t-2,0),R(0,2),当t变化时,总有MN=4,故圆P被x轴截得的弦长为4.设动圆P圆心为(x,y),半径为r,依题意得:化简整理得x2=4y.所以,点P的轨迹C的方程为x2=4y.(2)由对称性知,直线AD经过的定点在y轴上.设A(x1,y1),B(x2,y2),则D(-x2,y2),其中,y1=,y2=,直线AD的方程为= .令x=0并将y1=,y2=代入,可解得AD的纵截距y0=x1x2 .设直线l:y=kx+2,代入抛物线方程,可得x2-4kx-8=0.所以x1x2=-8,此时y0=-2.故直线AD过定点(0,-2).2.已知椭圆C1:+=1(a>b>0)的左、右焦点分别为F1,F2,右顶点为A,且C1过点B,圆O是以线段F1F2为直径的圆,经过点A且倾斜角为30°的直线与圆O相切.(1)求椭圆C1及圆O的方程.(2)是否存在直线l,使得直线l与圆O相切,与椭圆C1交于C,D两点,且满足|+|=||?若存在,请求出直线l 的方程,若不存在,请说明理由.【解析】(1)由题意知F1(-c,0),F2(c,0),A(a,0),圆O的方程为x2+y2=c2.由题意可知解得所以椭圆C1的方程为+=1,圆O的方程为x2+y2=1.(2)假设存在直线l满足题意.由|+|=||,可得|+|=|-|,故·=0.①当直线l的斜率不存在时,此时l的方程为x=±1.当直线l方程为x=1时,可得C,D,所以·=1-≠0.同理可得,当l方程为x=-1时,·≠0.②当直线l的斜率存在时,设直线l方程为y=kx+m,因为直线l与圆O相切,所以=1,整理得m2=k2+1,①由消去y整理得(3+4k2)x2+8kmx+4m2-12=0,设C(x1,y1),D(x2,y2),则x1+x2=,x1x2=,·=0,即x1x2+y1y2=0,所以x1x2+(kx1+m)(kx2+m)=(1+k2)x1x2+km(x1+x2)+m2=0,所以(1+k2)+km+m2=0, 整理得7m2-12k2-12=0②由①②得k2=-1,此时方程无解.由①②可知不存在直线l满足题意.。
高考解析几何压轴题精选(含答案)
高考解析几何压轴题精选(含答案)1. 设抛物线22(0)y px p =>的焦点为F ,点(0,2)A .若线段FA的中点B 在抛物线上,则B 到该抛物线准线的距离为_____________。
(3分) 2 .已知m >1,直线2:02m l x my --=,椭圆222:1x C y m+=,1,2F F 分别为椭圆C 的左、右焦点. (Ⅰ)当直线l 过右焦点2F 时,求直线l 的方程;(Ⅱ)设直线l 与椭圆C 交于,A B 两点,12AF F V ,12BF F V 的重心分别为,G H .若原点O 在以线段GH 为直径的圆内,求实数m 的取值范围.(6分)3已知以原点O 为中心,)5,0F 为右焦点的双曲线C 的离心率52e =。
(I ) 求双曲线C 的标准方程及其渐近线方程; (II ) 如题(20)图,已知过点()11,M x y 的直线111:44l x x y y +=与过点()22,N x y (其中2xx≠)的直线222:44lx x y y +=的交点E 在双曲线C 上,直线MN 与两条渐近线分别交与G 、H 两点,求OGH ∆的面积。
(8分)4.如图,已知椭圆22221(0)xy a b ab +=>>的离心率为22,以该椭圆上的点和椭圆的左、右焦点12,F F 为顶点的三角形的周长为4(21)+.一等轴双曲线的顶点是该椭圆的焦点,设P 为该双曲线上异于顶点的任一点,直线1PF 和2PF 与椭圆的交点分别为B A 、和C D 、.(Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线1PF 、2PF 的斜率分别为1k 、2k ,证明12·1k k =;(Ⅲ)是否存在常数λ,使得·AB CD AB CDλ+=恒成立?若存在,求λ的值;若不存在,请说明理由.(7分)5.在平面直角坐标系xoy 中,如图,已知椭圆15922=+y x 的左、右顶点为A 、B ,右焦点为F 。
高三数学解析几何专题练习题
高三数学解析几何专题练习题解析几何是数学中的一个重要分支,也是高中数学中的一大难点。
高三学生正是备战高考的重要阶段,因此针对解析几何的专题练习尤为关键。
本文将为大家提供一些高三数学解析几何专题练习题,帮助学生们更好地掌握解析几何的知识点。
1. 直线的方程已知直线L1过点A(1, 2)和点B(3, 4),直线L2过点C(2, -1)且与L1垂直。
求直线L2的方程。
解:首先求L1的斜率k1:k1 = (4 - 2) / (3 - 1) = 1由于L2与L1垂直,所以L2的斜率k2 = -1 / k1 = -1L2通过点C(2, -1),所以L2的方程为y - (-1) = -1(x - 2),即y + 1 = -x + 2,化简得到y = -x + 1。
所以直线L2的方程为y = -x + 1。
2. 面积计算已知△ABC的顶点A(1, 2)、B(3, 4)、C(5, 6),求△ABC的面积。
解:设△ABC的底边为BC,设直线BC的方程为y = kx + b。
已知B(3, 4),C(5, 6),代入直线方程可得4 = 3k + b,6 = 5k + b。
解得k = 1,b = 1。
所以直线BC的方程为y = x + 1。
记△ABC的高为h,直线BC的斜率为k,则有h = k × AB。
已知A(1, 2),B(3, 4),AB的斜率k = (4 - 2) / (3 - 1) = 1。
所以h = 1 × AB = 1 × √[(3 - 1)^2 + (4 - 2)^2] = 1 × √8 = 2√2。
△ABC的面积S = 1/2 × BC × h = 1/2 × √[(3 - 5)^2 + (4 - 6)^2] × 2√2 = 2√2。
所以△ABC的面积为2√2。
3. 直线和圆的交点已知直线L通过点A(-1, 2)和点B(3, 4),圆C的圆心为O(2, 1),半径为2。
解析几何小题拔高练-高考数学重点专题冲刺演练(学生版)
解析几何小题拔高练-新高考数学复习分层训练(新高考通用)一、单选题1.(2023·湖南常德·统考一模)已知椭圆E :x 2a 2+y 2b2=1(a >b >0),直线y =12x +a 与椭圆E 相切,则椭圆E 的离心率为()A.14B.12C.22D.322.(2023·湖北·校联考模拟预测)过点M -1,y 0 作抛物线y 2=2px (p >0)的两条切线,切点分别是A ,B ,若△MAB 面积的最小值为4,则p =()A.1B.2C.4D.163.(2023·山东青岛·统考一模)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1,F 2,直线y=3x 与C 的左、右两支分别交于A ,B 两点,若四边形AF 1BF 2为矩形,则C 的离心率为()A.3+12B.3C.3+1D.5+14.(2023·湖北·校联考模拟预测)已知O 为坐标原点,F 1,F 2分别为双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,点P 在双曲线的右支上,若△POF 2是面积为23的正三角形,则b 2的值为()A.2B.6C.43D.8-435.(2023·湖南·校联考模拟预测)双曲线C :x 23-y 2=1的左焦点为F ,过点F 的直线l 与双曲线C 交于A ,B 两点,若过A ,B 和点M (7,0)的圆的圆心在y 轴上,则直线l 的斜率为()A.±22B.±2C.±1D.±326.(2023·湖南郴州·统考三模)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点为F 1,F 2,过F 1作直线与椭圆相交于A ,B 两点,若AF 1 =2BF 1 且BF 2 =AB ,则椭圆的C 的离心率为()A.13B.14C.33D.637.(2023·湖南常德·统考一模)已知抛物线的方程为x 2=4y ,过其焦点F 的直线与抛物线交于M 、N 两点,且MF =5,O 为坐标原点,则△MOF 的面积与△NOF 的面积之比为()A.15B.14C.5D.48.(2023·广东深圳·深圳中学校联考模拟预测)若圆(x -a )2+(y -3)2=20上有四个点到直线2x -y +1=0的距离为5,则实数a 的取值范围是()A.-∞,-132 ∪172,+∞ B.-132,172C.-∞,-32 ∪72,+∞ D.-32,729.(2023·浙江·校联考三模)在平面直角坐标系上,圆C :x 2+y -1 2=1,直线y =a x +1 与圆C 交于A ,B 两点,a ∈0,1 ,则当△ABC 的面积最大时,a =()A.22B.3-1C.2-3D.1210.(2023·江苏·统考一模)已知椭圆E :x 2a 2+y 2b2=1a >b >0 的两条弦AB ,CD 相交于点P (点P 在第一象限),且AB ⊥x 轴,CD ⊥y 轴.若PA :PB :PC :PD =1:3:1:5,则椭圆E 的离心率为()A.55B.105C.255D.210511.(2023·江苏南通·模拟预测)双曲线C 1:x 2a 2-y 2b 2=1(a >b >0)和椭圆C 2:x 2a 2+y 2b2=1的右焦点分别为F ,F ′,A (-a ,0),B (a ,0),P ,Q 分别为C 1,C 2上第一象限内不同于B 的点,若PA +PB=λQA +QB ,λ∈R ,PF =3QF ′ ,则四条直线PA ,PB ,QA ,QB 的斜率之和为()A.1B.0C.-1D.不确定值12.(2023·江苏宿迁·江苏省沭阳高级中学校考模拟预测)椭圆具有光学性质:从椭圆的一个焦点发出的光线,经过椭圆反射后,反射光线过椭圆的另一个焦点(如图).已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2的直线与椭圆E 交与点A ,B ,过点A 作椭圆的切线l ,点B 关于l 的对称点为M ,若|AB |=3a 2,BF 1 MF 1 =57,则S △MAB S △AF 1F2=()A.8135B.3516C.95D.45二、多选题1.(2023·江苏南通·模拟预测)过平面内一点P 作曲线y =ln x 两条互相垂直的切线l 1、l 2,切点为P 1、P 2(P 1、P 2不重合),设直线l 1、l 2分别与y 轴交于点A 、B ,则()A.P 1、P 2两点的纵坐标之积为定值B.直线P 1P 2的斜率为定值C.线段AB 的长度为定值D.△ABP 面积的取值范围为0,12.(2023·江苏·统考一模)已知点A -1,0 ,B 1,0 ,点P 为圆C :x 2+y 2-6x -8y +17=0上的动点,则()A.△PAB 面积的最小值为8-42B.AP 的最小值为22C.∠PAB 的最大值为5π12D.AB ⋅AP的最大值为8+423.(2023·江苏·二模)已知椭圆x 216+y 212=1,点F 为右焦点,直线y =kx k ≠0 与椭圆交于P ,Q 两点,直线PF 与椭圆交于另一点M ,则()A.△PQM 周长为定值B.直线PM 与QM 的斜率乘积为定值C.线段PM 的长度存在最小值D.该椭圆离心率为124.(2023·湖北·荆州中学校联考二模)已知椭圆C :y 23+x 2b2=10<b <3 的两个焦点分别为F 10,-c ,F 20,c (其中c >0),点P 在椭圆C 上,点Q 是圆E :x 2+y -4 2=1上任意一点,PQ +PF 2 的最小值为2,则下列说法正确的是()A.椭圆C 的焦距为2B.过F 2作圆E 切线的斜率为±22C.若A 、B 为椭圆C 上关于原点对称且异于顶点和点P 的两点,则直线PA 与PB 的斜率之积为-15D.PQ -PF 2 的最小值为4-235.(2023·湖北武汉·华中师大一附中校联考模拟预测)已知P ,Q 是双曲线x 2a 2-y 2b2=1上关于原点对称的两点,过点P 作PM ⊥x 轴于点M ,MQ 交双曲线于点N ,设直线PQ 的斜率为k ,则下列说法正确的是()A.k 的取值范围是-b a <k <ba 且k ≠0 B.直线MN 的斜率为k2C.直线PN 的斜率为2b 2ka2D.直线PN 与直线QN 的斜率之和的最小值为b a6.(2023·湖南常德·统考一模)已知圆C :x -a 2+y 2=a 2(a >0)与圆M :x 2+y -4 2=4,P ,Q 分别为圆C 和圆M 上的动点,下列说法正确的是()A.过点(2,1)作圆M 的切线有且仅有一条B.存在实数a ,使得圆C 和圆M 恰有一条公切线C.若圆C 和圆M 恰有3条公切线,则a =3D.若PQ 的最小值为1,则a =17.(2023·浙江嘉兴·统考模拟预测)已知椭圆C :x 24+y 23=1,A 1,A 2分别为椭圆C 的左右顶点,B 为椭圆的上顶点.设M 是椭圆C 上一点,且不与顶点重合,若直线A 1B 与直线A 2M 交于点P ,直线A 1M 与直线A 2B 交于点Q ,则()A.若直线A 1M 与A 2M 的斜率分别为k 1,k 2,则k 1⋅k 2=-34B.直线PQ 与x 轴垂直C.BP =BQD.MP =MQ8.(2023·浙江温州·统考二模)已知圆的方程为(x -m )2+(y -m )2=m 2,对任意的m >0,该圆()A.圆心在一条直线上B.与坐标轴相切C.与直线y =-x 不相交D.不过点1,1三、填空题1.(2023·江苏·二模)设过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)左焦点F 的直线l 与C 交于M ,N 两点,若FN =3FM ,且OM ⋅FN =0(O 为坐标原点),则C 的离心率为2.(2023·江苏南通·模拟预测)弓琴(如图),也可称作“乐弓”,是我国弹弦乐器的始祖.古代有“后羿射十日”的神话,说明上古生民对善射者的尊崇,乐弓自然是弓箭发明的延伸.在我国古籍《吴越春秋》中,曾记载着:“断竹、续竹,飞土逐肉”.弓琴的琴身下部分可近似的看作是半椭球的琴腔,其正面为一椭圆面,它有多条弦,拨动琴弦,音色柔弱动听,现有某研究人员对它做出改进,安装了七根弦,发现声音强劲悦耳.下图是一弓琴琴腔下部分的正面图.若按对称建立如图所示坐标系,F 1(-c ,0)为左焦点,P i (i =1,2,3,4,5,6,7)均匀对称分布在上半个椭圆弧上,P i F 1为琴弦,记a i =|P i F 1|(i =1,2,3,4,5,6,7),数列{a n }前n 项和为S n ,椭圆方程为x 2a 2+y 2b2=1,且a +64c =4ac ,则S 7+a 7-128取最小值时,椭圆的离心率为.3.(2023·江苏南通·二模)已知点P 在抛物线C :y 2=2px p >0 上,过P 作C 的准线的垂线,垂足为H ,点F 为C 的焦点.若∠HPF =60°,点P 的横坐标为1,则p =.4.(2023·湖北·荆州中学校联考二模)在平面直角坐标系xOy 中,已知A 1,a ,B 3,a +4 ,若圆x 2+y 2=4上有且仅有四个不同的点C ,使得△ABC 的面积为5,则实数a 的取值范围是.5.(2023·湖北武汉·华中师大一附中校联考模拟预测)过点2,0 的直线与抛物线y 2=4x 交于A ,B 两点,若M 点的坐标为-1,0 ,则MA 2+MB 2的最小值为.6.(2023·湖南郴州·统考三模)已知点M 1,2 ,若过点N 3,0 的直线m 交圆C :(x -5)2+y 2=6于A ,B 两点,则MA +MB 的最小值为.7.(2023·湖南长沙·湖南师大附中校考一模)已知椭圆C 1与双曲线C 2有共同的焦点F 1、F 2,椭圆C 1的离心率为e1,双曲线C2的离心率为e2,点P为椭圆C1与双曲线C2在第一象限的交点,且∠F1PF2=π3,则1e1+1e2的最大值为.8.(2023·广东·校联考模拟预测)已知动圆N经过点A-6,0及原点O,点P是圆N与圆M:x2+(y-4)2 =4的一个公共点,则当∠OPA最小时,圆N的半径为.9.(2023·广东深圳·深圳中学校联考模拟预测)已知点M为抛物线y2=8x上的动点,点N为圆x2+(y-4)2=5上的动点,则点M到y轴的距离与点M到点N的距离之和最小值为..10.(2023·浙江金华·浙江金华第一中学校考模拟预测)已知O0,0、A3,0,直线l上有且只有一个点P 满足PA=2PO,写出满足条件的其中一条直线l的方程.。
第二章 直线和圆的方程【压轴题专项训练】(解析版)
第二章直线和圆的方程【压轴题专项训练】一、单选题1.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP△面积的取值范围是A .[]26,B .[]48,C .D .⎡⎣【答案】A 【详解】分析:先求出A ,B 两点坐标得到AB ,再计算圆心到直线距离,得到点P 到直线距离范围,由面积公式计算即可详解: 直线x y 20++=分别与x 轴,y 轴交于A ,B 两点()()A 2,0,B 0,2∴--,则AB =点P 在圆22x 22y -+=()上∴圆心为(2,0),则圆心到直线距离1d ==故点P 到直线x y 20++=的距离2d 的范围为则[]2212,62ABPSAB d ==∈故答案选A.点睛:本题主要考查直线与圆,考查了点到直线的距离公式,三角形的面积公式,属于中档题.2.已知点()()2,3,3,2A B ---,直线:10l mx y m +--=与线段AB 相交,则直线l 的斜率k 的取值范围是()A .34k ≥或4k ≤-B .344k -≤≤C .15k <-D .344k -≤≤【答案】A 【详解】()()110m x y -+-=,所以直线l 过定点()1,1P ,所以34PB k =,4PA k =-,直线在PB 到PA 之间,所以34k ≥或4k ≤-,故选A .3.两圆222240x y ax a +++-=和2224140x y by b +--+=恰有三条公切线,若,a R b R ∈∈且0ab ≠,则2211a b +的最小值为A .1B .3C .19D .49【答案】A 【详解】试题分析:由题意得两圆22()4x a y ++=与22(2)1x y b y +-=相外切,即222149a b =+⇒+=,所以22222222221111(4)141()[5][5]1999a b a b a b a b b a ++=+=++≥+=,当且仅当22224=a b b a 时取等号,所以选A.考点:两圆位置关系,基本不等式求最值【易错点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.4.过圆22:1O x y +=内一点11,42⎛⎫⎪⎝⎭作直线交圆O 于A ,B 两点,过A ,B 分别作圆的切线交于点P ,则点P 的坐标满足方程()A .240x y +-=B .240x y -+=C .240x y --=D .240x y ++=【答案】A 【分析】设出P 点坐标,求解出以OP 为直径的圆M 的方程,将圆M 的方程与圆O 的方程作差可得公共弦AB 的方程,结合点11,42⎛⎫⎪⎝⎭在AB 上可得点P 的坐标满足的方程.【详解】设()00,P x y ,则以OP 为直径的圆()()00:0M x x x y y y -+-=,即22000x y x x y y +--=①因为,PA PB 是圆O 的切线,所以,OA PA OB PB ⊥⊥,所以A ,B 在圆M 上,所以AB 是圆O 与圆M 的公共弦,又因为圆22:1O x y +=②,所以由①-②得直线AB 的方程为:0010x x y y +-=,又点11,42⎛⎫⎪⎝⎭满足直线AB 方程,所以00111042x y +-=,即240x y +-=.故选:A.5.在平面直角坐标系中,已知点(),P a b 满足1a b +=,记d 为点P 到直线20x my --=的距离.当,,a b m 变化时,d 的最大值为()A .1B .2C .3D .4【答案】C 【分析】根据直线:20l x my --=过定点A 确定出对于给定的一点P ,d 取最大值时PA l ⊥且max d PA =,然后根据点P 为正方形上任意一点求解出max PA ,由此可知max d .【详解】直线:20l x my --=过定点()2,0A ,对于任意确定的点P ,当PA l ⊥时,此时d PA =,当PA 不垂直l 时,过点P 作PB l ⊥,此时d PB =,如图所示:因为PB AB ⊥,所以PA PB >,所以max d PA =,由上可知:当P 确定时,max d 即为PA ,且此时PA l ⊥;又因为P 在如图所示的正方形上运动,所以max max d PA =,当PA 取最大值时,P 点与()1,0M -重合,此时()213PA =--=,所以max 3d =,故选:C.【点睛】关键点点睛:解答本题的关键在于利用图像分析d 取最大值时PA 与直线l 的位置关系,通过位置关系的分析可将问题转化为点到点的距离问题,根据图像可直观求解.6.若实数,x y 满足x -=x 最大值是()A .4B .18C .20D .24【答案】C 【分析】当0x =时,解得0y =;当0x >,令t =22x t -+=,设()22x f t t =-+,()g t =()f t 和()g t 有公共点,观察图形可求解.【详解】当0x =时,解得0y =,符合题意;当0x >时,令t =0t ≥,又0x y -≥,则t ≤,即t ⎡∈⎣,则原方程可化为22xt -+=,设()22xf t t =-+,()g t =t ⎡∈⎣,则()f t 表示斜率为2-的直线,()g t则问题等价于()f t 和()g t有公共点,观察图形可知,=20x =,当直线过点(时,2x=4x =,因此,要使直线与圆有公共点,[]4,20x ∈,综上,[]{}4,200x ∈⋃,故x 的最大值为20.故选:C.【点睛】关键点睛:解题得关键是令t =()22xf t t =-+与圆有公共点.7.已知圆222:()(21)2C x m y m m -+-+=,有下列四个命题:①一定存在与所有圆都相切的直线;②有无数条直线与所有的圆都相交;③存在与所有圆都没有公共点的直线;④所有的圆都不过原点.其中正确的命题个数是A .1B .2C .3D .4【答案】C 【分析】①可先设出切线方程,利用圆心到直线距离等于半径建立等式求解.②③根据直线与两条切线的相对位置,可找出与圆相交和相离的直线④假设过原点,有解【详解】由圆222:()(21)2C x m y m m -+-+=知圆心坐标为(),21m m -,半径|r m =,圆心在直线21y x =-上,①假设存在直线与所有圆均相切,设为y kx b =+则(),21m m -到y kx b =+的距离为|r m =可得|r m ==直线与所有圆均相切,故切线应与m 无关,可取1b =-=解得2k =-±即(21y x -±=-所以,存在与所有圆均相切的直线,故①正确;过点()0,1-介于两相切直线之间的直线,均与所有圆相交,故②正确;过点()0,1-在两相切直线之外部区域的直线,与所有圆均没有交点,故③正确;假设过原点,则222()(21)2m m m -+-+=,得1m =或13m =,故④错误.故选:C 【点睛】处理直线与圆的位置关系时,若两方程已知或圆心到直线的距离易表达,则用几何法;若方程中含有参数,或圆心到直线的距离的表达较繁琐,则用代数法.8.已知,x y R ∈)AB .3C.D .6【答案】C 【分析】将问题转化为“点()0,y 到点()2,1的距离加上点(),0x 到点()2,1的距离加上点(),0x 到点()0,y 的距离之和的最小值”,采用分类讨论的方法并画出辅助图示求解出最小值.【详解】()0,y 到点()2,1(),0x 到点()2,1的距离,表示点(),0x 到点()0,y 的距离,设()()()2,1,,0,0,A B x C y ,表示AB BC AC ++的长度和,显然当点(),0x 与点()0,y 在,x y 轴的非负半轴上,对应原式的结果更小,当()(),0,0,x y 均不在坐标原点,如下图所示:考虑到求解最小值,所以2,1x y ≤≤,设,B A 关于原点的对称点为,B A '',所以AB BC AC AC B C A B AB A B AA '''''''++=++≥+>==当()(),0,0,x y 其中一个在坐标原点,如下图所示:此时分别有2AC BC AB AC AC AC ++>+==2AC BC AB AB AB AB ++>+==,所以AC BC AB ++>当()(),0,0,x y 都在坐标原点时,AB AC BC ++==的最小值为故选:C.【点睛】(1)先将问题转化为点到点的距离之和问题;(2)画出图示,必要时借助点关于直线的对称点知识进行分析;(3)根据距离之和的最小值得到原式的最小值.二、多选题9.下列说法正确的是()A .直线21y ax a =-+必过定点(2,1)B .直线3240x y -+=在y 轴上的截距为-2C10y ++=的倾斜角为120°D .若直线l 沿x 轴向左平移3个单位长度,再沿y 轴向上平移2个单位长度后,回到原来的位置,则该直线l 的斜率为23-【答案】ACD 【分析】代入点的坐标判断A ,求出纵截距判断B ,求出斜率得倾斜角,判断C ,写出平移直线后的方程,与原方程一致,由此求得ba-,判断D .【详解】2211z a -+=,所以点(2,1)在直线上,A 正确;对3240x y -+=,令0x =,得2y =,直线3240x y -+=在y 轴上截距为2,B 错误;10y ++=的斜率为120︒,C 正确;设直线l 方程为0ax by c ++=,沿x 轴向左平移3个单位长度,再沿y 轴向上平移2个单位长度后得(3)(2)0a x b y c ++-+=,即320ax by c a b +++-=它就是0ax by c ++=,所以320a b -=,所以23a kb =-=-,D 正确.故选:ACD .【点睛】关键点点睛:本题考查直线方程,利用直线方程研究直线的性质是解析几何的基本方法.掌握直线的概念与特征是解题关键.10.已知点P 是直线3450x y -+=上的动点,定点()1,1Q ,则下列说法正确的是()A .线段PQ 的长度的最小值为45B .当PQ 最短时,直线PQ 的方程是3470x y +-=C .当PQ 最短时P 的坐标为1341,2525⎛⎫⎪⎝⎭D .线段PQ 的长度可能是23【答案】AC 【分析】当PQ 垂直直线3450x y -+=时,PQ 最短,即可判断A 、D ,设出P 坐标,根据最短使PQ 与直线垂直求解P 坐标,即可判断C ,由两点式求出直线方程,即可判断B .【详解】解:当PQ 垂直直线3450x y -+=时,PQ 最短,Q 到直线的距离为223454534-+=+,故A 正确;故PQ 的长度范围为4,5⎡⎫+∞⎪⎢⎣⎭,2435<,故D 错误;设35,4m P m +⎛⎫ ⎪⎝⎭,则3514413PQ m k m +-==--,解得1325m =,故P 为1341,2525⎛⎫⎪⎝⎭,故C 正确;此时直线PQ 的方程是114113112525y x --=--,即4370x y +-=,故B 错误,故选:AC .11.(2021•佛山模拟)已知圆2221:C x y r +=,圆2222:()()C x a y b r -+-=,(0r >,且a ,b 不同时为0)交于不同的两点1(A x ,1)y ,2(B x ,2)y ,下列结论正确的是A .221122ax by a b +=+B .1212()()0a x x b y y -+-=C .12x x a +=,12y y b+=D .M ,N 为圆2C 上的两动点,且||3MN r =,则||OM ON +的最大值为22a b r ++【答案】ABC【解析】根据题意,圆2221:C x y r +=和圆2222:(?)(?)(0)C x a y b r r +=>交于不同的两点A ,B ,∴两圆方程相减可得直线AB 的方程为:22220a b ax by +--=,即22220ax by a b +--=,分别把点1(A x ,1)y ,2(B x ,2)y 两点坐标代入22220ax by a b +--=得:221122??0ax by a b +=,222222??0ax by a b +=,所以选项A 正确,上面两式相减得:12122()2()0a x x b y y -+-=,即1212()()0a x x b y y -+-=,所以选项B 正确,两圆的半径相等,∴由圆的性质可知,线段AB 与线段12C C 互相平分,则有120222x x a a++==,12022y y bb ++==,变形可得12x x a +=,12y y b +=,C 正确;M ,N 为圆2C 上的两动点,且||3MN r =,设MN 的中点为D ,则2C D MN ⊥,所以22231()22C D r r r =-=,所以MN 的中点D 的轨迹为以2(,)C a b 为圆心,12r 为半径的圆,所以MN 的中点D 的轨迹方程为2221()()4x a y b r -+-=,又||2||OM ON OD +=,所以||OM ON +的最大值为222212()22a b r a b r +=+,故D 错误.故选ABC .三、填空题12.已知C 为圆:()2211x y -+=上一动点,点B 坐标为(3,点A 坐标为()4,0,则3AC BC +的最小值为_________.【答案】27【分析】设圆心为M ,由圆的方程得到圆心和半径,取4,03D ⎛⎫⎪⎝⎭,可证得CMDAMC ,得到3AC CD =,可知()333AC BC CD BC BD +=+≥,利用两点间距离公式可求得最小值.【详解】设圆:()2211x y -+=的圆心为M ,则()1,0M ,半径1MC =,取4,03D ⎛⎫ ⎪⎝⎭,13MD MC MCMA==,CMD CMA ∠=∠,CMD AMC ∴,3AC CD ∴=,()333AC BC CD BC BD ∴+=+≥(当且仅当,,B C D 三点共线且C 在线段BD 上时取等号),BD =,3AC BC ∴+≥即3AC BC +的最小值为故答案为:【点睛】关键点点睛:本题考查圆部分的最值问题的求解,解题关键是能够利用三角形相似将问题转化为三角形两边之和大于第三边的问题,由此确定三点共线时取得最小值.13.已知函数()f x ax b =--,其中a ,b R ∈,()f x 的最大值为(,)M a b ,则(,)M a b 的最小值为___________.【答案】12【分析】数形结合分析可知(,)M a b 的最小值为()[]0,1g x x =∈与()h x ax b x =+=-纵向距离,从而可以求出结果.【详解】函数()(),f x ax b M a b =-≤,即四分之一圆[]0,1y x =∈上的点到直线1x y +=上的最大距离为12-,此时圆上的点记为P ,如图:只有过PN 的中点且平行于直线1x y +=的直线才满足条件,所以当211,2a b =-=时,(,)M a b 的最小值为()[]0,1g x x =∈与()212h x ax b x +=+=-的纵向距离,即(,)M a b 的最小值为1⎛- ⎝⎭故答案为:212.【点睛】处理直线与圆的位置关系时,若两方程已知或圆心到直线的距离易表达,则用几何法;若方程中含有参数,或圆心到直线的距离的表达较繁琐,则用代数法.14.已知直线()()()11410a x a y a -++-+=(其中a 为实数)过定点P ,点Q 在函数1y x x=+的图像上,则PQ 连线的斜率的取值范围是___________.【答案】[3)-+∞,【分析】把直线方程整理成a 的多项式,根据恒等式的知识求出定点P 的坐标,【详解】由()()()11410a x a y a -++-+=得(4)40x y a x y -+-++-=∴4040x y x y -+-=⎧⎨+-=⎩,解得0,4x y =⎧⎨=⎩,∴(0,4)P 。
高三数学专项训练:函数与导数,解析几何解答题(二)(理科)
(2)过右焦点 的直线与椭圆交于不同的两点 、 ,则 内切圆的圆面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.
