河北省石家庄市2015届高三上学期复习质量检测(一)数学(理)试题及答案
河北省石家庄市2015届高三复习教学质量检测二数学理
石家庄市2015届高三复习教学质量检测(二)高三数学(理科)(时间120分钟,满分150分) 注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,答卷前考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效. 3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效. 4.考试结束后,将本试卷和答题卡一并交回.第I 卷(选择题,60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.在复平面内,复数iiz 42+=(i 为虚数单位)对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限 2.如果0a b <<,那么下列不等式成立的是A .11a b-<- B .2ab b < C .2ab a -<- D .b a < 3.某校为了研究“学生的性别”和“对待某一活动的态度”是否有关,运用2×2列联表进行独立性检验,经计算069.7=k ,则认为“学生性别与支持活动有关系”的犯错误的概率不超过A .0.1%B .1%C .99%D .99.9% 附:4.已知实数,x y 满足条件11y xx y x ≥⎧⎪+≥⎨⎪≥⎩,则2z x y =+的最小值为A .3B .2C .32D .0 5.运行如图所示的程序框图,如果输出的(2,2]t ∈-,则输入x 的范围是A .[-B .(-C .[4]D .(4]6.已知等差数列{}n a 中,100720144,2014a S ==,则2015S =A .2015-B .2015C .4030-D .40307.一排有6个座位,三个同学随机就坐,任何两人不相邻的坐法种数为A .120B .36C .24D .728.若圆222)1()5(r y x =-+-上有且仅有两点到直线0234=++y x 的距离等于1,则r 的取值范围为A .[4,6]B .(4,6)C .[5,7]D .(5,7)10.某几何体的三视图如图所示(网格中的小正方形边长为1),则该几何体的表面积为B .4+C .2+D .4+11.已知函数()f x 的定义域为2(43,32)a a --,且(23)y f x =-是偶函数.又321()24x g x x ax =+++,存在0x 1(,),2k k k Z ∈+∈,使得00)(x x g =,则满足条件的k 的个数为A .3B .2C .4D .112.已知定义在R 上的函数()f x 满足:21)()()1(2+-=+x f x f x f ,数列{}n a 满足 *2),()(N n n f n f a n ∈-=,若其前n 项和为1635-,则n 的值为 A .16 B .17 C .18 D .19第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分. 13.双曲线2241x y -=的渐近线方程为_____.14.已知212(1)4k dx ≤+≤⎰,则实数k 的取值范围是_____.15.在ABC ∆中,60BAC ∠=︒,2=AB ,3=AC ,则AB BC BC CA CA AB ⋅+⋅+⋅=u u u r u u u r u u u r u u r u u r u u u r________.16.三棱锥中有四条棱长为4,两条棱长为a ,则a 的取值范围为_____.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)在ABC ∆中,c b a ,,分别为内角C B A ,,的对边长,且222cos ()a bc A b c -=+. (Ⅰ)求A 的大小;(Ⅱ)若sin sin 1,2B C b +==,试求ABC ∆的面积. 18.(本小题满分12分)我国城市空气污染指数范围及相应的空气质量类别见下表:我们把某天的空气污染指数在0-100时称作A 类天,101--200时称作B 类天,大于200时称作C 类天.下图是某市2014年全年监测数据中随机抽取的18天数据作为样本,其茎叶图如下:(百位为茎,十、个位为叶)80907873635267934738386730121290683243210(Ⅰ)从这18天中任取3天,求至少含2个A 类天的概率;(Ⅱ)从这18天中任取3天,记X 是达到A 类或B 类天的天数,求X 的分布列及数学期望.19.(本小题满分12分)如图,在三棱柱111ABC A B C -中,1A A AB =,90ABC ∠=︒,侧面11A ABB ⊥底面ABC . (I )求证:1AB ⊥平面1A BC ;(II )若5AC =,3BC =,160A AB ∠=︒,求二面角11B A C C --的余弦值.B 1C 120.(本小题满分12分)已知椭圆22122:1(0)4x y C b b b+=>,抛物线22:4()C x y b =-.过点(01)F b +,作x 轴的平行线,与抛物线2C 在第一象限的交点为G ,且该抛物线在点G 处的切线经过坐标原点O . (Ⅰ)求椭圆1C 的方程;(Ⅱ)设直线:l y kx =与椭圆1C 相交于两点C 、D 两点,其中点C 在第一象限,点A 为椭圆1C 的右顶点,求四边形ACFD 面积的最大值及此时l 的方程.21.(本小题满分12分) 已知21()ln ,2f x x x mx x m R =--∈. (Ⅰ)当2m =-时,求函数()f x 的所有零点;(Ⅱ)若()f x 有两个极值点12,x x ,且12x x <,求证:212x x e >(e 为自然对数的底数).请考生在22~24三题中任选一题做答,如果多做,则按所做的第一题记分. 22.几何证明选讲(本小题满分10分)如图:已知PA 与圆O 相切于点A ,经过点O 的割线PBC 交圆O 于点B C 、,APC ∠的平分线分别交AB AC 、于点D E 、,.点G 是线段ED 的中点,AG 的延长线与CP 相交于点F .(Ⅰ)证明:AF ED ⊥;(Ⅱ)当F 恰为PC 的中点时,求PCPB的值.C23.坐标系与参数方程(本小题满分10分)在平面直角坐标系xOy 中,曲线1C 的参数方程为24(4x t y t⎧=⎨=⎩其中t 为参数).以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系并取相同的单位长度,曲线2C 的极坐标方程为cos()42πρθ+=.(Ⅰ)把曲线1C 的方程化为普通方程,2C 的方程化为直角坐标方程;(Ⅱ)若曲线1C ,2C 相交于B A ,两点,AB 的中点为P ,过点P 做曲线2C 的垂线交曲线1C 于F E ,两点,求PE PF ⋅.24.不等式选讲(本小题满分10分) 已知1()33f x x x a a=++-. (Ⅰ)若1a =,求8)(≥x f 的解集;(Ⅱ)对任意()+∞∈,0a ,任意R x ∈,()m x f ≥恒成立,求实数m 的最大值.2014-2015学年度高三数学质检二答案(理科)一、 选择题1-5 DABAD 6-10 CCBCB 11-12 AB 二、填空13. 20x y ±= 14. [1,3] 15 -1016. ()2262,0+ 注意:此题如果写成(也可以 三、解答题(解答题如果和标准答案不一样,可依据本标准酌情给分) 17.解:(Ⅰ)∵222cos ()a bc A b c -=+, 又根据余弦定理A bc c b a cos 2222-+=,∴22222cos 2cos 2b c bc A bc A b bc c +--=++,…………………………2分 化简得4cos 2bc A bc -=,可得1cos 2A =-, ……………………………………………………………………4分 ∵0A π<<,∴23A π=.……………………………………………………………………5分(Ⅱ)∵1sin sin =+C B , ∴1)3sin(sin =-+B B π,∴1sin 3cos cos 3sin sin =-+B B B ππ, ∴1sin 3cos cos 3sin=+B B ππ,∴1)3sin(=+πB , ……………………………………………………………………8分又∵B 为三角形内角, 故6B C π==,所以2==c b , ……………………………………………………………………………10分所以3sin 21==∆A bc S ABC . …………………………………………………………12分18. 解:(Ⅰ) 从这18天中任取3天,取法种数有 318816C =,3天中至少有2个A 类天的取法种数213315346C C C += , ..... ....2分 所以这3天至少有2个A 类天的概率为23408; .............................. ..4分 (Ⅱ)X 的一切可能的取值是3,2,1,0. ……………… 5分当X=3时,1027)3(31838===C C X P …………………… 6分当X=2时,10235)2(31811028===C C C X P …………………… 7分 当X=1时,341510245)1(31821018====C C C X P ……………… 8分 当X=0时,34510215)0(318310====C C X P …………… 9分数学期望为34102136102457021==++ . ……………12分 19.解:(Ⅰ)证明:在侧面A 1ABB 1中,因为A 1A=AB ,所以四边形A 1ABB 1为菱形,所以对角线AB 1⊥A 1B ,…………………………………2分 因为侧面A 1ABB 1⊥底面ABC ,∠ABC=900,所以CB ⊥侧面A 1ABB 1, 因为AB 1⊂平面A 1ABB 1内,所以CB ⊥AB 1,…………………………4分又因为A 1B ∩BC=B ,所以AB 1⊥平面A 1BC . …………………………………6分(Ⅱ)在Rt △ABC 中, AC=5, BC=3, 所以AB=4, 又菱形A 1ABB 1中,因为∠A 1AB=600,所以△A 1AB 为正三角形,如图,以菱形A 1ABB 1的对角线交点O 为坐标原点OA 1方向为x 轴,OA 方向为y 轴,过O 且与BC 平行的方向为z 轴建立如图空间直角坐标系, 则1(2,0,0)A ,(2,0,0)B -,(2,0,3)C -,1(0,B -,1(0,C -,所以1(C C =-,113)C A =-,设(,,)n x y z =为平面11ACC 的法向量,则11100n C C n C A ⎧=⎪⎨=⎪⎩,所以20230x x z ⎧-+=⎪⎨+-=⎪⎩,令3x =,得(3,3,4)n =为平面11ACC 的一个法向量,…………………………………9分又1(0,OB =-为平面1A BC 的一个法向量,111cos ,142723n OB n OB n OB <>===-,……………………………11分所以二面角B —A 1C —C 1的余弦值为12分法2:在平面BC A 1中过点O 作OH ⊥C A 1于H ,连接AH ,则C A 1⊥平面AOH ,所以∠AHO 即为二面角B —A 1C —A 的平面角,……………………………………………………8分在△BC A 1中5611=⋅=C A BC O A OH , 又Rt △AOH 中32=AO ,所以521422=+=OH AO AH , 所以1421cos =∠AHO , (11)分 ABCA 1C 1B 1OH因为二面角B —A 1C —C 1与二面角B —A 1C —A 互补,所以二面角B —A 1C —C 1的余弦值为二面角B —A 1C —A 的余弦值的相反数, 则二面角B —A 1C —C 1的余弦值为1421-.………………………………12分 20.解:(Ⅰ)由24()x y b =-得214y x b =+,当1y b =+得2x =±, ∴ G 点的坐标为(2,1)b +,则1'2y x =,2'|1x y ==,过点G 的切线方程为(1)2y b x -+=-即1y x b =+-,………………………2分 令0y =得10x b =-=,∴ 1b =。
石家庄市2015届高三复习教学质量检测二理科高三数学精品word版
石家庄市2015届高三复习教学质量检测(二)高三数学(理科)(时间120分钟,满分150分) 注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,答卷前考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效. 3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效. 4.考试结束后,将本试卷和答题卡一并交回.第I 卷(选择题,60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.在复平面内,复数iiz 42+=(i 为虚数单位)对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限 2.如果0a b <<,那么下列不等式成立的是A .11a b-<- B .2ab b < C .2ab a -<- D .b a < 3.某校为了研究“学生的性别”和“对待某一活动的态度”是否有关,运用2×2列联表进行独立性检验,经计算069.7=k ,则认为“学生性别与支持活动有关系”的犯错误的概率不超过A .0.1%B .1%C .99%D .99.9% 附:4.已知实数,x y 满足条件11y xx y x ≥⎧⎪+≥⎨⎪≥⎩,则2z x y =+的最小值为A .3B .2C .32D .0 5.运行如图所示的程序框图,如果输出的(2,2]t ∈-,则输入x 的范围是A .[-B .(-C .[D .(6.已知等差数列{}n a 中,100720144,2014a S ==,则2015S =A .2015-B .2015C .4030-D .40307.一排有6个座位,三个同学随机就坐,任何两人不相邻的坐法种数为A .120B .36C .24D .728.若圆222)1()5(r y x =-+-上有且仅有两点到直线0234=++y x 的距离等于1,则r 的取值范围为A .[4,6]B .(4,6)C .[5,7]D .(5,7)10.某几何体的三视图如图所示(网格中的小正方形边长为1),则该几何体的表面积为B .4+C .2+D .4+11.已知函数()f x 的定义域为2(43,32)a a --,且(23)y f x =-是偶函数.