计算流体力学翅片管换热器Fluent数值模拟共17页
基于FLUENT的管壳式换热器流场的数值模拟与分析
基于FLUENT的管壳式换热器流场的数值模拟与分析鲍苏洋(南京工业大学机械与动力工程学院,南京210009)摘要:通过简化管壳式换热器模型,采用非结构网格划分,选用κ-ε湍流模型,应用CFD 软件FLUENT 对壳程流体流动和传热过程进行了数值模拟,得到了不同折流板间距情况下壳程流体温度场、压力场以及速度场的分布情况。
分析了折流板间距对壳程流体流场分布、换热器传热速率以及压力损失的影响,并得出了进口流速与传热量和压力损失之间的关系。
模拟结果与理论研究结果相符合,对管壳式换热器的设计和改进有一定的参考价值。
关键词:化工机械; 换热器; 数值模拟; 温度场; 速度场; 压力场Numerical Simulation and Analysis of Flow Field in Shell-and-Tube Heat Exchanger Based on FLUENTSuyang BAO( School of Mechanical and Power Engineering,Nanjing University of Technology,Nanjing 210009,China)Abstract: By simplified the model of shell-and-tube heat exchangers,adopted the unstructured mesh,chose the κ-εturbulence model to gain the static temperature field,velocity field and static pressure field distribution of shell by taking numerical simulation of the shell side turbulent flow and heat transfer process with the CFD software FLUENT at different baffle spacing.Analyzed the effect of baffle spacing on the distribution of shell fluid flow,heat transfer rate and pressure drop,also acquired the relationship between inlet velocity and heat transfer rate,pressure drop.The simulation results consistent with the theoretical results of shell-and-tube heat exchangers,which can be a reference for the design and improvement of shell-and-tube heat exchangers.Key words: chemical machinery; heat exchanger; numerical simulation; temperature field; velocity field; pressure field0 引言换热器是石油化工行业广泛应用的工艺设备,换热器不仅能够合理调节工艺介质的温度以满足生产工艺的需要,同时也是余热回收利用的有效设备[1]。
【流体】Fluent周期性流动换热仿真实例-翅片换热器精选全文
精选全文完整版(可编辑修改)【流体】Fluent周期性流动换热仿真实例-翅片换热器案例描述:氨水在间断式翅片换热器的流动换热仿真。
由于在间断式翅片换热器中重复的几何单元多,这里取它的一个重复单元进行仿真分析即可,尺寸和边界条件见下图。
FLUENT 提供流向周期流的计算。
这种流动具有广泛的应用,如热交换管道以及通过水箱的管流。
在这些流动模式中,几何外形沿流动方向上具有重复性的特点,从而导致了周期性完全发展的流动。
这些周期性条件在足够的入口长度后就会形成,具体与雷诺数和几何外形有关。
周期性热传导的解策略:完成了周期性热传导常数壁面温度的用户输入之后,你就可以解决流动和热传导问题直至收敛。
最为有效的解决方法是首先解没有热传导的周期性流动,然后不改变流场来解热传导问题,具体步骤如下:1.在解控制面板中关闭能量方程选项。
菜单:Solve/Controls/Solution...。
2.解剩下的方程(连续性,动量以及湍流参数(可选))来获取收敛的周期性流动的流场解。
注意,当你在开始计算之前初始化流场时,请使用入口体积温度和壁面温度的平均值作为流场的初始温度。
3.回到解控制面板,关闭流动方程打开能量方程。