35.某校同学设计一个如图所示的“蝴蝶形图案(阴影区域)”,其中 、 是过抛物线 焦点 的两条弦,且其焦点 , ,点 为 轴上一点,记 ,其中 为锐角.
(3)求证: .
4.已知函数 .
(Ⅰ)若函数 的值域为 ,若关于 的不等式 的解集为 ,求 的值;
(Ⅱ)当 时, 为常数,且 , ,求 的取值范围.
5.已知函数 ,函数 .
(I)试求f(x)的单调区间。
(II)若f(x)在区间 上是单调递增函数,试求实数a的取值范围:
(III)设数列 是公差为1.首项为l的等差数列,数列 的前n项和为 ,求证:当 时, .
41.(13分) 已知椭圆C的中心在原点,离心率等于 ,它的一个短轴端点点恰好是抛物线 的焦点。
(1)求椭圆C的方程;
(2)已知P(2,3)、Q(2,-3)是椭圆上的两点,A,B是椭圆上位于直线PQ两侧的动点,
①若直线AB的斜率为 ,求四边形APBQ面积的最大值;
②当A、B运动时,满足 = ,试问直线AB的斜率是否为定值,请说明理由。
(2)点Q(x0,y0)(-2<x0<2)是曲线C上的动点,曲线C在点Q处的切线为 ,点P的坐标是(0,-1), 与PA,PB分别交于点D,E,求△QAB与△PDE的面积之比.
27.已知两点 及 ,点 在以 、 为焦点的椭圆 上,且 、 、 构成等差数列.
(Ⅰ)求椭圆 的方程;
(Ⅱ)如图,动直线 与椭圆 有且仅有一个公共点,点 是直线 上的两点,且 ,
. 求四边形 面积 的最大值.
解析几何大题精选题,共四套(答案)
解析几何大题精选四套(答案)解析几何大题训练(一)1. (2011年高考江西卷) (本小题满分12分)已知过抛物线()022>=p px y 的焦点,斜率为22的直线交抛物线于()12,,A x y ()22,B x y (12x x <)两点,且9=AB .(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OB OA OC λ+=,求λ的值.2. (2011年高考福建卷)(本小题满分12分)如图,直线l :y=x+b 与抛物线C :x 2=4y 相切于点A 。
(1) 求实数b 的值;(11) 求以点A 为圆心,且与抛物线C 的准线相切的圆的方程.3. (2011年高考天津卷)(本小题满分13分) 设椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12,F F ,点(,)P a b 满足212||||PF F F =. (Ⅰ)求椭圆的离心率e ;(Ⅱ)设直线2PF 与椭圆相交于A,B 两点.若直线2PF 与圆22(1)(16x y ++=相交于M,N 两点,且|MN|=58|AB|,求椭圆的方程.4.(2010辽宁)(本小题满分12分)设1F ,2F 分别为椭圆2222:1x y C a b+=(0)a b >>的左、右焦点,过2F 的直线l 与椭圆C 相交于A ,B两点,直线l 的倾斜角为60o ,1F 到直线l 的距离为(Ⅰ)求椭圆C 的焦距;(Ⅱ)如果222AF F B =u u u u r u u u u r ,求椭圆C 的方程.解析几何大题训练(二)1.(2010辽宁)(本小题满分12分)设椭圆C :22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60o ,2AF FB =u u u r u u u r . (I) 求椭圆C 的离心率;(II)如果|AB|=154,求椭圆C 的方程.2.(2010北京)(本小题共14分)已知椭圆C 的左、右焦点坐标分别是(,y=t 椭圆C 交与不同的两点M ,N ,以线段为直径作圆P ,圆心为P 。
2021版高考数学(理科)总复习7.3解析几何(压轴题)练习
2021版高考数学(理科)总复习7.3解析几何(压轴题)练习2021版高考数学(理科)总复习7.3 解析几何(压轴题)命题角度1曲线与轨迹问题高考真题体验·对方向1.(2021全国Ⅱ·20)设O为坐标原点,动点M在椭圆C:+y2=1上,过M作x轴的垂线,垂足为N,点P满足.(1)求点P的轨迹方程;(2)设点Q在直线x=-3上,且=1.证明:过点P且垂直于OQ的直线l过C的左焦点F. (1)解设P(x,y),M(x0,y0),则N(x0,0),=(x-x0,y),=(0,y0).由得x0=x,y0=y.因为M(x0,y0)在C上,所以=1. 因此点P的轨迹方程为x2+y2=2. (2)证明由题意知F(-1,0).设Q(-3,t),P(m,n), 则=(-3,t),=(-1-m,-n),=3+3m-tn,=(m,n),=(-3-m,t-n). 由=1得-3m-m2+tn-n2=1.又由(1)知m2+n2=2,故3+3m-tn=0. 所以=0,即.又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线l过C的左焦点F. 2.(2021全国Ⅲ·20)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点.(1)若F在线段AB上,R是PQ的中点,证明:AR∥FQ;(2)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程. (1)证明由题知F.设l1:y=a,l2:y=b,则ab≠0, 且A,B,P,Q,R.记过A,B两点的直线为l,则l的方程为2x-(a+b)y+ab=0. 由于F在线段AB上,故1+ab=0. 记AR的斜率为k1,FQ的斜率为k2, 则k1==-b=k2. 所以AR∥FQ.(2)解设l与x轴的交点为D(x1,0),则S△ABF=|b-a||FD|=|b-a|,S△PQF=. 由题设可得|b-a|, 所以x1=0(舍去),x1=1.设满足条件的AB的中点为E(x,y).当AB与x轴不垂直时,由kAB=kDE可得(x≠1). 而=y,所以y2=x-1(x≠1).当AB与x轴垂直时,E与D重合. 所以所求轨迹方程为y2=x-1.新题演练提能·刷高分12021版高考数学(理科)总复习1.(2021山西太原二模)已知以点C(0,1)为圆心的动圆C与y 轴负半轴交于点A,其弦AB的中点D恰好落在x轴上.(1)求点B的轨迹E的方程;(2)过直线y=-1上一点P作曲线E的两条切线,切点分别为M,N.求证:直线MN过定点. (1)解设B(x,y),则AB的中点D,y>0.∵C(0,1),则, 在☉C中,∵DC⊥DB, ∴=0,∴-+y=0, 即x2=4y(y>0).∴点B的轨迹E的方程为x2=4y(y>0). (2)证明由已知条件可得曲线E的方程为x2=4y,设点P(t,-1),M(x1,y1),N(x2,y2). ∵y=,∴y'=,∴过点M、N的切线方程分别为y-y1=(x-x1),y-y2=(x-x2). 由4y1=,4y2=,上述切线方程可化为2(y+y1)=x1x,2(y+y2)=x2x. ∵点P在这两条切线上, ∴2(y1-1)=tx1,2(y2-1)=tx2, 即直线MN的方程为2(y-1)=tx, 故直线2(y-1)=tx过定点C(0,1).2.(2021广西梧州3月适应性测试)已知A(-2,0),B(2,0),直线PA的斜率为k1,直线PB的斜率为k2,且k1k2=-.(1)求点P的轨迹C的方程;(2)设F1(-1,0),F2(1,0),连接PF1并延长,与轨迹C交于另一点Q,点R是PF2中点,O是坐标原点,记△QF1O与△PF1R的面积之和为S,求S的最大值. 解(1)设P(x,y),∵A(-2,0),B(2,0), ∴k1=,k2=, 又k1k2=-,∴=-, ∴=1(x≠±2),∴轨迹C的方程为=1(x≠±2).(2)由O,R分别为F1F2,PF2的中点,故OR∥PF1,故△PF1R与△PF1O同底等高,故,S==S△PQO,当直线PQ的斜率不存在时,其方程为x=-1,此时S△PQO=×1×; 当直线PQ的斜率存在时,设其方程为y=k(x+1), 设P(x1,y1),Q(x2,y2),显然直线PQ不与x轴重合,即k≠0;联立解得(3+4k2)x2+8k2x+4k2-12=0, Δ=144(k2+1)>0, 故|PQ|=|x1-x2|=,点O到直线PQ的距离d=,S=|PQ|d=6,令u=3+4k2∈(3,+∞),故S=6,故S的最大值为.3.(2021甘肃兰州一模)已知圆C:(x+1)2+y2=8,过D(1,0)且与圆C相切的动圆圆心为P. (1)求点P的轨迹E的方程;(2)设过点C的直线l1交曲线E于Q,S两点,过点D的直线l2交曲线E于R,T两点,且l1⊥l2,垂足为W(Q,R,S,T为不同的四个点). ①设W(x0,y0),证明:|CD|=2,由椭圆定义可知,点P的轨迹E是椭圆,a=,c=1,b==1,E的方程为+y2=1.(2)①证明由已知条件可知,垂足W在以CD为直径的圆周上,则有=1,又因Q,R,S,T为不同的四个点,0)的直线l与C交于A,B 两点,|AB|=8. (1)求l的方程.(2)求过点A,B且与C的准线相切的圆的方程. 解(1)由题意得F(1,0),l的方程为y=k(x-1)(k>0).设A(x1,y1),B(x2,y2).由得k2x2-(2k2+4)x+k2=0. Δ=16k2+16>0,故x1+x2=.所以|AB|=|AF|+|BF|=(x1+1)+(x2+1)=. 由题设知=8,解得k=-1(舍去),k=1. 因此l的方程为y=x-1.(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为y-2=-(x-3),即y=-x+5. 设所求圆的圆心坐标为(x0,y0),则解得因此所求圆的方程为(x-3)2+(y-2)2=16或(x-11)2+(y+6)2=144. 3.(2021全国Ⅲ·20)已知斜率为k的直线l与椭圆C:=1交于A,B两点,线段AB 的中点为M(1,m)(m>0). (1)证明:k。
高中数学导数压轴题专题拔高训练 (二)
高中数学导数压轴题专题拔高训练一.选择题(共15小题)1.已知可导函数f(x)(x∈R)满足f′(x)>f(x),则当a>0时,f(a)和e a f(0)大小关系为()A.f(a)<e a f(0)B.f(a)>e a f(0)C.f(a)=e a f(0)D.f(a)≤e a f(0)考点:利用导数研究函数的单调性.专题:计算题;压轴题.分析:设函数f(x)=e2x,则导函数f′(x)=2•e2x,显然满足f'(x)>f(x),由f(a)=e2a,e a f(0)=e a,比较得出结论.解答:解:由题意知,可设函数f(x)=e2x,则导函数f′(x)=2•e2x,显然满足f'(x)>f(x),f(a)=e2a,e a f(0)=e a,当a>0时,显然e2a>e a ,即f(a)>e a f(0),故选B.点评:本题考查求复合函数的导数的方法,以及指数函数的单调性,利用构造法求解是我们选择题常用的方法.2.已知函数f(x)=x3+bx2+cx+d在区间[﹣1,2]上是减函数,那么b+c()A.有最大值B.有最大值﹣C.有最小值D.有最小值﹣考点:利用导数研究函数的单调性.专题:压轴题.分析:先对函数f(x)求导,然后令导数在[﹣1,2]小于等于0即可求出b+c的关系,得到答案.解答:解:由f(x)在[﹣1,2]上是减函数,知f′(x)=3x2+2bx+c≤0,x∈[﹣1,2],则⇒15+2b+2c≤0⇒b+c≤﹣.故选B.点评:本题主要考查函数的单调性与其导函数的正负情况之间的关系,即导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.3.对任意的实数a,b,记若F(x)=max{f(x),g(x)}(x∈R),其中奇函数y=f(x)在x=1时有极小值﹣2,y=g(x)是正比例函数,函数y=f(x)(x≥0)与函数y=g(x)的图象如图所示则下列关于函数y=F(x)的说法中,正确的是()A.y=F(x)为奇函数B.y=F(x)有极大值F(1)且有极小值F(﹣1)C.y=F(x)的最小值为﹣2且最大值为2 D.y=F(x)在(﹣3,0)上不是单调函数考点:利用导数研究函数的单调性;利用导数研究函数的极值.专题:计算题;压轴题.分析:在同一个坐标系中作出两函数的图象,横坐标一样时取函数值较大的那一个,如图,由图象可以看出选项的正确与否.解答:解:∵f(x)*g(x)=max{f(x),g(x)},∴f(x)*g(x)=max{f(x),g(x)}的定义域为R,f(x)*g(x)=max{f(x),g(x)},画出其图象如图中实线部分,由图象可知:y=F(x)的图象不关于原点对称,不为奇函数;故A不正确y=F(x)有极大值F(﹣1)且有极小值F(0);故B不正确y=F(x)的没有最小值和最大值为,故C不正确y=F(x)在(﹣3,0)上不为单调函数;故D正确故选D.点评:本题考点是函数的最值及其几何意义,本题考查新定义,需要根据题目中所给的新定义作出相应的图象由图象直观观察出函数的最值,对于一些分段类的函数,其最值往往借助图象来解决.本题的关键是读懂函数的图象,属于基础题.4.已知函数f(x)=x3+ax2﹣bx+1(a、b∈R)在区间[﹣1,3]上是减函数,则a+b的最小值是()A.B.C.2D.3考点:利用导数研究函数的单调性.专题:计算题;压轴题.分析:求出f′(x),因为函数在区间[﹣1,3]上是减函数得到f(﹣1)和f(3)都小于0分别列出关于a与b的两个不等式,联立即可解出a的取值范围得到a的最小值,把a的最小值当然①即可求出b的最小值,求出a+b的值即可.解答:解:f′(x)=x2+2ax﹣b,因为函数f(x)在区间[﹣1,3]上是减函数即在区间[﹣1,3]上,f′(x)≤0,得到f′(﹣1)≤0,且f′(3)≤0,代入得1﹣2a﹣b≤0①,且9+6a﹣b≤0②,由①得2a+b≥1③,由②得b﹣6a≥9④,设u=2a+b≥1,v=b﹣6a≤9,假设a+b=mu+nv=m(2a+b)+n(﹣6a+b)=(2m﹣6n)a+(m+n)b,对照系数得:2m﹣6n=1,m+n=1,解得:m=,n=,∴a+b=u+v≥2,则a+b的最小值是2.故选C点评:此题考查学生会利用导数研究函数的单调性,灵活运用不等式的范围求未知数的最值,是一道综合题.5.定义在R上的可导函数f(x),当x∈(1,+∞)时,f(x)+f′(x)<xf′(x)恒成立,a=f(2),b=f(3),c=(+1)f(),则a,b,c的大小关系为()A.c<a<b B.b<c<a C.a<c<b D.c<b<a考点:利用导数研究函数的单调性.专题:综合题;压轴题;导数的概念及应用.分析:根据x∈(1,+∞)时,f(x)+f′(x)<xf′(x),可得g(x)=在(1,+∞)上单调增,由于,即可求得结论.解答:解:∵x∈(1,+∞)时,f(x)+f′(x)<xf′(x)∴f′(x)(x﹣1)﹣f(x)>0∴[]′>0∴g(x)=在(1,+∞)上单调增∵∴g()<g(2)<g(3)∴∴∴c<a<b故选A.点评:本题考查导数知识的运用,考查函数的单调性,确定函数的单调性是关键.6.设f(x)是定义在R上的可导函数,且满足f′(x)>f(x),对任意的正数a,下面不等式恒成立的是()A.f(a)<e a f(0)B.f(a)>e a f(0)C.D.考点:利用导数研究函数的单调性;导数的运算.专题:压轴题;导数的概念及应用.分析:根据选项令f(x)=,可以对其进行求导,根据已知条件f′(x)>f(x),可以证明f(x)为增函数,可以推出f(a)>f(0),在对选项进行判断;解答:解:∵f(x)是定义在R上的可导函数,∴可以令f(x)=,∴f′(x)==,∵f′(x)>f(x),e x>0,∴f′(x)>0,∴f(x)为增函数,∵正数a>0,∴f(a)>f(0),∴>=f(0),∴f(a)>e a f(0),故选B.点评:此题主要考查利用导数研究函数单调性,此题要根据已知选项令特殊函数,是一道好题;7.若函数f(x)=x3+a|x2﹣1|,a∈R,则对于不同的实数a,则函数f(x)的单调区间个数不可能是()A.1个B.2个C.3个D.5个考点:利用导数研究函数的单调性.专题:证明题;压轴题.分析:先令a=0,即可排除A,再将函数化为分段函数,并分段求其导函数,得f′(x),最后利用分类讨论,通过画导函数f′(x)的图象判断函数f(x)的单调区间的个数,排除法得正确判断解答:解:依题意:(1)当a=0时,f(x)=x3,在(﹣∞,+∞)上为增函数,有一个单调区间①当a≠0时,∵f(x)=x3+a|x2﹣1|a∈R∴f(x)=∴f′(x)=(2)当0<a<时,∵﹣<﹣<0,0<<,∴导函数的图象如图1:(其中m为图象与x轴交点的横坐标)∴x∈(﹣∞,0]时,f′(x)>0,x∈(0,m)时,f′(x)<0,x∈[m,+∞)时,f′(x)>0,∴f(x)在x∈(﹣∞,0]时,单调递增,x∈(0,m)时,单调递减,x∈[m,+∞)时,单调递增,有3个单调区间②(3)当a≥3时,∵﹣<﹣1,>1,∴导函数的图象如图2:(其中n为x≤﹣1时图象与x轴交点的横坐标)∴x∈(﹣∞,n]时,f′(x)>0,x∈(n,﹣1]时,f′(x)<0,x∈(﹣1,0)时,f′(x)>0,x∈[0,1)时,f′(x)<0,x∈[1,+∞)时,f′(x)>0∴函数f(x)在x∈(﹣∞,n]时,单调递增,x∈(n,﹣1]时,单调递减,x∈(﹣1,0)时,单调递增,x∈[0,1)时,单调递减,x∈[1,+∞)时,单调递增,有5个单调区间③由①②③排除A、C、D,故选B点评:本题考查了含绝对值函数的单调区间的判断方法,利用导数研究三次函数单调区间的方法,函数与其导函数图象间的关系,排除法解选择题8.已知函数,那么下面结论正确的是()A.f(x)在[0,x0]上是减函数B.f(x)在[x0,π]上是减函数C.∃x∈[0,π],f(x)>f(x0)D.∀x∈[0,π],f(x)≥f(x0)考点:利用导数研究函数的单调性.专题:计算题;压轴题.分析:由函数的解析式f(x)=sinx﹣x可求其导数f′(x)=cosx﹣,又余弦函数在[0,π]上单调递减,判断导数在[x0,π]上的正负,再根据导数跟单调性的关系判断函数的单调性.解答:解:∵f(x)=sinx﹣x∴f′(x)=cosx﹣∵cosx0=,x0∈[0,π]又∵余弦函数y=cosx在区间[0,π]上单调递减∴当x>x0时,cosx<cosx0 即cosx<∴当x>x0时,f′(x)=cosx﹣<0∴f(x)=sinx﹣x在[x0,π]上是减函数.故选B.点评:利用导数判断函数的单调性,一定要注意其方法及步骤.(1)确定函数f(x)的定义域;(2)求导数f′(x);(3)在f(x)的定义域内解不等式f′(x)>0和f′(x)<0;(4)写出f(x)的单调区间.9.设,若对于任意x1∈[0,1],总存在x0∈[0,1],使得g(x0)=f(x1)成立,则实数a的取值范围是()A.B.C.[1,4]D.考点:利用导数研究函数的单调性.专题:计算题;综合题;压轴题;转化思想.分析:根据对于任意x1∈[0,1],总存在x0∈[0,1],使得g(x0)=f(x1)成立,得到函数f(X)在[0,1]上值域是g(X)在[0,1]上值域的子集,下面利用导数求函数f(x)、g(x)在[0,1]上值域,并列出不等式,解此不等式组即可求得实数a的取值范围解答:解:∵,∴f′(x)=,当x∈[0,1],f′(x)≥0.∴f(x)在[0,1]上是增函数,∴f(x)的值域A=[0,1];又∵g(x)=ax+5﹣2a(a>0)在[0,1]上是增函数,∴g(X)的值域B=[5﹣2a,5﹣a];根据题意,有A⊆B∴,即.故选A.点评:此题是个中档题.考查利用导数研究函数在闭区间上的最值问题,难点是题意的理解与转化,体现了转化的思想.同时也考查了同学们观察、推理以及创造性地分析问题、解决问题的能力,10.设函数f(x)=kx3+3(k﹣1)x2﹣k2+1在区间(0,4)上是减函数,则k的取值范围()A.B.C.D.考点:函数的单调性与导数的关系.专题:计算题;压轴题.分析:先求导函数f'(x),函数f(x)=kx3+3(k﹣1)x2﹣k2+1在区间(0,4)上是减函数转化成f'(x)≤0在区间(0,4)上恒成立,讨论k的符号,从而求出所求.解答:解:f'(x)=3kx2+6(k﹣1)x,∵函数f(x)=kx3+3(k﹣1)x2﹣k2+1在区间(0,4)上是减函数,∴f'(x)=3kx2+6(k﹣1)x≤0在区间(0,4)上恒成立当k=0时,成立k>0时,f'(4)=48k+6(k﹣1)×4≤0,即0<k≤k<0时,f'(4)=48k+6(k﹣1)×4≤0,f'(0)≤0,k<0故k的取值范围是k≤故选D.点评:本题主要考查导函数的正负与原函数的单调性之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减,同时考查了分析与解决问题的综合能力,属于基础题.11.若函数f(x)=2x2﹣lnx在其定义域的一个子区间(k﹣1,k+1)内不是单调函数,则实数k的取值范围是()A.B.C.D.考点:函数的单调性与导数的关系.专题:计算题;压轴题.分析:先求导函数,再进行分类讨论,同时将函数f(x)=2x2﹣lnx在其定义域的一个子区间(k﹣1,k+1)内不是单调函数,转化为f′(x)在其定义域的一个子区间(k﹣1,k+1)内有正也有负,从而可求实数k的取值范围解答:解:求导函数,当k=1时,(k﹣1,k+1)为(0,2),函数在上单调减,在上单调增,满足题意;当k≠1时,∵函数f(x)=2x2﹣lnx在其定义域的一个子区间(k﹣1,k+1)内不是单调函数∴f′(x )在其定义域的一个子区间(k﹣1,k+1)内有正也有负∴f′(k﹣1)f′(k+1)<0∴∴×<0∴∵k﹣1>0∴k+1>0,2k+1>0,2k+3>0,∴(2k﹣3)(2k﹣1)<0,解得综上知,故选D.点评:本题以函数为载体,考查函数的单调性,考查学生分析解决问题的能力,分类讨论,等价转化是关键.12.已知g(x )为三次函数f(x)=x3+ax2+cx的导函数,则它们的图象可能是()A.B.C.D.考点:函数的单调性与导数的关系.专题:计算题;压轴题.分析:先求出函数的导函数,然后利用排除法进行判定,以及f′(x)=ax2+2ax+c与x轴交点处,函数取极值可得结论.解答:解:∵f(x)=x3+ax2+cx∴f′(x)=ax2+2ax+c对称轴为x=﹣1可排除选项B与选项C再根据f′(x)=ax2+2ax+c与x轴交点处,函数取极值可知选项D正确故选D.点评:本题主要考查了函数的单调性与导数的关系,解题的关键是原函数图象与导函数图象的关系,属于基础题.13.已知定义在R上的函数f(x)满足f(2)=1,f′(x)为f(x)的导函数.已知y=f′(x)的图象如图所示,若两个正数a,b满足f(2a+b)>1,则的取值范围是()A.(B.C.(﹣2,1)D.(﹣∞,﹣2)∪(1,+∞)考点:函数的单调性与导数的关系;简单线性规划.专题:计算题;压轴题;数形结合.分析:先根据导函数的图象判断原函数的单调性,从而确定a、b的范围,最后利用线性规划的方法得到答案.解答:解:由图可知,当x>0时,导函数f'(x)<0,原函数单调递减,∵两正数a,b满足f(2a+b)>1,且f(2)=1,∴2a+b<2,a>0,b>0,画出可行域如图.k=表示点Q(2,1)与点P(x,y)连线的斜率,当P点在A(1,0)时,k最大,最大值为:;当P点在B(0,2)时,k最小,最小值为:.k的取值范围是(﹣,1).故选A.点评:本题主要考查函数的单调性与其导函数的正负之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.14.已知f(x)是定义在R上的奇函数,且f(1)=0,f′(x)是f(x)的导函数,当x>0时总有xf′(x)<f(x)成立,则不等式f(x)>0的解集为()D.{x|﹣1<x<1,且x≠0} A.{x|x<﹣1或x>1} B.{x|x<﹣1或0<x<1} C.{x|﹣1<x<0或0<x<1}考点:函数的单调性与导数的关系;其他不等式的解法.专题:计算题;压轴题.分析:由已知当x>0时总有xf′(x)<f(x)成立,可判断函数g(x)=为减函数,由已知f(x)是定义在R上的奇函数,可证明g(x)为(﹣∞,0)∪(0,+∞)上的偶函数,根据函数g(x)在(0,+∞)上的单调性和奇偶性,模拟g(x)的图象,而不等式f(x)>0等价于x•g(x)>0,数形结合解不等式组即可解答:解:设g(x)=,则g(x)的导数为g′(x)=,∵当x>0时总有xf′(x)<f(x)成立,即当x>0时,g′(x)恒小于0,∴当x>0时,函数g(x)=为减函数,又∵g(﹣x)====g(x)∴函数g(x)为定义域上的偶函数又∵g(1)==0∴函数g(x)的图象性质类似如图:数形结合可得不等式f(x)>0⇔x•g(x)>0⇔或⇔0<x<1或x<﹣1故选B点评:本题主要考查了利用导数判断函数的单调性,并由函数的奇偶性和单调性解不等式,属于综合题.15.已知函数f(x)的定义域为[﹣2,+∞),部分对应值如下表.f′(x)为f(x)的导函数,函数y=f′(x)的图象如下图所示.若两正数a,b满足f(2a+b)<1,则的取值范围是()X ﹣2 0 4f(x) 1 ﹣1 1A.B.C.D.考点:函数的单调性与导数的关系.专题:计算题;压轴题;数形结合.分析:由导函数的图象得到导函数的符号,利用导函数的符号与函数单调性的关系得到f(x)的单调性,结合函数的单调性求出不等式的解即a,b的关系,画出关于a,b的不等式表示的平面区域,给函数与几何意义,结合图象求出其取值范围.解答:解:由导函数的图形知,x∈(﹣2,0)时,f′(x)<0;x∈(0,+∞)时,f′(x)>0∴f(x)在(﹣2,0)上单调递减,在(0,+∞)上单调递增;∵f(2a+b)<1∴﹣2<2a+b<4∵a>0,b>0∴a,b满足的可行域为表示点(a,b)与(﹣3,﹣3)连线的斜率的2倍由图知当点为(2.,0)时斜率最小,当点为(0,4)时斜率最大所以的取值范围为故选A点评:利用导函数求函数的单调性问题,应该先判断出导函数的符号,当导函数大于0对应函数单调递增;当导函数小于0,对应函数单调递减.二.解答题(共15小题)16.已知m∈R,函数f(x)=x2﹣m x,g(x)=lnx.(1)当x∈[1,2]时,如果函数f(x)的最大值为f(1),求m的取值范围;(2)若对有意义的任意x,不等式f(x)>g(x)恒成立,求m的取值范围;(3)当m在什么范围内取值时,方程f(x)=g(x)分别无实根?只有一实根?有两个不同实根?考点:导数在最大值、最小值问题中的应用;利用导数研究函数的极值.专题:计算题;压轴题.分析:(1)本问题求出函数的最值代入已知最大值为f(1),即可解得参数m的值,(2)本题恒成立问题转化为函数的最值来解答,具体方法是由f(x)>g(x)等价于x2﹣mx>lnx,即,构造出函数,利用导数工具可以求解.(3)我们对本题可以这样处理,想根据函数y=x2,y=mx,y=lnx的图象的增减性,判断猜测出参数m取值时分别对应方程的根的情况,然后来证明这个结论.证明时可利用新构造的函数h(x)=f(x)﹣g(x),利用导数以及函数的单调性,求出函数的最值来判断根x0的性质以辨别是否存在这个根.解答:解:(1)函数f(x)=x2﹣mx的图象开口向上,函数在x=1或x=2处取得最大值,则f(1)≥f(2),1﹣m≥4﹣2m,得:m≥3.