又321()24x g x x ax =+++,存在0x 1(,),2k k k Z ∈+∈,使得00)(x x g =,则满足条件的k的个数为A .3B .2C .4D .112.已知定义在R 上的函数()f x 满足:21)()()1(2+-=+x f x f x f ,数列{}n a 满足 *2),()(N n n f n f a n ∈-=,若其前n 项和为1635-,则n 的值为 A .16 B .17 C .18 D .19第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分. 13.双曲线2241x y -=的渐近线方程为_____. 14.已知212(1)4k dx ≤+≤⎰,则实数k 的取值范围是_____.15.在ABC ∆中,60BAC ∠=︒,2=AB ,3=AC ,则AB BC BC CA CA AB ⋅+⋅+⋅=u u u r u u u r u u u r u u r u u r u u u r________.16.三棱锥中有四条棱长为4,两条棱长为a ,则a 的取值范围为_____.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)在ABC ∆中,c b a ,,分别为内角C B A ,,的对边长,且222cos ()a bc A b c -=+. (Ⅰ)求A 的大小;(Ⅱ)若sin sin 1,2B C b +==,试求ABC ∆的面积. 18.(本小题满分12分)我国城市空气污染指数范围及相应的空气质量类别见下表:我们把某天的空气污染指数在0-100时称作A 类天,101--200时称作B 类天,大于200时称作C 类天.下图是某市2014年全年监测数据中随机抽取的18天数据作为样本,其茎叶图如下:(百位为茎,十、个位为叶)80907873635267934738386730121290683243210(Ⅰ)从这18天中任取3天,求至少含2个A 类天的概率;(Ⅱ)从这18天中任取3天,记X 是达到A 类或B 类天的天数,求X 的分布列及数学期望.19.(本小题满分12分)如图,在三棱柱111ABC A B C -中,1A A AB =,90ABC ∠=︒,侧面11A ABB ⊥底面ABC . (I )求证:1AB ⊥平面1A BC ;(II )若5AC =,3BC =,160A AB ∠=︒,求二面角11B AC C --的余弦值.B 1C 120.(本小题满分12分)已知椭圆22122:1(0)4x y C b b b+=>,抛物线22:4()C x y b =-.过点(01)F b +,作x 轴的平行线,与抛物线2C 在第一象限的交点为G ,且该抛物线在点G 处的切线经过坐标原点O . (Ⅰ)求椭圆1C 的方程;(Ⅱ)设直线:l y kx =与椭圆1C 相交于两点C 、D 两点,其中点C 在第一象限,点A 为椭圆1C 的右顶点,求四边形ACFD 面积的最大值及此时l 的方程.21.(本小题满分12分) 已知21()ln ,2f x x x mx x m R =--∈. (Ⅰ)当2m =-时,求函数()f x 的所有零点;(Ⅱ)若()f x 有两个极值点12,x x ,且12x x <,求证:212x x e >(e 为自然对数的底数). 请考生在22~24三题中任选一题做答,如果多做,则按所做的第一题记分. 22.几何证明选讲(本小题满分10分)如图:已知PA 与圆O 相切于点A ,经过点O 的割线PBC 交圆O 于点B C 、,APC ∠的平分线分别交AB AC 、于点D E 、,.点G 是线段ED 的中点,AG 的延长线与CP 相交于点F .(Ⅰ)证明:AF ED ⊥;(Ⅱ)当F 恰为PC 的中点时,求PCPB的值.C23.坐标系与参数方程(本小题满分10分)在平面直角坐标系xOy 中,曲线1C 的参数方程为24(4x t y t⎧=⎨=⎩其中t 为参数).以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系并取相同的单位长度,曲线2C 的极坐标方程为cos()4πρθ+=(Ⅰ)把曲线1C 的方程化为普通方程,2C 的方程化为直角坐标方程;(Ⅱ)若曲线1C ,2C 相交于B A ,两点,AB 的中点为P ,过点P 做曲线2C 的垂线交曲线1C 于F E ,两点,求PE PF ⋅.24.不等式选讲(本小题满分10分) 已知1()33f x x x a a=++-. (Ⅰ)若1a =,求8)(≥x f 的解集;(Ⅱ)对任意()+∞∈,0a ,任意R x ∈,()m x f ≥恒成立,求实数m 的最大值.。
石家庄市2015届高三复习教学质量检测(一)理科数学
2页3第4页 5第石家庄市2015届高三第一次质量检测数学理科答案一、选择题:1-5CBCDA 6-10DADBC 11-12BA二、填空题:13.24y x =+ 14.1- 15. 16.3602 三、解答题 17.因为c=2,不合题意舍去,所以52c =.....................................10分 18.解(1)设{}n a 的公差为d ,由题意得2(33)3(312)d d +=+,得2d =或0d =(舍),……………………2分所以{}n a 的通项公式为3(1)221n a n n =+-=+……………………4分 (2)2(21)2nnn n b a n ==+123325272(21)2n n S n =+++++………………①…………②……………………6分①-②得123132222222(21)2n n n S n +-=++++-+…………………8分1+12(12)22(21)2122(21)2n n n n n +-=+-+-=---……………………10分∴1(21)22n n S n +=-+……………………12分 19. 解:(1)解:a=6 b=10……………………………2分222222,............2sin sin sin 3cos .............62sin 2494cos 2629100 (85)2c= (92)==∴===+-+-==-+==a bA B A BA aB B b a c b c B ac cc c c 解:分sinA=sin2B=2sinBcosB.........4分分分解得或分23412325272(21)2n n S n +=+++++6……….5分(2)P (Y=0)=632228=C P (Y=1)=282112128=C C P (Y=2)=112212=C …………………11分 5E(P )=.…………………………12分 20(1)分别取PA 和AB 中点M 、N ,连接MN 、ME 、NF ,则=NF ∥12AD ,=ME ∥12AD ,所以=NF ∥ME , ∴四边形MEFN 为平行四边形. -------------2∴EF ,∴EF ∥PAB 平面.(2) 棱PA ⊥底面ABCD ,所以A P ,轴轴,轴,z y x 的正方向,建立以(001),(000),B (1,0P A C D ,,,,,,,,,,1(0222E ,,所以,1(0)22EF =-,,, (0),(100)22AE AB ==,,,,,- ------------6设平面ABE 法向量(,,)n a b c =,0,0,n AE n AB ==所以11022b c a ⎧+=⎪⎨⎪=⎩令1,0,1b a c ===-则 所以(0,1,1)n =-为平面ABE 的一个法向量 -------------8页7第设直线EF 与平面ABE 所成角为α, 于是1sin cos ,2EF n EF n EF nα=<>==.-------------10所以直线EF 与平面ABE 所成角为6π. -------------12 解法2在平面PAD 内作EH ∥PA H 于, 因为侧棱PA ⊥底面ABCD ,所以EH ⊥底面ABCD . -------------6E 为PD 的中点,12EH =,1111224ABFS =⨯⨯= 11111334224E ABF ABF V S EH -==⨯⨯=-------------8设点F 到平面ABE 的距离为h,E ABF F ABE V V --=11122ABES AB AE =⨯⨯=⨯=1133ABFABES EH Sh =,h =-------------10设直线EF 与平面ABE 所成角为α,1sin 2h EF α==,所以直线EF 与平面ABE 所成角为6π. -------------1221.解:(1)设A (0x ,0),B (0,0y ),P (,x y ),由2BP PA =得,00(,)2(,)x y y x x y -=--,即000032()223x x x x xy y y y y⎧=-=⎧⎪⇒⎨⎨-=-⎩⎪=⎩,————————————————————2分 又因为22009x y +=,所以223()(3)92x y +=,化简得:2214x y +=,这就是点P 的轨迹方程。
2015年河北省石家庄市高考数学一模试卷(理科)
2015年河北省石家庄市高考数学一模试卷(理科)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共12小题,共60.0分)1.已知i为虚数单位,则复数=()A.2+iB.2-iC.-1-2iD.-1+2i【答案】C【解析】解:=,故选:C.直接利用复数代数形式的乘除运算化简求值.本题考查了复数代数形式的乘除运算考查了复数的基本概念,是基础题.2.已知集合P={0,1,2},Q={y|y=3x},则P∩Q=()A.{0,1}B.{1,2}C.{0,1,2}D.∅【答案】B【解析】解:Q={y|y=3x}={y|y>0},则P∩Q={1,2},故选:B根据集合的基本运算进行求解即可.本题主要考查集合的基本运算,比较基础.3.已知cosα=k,k∈R,α∈(,π),则sin(π+α)=()A.-B.C.±D.-k【答案】A【解析】解:∵cosα=k,k∈R,α∈(,π),∴sinα==,∴sin(π+α)=-sinα=-.故选:A.由已知及同角三角函数基本关系的运用可求sinα,从而由诱导公式即可得解.本题主要考查了同角三角函数基本关系的运用,运用诱导公式化简求值,属于基本知识的考查.4.下列说法中,不正确的是()A.已知a,b,m∈R,命题“若am2<bm2,则a<b”为真命题B.命题“∃x0∈R,x02-x0>0”的否定是:“∀x∈R,x2-x≤0”C.命题“p或q”为真命题,则命题p和q命题均为真命题D.“x>3”是“x>2”的充分不必要条件【答案】C【解析】解:A.若am2<bm2,利用不等式的性质可得:a<b,因此为真命题;B.命题“∃x0∈R,x02-x0>0”的否定是:“∀x∈R,x2-x≤0”,正确;C.“p或q”为真命题,则命题p和q命题至少有一个为真命题,因此不正确;D.“x>3”⇒“x>2”,反之不成立,因此“x>3”是“x>2”的充分不必要条件,正确.故选:C.A.利用不等式的基本性质即可判断出正误;B.利用命题的否定定义即可判断出正误;C.利用复合命题的真假判定方法即可判断出正误;D.“x>3”⇒“x>2”,反之不成立,即可判断出正误.本题考查了简易逻辑的判定、不等式的基本性质,考查了推理能力,属于基础题.5.设函数f(x)为偶函数,且当x∈[0,2)时,f(x)=2sinx,当x∈[2,+∞)时f(x)=log2x,则=()A. B.1 C.3 D.【答案】D【解析】解:∵函数f(x)为偶函数,∴f(-)=f(),∵当x∈[0,2)时f(x)=2sinx,∴f(x)=2sin=2×=;∵当x∈[2,+∞)时f(x)=log2x,∴f(4)=log24=2,∴=+2,故选D;函数f(x)为偶函数,可得f(-)=f()再将其代入f(x)=2sinx,进行求解,再根据x∈[2,+∞)时f(x)=log2x,求出f(4),从而进行求解;此题主要考查函数值的求解问题,解题的过程中需要注意函数的定义域,是一道基础题;6.执行下面的程序框图,如果输入的依次是1,2,4,8,则输出的S为()A.2B.2C.4D.6【答案】B【解析】解:模拟执行程序框图,可得S=1,i=1满足条件i≤4,S=1,i=2满足条件i≤4,S=,i=3满足条件i≤4,S=2,i=4满足条件i≤4,S=2,i=5不满足条件i≤4,退出循环,输出S的值为2.故选:B.模拟执行程序框图,依次写出每次循环得到的S,i的值,当i=5时,不满足条件i≤4,退出循环,输出S的值为2.本题主要考查了循环结构的程序框图,正确写出每次循环得到的S的值是解题的关键,属于基本知识的考查.7.如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,底面是边长为2的正三角形,侧棱长为3,则BB1与平面AB1C1所成的角是()A. B. C. D.【答案】A【解析】解:以B为坐标原点,以与BC垂直的直线为x轴,BC为y轴,建立空间直角坐标系,则A(,1,0),B1(0,0,3),C1(0,2,3),=(-,-1,3),=(0,2,0),=(0,0,3).设平面AB1C1所的一个法向量为=(x,y,z)则即,取z=1,则得=(,0,1),∵cos<,>===,∴BB1与平面AB1C1所成的角的正弦值为,∴BB1与平面AB1C1所成的角为故选A.以B为坐标原点,建立空间直角坐标系,利用与平面AB1C1所的一个法向量的夹角,求出则BB1与平面AB1C1所成的角.本题考查线面角的计算,利用了空间向量的方法.要注意相关点和向量坐标的准确性,及转化时角的相等或互余关系.8.已知O、A、B三地在同一水平面内,A地在O地正东方向2km处,B地在O地正北方向2km处,某测绘队员在A、B之间的直线公路上任选一点C作为测绘点,用测绘仪进行测绘,O地为一磁场,距离其不超过km的范围内会测绘仪等电子仪器形成干扰,使测量结果不准确,则该测绘队员能够得到准确数据的概率是()A.1-B.C.1-D.【答案】A【解析】解:由题意,△AOB是直角三角形,OA=OB=2,所以AB=2,O地为一磁场,距离其不超过km的范围为个圆,与AB相交于C,D两点,作OE⊥AB,则OE=,所以CD=2,所以该测绘队员能够得到准确数据的概率是1-=1-.故选:A.作出图形,以长度为测度,即可求出概率.本题考查利用数学知识解决实际问题,考查概率的计算,正确确定CD是关键.9.已知抛物线y2=2px(p>0)的焦点F恰好是双曲线-=1(a>0,b>0)的一个焦点,两条曲线的交点的连线过点F,则双曲线的离心率为()A. B. C.1+ D.1+【答案】C【解析】解:由题意,∵两条曲线交点的连线过点F∴两条曲线交点为(,p),代入双曲线方程得,又=c代入化简得c4-6a2c2+a4=0∴e4-6e2+1=0∴e2=3+2=(1+)2∴e=+1故选:C.