4.解能量方程直至收敛获取周期性温度场。
当同时考虑流动和热传导来解决周期性流动和热传导问题时,你就会发现上面所介绍的方法相当有效。
1、导入网格1.1 打开Fluent软件,选择2D求解器。
1.2 导入网格,网格源文件在文章底部有下载链接。
1.3 尺寸缩放。
在本案例的附件网格,需要点击Scale两次,如下图。
2、模型选择打开能量方程和湍流模型,其中,湍流模型设置如下。
3、材料在流体材料库中调出氨水ammonia-liquid (nh3)的物性。
4、计算域设置将计算域的材料设置为氨水。
5、边界条件5.1 翅片wall边界,包括wall-top和wall-bottom。
给定wall温度为350K,其余保持默认。
5.2 周期性边界,Periodic。
翅片管式换热器的数值模拟与优化
CHEMICAL INDUSTRY AND ENGINEERING PROGRESS 2010年第 29卷增刊 ·82·化工进展翅片管式换热器的数值模拟与优化司子辉,张燕,康一亭,欧顺冰(西华大学能源与环境学院,四川成都 610039摘要:利用 FLUENT 数值模拟方法,研究两种翅片(波纹三对称穿孔翅片与波纹翅片的表面流动性与传热性,得到不同风速表面传热系数的分布。
表面传热系数模拟结果与实验数据的误差为 5%~10%,证明该模拟方法的正确性。
研究结果表明:当气流速度不同时,波纹三对称穿孔翅片表面传热系数比波纹翅片表面传热系数高20%~28%,节约能耗,强化传热。
关键词:翅片;数值模拟;表面传热系数中图分类号:TB 657.5; TQ 008 文献标志码:A 文章编号:1000– 6613(2010 S2–082– 05Numerical simulation and optimization of finned tube heat exchanger SI Zihui , ZHANG Yan, KANG Yiting, OU Shunbing(School of Energy and Environment, Xihua University, Chengdu 610039, Sichuan , ChinaAbstract: The performance of surface flow and heat transfer of two kinds of different finned-tubes (wavy three symmetric holes fin surfaces and wavy fin surfaces are numerically studied by using FLUENT software, and distributions of convection heattransfer coefficients are obtained. The error of surface heat transfer coefficient between simulation results and experimental data ranges from 5% to 10%, which proves the feasibility of the simulation method. The results show that the convection heat transfer coefficients of the wavy three symmetric holes fin surfaces increase by 20%—28% compared to the wavy fin surfaces, thus saving energy and enhancing heat transfer.Key words: fin; numerical simulation; surface heat transfer coefficient翅片管式换热器应用广泛,其强化传热的数值模拟的研究一直是研究者普遍关注的课题。
论文振动翅片管流动与换热的介观数值模拟研究
论文振动翅片管流动与换热的介观数值模拟研究振动翅片管是一种常见的换热器件,其通过管道内的振动翅片来增强热传导和流动混合,从而提高换热性能。
介数模拟是一种有效的研究振动翅片管流动与换热的方法之一。
以下是对振动翅片管流动与换热的介数模拟研究的分析:1. 几何建模和网格划分:首先,需要对振动翅片管的几何形状进行建模,包括翅片的结构和管道的几何参数。
根据研究需求,可以选择二维或三维模型。
然后,将领域分割为网格单元,通常使用结构化网格或非结构化网格,以适应复杂的几何形状和流场。
2. 运动方程模拟:为了研究振动翅片管的流动特性,需要在数值模拟中考虑流体的流动运动。
通过求解流体力学中的Navier-Stokes方程,可以模拟流场的速度、压力和温度的变化。