(2)f(x)>g(x)等价于x2﹣mx>lnx,其中x>0,即:由,令,得,当x=1时t′(x)=0,当x∈(0,1)时t′(x)<0;当x∈(1,+∞)时t′(x)>0,m<t(x)min=t(1)=1,∴m<1.(3)设h(x)=f(x)﹣g(x)=x2﹣mx﹣lnx,其中x>0.观察得当m=1时,方程f(x)=g(x)即为:x2﹣x﹣lnx=0的一个根为x=1.猜测当m<1,m=1,m>1时方程分别无根,只有一个根,有且只有两个根.证明:∵h′(x)==0,等价于2x2﹣mx﹣1=0此方程有且只有一个正根为,且当x∈(0,x0)时,h′(x)<0;当x∈(x0,+∞)时,h′(x)>0,函数只有一个极值h(x)min=h(x0)=x02﹣mx0﹣lnx0.1°当m<1时,由(2)得f(x)>g(x)恒成立,方程无解.2°当m=1时,x0=1,h(x)min=h(1)=0,则h(x)≥h(x)min=0,当且仅当x=1时,h(x)=0,此时只有一个根x=1.3°当m>1时,,关于m在(1,+∞)上递增,∴x0∈(1,+∞)时lnx0>0,∵m>1⇒1<m2⇒8<8m2⇒m2+8<9m2⇒⇒⇒⇒x0<m.∴h(x)min=h(x0)=x02﹣mx0﹣lnx0=x0(x0﹣m)﹣lnx0<0.证毕点评:本题考查二次函数在定区间上的最值问题,函数类型简单,是一个二次函数,第一问的设计很容易,后面两问的综合性较强,对学生的逻辑思维能力,运算能力有很好的锻炼价值,本题第二小题是一个恒成立的问题,求参数的范围,一般转化最值问题来求解,本题第三问也是构造函数来解答,转化为利用导数研究新构造的函数的单调性求出函数的最值,结合最值来判断根的存在与否.本题对运算能力有一定的要求,解题时一定要严谨.考查的思想方法有分类讨论,构造函数等方法思想.17.设函数h(x)=x2,φ(x)=2elnx(e为自然对数的底).(1)求函数F(x)=h(x)﹣φ(x)的极值;(2)若存在常数k和b,使得函数f(x)和g(x)对其定义域内的任意实数x分别满足f(x)≥kx+b和g(x)≤kx+b,则称直线l:y=kx+b为函数f(x)和g(x)的“隔离直线”.试问:函数h(x)和φ(x)是否存在“隔离直线”?若存在,求出“隔离直线”方程;若不存在,请说明理由.考点:导数在最大值、最小值问题中的应用;利用导数研究函数的极值.专题:计算题;压轴题;新定义;数形结合;转化思想.分析:(1)根据所给的函数,对函数求导,使得导函数等于0,验证可能的极值点两侧导函数的符合相反,得到函数存在极值.(2)由题意知若存在隔离直线,则对其定义域内的任意实数x分别满足f(x)≥kx+b和g(x)≤kx+b,两个函数的图象有公共点,设出直线的方程,根据函数的恒成立得到k的值,求出函数的极大值,得到结论.解答:解:(1)∵F(x)=h(x)﹣φ(x)=x2﹣2elnx(x>0)∴当x=时,F′(x)=0,当0<x<时,F′(x)<0,当x>时,F′(x)<0∴F(x)在处取得极小值0.(2)由(1)知当x>0时,h(x)≥φ(x),若存在隔离直线,则对其定义域内的任意实数x分别满足f(x)≥kx+b和g(x)≤kx+b,∵两个函数的图象有公共点,∴隔离直线必过(,e)设直线的方程是y﹣e=k(x﹣)∴h(x)≥kx+e﹣k恒成立,∴△≤0∴k=2令G(x)=φ(x)﹣2x+e对函数求导有当x>时,F′(x)<0,当0<x<时,F′(x)<0∴当时有G(x)的极大值为0,也就是最大值为0.从而G(x)≤0,即恒成立.故函数h(x)和φ(x)存在唯一的“隔离直线”.点评:本题考查导数在最大值与最小值问题中的应用,求解本题关键是根据导数研究出函数的单调性,由最值的定义得出函数的最值,本题中第一小题是求出函数的极值,第二小题是一个求函数的最值的问题,此类题运算量较大,转化灵活,解题时极易因为变形与运算出错,故做题时要认真仔细.18.函数f(x)=x2+bln(x+1)﹣2x,b∈R.(1)当b=1时,求曲线f(x)在点(0,f(0))处的切线方程;(2)当时,求函数f(x)在(﹣1,1]上的最大值;(ln2≈0.69)(3)设g(x)=f(x)+2x,若b≥2,求证:对任意x1,x2∈(﹣1,+∞),且x1≥x2,都有g(x1)﹣g(x2)≥2(x1﹣x2).考点:导数在最大值、最小值问题中的应用;利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.专题:压轴题.分析:(1)把b=1代入解析式,使得解析式具体,对于函数求导利用导函数的几何意义即可求的;(2)把代入解析式,由函数求导得导函数,求出函数在定义域上的极值,在与区间端点值进行比较大小,进而求得函数在区间上的最值;(3)由于g(x)=f(x)+2x,由函数解析式求导得其导函数,利用导函数得到函数在区间上的单调性,进而得到要证明的不等式.解答:解:(1)当b=1时,f(x)=x2+ln(x+1)﹣2x定义域为(﹣1,+∞),,f′(0)=﹣1,又f(0)=0,故有直线的方程可知:曲线f(x)在点(0,f(0))出的切线方程为:y=﹣x,(2)当b=,求导得:,由f′(x)=0⇒,当x变化时,f′(x),f(x)的变化情况如下表:由上表可知:,,,所以,所以函数f(x)在(﹣1,1]上的最大值为:,(3)证明:∵f(x)=x2+bln(x+1)﹣2x∴=0.当且仅当2(x+1)=,即:b=2,且x=0时取等号,∴b≥2时,函数f(x)在(﹣1,+∞)内单调递增,从而对于任意x1,x2∈(﹣1,+∞)且x1≥x2,有f(x1)>f(x2),即g(x1)﹣2x1≥g(x2)﹣2x2∴g(x1)﹣g(x2)≥2(x1﹣x2)点评:此题考查了利用导数求函数在闭区间上的最值,还考查了导数的几何含义进而求出曲线上任意一点处的切线方程,还考查了利用均值不等式求解函数的最值.19.已知函数f(x)=ax+lnx,a∈R.(1)当a=﹣1时,求f(x)的最大值;(2)求证:;(3)对f(x)图象上的任意不同两点P1(x1,x2),P(x2,y2)(0<x1<x2),证明f(x)图象上存在点P0(x0,y0),满足x1<x0<x2,且f(x)图象上以P0为切点的切线与直线P1P2平行.考点:导数在最大值、最小值问题中的应用;利用导数研究函数的单调性.专题:综合题;压轴题;转化思想.分析:(1)当a=﹣1时,f(x)=﹣x+lnx,易求得f′(x),且f′(x)>0时,函数f(x)单调递增,f′(x)<0时,函数f(x)单调递减;故可求得f(x)的最大值.(2)由(1)知﹣x+lnx≤﹣1,∴lnx≤x﹣1,当取时,可得;把以上各式相加,可得证明.(3)直线P1P2的斜率k由P1,P2两点坐标可表示为;由(1)知﹣x+lnx≤﹣1,当且仅当x=1时取等号;可得+<﹣1,整理可得<,同理,由,得;所以P1P2的斜率,在x∈(x1,x2)上,有,可得结论.解答:解:(1)当a=﹣1时,f(x)=﹣x+lnx,∴,且x∈(0,1)时,f′(x)>0,函数f(x)单调递增;x∈(1,+∞)时,f′(x)<0,函数f(x)单调递减.故当x=1时,f(x)取最大值f(1)=﹣1.(2)由(1)知﹣x+lnx≤﹣1,∴lnx≤x﹣1,取,可得;以上各式相加得:ln(n+1)<1+++…+(n∈N+)(3)直线P1P2的斜率为;由(1)知﹣x+lnx≤﹣1,当且仅当x=1时取等号,∴,同理,由,可得;故P1P2的斜率,又在x∈(x1,x2)上,,所以f(x)图象上存在点P0(x0,y0),满足x1<x0<x2,且f(x)图象上以P0为切点的切线与直线P1P2平行.点评:本题综合考查了利用导数研究曲线上过某点的切线方程,利用导数研究函数的单调区间以及根据函数的增减性得到函数的最值问题,也考查了利用函数证明不等式的问题,是较难的题目.20.已知函数(Ⅰ)若函数在区间()(其中m>0)上存在极值,求实数m的取值范围;(Ⅱ)如果当x≥1时,不等式恒成立,求实数k的取值范围;(Ⅲ)求证:[(n+1)!]2>(n+1)•e n﹣2(n∈N*).考点:导数在最大值、最小值问题中的应用;利用导数研究函数的极值.专题:计算题;证明题;压轴题.分析:(Ⅰ)求出函数的极值,在探讨函数在区间(m,m+)(其中a>0)上存在极值,寻找关于m的不等式,求出实数m的取值范围;(Ⅱ)如果当x≥1时,不等式恒成立,求出f(x)在x≥1时的最小值,把k分离出来,转化为求k的范围.(Ⅲ)借助于(Ⅱ)的结论根据叠加法证明不等式.解答:解:(Ⅰ)因为函数所以f′(x)=﹣.极值点为f′(x)=0解得x=1故m<1<m+,解得<m<1.即答案为<m<1.(Ⅱ)如果当x≥1时,f′(x)=﹣≤0故f(x)递碱.故f(x)≥f(1)=1又不等式恒成立,所以恒成立,所以k≤2证明:(Ⅲ)由(Ⅱ)知:恒成立,即令x=n(n+1),则所以,,,….叠加得:ln[1×22×32×…n2×(n+1)]×=则1×22×32×…n2×(n+1)>e n﹣2,所以:[(n+1)!]2>(n+1)•e n﹣2(n∈N*).点评:此题主要考查应用导数研究函数的极值最值问题,有关恒成立的问题一般采取分离参数,转化为求函数的最值问题,体现了转化的思想方法,证明数列不等式,借助函数的单调性或恒成立问题加以证明.属难题.21.设函数.(p是实数,e是自然对数的底数)(1)若直线l与函数f(x),g(x)的图象都相切,且与函数f(x)的图象相切于点(1,0),求p的值;(2)若f(x)在其定义域内为单调函数,求p的取值范围;(3)若在[1,e]上至少存在一点x0,使得f(x0)>g(x0)成立,求p的取值范围.考点:导数在最大值、最小值问题中的应用;利用导数研究函数的单调性.专题:计算题;综合题;压轴题.分析:(1)由“函数f(x)的图象相切于点(1,0)求得切线l的方程,再由“l与g(x)图象相切”得到(p﹣1)x2﹣(p﹣1)x﹣e=0由判别式求解即可.(2)求导f’(x)=,要使“f(x)为单调增函数”,转化为“f’(x)≥0恒成立”,再转化为“p≥=恒成立”,由最值法求解.同理,要使“f(x)为单调减函数”,转化为“f’(x)≤0恒成立”,再转化为“p≤=恒成立”,由最值法求解,最后两个结果取并集.(3)因为“在[1,e]上至少存在一点x0,使得f(x0)>g(x0)成立”,要转化为“f(x)max>g(x)min”解决,易知g(x)=在[1,e]上为减函数,所以g(x)∈[2,2e],①当p≤0时,f(x)在[1,e]上递减;②当p≥1时,f(x)在[1,e]上递增;③当0<p<1时,两者作差比较.解答:解:(1)∵f′(x)=p+,∴f’(1)=2(p﹣1),设直线l:y=2(p﹣1)(x﹣1),∵l与g(x)图象相切,∴y=2(p﹣1)(x﹣1),得(p﹣1)(x﹣1)=,即(p﹣1)x2﹣(p﹣1)x﹣e=0,y=当p=1时,方程无解;当p≠1时由△=(p﹣1)2﹣4(p﹣1)(﹣e)=0,得p=1﹣4e,综上,p=1﹣4e(2)f’(x)=,要使“f(x)为单调增函数”,转化为“f’(x)≥0恒成立”,即p≥=恒成立,又,所以当p≥1时,f(x)在(0,+∞)为单调增函数.同理,要使“f(x)为单调减函数”,转化为“f’(x)≤0恒成立,再转化为“p≤=恒成立”,又,所以当p≤0时,f(x)在(0,+∞)为单调减函数.综上所述,f(x)在(0,+∞)为单调函数,p的取值范围为p≥1或p≤0(3)因g(x)=在[1,e]上为减函数,所以g(x)∈[2,2e]①当p≤0时,由(1)知f(x)在[1,e]上递减⇒f(x)max=f(1)=0<2,不合题意②当p≥1时,由(1)知f(x)在[1,e]上递增,f(1)<2,又g(x)在[1,e]上为减函数,故只需f(x)max>g(x)min,x∈[1,e],即:f(e)=p(e﹣)﹣2lne>2⇒p>.③当0<p<1时,因x﹣≥0,x∈[1,e]所以f(x)=p(x﹣)﹣2lnx≤(x﹣)﹣2lnx<2,不合题意综上,p的取值范围为(,+∞)点评:本题主要考查用导数法研究函数的单调性,基本思路是:当函数为增函数时,导数大于等于零;当函数为减函数时,导数小于等于零,已知单调性求参数的范围往往转化为求相应函数的最值问题.22.设函数.(1)试判断当x>0,g(x)与f(x)的大小关系;(2)求证:(1+1•2)(1+2•3)…[1+n(n+1)]>e2n﹣3(n∈N*);(3)设A(x1,y1)、B(x2,y2)(x1<x2)是函数y=g(x)的图象上的两点,且g′(x0)=(其中g′(x)为g(x)的导函数),证明:x0∈(x1,x2).考点:导数在最大值、最小值问题中的应用.专题:压轴题;导数的综合应用.分析:(1)欲求g(x)与f(x)的大小关系只需判断F(x)=g(x)﹣f(x)的正负,利用导数研究函数F(x)的最小值,使最小值与0比较即可;(2)由(1)知令x=n(n+1)(n∈N*),则,从而可证得结论;(3)根据,于是,,然后证明,等价于x1lnx2﹣x1lnx1﹣x2+x1<0,令h(x)=xlnx2﹣xlnx1﹣x2+x,利用导数研究最小值与0比较,对于同理可证,即可证得结论.解答:(1)解:设F(x)=g(x)﹣f(x)(x>0)则F′(x)=﹣由F′(x)=0得x=3当0<x<3时,F′(x)<0;当x>3时,F′(x)>0∴x=3时,F(x)取得最小值为F(3)=ln3﹣1>0∴F′(x)>0即g(x)>f(x)…(5分)(2)证明:由(1)知令x=n(n+1)(n∈N*),则…(7分)∴ln(1+1•2)+ln(1+2•3)+…+ln[1+n(n+1)]>(2﹣)+(2﹣)+…+[2﹣]=2n﹣3[++…+]=2n﹣3(1﹣)>2n﹣3∴(1+1•2)(1+2•3)…[1+n(n+1)]>e2n﹣3…(10分)(3)证明:,于是,,以下证明等价于x1lnx2﹣x1lnx1﹣x2+x1<0.令h(x)=xlnx2﹣xlnx1﹣x2+x …(12分)则h'(x)=lnx2﹣lnx1,在上,h'(x)>0所以h(x)在(0,x2]上为增函数当x1<x2时h(x1)<h(x2)=0,即x1lnx2﹣x1lnx1﹣x2+x1<0从而x0>x1,得到证明.对于同理可证.所以x0∈(x1,x2).…(16分)点评:本题主要考查了利用导数研究函数的最值,以及利用导数证明不等式,同时考查了转化的思想,以及考查计算能力,属于难题.23.已知函数f(x)=(x2﹣3x+3)e x的定义域为[﹣2,t],其中常数t>﹣2,e为自然对数的底数.(1)若函数f(x)是增函数,求实数t的取值范围;(2)求证:f(t)>13e﹣2;(3)设f'(x)表示函数f(x)的导函数,,求函数g(x)在区间(﹣2,t)内的零点个数.考点:导数在最大值、最小值问题中的应用.专题:综合题;压轴题;探究型;数形结合;分类讨论;转化思想.分析:(1)若函数f(x)是增函数,则必要导数f'(x)≥0,由此不等式即可解出实数t的取值范围;(2)由题意求证f(t)>13e﹣2,可解出函数f(x)在区间[﹣2,+∞)上的最小值,由此最小值与13e﹣2作比较即可证明此不等式;(3)由题意先解出的解析式,由所得的解析式,及零点判定定理知,可研究此函数在区间(﹣2,t)两个端点值的符号及区间内函数最值的符号,由定理判断出零点个数即可解答:解:(1)f(x)=(x2﹣3x+3)e x,f'(x)=(x2﹣x)e x=x(x﹣1)e x,…(1分)f'(x)≥0⇔x≥1或x≤0,…(2分)若函数f(x)是定义域[﹣2,t]上的增函数,知t的取值范围是(﹣2,0].…(4分)(2)由(1)知函数f(x)的增区间为[﹣2,0]与[1,+∞),减区间为[0,1],从而函数f(x)在区间[﹣2,+∞)上有唯一的极小值f(1)=e,…(6分)但f(﹣2)=13e﹣2<e(∵,故函数f(x)在区间[﹣2,+∞)上的最小值为f(﹣2)=13e﹣2,…(8分)因为t>﹣2,所以f(t)>f(﹣2)=13e﹣2.…(9分)(3)函数g(x)的图象是开口向上、对称轴为的抛物线,且,,.函数g(x)在区间(﹣2,t)内有两个零点;…(9分)当﹣2<t≤1时,g(﹣2)>0,g(t)≤0,又由可知,函数g(x)在区间(﹣2,t)内只有一个零点;…(11分)当t≥4时,g(﹣2)<0,g(t)>0,可知,函数g(x)在区间(﹣2,t)内只有一个零点.…(13分)综上,当1<t<4时,函数g(x)在区间(﹣2,t)内有两个零点;当﹣2<t≤1或t≥4时,函数g(x)在区间(﹣2,t)内只有一个零点.(14分)点评:本题考查导数在最值问题中的运用,利用导数研究单调性,再利用单调性求最值,这是导数的重要运用,解答本题,第一小题关键是理解导数与函数单调性的关系,第二小题关键是将证明不等式问题转化为利用导数解出函数的最值,从而证明不等式,第三题解题的关键是理解零点定理及函数区间内函数最值的判断,本题考查了转化的思想分类讨论思想等,由于本题运算量较大,易因运算导致错误,解题时要严谨24.已知函数f(x)=(a﹣1)lnx+ax2.(1)讨论函数y=f(x)的单调性;(2)求证:+++…+>(n≥2,n∈N+);(3)当a=0时,求证:f(x)≤﹣.考点:导数在最大值、最小值问题中的应用;利用导数研究函数的单调性.专题:压轴题;导数的综合应用.分析:(1)先求导得f′(x),通过对a分类讨论即可得出;(2)利用(1)的结论,取a=时,当x>1时,f(x)单调递增,f(x)>f(1),从而得出x2>lnx>0,取倒数得,令x=k,再利用放缩和裂项求和即可得出;(3)要证⇔⇔(xlnx)min≥,利用导数分别求出其极值即最值即可证明.解答:解:(1)f(x)=(a﹣1)lnx+ax2,定义域为(0,+∞).∵.当a≥1时,f'(x)>0,故f(x)在(0,+∞)单调递增;当a≤0时,f'(x)<0,故f(x)在(0,+∞)单调递减;当0<a<1时,令f'(x)=0,解得.则当时,f'(x)<0;时,f'(x)>0.故f(x)在单调递减,在单调递增.(2)当时,,由(1)知,时,y=f(x)递增,所以x>1时,∵x>1,∴x2>lnx>0,∴,,(3)就是要证,即需证.令g(x)=xlnx,则由g'(x)=lnx+1=0,得,当时g(x)递增,当时g(x)递减,所以g(x)的最小值为.设,。
高考数学解析几何压轴题
2.圆锥曲线1.(2017·福建厦门第一中学期中)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)右焦点F 是抛物线C 2:y 2=4x 的焦点,M 是C 1与C 2在第一象限内的交点,且||MF =53. (1)求C 1的方程;(2)已知菱形ABCD 的顶点A ,C 在椭圆C 1上,顶点B ,D 在直线7x -7y +1=0上,求直线AC 的方程. 解 (1)设M (x 1,y 1)(x 1>0,y 1>0),椭圆的左、右焦点分别为F 1,F 2,由题意知点F 2即为点F (1,0).由抛物线的定义,|MF 2|=53⇒x 1+1=53⇒x 1=23, 因为y 21=4x 1, 所以y 1=263,即M ⎝⎛⎭⎫23,263, 所以|MF 1|=⎝⎛⎭⎫23+12+⎝⎛⎭⎫2632=73,由椭圆的定义得2a =|MF 1|+|MF 2|=73+53=4⇒a =2, 所以b =a 2-c 2=3,所以椭圆C 1的方程为x 24+y 23=1. (2)因为直线BD 的方程为7x -7y +1=0,四边形ABCD 为菱形,所以AC ⊥BD ,设直线AC 的方程为y =-x +m ,代入椭圆C 1的方程,得7x 2-8mx +4m 2-12=0,由题意知,Δ=64m 2-28(4m 2-12)>0⇔-7<m <7.设A (x 1,y 1),C (x 2,y 2),则x 1+x 2=8m 7,y 1+y 2=2m -(x 1+x 2)=-8m 7+2m =6m 7, 所以AC 中点的坐标为⎝⎛⎭⎫4m 7,3m 7,由四边形ABCD 为菱形可知,点⎝⎛⎭⎫4m 7,3m 7在直线BD 上,所以7·4m 7-7·3m 7+1=0⇒m =-1∈()-7,7. 所以直线AC 的方程为y =-x -1,即x +y +1=0.2.(2017·湖南师大附中月考)已知椭圆C 的中心在原点,离心率为22,其右焦点是圆E :(x -1)2+y 2=1的圆心. (1)求椭圆C 的标准方程;(2)如图,过椭圆C 上且位于y 轴左侧的一点P 作圆E 的两条切线,分别交y 轴于点M ,N .试推断是否存在点P ,使|MN |=143?若存在,求出点P 的坐标;若不存在,请说明理由.解 (1)设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),半焦距为c , 因为椭圆的右焦点是圆E 的圆心,所以c =1, 因为椭圆的离心率为22,则c a =22,即a =2c =2, 从而b 2=a 2-c 2=1,故椭圆C 的方程为x 22+y 2=1. (2)设点P (x 0,y 0)(x 0<0),M (0,m ),N (0,n ),则直线PM 的方程为y =y 0-m x 0x +m , 即(y 0-m )x -x 0y +mx 0=0.因为圆心E (1,0)到直线PM 的距离为1, 即|y 0-m +x 0m |(y 0-m )2+x 20=1,即(y 0-m )2+x 20=(y 0-m )2+2x 0m (y 0-m )+x 20m 2,即(x 0-2)m 2+2y 0m -x 0=0,同理可得,(x 0-2)n 2+2y 0n -x 0=0.由此可知,m ,n 为方程(x 0-2)x 2+2y 0x -x 0=0的两个实根,所以m +n =-2y 0x 0-2,mn =-x 0x 0-2, |MN |=|m -n |=(m +n )2-4mn =4y 20(x 0-2)2+4x 0x 0-2=4x 20+4y 20-8x 0(x 0-2)2. 因为点P (x 0,y 0)在椭圆C 上,则x 202+y 20=1, 即y 20=1-x 202, 则|MN |=2x 20-8x 0+4(x 0-2)2=2(x 0-2)2-4(x 0-2)2=2-4(x 0-2)2, 令2-4(x 0-2)2=143, 则(x 0-2)2=9,因为x 0<0,则x 0=-1,y 20=1-x 202=12,即y 0=±22, 故存在点P ⎝⎛⎭⎫-1,±22满足题设条件. 3.已知点P 是椭圆C 上任意一点,点P 到直线l 1:x =-2的距离为d 1,到点F (-1,0)的距离为d 2,且d 2d 1=22,直线l 与椭圆C 交于不同的两点A ,B (A ,B 都在x 轴上方),且∠OF A +∠OFB =180°.(1)求椭圆C 的方程;(2)当A 为椭圆与y 轴正半轴的交点时,求直线l 的方程;(3)对于动直线l ,是否存在一个定点,无论∠OF A 如何变化,直线l 总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.解 (1)设P (x ,y ),则d 1=|x +2|,d 2=(x +1)2+y 2, ∴d 2d 1=(x +1)2+y 2|x +2|=22,化简得,x 22+y 2=1, ∴椭圆C 的方程为x 22+y 2=1. (2)A (0,1),F (-1,0),∴k AF =1-00-(-1)=1, 又∵∠OF A +∠OFB =180°,∴k BF =-1,直线BF 的方程为y =-(x +1)=-x -1,代入x 22+y 2=1,解得⎩⎪⎨⎪⎧ x =0y =-1(舍),⎩⎨⎧ x =-43,y =13.∴B ⎝⎛⎭⎫-43,13, k AB =1-130-⎝⎛⎭⎫-43=12, ∴直线AB 的方程为y =12x +1,即直线l 的方程为x -2y +2=0. (3)方法一 ∵∠OF A +∠OFB =180°,∴k AF +k BF =0.设A (x 1,y 1),B (x 2,y 2),直线AB 方程为y =kx +b ,将直线AB 的方程y =kx +b 代入x 22+y 2=1,得⎝⎛⎭⎫k 2+12x 2+2kbx +b 2-1=0.∴x 1+x 2=-2kb k 2+12,x 1x 2=b 2-1k 2+12, ∴k AF +k BF =y 1x 1+1+y 2x 2+1=kx 1+b x 1+1+kx 2+b x 2+1=(kx 1+b )(x 2+1)+(kx 2+b )(x 1+1)(x 1+1)(x 2+1)=0, ∴(kx 1+b )(x 2+1)+(kx 2+b )(x 1+1)=2kx 1x 2+(k +b )(x 1+x 2)+2b=2k ×b 2-1k 2+12-(k +b )×2kb k 2+12+2b =0, ∴b -2k =0,∴直线AB 的方程为y =k (x +2),∴直线l 总经过定点M (-2,0),方法二 由于∠OF A +∠OFB =180°,∴点B 关于x 轴的对称点B 1在直线AF 上.设A (x 1,y 1),B (x 2,y 2),B 1(x 2,-y 2),直线AF 方程为y =k (x +1).代入x 22+y 2=1,得⎝⎛⎭⎫k 2+12x 2+2k 2x +k 2-1=0. ∴x 1+x 2=-2k 2k 2+12,x 1x 2=k 2-1k 2+12, ∴k AB =y 1-y 2x 1-x 2, 直线AB 的方程为y -y 1=y 1-y 2x 1-x 2(x -x 1), 令y =0,得x =x 1-y 1(x 1-x 2)y 1-y 2=x 2y 1-x 1y 2y 1-y 2. 又∵y 1=k (x 1+1),-y 2=k (x 2+1),∴x =x 2y 1-x 1y 2y 1-y 2=x 2×k (x 1+1)+x 1×k (x 2+1)k (x 1+1)+k (x 2+1)=2x 1x 2+x 1+x 2x 1+x 2+2=2×k 2-1k 2+12-2k 2k 2+122-2k 2k 2+12=-2. ∴直线l 总经过定点M (-2,0).4.(2017·广西南宁二中、柳州高中、玉林高中联考)已知抛物线y 2=4x 的焦点为F ,过点F 的直线交抛物线于A ,B 两点.(1)若AF →=3FB →,求直线AB 的斜率;(2)设点M 在线段AB 上运动,原点O 关于点M 的对称点为C ,求四边形OACB 面积的最小值.解 (1)依题意可设直线AB :x =my +1,设A (x 1,y 1),B (x 2,y 2),将直线AB 与抛物线联立⎩⎪⎨⎪⎧ x =my +1y 2=4x⇒y 2-4my -4=0, 由根与系数的关系得⎩⎪⎨⎪⎧y 1+y 2=4m ,y 1y 2=-4, ∵AF →=3FB →,∴y 1=-3y 2,∴m 2=13,∴直线AB 的斜率为3或- 3.(2)S 四边形OACB =2S △AOB =2·12||OF ||y 1-y 2=||y 1-y 2=(y 1+y 2)2-4y 1y 2=16m 2+16≥4, 当m =0时,四边形OACB 的面积最小,最小值为4.5.(2017·惠州模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-1,0),F 2(1,0),点A ⎝⎛⎭⎫1,22在椭圆C 上.(1)求椭圆C 的标准方程;(2)是否存在斜率为2的直线,使得当直线与椭圆C 有两个不同的交点M ,N 时,能在直线y =53上找到一点P ,在椭圆C 上找到一点Q ,满足PM →=NQ →?若存在,求出直线的方程;若不存在,说明理由.解 (1)设椭圆C 的焦距为2c ,则c =1,因为A ⎝⎛⎭⎫1,22在椭圆C 上,所以2a =||AF 1+||AF 2=22, 因此a =2,b 2=a 2-c 2=1,故椭圆C 的方程为x 22+y 2=1. (2)椭圆C 上不存在这样的点Q ,理由如下:设直线的方程为y =2x +t ,设M (x 1,y 1),N (x 2,y 2),P ⎝⎛⎭⎫x 3,53,Q (x 4,y 4),MN 的中点为D (x 0,y 0), 由⎩⎪⎨⎪⎧y =2x +t ,x 22+y 2=1,消去x ,得9y 2-2ty +t 2-8=0, 所以y 1+y 2=2t 9,且Δ=4t 2-36(t 2-8)>0, 故y 0=y 1+y 22=t 9且-3<t <3. 由PM →=NQ →,得⎝⎛⎭⎫x 1-x 3,y 1-53=(x 4-x 2,y 4-y 2), 所以有y 1-53=y 4-y 2,y 4=y 1+y 2-53=29t -53. (也可由PM →=NQ →知四边形PMQN 为平行四边形而D 为线段MN 的中点,因此,D 也为线段PQ 的中点,所以y 0=53+y 42=t 9,可得y 4=2t -159.) 又-3<t <3,所以-73<y 4<-1,与椭圆上点的纵坐标的取值范围[-1,1]矛盾. 因此点Q 不在椭圆上,即椭圆上不存在满足题意的Q 点.6.(2017·河南开封月考)如图,已知圆E :(x +3)2+y 2=16,点F (3,0),P 是圆E 上任意一点,线段PF 的垂直平分线和半径PE 相交于Q .(1)求动点Q 的轨迹Г的方程;(2)已知A ,B ,C 是轨迹Г的三个动点,点A 在一象限,B 与A 关于原点对称,且|CA |=|CB |,问△ABC 的面积是否存在最小值?若存在,求出此最小值及相应直线AB 的方程;若不存在,请说明理由.解 (1)∵Q 在线段PF 的垂直平分线上,∴|QP |=|QF |,得|QE |+|QF |=|QE |+|QP |=|PE |=4,又|EF |=23<4,∴Q 的轨迹是以E ,F 为焦点,长轴长为4的椭圆,∴Г:x 24+y 2=1. (2)由点A 在第一象限,B 与A 关于原点对称,设直线AB 的方程为y =kx (k >0),∵|CA |=|CB |,∴C 在AB 的垂直平分线上,∴直线OC 的方程为y =-1kx . ⎩⎪⎨⎪⎧ y =kx x 24+y 2=1⇒(1+4k 2)x 2=4,|AB |=2|OA |=2x 2+y 2=4k 2+14k 2+1,同理可得|OC |=2k 2+1k 2+4, S △ABC =12|AB |×|OC |=4(k 2+1)2(4k 2+1)(k 2+4)=4(k 2+1)(4k 2+1)(k 2+4), (4k 2+1)(k 2+4)≤4k 2+1+k 2+42=5(k 2+1)2,当且仅当k =1时取等号, ∴S △ABC ≥85. 综上,当直线AB 的方程为y =x 时,△ABC 的面积有最小值85.。