先根据抛物线方程得到焦点坐标和交点坐标,代入双曲线,把=c代入整理得c4-6a2c2+a4=0等式两边同除以a4,得到关于离心率e的方程,进而可求得e.本题考查由圆锥曲线的方程求焦点、考查双曲线的三参数的关系:c2=a2+b2注意与椭圆的区别.10.一个几何体的三视图如图所示,则该几何体的体积是()A.64B.72C.80D.112【答案】B【解析】解:由几何体的三视图可知,该几何体下部为正方体,边长为4,体积为43=64,上部为三棱锥,以正方体上底面为底面,高为3.体积×,故该几何体的体积是64+8=72.故选B.由几何体的三视图可知,该几何体下部为正方体,边长为4,上部为三棱锥(以正方体上底面为底面),高为3.分别求体积,再相加即可本题考查由三视图求几何体的体积,考查由三视图还原几何体直观图,考查与锥体积公式,本题是一个基础题.11.已知平面图形ABCD为凸四边形(凸四边形即任取平面四边形一边所在的直线,其余各边均在此直线的同侧),且AB=2,BC=4,CD=5,DA=3,则四边形ABCD面积S的最大值为()A. B.2 C.4 D.6【答案】B【解析】解:设AC=x,在△ABC中,由余弦定理可得,x2=22+42-2×2×4cos B=20-16cos B,在△ACD中,由余弦定理可得,x2=32+52-2×3×5cos D=34-30cos D,即有15cos D-8cos B=7,又四边形ABCD面积S=×2×4sin B+×3×5sin D=(8sin B+15sin D),即有8sin B+15sin D=2S,又15cos D-8cos B=7,两式两边平方可得,64+225+240(sin B sin D-cos B cos D)=49+4s2,化简可得,-240cos(B+D)=4S2-240,由于-1≤cos(B+D)<1,即有S≤2.当cos(B+D)=-1即B+D=π时,4S2-240=240,解得S=2.故S的最大值为2.故选B.设AC=x,在△ABC和△ACD中,由余弦定理可得,15cos D-8cos B=7,再由三角形的面积公式可得8sin B+15sin D=2S,两式两边平方结合两角和的余弦公式和余弦函数的值域,即可求得最大值.本题考查三角形的面积公式和余弦定理的运用,同时考查两角和的余弦公式的运用和余弦函数的最值的求法,属于中档题.12.已知函数f(x)=,>,,若关于x的方程f2(x)-bf(x)+c=0(b,c∈R)有8个不同的实数根,则由点(b,c)确定的平面区域的面积为()A. B. C. D.【答案】A【解析】解:根据题意作出f(x)的简图:由图象可得当f(x)∈(0,1]时,有四个不同的x与f(x)对应.再结合题中“方程f2(x)-bf(x)+c=0有8个不同实数解”,可以分解为形如关于k的方程k2-bk+c=0有两个不同的实数根K1、K2,且K1和K2均为大于0且小于等于1的实数.列式如下:><<>,化简得<><<,此不等式组表示的区域如图:则图中阴影部分的面积即为答案,由定积分的知识得S=-×1×1=故选:A题中原方程f2(x)-bf(x)+c=0有8个不同实数解,即要求对应于f(x)=某个常数K,有2个不同的K,再根据函数对应法则,每一个常数可以找到4个x与之对应,就出现了8个不同实数解,故先根据题意作出f(x)的简图,由图可知,只有满足条件的K 在开区间(0,1)时符合题意.再根据一元二次方程根的分布理论可以得出答案.本题考查了函数的图象与一元二次方程根的分布的知识,同时考查定积分等知识,较为综合;采用数形结合的方法解决,使本题变得易于理解.二、填空题(本大题共4小题,共20.0分)13.已知平面向量,的夹角为,||=2,||=1,则|+|= ______ .【答案】【解析】解:∵平面向量,的夹角为,||=2,||=1,∴=||•||cos=2×=-1,∴|+|2=()2=||2+||2+2=4+1-2=3,即|+|=.故答案为:.运用数量积的定义求解得出=||•||cos,结合向量的运算,与模的运算转化:|+|2=()2=||2+||2+2,代入数据求解即可.本题考查了平面向量的数量积的运用,应用求解向量的模,计算简单,属于容易题.14.将甲、乙、丙、丁四名学生分到两个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同的分法的总数为______ .【答案】8【解析】解:∵每个班至少分到一名学生,且甲、乙两名学生不能分到一个班,设两个班为1班和2班,∴分法包括两种情况:两个班分别为1人和3人,两个班各2个人,若两个班分别为1人和3人,则1人只能为甲或乙,单独的1人可以在1班或2班,因此分法为:2×2=4,若两个班各2个人,则为总的分法减去甲乙在同一个班(都在1班或都在2班)的情况,即分法为:-2=4,因此不同的分法的总数为:4+4=8.故答案为:8.分法包括两种情况:两个班分别为1人和3人,两个班各2个人,据此解答.本题考查排列组合的实际应用,考查利用排列组合解决实际问题,是一个基础题,这种题目是排列组合中经常出现的一个问题.15.设过曲线f(x)=-e x-x(e为自然对数的底数)上任意一点处的切线为l1,总存在过曲线g(x)=ax+2cosx上一点处的切线l2,使得l1⊥l2,则实数a的取值范围为______ .【答案】[-1,2]【解析】解:由f(x)=-e x-x,得f′(x)=-e x-1,∵e x+1>1,∴∈(0,1),由g(x)=ax+2cosx,得g′(x)=a-2sinx,又-2sinx∈[-2,2],∴a-2sinx∈[-2+a,2+a],要使过曲线f(x)=-e x-x上任意一点的切线为l1,总存在过曲线g(x)=ax+2cosx上一点处的切线l2,使得l1⊥l2,则,解得-1≤a≤2.即a的取值范围为-1≤a≤2.故答案为:[-1,2].求出函数f(x)=-e x-x的导函数,进一步求得∈(0,1),再求出g(x)的导函数的范围,然后把过曲线f(x)=-e x-x上任意一点的切线为l1,总存在过曲线g(x)=ax+2cosx 上一点处的切线l2,使得l1⊥l2转化为集合间的关系求解.本题考查了利用导数研究过曲线上的某点的切线方程,考查了数学转化思想方法,解答此题的关键是把问题转化为集合间的关系求解,是中档题.16.已知椭圆=1(a>b>0)的两个焦点分别为F1,F2,设P为椭圆上一点,∠F1PF2的外角平分线所在的直线为l,过F1,F2分别作l的垂线,垂足分别为R,S,当P在椭圆上运动时,R,S所形成的图形的面积为______ .【答案】πa2【解析】解:由题意,P是以F1,F2为焦点的椭圆上一点,过焦点F2作∠F1PF2外角平分线的垂线,垂足为S,延长F2S交F1P的延长线于Q,得PQ=PF2,由椭圆的定义知PF1+PF2=2a,故有PF1+PQ=QF1=2a,连接OS,知OS是三角形F1F2Q的中位线,∴OS=a,即点S到原点的距离是定值a,由此知点S的轨迹是以原点为圆心、半径等于a的圆.同理可得,点R的轨迹是以原点为圆心、半径等于a的圆.故点R,S所形成的图形的面积为πa2.延长F2S交F1P的延长线于Q,可证得PQ=PF2,且S是PF2的中点,由此可求得OS的长度是定值,即可求点S的轨迹的几何特征.本题考查求轨迹方程,关键是证出OS是中位线以及利用题设中所给的图形的几何特征求出QF1的长度,进而求出OS的长度,再利用圆的定义得出点M的轨迹是一个圆,属于难题.三、解答题(本大题共8小题,共94.0分)17.设数列{a n}的前n项和为S n,a1=1,a n+1=λS n+1(n∈N*,λ≠-1),且a1、2a2、a3+3为等差数列{b n}的前三项.(Ⅰ)求数列{a n}、{b n}的通项公式;(Ⅱ)求数列{a n b n}的前n项和.【答案】解:(1)∵a n+1=λS n+1(n∈N*,λ≠-1),∴当n≥2时,a n=λS n-1+1,∴a n+1-a n=λa n,即a n+1=(1+λ)a n,又a1=1,a2=λa1+1=λ+1,∴数列{a n}为以1为首项,公比为λ+1的等比数列,∴a3=(λ+1)2,∵a1、2a2、a3+3为等差数列{b n}的前三项.∴4(λ+1)=1+(λ+1)2+3,整理得(λ-1)2=0,解得λ=1.∴a n=2n-1,b n=1+3(n-1)=3n-2.(2)a n b n=(3n-2)•2n-1,∴数列{a n b n}的前n项和T n=1+4×2+7×22+…+(3n-2)•2n-1,2T n=2+4×22+7×23+…+(3n-5)×2n-1+(3n-2)×2n,∴-T n=1+3×2+3×22+…+3×2n-1-(3n-2)×2n=-(3n-2)×2n=(5-3n)×2n-5,∴T n=(3n-5)×2n+5.【解析】(1)由a n+1=λS n+1(n∈N*,λ≠-1),当n≥2时,a n=λS n-1+1,可得a n+1=(1+λ)a n,利用等比数列的通项公式可得a3,再利用等差数列的通项公式即可得出;(2)利用“错位相减法”、等比数列的前n项和公式即可得出.本题考查了递推式的应用、“错位相减法”、等差数列与等比数列的通项公式及其前n 项和公式,考查了推理能力与计算能力,属于中档题.18.集成电路E由3个不同的电子元件组成,现由于元件老化,三个电子元件能正常工作的概率分别降为,,,且每个电子元件能否正常工作相互独立,若三个电子元件中至少有2个正常工作,则E能正常工作,否则就需要维修,且维修集成电路E所需费用为100元.(Ⅰ)求集成电路E需要维修的概率;(Ⅱ)若某电子设备共由2个集成电路E组成,设X为该电子设备需要维修集成电路所需的费用,求X的分布列和期望.【答案】解:(Ⅰ)三个电子元件能正常工作分别记为事件A,B,C,则P(A)=,P(B)=,P(C)=.依题意,集成电路E需要维修有两种情形:①3个元件都不能正常工作,概率为P1=P()=P()P()P()=××=.②3个元件中的2个不能正常工作,概率为P2=P(A)+P(B)+P(C)=++×=.所以,集成电路E需要维修的概率为P1+P2=+=.(Ⅱ)设ξ为维修集成电路的个数,则ξ服从B(2,),而X=100ξ,P(X=100ξ)=P(ξ=k)=••,k=0,1,2.X的分布列为:∴EX=0×+100×+200×=.【解析】(Ⅰ)由条件利用相互独立事件的概率乘法公式求得3个元件都不能正常工作的概率P1的值,3个元件中的2个不能正常工作的概率P2的值,再把P1和P2相加,即得所求.(Ⅱ)设ξ为维修集成电路的个数,则ξ服从B(2,),求得P(X=100ξ)=P(ξ=k)的值,可得X的分布列,从而求得X的期望.本题主要考查相互独立事件的概率乘法公式、互斥事件的概率加法公式,离散型随机变量的分布列,属于中档题.19.如图,在四棱锥P-ABCD中,底面ABCD为梯形,∠ABC=∠BAD=90°,AP=AD=AB=,BC=t,∠PAB=∠PAD=α.(Ⅰ)当t=3时,试在棱PA上确定一个点E,使得PC∥平面BDE,并求出此时的值;(Ⅱ)当α=60°时,若平面PAB⊥平面PCD,求此时棱BC的长.【答案】解:(1)在棱PA上取点E,使得=,-------2连接AC,BD交于点F,因为AD∥BC,所以=,所以=,所以,EF∥PC因为PC⊄平面BDE,EF⊂平面BDE所以PC∥平面BDE-------------4(Ⅱ)取BC上一点G使得BG=,连结DG,则ABGD 为正方形.过P作PO⊥平面ABCD,垂足为O.连结OA,OB,OD,OG.AP=AD=AB,∠PAB=∠PAD=60°,所以△PAB和△PAD都是等边三角形,因此PA=PB=PD,所以OA=OB=OD,即点O为正方形ABGD对角线的交点,---------------7以O坐标原点,分别以,,的方向为x轴,y轴,z轴的正方向建立如图所示的空间直角坐标系O-xyz.则O(0,0,0),P(0,0,1),A(-1,0,0),B(0,1,0),D(0,-1,0),G(1,0,0)设棱BC的长为t,则C(t,1-t,0),=(-1,0,-1),=(0,1,-1),=(t,1-t,-1),=(0,-1,-1)--------------9设平面PAB的法向量为=(x,y,z),则,取=(-1,1,1)-----------10同理平面PCD的法向量=(1-,1,-1)-----------11由=0,解得t=2,即BC的长为2----------------12【解析】(Ⅰ)在棱PA上取点E,使得=,连接AC,BD交于点F,证明EF∥PC,即可证明PC∥平面BDE;(Ⅱ)取BC上一点G使得BG=,连结DG,则ABGD为正方形.过P作PO⊥平面ABCD,垂足为O.连结OA,OB,OD,OG,以O坐标原点,分别以,,的方向为x轴,y轴,z轴的正方向建立空间直角坐标系,求出平面PAB的法向量=(-1,1,1)、同平面PCD的法向量=(1-,1,-1),由=0,解得BC的长.本题主要考查了线面平行的判定定理及性质,考查向量方法的运用,正确建立坐标系,求出平面的法向量是关键.20.在平面直角坐标系x O y中,一动圆经过点(,0)且与直线x=-相切,设该动圆圆心的轨迹为曲线E.(Ⅰ)求曲线E的方程;(Ⅱ)设P是曲线E的动点,点B、C在y轴上,△PBC的内切圆的方程为(x-1)2+y2=1,求△PBC面积的最小值.【答案】解:(Ⅰ)由题意可知圆心到(,0)的距离等于到直线x=-的距离,由抛物线的定义可知,圆心的轨迹方程:y2=2x.(Ⅱ)设P(x0,y0),B(0,b),C(0,c),直线PB的方程为:(y0-b)x-x0y+x0b=0,又圆心(1,0)到PB的距离为1,即=1,整理得:(x0-2)b2+2y0b-x0=0,同理可得:(x0-2)c2+2y0c-x0=0,所以,可知b,c是方程(x0-2)x2+2y0x-x0=0的两根,所以b+c=,bc=,依题意bc<0,即x0>2,则(c-b)2=,因为y02=2x0,所以:|b-c|=||所以S=|b-c|•|x0|=(x0-2)++4≥8当x0=4时上式取得等号,所以△PBC面积最小值为8.【解析】(Ⅰ)运用抛物线的定义,可得轨迹为抛物线,进而得到方程;(Ⅱ)设P(x0,y0),B(0,b),C(0,c),求得直线PB的方程,运用直线和圆相切的条件:d=r,求得b,c的关系,求得△PBC的面积,结合基本不等式,即可得到最小值.本题考查抛物线的定义、方程和性质,主要考查定义法和方程的运用,同时考查直线和圆相切的条件:d=r,考查化简整理的运算能力,属于中档题.21.已知函数f(x)=x2++alnx.(Ⅰ)若f(x)在区间[2,3]上单调递增,求实数a的取值范围;(Ⅱ)设f(x)的导函数f′(x)的图象为曲线C,曲线C上的不同两点A(x1,y1)、B(x2,y2)所在直线的斜率为k,求证:当a≤4时,|k|>1.【答案】解:(1)由,得′.