针对振动翅片管,需要考虑流体的不可压缩性和翅片的良好运动模拟。
3. 振动翅片模拟:振动翅片的运动是振动翅片管换热性能的关键因素之一。
可以通过振动翅片上加入适当的振动力,或根据实验数据模拟振动模式。
同时,应考虑翅片在流动中产生的阻尼效应,如流体-结构相互作用(FSI)等。
4. 换热模拟:振动翅片管主要应用于换热领域,在模拟中需要考虑热传导、对流和辐射等换热机制。
根据流体的温度分布和翅片表面的换热特性,可以计算出管道内部和外部的换热效率和温度场分布。
5. 结果分析与优化设计:通过数值模拟,可以获得振动翅片管流动与换热的参数和特性。
通过分析和比较不同工况和翅片设计的结果,可以评估翅片形状、振动频率和幅度等参数对换热性能的影响,并进行优化设计。
需要注意的是,数值模拟只是对振动翅片管流动与换热的近似预测,具体的结果仍需与实验数据进行验证和修正。
此外,模拟过程中还需要合理选取边界条件、流体模型和模。
翅片管式换热器传热与流场流动特性的数值模拟
耦 合计 算 , 这 就要求 管 壁和管 外都 需要 布置 网格 , 整 体建模 的思路 必 将 产 生数 量 巨大 的 网格 , 在 实 际模 拟计 算 中受 到计算 机软硬 件 的限制 。为 了便 于 计算 , 在实 际情 况 的基 础 上对 翅 片 管 换 热 的物
理模 型 作如 下简化 假设 :
中图分类号 T Q O 5 1 . 5 文 献 标 识 码 A 文章编号 0 2 5 4  ̄0 9 4 ( 2 0 1 3 ) 0 3 - 0 3 4 7 05 -
扩 展表 面强 化传 热在换 热器 中已得 到广泛 的
应用 , 翅 片 管 是 最 常 见 的扩 展 表 面 形 式 之 一 … 。
1 换 热器 的基本 结 构参 数及 整体模 型 简化 笔者 研究 的换 热器 是油 田用 注气 锅炉 的对 流
d .基 管 与 翅 片 的导 热 系 数 为 常 数 , 且 忽 略 基 管轴 向导热 对换热 的影 响 ;
e .对 辐 射 换 热 和 重 力 影 响 忽 略 不 计 , 且 不 考虑 翅 片管 的污垢热 阻 。
段, 由1 4排共计 1 6 2根翅 片管 组 成 , 每 根翅 片 管
长3 7 9 2 m m, 翅 片管 基 管外 径 8 9 am, r 壁厚 1 3 m m,
通过 对翅 片管 换 热 器 几何 形 状 进 行 分 析 , 发 现 与管束 轴 向垂 直 的截 面 形 状 和尺 寸 均 相 同 , 都 为矩 形和梯 形 的组合 。在 受热 管束 轴线 的 中点 取 如 图 1所示 方框 中的区域作 为计 算域 进行 数值 模 拟 。计算域 的截 面与 管 束 轴 线 方 向垂 直 , 沿 轴 向
摘 要
在 对 大 型 翅 片管 式换 热 器 结 构 合 理 简 化 的 基 础 上 , 应用 C F D 和 数 值 传 熟 学方 法 , 建 立 了翅 片
介绍计算流体力学通用软件——Fluent
介绍计算流体力学通用软件——Fluent介绍计算流体力学通用软件——Fluent一、引言计算流体力学(Computational Fluid Dynamics,简称CFD)是研究流体运动规律的一种数值计算方法,并通过计算机模拟流体在各种工况下的运动与交互作用。
计算流体力学通用软件主要用于解决涉及流体流动、传热、传质、力学等问题的应用。
Fluent是国际上广泛使用的计算流体力学软件之一,它由美国Ansys公司研发并持有。
Fluent具备强大的建模、求解和后处理能力,为工程师和科研人员提供了一种高效、准确地模拟和分析各种流体力学问题的方式。
本文将对Fluent软件的特点、功能以及应用领域进行详细介绍。
二、Fluent的特点1.全面的物理模型Fluent支持各种物理模型,如湍流模型、多相流模型、传热模型等,可以模拟流体中复杂的物理现象。
例如,通过选择不同的湍流模型,可以模拟气体和液体中的湍流现象,有助于了解流体中的湍流特性。
2.强大的网格划分能力Fluent软件支持各种网格划分技术,包括结构化网格和非结构化网格。
结构化网格适用于几何较为规则的物体,而非结构化网格更适用于复杂几何体。
通过合理的网格划分,可以提高计算结果的精确度和计算速度。
3.多种求解器Fluent提供多种求解器,如压力-速度耦合算法(SIMPLE算法)、有限元法和有限体积法等。
这些求解器保证了计算结果的准确性和稳定性。
4.友好的用户界面Fluent软件的用户界面友好直观,操作简单,提供了丰富的建模、求解和后处理功能。
用户可以通过图形界面进行模型建立、边界条件设置、求解设置等操作,大大提高了工作效率。
三、Fluent的功能1.几何建模Fluent软件提供了多种建模工具,可用于几何体的创建、编辑和修复。
用户可以通过导入CAD模型或直接绘制几何体来创建流体模型。