7.3 解析几何(压轴题)
7.3解析几何(压轴题)命题角度1曲线与轨迹问题高考真题体验·对方向1.(2017全国Ⅱ·20)设O为坐标原点,动点M在椭圆C:+y2=1上,过M作x轴的垂线,垂足为N,点P满足.(1)求点P的轨迹方程;Q在直线x=-3上,且=1.证明:过点P且垂直于OQ的直线l过C的左焦点F.P(x,y),M(x0,y0),则N(x0,0),=(x-x0,y),=(0,y0).由得x0=x,y0=y.因为M(x0,y0)在C上,所以=1.因此点P的轨迹方程为x2+y2=2.F(-1,0).设Q(-3,t),P(m,n),则=(-3,t),=(-1-m,-n),=3+3m-tn,=(m,n),=(-3-m,t-n).由=1得-3m-m2+tn-n2=1.又由(1)知m2+n2=2,故3+3m-tn=0.所以=0,即.又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线l过C的左焦点F.2.(2016全国Ⅲ·20)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点.(1)若F在线段AB上,R是PQ的中点,证明:AR∥FQ;(2)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.F.设l1:y=a,l2:y=b,则ab≠0,且A,B,P-,Q-,R-.记过A,B两点的直线为l,则l的方程为2x-(a+b)y+ab=0.由于F在线段AB上,故1+ab=0.记AR的斜率为k1,FQ的斜率为k2,则k1=----=-b=k2.所以AR∥FQ.l与x轴的交点为D(x1,0),则S△ABF=|b-a||FD|=|b-a|-,S△PQF=-.由题设可得|b-a|--,所以x1=0(舍去),x1=1.设满足条件的AB的中点为E(x,y).(x≠1).当AB与x轴不垂直时,由k AB=k DE可得-而=y,所以y2=x-1(x≠1).当AB与x轴垂直时,E与D重合.所以所求轨迹方程为y2=x-1.新题演练提能·刷高分1.(2018山西太原二模)已知以点C(0,1)为圆心的动圆C与y轴负半轴交于点A,其弦AB的中点D恰好落在x轴上.(1)求点B的轨迹E的方程;(2)过直线y=-1上一点P作曲线E的两条切线,切点分别为M,N.求证:直线MN过定点.B(x,y),则AB的中点D,y>0.∵C(0,1),则-,在☉C中,∵DC⊥DB,∴=0,∴-+y=0,即x2=4y(y>0).∴点B的轨迹E的方程为x2=4y(y>0).E的方程为x2=4y,设点P(t,-1),M(x1,y1),N(x2,y2).∵y=,∴y'=,∴过点M、N的切线方程分别为y-y1=(x-x1),y-y2=(x-x2).由4y1=,4y2=,上述切线方程可化为2(y+y1)=x1x,2(y+y2)=x2x.∵点P在这两条切线上,∴2(y1-1)=tx1,2(y2-1)=tx2,即直线MN的方程为2(y-1)=tx,故直线2(y-1)=tx过定点C(0,1).2.(2018广西梧州3月适应性测试)已知A(-2,0),B(2,0),直线PA的斜率为k1,直线PB的斜率为k2,且k1k2=-.(1)求点P的轨迹C的方程;(2)设F1(-1,0),F2(1,0),连接PF1并延长,与轨迹C交于另一点Q,点R是PF2中点,O是坐标原点,记△QF1O与△PF1R的面积之和为S,求S的最大值.设P(x,y),∵A(-2,0),B(2,0),∴k1=,k2=,-又k1k2=-,∴-=-,∴=1(x≠±2),∴轨迹C的方程为=1(x≠±2).(2)由O,R分别为F1F2,PF2的中点,故OR∥PF1,故△PF1R与△PF1O同底等高,故△△ ,S=△△=S△PQO,当直线PQ的斜率不存在时,其方程为x=-1,此时S△PQO=×1×--; 当直线PQ的斜率存在时,设其方程为y=k(x+1),设P(x1,y1),Q(x2,y2),显然直线PQ不与x轴重合,即k≠0;联立解得(3+4k2)x2+8k2x+4k2-12=0,Δ=144(k2+1)>0,--故|PQ|=|x1-x2|=-, 点O到直线PQ的距离d=,S=|PQ|d=6,令u=3+4k2∈(3,+∞),故S=6---,故S的最大值为.3.(2018甘肃兰州一模)已知圆C:(x+1)2+y2=8,过D(1,0)且与圆C相切的动圆圆心为P.(1)求点P的轨迹E的方程;(2)设过点C的直线l1交曲线E于Q,S两点,过点D的直线l2交曲线E于R,T两点,且l1⊥l2,垂足为W(Q,R,S,T为不同的四个点).①设W(x0,y0),证明:<1;②求四边形QRST的面积的最小值.r,由于D在圆内,圆P与圆C内切,则|PC|=2-r,|PD|=r,|PC|+|PD|=2>|CD|=2,由椭圆定义可知,点P的轨迹E是椭圆,a=,c=1,b=-=1,E的方程为+y2=1.(2),垂足W在以CD为直径的圆周上,则有=1,又因Q,R,S,T为不同的四个点,<1.l1或l2的斜率不存在,四边形QRST的面积为2.若两条直线的斜率都存在,设l1的斜率为k,则l1的方程为y=k(x+1),解方程组得(2k2+1)x2+4k2x+2k2-2=0,则|QS|=2,同理得|RT|=2,∴S QSRT=|QS|·|RT|=,当且仅当2k2+1=k2+2,即k=±1时等号成立.综上所述,当k=±1时,四边形QRST的面积取得最小值.4.(2018福建福州3月质检)设点A为圆C:x2+y2=4上的动点,点A在x轴上的投影为Q,动点M满足2,动点M的轨迹为E.(1)求E的方程;(2)设E与y轴正半轴的交点为B,过点B的直线l的斜率为k(k≠0),l与E交于另一点P.若以点B为圆心,以线段BP长为半径的圆与E有4个公共点,求k的取值范围.设点M(x,y),A(x1,y1),则Q(x1,0),因为2,所以2(x1-x,-y)=(0,-y1),所以---解得由于点A在圆C:x2+y2=4上,所以x2+4y2=4,所以点M的轨迹E的方程为+y2=1.(2)由(1)知,E的方程为+y2=1,因为直线l:y=kx+1(k≠0).由得(1+4k2)x2+8kx=0.设B(x1,y1),P(x2,y2),因此x1=0,x2=-,|BP|=|x1-x2|=,则点P的轨迹方程为x2+(y-1)2=, 由-得3y2+2y-5+=0(-1≤y≤1),(*)依题意得,(*)式关于y的方程在(-1,1)有两个不同的实数解,设f(x)=3x2+2x-5+(-1<x<1),因为函数f(x)的对称轴为x=-,要使函数f(x)的图象在(-1,1)与x轴有两个不同的交点, 则---整理得--即--所以解得k∈----,所以k的取值范围为----.命题角度2直线与圆锥曲线的位置关系高考真题体验·对方向1.(2018全国Ⅰ·19)设椭圆C:+y2=1的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).(1)当l与x轴垂直时,求直线AM的方程;为坐标原点,证明:∠OMA=∠OMB.F(1,0),l的方程为x=1.由已知可得,点A的坐标为或-.所以AM的方程为y=-x+或y=x-.l与x轴重合时,∠OMA=∠OMB=0°,当l与x轴垂直时,OM为AB的垂直平分线,所以∠OMA=∠OMB.当l与x轴不重合也不垂直时,设l的方程为y=k(x-1)(k≠0),A(x1,y1),B(x2,y2),则x1<,x2<,直线MA,MB的斜率之和为k MA+k MB=--,由y1=kx1-k,y2=kx2-k得k MA+k MB=---.将y=k(x-1)代入+y2=1得(2k2+1)x2-4k2x+2k2-2=0,所以,x1+x2=,x1x2=-.则2kx1x2-3k(x1+x2)+4k=--=0.从而k MA+k MB=0,故MA,MB的倾斜角互补,所以∠OMA=∠OMB.综上,∠OMA=∠OMB.2.(2018全国Ⅱ·19)设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B 两点,|AB|=8.(1)求l的方程.A,B且与C的准线相切的圆的方程.由题意得F(1,0),l的方程为y=k(x-1)(k>0).设A(x1,y1),B(x2,y2).由-得k2x2-(2k2+4)x+k2=0.Δ=16k2+16>0,故x1+x2=.所以|AB|=|AF|+|BF|=(x1+1)+(x2+1)=.由题设知=8,解得k=-1(舍去),k=1.因此l的方程为y=x-1.(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为y-2=-(x-3),即y=-x+5.设所求圆的圆心坐标为(x0,y0),则解得或-因此所求圆的方程为(x-3)2+(y-2)2=16或(x-11)2+(y+6)2=144.3.(2018全国Ⅲ·20)已知斜率为k的直线l与椭圆C:=1交于A,B两点,线段AB的中点为M(1,m)(m>0).(1)证明:k<-;(2)设F为C的右焦点,P为C上一点,且=0.证明:||,||,||成等差数列,并求该数列的公差.A(x1,y1),B(x2,y2),则=1,=1.两式相减,并由--=k得·k=0.由题设知=1,=m,于是k=-.①由题设得0<m<,故k<-.F(1,0).设P(x3,y3),则(x3-1,y3)+(x1-1,y1)+(x2-1,y2)=(0,0).由(1)及题设得x3=3-(x1+x2)=1,y3=-(y1+y2)=-2m<0.又点P在C上,所以m=,从而P-,||=.于是||=-=--=2-.同理||=2-.所以||+||=4-(x1+x2)=3.故2||=||+||,则||,||,||成等差数列,设该数列的公差为d,则2|d|=|||-|||=|x1-x2|=-.②将m=代入①得k=-1.所以l的方程为y=-x+,代入C的方程,并整理得7x2-14x+=0.故x1+x2=2,x1x2=,代入②解得|d|=.所以该数列的公差为或-.4.(2017全国Ⅲ·20)已知抛物线C:y2=2x,过点(2,0)的直线l交C于A,B两点,圆M是以线段AB 为直径的圆.(1)证明:坐标原点O在圆M上;过点P(4,-2),求直线l与圆M的方程.A(x1,y1),B(x2,y2),l:x=my+2.由可得y2-2my-4=0,则y1y2=-4.又x1=,x2=,故x1x2==4.因此OA的斜率与OB的斜率之积为-=-1,所以OA⊥OB.故坐标原点O在圆M 上.(1)可得y1+y2=2m,x1+x2=m(y1+y2)+4=2m2+4.故圆心M的坐标为(m2+2,m),圆M的半径r=.由于圆M过点P(4,-2),因此=0,故(x1-4)(x2-4)+(y1+2)(y2+2)=0,即x1x2-4(x1+x2)+y1y2+2(y1+y2)+20=0.由(1)可得y1y2=-4,x1x2=4.所以2m2-m-1=0,解得m=1或m=-.当m=1时,直线l的方程为x-y-2=0,圆心M的坐标为(3,1),圆M的半径为圆M的方程为(x-3)2+(y-1)2=10.当m=-时,直线l的方程为2x+y-4=0,圆心M的坐标为-,圆M的半径为,圆M的方程为-.5.(2017北京·18)已知抛物线C:y2=2px过点P(1,1).过点作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP,ON交于点A,B,其中O为原点.(1)求抛物线C的方程,并求其焦点坐标和准线方程;(2)求证:A为线段BM的中点.C:y2=2px过点P(1,1),得p=.所以抛物线C的方程为y2=x.抛物线C的焦点坐标为,准线方程为x=-.,设直线l的方程为y=kx+(k≠0),l与抛物线C的交点为M(x1,y1),N(x2,y2).由得4k2x2+(4k-4)x+1=0.则x1+x2=-,x1x2=.因为点P的坐标为(1,1),所以直线OP的方程为y=x,点A的坐标为(x1,x1),直线ON的方程为y=x,点B的坐标为.因为y1+-2x1=-=-=-=--=0,所以y1+=2x1.故A为线段BM的中点.6.(2017天津·19)设椭圆=1(a>b>0)的左焦点为F,右顶点为A,离心率为,已知A是抛物线y2=2px(p>0)的焦点,F到抛物线的准线l的距离为.(1)求椭圆的方程和抛物线的方程;(2)设l上两点P,Q关于x轴对称,直线AP与椭圆相交于点B(B异于点A),直线BQ与x轴相交于点D.若△APD的面积为,求直线AP的方程.设F的坐标为(-c,0).依题意,=a,a-c=,解得a=1,c=,p=2,于是b2=a2-c2=.所以,椭圆的方程为x2+=1,抛物线的方程为y2=4x.(2)设直线AP的方程为x=my+1(m≠0),与直线l的方程x=-1联立,可得点P--,故Q-.将x=my+1与x2+=1联立,消去x,整理得(3m2+4)y2+6my=0,解得y=0或y=-.由点B异于点A,可得点B--.由Q-,可得直线BQ的方程为--(x+1)---=0,令y=0,解得x=-,故D-.所以|AD|=1--.又因为△APD的面积为,故,整理得3m2-2|m|+2=0,解得|m|=,所以m=±.所以,直线AP的方程为3x+y-3=0或3x-3=0.新题演练提能·刷高分1.(2018河北唐山一模)已知椭圆Γ:=1(a>b>0)的左焦点为F,上顶点为A,长轴长为2,B为直线l:x=-3上的动点,M(m,0),AM⊥BM.当AB⊥l时,M与F重合.(1)求椭圆Γ的方程;BM交椭圆Γ于P,Q两点,若AP⊥AQ,求m的值.依题意得A(0,b),F(-c,0),当AB⊥l时,B(-3,b),=-1,由AF⊥BF,得k AF·k BF=-又b2+c2=6,解得c=2,b=.所以,椭圆Γ的方程为=1.(2)由(1)得A(0,),依题意,显然m≠0,所以=-,又AM⊥BM,所以k BM=,所以直线BM的方程为y=(x-m),设P(x1,y1),Q(x2,y2).-联立有(2+3m2)x2-6m3x+3m4-12=0,x1+x2=,x1x2=-.|PM|·|QM|=|(x1-m)(x2-m)|=|x1x2-m(x1+x2)+m2|=-=-,|AM|2=2+m2,由AP⊥AQ得,|AM|2=|PM|·|QM|,所以-=1,解得m=±1.2.(2018河南郑州一模)已知圆C:x2+y2+2x-2y+1=0和抛物线E:y2=2px(p>0),圆心C到抛物线焦点F的距离为.(1)求抛物线E的方程;(2)不过原点的动直线l交抛物线于A,B两点,且满足OA⊥OB.设点M为圆C上任意一动点,求当动点M到直线l的距离最大时的直线l的方程.解(1)C:x2+y2+2x-2y+1=0可化为(x+1)2+(y-1)2=1,则圆心C为(-1,1).∵F,0,∴|CF|=-,解得p=6.∴抛物线的方程为y2=12x.(2)设直线l为x=my+t(t≠0),A(x1,y1),B(x2,y2).联立可得y2-12my-12t=0.∴y1+y2=12m,y1y2=-12t.∵OA⊥OB,∴x1x2+y1y2=0,即(m2+1)y1y2+mt(y1+y2)+t2=0.整理可得t2-12t=0,∵t≠0,∴t=12.∴直线l的方程为x=my+12,故直线l过定点P(12,0).∴当CN⊥l时,即动点M经过圆心C(-1,1)时到动直线l的距离取得最大值.=-,∴m=,k MP=k CP=---此时直线l的方程为x=y+12,即为13x-y-156=0.3.(2018甘肃第一次诊断性考试)椭圆E:=1(a>b>0)的左、右焦点分别为F1,F2,过F2作垂直于x轴的直线l与椭圆E在第一象限交于点P,若|PF1|=5,且3a=b2.(1)求椭圆E的方程;(2)A,B是椭圆C上位于直线l两侧的两点.若直线AB过点(1,-1),且∠APF2=∠BPF2,求直线AB 的方程.由题意可得|PF2|==3,因为|PF1|=5,由椭圆的定义得a=4,所以b2=12,所以椭圆E的方程为=1.(2)易知点P的坐标为(2,3).因为∠APF2=∠BPF2,所以直线PA,PB的斜率之和为0.设直线PA的斜率为k,则直线PB的斜率为-k,设A(x1,y1),B(x2,y2),则直线PA的方程为y-3=k(x-2),由--可得(3+4k2)x2+8k(3-2k)x+4(3-2k)2-48=0,∴x1+2=-.同理,直线PB的方程为y-3=-k(x-2),可得x2+2=---,∴x1+x2=-,x1-x2=-,k AB=--------,∴满足条件的直线AB的方程为y+1=(x-1),即为x-2y-3=0.命题角度3圆锥曲线的最值、范围问题高考真题体验·对方向1.(2017山东·21)在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的离心率为,焦距为2.(1)求椭圆E的方程.(2)如图,动直线l:y=k1x-交椭圆E于A,B两点,C是椭圆E上一点,直线OC的斜率为k2,且k1k2=,M是线段OC延长线上一点,且|MC|∶|AB|=2∶3,☉M的半径为|MC|,OS,OT是☉M的两条切线,切点分别为S,T,求∠SOT的最大值并求取得最大值时直线l的斜率.由题意知e=,2c=2,所以a=,b=1,因此椭圆E的方程为+y2=1.(2)设A(x1,y1),B(x2,y2),联立方程-得(4+2)x2-4k1x-1=0,由题意知Δ>0,且x1+x2=,x1x2=-.所以|AB|=|x1-x2|=.由题意可知圆M的半径r为r=|AB|=.由题设知k1k2=,所以k2=,因此直线OC的方程为y=x.联立方程得x2=,y2=,因此|OC|=.由题意可知sin=,而=,令t=1+2,则t>1,∈(0,1),因此--=--≥1,当且仅当,即t=2时等号成立,此时k1=±,所以sin ,因此.所以∠SOT最大值为.综上所述:∠SOT的最大值为,取得最大值时直线l的斜率为k1=±.2.(2016全国Ⅱ·20)已知椭圆E:=1的焦点在x轴上,A是E的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(1)当t=4,|AM|=|AN|时,求△AMN的面积;2|AM|=|AN|时,求k的取值范围.设M(x1,y1),则由题意知y1>0.当t=4时,E的方程为=1,A(-2,0).由已知及椭圆的对称性知,直线AM的倾斜角为.因此直线AM的方程为y=x+2.将x=y-2代入=1得7y2-12y=0.解得y=0或y=,所以y1=.因此△AMN的面积S△AMN=2×.(2)由题意t>3,k>0,A(-,0).将直线AM的方程y=k(x+)代入=1得(3+tk2)x2+2·tk2x+t2k2-3t=0.由x1·(-)=-得x1=-,故|AM|=|x1+.由题设,直线AN的方程为y=-(x+),故同理可得|AN|=.由2|AM|=|AN|得,即(k3-2)t=3k(2k-1).当k=时上式不成立,因此t=--.t>3等价于-----<0,即--<0.由此得--或--解得<k<2.因此k的取值范围是(,2).3.(2016全国Ⅰ·20)设圆x2+y2+2x-15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A 于C,D两点,过B作AC的平行线交AD于点E.(1)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(2)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q 两点,求四边形MPNQ面积的取值范围.因为|AD|=|AC|,EB∥AC,故∠EBD=∠ACD=∠ADC.所以|EB|=|ED|,故|EA|+|EB|=|EA|+|ED|=|AD|.又圆A的标准方程为(x+1)2+y2=16,从而|AD|=4,所以|EA|+|EB|=4.由题设得A(-1,0),B(1,0),|AB|=2,由椭圆定义可得点E的轨迹方程为:=1(y≠0).(2)当l与x轴不垂直时,设l的方程为y=k(x-1)(k≠0),M(x1,y1),N(x2,y2),由-得(4k2+3)x2-8k2x+4k2-12=0,则x1+x2=,x1x2=-,所以|MN|=|x1-x2|=.过点B(1,0)且与l垂直的直线m:y=-(x-1),A到m的距离为,所以|PQ|=2-=4.故四边形MPNQ的面积S=|MN||PQ|=12.可得当l与x轴不垂直时,四边形MPNQ面积的取值范围为(12,8).当l与x轴垂直时,其方程为x=1,|MN|=3,|PQ|=8,四边形MPNQ的面积为12.综上,四边形MPNQ面积的取值范围为[12,8.新题演练提能·刷高分1.(2018江西南昌一模)已知抛物线C:y2=2px(p>0)的焦点为F,准线为l,过焦点F的直线交C于A(x1,y1),B(x2,y2)两点,y1y2=-4.(1)求抛物线方程;(2)点B在准线l上的投影为E,D是C上一点,且AD⊥EF,求△ABD面积的最小值及此时直线AD的方程.依题意F,当直线AB的斜率不存在时,|y1y2|=-p2=-4,p=2.当直线AB的斜率存在时,设AB:y=k-,由-化简得y2-y-p2=0.由y1y2=-4,得p2=4,p=2,所以抛物线方程为y2=4x.(2)设D(x0,y0),B,则E(-1,t).又由y1y2=-4,可得A-.因为k EF=-,AD⊥EF,所以k AD=,故直线AD:y+-.由---化简得y2-2ty-8-=0,所以y1+y0=2t,y1y0=-8-.所以|AD|=·|y1-y0|=-.设点B到直线AD的距离为d,则d=---.所以S△ABD=|AD|·d=≥16,当且仅当t4=16,即t=±2.当t=2时,直线AD的方程为x-y-3=0,当t=-2时,直线AD的方程为x+y-3=0.2.(2018山东济南一模)在平面直角坐标系xOy中,抛物线C1:x2=4y,直线l与抛物线C1交于A,B 两点.(1)若直线OA,OB的斜率之积为-,证明:直线l过定点;(2)若线段AB的中点M在曲线C2:y=4-x2(-22)上,求的最大值.A(x1,y1),B(x2,y2),由题意可知直线l的斜率存在,设直线l的方程为y=kx+m,由得x2-4kx-4m=0, Δ=16(k2+m)>0,x1+x2=4k,x1x2=-4m,k OA·k OB==-,由已知:k OA·k OB=-,所以m=1,所以直线l的方程为y=kx+1,所以直线l过定点(0,1).M(x0,y0),则x0==2k,y0=kx0+m=2k2+m,将M(x0,y0)代入C2:y=4-x2(-2<x<2),得2k2+m=4-(2k)2,∴m=4-3k2.∵-2<x0<2,∴-2<2k<2,∴-<k<.∵Δ=16(k2+m)=16(k2+4-3k2)=32(2-k2)>0,∴-<k<,故k的取值范围是k∈(-.|AB|=-,将m=4-3k2代入,得|AB|=4-≤4-=6当且仅当k2+1=2-k2,即k=±时取等号,所以|AB|的最大值为63.(2018山东青岛一模)已知O为坐标原点,点A,B在椭圆C:+y2=1上,点E-在圆D:x2+y2=r2(r>0)上,AB的中点为Q,满足O,E,Q三点共线.(1)求直线AB的斜率;(2)若直线AB与圆D相交于M,N两点,记△OAB的面积为S1,△OMN的面积为S2,求S=S1+S2的最大值.设A(x1,y1),B(x2,y2),AB的中点Q(x0,y0).∵点A,B在椭圆C上,∴相减得-+(y1-y2)(y1+y2)=0.∴k AB=-=-.-∵x0=,y0=,∴k AB=-.∵E-,∴k OE=-.∵O,E,Q三点共线,∴k OQ=k OE=-,∴k AB=-=1.(2)∵点E-在圆D上,∴r2=-.∴圆D的方程为x2+y2=.设直线AB的方程:y=x+m,由得3x2+4mx+2m2-2=0.由Δ>0得m2<3.x1+x2=-,x1x2=-,则|AB|=--.设O到直线AB的距离为d,d=,∴|MN|=2-=2-.∴S=S1+S2=|AB|·d+|MN|·d=-×2-|m|--=--,∴当m2=<3时,即m=±时,S max=.4.(2018广东珠海3月质检)已知抛物线C1:y2=2px(p>0),圆C2:x2+y2=4,直线l:y=kx+b与抛物线C1相切于点M,与圆C2相切于点N.(1)若直线l的斜率k=1,求直线l和抛物线C1的方程;F为抛物线C1的焦点,设△FMN,△FON的面积分别为S1,S2,若S1=λS2,求λ的取值范围.由题设知l:x-y+b=0,且b>0,由l与C2相切知,C2(0,0)到l的距离d==2,得b=2,∴l:x-y+2=0.将l与C1的方程联立消x得y2-2py+4p=0,其Δ=4p2-16p=0得p=4∴C1:y2=8x.综上,l:x-y+20,C1:y2=8(2)不妨设k>0,根据对称性,k>0得到的结论与k<0得到的结论相同.