因为f(x)在区间[2,3]上单调递增,所以′≥0在[2,3]上恒成立,即在[2,3]上恒成立,设,则′<,所以g(x)在[2,3]上单调递减,故g(x)max=g(2)=-7,所以a≥-7;(2)对于任意两个不相等的正数x1、x2有>==>>,∴>,而′,∴′′==>,故:′′>,即′′>1,∴当a≤4时,>.【解析】(1)由函数单调性,知其导函数≥0在[2,3]上恒成立,将问题转化为在[2,3]上单调递减即可求得结果;(2)根据题意,将′′写成,利用不等式的性质证明>,所以′′>,即得>.本题考查导数及基本不等式的应用,解题的关键是利用不等式得到函数值的差的绝对值要大于自变量的差的绝对值.22.如图,已知⊙O和⊙M相交于A、B两点,AD为⊙M的直径,直线BD交⊙O于点C,点G为BD中点,连接AG分别交⊙O、BD于点E、F连接CE.(1)求证:AG•EF=CE•GD;(2)求证:.【答案】证明:(1)连接AB,AC,∵AD为⊙M的直径,∴∠ABD=90°,∴AC为⊙O的直径,∴∠CEF=∠AGD,∵∠DFG=∠CFE,∴∠ECF=∠GDF,∵G为弧BD中点,∴∠DAG=∠GDF,∵∠ECB=∠BAG,∴∠DAG=∠ECF,∴△CEF∽△AGD,∴,∴AG•EF=CE•GD(2)由(1)知∠DAG=∠GDF,∠G=∠G,∴△DFG∽△AGD,∴DG2=AG•GF,由(1)知,∴.【解析】(1)要证明AG•EF=CE•GD我们可以分析积等式中四条线段的位置,然后判断它们所在的三角形是否相似,然后将其转化为一个证明三角形相似的问题.(2)由(1)的推理过程,我们易得∠DAG=∠GDF,又由公共角∠G,故△DFG∽△AGD,易得DG2=AG•GF,结合(1)的结论,不难得到要证明的结论.证明三角形相似有三个判定定理:(1)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似(2)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似(3)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似.我们要根据已知条件进行合理的选择,以简化证明过程.23.已知曲线C1的参数方程为(θ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2.(Ⅰ)分别写出C1的普通方程,C2的直角坐标方程.(Ⅱ)已知M、N分别为曲线C1的上、下顶点,点P为曲线C2上任意一点,求|PM|+|PN|的最大值.【答案】解:(1)因为曲线C1的参数方程为(θ为参数),所以曲线C1的普通方程为,…(2分)由曲线C2的极坐标方程为ρ=2得,曲线C2的普通方程为x2+y2=4;…(4分)(2)法一:由曲线C2:x2+y2=4,可得其参数方程为,所以P点坐标为(2cosα,2sinα),由题意可知M(0,),N(0,).因此|PM|+|PN|==+…(6分)则(|PM|+|PN|)2=14+2.所以当sinα=0时,(|PM|+|PN|)2有最大值28,…(8分)因此|PM|+|PN|的最大值为.…(10分)法二:设P点坐标为(x,y),则x2+y2=4,由题意可知M(0,),N(0,).因此|PM|+|PN|=+=+…(6分)则(|PM|+|PN|)2=14+2.所以当y=0时,(|PM|+|PN|)2有最大值28,…(8分)因此|PM|+|PN|的最大值为.…(10分)【解析】(1)根据题意和平方关系求出曲线C1的普通方程,由ρ2=x2+y2和题意求出C2的直角坐标方程;(2)法一:求出曲线C2参数方程,设P点的参数坐标,求出点M、N的坐标,利用两点间的距离公式求出|PM|+|PN|并化简,再化简(|PM|+|PN|)2,利用正弦函数的最值求出(|PM|+|PN|)2的最值,即可求出|PM|+|PN|的最大值;法二:设P点坐标为(x,y),则x2+y2=4,求出点M、N的坐标,利用两点间的距离公式求出|PM|+|PN|并化简,再化简(|PM|+|PN|)2,再求出(|PM|+|PN|)2的最值,即可求出|PM|+|PN|的最大值.本题考查参数方程、极坐标方程与普通方程的转化,两点间的距离公式,以及求最值问题,考查化简、计算能力.24.已知函数f(x)=的定义域为R.(Ⅰ)求实数m的取值范围.(Ⅱ)若m的最大值为n,当正数a、b满足+=n时,求7a+4b的最小值.【答案】解:(1)∵函数定义域为R,∴|x+1|+|x-3|-m≥0恒成立,设函数g(x)=|x+1|+|x-3|,则m不大于函数g(x)的最小值,又|x+1|+|x-3|≥|(x+1)-(x-3)|=4,即g(x)的最小值为4,∴m≤4.(2)由(1)知n=4,∴7a+4b===,当且仅当a+2b=3a+b,即b=2a=时取等号.∴7a+4b的最小值为.【解析】(1)由函数定义域为R,可得|x+1|+|x-3|-m≥0恒成立,设函数g(x)=|x+1|+|x-3|,利用绝对值不等式的性质求出其最小值即可;(2)由(1)知n=4,变形7a+4b=,利用基本不等式的性质即可得出.本题考查了函数的定义域、绝对值不等式的性质、基本不等式的性质、“乘1法”,考查了推理能力与计算能力,属于中档题.。
河北省石家庄市2015届高三上学期复习质量检测(一)英语试题 含答案
石家庄市2015届高三复习教学质量检测(一)英语第一部分听力(每题1.5分,满分30分)1.What did the woman find?A A packetB A walletC An ID card2.Why is the coach special to the woman?A He teaches her to be kindB He is her father.C He is skilled in baseball3.What does the woman want most?A Much workB Less ambitionC A better job4.When are they likely to see a game together?A Next weekB Next monthC Next year5.What is probably the woman’s brother?A A photographerB A football playerC A singer6.What is the probable relationship between the speakers?A Doctor and patientB Wife and husbandC Secretary and boss7.What does the woman advise the man to do?A Enjoy his lifeB Change his dietC Give up all fat foods8.Where does the conversation probably take place?A At a railway stationB At an airportC At a hotel9.When will the man have to leave?A At 12:00B At 13:00C At 14:0010.Where did the theft happen?A In a shopB On a busC In the street11.What did the old lady think the man speaker was at first?A A passer-byB A policeman.C A thief12.What did the old lady do in the end ?A She apologizedB She ran offC She called the police.13.What’s probably the man?A.A hostB. A pianistC. A journalist14.How much is the ticket for the jazz performance on Thursday night?A.$8 B $10 C $1215.When will the band Megablitz perform?A.On ThursdayB. On FridayC. On Saturday16.Where will the New Seventies Soul Night be held?A.At the Sound ClubB. At the Jazz CafeC. At the Queen’s Hall17.Why won’t the speaker come to work today?A.He is illB. His son is illC. He has to go to his son’s school.18.What does the speaker ask Raman to do?A.Contact the trainer.B. Book a roomC. Organize the projector19.How will Alison deal with the lunch?A.She will cook itB. She will order it from a cafe.C. She will take the people to a restaurant.20.What will everyone in the meeting need to have、A.A pen and a notebookB. A phone.C. A computer第二部分阅读理解(每题2分,共40分)AWhen I entered Oxford University, I wasn’t particularly interested in joining the rowing club. I just wanted to know what it’s like to row in one of those narrow boats, so I signed up with the intention of quitting after the first session. At least that’s what I thought.Six months later, I found myself sitting in a rowing boat with three teammates, waiting for a 2,000-meter race to start. In the boat alongside us sat a c rew from the university’s team, two of whom had won medals at the Beijing Olympics in 2008. My crew was only rowing at college-level and we had only trained a few times as a team, so facing such strong athletes was quite terrifying.I tried to focus my mind on the race, not on my opponents.Go! We pushed off with all our might and rowed as fast as we could. As we reached the halfway mark, the other crew was ahead of us. But to my amazement we were gaining on them. If we could win the race, we would get through to the final! We pushed even harder, ignoring the pain in our legs and drawing energy from the cheers of our college friends. I could already sense the sweet taste of victory.But then, disaster. One of my teammates lost control of his oar(桨), knocking him nearly out of the boat. We came to a sudden stop, and watched as our opponents crossed the finishing line. It was the most disappointing moment in my life. I wanted to punch my teammate who had ruined everything and push him into the water. But when I saw how angry he was with himself, I gave him a hug.Although we lost, I’m still proud of how well we did that day facing a much stronger team. WhatI remember now is the thrill of racing, not the pain of defeat.21.Why did the author join the rowing club?A.He was fond of rowingB. He signed with the team.C. He was curious about rowing.D. He wanted to quit another club.22.How did the author feel before the race?A.WorriedB. AmazedC. DisappointedD. Surprised23.Why did they lose the game?A.They hurt their legs.B. The opponents were too strong.C. They were worn out.D. A group member made a mistake.24. Which can be the best title of the text?A. A Valuable LessonB. 