此外,Fluent还支持网格划分和网格优化工具,以保证计算的准确性和高效性。
2.边界条件设置在模型建立后,用户需要设置各个边界条件,如入口速度、出口压力、壁面温度等。
平翅片换热器管外流动与传热特性的数值模拟
平翅⽚换热器管外流动与传热特性的数值模拟平翅⽚换热器管外流动与传热特性的数值模拟摘要:本⽂利⽤CFD软件FLUENT对平翅⽚换热器翅⽚表⾯流体流动及换热过程进⾏了数值模拟,获得了换热器内部流场、温度场以及换热器进出⼝压降和翅⽚表⾯平均对流换热系数等。
根据模拟结果,翅⽚表⾯对流换热系数随风速增加⽽增加,但增加速率逐渐下降;换热器进出⼝压降随着风速的增加⽽增加,且其增加速度逐渐加快。
利⽤场协同原理进⼀步分析对流传热,发现流速增⼤带来换热量增⼤的根本原因是风量的增加;速度的增加反⽽导致对流换热过程平均场协同⾓度增⼤,使速度场和温度场的协同性变差。
关键词: 平翅⽚;换热器;数值模拟;场协同原理Flat finned tube heat exchanger outside the numerical simulation of flow and heat transfer characteristicsAbstract: This paper, by using CFD software FLUENT to flat fin heat exchanger fin surface fluid flow and heat transfer process in the numerical simulation of the internal flow field, temperature field and heat exchanger heat exchanger in the import and export pressure drop and the average convective heat transfer coefficient of finned surface, etc.According to the simulation results, the fin surface convective heat transfer coefficient increases with the increase of wind speed, but the increase rate gradually decreases;Heat exchanger in the import and export pressure drop increases with the increase of wind speed, and increases its speed was accelerated.Convection heat transfer, using the field synergy principle further analysis found that the velocity increases with increase in heat is the root cause of the increase of air volume;Increased speed cause the average field synergy Angle increase in the convective heat transfer process, make the velocity field and temperature field of collaborative variation.Key words: flat fin; heat exchanger; numerical simulation; field synergy principle0 引⾔随着计算机技术的不断发展和进步,中央处理器(CPU)的运算速度⼤⼤地提⾼。
介绍计算流体力学通用软件——Fluent
介绍计算流体力学通用软件——Fluent介绍计算流体力学通用软件——Fluent计算流体力学(Computational Fluid Dynamics,简称CFD)是一门综合了流体力学、计算数学和计算机科学等多学科知识的交叉学科。
CFD软件被广泛应用于工程领域,可用于模拟和分析各种流体现象。
其中,Fluent是一款被广泛使用的计算流体力学通用软件,本文将对其进行详细介绍。
一、Fluent软件的简介Fluent是美国ANSYS公司推出的一款流体力学仿真软件,已经成为了全球工程仿真界最为流行的工具之一。
该软件内置了丰富的求解器和算法库,可用于模拟包括传热、流动、多相流、反应等在内的各种物理现象。
Fluent具有综合性、灵活性和高精度的特点,能够支持各类工程问题的模拟与分析。
二、Fluent软件的功能特点1. 多物理场耦合模拟能力:Fluent支持多物理场的耦合模拟,如流体力学、传热、化学反应等。