此时b>0,又知p>0,设M(x1,y1),N(x2,y2),由消y得k2x2+2(kb-p)x+b2=0,其Δ=4(kb-p)2-4k2b2=0得p=2kb,从而解得M,由l与C2切于点N知C2(0,0)到l:kx-y+b=0的距离d==2,得b=2,则p=4k,故M.由得N,故|MN|=M-x N|=.F到l:kx-y+b=0的距离d0==2k2+2,∴S1=S△FMN=|MN|d0=,又S2=S△FON=|OF|·|y N|=2k,∴λ=(k2+1)=2k2++3≥2+3.当且仅当2k2=即k=时取等号,与上同理可得,k<0时亦是同上结论.综上,λ的取值范围是[3+2,+∞).命题角度4圆锥曲线的定值、定点问题高考真题体验·对方向1.(2017全国Ⅰ·20)已知椭圆C:=1(a>b>0),四点P1(1,1),P2(0,1),P3-,P4中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为-1,证明:l 过定点.P3,P4两点关于y轴对称,故由题设知C经过P3,P4两点.又由知,C不经过点P1,所以点P2在C上.因此解得故C的方程为+y2=1.P2A与直线P2B的斜率分别为k1,k2,如果l与x轴垂直,设l:x=t,由题设知t≠0,且|t|<2,可得A,B的坐标分别为---.则k 1+k 2=- --=-1,得t=2,不符合题设.从而可设l :y=kx+m (m ≠1). 将y=kx+m代入 +y 2=1得(4k 2+1)x 2+8kmx+4m 2-4=0.由题设可知Δ=16(4k 2-m 2+1)>0. 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=-,x 1x 2=-.而k 1+k 2= --= - - =-.由题设k 1+k 2=-1,故(2k+1)x 1x 2+(m-1)(x 1+x 2)=0. 即(2k+1)· -+(m-1)·-=0.解得k=-. 当且仅当m>-1时,Δ>0,于是l :y=-x+m ,即y+1=-(x-2), 所以l 过定点(2,-1). 2.(2016北京·19)已知椭圆C :=1(a>b>0)的离心率为,A (a ,0),B (0,b ),O (0,0),△OAB 的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:|AN|·|BM|为定值.解得a=2,b=1. 所以椭圆C 的方程为+y 2=1. (1)知,A (2,0),B (0,1).设P (x 0,y 0),则 +4=4.当x 0≠0时,直线PA 的方程为y= -(x-2).令x=0,得y M =--,从而|BM|=|1-y M |=-.直线PB的方程为y=-x+1.令y=0,得x N=--,从而|AN|=|2-x N|=-.所以|AN|·|BM|=--=----=----=4.当x0=0时,y0=-1,|BM|=2,|AN|=2,所以|AN|·|BM|=4.综上,|AN|·|BM|为定值.3.(2015全国Ⅱ·20)已知椭圆C:=1(a>b>0)的离心率为,点(2,)在C上.(1)求C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与直线l的斜率的乘积为定值.由题意有-=1,解得a2=8,b2=4.所以C的方程为=1.l:y=kx+b(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M).将y=kx+b代入=1,得(2k2+1)x2+4kbx+2b2-8=0.故x M=-,y M=k·x M+b=.于是直线OM的斜率k OM==-,即k OM·k=-.所以直线OM的斜率与直线l的斜率的乘积为定值.新题演练提能·刷高分1.(2018福建厦门第一次质检)设O为坐标原点,椭圆C:=1(a>b>0)的左焦点为F,离心率为.直线l:y=kx+m(m>0)与C交于A,B两点,AF的中点为M,|OM|+|MF|=5.(1)求椭圆C的方程;(2)设点P(0,1),=-4,求证:直线l过定点,并求出定点的坐标.F1,则OM为△AFF1的中位线.∴OM=AF1,MF=AF,∴|OM|+|MF|==a=5,∵e=,∴c=2,∴b=∴椭圆C的方程为=1.A(x1,y1),B(x2,y2),联立消去y,整理得(1+5k2)x2+10mkx+5m2-25=0.∴Δ>0,x1+x2=-,x1x2=-,∴y1+y2=k(x1+x2)+2m=,y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=--=-.∵P(0,1),=-4,∴(x1,y1-1)·(x2,y2-1)=x1x2+y1y2-(y1+y2)+1=-4,∴--+5=0,整理得3m2-m-10=0,解得m=2或m=-(舍去).∴直线l过定点(0,2).2.(2018安徽合肥第二次质检)已知点A(1,0)和动点B,以线段AB为直径的圆内切于圆O:x2+y2=4.(1)求动点B的轨迹方程;(2)已知点P(2,0),Q(2,-1),经过点Q的直线l与动点B的轨迹交于M,N两点,求证:直线PM与直线PN的斜率之和为定值.(1)解如图,设以线段AB为直径的圆的圆心为C,取A'(-1,0).依题意,圆C内切于圆O,设切点为D,则O,C,D三点共线,∵O为AA'的中点,C为AB中点,∴A'B=2OC.∴|BA'|+|BA|=2OC+2AC=2OC+2CD=2OD=4>|AA'|=2,∴动点B的轨迹是以A,A'为焦点,长轴长为4的椭圆,设其方程为=1(a>b>0), 则2a=4,2c=2,∴a=2,c=1,∴b2=a2-c2=3,∴动点B的轨迹方程为=1.当直线l垂直于x轴时,直线l的方程为x=2,此时直线l与椭圆=1相切,与题意不符.②当直线l的斜率存在时,设直线l的方程为y+1=k(x-2).由-消去y整理得(4k2+3)x2-(16k2+8k)x+16k2+16k-8=0.∵直线l与椭圆交于M,N两点,∴Δ=(16k2+8k)2-4(4k2+3)(16k2+16k-8)>0,解得k<.设M(x1,y1),N(x2,y2),则x1+x2=,x1x2=-,∴k PM+k PN=--------=2k---=2k----=2k---=2k----=2k+3-2k=3(定值).3.(2018北京丰台期末)在平面直角坐标系xOy中,动点P到点F(1,0)的距离和它到直线x=-1的距离相等,记点P的轨迹为C.(1)求C的方程;(2)设点A在曲线C上,x轴上一点B(在点F右侧)满足|AF|=|FB|.平行于AB的直线与曲线C 相切于点D,试判断直线AD是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.因为动点P到点F(1,0)的距离和它到直线x=-1的距离相等,所以动点P的轨迹是以点F(1,0)为焦点,直线x=-1为准线的抛物线.设C的方程为y2=2px,则=1,即p=2.所以C的轨迹方程为y2=4x.(2)设A,m,则B+2,0,所以直线AB 的斜率为k= -=-.设与AB 平行,且与抛物线C 相切的直线为y=-x+b ,由-得my 2+8y-8b=0, 由Δ=64+32mb=0得b=-,所以y D =-,所以点D,-.当,即m ≠±2时,直线AD 的方程为y-m=-x-,整理得y=-(x-1),所以直线AD过定点(1,0).当,即m=±2时,直线AD 的方程为x=1,过定点(1,0).综上所述,直线AD 过定点(1,0).4.(2018四川德阳二诊)已知长度为3 的线段AB 的两个端点A ,B 分别在x 轴和y 轴上运动,动点P 满足=2 ,设动点P 的轨迹为曲线C. (1)求曲线C 的方程;(2)过点(4,0)且斜率不为零的直线l 与曲线C 交于M ,N 两点,在x 轴上是否存在定点T ,使得直线MT 与NT 的斜率之积为常数.若存在,求出定点T 的坐标以及此常数;若不存在,请说明理由. 设P (x ,y ),A (m ,0),B (0,n ),由于=2 ,所以(x ,y-n )=2(m-x ,-y )=(2m-2x ,-2y ),即 - - - 所以又|AB|=3 ,所以m 2+n 2=18,从而+9y 2=18. 即曲线C的方程为=1. (2)由题意设直线l 的方程为:x=my+4,M (x 1,y 1),N (x 2,y 2), 由得(m 2+4)y 2+8my+8=0, 所以--故x 1+x 2=m (y 1+y 2)+8= , x 1x 2=m 2y 1y 2+4m (y 1+y 2)+16= - ,假设存在定点T (t ,0),使得直线MT 与NT 的斜率之积为常数,则k MT ·k NT =- -=.---当t2-8=0,且t-4≠0时,k MT·k NT为常数,解得t=±2.显然当t=2时,常数为;当t=-2时,常数为-,所以存在两个定点T1(2,0),T2(-2,0),使得直线MT与NT的斜率之积为常数,当定点为T1(2,0)时,常数为;当定点为T2(-2,0)时,常数为-.命题角度5圆锥曲线的探究、存在性问题高考真题体验·对方向1.(2015全国Ⅰ·20)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点. (1)当k=0时,分别求C在点M和N处的切线方程;轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?说明理由.由题设可得M(2,a),N(-2,a),或M(-2,a),N(2,a).又y'=,故y=在x=2处的导数值为,C在点(2,a)处的切线方程为y-a=(x-2), 即x-y-a=0.y=在x=-2处的导数值为-,C在点(-2,a)处的切线方程为y-a=-(x+2),即x+y+a=0.故所求切线方程为x-y-a=0和x+y+a=0.(2)存在符合题意的点,证明如下:设P(0,b)为符合题意的点,M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为k1,k2.将y=kx+a代入C的方程得x2-4kx-4a=0.故x1+x2=4k,x1x2=-4a.从而k1+k2=--=-.当b=-a时,有k1+k2=0,则直线PM的倾斜角与直线PN的倾斜角互补,故∠OPM=∠OPN,所以点P(0,-a)符合题意.2.(2015全国Ⅱ·20)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C 有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点,延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.l:y=kx+b(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M).将y=kx+b代入9x2+y2=m2得(k2+9)x2+2kbx+b2-m2=0,故x M=-,y M=kx M+b=.于是直线OM的斜率k OM==-,即k OM·k=-9.所以直线OM的斜率与l的斜率的乘积为定值.OAPB能为平行四边形.因为直线l过点,所以l不过原点且与C有两个交点的充要条件是k>0,k≠3.由(1)得OM的方程为y=-x.设点P的横坐标为x P.由-得,即x P=.将点的坐标代入l的方程得b=-,因此x M=-.四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即x P=2x M.于是=2×-,解得k1=4-,k2=4+.因为k i>0,k i≠3,i=1,2,所以当l的斜率为4-或4+时,四边形OAPB为平行四边形.3.(2014山东·21)已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A 的直线l交C于另一点B,交x轴的正半轴于点D,且有|FA|=|FD|.当点A的横坐标为3时,△ADF 为正三角形.(1)求C的方程;(2)若直线l1∥l,且l1和C有且只有一个公共点E,①证明直线AE过定点,并求出定点坐标;②△ABE的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.由题意知F,设D(t,0)(t>0),则FD的中点为.因为|FA|=|FD|,由抛物线的定义知3+-,解得t=3+p或t=-3(舍去).由=3,解得p=2.所以抛物线C的方程为y2=4x.(2)①由(1)知F(1,0).设A(x0,y0)(x0y0≠0),D(x D,0)(x D>0),因为|FA|=|FD|,则|x D-1|=x0+1.由x D>0得x D=x0+2,故D(x0+2,0).故直线AB的斜率k AB=-.因为直线l1和直线AB平行,设直线l1的方程为y=-x+b,代入抛物线方程得y2+y-=0, 由题意Δ==0,得b=-.设E(x E,y E),则y E=-,x E=.当≠4时,k AE=--=---,可得直线AE的方程为y-y0=-(x-x0),由=4x0,整理可得y=-(x-1),直线AE恒过点F(1,0).当=4时,直线AE的方程为x=1,过点F(1,0).所以直线AE过定点F(1,0).②由①知直线AE过焦点F(1,0),所以|AE|=|AF|+|FE|=(x0+1)+=x0++2.设直线AE的方程为x=my+1,因为点A(x0,y0)在直线AE上,故m=-.设B(x1,y1),直线AB的方程为y-y0=-(x-x0),由于y0≠0,可得x=-y+2+x0,代入抛物线方程得y2+y-8-4x0=0.所以y0+y1=-,可求得y1=-y0-,x1=+x0+4.所以点B到直线AE的距离为d=-==4.则△ABE的面积S=×4≥16,当且仅当=x0,即x0=1时等号成立.所以△ABE的面积的最小值为16.新题演练提能·刷高分1.(2018山西太原一模)已知椭圆C:=1(a>b>0)的左顶点为A,右焦点为F2(2,0),点B(2,-在椭圆C上.(1)求椭圆C的方程;(2)若直线y=kx(k≠0)与椭圆C交于E,F两点,直线AE,AF分别与y轴交于点M,N,在x轴上,是否存在点P,使得无论非零实数k怎样变化,总有∠MPN为直角?若存在,求出点P的坐标;若不存在,请说明理由.依题意,c=2.∵点B(2,-)在C上,∴=1.∵a2=b2+c2,∴a2=8,b2=4,∴椭圆方程为=1.(2)假设存在这样的点P,设P(x0,0),E(x1,y1),则F(-x1,-y1),联立消去y化简得(1+2k2)x2-8=0,解得x1=,y1=.∵A(-2,0),∴AE所在直线方程为y=·(x+2),∴M0,,同理可得N0,-,=-x0,,=-x0,-,由=0,得-4=0.∴x0=2或x0=-2.∴存在点P,使得无论非零实数k怎么变化,总有∠MPN为直角,点P坐标为(2,0)或(-2,0).2.(2018山东菏泽一模)已知抛物线E的顶点为平面直角坐标系xOy的坐标原点O,焦点为圆F:x2+y2-4x+3=0的圆心F.经过点F的直线l交抛物线E于A,D两点,交圆F于B,C两点,A,B 在第一象限,C,D在第四象限.(1)求抛物线E的方程;(2)是否存在直线l使2|BC|是|AB|与|CD|的等差中项?若存在,求直线l的方程;若不存在,请说明理由.∵圆F的方程为(x-2)2+y2=1,∴圆心F的坐标为(2,0),半径r=1.根据题意设抛物线E的方程为y2=2px(p>0),∴=2,解得p=4.∴抛物线E的方程为y2=8x.(2)∵2|BC|是|AB|与|CD|的等差中项,|BC|=2r,∴|AB|+|CD|=4|BC|=4×2r=8.∴|AD|=|AB|+|BC|+|CD|=10r=10.讨论:若l垂直于x轴,则l的方程为x=2,代入y2=8x,解得y=±4.此时|AD|=8,不满足题意; 若l不垂直于x轴,则设l的斜率为k(k≠0),此时l的方程为y=k(x-2),由-得k2x2-(4k2+8)x+4k2=0.设A(x1,y1),B(x2,y2),则x1+x2=.∵拋物线E的准线方程为x=-2,∴|AD|=|AF|+|DF|=(x1+2)+(x2+2)=x1+x2+4.∴+4=10,解得k=±2.当k=±2时,k2x2-(4k2+8)x+4k2=0化为x2-6x+4=0.∵(-6)2-4×1×4>0,∴x2-6x+4=0有两个不相等的实数根.∴k=±2满足题意.∴存在满足要求的直线l:2x-y-4=0或2x+y-4=0.3.(2018山西晋城一模)已知直线l1是抛物线C:x2=2py(p>0)的准线,直线l2:3x-4y-6=0,且l2与抛物线C没有公共点,动点P在抛物线C上,点P到直线l1和l2的距离之和的最小值等于2.(1)求抛物线C的方程;(2)点M在直线l1上运动,过点M作抛物线C的两条切线,切点分别为P1,P2,在平面内是否存在定点N,使得MN⊥P1P2恒成立?若存在,请求出定点N的坐标,若不存在,请说明理由.解(1)作PA,PB分别垂直l1和l2,垂足为A,B,抛物线C的焦点为F0,,由抛物线定义知|PA|=|PF|,所以d1+d2=|PA|+|PB|=|PF|+|PB|,易知d1+d2的最小值即为点F到直线l2的距离,故d=--=2,∴p=2,所以抛物线C的方程为x2=4y.(2)由(1)知直线l1的方程为y=-1,当点M在特殊位置(0,-1)时,易知两个切点P1,P2关于y轴对称,故要使得MN⊥P1P2,点N必须在y轴上.故设M(m,-1),N(0,n),P1x1,,P2x2,,抛物线C的方程为y=x2,求导得y'=x,所以切线MP1的斜率k1=x1,直线MP1的方程为y-x1(x-x1),又点M在直线MP1上,所以-1-x1(m-x1),整理得-2mx1-4=0,同理可得-2mx2-4=0,故x1和x2是一元二次方程x2-2mx-4=0的两根,由韦达定理得-=x2-x1,·(-m,n+1)=(x2-x1)[-4m+(n+1)(x2+x1)]=(x2-x1)[-4m+2m(n+1)]=m(x2-x1)(n-1),可见n=1时,=0恒成立,所以存在定点N(0,1),使得MN⊥P1P2恒成立.4.(2018河北衡水中学七调)如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的左、右焦点F1,F2为顶点的三角形的周长为4(1).一双曲线的顶点是该椭圆的焦点,且双曲线的实轴长等于虚轴长,设P为该双曲线上异于顶点的任意一点,直线PF1和PF2与椭圆的交点分别为A,B和C,D,且点A,C在x轴的同一侧.(1)求椭圆和双曲线的标准方程;(2)是否存在题设中的点P,使得||+||=?若存在,求出点P的坐标;若不存在,请说明理由.由题意知,椭圆离心率e=,即a=c,又2a+2c=4(+1),所以a=2,c=2,所以b2=a2-c2=4,所以椭圆的标准方程为=1.所以椭圆的焦点坐标为(±2,0).又双曲线为等轴双曲线,且顶点是该圆的焦点,所以该双曲线的标准方程为=1.(2)设P(x0,y0)(x0≠±2),则,因为点P在双曲线=1上,所以=1.-设A(x1,y1),B(x2,y2),直线PF1的方程为y=k(x+2),所以直线PF2的方程为y=(x-2),联立得(2k2+1)x2+8k2x+8k2-8=0,所以x1+x2=-,x1·x2=-,所以|AB|=----.同理可得|CD|=.由题知||+||=|·||·cos θ(θ=∠F1PF2), 即cos θ=.因为=||||cos θ,即(-2-x0)(2-x0)+(-y0)(-y0)=-,又因为=4,所以2(-4)=-----,所以=8,=4.即存在满足题意的点P,且点P的坐标为(±2±2).。
高考解析几何压轴题精选(含答案)之欧阳文创编
1. 设抛物线22(0)ypx p =>的焦点为F ,点(0,2)A .若线段FA 的中点B 在抛物线上,则B 到该抛物线准线的距离为_____________。
(3分)时间:2021.03.12创作:欧阳文2 .已知m >1,直线2:02m l x my --=,椭圆222:1x C y m +=,1,2F F 分别为椭圆C 的左、右焦点. (Ⅰ)当直线l 过右焦点2F 时,求直线l 的方程;(Ⅱ)设直线l 与椭圆C 交于,A B 两点,12AF F ,12BF F 的重心分别为,G H .若原点O 在以线段GH 为直径的圆内,求实数m 的取值范围.(6分) 3已知以原点O 为中心,)5,0F 为右焦点的双曲线C 的离心率5e =(I )求双曲线C 的标准方程及其渐近线方程;(II )如题(20)图,已知过点()11,M x y 的直线111:44l x x y y +=与过点()22,N x y (其中2x x ≠)的直线222:44l x x y y +=的交点E在双曲线C 上,直线MN 与两条渐近线分别交与G 、H 两点,求OGH ∆的面积。
(8分)4.如图,已知椭圆22221(0)x y a b a b +=>>的离心率为22,以该椭圆上的点和椭圆的左、右焦点12,F F 为顶点的三角形的周长为4(21)+.一等轴双曲线的顶点是该椭圆的焦点,设P 为该双曲线上异于顶点的任一点,直线1PF 和2PF 与椭圆的交点分别为B A 、和C D 、.(Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线1PF 、2PF 的斜率分别为1k 、2k ,证明12·1k k =;(Ⅲ)是否存在常数λ,使得·AB CD AB CDλ+=恒成立?若存在,求λ的值;若不存在,请说明理由.(7分)5.在平面直角坐标系xoy 中,如图,已知椭圆15922=+y x 的左、右顶点为A 、B ,右焦点为F 。
高三数学解析几何拔高训练含解析
xyo P A F 1F 2《解析几何》一、选择1.已知j i ,是y x ,轴正方向的单位向量,设a =j y i x +-)2(, b =j y i x ++)2(,且满足|a|+|b |=4.则点),(y x P 的轨迹是. ( ) (A)椭圆 (B)双曲线 (C)线段 (D)射线2、在直二面角AB αβ--中,PAB ∆在平面α内,四边形ABCD 在平面β内,且α⊥AD ,α⊥BC ,4=AD ,8=BC ,6=AB .若tan 2tan 1ADP BCP ∠=∠+,则动点P 在平面α内的轨迹是( ).椭圆的一部分 .线段 .双曲线的一部分.以上都不是3、已知抛物线m x 2=2(0)y nx n = <(0<m )与椭圆ny x 229+=1有一个相同的焦点,则动点),(n m 的轨 迹是( )A .椭圆的一部分 B .双曲线的一部分 C .抛物线的一部分 D .直线的一部分4、如图,在四棱锥P-ABCD 中,侧面PAD 为正三角形,底面为正方 形,侧面PAD 与底面ABCD 垂直,M 为底面内的一个动点, 且满足MP=MC ,则动点M 的轨迹为( ) A .椭圆B .抛物线 C .双曲线 D .直线5、已知抛物线24,y x =焦点为F ,ABC ∆三个顶点均在抛物线上,若0FA FB FC ++= 则FA FB FC ++=( ).8 .6 .3 .06、椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点,今有一个水平放置的椭圆形台球盘,点A 、B 是它的焦点,长轴长为2a ,焦距为2c ,静放在点A 的小球(小球的半径不计),从点A 沿直线出发,经椭圆壁反弹后第一次回到点A 时,小球经过的路程是( )A .4a B .2()a c - C .2()a c + D .以上答案均有可能7、设F 1、F 2为椭圆两焦点,点P 是以F 1,F 2为直径的圆与椭圆的一个交点,若∠PF 1F 2=5∠PF 2F 1,则椭圆离心率为( ). A 、32 B 、36 C 、22D 、238、双曲线的虚轴长为4,离心率26=e ,F 1、F 2分别是它的左,右焦点,若过F 1的直线与双曲线的左支交于A 、B 两点,且|AB|是|AF 2|与|BF 2|的等差中项,则|AB|为 ( ) A 、28 B 、24C 、22D 、89、已知P 是以1F 、2F 为焦点的椭圆)0(12222>>=+b a by a x 上一点,若021=⋅PF PF21tan 21=∠F PF ,则椭圆的离心率为 ( )(A )21 (B )32(C )31 (D )3510、方程|2|)1(2)1(222-+=+++y x y x 表示的曲线是( )A 、椭圆B 、双曲线C 、抛物线D 、不能确定11、如图3,从双曲线22221(0,0)x y a b a b-=>>的左焦点F 引圆222x y a +=的切线,切点为T .延长FT 交双曲线右支于P 点.若M 为线段FP 的中点,O 为坐标原点,则||||MO MT -与b a -的大小关系为( )A .||||MO MT b a ->-B .||||MO MT b a -=-C .||||MO MT b a -<-D .不确定12、双曲线12222=-by a x 的左焦点为1F ,顶点为21,A A ,P 是该双曲线右支上任意一点,则分别以线段211,A A PF 为直径的两圆一定( )A .相交 B .内切 C .外切 D .相离13、已知两点A (1,2), B (3,1) 到直线L 的距离分别是25,2-,则满足条件的直线L 共有( )条.A .1B .2C .3D .414、若在抛物线)0(2>=a ax y 的上方可作一个半径为r 的圆与抛物线相切于原点O ,且该圆与抛物线没有别的公共点,则r 的最大值是( ) A .a 21 B .a1C .aD .a 2 二填空题 15、椭圆+=1的离心率e=,则m=___________。
2021届高考数学复习压轴题训练抛物线2含解析