2000 Meters I will Never ForgetC. Learn to ForgiveD. Never Quit Until the Last MinuteBLet’s check out some of the best-rated running cell phone apps that make our fitness program more efficient and more fun.RunKeeperPlatform: iOS, AndroidPrice: free, pro version $10Voted best running app on , a US-based Weblog on software, Runkeeper letsyou track your running activities on a map, including data on distance, time and calories burned. Compare your performance with previous runs, and share new personal bests on social media. The pro version adds more features, such as audio updates during runs.Similar: Nike+, Endomondo, Runmeter V5.0Get RunningPlatform: iOS, AndroidPrice: $2.99Want to get fit but don’t know where to start? Get Running will help you take the first step. With a nine-week training program its goal is to gradually build up your stamina (耐力) until you can run for 30 minutes (or 5000 meters). A human coaching voice guides you through the program with advice and encouragement. Track your progress and share the results online.Similar: Run Coach, adidas miCoach, RuntasticUpbeat WorkoutsPlatform: iOS, AndroidPrice: $2.99With this app, rather than spend hours putting together the perfect playlist before your next jog, you can just get up and go. Upbeat Workouts measures your SPM ( strides per minute ) and searches your device for songs that have a matching BPM ( beats per minute). Slow down and a more relaxing song will play; speed up and feel and energetic tune. You can also set a desired SPM for runs at a continuous speed.Similar: Tempo Run, UpBeatStrava Run, iRacePlatform: iOS, AndroidPrice: freeAre you the competitive type? If so, you will love Strava Run. In addition to mapping your runs via GPS and providing running statistics (统计资料), it lets you compete against other users and join challenges. Can you make it to the top of the leader board? Alternatively, search for real races in your city with iRace (iOS only) and challenge your friends to join.Similar: Yog, Sociercise, Race Finder25.To run with Runkeeper, you _______.A need to share your personal informationB should download it on C must have a phone with iOS platformD can get it without paying26.Which of the following is a beginner more likely to choose?A.The app similar to Tempo RunB. The app with a coaching voice.B.C. The app with audio updates. D. The app tracking your running routine.27.In what way is Upbeat Workouts different from other apps?A.It can run on iOS platformB. It’s designed with songs in it.C. It can choose songs according to your speed.D. Users spend less time setting the playlist.28.If you want to compete with other online, ________ is the best choice.A.RunKeeperB. Get RunningC. Upbeat WorkoutsD. Strava Run, iRaceCComputer viruses are electronic programs that destroy information on a computer or cause thecomputer to stop working.Computer experts say the “ I love you ” virus is one of the most dangerous they have ever seen. It began spreading May Fourth and quickly attacked computers in more than twenty countries. It may have caused a loss of 10 billion dollars in destroyed information and lost computer work time.The virus got in each computer as electronic mail that appeared to be sent from a friend with title “ I love you.” When the computer user opened the message, the virus did several things. First, it found the computer’s address book and immediately mailed copies of itself to each computer address listed. It destroyed electronic pictures kept in the computer’s memory. It also searched for secret words used to protect computer informa tion and attempted to steal them. The “I love you” virus quickly spread through computers used in governments and private businesses. Electronic address books in these computers quickly sent copies of the virus to other business computers. Within days the “ I love you ” virus had spread from computer to computer around the world.Experts in computer crime are still investigating the incident. They have followed electronic evidence to the Philippines where there are no laws against this kind of computer activity. It is a crime in many countries, but not in the Philippines.International legal experts say new laws are needed that ban computer programs like the “ I love you” virus. They say people who invent and spread harmful programs must be punished. Computer experts say as many as 50,000 computer viruses may now exist and they warn computer users to be careful about what electronic mail they open.29.How does the “I love you” virus spread?A.By finding the computer’s address book and mailing copies of itself.B. By destroying the programs that protect computer information.C. By sending virus from business computers to government computers.D. By searching for secret words and attempting to steal them.30.What can we infer from the text?A.The “I love you” virus isn’t as dangerous as those ever seen.B. The “I love you” virus can spread through the internet quickly.C. The “I love you” virus copies electronic pictures in the computers.D. The “I love you” virus doesn’t exist in the Philippines.31.What do computer experts suggest?ws should be made against computer viruses.B. The government pay those who suffered a loss.C. Computer users be careful when opening e-mails.D. Those who invented the virus be punishedDRock-paper-scissors is a game played all around the world. As kids, we have relied on it to settle disagreements with friends--from which channel to watch to who gets to eat the last ice cream--all because we think the results are completely random.But are they?Wang Zhijian, PhD, a professor at Zhejiang University,believes that there is a regulation behind this simple game. So, he gathered 360 students, divided them into groups of six and had each group play 300 rounds of rock-paper-scissors, reported USA Today.After the first results, Wang thought he was wrong, because players chose each of the threemoves about one-third of the time, suggesting that the game is random after all. However, Wang later noticed a surprising regulation of behavior in the data.When players won a round, they usually stuck to the same choice. But when they lost,they tended to change to a more powerful move. For example, if Player A had just thrown down scissors to beat Player B's paper, Player A was more likely to throw down scissors again while Player B was likely to choose rock, since rock beats scissors.According to Wang, this might be a function that is called “conditional response”. So, for