用户可以方便地将多个模拟场景进行耦合,实现真实物理现象的模拟和分析。
2. 多尺度模拟能力:Fluent可实现多尺度模拟和跨尺度传递分析,从宏观到微观的全过程仿真。
这使得用户可以更全面地了解系统的行为和特性。
3. 自由表面流模拟:Fluent具备出色的自由表面流模拟能力,可以模拟液体与气体之间的界面行为。
在船舶、液相冷却器等领域得到了广泛应用。
4. 求解器丰富:Fluent内置了多种求解器和前处理器,可适应不同问题的求解和分析需求。
用户可根据具体问题选择合适的求解器,提高仿真效率和精度。
5. 高精度的算法库:Fluent拥有精确可靠的数值方法和算法库,可以满足不同工程问题的精度要求。
其算法被广泛验证和应用,可保证结果的准确性。
三、Fluent软件的应用领域Fluent软件广泛应用于航空航天、汽车工程、能源领域、化工等众多工程领域。
以下是其中的几个典型应用领域:1. 汽车空气动力学:Fluent可以在设计阶段对汽车的空气动力学性能进行仿真,优化车身外形,提升汽车的空气动力学效果。
计算流体力学——翅片管换热器Fluent数值模拟
网格质量检查:基 本合格
倾斜度<92%,长 宽比<5
导出mash文件
第8页
均匀倾角波纹翅片管换热器数值模拟
fluent设置:
检查网格 Display—Check
最小体积不能为负值
显示网格 Display—Grid
设置单位 Display—Scale 本例以毫米为单位
第9页
均匀倾角波纹翅片管换热器数值模拟
计算流体力学
题目:均匀倾角波纹翅片管换热器数值模拟
华北电力大学——能动学院——建环所
LOGO
均匀倾角波纹翅片管换热器数值模拟 问题描述:
管翅式换热器主要由传热管和翅片组成,通常外部流体介质为空气。翅片与传热 管间是钎焊连接,可以看作管道表面的延伸。翅片的形式有很多种,比如平直式、 波纹式、多孔型等。本文将对均匀倾角波纹翅片换热器进行数值模拟。
换热器示意图
计算区域侧面示意图
计算区域俯视图
第1页
均匀倾角波纹翅片管换热器数值模拟
模拟均匀倾角波纹翅片换热器尺寸 模拟均匀倾角波纹翅片换热器边界条件
计算区域侧面示意图
计算区域俯视图
模拟均匀倾角波纹翅片换热器尺寸:
名称 翅片纵向长度 翅片间距 尺寸 36mm 1.8mm 名称 翅片管子横向间距 翅片管外径 尺寸 12.7mm 9mm
选择计算模型:
设置求解器
Display---Models---solve 保持默认
设置能量方程
Display---Models---Energy 选中 Energy Equation
设置操作环境
本例不考虑重力影响, 保持默认
设置流体物理属性
本例文空气 保持默认即可
第10页
冷凝器翅片表面流体流动及换热过程的三维数值模拟
第 1 期 谢春辉等 :冷凝器翅片表面流体流动及换热过程的三维数值模拟 · 1 9 ·
图 5 平翅片表面温度场等值线图
图 6 波纹翅片表面温度场等值线图
过程比较柔和 ,引起温度场均匀分布 ;而采用波纹 翅片时 ,温度等值线分布紊乱呈狭长带状 ,在第一 排管束迎风侧翅片表面气流温度上升的较快 ,原因 是波纹翅片表面起伏变化 ,导致气流所受扰动较 强 ,换热过程比较强烈 ,引起温度场的分布不均而 且变化剧烈 。两者的共同点 :在迎风侧 ,温度场分 布稠密 ,温度递增显著 ,原因是此时流体与壁面温 差较大 ,换热较强烈 ;在背风侧 ,温度场分布稀疏 , 温度变化不大 ,原因是此时流体与壁面温差较小 , 换热趋于平缓 ;在尾迹区 ,由于发生绕流脱体而产 生回流 、涡流和涡束的扰动 ,气流温度最高 ,接近管 壁温度 。这些符合气体横掠叉排管束的流动特点 , 也符合换热器换热的一般规律 。
1 引言 管翅式换热器在制冷空调行业中常被用作冷
凝器 ,其结构是在铜管外侧套加翅片 ,而翅片的几 何形状及结构对换热器的流体力学特性和热交换 效果有重要的作用 ,对由不同翅片组成的换热表面 进行流体力学及换热性能研究 ,具有十分重要的意 义 。随着计算机应用技术的飞速发展 ,采用 CFD 技术对各种实际问题进行模拟计算 ,所得结果可信 度高且方便快捷 。CFD 方法在流体力学及传热方 面的研究越来越得到重视和应用 。本文利用 CFD 软件 FL U EN T 对管翅式换热器的平翅片和波纹 翅片表面的空气流动及换热过程进行了数值模拟 , 研究了不同翅片的几何结构参数对翅片表面流体 流动特性和换热的影响 。 2 物理问题及数学描写
螺旋翅片管换热器内气固两相流动特性数值模拟
螺旋翅片管换热器内气固两相流动特性数值模拟翅片管换热器是强化传热中主要的换热设备之一,它种类繁多并广泛应用于能源动力、制冷和化工行业等。
本文利用计算流体力学软件FLUENT6.3.26对螺旋翅片管换热器进行数值模拟,模拟结果表明:反向螺旋翅片管中气流的扰动更大,且压降比同向螺旋翅片管的压降大,阻力损失更大;烟气颗粒在反向螺旋翅片管换热器中沉积可能性较同向高,颗粒在错排管换热器中停留时间长,但受到的扰动比顺排强。