抛物线一、单项选择题1.如图,1F ,2F 分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,点P 是双曲线与圆2222x y a b +=+在第二象限的一个交点,点Q 在双曲线上,且1213F P F Q =,如此双曲线的离心率为()A .102B .173C .394D .375解:1(,0)F c -,2(,0)F c ,联立2222222221x y a b c x y a b ⎧+=+=⎪⎨-=⎪⎩,解得22222422(2)a b a x c b y c ⎧+=⎪⎪⎨⎪=⎪⎩, P 在第二象限,222(2,)a b P a b c c∴-+, 设(,)Q m n ,如此2221(2,)a b F P c a b c c=+,2(,)F Q m c n =-, 由1213F P F Q =,得2212()3a a b m c c +-=213b n c=,22324a a b m c +∴=,23b n c=,又22221m n a b-=,∴22222222216249()91c c b c b b a c c +++-=,化简得:4242414100c c a a-+=,即422750e e -+=,解得:252e =或21e =〔舍).可得1)e e =>. 应当选:A .点,且满足1(0)PB PA λλ=>2||27PA =解:由椭圆方程可得,1(A 0),(0,1)B ,由双曲线2222:1(0,0)x y E a b a b-=>>的左顶点与椭圆C 的左顶点重合,得a =在△12A A P中,2||PA =12||A A =,1230PA A ∠=︒,由余弦定理可得:21128||122||cos30PA PA =+-⨯⨯︒,解得1||8PA =. 求得1||2BA =,∴134PB PA =,设0(P x ,0)y , 如此00003(,1)(,)4x y x y --=-,得00003(4314x x y y⎧=⎪⎪⎨⎪-=⎪⎩,解得P 4),代入双曲线方程,可得22b =.从而25c =,c =∴双曲线E 离心率为51533c a ==. 应当选:D .3.如图,1F 、2F 是椭圆1C 与双曲线2C 的公共焦点,A 、B 分别是1C 、2C 在第二、四象限的交点,假如123AF B π∠=,如此1C 与2C 的离心率之积的最小值为()A .12B .32C .52D .62解:设椭圆的长轴长为12a ,双曲线的实轴长为22a ,由椭圆与双曲线的定义,可得111||||2BF AF a +=,112||||2BF AF a -=, 解得:112||AF a a =-,112||BF a a =+, 四边形12AF BF 为平行四边形,12||2F F c =,∴222111112||||||2||||cos AB AF BF AF BF F BF =++⋅∠222222221111121112||||||||||2||2||||AF BF AF BF F F AF BF F F =+++-=+-22212444a a c =+-123AF B π∠=,∴2221111||||||||||AB AF BF AF BF =++⋅, 即2222222121212121212444()()()()3a a c a a a a a a a a a a +-=++-+-+=+,∴22212123423a a c a a +=,如此1C 与2C 的离心率之积2121232c e e a a =. 1C ∴与2C . 应当选:B .4.点F 为抛物线22(0)y px p =>的焦点,l 为其准线,过F 的一条直线与抛物线交于A ,B 两点,与1交于C .点B 在线段CF 上,||BF ,||AF ,||BC 可以排成一个等差数列,如A .2B .3C .4D .5解:B 在线段CF 上,||||BC BF ∴>,||||AF BF >,①当||||||BF AF BC <<时,作BE l ⊥于E ,AD l ⊥于D ,||BF ,||AF ,||BC 成等差数列,∴不妨设||BF x d =-,||AF x =,||BC x d =+,由抛物线的定义知,||||BE BF x d ==-,||||AD AF x ==,//BE AD ,∴||||||||BC BE AC AD =,即3x d x dx x+-=,∴||33||BC x d xBF x d x+===-,②当||||||BF BC AF <<时,同理可设||BF x d =-,||BC x =,||AF x d =+,由抛物线的定义知,||||BE BF x d ==-,||||AD AF x d ==+,//BE AD ,∴||||||||BC BE AC AD =,即3x x dx x d-=+,化简可得2x d =, ∴||22||2BC x dBF x d d d===--, 综上,||||BC BF 所有可能值的和为5. 应当选:D .5.1F 、2F 为椭圆和双曲线的公共焦点,P 为其一个公共点,且12||4F F =,1223F PF π∠=,如此12PF PF ⋅的最大值为() A .33-B .233-C .433-D .833-解:由题意可知,设椭圆的方程为:21122111(0)x y a b a b +=>>,双曲线方程为:2222221x y a b -=,2(0a >,20)b >因为1F 、2F 为椭圆和双曲线的公共焦点,且12||4F F =,所以222114a b c -==,222224a b c +==, 不妨设点P 在第一象限,设1||PF m =,2||PF n =, 由椭圆的定义与双曲线的定义可得,12m n a +=,22m n a -=,所以12m a a =+,12n a a =-, 所以在△12PF F 中,由余弦定理得:22222121212121212||()()161cos 22()()2m n F F a a a a F PF mn a a a a +-++--∠===-+-,所以22121231623a a a a +=,即12833a a ,当且仅当213a a =时取等号, 所以222121212122||||cos 822a a PF PF PF PF F PF a -⋅=⋅⋅∠=-=- 18343233-⨯=-, 所以12PF PF ⋅的最大值为433-, 应当选:C .6.光线从椭圆的一个焦点发出,被椭圆反射后会经过椭圆的另一个焦点;光线从双曲线的一个焦点发出,被双曲线反射后的反射光线等效于从另一个焦点射出.如图,一个光学装置由有公共焦点1F ,2F 的椭圆Γ与双曲线Γ'构成,一光线从左焦点1F 发出,依次经Γ'与Γ反射,又回到了点1F ,历时1t 秒;假如将装置中的Γ'去掉,此光线从点1F 出,经Γ两次反射后又回到了点1F ,历时2t 秒,假如216t t =,如此Γ与Γ'的离心率之比为()A .1:2B .1:2C .2:3D .3:4解:设椭圆的长半轴长为1a ,双曲线的实半轴长为2a , 在左图中,由椭圆定义可得:1212BF BF a +=①, 由双曲线定义可得:2122AF AF a -=②, ①-②得:111222AF AB BF a a ++=-,1ABF ∴∆的周长为:1222a a -;在右图中,光线从椭圆的一个焦点发出,被椭圆反射后经过椭圆的另一个焦点,即直线CD 过2F ,1CDF ∴∆的周长为14a , 又两次时间分别为1t ,2t ,且216t t =, 光线速度一样;∴1122122146t a a t a -==,∴1232a a =.椭圆与双曲线焦点一样,12c c ∴=,∴1112221223c e a a c e a a ===.应当选:C .2:2(0)E y px p =>的焦点与双曲线C 的右焦点重合,如此抛物线E 上的动点M 到直线1:4360l x y -+=和2:1l x =-的距离之和的最小值为()A .1B .2C .3D .4解:双曲线2224:1(0)3x C b y b -=>的渐近线方程为y =, 右焦点,0)到其一条渐近线的距离等于12,12=,解得2b =,即有1c ==, 由题意可得12p=,解得2p =, 即有抛物线的方程为24y x =,如图,过点M 作1MA l ⊥于点A , 作MB ⊥准线2:1l x =-于点C ,连接MF ,根据抛物线的定义得MA MC MA MF +=+,设M 到1l 的距离为1d ,M 到直线2l 的距离为2d ,12d d MA MC MA MF ∴+=+=+,根据平面几何知识,可得当M 、A 、F 三点共线时,MA MF +有最小值.(1,0)F 到直线1:4360l x y -+=的距离为|406|2169-+=+.MA MF ∴+的最小值是2,由此可得所求距离和的最小值为2.应当选:B .8.点F 为抛物线2:2(0)C y px p =>的焦点,过F 的直线交抛物线C 于A ,B 两点〔点A 在第一象限〕,过A 、B 分别作抛物线C 的准线的垂线段,垂足分别为M 、N ,假如||4MF =,||3NF =,如此直线AB 的斜率为()A .1B .724C .2D .247解:由抛物线方程,可得直线方程为2p x =-,(2pF ,0), 设1(A x ,1)y ,2(B x ,2)y ,如此(2p M -,1)y ,2(,)2pN y -, ∴2222211||()(0)22p p MF y p y =--+-=+,得22116p y +=,① 2222222||()(0)22p p NF y p y =--+-=+,得2229p y +=,② 又直线AB 过焦点F ,∴212y y p =-,③ 联立①②③得,422(16)(9)p p p =--,解得12(0)5p p =>. 设抛物线准线交x 轴于K ,如此125FK p ==. 在Rt MKF ∆中,可得1235cos 45MFK ∠==,由抛物线的性质,可得AM F AFM M FK ∠=∠=∠,如此2AFK M FK ∠=∠,27cos 2125AFK cos MFK ∴∠=∠-=-,如此7cos 25AFx ∠=, 2724sin 1()2525AFx ∴∠=-=,如此24tan 7AFx ∠=.∴直线AB 的斜率为247. 应当选:D .9.抛物线C 的顶点为坐标原点,焦点F 在x 轴上,其准线为l ,过F 的直线交抛物线于M ,N 两点,作MS l ⊥,NT l ⊥,垂足分别为S ,T .假如3MF FN =,且STF ∆的面积为833,如此抛物线C 的方程为()A .2y x =±B .22y x =±C .23y x =±D .24y x =±解:如下列图,过点N 作//NH l 交直线MS 于点H ,交x 轴于点P .设点1(M x ,1)y 、2(N x ,2)y ,当焦点在x 轴的正半轴时,设抛物线2:2(0)C y px p =>,由3MF FN =知,||3||MF FN =, 由抛物线的定义得,1||2p MF x =+,2||2p FN x =+, ∴123()22p px x +=+,即123x x p -=①. 3MF FN =,且(2p F ,0),1(2p x ∴-,12)3(2py x -=-,2)y , ∴123()22p px x -=-,化简得1232x x p +=②. 由①②可解得132p x =,26px =. 在Rt HMN ∆中,128||3MN x x p p =++=,124||3HM x x p =-=,∴228443||||()()333ST HN p p p ==-=, ∴14383233STF S p p ∆==,解得2p =,此时抛物线C 的方程为24y x =. 同理,当焦点在x 轴的负半轴时,可得2p =-,此时抛物线C 的方程为24y x =-.综上所述,抛物线C 的方程为24y x =±.应当选:D .10.点P 是曲线24y x =上任意一点,过点P 向y 轴引垂线,垂足为H ,点Q 是曲线x y e =上任意一点,如此||||PH PQ +的最小值为()A .31+B .21+C .31-D .21-解:由抛物线的方程可得准线方程为:1x =-,焦点(1,0)F ,由题意与抛物线的性质可得||||1PH PF =-,||||||||1||1PH PQ PF PQ QF +=+--,即求||QF 的最小值,设(,)x Q x e ,如此22222||(1)()21x x QF x e e x x =-+=+-+,设函数22()21x f x e x x =+-+,如此2()222x f x e x '=+-,(0)0f '=,2()420x f x e ''=+>恒成立,所以()f x '单调递增,所以()f x 在(,0)-∞单调递减,在(0,)+∞单调递增,所以()(0)2min f x f ==, 所以||QF 2当Q ,P ,F 三点共线时||||PH PQ +由最小值,且为21-,应当选:D .二、多项选择题11.抛物线2:2C x py =的焦点为F ,P 为其上一动点,当P 运动到(,1)t 时,||2PF =,直线l 与抛物线相交于A ,B 两点,点(4,1)M ,如下结论正确的答案是()A .抛物线的方程为28x y =B .||||PM PF +的最小值为6C .当直线l 过焦点F 时,以AF 为直径的圆与x 轴相切D .假如过A ,B 的抛物线的两条切线交准线于点T ,如此A ,B 两点的纵坐标之和最小值为2解:由题设知:||122pPF =+=,解得:2p =,∴抛物线方程为24x y =,应当选项A 错误;连接FM 交抛物线于点P ,此时||||PM PF +的值最小为4,应当选项B 错误;如右图所示,设G 为AF 的中点,过点A 作AC ⊥抛物线的准线l '于点C ,交x 轴于点Q ,过点G 作GD x ⊥轴于点D ,111||(||||)||||222DG OF AQ AC AF ∴=+==,故以AF 为直径的圆与x 轴相切,应当选项C 正确;设点1(A x ,1)y ,2(B x ,2)y ,由24x y =即214y x =得:112y x =,如此切线AT 的方程为1111()2y y x x x -=-, 即2111124y x x x =-,同理可得切线BT 的方程为2221124y x x x =-,由21122211241124y x x x y x x x ⎧=-⎪⎪⎨⎪=-⎪⎩解得:1212214x x x y x x+⎧=⎪⎪⎨⎪=⎪⎩, 由题意知T 在准线1y =-上,∴12114x x =-,121x x =-,22221212*********()[()2]()2444y y x x x x x x x x ∴+=+=+-=++,∴当120x x +=时,122y y +=为最小值,∴选项D 正确,应当选:CD .12.过抛物线24y x =的焦点F 作直线交抛物线于A ,B 两点,M 为线段AB 的中点,如此()A .以线段AB 为直径的圆与直线y 轴相离B .以线段BM 为直径的圆与y 轴相切 .当2,AF FB AB =时D .||AB 的最小值为4解:24y x =的焦点(1,0)F ,准线方程为1x =-,设A ,B ,M 在准线上的射影为A ',B ',M ',由||||AF AA '=,||||BF BB '=,111||(||||)(||||)||222MM AA BB AF FB AB '''=+=+=,可得线段AB 为直径的圆与准线相切,与直线y 轴相交,故A 错;当直线AB 的斜率不存在时,显然以线段BM 为直径的圆与y 轴相切;当直线AB 的斜率存在且不为0,可设直线AB 的方程为y kx k =-,联立24y x =,可得2222(24)0k x k x k -++=,设1(A x ,1)y ,2(B x ,2)y , 可得12242x x k +=+,121x x =,设13x =+,23x =- 可得M 的横坐标为221k +,MB的中点的横坐标为2212(1)2x k ++,222||1|BM x k --, 当1k =时,MB 的中点的横坐标为52-1||22MB =,显然以线段BM 为直径的圆与y 轴相交,故B 错;以F 为极点,x 轴的正半轴为极轴的抛物线的极坐标方程为21cos ρθ=-,设1(A ρ,)θ,2(B ρ,)πθ+,可得121cos ρθ=-,2221cos()1cos ρπθθ==-++,可得111cos 1cos 1||||22AF BF θθ-++=+=,又||2||AF FB =,可得||3AF =,3||2FB =,如此9||||||2AB AF FB =+=,故C 正确; 显然当直线AB 垂直于x 轴,可得||AB 取得最小值4,故D 正确.应当选:CD .13.抛物线2:4C x y =的焦点为F ,P 为其上一动点,设直线l 与抛物线C 相交于A ,B 两点,点(2,2)M ,如下结论正确的答案是()A .||||PM PF +的最小值为3B .抛物线C 上的动点到点(0,3)H 的距离最小值为3C .存在直线l ,使得A ,B 两点关于30x y +-=对称D .假如过A 、B 的抛物线的两条切线交准线于点T ,如此A 、B 两点的纵坐标之和最小值为2解:由题意可得抛物线的准线方程为:1y =-,A 中:过M 作准线的垂线交抛物线于P ,交准线于Q ,由抛物线的性质可得||||PF PQ =,所以||||||||PM PF PM PQ +=+,当M ,P ,Q 三点共线时||||PM PF +最小且为213+=,故A 正确;B 中,设抛物线上的动点2(,)4x N x ,如此||822NH ==,所以||NH 的最小值为B 不正确;C 中,假设存在这样的直线l ,如此可得直线l 的方程为:0x y m -+=,设1(A x ,1)y ,2(B x ,2)y ,联立直线AB 与抛物线的方程:24y x mx y=+⎧⎨=⎩,整理可得:2440x x m --=,△16160m =+>,可得1m >-,124x x +=,1212242y y x x m m +=++=+,所以AB 的中点(2,2)D m +,由题意可得点D 在直线30x y +-=上,所以2230m ++-=,解得1m =-,不满足△0>的条件,所以C 不正确;D 中,设T 的坐标(,1)t -,设直线AB 的方程为:y kx b =+,设1(A x ,21)4x ,2(B x ,22)4x ,联立直线与抛物线的方程:24y kx bx y=+⎧⎨=⎩,整理可得:2440x kx b --=,△216160k b =+>,即20k b +>,124x x k +=,124x x b =-,因为24x y =,2xy '=,所以在A 处的切线方程为2211111()2424x x x x x y x x =-+=-①,同理可得在B 处的切线方程:22224x x x y =-,②, 由①②可得124x x y b ==-, 所以1b =,所以21212()2422y y k x x b k +=++=+,当0k =时,取等号,也满足判别式大于0,符合条件,所以AB 的纵坐标最小值之和为2,故D 正确.应当选:AD .14.抛物线24x y =的焦点为F ,1(A x ,1)y ,2(B x ,2)y 是抛物线上两点,如此如下结论正确的答案是()A .点F 的坐标为(1,0)B .假如A ,F ,B 三点共线,如此3OA OB =-C .假如直线OA 与OB 的斜率之积为14-,如此直线AB 过点FD .假如||6AB =,如此AB 的中点到x 轴距离的最小值为2解:抛物线24x y =中的2p =,如此焦点F 坐标为(0,1),故A 错误,设直线AB 的方程为1y kx =+,联立方程可得241x yy kx ⎧=⎨=+⎩,消y 可得2440x kx --=,124x x k ∴+=,124x x =-,2121212()11y y k x x k x x ∴=+++=∴1212413OA OB x x y y =+=-+=-,故B 正确,设直线AB 的方程为y kx m =+,联立方程可得24x yy kx m⎧=⎨=+⎩,消y 可得2440x kx m --=,124x x k ∴+=,124x x m =-,222222121212()44y y k x x k x x m k m mk m m ∴=+++=-++=,直线OA 与OB 的斜率之积为14-,∴121214y y x x =-,即2144m m =--,解得1m =, ∴直线AB 的方程为1y kx =+,即直线过点F ;故C 正确,22221212||1()4116166AB k x x x x k k m =++-=++=,224(1)()9k k m ∴++=,2294(1)m k k ∴=-+, 21212()242y y k x x m k m +=++=+,AB ∴的中点到x 轴距离2222222222999922112(1)13124(1)4(1)4(1)4(1)d k m k k k k k k k k k =+=+-=+=++-+-=-=++++,当且仅当212k =时取等号,故AB 的中点到x 轴距离的最小值为2,故D 正确. 综上所述:结论正确的答案是BCD .应当选:BCD .三、填空题15.抛物线2:C x ay =焦点为F ,准线方程1y =-,直线l 与抛物线C 交于A ,B 两点,连接AF 并延长交抛物线C 于点D ,假如AB 中点的纵坐标为||1AB -,如此当AFB ∠最大时,解:因为抛物线2:C x ay =的准线方程1y =-,所以14a=,所以4a =, 所以抛物线C 的方程是24x y =.不妨设1(A x ,1)y ,2(B x ,2)y ,3(D x ,3)y , 由抛物线定义得122||||y y AF BF ++=+. 因为12||12y y AB +=-,所以||||2||AF BF AB +=, 所以22222||||||3(|||)2||||6||||2||||1cos 2||||8||||8||||2AF BF AB AF BF AF BF AF BF AF BF AFB AF BF AF BF AF BF +-+-⋅⋅-⋅∠===⋅⋅⋅,当且仅当||||AF BF =时取等号.所以当AFB ∠最大时,AFB ∆为等边三角形,此时A ,B 关于y 轴对称,不妨设10x >,消去y ,得240x --=, 所以13x x +=1313)214y y x x +++=.所以13||216AD y y =++=.故答案为:16.16.抛物线2:2(0)C y px p =>,其焦点为F ,准线为l ,过焦点F 的直线交抛物线C 于点A 、B 〔其中A 在x 轴上方〕,A ,B 两点在抛物线的准线上的投影分别为M ,N ,假如||23MF =,||2NF =,如此||||AF BF =3. 解:设准线l 与x 轴交于点E ,A ,B 两点在抛物线的准线上的投影分别为M ,N , ////AM BN x ∴轴,AM F EFM ∴∠=∠,BNF EFN ∠=∠, 由抛物线的定义知,||||AF AM =,||||BF BN =, AM F AFM ∴∠=∠,BNF BFN ∠=∠,AFM EFM ∴∠=∠,BFN EFN ∠=∠,1()22MFN EFM EFN EFA EFB π∴∠=∠+∠=∠+∠=, 222||||||41216MN NF MF ∴=+=+=,即||4MN =,11||||||||22MNF S EF MN MF NF ∆=⋅=⋅, ||4223EF ∴⋅=⨯,解得||3EF =, 3AFM EFM π∴∠=∠=,6BFN EFN π∠=∠=,||||AF AM =,AFM ∴∆为等边三角形,||||23AF MF ∴==,||||BF BN =,BNF ∴∆是顶角为23π的等腰三角形,12||||33BF NF ∴==, ∴||2332||3AF BF ==. 故答案为:3.17.O 为坐标原点,抛物线2:2C y px =上一点A 到焦点F 的距离为4,假如点M 为抛物线C 准线上的动点,给出以下命题: ①当M AF ∆为正三角形时,p 的值为2;②存在M 点,使得0MA MF -=;③假如3MF FA =,如此p 等于3;④||||OM MA +的最小值为213,如此p 等于4或12. 其中正确的答案是①③. 解:对于①,当M AF ∆为正三角形时,||||AF AM =,故AM 与x 轴平行,||||4AF AM ==,F ∴到准线的距离等于1||22AM =,即2p =,故①正确; 对于②,MA MF FA -=,而A 在抛物线上,0FA ≠,故②不正确; 对于③,假如3MF FA =,如此A ,M ,F 三点共线,且||12MF =,由三角形的相似比可得12164p =,得3p =,故③正确; 对于④,设(,0)B p -,如此O ,B 关于准线对称,故||||MO MB =,||4AF =,A ∴点横坐标为42p -,不妨设A 在第一象限,如此A 28p p -, 故||||OM MA +的最小值为22||(4)8132p AB p p =++-4p =或12p =, 由402p -,8p ,故4p =,故④不正确. 故答案为:①③.18.直线:1l y =与y 轴交于点M ,Q 为直线l 上异于点M 的动点,记点Q 的横坐标为n ,假如曲线22:12x C y +=上存在点N ,使得45MQN ∠=︒,如此n 的取值X 围是[13,0)(0,13]--+⋃.〔用区间表示〕 解:由题意知,(,1)Q n ,0n ≠, 设直线QN 的方程为:()1QN l y k x n =-+, 假如Q 在第一象限,由45MQN ∠=︒,知1k =, 当QN l 与椭圆相切时,n 取得最大值,联立22220()1x y y x n ⎧+-=⎨=-+⎩,得2234(1)2(2)0x n x n n +-+-=, ∴△2216(1)24(2)0n n n =---=,解得13n =+或13n =-〔舍负〕; 假如Q 在第二象限,由45MQN ∠=︒,知1k =-, 当QN l 与椭圆相切时,n 取得最小值,联立22220()1x y y x n ⎧+-=⎨=--+⎩,得2234(1)2(2)0x n x n n -+++=, ∴△2216(1)24(2)0n n n =+-+=,解得13n =--或13n =-+〔舍正〕. 综上所述,[13,0)(0,13]n ∈--+⋃.故答案为:[13,0)(0,13]-⋃.。
高中数学复习提升-二轮复习解析几何大题押题训练