the next step of his study, as he told BBC, Wang plans to do some research about how human brains make quick decisions when competing.Now that you've learned how to predict the moves of your opponent, you’ll have an advantage next time you play rock-paper-scissors with your friends. But there is one problem:make sure they haven’t read about Wang's study, or your ad vantage will disappear.32. What does the underlined word “ random” in the first paragraph pro bably mean?A. EqualB. AmusingC. UnpredictableD. Strange33. What’s Wang’s discovery of the surprising regulation of behavior?A. 300 rounds of rock-paper-scissors can be done at onceB. The game rock-paper-scissors is random after all.C. The game is based on “conditional response”.D. The response of players doesn’t seem random.34. If Player A has used rock to beat Player B’s scissors, what will they probably do next?A. Player A is more likely to choose scissors.B. Player B is more likely to choose paper.C. Player A is more likely to choose paper.D. Player B is more likely to choose rock.35. What will Wang study in the future?A. How human brains make quick decisions in a competition.B. The functions of the game that are planted into our brains.C. How to improve players’ ability to predict opponents’ moves.D. The psychological cause of the players who always win.七选五:Effective time management is the primary means to a less stressful life. High school, especially during your senior year, can be frustrating (令人沮丧的). This is the time of your life when you are preparing yourself for college and the real world. 36● Plan each day.Planning your day can help you accomplish more and feel more in control of your life. Write a to-do list, putting the most important tasks at the top. 37● Prioritize(按重要性排列) your weekly schedule as a student.Prioritizing tasks will ensure that you spend your time and energy on those that are truly important to you. 38 Friends will want to hang out with you on the weekends, but they will understand if you explain to them that you need to study or catch up on college-related work.● 39Keep a diary of everything you do for three days to determine how you are spending your time. Look for time that can be used more wisely. For example, if you take a bus to school, you can use the time to catch up on reading. Thus, you can free up some time to exercise or spend with yourfamily or friends.● Get plenty of sleep, eat a healthy diet and exercise regularly.40 It will help improve your efficiency so that you can complete your work in less time.A.A healthy lifestyle can improve your focus and concentration.B.How do you manage your time doing all your activities without being overly stressed?C.Take a break before you need one.D.Any academic studies must come first, then extra curriculum activities, and then social life.E.Evaluate how yo u’re spending your time.F.You need to try every possible means to save time.G.Every daily activity should be considered seriously.第三部分英语知识运用(每题1.5分,共45分)第一节完形填空While my friend and I were having lunch the other day, a lady in a wheelchair was pushed by a waiter to the table next to us. He put an apron on her and 41 her a plate. We were 42 the lunch and I almost forgot the lady. But 43 something caught my attention. I couldn’t 44 but notice that she was alone, and that she was having a 45 time eating. She could hardly get her fork to her mouth. I looked at my 46 . An hour had passed and she was 47 alone.Should I see 48 she needed my help or would I 49 her if I offered? Here we were sitting right next to her talking and laughing while she 50 to feed herself. While I kept up the appearance of a joyful time, my heart 51 inside.After lunch, we walked on past her. As we approached the 52 , I knew I couldn’t leave all her alone 53 finding out if I could do something for her, so I 54 her table.“Excuse me, but I 55 you are alone. I wondered if I could help you?”56 she replied, “I… I would like to have a drink of water.”I 57 glass and helped her put it to her 58 . She smiled and said, “You are an angel.”I have never thought of myself as an angel, but the smile on her face and the 59 in her eyes told me we could all be angels to someone if we just won’t walk on by as if we haven’t seen a need. The beauty of her 60 will stay in my heart forever.41 A sold B showed C lent D prepare42 A ordering B enjoying C cooking D buying43 A suddenly B immediately C gradually D quickly44 A stand B help C wait D assist45 A great B boring C difficult D relaxing46 A table B food C plate D watch47 A still B also C even D always48 A when B if C how D where49 A embarrass B shock C frighten D confuse50 A managed B continued C pretended D struggled51 A prayed B cried C beat D failed52 A exit B table C street D restaurant53 A by B without C after D in54 A rush to B glanced at C return to D sat at55 A suggested B hoped C noticed D expected56 A Seriously B Coldly C Curiously D Doubtfully57 A picked up B found out C cleaned up D took out58 A seat B bag C lips D hands59 A sorrow B secret C power D light60 A personality B smile C kindness D action第二节语法填空A long time ago, there was a huge apple tree. A little boy came and 61 (lie) under it every day. He would climb to the tree top, eat the apples, and take a nap 62 the shade. He loved the tree and the tree loved to play with him.In the 63 (follow) years, the boy came and cut the branches to build a house, used the trunk on 64 he used to climb to make a boat and then never showed up for a long time.Finally, the boy returned. “Sorry, my boy, 65 I don't have anything for you anymore. No more66 (apple) for you...” the tree said. “I don't have teeth 67 (bite),” the boy replied. “No more trunk for you to climb on.” “I am 68 old for that now,” the boy said. “I really can’t give you anything...the only thing 69 (leave) is my dying roots,” the tree said with tears. “I don't need much now, just a place to rest. I’m tired after all these years,” the boy replied. “Good! Old tree roots are 70 best place to lean on and rest. Come, come, sit down with me and r est.” The boy sat down and the tree was glad, smiling with tears.第四部分写作第一节短文改错(每题1分,共10分)In the summer holiday, we travelled to Qingdao and paid visit to my uncle there. It’s a long and bored journey.But the moment I arrived, I fall in love with the city. It’s such beautiful a city that I can hardly find any word todescribe it. The streets are cleaning and the sky is blue. If you walk along the coast, you can feel the wind toblowing on your face. The sea is vast and sometimes you can find a boat or a ship. You may also do some fishingas far as it is permitted. Moreover, I think the driver there drive too fast in the street. You can never be too carefullywhen crossing the street.第二节书面表达(满分25分)假定你是李华。