标签:翅片管换热器;反向螺旋翅片管;数值模拟0 引言锅炉作为现代工业中必不可少的能源转换设备,提高锅炉效率降低排烟温度,对于节能降耗提高锅炉的安全可靠性具有重要的实际意义。
换热器作为锅炉中能源转换的重要设备,为达到较好的节能效果,在换热设备制造领域纷纷引入了强化传热技术,翅片管换热器作为现代强化传热的主要装置之一,已成为工业传热过程中必不可少的设备,广泛应用于各工业部门。
然而,在一些含尘量较高的烟气、尾气余热回收装置中,烟气通过冲刷受热面换热,日积月累会产生积灰。
这些积灰阻碍了烟气的流动,增加了受热面的传热阻力,造成管道传热不均匀和腐蚀,从而导致排烟温度升高,锅炉热效率降低和爆管事故的发生,严重影响运行的安全性和经济性[1~5]。
相关人员对翅片管换热器内的气固流动进行了研究,如马勇、虞斌等对光管管束及直翅片管束进行了数值模拟,结果表明,直翅片管束能够阻碍积灰的产生;此外还讨论了不同入口流速及管间间距对积灰的影响,计算结果表明入口速度越大,烟气的“自吹灰”效应越强;适当减小管间距可以提高相邻翅片管之间的流速,加大了管子背风区扰动,减小了积灰区域[6~7]。
袁晓豆、史月涛对绕流H型翅片管进行了冷态数值模拟,结果表明颗粒速度在H型翅片管迎风面呈M分布;背风面呈W型分布,使H型翅片管不易积灰[8]。
本文在前人的研究基础上,以螺旋翅片管换热器内的气固两相流动特性为研究对象,研究管束排列方式及颗粒直径对翅片管内气固两相流动特性的影响。
翅片换热器管外流体流动的数值模拟
的对 流换 热情 况进 行 了数 值 模 拟 , 得 到 不 同来 流速
度 下翅 片表 面的速度 场 、 温度 场 以及 对流 换 热 系数 、
进 出 口压 降 随来流 速 度 的 变化 关 系, 同 时还 分析 了 不 同翅 片间距 下翅 片管束 外 空气 的流场 情况 。研 究 成果 对翅 片 管换 热 器 结构 优 化 和 改 造 具 有 参 考 意
he l p f u l wi t h o pt i mi z a t i o n o f t he de s i g n a n d o pe r a — t i o n o f t h e f i n ne d t ube e xc ha n ge r . Ke y wo r ds : pl a t e f i n ne d t ube ; he a t e x c h a n ge r s ; e nh a nc e me n t h e a t ; nu me r i c a l s i mul a t i on
Z HANG Mi a o , X U Qi a n g 2
( e s e a r c h I n s t i t u t e , Li a n y u n g a n g 2 2 2 0 0 1 , Ch i n a; 2 . Li a n y u n g a n g J a r i To o l i n g
义 。
关键 词 : 矩 形翅 片 ; 换 热器 ; 强化 传热 ; 数值 模拟
中 图分类 号 : TK1 2 4
文献 标识码 : A
1 数 值 模 拟 方 法
1 . 1 计算 模型 及 网格 划分 换热 器 结 构 如 图 1所 示 。 管 子 内 径 为 9 . 3 3 mm, 外径为 1 O . 5 5 mm, 翅片厚 0 . 2 mm, 管 子 为 铜 管, 翅 片材 料为 铝 。
fluent计算流体力学
fluent计算流体力学计算流体力学(Computational Fluid Dynamics,简称CFD)是一种数学建模和数值解算方法,用于研究流体运动和传热过程。
Fluent是一款广泛使用的CFD软件,它具有强大的求解器和用户友好的界面,被广泛应用于航空航天、汽车、能源等领域的工程设计和优化。
本文将探讨Fluent计算流体力学的基本原理、应用领域和优势。
一、基本原理Fluent计算流体力学的基本原理是根据流体运动的基本方程(连续性方程、动量方程和能量方程),结合适当的边界条件和材料参数,利用数值离散和迭代求解方法,计算流动场、温度场和压力场等物理量的分布。
通过在计算机上进行模拟实验,可以有效预测和分析各种复杂流动现象,如湍流、多相流和传热等。
二、应用领域Fluent计算流体力学在各个工程领域都有广泛的应用。
航空航天领域中,可以用于飞机机翼气动性能的优化设计、发动机内部流场的模拟和燃烧过程的研究等。
汽车行业中,可以应用于汽车外形优化、发动机冷却系统的设计和车内流场的模拟等。
能源领域中,可以用于核能反应堆的热工水力分析、风力发电机组的性能评估和燃料电池的流动场模拟等。
此外,Fluent还可以应用于化工、生物医学、建筑等领域的流体力学问题研究。