丰城九中校本资料丰城九中校本资料丰城九中2017届高考数学(理)大题押题训练-----解析几何组题: 钟海荣一、认真完成二轮复习资料《考前特训》第241---241页2016年8个高考试题. 二:押题训练:1.已知椭圆C 的中心在原点O ,焦点在x 轴上,离心率为21,右焦点到右顶点的距离为1. (1)求椭圆C 的标准方程;(2)是否存在与椭圆C 交于B A ,两点的直线)(:R k m kx y l ∈+=,使得0=⋅成立?若存在,求出实数m 的取值范围,若不存在,请说明理由.2.已知点C 为圆()2218x y ++=的圆心,P 是圆上的动点,点Q 在圆的半径CP 上,且有点()1,0A 和AP 上的点M ,满足0,2MQ AP AP AM ==.(1)当点P 在圆上运动时,求点Q 的轨迹方程;(2)若斜率为k 的直线l 与圆221x y +=相切,与(1)中所求点Q 的轨迹交于不同的两点,,F H O 是坐标原点,且3445OF OH ≤≤时,求k 的取值范围.丰城九中校本资料丰城九中校本资料3.如图,过椭圆)0(1:2222>>=+b a by a x E 上一点P 向x 轴作垂线,垂足为左焦点F ,B A ,分别为E 的右顶点,上顶点,且OP AB ∥,12+=AF .(1)求椭圆E 的方程;(2)过原点O 做斜率为)0(>k k 的直线,交E 于D C ,两点,求四边形ACBD 面积S 的最大值.4.已知椭圆()2222:10x y C a b a b +=>>的左右焦点分别为12,F F ,椭圆C 过点21,2P ⎛⎫⎪ ⎪⎝⎭,直线1PF 交y 轴于Q ,且22,PF QO O =为坐标原点.(1)求椭圆C 的方程;(2)设M 是椭圆C 上的顶点,过点M 分别作出直线,MA MB 交椭圆于,A B 两点,设这两条直线的斜率分别为12,k k ,且122k k +=,证明:直线AB 过定点.丰城九中校本资料丰城九中校本资料5.设O 为坐标原点,已知椭圆()22122:10x y C a b a b +=>>的离心率为32,抛物线22:C x ay=-的准线方程为12y =.(1)求椭圆1C 和抛物线2C 的方程;(2)设过定点()0,2M 的直线t 与椭圆1C 交于不同的两点,P Q ,若O 在以PQ 为直径的圆的外部,求直线t 的斜率k 的取值范围.6.已知圆C 经过点A (﹣2,0),B (0,2),且圆心C 在直线y=x 上,又直线l :y=kx+1与圆C 相交于P 、Q 两点. (1)求圆C 的方程;(2)若2-=⋅,求实数k 的值;(3)过点(0,4)作动直线m 交圆C 于E ,F 两点.试问:在以EF 为直径的所有圆中,是否存在这样的圆P ,使得圆P 经过点M (2,0)?若存在,求出圆P 的方程;若不存在,请说明理由.丰城九中校本资料丰城九中校本资料7、 已知曲线E 上的任意点到点)0,1(F 的距离比它到直线2-=x 的距离小1.(Ⅰ) 求曲线E 的方程:(Ⅱ) 点D 的她标为),0,2(若P 为曲线E 上的动点,求PF PD ⋅的最小值;(Ⅲ) 设点A 为y 轴上异于原点的任意一点,过点A 作曲线E 的切线,l 直线3=x 分别与直线l 及x 轴交于点,,N M 以MN 为直径作圆,C 过点A 作圆C 的切线,切点为.B 试探究:当点A 往y 轴上运动(点A 与原点不重合)时,线段AB 的长度是否发生变化?请证明你的结论.8、 已知椭圆B A y x E 、,148:22=+分别是椭圆E 的左、右顶点,动点M 在射线)0(24:>=y x l 上运动,MA 交椭圆E 于点MB P ,交椭圆E 于点Q .(Ⅰ) 若MAB ∆垂心的纵坐标为,74-求点P 的坐标;(Ⅱ) 试问:直线PQ 是否过定点?若过定点,求定点坐标;若不过定点,请说明理由.丰城九中校本资料丰城九中校本资料丰城九中2017届高考数学(理)大题训练--------解析几何押题训练参考答案1.已知椭圆C 的中心在原点O ,焦点在x 轴上,离心率为21,右焦点到右顶点的距离为1.(1)求椭圆C 的标准方程;(2)是否存在与椭圆C 交于B A ,两点的直线)(:R k m kx y l ∈+=,使得0=⋅OB OA 成立?若存在,求出实数m 的取值范围,若不存在,请说明理由.【答案】(1)13422=+y x ;(2)存在,),7212[]7212,(+∞⋃--∞∈m .试题解析:(1)设椭圆C 的方程为22221(0)x y a b a b +=>>,半焦距为c .依题意21==a c e , 由右焦点到右顶点的距离为1,得1=-c a 解得2,1==a c .所以3222=-=c a b ,所以椭圆C的标准方程是13422=+y x .(2)解:存在直线l ,使得0=⋅成立.理由如下:由⎪⎩⎪⎨⎧=++=134,22y x m kx y 得01248)43(222=-+++m kmx x k . 0)124)(43(4)8(222>-+-=∆m k km ,化简得2243m k >+.设),(),,(2211y x B y x A ,则222122143124,438k m x x k km x x +-=+-+.若0=⋅,所以02121=+y y x x ,0))((2121=+++m kx m kx x x ,0)()1(221212=++++m x x km x x k ,043843124)1(22222=++⋅-+-⋅+m k km km k m k ,化简得,2212127k m +=,将112722-=m k 代入2243m k >+中,22)1127(43m m >-+,解得432>m .又由121212722≥+=k m ,7122≥m ,从而7122≥m ,2172≥m 或2172-≤m ,所以实数m 的取值范围是),2172[]2172,(+∞--∞ .考点:1.韦达定理应用;2.直线与圆锥曲线的综合应用.【方法点睛】本题主要考查的是椭圆的标准方程的求法,满足条件的直线方程是否存在的判断,属于中档题,在解决此类问题,要认真审题,注意挖掘题设中隐含条件,合理地加以运用,对待直线与圆锥的综合问题,主要就是设直线的方程,联立方程组,消元得到一个一元二次方程,然后利用韦达定理和根的判别式等条件即可求出其中参数的取值范围,对题设中隐含条件的挖掘,合理的运用韦达定理和根的判别式等条件是解此类题目的关键. 2.已知点C 为圆()2218x y ++=的圆心,P 是圆上的动点,点Q 在圆的半径CP 上,且有点()1,0A 和AP 上的点M ,满足0,2MQ AP AP AM ==.(1)当点P 在圆上运动时,求点Q 的轨迹方程;(2)若斜率为k 的直线l 与圆221x y +=相切,与(1)中所求点Q 的轨迹交于不同的两点,,F H O 是坐标原点,且3445OF OH ≤≤时,求k 的取值范围. 【答案】(1)2212x y +=;(2)23322332k k -≤≤-≤≤. 【解析】试题分析:(1)由题意知MQ 中线段AP 的垂直平分线,所以丰城九中校本资料丰城九中校本资料22CP QC QP QC QA =+=+=,所以Q 的轨迹是椭圆,即方程为2212x y +=;(2)设直线()()1122:,,,,l y kx b F x y H x y =+,由直线与圆相切,圆心到直线的距离等于半径,可得221b k =+.联立直线的方程和椭圆的方程,写出根与系数关系,代入OF OH ⋅,有223144125k k +≤≤+,由此解得23322332k k -≤≤-≤≤.(2)设直线()()1122:,,,,l y kx b F x y H x y =+,直线l 与圆221x y +=相切222111b b k k ⇒=⇒=++,()2222211242202x y k x kbx b y kx b ⎧+=⎪⇒+++-=⎨⎪=+⎩,()()()22222221641221821800k b k b k b k k ∆=-+-=-+=>⇒≠,2121222422,1212kb b x x x x k k -+=-=++,()()()()()()()221212121222222222222222112212414111212121212OF OH x x y y k x x kb x x b k b k k k k kb k kb b k k k k k k =+=+++++-++-+=++=-++=+++++所以22231411412532k k k+≤≤⇔≤≤+ 322332322332k k k ⇒≤≤⇒-≤≤-≤≤或为所求.考点:直线与圆锥曲线位置关系.【方法点晴】求轨迹方程的常用方法有定义法和向观点法.本题是定义法.根据题意,动点满足椭圆的定义,也即动点到两个定点的距离之和等于常数,并且这个常数大于这两个定点的距离.在求解出椭圆方程后,要验证是否椭圆方程的每个点是否都在图象上,因为有时候有些点是不符合题意的,比如有时候斜率不存在的点可能要舍去.3.如图,过椭圆)0(1:2222>>=+b a b y a x E 上一点P 向x 轴作垂线,垂足为左焦点F ,B A ,分别为E 的右顶点,上顶点,且OP AB ∥,12+=AF .(1)求椭圆E 的方程;(2)过原点O 做斜率为)0(>k k 的直线,交E 于D C ,两点,求四边形ACBD 面积S 的最大值.【答案】(1)1222=+y x ;(2)2.丰城九中校本资料丰城九中校本资料试题解析:(1)设焦距为c2,则),(2abcP-,由OPAB∥得abacb=2,则cacb2,==,则ccaAF)12(+=+=,又12+=AF,则2,1,1===abc,椭圆E的方程为1222=+yx..考点:直线与圆锥曲线位置关系.【方法点晴】直线和圆锥曲线的位置关系一方面要体现方程思想,另一方面要结合已知条件,从图形角度求解.联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后由根与系数的关系求解是一个常用的方法. 涉及弦长的问题中,应熟练地利用根与系数关系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系数关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.4.已知椭圆()2222:10x yC a ba b+=>>的左右焦点分别为12,F F,椭圆C过点21,2P⎛⎫⎪⎪⎝⎭,直线1PF交y轴于Q,且22,PF QO O=为坐标原点.(1)求椭圆C的方程;(2)设M是椭圆C上的顶点,过点M分别作出直线,MA MB交椭圆于,A B两点,设这两条直丰城九中校本资料丰城九中校本资料线的斜率分别为12,k k ,且122k k +=,证明:直线AB 过定点.【答案】(1)2212x y +=;(2)证明见解析.【解析】试题分析:(1)因为22PF QO =,所以212PF F F ⊥,1c =,将21,2P ⎛⎫ ⎪ ⎪⎝⎭代入椭圆得221121a b +=,解得221,2b a ==,椭圆方程为2212x y +=;(2)设AB 方程为y kx b =+代入椭圆方程,写出根与系数关系,11,A BMA MB A B y y k k x x --==,求得2MA MB k k +=,所以1k b =+,代入y kx b=+得:1y kx k =+-所以, 直线必过()1,1--.(2)设AB 方程为y kx b =+代入椭圆方程22212102k x kbx b ⎛⎫+++-= ⎪⎝⎭,22221,1122A B A B kb b x x x x k k --+==++,11,A B MA MB A B y y k k x x --==,∴()112A B A B A B A B MA MB A B A By x x y x x y y k k x x x x +-+--+=+==,∴1kb =+代入y kx b =+得:1y kx k =+-所以, 直线必过()1,1--.考点:直线与圆锥曲线位置关系.【方法点晴】求曲线方程主要方法是方程的思想,将向量的条件转化为垂直.直线和圆锥曲线的位置关系一方面要体现方程思想,另一方面要结合已知条件,从图形角度求解.联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后由根与系数的关系求解是一个常用的方法. 涉及弦长的问题中,应熟练地利用根与系数关系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系数关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.5.设O 为坐标原点,已知椭圆()22122:10x y C a b a b +=>>的离心率为3,抛物线22:C x ay =-的准线方程为12y =.(1)求椭圆1C 和抛物线2C 的方程;(2)设过定点()0,2M 的直线t 与椭圆1C 交于不同的两点,P Q ,若O 在以PQ 为直径的圆的外部,求直线t 的斜率k 的取值范围.【答案】(1)22x y =-,2214x y +=;(2)332,,2k ⎛⎛⎫∈- ⎪ ⎪⎝⎭⎝⎭. 试题解析:丰城九中校本资料丰城九中校本资料(1)由题意得142a =,∴2a =,故抛物线2C 的方程为22x y =-,又32e =,∴3c =1b =,从而椭圆1C 的方程为2214x y +=..........................................5分(2)显然直线0x =不满足题设条件,可设直线()()1122:2,,,,l y kx P x y Q x y =+.由22142x y y kx ⎧+=⎪⎨⎪=+⎩,得()221416120k x kx +++=......................7分∵()()2216412140k k∆=-⨯+>,∴33,,k ⎛⎛⎫∈-∞+∞ ⎪ ⎪⎝⎭⎝⎭,...............9分1212221612,1414k x x x x k k -+==++,]根据题意,得000900POQ OP OQ <∠<⇔>,∴()()()()()2121212121212222222212412116164240141414OP OQ x x y y x x kx kx k x x k x x k k k k k k k=+=+++=+++++--=+⨯+=>+++....................11分∴22k -<<,综上得332,,2k ⎛⎛⎫∈- ⎪ ⎪⎝⎭⎝⎭.....................12分考点:直线与圆锥曲线位置关系.【方法点晴】直线和圆锥曲线的位置关系一方面要体现方程思想,另一方面要结合已知条件,从图形角度求解.联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后由根与系数的关系求解是一个常用的方法. 涉及弦长的问题中,应熟练地利用根与系数关系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系数关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解. 6.已知圆C 经过点A (﹣2,0),B (0,2),且圆心C 在直线y=x 上,又直线l :y=kx+1与圆C 相交于P 、Q 两点. (1)求圆C 的方程;(2)若2-=⋅,求实数k 的值;(3)过点(0,4)作动直线m 交圆C 于E ,F 两点.试问:在以EF 为直径的所有圆中,是否存在这样的圆P ,使得圆P 经过点M (2,0)?若存在,求出圆P 的方程;若不存在,请说明理由.【答案】(1)224x y +=;(2)0k =;(3)2255168120x y x y +--+=或224x y +=. 【解析】试题分析:(1)设圆心(),C a a ,半径为r ,AC BC r==,由此列方程组能求出圆C 的方程;(2)由22cos ,2OP OQ OP OQ =⨯⨯<>=-,得120POQ ∠=,圆心C 到直线:10l kx y -+=的距离1d =,由此能求出0k =.(3)当直线m 的斜率不存在时,圆C 也是满足题意的圆,当直线m 的斜率存在时,设直线:4m y kx =+,由2244x y y kx ⎧+=⎨=+⎩,得()2218120k xkx +++=,由此利用根的判别式、韦达定理,结合已知条件能求出在以EF 为直径的所有圆中,存在圆22:55168120P x y x y +--+=或224x y +=,使得圆P 经过点()2,0M .(2)因为OP •Q O =2×2×cos <OP ,Q O >=﹣2, 且OP 与Q O 的夹角为∠POQ ,丰城九中校本资料丰城九中校本资料所以cos ∠POQ=﹣12,∠POQ=120°,所以圆心C 到直线l :kx ﹣y+1=0的距离d=1,又21k +,所以k=0.…6分 (3)(ⅰ)当直线m 的斜率不存在时,直线m 经过圆C 的圆心C ,此时直线m 与圆C 的交点为E (0,2),F (0,﹣2), EF 即为圆C 的直径,而点M (2,0)在圆C 上, 即圆C 也是满足题意的圆.…8分(ⅱ)当直线m 的斜率存在时,设直线m :y=kx+4,由2244x y y kx ⎧+=⎨=+⎩,消去y 整理,得(1+k 2)x 2+8kx+12=0,由△=64k 2﹣48(1+k 2)>0,得3k >3k <设E (x 1,y 1),F (x 2,y 2),则有12212281121k x x k x x k ⎧+=-⎪⎪+⎨⎪=⎪+⎩①由①得()()()22121212122164444161k y y kx kx k x x k x x k -=++=+++=+,② ()121212284481y y kx kx k x x k +=+++=++=+,③若存在以EF 为直径的圆P 经过点M (2,0),则ME ⊥MF , 所以F 0ME⋅M =,.因此(x 1﹣2)(x 2﹣2)+y 1y 2=0, 即x 1x 2﹣2(x 1+x 2)+4+y 1y 2=0,则2222121616440111k k k k k -+++=+++,所以16k+32=0,k=﹣2,满足题意..此时以EF 为直径的圆的方程为x 2+y 2﹣(x 1+x 2)x ﹣(y 1+y 2)y+x 1x 2+y 1y 2=0,即22168120555x y x y +--+=,2255168120x y x y +--+= 亦即5x 2+5y 2﹣16x ﹣8y+12=0综上,在以EF 为直径的所有圆中,存在圆P :5x 2+5y 2﹣16x ﹣8y+12=0或x 2+y 2=4,使得圆P 经过点M (2,0). 考点:1、待定系数法求圆的方程;2、韦达定理及存在性问题.【方法点睛】本题主要考查待定待定系数法求圆的方程、韦达定理及存在性问题,属于难题. 存在性问题的常见思路是,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在:①当条件和结论不唯一时要分类讨论. ②当给出结论而要推导出存在的条件时,先假设成立,再推出条件. ③当条件和结论都不知,按常规方法很难时,采取另外的途径. 7、 已知曲线E 上的任意点到点)0,1(F 的距离比它到直线2-=x 的距离小1. (Ⅰ) 求曲线E 的方程:(Ⅱ)点D 的她标为),0,2(若P 为曲线E 上的动点,求PF PD ⋅的最小值;(Ⅲ)设点A 为y 轴上异于原点的任意一点,过点A 作曲线E 的切线,l 直线3=x 分别与直线l 及x 轴交于点,,N M 以MN 为直径作圆,C 过点A 作圆C 的切线,切点为.B 试探究:当点A 往y 轴上运动(点A 与原点不重合)时,线段AB 的长度是否发生变化?请证明你的结论.解:(Ⅰ)设),(y x S 为曲线E 上任意一点,依题意,点S 到)0,1(F 的距离与它到直线1-=x 的距离相等, 所以曲线E 是以点)0,1(F 为焦点,直线1-=x 为准线的抛物线,所以曲线E 的方程为x y 42= ……3分(Ⅱ)设)0)(,(000≥x y x P ,则23),1(),2(020200000+-+=--⋅--=⋅x x y y x y x PF PM 22340200200++=+-+=x x x x x……6分 因为,00≥x 所以当0=x 时,PF PM ⋅有最小值为2.……8分(Ⅲ)当点A 在y 轴上运动(点A 与原点不重合)时,线段AB 的长度不变.证明如下:依题意,丰城九中校本资料丰城九中校本资料直线l 的斜率存在且不为0.设l ∶b kx y +=,将其方程代入x y 42=得 0)42(222=+-+b x kb x k由016164)42(222=-=--=∆kb b k kb 得1=kb ……9分将3=x 代入直线l 的方程得)3,3(b k M +又),0,3(N 故圆心).23,3(bk C + 所以圆C 的半径为23b k r +=……11分222222)23()23()03(b k b b k r AC AB +--++-=-=∴639)63(92=-=++-=kb b b k6=∴AB∴当点A 在y 轴上运动(点A 与原点不重合)时,线段AB 的长度不变,为定值6……12分8、 已知椭圆BA y x E 、,148:22=+分别是椭圆E 的左、右顶点,动点M 在射线)0(24:>=y x l 上运动,MA 交椭圆E 于点MB P ,交椭圆E 于点Q .(Ⅰ) 若MAB ∆垂心的纵坐标为,74-求点P 的坐标;(Ⅱ)试问:直线PQ 是否过定点?若过定点,求定点坐标;若不过定点,请说明理由.解:(Ⅰ)设MAB ∆的垂心为HAB 边上的高所在的直线方程为:24=x 且MAB ∆垂心的纵坐标为74 )74,24(-∴H……2分∴直线BH 的斜率为14242274-=-=BH k所以直线AM 的斜率1411=-=BHAM k k则AM 的方程为:)22(141+=x y……4分由⎪⎪⎩⎪⎪⎨⎧==⇒⎪⎪⎩⎪⎪⎨⎧=++=27223148)22(14122y x y x x y ,所以P 点的坐标为⎪⎪⎭⎫ ⎝⎛27,223 ……6分(Ⅱ)设P 点的坐标为()11,y x ,Q 点坐标为()22,y x ,则)8(21),8(2122222121x y x y -=-=直线AP 的方程为:)22(2211++=x x y y由)2226,24(24)22(221111+⇒⎪⎩⎪⎨⎧=++=x y M x x x y y ……7分由于Q B M ,,共线,所以BQ BMk k =,从而2202224022262211--=--+x y x y 即)22(2232211-=+x y x y ,平方得: 222222)22(9)22()8(21)22()8(29)22()22(922112222212122222121-+=+-⇒+-=+-⇒-=+x x x x x x x x x y x y 化简得:016)(2522121=++=x x x x ……(*)……9分设直线PQ 的方程为:m kx y +=丰城九中校本资料丰城九中校本资料由0824)21(14822222=-+++⇒⎪⎩⎪⎨⎧=++=m kmx x k y x m kx y所以,2182,2142221221k m x x k km x x +-=+-=+代入(*)得:082522=++k km m 解得:k m 2-=,或k m 24-=……11分当k m 2-=时,直线PQ 的方程为:,2k kx y -=即),2(-=x k y 恒过)0,2(;当k m 24-=时, 直线PQ 的方程为:,24k kx y -=即),24(-=x k y 恒过)0,24(;此种情况不合题意 综上可知:直线PQ 恒过)0,2(…12分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学解析几何压轴题专项拔高训练一.选择题(共15小题)1.已知倾斜角α≠0的直线l过椭圆(a>b>0)的右焦点交椭圆于A、B两点,P为右准线上任意一点,则∠APB为()A.钝角B.直角C.锐角D.都有可能考点:直线与圆锥曲线的综合问题.专题:压轴题.分析:根据题设条件推导出以AB为直径的圆与右准线相离.由此可知∠APB为锐角.解答:解:如图,设M为AB的中点,过点M作MM1垂直于准线于点M1,分别过A、B作AA1、BB1垂直于准线于A1、B1两点.则∴以AB为直径的圆与右准线相离.∴∠APB为锐角.点评:本题考查圆锥曲线的性质和应用,解题时作出图形,数形结合,往往能收到事半功倍之效果.2.已知双曲线(a>0,b>0)的右焦点为F,右准线为l,一直线交双曲线于P.Q两点,交l于R点.则()A.∠PFR>∠QFR B.∠PFR=∠QFRC.∠PFR<∠QFR D.∠PFR与∠AFR的大小不确定考点:直线与圆锥曲线的综合问题.专题:计算题;压轴题.分析:设Q、P到l 的距离分别为d1,d2,垂足分别为M,N,则PN∥MQ,=,又由双曲线第二定义可知,由此能够推导出RF是∠PFQ的角平分线,所以∠PFR=∠QFR.解答:解:设Q、P到l 的距离分别为d1,d2,垂足分别为M,N,则PN∥MQ,∴=,又由双曲线第二定义可知,∴,,∴,∴RF是∠PFQ的角平分线,∴∠PFR=∠QFR故选B.点评:本题考查双曲线的性质和应用,解题时利用双曲线第二定义综合平面几何知识求解.3.设椭圆的一个焦点为F,点P在y轴上,直线PF交椭圆于M、N,,则实数λ1+λ2=()A.B.C.D.考点:直线与圆锥曲线的综合问题.专题:综合题;压轴题.分析:设直线l的斜率为k,则直线l的方程是y=k(x﹣c).将直线l的方程代入到椭圆C的方程中,消去y并整理得(b2+a2k2)x2﹣2a2ck2x+a2c2k2﹣a2b2=0.然后利用向量关系及根与系数的关系,可求得λ1+λ2的值.解答:解:设M,N,P点的坐标分别为M(x1,y1),N(x2,y2),P(0,y0),又不妨设F点的坐标为(c,0).显然直线l存在斜率,设直线l的斜率为k,则直线l的方程是y=k(x﹣c).将直线l的方程代入到椭圆C的方程中,消去y并整理得(b2+a2k2)x2﹣2a2ck2x+a2c2k2﹣a2b2=0.∴,.又∵,将各点坐标代入得,=.故选C.点评:本题以向量为载体,考查直线与椭圆的位置关系,是椭圆性质的综合应用题,解题时要注意公式的合理选取和灵活运用.4.中心在原点,焦点在x轴上的双曲线C1的离心率为e,直线l与双曲线C1交于A,B两点,线段AB中点M在一象限且在抛物线y2=2px(p>0)上,且M到抛物线焦点的距离为p,则l的斜率为()A.B.e2﹣1 C.D.e2+1考点:圆锥曲线的综合.专题:综合题;压轴题;圆锥曲线的定义、性质与方程.分析:利用抛物线的定义,确定M的坐标,利用点差法将线段AB中点M的坐标代入,即可求得结论.解答:解:∵M在抛物线y2=2px(p>0)上,且M到抛物线焦点的距离为p,∴M的横坐标为,∴M(,p)设双曲线方程为(a>0,b>0),A(x1,y1),B(x2,y2),则,两式相减,并将线段AB中点M的坐标代入,可得∴∴故选A.点评:本题考查双曲线与抛物线的综合,考查点差法的运用,考查学生的计算能力,属于中档题.5.已知P为椭圆上的一点,M,N分别为圆(x+3)2+y2=1和圆(x﹣3)2+y2=4上的点,则|PM|+|PN|的最小值为()A.5B.7C.13 D.15考点:圆与圆锥曲线的综合;椭圆的简单性质.专题:计算题;压轴题.分析:由题意可得:椭圆的焦点分别是两圆(x+3)2+y2=1和(x﹣3)2+y2=4的圆心,再结合椭圆的定义与圆的有关性质可得答案.解答:解:依题意可得,椭圆的焦点分别是两圆(x+3)2+y2=1和(x﹣3)2+y2=4的圆心,所以根据椭圆的定义可得:(|PM|+|PN|)min=2×5﹣1﹣2=7,故选B.点评:本题考查圆的性质及其应用,以及椭圆的定义,解题时要认真审题,仔细解答,注意公式的合理运用.6.过双曲线﹣=0(b>0,a>0)的左焦点F(﹣c,0)(c>0),作圆x2+y2=的切线,切点为E,延长FE 交双曲线右支于点P,若=(+),则双曲线的离心率为()A.B.C.D.考点:圆与圆锥曲线的综合.专题:综合题;压轴题.分析:由=(+),知E为PF的中点,令右焦点为F′,则O为FF′的中点,则PF′=2OE=a,能推导出在Rt△PFF′中,PF2+PF′2=FF′2,由此能求出离心率.解答:解:∵若=(+),∴E为PF的中点,令右焦点为F′,则O为FF′的中点,则PF′=2OE=a,∵E为切点,∴OE⊥PF∴PF′⊥PF∵PF﹣PF′=2a∴PF=PF′+2a=3a在Rt△PFF′中,PF2+PF′2=FF′2即9a2+a2=4c2∴离心率e==.故选:A.点评:本题考查圆与圆锥曲线的综合运用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件.7.设椭圆的左焦点为F,在x轴上F的右侧有一点A,以FA为直径的圆与椭圆在x轴上方部分交于M、N两点,则的值为()A.B.C.D.考点:圆与圆锥曲线的综合.专题:计算题;压轴题.分析:若以FA为直径的圆与椭圆大x轴上方的部分交于短轴端点,则M、N重合(设为M),此时A为椭圆的右焦点,由此可知=,从而能够得到结果.解答:解:若以FA为直径的圆与椭圆大x轴上方的部分交于短轴端点,则M、N重合(设为M),此时A为椭圆的右焦点,则==.故选A.点评:本题考查圆锥曲线的性质和应用,解题时要注意合理地选取特殊点.8.已知定点A(1,0)和定直线l:x=﹣1,在l上有两动点E,F且满足,另有动点P,满足(O为坐标原点),且动点P的轨迹方程为()A.y2=4x B.y2=4x(x≠0)C.y2=﹣4x D.y2=﹣4x(x≠0)考点:圆锥曲线的轨迹问题.专题:计算题;压轴题.分析:设P(x,y),欲动点P的轨迹方程,即寻找x,y之间的关系式,利用向量间的关系求出向量、的坐标后垂直条件即得动点P的轨迹方程.解答:解:设P(x,y),E(﹣1,y1),F(﹣1,y2)(y1,y2均不为零)由∥⇒y1=y,即E(﹣1,y).由∥⇒.由y2=4x(x≠0).故选B.点评:本题主要考查了轨迹方程的问题.本题解题的关键是利用了向量平行和垂直的坐标运算求得轨迹方程.9.已知抛物线过点A(﹣1,0),B(1,0),且以圆x2+y2=4的切线为准线,则抛物线的焦点的轨迹方程()A.+=1(y≠0)B.+=1(y≠0)C.﹣=1(y≠0)D.﹣=1(y≠0)考点:圆锥曲线的轨迹问题.专题:综合题;压轴题.