河北省石家庄市行唐县启明中学2015届高三上学期1月月考数学试卷(理科) Word版含解析
河北省石家庄市行唐县启明中学2015届高三上学期1月月考数学试卷(理科) 一、选择题:每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合,B={y|y=x2},则A∩B=( ) A.[﹣2,2] B.[0,2] C.[0,+∞)D.{(﹣1,1),(1,1)} 考点:交集及其运算. 分析:先化简集合A和B,然后由交集的定义求得结果. 解答:解:∵集合={x|﹣2≤x≤2} B={y|y=x2}={x|x≥0} ∴A∩B={x|0≤x≤2} 故选:B. 点评:此题以圆锥曲线的性质为平台,考查集合的交集定义,属于中档题. 2.已知定义在复数集C上的函数f(x)满足f(x)=,则f(1+i)等于( ) A.﹣2 B.0 C.2 D.2+i 考点:复数代数形式的乘除运算. 专题:计算题. 分析:根据条件中所给的是一个分段函数,首先判断要求的函数的自变量是一个实数还是不是实数,确定不是实数,代入函数式,写出两个复数相乘的结果. 解答:解:∵1+i?R, ∴f(1+i)=(1﹣i)(1+i)=1﹣i2=2, 故选:C. 点评:本题考查复数的代数形式的乘法运算,考查分段函数的应用,考查判断一个数字是否是实数,本题是一个基础题,一般不会出错. 3.已知抛物线y2=2px(p>0)的准线与圆(x﹣3)2+y2=16相切,则p的值为( ) A.B.1 C.2 D.4 考点:抛物线的简单性质. 专题:计算题;压轴题. 分析:根据抛物线的标准方程可知准线方程为,根据抛物线的准线与圆相切可知求得p. 解答:解:抛物线y2=2px(p>0)的准线方程为, 因为抛物线y2=2px(p>0)的准线与圆(x﹣3)2+y2=16相切, 所以; 故选C. 点评:本题考查抛物线的相关几何性质及直线与圆的位置关系. 4.函数f(x)=sin2x﹣4sin3xcosx(x∈R)的最小正周期为( ) A.B.π4 C.π8 D.π 考点:三角函数的周期性及其求法. 专题:三角函数的图像与性质. 分析:把函数f(x)的解析式利用二倍角公式变形后,化为一个角的正弦函数,找出ω的值,代入周期公式中,求出函数的周期. 解答:解:函数f(x)=sin2x﹣4sin3xcosx=sin2x(1﹣2sin2x)=sin2x?cos2x=sin4x, 故函数的最小正周期为=, 故选:A. 点评:此题考查了二倍角的正弦余弦函数公式,以及三角函数的周期性及其求法,利用三角函数的恒等变形把函数解析式化为一个角的三角函数值是求函数周期的关键,属于基础题. 5.如果执行程序框图,那么输出的S=( ) A.2450 B.2500 C.2550 D.2652 考点:设计程序框图解决实际问题. 分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出:S=2×1+2×2+…+2×50的值. 解答:解:分析程序中各变量、各语句的作用, 再根据流程图所示的顺序,可知: 该程序的作用是累加并输出:S=2×1+2×2+…+2×50的值. ∵S=2×1+2×2+…+2×50=2××50=2550 故选C 点评:根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)?②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模. 6.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),那么可得这个几何体的体积是( ) A.cm3 B.cm3 C.cm3 D.cm3 考点:由三视图求面积、体积. 专题:计算题. 分析:由三视图判断几何体为三棱锥,求出三棱锥的高与底面面积,代入棱锥的体积公式计算.. 解答:解:由三视图判断几何体为三棱锥,且三棱锥的高为2,底面三角形底边长和高都为2. ∴棱锥的体积V=××2×2×2=(cm). 故选C. 点评:本题考查由三视图求几何体的体积,解题的关键是判断几何体的形状及相关数据所对应的几何量. 7.下列关于公差d>0的等差数列{an}的四个命题: p1:数列{an}是递增数列; p2:数列{nan}是递增数列; p3:数列是递增数列; p4:数列{an+3nd}是递增数列; 其中真命题是( ) A.p1,p2 B.p3,p4 C.p2,p3 D.p1,p4 考点:等差数列的性质;命题的真假判断与应用. 专题:等差数列与等比数列. 分析:对于各个选项中的数列,计算第n+1项与第n项的差,看此差的符号,再根据递增数列的定义得出结论. 解答:解:∵对于公差d>0的等差数列{an},an+1﹣an=d>0,∴命题p1:数列{an}是递增数列成立,是真命题. 对于数列数列{nan},第n+1项与第n项的差等于(n+1)an+1﹣nan=(n+1)d+an,不一定是正实数, 故p2不正确,是假命题. 对于数列,第n+1项与第n项的差等于﹣==,不一定是正实数, 故p3不正确,是假命题. 对于数列数列{an+3nd},第n+1项与第n项的差等于 an+1+3(n+1)d﹣an﹣3nd=4d>0, 故命题p4:数列{an+3nd}是递增数列成立,是真命题. 故选D. 点评:本题主要考查等差数列的定义,增数列的含义,命题的真假的判断,属于中档题. 8.已知正四棱锥的侧棱与底面的边长都为,则这个四棱锥的外接球的表面积为( ) A.12πB.36πC.72πD.108π 考点:球的体积和表面积;球内接多面体. 专题:计算题. 分析:先画出图形,正四棱锥外接球的球心在它的底面的中心,然后根据勾股定理解出球的半径,最后根据球的表面积公式解之即可. 解答:解:如图,设正四棱锥底面的中心为O,则 在直角三角形ABC中,AC=×AB=6,∴AO=CO=3, 在直角三角形PAO中,PO==3, ∴正四棱锥的各个顶点到它的底面的中心的距离都为3, ∴正四棱锥外接球的球心在它的底面的中心,且球半径r=3, 球的表面积S=4πr2=36π 故选B. 点评:本题主要考查球的表面积,球的内接体问题,考查计算能力和空间想象能力,属于中档题. 9.直线y=kx+3与圆(x﹣3)2+(y﹣2)2=4相交于M,N两点,若,则k的取值范围是( ) A.B.C.D. 考点:直线与圆相交的性质. 专题:计算题;直线与圆. 分析:根据,由弦长公式得,圆心到直线的距离小于或等于1,从而可得不等式,即可求得结论. 解答:解:∵ ∴由弦长公式得,圆心到直线的距离小于或等于1, ∴≤1, ∴8k(k+)≤0, ∴﹣≤k≤0, 故选D. 点评:本题考查直线与圆的位置关系,考查点到直线距离公式的运用,考查学生的计算能力,属于基础题. 10.设an=sin,Sn=a1+a2+…+an,在S1,S2,…S100中,正数的个数是( ) A.25 B.50 C.75 D.100 考点:数列的求和;三角函数的周期性及其求法. 专题:计算题;压轴题. 分析:由于f(n)=sin的周期T=50,由正弦函数性质可知,a1,a2,…,a24>0,a26,a27,…,a49<0,f(n)=单调递减,a25=0,a26…a50都为负数,但是|a26|<a1,|a27|<a2,…,|a49|<a24,从而可判断 解答:解:由于f(n)=sin的周期T=50 由正弦函数性质可知,a1,a2,…,a24>0,a25=0,a26,a27,…,a49<0,a50=0 且sin,sin…但是f(n)=单调递减 a26…a49都为负数,但是|a26|<a1,|a27|<a2,…,|a49|<a24 ∴S1,S2,…,S25中都为正,而S26,S27,…,S50都为正 同理S1,S2,…,s75都为正,S1,S2,…,s75,…,s100都为正, 故选D 点评:本题主要考查了三角函数的周期的应用,数列求和的应用,解题的关键是正弦函数性质的灵活应用. 11.若函数的图象如图所示,则a:b:c:d=( ) A.1:6:5:8 B.1:6:5:(﹣8)C.1:(﹣6):5:8 D.1:(﹣6):5:(﹣8) 考点:函数的图象. 专题:函数的性质及应用. 分析:根据图象可先判断出分母的分解析,然后利用特殊点再求出分子即可. 解答:解:由图象可知,x≠1,5, ∴分母必定可以分解为k(x﹣1)(x﹣5), ∵在x=3时有y=2, ∴d=﹣8k, ∴a:b:c:d=1:(﹣6):5:(﹣8). 故选:D. 点评:本题主要考查了利用图象信息推导所给函数的系数和常数部分,属于中档题. 12.已知f(x),g(x)都是定义在R上的函数,g(x)≠0,f′(x)g(x)>f(x)g′(x),且f(x)=ax?g(x)(a>0,且a≠1),,若数列的前n项和大于62,则n的最小值为( ) A.6 B.7 C.8 D.9 考点:简单复合函数的导数;数列的函数特性. 专题:计算题;压轴题. 分析:由f′(x)g(x)>f(x)g′(x)可得单调递增,从而可得a>1,结合,可求a.利用等比数列的求和公式可求,从而可求 解答:解:∵f′(x)g(x)>f(x)g′(x), ∴f′(x)g(x)﹣f(x)g′(x)>0, ∴, 从而可得单调递增,从而可得a>1, ∵, ∴a=2. 故=2+22+…+2n=. ∴2n+1>64,即n+1>6,n>5,n∈N*. ∴n=6. 故选:A. 点评:本题主要考查了利用导数的符合判断指数函数的单调性,等比数列的求和公式的求解,解题的关键是根据已知构造函数单调递增. 二、填空题:本大题共4小题,每小题5分. 13.已知函数f(x)=x+ex,g(x)=x+lnx,h(x)=﹣1+lnx的零点依次为a,b,c则a,b,c从大到小的顺序为c>b>a. 考点:对数值大小的比较. 专题:函数的性质及应用. 分析:利用函数性质和零点定义求解. 解答:解:∵ex恒大于0,∴f(x)=x+ex的零点a<0; 由g(x)=x+lnx=0,得x=, ∴由g(x)=x+lnx的零点b∈(0,1); 由h(x)=﹣1+lnx=0,得x=e, ∴h(x)=﹣1+lnx的零点c=e, ∴c>b>a. 故答案为:c>b>a. 点评:本题考查三个数的大小的比较,是基础题,解题时注意注意函数的零点的灵活运用. 14.已知椭圆+=1(a1>0,b1>0)的长轴长、短轴长、焦距长成等比数列,离心率为e1;双曲线﹣=1(a2>0,b2>0)的实轴长、虚轴长、焦距长也成等比数列,离心率为e2.则e1e2=1. 考点:椭圆的简单性质. 专题:计算题;圆锥曲线的定义、性质与方程. 分析:设出椭圆的焦距、短轴长、长轴长,通过等比数列建立b12=a1?c1,求出椭圆的离心率;根据双曲线实轴的长度、虚轴的长度和焦距成等比数列,b22=a2c2,从而可求双曲线的离心率,即可得出结论. 解答:解:设出椭圆的焦距、短轴长、长轴长分别为2c1,2b1,2a1, ∵椭圆的长轴长、短轴长、焦距长成等比数列, ∴2a1,2b1,2c1成等比数列, ∴4b12=2a1?2c1,∴b12=a1?c1, ∴b12=a12﹣c12=a1?c1, 两边同除以a12得:e12+e1﹣1=0, 解得,e1=, 双曲线实轴的长度、虚轴的长度和焦距成等比数列, ∴b22=a2c2, ∴c22﹣a22=a2c2, ∴e22﹣e2﹣1=0, ∵e2>1, ∴e2=, ∴e1e2=1 故答案为:1. 点评:本题考查椭圆、双曲线的离心率,等比数列性质的应用,考查计算能力,属于中档题. 15.在正方体上任意选择4个顶点,它们可能是如下各种几何形体的4个顶点,这些几何形体是①③④⑤(写出所有正确结论的编号). ①矩形; ②不是矩形的平行四边形; ③有三个面为等腰直角三角形,有一个面为等边三角形的四面体; ④每个面都是等边三角形的四面体; ⑤每个面都是直角三角形的四面体. 考点:棱柱的结构特征. 专题:综合题. 分析:先画出图形,再在底面为正方形的长方体上选择适当的4个顶点,观察它们构成的几何形体的特征,从而对五个选项一一进行判断,对于正确的说法只须找出一个即可. 解答:解:如图:①正确,如图四边形A1D1BC为矩形 ②错误任意选择4个顶点,若组成一个平面图形,则必为矩形或正方形,如四边形ABCD为正方形,四边形A1D1BC为矩形; ③正确,如四面体A1ABD; ④正确,如四面体A1C1BD; ⑤正确,如四面体B1ABD; 则正确的说法是①③④⑤. 故答案为①③④⑤ 点评:本题主要考查了点、线、面间位置特征的判断,棱柱的结构特征,能力方面考查空间想象能力和推理论证能力,属于基础题.找出满足条件的几何图形是解答本题的关键. 16.在直角坐标平面xoy中,过定点(0,1)的直线L与圆x2+y2=4交于A、B两点,若动点P(x,y)满足,则点P的轨迹方程为x2+(y﹣1)2=1. 考点:轨迹方程. 专题:综合题;直线与圆. 分析:利用向量求得坐标之间的关系,设过定点(0,1)的直线L:y=kx+1,代入x2+y2=4,可得x=﹣,y=,即可得出结论. 解答:解:设动点P(x,y)及圆上点A(a,b),B(m,n),则 ∵, ∴(a+m,b+n)=(x,y), 设过定点(0,1)的直线L:y=kx+1, 代入x2+y2=4,可得(1+k2)x2+2kx﹣3=0, ∴a+m=﹣, ∴b+n=∴x=﹣,y=, ∴x2+(y﹣1)2=1. 故答案为:x2+(y﹣1)2=1. 点评:本题考查轨迹方程,解题的关键是确定动点坐标之间的关系,利用消参法求轨迹方程. 三、解答题:本大题共6小题,共计70分.解答应写出文字说明.证明过程或演算步骤 17.在△ABC中,a,b,c分别是角A、B、C的对边,=(b,2a﹣c),=(cosB,cosC),且∥ (1)求角B的大小; (2)设f(x)=cos(ωx﹣)+sinωx(ω>0),且f(x)的最小正周期为π,求f(x)在区间[0,]上的最大值和最小值. 考点:平行向量与共线向量;三角函数的周期性及其求法;正弦定理;三角函数的最值. 专题:三角函数的图像与性质;平面向量及应用. 