三、优势Fluent计算流体力学具有以下几个显著的优势:1. 精确性:Fluent采用高精度的数值算法和网格生成技术,能够精确地模拟和计算各种复杂的流动现象。
它可以提供准确的预测和分析结果,从而帮助工程师做出正确的决策。
2. 高效性:Fluent具有强大的求解器和并行计算能力,能够快速而高效地进行数值计算。
它可以在较短的时间内得到结果,大大提高了工程分析的效率。
3. 可视化:Fluent提供丰富的后处理功能,可以将计算结果以直观的方式呈现出来。
用户可以通过动画、图表、剖面分布等方式来观察和分析流动现象,更好地理解流体力学问题。
4. 用户友好性:Fluent具有直观的用户界面和完善的操作指引,使得用户能够轻松上手,快速完成模型建立、网格划分和求解过程。
螺旋翅片管换热器内气固两相流动特性数值模拟
4 a同向 螺 旋 翅 片管 速 度 矢 量 图
4 b反 向 螺 旋 翅 片管速 度 矢 量 图
图 2 同向、反向螺旋翅片管速度矢量图
图 1 螺旋管束排列方式
表 1 螺 旋 管 束 的 结 构 尺寸 ( 单位 : mm )
从图 2 中可以看 出,反 向螺旋翅 片管在同列桕邻翅 片管 问速度欠 的变化更 为明显 ,且 后排 翅片管受前排流场的干扰更 大。另外从前 排翅片 间流过 的气流 由 f存在轴向方向的分速度 ,当它进 入 F 一排 管 束f I 、 』 与翅片间存存一 定的角度 , 此对翅 片起到一定的吹{ ] 作 用,具 备 自动 清灰 的能力。通过 对 图 2 d . 、4 b的对 比可 以看出 州向螺旋管 的 气流扰 动相对较 弱 ,颗粒更容易在同向螺旋管束 上沉 。 由于管束排列方式 的不同会 影响管束间烟气流场 的分布,有的排 列方式 使得 管束的某些区域流场分布稳定 而存 有的区域气流的扰动很 大 ,对于 扰动大的区域烟气 颗粒不 容易沉积 ,相反伍扰动小的 区域烟
◎
◎
扰动 ,减小 r 积从 区域 。 。 。袁 晓豆、史月涛对 绕流 H型翅 片管进行 2 模 拟 结 果 及 分 析 r 冷念数值帧拟 ,结果表 明颗粒速度在 H型 翅片管迎 嘶呈 M 分布 ; 2 1 螺 旋 翅 片 管 的流 场 分布 背风 丽呈 w 型 分布 ,使 H 型翅片 管不 易积灰 。本文存 前 人的研究
基础 上 ,以螺旋翘 片管换 热器 内的气 固两 梢流动特性 为研 究对象 ,研 究管束排列方式及颗粒南径对翅 片管 内气 固两 相流动特性 的影响。 图 2为同列桕邻趟片管
截面上的述度矢
。
1 计算模 型及算法
1 1 物 理 模 型
百叶窗翅片管换热器空气侧流动换热的三维数值模拟
百叶窗翅片管换热器空气侧流动换热的三维数值模拟摘要本文利用FLUENT软件模拟了百叶窗翅片管换热器空气侧流动和传热过程,根据百叶窗翅片倾角(0°,10°,14°,20°,25°,30°)的不同,建立了6个几何模型,定性分析了倾角为30°时的翅片表面温度场分布、压力场分布和速度场分布;同时比较了不同倾角对流动换热性能的影响。
关键词换热;百叶窗翅片;数值模拟0 引言换热器在工业中有着广泛的应用,如制冷、能源、化工、航空航天等等工业都需要用到换热器。
采用紧凑、高效的换热器,不仅可使整个装置的尺寸重量减小,而且由于装置的功耗减少,可降低整个系统能耗比。
因此研究各种高效、紧凑的换热器具有重要意义[1]。
圆管百叶窗翅片管换热器是一种新型高效的紧凑式换热器。
而研究发现,最普通的平直翅片管换热器管内热阻、铜管与翅片的接触热阻、管外空气侧的热阻比为2∶1∶7[2]。
管外翅片换热仍然是制约换热器效能的主要因素。
因此,强化空气侧的换热成了翅片管换热器强化传热的重要问题。
1998年, 对17个不同结构的百叶窗翅片管式换热器进行了实验研究[3];本文利用软件FLUENT软件模拟了双排(叉排)百叶窗翅片管换热器空气流动和传热过程,获得了翅片表面温度场分布、压力场分布和速度场分布。
1 模型的建立及网格的划分为实现对圆管百叶窗翅片管换热器的三维数值模拟,对实验条件进行适当简化,根据物理模型结构尺寸的对称性,本文所取的计算区域如图2所示,取连续空间中的以翅片为中心的空间为计算区域,计算区域的长度为40mm,高度为翅片间距2.8mm,宽度为横向管距的一半12mm。
设定其边界类型和流体类型如下,进口为速度入口,出口为自由压力出口,管壁为恒温边界条件,翅片面为耦合计算壁面,外壁边界为对称性边界条件,内壁边界为恒温边界条件,流体为空气(设为理想气体)。
采用3D标准层流模型进行求解,计算在管外进行,压力——速度耦合采用SIMPLEC方法[2],动量方程和能量方程均采用二阶迎风差分格式[2],翅片表面温度采用常温的方式计算。
开缝翅片管式换热器的换热与流动特性数值模拟