分析:设出切线方程,表示出圆心到切线的距离求得a和b的关系,再设出焦点坐标,根据抛物线的定义求得点A,B到准线的距离等于其到焦点的距离,然后两式平方后分别相加和相减,联立后,即可求得x和y的关系式.解答:解:设切线ax+by﹣1=0,则圆心到切线距离等于半径∴=2∴,∴a2+b2=设抛物线焦点为(x,y),根据抛物线定义可得平方相加得:x2+1+y2=4(a2+1)①平方相减得:x=4a,∴②把②代入①可得:x2+1+y2=4(+1)即:∵焦点不能与A,B共线∴y≠0∴∴抛物线的焦点轨迹方程为故选B.点评:本题以圆为载体,考查抛物线的定义,考查轨迹方程,解题时利用圆的切线性质,抛物线的定义是关键.10.如图,已知半圆的直径|AB|=20,l为半圆外一直线,且与BA的延长线交于点T,|AT|=4,半圆上相异两点M、N与直线l的距离|MP|、|NQ|满足条件,则|AM|+|AN|的值为()A.22 B.20 C.18 D.16考点:圆与圆锥曲线的综合;抛物线的定义.专题:计算题;压轴题.分析:先以AT的中点O为坐标原点,AT的中垂线为y轴,可得半圆方程为(x﹣12)2+y2=100,根据条件得出M,N在以A为焦点,PT为准线的抛物线上,联立半圆方程和抛物线方程结合根与系数的关系,利用抛物线的定义即可求得答案.解答:解:以AT的中点O为坐标原点,AT的中垂线为y轴,可得半圆方程为(x﹣12)2+y2=100又,设M(x1,y1),N(x2,y2),M,N在以A为焦点,PT为准线的抛物线上;以AT的垂直平分线为y轴,TA方向为x轴建立坐标系,则有抛物线方程为y2=8x(y≥0),联立半圆方程和抛物线方程,消去y得:x2﹣16x+44=0∴x1+x2=16,|AM|+|AN|=|MP|+|NQ|=x1+x2+4=20.故选B.点评:本小题主要考查抛物线的定义、圆的方程、圆与圆锥曲线的综合等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.11.椭圆与双曲线有公共的焦点F1,F2,P是两曲线的一个交点,则cos∠F1PF2=()A.B.C.D.考点:圆锥曲线的共同特征.专题:综合题;压轴题;圆锥曲线的定义、性质与方程.分析:利用双曲线、椭圆的定义,建立方程,求出|PF1|=,|PF2|=,再利用余弦定理,即可求得结论.解答:解:不妨令P在双曲线的右支上,由双曲线的定义|PF1|﹣|PF2|=2①由椭圆的定义|PF1|+|PF2|=2②由①②可得|PF1|=,|PF2|=∵|F1F2|=4∴cos∠F1PF2==故选A.点评:本题考查圆锥曲线的共同特征,利用双曲线、椭圆的定义,建立方程是关键.12.曲线(|x|≤2)与直线y=k(x﹣2)+4有两个交点时,实数k的取值范围是()C.D.A.B.(,+∞)考点:直线与圆锥曲线的关系.专题:计算题;压轴题.分析:如图,求出BC的斜率,根据圆心到切线的距离等于半径,求得切线BE的斜率k′,由题意可知,k′<k≤K BC,从而得到实数k的取值范围.解答:解:曲线即x2+(y﹣1)2=4,(y≥1),表示以A(0,1)为圆心,以2为半径的圆位于直线y=1 上方的部分(包含圆与直线y=1 的交点C和D),是一个半圆,如图:直线y=k(x﹣2)+4过定点B(2,4),设半圆的切线BE的切点为E,则BC的斜率为K BC==.设切线BE的斜率为k′,k′>0,则切线BE的方程为y﹣4=k′(x﹣2),根据圆心A到线BE距离等于半径得2=,k′=,由题意可得k′<k≤K BC,∴<k≤,故选A.点评:本题考查直线和圆的位置关系,点到直线的距离公式,倾斜角和斜率的关系,体现了数形结合的数学思想,判断k′<k≤K BC,是解题的关键.13.设抛物线y2=12x的焦点为F,经过点P(1,0)的直线l与抛物线交于A,B两点,且,则|AF|+|BF|=()A.B.C.8D.考点:直线与圆锥曲线的关系.专题:计算题;压轴题.分析:根据向量关系,用坐标进行表示,求出点A,B的坐标,再利用抛物线的定义,可求|AF|+|BF|.解答:解:设A(x1,y1),B(x2,y2),则∵P(1,0)∴=(1﹣x2,﹣y2),=(x1﹣1,y1)∵,∴2(1﹣x2,﹣y2)=(x1﹣1,y1)∴将A(x1,y1),B(x2,y2)代入抛物线y2=12x,可得,又∵﹣2y2=y1∴4x2=x1又∵x1+2x2=3解得∵|AF|+|BF|=故选D.点评:本题重点考查抛物线的定义,考查向量知识的运用,解题的关键是确定点A,B的横坐标.14.已知双曲线上的一点到其左、右焦点的距离之差为4,若已知抛物线y=ax2上的两点A(x1,y1),B(x2,y2)关于直线y=x+m对称,且,则m的值为()A.B.C.D.考点:直线与圆锥曲线的关系.专题:综合题;压轴题.分析:y1=2x12,y2=2x22,A点坐标是(x1,2x12),B点坐标是(x2,2x22)A,B的中点坐标是(,)因为A,B关于直线y=x+m对称,所以A,B的中点在直线上,且AB与直线垂直=+m,由此能求得m.解答:解:y1=2x12,y2=2x22,A点坐标是(x1,2x12),B点坐标是(x2,2x22),A,B的中点坐标是(,),因为A,B关于直线y=x+m对称,所以A,B的中点在直线上,且AB与直线垂直=+m,,x12+x22═+m,x2+x1=﹣,因为,所以xx12+x22=(x1+x2)2﹣2x1x2=,代入得,求得m=.故选B.点评:本题主要考查直线与圆锥曲线的综合应用能力,具体涉及到轨迹方程的求法及直线与椭圆的相关知识,解题时要注意合理地进行等价转化.15.已知双曲线上存在两点M,N关于直线y=x+m对称,且MN的中点在抛物线y2=9x上,则实数m的值为()A.4B.﹣4 C.0或4 D.0或﹣4考点:直线与圆锥曲线的关系.专题:综合题;压轴题.分析:根据双曲线上存在两点M,N关于直线y=x+m对称,求出MN中点P(﹣,m),利用MN的中点在抛物线y2=9x上,即可求得实数m的值.解答:解:∵MN关于y=x+m对称∴MN垂直直线y=x+m,MN的斜率﹣1,MN中点P(x0,x0+m)在y=x+m上,且在MN上设直线MN:y=﹣x+b,∵P在MN上,∴x0+m=﹣x0+b,∴b=2x0+m由消元可得:2x2+2bx﹣b2﹣3=0∴M x+N x=﹣b,∴x0=﹣,∴b=∴MN中点P(﹣,m)∵MN的中点在抛物线y2=9x上,∴∴m=0或4故选D.点评:本题考查直线与双曲线的位置关系,考查对称性,考查抛物线的标准方程,解题的关键是确定MN中点P 的坐标.二.解答题(共15小题)16.已知椭圆C:,F1,F2是其左右焦点,离心率为,且经过点(3,1)(1)求椭圆C的标准方程;(2)若A1,A2分别是椭圆长轴的左右端点,Q为椭圆上动点,设直线A1Q斜率为k,且,求直线A2Q斜率的取值范围;(3)若Q为椭圆上动点,求cos∠F1QF2的最小值.考点:椭圆的简单性质;椭圆的应用.专题:压轴题;圆锥曲线的定义、性质与方程.分析:(1)根据椭圆的离心率为,且经过点(3,1),求椭圆C的标准方程;(2)设A2Q的斜率为k',Q(x0,y0),则可得kk'==,利用,即可求直线A2Q斜率的取值范围;(3)利用椭圆的定义、余弦定理,及基本不等式,即可求cos∠F1QF2的最小值.解答:解:(1)∵椭圆的离心率为,且经过点(3,1),建立方程,求出几何量,即可∴,∴椭圆C的标准方程为…(3分)(2)设A2Q的斜率为k',Q(x0,y0),则,…(5分)∴kk'=及…(6分)则kk'==又…(7分)∴,故A2Q斜率的取值范围为()…(8分)(3)设椭圆的半长轴长、半短轴长、半焦距分别为a,b,c,则有,由椭圆定义,有…(9分)∴cos∠F1QF2=…(10分)=…(11分)≥…(12分)==…(13分)∴cos∠F1QF2的最小值为.(当且仅当|QF1|=|QF2|时,即Q取椭圆上下顶点时,cos∠F1QF2取得最小值)…(14分)点评:本题考查椭圆的标准方程与几何性质,考查椭圆的定义,考查余弦定理,考查基本不等式的运用,综合性强.17.已知椭圆x2+=1的左、右两个顶点分别为A,B.双曲线C的方程为x2﹣=1.设点P在第一象限且在双曲线C上,直线AP与椭圆相交于另一点T.(Ⅰ)设P,T两点的横坐标分别为x1,x2,证明x1•x2=1;(Ⅱ)设△TAB与△POB(其中O为坐标原点)的面积分别为S1与S2,且•≤15,求S﹣S的取值范围.考点:直线与圆锥曲线的关系;平面向量数量积的运算.专题:压轴题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)设直线AP的方程与椭圆方程联立,确定P、T的横坐标,即可证得结论;(Ⅱ)利用•≤15,结合点P是双曲线在第一象限内的一点,可得1<x1≤2,利用三角形的面积公式求面积,从而可得S﹣S的不等式,利用换元法,再利用导数法,即可求S﹣S的取值范围.解答:(Ⅰ)证明:设点P(x1,y1)、T(x2,y2)(x i>0,y i>0,i=1,2),直线AP的斜率为k(k>0),则直线AP的方程为y=k(x+1),代入椭圆方程,消去y,整理,得(4+k2)x2+2k2x+k2﹣4=0,解得x=﹣1或x=,故x2=.同理可得x1=.所以x1•x2=1.(Ⅱ)设点P(x1,y1)、T(x2,y2)(x i>0,y i>0,i=1,2),则=(﹣1﹣x1,y1),=(1﹣x1,y1).因为•≤15,所以(﹣1﹣x1)(1﹣x1)+y12≤15,即x12+y12≤16.因为点P在双曲线上,所以,所以x12+4x12﹣4≤16,即x12≤4.因为点P是双曲线在第一象限内的一点,所以1<x1≤2.因为S1=|y2|,S2=,所以S﹣S==由(Ⅰ)知,x1•x2=1,即.设t=,则1<t≤4,S﹣S=5﹣t﹣.设f(t)=5﹣t﹣,则f′(t)=﹣1+=,当1<t<2时,f'(t)>0,当2<t≤4时,f'(t)<0,所以函数f(t)在(1,2)上单调递增,在(2,4]上单调递减.因为f(2)=1,f(1)=f(4)=0,所以当t=4,即x1=2时,S﹣S的最小值为f(4)=0,当t=2,即x1=时,S﹣S的最大值为f(2)=1.所以S﹣S的取值范围为[0,1].点评:本小题主要考查椭圆与双曲线的方程、直线与圆锥曲线的位置关系、函数最值等知识,考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力和运算求解能力.18.设椭圆D:=1(a>b>0)的左、右焦点分别为F1、F2,上顶点为A,在x轴负半轴上有一点B,满足,且AB⊥AF2.(Ⅰ)若过A、B、F2三点的圆C恰好与直线l:x﹣y﹣3=0相切,求圆C方程及椭圆D的方程;(Ⅱ)若过点T(3,0)的直线与椭圆D相交于两点M、N,设P为椭圆上一点,且满足(O为坐标原点),求实数t取值范围.考点:直线与圆锥曲线的综合问题;椭圆的应用.专题:压轴题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)利用,可得F1为BF2的中点,根据AB⊥AF2,可得a,c的关系,利用过A、B、F2三点的圆C恰好与直线l:相切,求出a,即可求出椭圆的方程与圆的方程;(Ⅱ)设直线MN方程代入椭圆方程,利用韦达定理及向量知识,即可求实数t取值范围.解答:解:(Ⅰ)由题意知F1(﹣c,0),F2(c,0),A(0,b).因为AB⊥AF2,所以在Rt△ABF2中,,又因为,所以F1为BF2的中点,所以又a2=b2+c2,所以a=2c.所以F2(,0),B(﹣,0),Rt△ABF2的外接圆圆心为F1(﹣,0),半径r=a,因为过A、B、F2三点的圆C恰好与直线l:相切,所以=a,解得a=2,所以c=1,b=.所以椭圆的标准方程为:,圆的方程为(x+1)2+y2=1;(Ⅱ)设直线MN方程为y=k(x﹣3),M(x1,y1),N(x2,y2),P(x,y),则直线方程代入椭圆方程,消去y可得(4k2+3)x2﹣24k2x+36k2﹣12=0,∴△=(24k2)﹣4(4k2+3)(36k2﹣12)>0,∴k2<,x1+x2=,x1x2=,∵,∴x1+x2=tx,y1+y2=ty,∴tx=,ty=,∴x=,y=,代入椭圆方程可得3×[]2+4×[]2=12,整理得=∵k2<,∴0<t2<4,∴实数t取值范围是(﹣2,0)∪(0,2).点评:本题考查椭圆方程与圆的方程,考查直线与圆的位置关系,考查直线与椭圆的位置关系,难度大19.已知F1、F2为椭圆C:的左,右焦点,M为椭圆上的动点,且•的最大值为1,最小值为﹣2.(1)求椭圆C的方程;(2)过点作不与y轴垂直的直线l交该椭圆于M,N两点,A为椭圆的左顶点.试判断∠MAN是否为直角,并说明理由.考点:直线与圆锥曲线的综合问题.专题:计算题;压轴题;圆锥曲线的定义、性质与方程.分析:(1)设M(x',y'),化简•=x'2+2b2﹣a2(﹣a≤x≤a),从而求最值,进而求椭圆方程;(2)设直线MN的方程为x=ky﹣6并与椭圆联立,利用韦达定理求•的值,从而说明是直角.解答:解:(1)设M(x',y'),则y'2=b2﹣x'2,•=x'2+2b2﹣a2(﹣a≤x≤a),则当x'=0时,•取得最小值2b2﹣a2=﹣2,当x'=±a时,•取得最大值b2=1,∴a2=4,故椭圆的方程为.(2)设直线MN的方程为x=ky﹣,联立方程组可得,化简得:(k2+4)y2﹣2.4ky﹣=0,设M(x1,y1),N(x2,y2),则y1+y2=,y1y2=﹣,又A(﹣2,0),•=(x1+2,y1)•(x2+2,y2)=(k2+1)y1y2+k(y1+y2)+==﹣(k2+1)+k+=0,所以∠MAN为直角.点评:本题考查了圆锥曲线方程的求法及直线与圆锥曲线的位置关系应用,同时考查了向量的应用,属于难题.20.如图,P是抛物线y2=2x上的动点,点B,C在y轴上,圆(x﹣1)2+y2=1内切于△PBC,求△PBC面积的最小值.考点:圆与圆锥曲线的综合.专题:综合题;压轴题;圆锥曲线的定义、性质与方程.分析:设P(x0,y0),B(0,b),C(0,c),设b>c.直线PB:y﹣b=,化简,得(y0﹣b)x﹣x0y+x0b=0,由圆心(1,0)到直线PB的距离是1,知,由此导出(x0﹣2)b2+2y0b﹣x0=0,同理,(x0﹣2)c2+2y0c﹣x0=0,所以(b﹣c)2=,从而得到S△PBC=,由此能求出△PBC面积的最小值.解答:解:设P(x0,y0),B(0,b),C(0,c),设b>c.直线PB的方程:y﹣b=,化简,得(y0﹣b)x﹣x0y+x0b=0,∵圆心(1,0)到直线PB的距离是1,∴,∴(y0﹣b)2+x02=(y0﹣b)2+2x0b(y0﹣b)+x02b2,∵x0>2,上式化简后,得(x0﹣2)b2+2y0b﹣x0=0,同理,(x0﹣2)c2+2y0c﹣x0=0,∴b+c=,bc=,∴(b﹣c)2=,∵P(x0,y0)是抛物线上的一点,∴,∴(b﹣c)2=,b﹣c=,∴S△PBC===(x0﹣2)++4≥2+4=8.当且仅当时,取等号.此时x0=4,y0=.∴△PBC面积的最小值为8.点评:本昰考查三角形面积的最小值的求法,具体涉及到抛物线的性质、抛物线和直线的位置关系、圆的简单性质、均值定理等基本知识,综合性强,难度大,对数学思想的要求较高,解题时要注意等价转化思想的合理运用.21.已知直L1:2x﹣y=0,L2:x﹣2y=0.动圆(圆心为M)被L1L2截得的弦长分别为8,16.(Ⅰ)求圆心M的轨迹方程M;(Ⅱ)设直线y=kx+10与方程M的曲线相交于A,B两点.如果抛物y2=﹣2x上存在点N使得|NA|=|NB|成立,求k的取值范围.考点:圆与圆锥曲线的综合;直线与圆相交的性质.专题:综合题;压轴题.分析:(Ⅰ)设M(x,y),M到L1,L2的距离分别为d1,d2,则d12+42=d22+82.所以,由此能求出圆心M的轨迹方程.(Ⅱ)设A(x1,y1),B(x2,y2),由,得(1﹣k2)x2﹣20kx﹣180=0.AB的中点为,AB的中垂线为,由,得.由此能求出k的取值范围.解答:解:(Ⅰ)设M(x,y),M到L1,L2的距离分别为d1,d2,则d12+42=d22+82.…(2分)∴,∴x2﹣y2=80,即圆心M的轨迹方程M:x2﹣y2=80.…(4分)(Ⅱ)设A(x1,y1),B(x2,y2),由,得(1﹣k2)x2﹣20kx﹣180=0.①∴AB的中点为,…(6分)∴AB的中垂线为,即,…(7分)由,得②…(8分)∵存在N使得|NA|=|NB|成立的条件是:①有相异二解,并且②有解.…(9分)∵①有相异二解的条件为,∴⇒且k≠±1.③…(10分)②有解的条件是,∴,④…(11分)根据导数知识易得时,k3﹣k+40>0,因此,由③④可得N点存在的条件是:﹣1或1<k<.…(12分)点评:本题主要考查双曲线标准方程,简单几何性质,直线与椭圆的位置关系,圆的简单性质等基础知识.考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.22.已知直线l1:ax﹣by+k=0;l2:kx﹣y﹣1=0,其中a是常数,a≠0.(1)求直线l1和l2交点的轨迹,说明轨迹是什么曲线,若是二次曲线,试求出焦点坐标和离心率.(2)当a>0,y≥1时,轨迹上的点P(x,y)到点A(0,b)距离的最小值是否存在?若存在,求出这个最小值.考点:圆锥曲线的轨迹问题.专题:综合题;压轴题;分类讨论;转化思想.分析:(1)联立直线l1和l2的方程,消去参数即可得到交点的轨迹方程,根据a的取值a>0,﹣1<a<0,a=﹣1,a<﹣1说明轨迹曲线,利用二次曲线判断形状,直接求出焦点坐标和离心率.(2)通过a>0,y≥1时,说明轨迹的图形,求出轨迹上的点P(x,y)到点A(0,b)距离的表达式,通过配方讨论b与的大小,求出|PA|的最小值.解答:解:(1)由消去k,得y2﹣ax2=1①当a>0时,轨迹是双曲线,焦点为,离心率;②当﹣1<a<0时,轨迹是椭圆,焦点为,离心率;③当a=﹣1时,轨迹是圆,圆心为(0,0),半径为1;④当a<﹣1时,轨迹是椭圆,焦点为,离心率(2)当a>0时,y≥1时,轨迹是双曲线y2﹣ax2=1的上半支.∵|PA|2=x2+(y﹣b)2==①当b>时,|PA|的最小值为;②当b≤时,|PA|的最小值为|1﹣b|点评:本题考查知识点比较多,涉及参数方程,双曲线方程椭圆方程,圆的方程,两点的距离公式等等,涉及分类讨论思想二次函数的最值,是难度比较大,容易出错的题目,考试常靠题型,多以压轴题为主.23.如图,ABCD是边长为2的正方形纸片,沿某动直线l为折痕将正方形在其下方的部分向上翻折,使得每次翻折后点B都落在边AD上,记为B';折痕与AB交于点E,以EB和EB’为邻边作平行四边形EB’MB.若以B为原点,BC所在直线为x轴建立直角坐标系(如下图):(Ⅰ).求点M的轨迹方程;(Ⅱ).若曲线S是由点M的轨迹及其关于边AB对称的曲线组成的,等腰梯形A1B1C1D1的三边A1B1,B1C1,C1D1分别与曲线S切于点P,Q,R.求梯形A1B1C1D1面积的最小值.考点:圆锥曲线的轨迹问题;向量在几何中的应用.专题:计算题;压轴题.分析:(1)设出M的坐标,根据两点关于直线对称时两点连线与对称轴垂直,且两点的中点在对称轴上,再根据平行四边形的对角线对应的向量等于两邻边对应向量的和得到点M的轨迹方程;(2)利用函数在切点处的导数值为曲线的切线斜率,求出腰A1B1的方程,分别令y=0和y=1求出与两底的交点横坐标,利用梯形的面积公式表示出梯形A1B1C1D1面积,利用基本不等式求出其最小值.解答:解:(1)如图,设M(x,y),B′(x0,2),又E(0,b)显然直线l的斜率存在,故不妨设直线l的方程为y=kx+b,则而BB′的中点在直线l上,故,①由于⇒代入①即得,又0≤x0≤2点M的轨迹方程(0≤x≤2)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(2)易知曲线S的方程为(﹣2≤x≤2)设梯形A1B1C1D1的面积为s,点P的坐标为.由题意得,点Q的坐标为(0,1),直线B1C1的方程为y=1.对于有∴∴直线A1B1的方程为,即:令y=0得,,∴.令y=1得,,∴所以当且仅当,即时,取“=”且,时,s有最小值为.梯形A1B1C1D1的面积的最小值为﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(15分)点评:本题考查两点关于一条直线对称的充要条件;向量运算的几何意义;曲线在切点处的导数值为曲线的切线斜率;利用基本不等式求函数的最值.属于一道难题.24.(1)已知一个圆锥母线长为4,母线与高成45°角,求圆锥的底面周长.(2)已知直线l与平面α成φ,平面α外的点A在直线l上,点B在平面α上,且AB与直线l成θ,①若φ=60°,θ=45°,求点B的轨迹;②若任意给定φ和θ,研究点B的轨迹,写出你的结论,并说明理由.考点:圆锥曲线的轨迹问题;旋转体(圆柱、圆锥、圆台).专题:综合题;压轴题.分析:(1)由圆锥的母线长为4,母线与高成45°角,知高和底面半径与母线构成一个等腰直角三角形,由勾股定理可知底面半径为2,由圆周公式2πR可算出底面周长.(2)①设l∩α=C,点A在平面α上的射影为点O.建立空间直角坐标系,设|AC|=a,有A(0,0,asin60°),C(0,﹣acos60°).设B(x,y,0),则=(0,﹣acos60°,﹣asin60°).=(x,y,﹣asin60°).所以.又由|•cos45°,知﹣acos60°•y+a2sin60°=a,平方整理得,由此知点B的轨迹.②设l∩α=C,点A在平面α上的射影为点O.如图建立空间直角坐标系,设|AC|=a,有A(0,0,asinφ),C(0,﹣acosφ),(0<φ<).设B(x,y,0),则(6分)=(0,﹣acosφ,﹣asinφ).=(x,y,﹣asinφ).所以φ.由|•cosθ=a••cosθ.知cos2θ•x2+(cos2θ﹣cos2φ)y2+a2ysinφsin2φ+a2sin2φ(cos2θ﹣sin2φ)=0.故当φ=时,点B的轨迹为圆;当θ<φ<时,点B的轨迹为椭圆;当θ=φ<时,点B的轨迹为抛物线;当θ>φ时,点B的轨迹为双曲线.解答:解:(1)∵圆锥的母线长为4,母线与高成45°角,高和底面半径与母线构成一个等腰直角三角形,即高和底面半径长度一样,则由勾股定理可知底面半径为2,则由圆周公式2πR可算出底面周长4π;(2分)(2)①设l∩α=C,点A在平面α上的射影为点O.如图建立空间直角坐标系,设|AC|=a,有A(0,0,asin60°),C(0,﹣acos60°).设B(x,y,0),则=(0,﹣acos60°,﹣asin60°).=(x,y,﹣asin60°).∴.又∵|•cos45°=a•.∴﹣acos60°•y+a2sin60°=a.(11分)平方整理得cos245°•x2+(cos245°﹣cos260°)y2+a2ysin60°sin120°+a2sin260°(cos245°﹣sin260°)=0.即,∴点B的轨迹椭圆;(4分)②设l∩α=C,点A在平面α上的射影为点O.如图建立空间直角坐标系,设|AC|=a,有A(0,0,asinφ),C(0,﹣acosφ),(0<φ<).设B(x,y,0),则(6分)=(0,﹣acosφ,﹣asinφ).=(x,y,﹣asinφ).∴φ.又∵|•cosθ=a••cosθ.∴﹣acosφ•y+a2sinφ=a.(11分)平方整理得cos2θ•x2+(cos2θ﹣cos2φ)y2+a2ysinφsin2φ+a2sin2φ(cos2θ﹣sin2φ)=0.i.当cos2θ﹣cos2φ=0,即θ=φ时,上式为抛物线方程;ii.当cos2θ﹣cos2φ>0,即θ<φ时,上式为椭圆方程;iii.当cos2θ﹣cos2φ<0,即θ>φ时,上式为双曲线方程.(14分)故当φ=时,点B的轨迹为圆;当θ<φ<时,点B的轨迹为椭圆;当θ=φ<时,点B的轨迹为抛物线;当θ>φ时,点B的轨迹为双曲线.(16分)点评:第(1)题考查圆锥的性质和应用,是基础题,解题时要认真审题,仔细解答.第(2)题考查圆锥曲线的轨迹的求法和判断,对数学思维的要求比较高,要求学生理解“存在”、“恒成立”,以及运用一般与特殊的关系进行否定,本题有一定的探索性.综合性强,难度大,易出错.25.已知椭圆C的中心在原点,一个焦点,且长轴长与短轴长的比是.(1)求椭圆C的方程;(2)若椭圆C在第一象限的一点P的横坐标为1,过点P作倾斜角互补的两条不同的直线PA,PB分别交椭圆C 于另外两点A,B,求证:直线AB的斜率为定值;(3)求△PAB面积的最大值.考点:椭圆的标准方程;直线的斜率;直线与圆锥曲线的综合问题.专题:压轴题.分析:(1)待定系数法求椭圆的方程.(2)设出A、B坐标,利用一元二次方程根与系数的关系,求出A、B横坐标之差,纵坐标之差,从而求出AB斜率.(3)设出AB直线方程,与椭圆方程联立,运用根与系数的关系求AB长度,计算P到AB的距离,计算△PAB面积,使用基本不等式求最大值.解答:解:(Ⅰ)设椭圆C的方程为.由题意,解得a2=4,b2=2.所以,椭圆C的方程为.故点P(1,)(Ⅱ)由题意知,两直线PA,PB的斜率必存在,设PB的斜率为k,则PB的直线方程为.由得,.设A(x A,y A),B(x B,y B),则,同理可得.则,.所以直线AB的斜率为定值.(Ⅲ)设AB的直线方程为,由得.由,得m2<8.此时,.由椭圆的方程可得点P(1,),根据点到直线的距离公式可得P到AB的距离为,由两点间的距离公式可得=,故===≤×=.因为m2=4使判别式大于零,所以当且仅当m=±2时取等号,所以△PAB面积的最大值为.点评:直线与圆锥曲线的综合问题,注意应用一元二次方程根与系数的关系,式子的化简变形,是解题的难点和关键.26.已知点B(0,1),A,C为椭圆上的两点,△ABC是以B为直角顶点的直角三角形.(I)当a=4时,求线段BC的中垂线l在x轴上截距的取值范围.(II)△ABC能否为等腰三角形?若能,这样的三角形有几个?考点:直线与圆锥曲线的综合问题;椭圆的简单性质.专题:综合题;压轴题;圆锥曲线中的最值与范围问题.分析:(I)依题意,可知椭圆的方程为:+y2=1,设C(4cosθ,sinθ),可求得直线l的方程为y=﹣x++,令y=0得x==cosθ(cosθ≠0),利用余弦cosθ的有界性即可求得线段BC的中垂线l在x轴上截距的取值范围;(II)当等腰直角三角形ABC的两条腰AB与BC不关于y轴对称时,设出AB的方程为y=kx+1(k>0),BC的方程为y=﹣x+1,利用直线与方程与椭圆方程联立,利用等腰直角三角形ABC中的两腰|AB|=|BC|,借助基本不等式即可求得a的取值范围;同理可求两条腰AB与BC关于y轴对称时a的取值范围.解答:解:(I)∵a=4,∴椭圆的方程为:+y2=1,故B(0,1),设C(4cosθ,sinθ),则BC的中点M(2cosθ,),∵BC的斜率k BC=,∴线段BC的中垂线l的斜率k=﹣=﹣,∴直线l的方程为:y﹣=﹣(x﹣2cosθ),∴y=﹣x++,令y=0得:x==cosθ(cosθ≠0)∵﹣1≤cosθ≤1且cosθ≠0,∴﹣≤x=cosθ≤且x≠0,∴线段BC的中垂线l在x轴上截距的取值范围为[﹣,0)∪(0,].(II)当等腰直角三角形ABC的两条腰AB与BC不关于y轴对称时,作图如右,设此时过B(0,1)的AB的方程为y=kx+1(k>0),则BC的方程为y=﹣x+1,由得:(a2k2+1)x2+2a2kx=0,设该方程两根为x1,x2,则x1+x2=﹣,x1x2=0,则|AB|==|x1﹣x2|•=•。