一、前言随着科技、工艺的发展和能源的短缺,工业对换热器的依赖性越来越大,要求换热器设备紧凑、高效、轻巧,这促使人们去研究新型高效换热器,其中翅片管换热器是人们研究得最多的高效换热器之一。
经过多年的发展,翅片管换热器的管外翅片由无缝平直翅片发展成波纹翅片、百叶窗式翅片、开孔翅片,开缝翅片等多种高效形式。
相关学者对开缝翅片进行了一些研究。
蒋翔、李晓欣等人分析了在不同应用条件下翅片管的应用情况,并给出了应用结果,为翅片管换热器的应用方法提供了借鉴[1];徐百平、吴清鹤等人建立了双缝翅片管翅式换热器三维物理模型,对换热器内的流动与传热进行了数值模拟研究。
结果表明,双缝片可使传热提高22.7%~42%[2];Ju-Suk B 、Jinho L 等人通过安排翅片位置和改变翅片特性来研究翅片造成的压力降和传热特性,分别研究了百叶窗式翅片、双边开缝翅片、单边开缝翅片和无缝翅片的JF 因子[3]。
本文主要是通过对翅片管换热器进行模拟计算,研究其开缝形式和开缝大小对流动和换热性能的影响,最终确定合适的开缝翅片形式。
二、翅片管换热器模型的建立与计算1.确定模型。
本文所研究是某款空调室外机所用的翅片,所选用的翅片管式换热器初始结构参数如表1所示。
管束采用叉排形式,且成等边三角形分布,任一相邻两管的间距为25mm ,管外径9.52mm ,管壁厚1.2mm ,翅片厚1mm ,翅片间距为3mm 。
模型构建及数值模拟的部分如图1所示。
2.分析计算模型的类型。
本文主要对五种翅片开缝形式的翅片进行模拟计算,包括无开缝形式、三角开缝翅片管式换热器的换热与流动特性数值模拟张小青(青岛大学附属中学,山东青岛266071)摘要:翅片管换热器是一种高效换热器,为了进一步强化换热,对翅片换热器进行不同形式的开缝。
采用CFD 模拟方法对七种不同开缝形式的翅片管换热器流动和换热进行了数值模拟。
根据计算结果分析了不同开缝形式换热器的压降和温度分布,经过比较分析,最终确定了最佳的开缝形式。
fluent--计算流体和传热传质--理论
2
3, 输入网格 4, 检查网格 5, 选择解法器 6, 选择求解的方程:层流或湍流(或无粘流) ,化学组分或化学反应,传热模型等。确定 其它需要的模型如:风扇、热交换器、多孔介质等模型。 7, 确定流体物性 8, 指定边界条件 9, 条件计算控制参数 10, 流场初始化 11, 计算 12, 检查结果 13, 保存结果,后处理等。 关于 FLUENT 解法器的说明 1, FLUENT 2D, 二维单精度解法器 2, FLUENT 3D,三位单精度解法器 3, FLUENT 2ddp,二维双精度解法器 4, FLUENT 3ddp,三维双精度解法器
∂ 1 ∂ 1 ∂ ∂p ( ρu ) + (rρuu ) + (rρvu ) = − ∂t r ∂x r ∂r ∂x
+
沿程损失阻力系数的FLUENT数值模拟
沿程损失阻力系数的F L U E N T数值模拟(计算流体力学作业)..(共16页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--计算流体力学课程作业作业题目:沿程损失阻力系数的FLUENT数值模拟学生姓名:易鹏学生学号:专业年级:动力工程及工程热物理12级学院名称:机械与运载工程学院2012年5月2日沿程损失阻力系数的FLUENT 数值模拟一、 引言沿程损失(pipeline friction loss )是指管道内径不变的情况下,管内流体流过一段距离后的水头损失。
其中边界对水流的阻力是产生水头损失的外因,液体的粘滞性是产生水头损失的内因,也是根本原因。
沿程能量损失的计算公式是:2f l v h =λd 2g。
其中:l 为管长,λ为沿程损失系数,d 为管道内径,2v 2g为单位重力流体的动压头(速度水头),v 为流体的运动粘度系数。
粘性流体在管道中流动时,呈现出两种流动状态,管道中的流速cr v v <(cr v 为层流向湍流转变的临界流速)为层流,此时整个流场呈一簇互相平行的流线。
则cr v v >时为湍流,流场中的流体质点作复杂的无规则的运动。
沿程损失与流动状态有关,故计算各种流体通道的沿程损失,必须首先判别流体的流动状态。
沿程损失能量损失的计算公式由带粘性的伯努利方程 22112212f v p v p ++z =++z +h 2g ρg 2g ρg 推出,可知,12f P -P h =ρg 其中: ——单位质量流体的动能(速度水头)。
流体静止时为0。
2v 2g——单位质量流体的势能(位置水头)。
——单位质量流体的压力能(压强水头)。
又由量纲分析的 定理,得出 2Δp L =λ1d ρV 2,计算出达西摩擦因子22Δpd λ=LρV, 则2f L V h =λD 2g ,由于Vd Re =ν,μν=ρ,则d λ=f(Re )。
关于沿程损失最著名的是尼古拉茨在1932~ 1933年问所做的实验(右图为实验装置图)。