分析:(1)要求B角的大小,要先确定B的一个三角函数值,再确定B的取值范围 (2)要求三角函数的最值,要先将其转化为正弦型函数的形式,再根据正弦型函数的性质解答. 解答:解:(1)由m∥n,得bcosC=(2a﹣c)cosB, ∴bcosC+ccosB=2acosB. 由正弦定理,得sinBcosC+sinCcosB=2sinAcosB, ∴sin(B+C)=2sinAcosB. 又B+C=π﹣A, ∴sinA=2sinAcosB. 又sinA≠0,∴. 又B∈(0,π),∴. (2) 由已知,∴ω=2. 当 因此,当时,; 当, 点评:①能够转化为y=Asin(ωx+φ)+B型的函数,求值域(或最值)时注意A的正负号;②能够化为y=asin2x+bsinx+c或y=acos2x+bcosx+c型或可化为此型的函数求值,一般转化为二次函数在给定区间上的值域问题. 18.已知数列{an}的首项a1=,an+1=,n=1,2,…. (Ⅰ)证明:数列{﹣1}是等比数列; (Ⅱ)求数列{}的前n项和. 考点:数列递推式;等比关系的确定;数列的求和. 专题:计算题;压轴题. 分析:(1)化简构造新的数列,进而证明数列是等比数列. (2)根据(1)求出数列的递推公式,得出an,进而构造数列,求出数列的通项公式,进而求出前n项和Sn. 解答:解:(Ⅰ)由已知:, ∴, ∴, 又,∴, ∴数列是以为首项,为公比的等比数列. (Ⅱ)由(Ⅰ)知, 即,∴. 设,① 则,② 由①﹣②得:, ∴.又1+2+3+…. ∴数列的前n项和:. 点评:此题主要考查通过构造新数列达到求解数列的通项公式和前n项和的方法. 19.甲、乙两人参加某种选拔测试.在备选的10道题中,甲答对其中每道题的概率都是,乙能答对其中的5道题.规定每次考试都从备选的10道题中随机抽出3道题进行测试,答对一题加10分,答错一题(不答视为答错)减5分,至少得15分才能入选. (Ⅰ)求乙得分的分布列和数学期望; (Ⅱ)求甲、乙两人中至少有一人入选的概率. 考点:离散型随机变量的期望与方差;互斥事件的概率加法公式;离散型随机变量及其分布列. 专题:计算题. 分析:(Ⅰ)确定乙答题所得分数的可能取值,求出相应的概率,即可得到乙得分的分布列和数学期望; (Ⅱ)由已知甲、乙至少答对2题才能入选,求出甲、乙入选的概率,利用对立事件,即可求得结论. 解答:解:(Ⅰ)设乙答题所得分数为X,则X的可能取值为﹣15,0,15,30. ;;;. … 乙得分的分布列如下: X ﹣15 0 15 30 P . … (Ⅱ)由已知甲、乙至少答对2题才能入选,记甲入选为事件A,乙入选为事件B. 则,… . … 故甲乙两人至少有一人入选的概率. … 点评:本题考查概率的计算,考查互斥事件的概率,考查离散型随机变量的分布列与期望,确定变量的取值,计算其概率是关键. 20.如图,三棱柱ABC﹣A1B1C1的底面是边长为2的正三角形且侧棱垂直于底面,侧棱长是,D是AC的中点. (1)求证:平面A1BD⊥平面A1ACC1; (2)求直线AB1与平面A1BD所成的角的正弦值. 考点:平面与平面垂直的判定;直线与平面所成的角. 专题:空间位置关系与距离. 分析:(1)由已知条件得AA1⊥底面ABC,BD⊥平面A1ACC1,由此能证明平面A1BD⊥平面A1ACC1. (2)作AM⊥A1D,设AB1与A1B相交于点P,连接MP,则∠APM就是直线A1B与平面A1BD 所成的角,由此能求出直线AB1与平面A1BD所成的角的正弦值. 解答:(1)证明:∵正三棱住ABC﹣A1B1C1,∴AA1⊥底面ABC, 又∵BD⊥AC,A1A∩AC=A,∴BD⊥平面A1ACC1, 又∵BD?平面A1BD, ∴平面A1BD⊥平面A1ACC1…6分 (2)解:作AM⊥A1D,M为垂足, 由(1)知AM⊥平面A1DB,设AB1与A1B相交于点P, 连接MP,则∠APM就是直线A1B与平面A1BD所成的角,…9分 ∵AA1=,AD=1,∴在Rt△AA1D中, ∠A1DA=,∴AM=1×sin60°=,AP==, ∴sin∠APM===. 直线AB1与平面A1BD所成的角的正弦值为.…12分. 点评:本题考查平面与平面垂直的证明,考查直线性与平面所成角的正弦值的求法,解题时要认真审题,注意空间思维能力的培养. 21.已知函数f (x)=ax﹣ex(a∈R),g(x)=. (I)求函数f (x)的单调区间; (Ⅱ)?x0∈(0,+∞),使不等式f (x)≤g(x)﹣ex成立,求a的取值范围. 考点:利用导数研究函数的单调性;利用导数求闭区间上函数的最值. 专题:导数的综合应用. 分析:(Ⅰ)f′(x)=a﹣ex,x∈R.对a分类讨论,利用导数研究函数的单调性即可得出; (Ⅱ)由?x0∈(0,+∞),使不等式f(x)≤g(x)﹣ex,即a≤.设h(x)=,则问题转化为a,利用导数研究函数的单调性极值与最值即可得出. 解答:解:(Ⅰ)∵f′(x)=a﹣ex,x∈R. 当a≤0时,f′(x)<0,f(x)在R上单调递减; 当a>0时,令f′(x)=0得x=lna. 由f′(x)>0得f(x)的单调递增区间为(﹣∞,lna); 由f′(x)<0得f(x)的单调递减区间为(lna,+∞). (Ⅱ)∵?x0∈(0,+∞),使不等式f(x)≤g(x)﹣ex,则,即a≤. 设h(x)=,则问题转化为a, 由h′(x)=,令h′(x)=0,则x=. 当x在区间(0,+∞)内变化时,h′(x)、h(x)变化情况如下表: x h′(x)+ 0 ﹣ h(x)单调递增极大值单调递减 由上表可知,当x=时,函数h(x)有极大值,即最大值为. ∴. 点评:本题考查了利用导数研究函数的单调性极值与最值、分类讨论的思想方法,考查了推理能力与计算能力,属于难题. 22.已知函数为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行. (Ⅰ)求k的值; (Ⅱ)求f(x)的单调区间; (Ⅲ)设g(x)=(x2+x)f′(x),其中f′(x)为f(x)的导函数.证明:对任意x>0,g(x)<1+e﹣2. 考点:利用导数求闭区间上函数的最值;利用导数研究函数的单调性;利用导数研究曲线上某点切线方程. 专题:导数的综合应用. 分析:(Ⅰ)先求出f′(x)=,x∈(0,+∞),由y=f(x)在(1,f(1))处的切线与x 轴平行,得f′(1)=0,从而求出k=1; (Ⅱ)由(Ⅰ)得:f′(x)=(1﹣x﹣xlnx),x∈(0,+∞),令h(x)=1﹣x﹣xlnx,x ∈(0,+∞),求出h(x)的导数,从而得f(x)在(0,1)递增,在(1,+∞)递减; (Ⅲ)因g(x)=(1﹣x﹣xlnx),x∈(0,+∞),由(Ⅱ)h(x)=1﹣x﹣xlnx,x∈(0,+∞),得1﹣x﹣xlnx≤1+e﹣2,设m(x)=ex﹣(x+1),得m(x)>m(0)=0,进而1﹣x﹣xlnx ≤1+e﹣2<(1+e﹣2),问题得以证明. 解答:解:(Ⅰ)∵f′(x)=,x∈(0,+∞), 且y=f(x)在(1,f(1))处的切线与x轴平行, ∴f′(1)=0, ∴k=1; (Ⅱ)由(Ⅰ)得:f′(x)=(1﹣x﹣xlnx),x∈(0,+∞), 令h(x)=1﹣x﹣xlnx,x∈(0,+∞), 当x∈(0,1)时,h(x)>0,当x∈(1,+∞)时,h(x)<0, 又ex>0, ∴x∈(0,1)时,f′(x)>0, x∈(1,+∞)时,f′x)<0, ∴f(x)在(0,1)递增,在(1,+∞)递减; 证明:(Ⅲ)∵g(x)=(x2+x)f′(x), ∴g(x)=(1﹣x﹣xlnx),x∈(0,+∞), ∴?x>0,g(x)<1+e﹣2?1﹣x﹣xlnx<(1+e﹣2), 由(Ⅱ)h(x)=1﹣x﹣xlnx,x∈(0,+∞), ∴h′(x)=﹣(lnx﹣lne﹣2),x∈(0,+∞), ∴x∈(0,e﹣2)时,h′(x)>0,h(x)递增, x∈(e﹣2,+∞)时,h(x)<0,h(x)递减, ∴h(x)max=h(e﹣2)=1+e﹣2, ∴1﹣x﹣xlnx≤1+e﹣2, 设m(x)=ex﹣(x+1), ∴m′(x)=ex﹣1=ex﹣e0, ∴x∈(0,+∞)时,m′(x)>0,m(x)递增, ∴m(x)>m(0)=0, ∴x∈(0,+∞)时,m(x)>0, 即>1, ∴1﹣x﹣xlnx≤1+e﹣2<(1+e﹣2), ∴?x>0,g(x)<1+e﹣2. 点评:本题考查了函数的单调性,函数的最值问题,考查导数的应用,切线的方程,是一道综合题.。
河北省石家庄市2015届高三复习教学质量检测一试题 文综 扫描版含答案
石家庄市2015届高三复习教学质量检测(一)历史参考答案24.B 25.C 26. A 27. B 28.B 29.C 30.B 31.B 32.C 33.B 34.C 35.C41.(1)特点:高度重视监察机关官员的权威;监察机构独立,自上而下垂直监察;注重监察系统内部监督;监察活动有法可依;监察制度伴随专制皇权与中央集权的发展而不断强化与完善。
(12分,一点3分,答出其中任意四点即可)(2)历史作用:有利于加强中央集权;一定程度上起到整顿吏治、督促官吏的积极作用;加强皇帝对官僚机器的控制(有利于加强君主专制);对当代中国的权力监督及廉政建设具有重要的借鉴意义。
(6分,一点2分,答出其中任意三点即可)局限:监察的职能受制于皇权;监察权与行政权混淆,职能过大,事权混杂。
(4分)42.(1)由限制农村人口向城市迁移到放宽限制。
(4分)(2)材料一:集中发展重工业;计划经济体制的需要;缓解城市经济困难和粮食危机。
(6分,答出其中任意两点即可)材料二:十一届三中全会后进行拨乱反正;城市经济体制改革;农村实行家庭联产承包责任制调动农民积极性,推动农村生产力发展,解放大量劳动力;农村发展非农产业和乡镇企业,推动城镇发展。
(8分,一点3分,两点6分,三点8分)43.观点认识:1951年《时代》周刊所谈的中国为台湾当局,当时与大陆关系紧张(答出中国为台湾当局、国民党政府或“中华民国”即可给2分);而周恩来所代表的是新生的中华人民共和国,与美国处于敌对关系。
(答出中美关系紧张、敌对即可得2分)(4分)史实论证:关于美国的敌人(答出任意两点史实即可得4分)如①社会制度或意识形态的不同。
中华人民共和国是社会主义国家,而美国是资本主义国家。
②新中国成立初期所奉行的“另起炉灶”,“打扫干净屋子再请客”,“一边倒”的独立自主的和平外交方针,坚决不允许任何国家和势力干涉中国内政和侵犯主权;③新中国还奉行强烈的意识形态外交政策,《中苏友好同盟互助条约》的签订,壮大了社会主义阵营,积极向苏联靠拢,坚决与美国等西方国家做斗争。
2015年石家庄高三质检一考试理科数学试卷及答案
石家庄市2015届高三第一次质量检测数学理科答案一、 选择题:1-5CBCDA 6-10DADBC 11-12BA二、填空题:13.24y x =+ 14.1- 15. 16.3602三、解答题17.因为c=2,不合题意舍去,所以52c =.....................................10分18.解(1)设{}n a 的公差为d ,由题意得2(33)3(312)d d +=+,得2d =或0d =(舍),……………………2分所以{}n a 的通项公式为3(1)221n a n n =+-=+……………………4分(2)2(21)2nn n n b a n ==+ 222222,............2sin sin sin 3cos .............62sin 2494cos 2629100.................852c=............92==∴===+-+-==-+==a bA B A B A a B B b a c b c B ac c c c c 解:分sinA=sin2B=2sinBcosB.........4分分分解得或分123325272(21)2n n S n =+++++………………① …………②……………………6分①-②得123132222222(21)2n n n S n +-=++++-+…………………8分1+12(12)22(21)2122(21)2n n n n n +-=+-+-=---……………………10分 ∴1(21)22n n S n +=-+……………………12分19. 解:(1)解:a=6 b=10……………………………2分 ……….5分(2)P (Y=0)=13063240228=C C P (Y=1)=6528240112128=C C C P (Y=2)=13011240212=C C…………………11分 23412325272(21)2n n S n +=+++++35E (P )=.…………………………12分 20(1)分别取PA 和AB 中点M 、N ,连接MN 、ME 、NF,则=NF ∥12AD ,=ME ∥12AD ,所以=NF ∥ME ,∴四边形M E F N为平行四边形.-------------2∴EF MN ∥,又,EF PAB ⊄平面,MN PAB ⊂平面∴EF ∥PAB 平面.- ------------4(2) 由已知得,底面ABCD 为正方形,侧棱PA ⊥底面ABCD ,所以AP AB AD ,,两两垂直.如图所示,以A 为坐标原点,分别以,,为轴轴,轴,z y x 的正方向,建立空间直角坐标系xyz A -,所以(001),(000),B(1,0,0),(110),(010)P A C D ,,,,,,,,,,1111(0),(0)2222E F ,,,,, 所以,11(0)22EF =-,,, 11(0),(100)22AE AB ==,,,,,- ------------6设平面ABE 法向量(,,)n a b c =,0,0,n AE n AB == 所以110220b c a ⎧+=⎪⎨⎪=⎩令1,0,1b a c ===-则 所以(0,1,1)n =-为平面ABE 的一个法向量 -------------8设直线EF 与平面ABE 所成角为α,于是1sin cos ,2EF nEF n EF n α=<>==.-------------10所以直线EF 与平面ABE 所成角为6π. -------------12 解法2:在平面PAD 内作EH ∥PA H 于,因为侧棱PA ⊥底面ABCD ,所以EH ⊥底面ABCD . -------------6 E 为PD 的中点,12EH =,1111224ABF S =⨯⨯= 11111334224E ABF ABF V S EH -==⨯⨯=-------------8 设点F 到平面ABE 的距离为h,E ABF F ABE V V --=1112224ABE S AB AE =⨯⨯=⨯⨯= 1133ABF ABE S EH S h =, 4h =. -------------10 设直线EF 与平面ABE 所成角为α,1sin 2h EF α==,所以直线EF 与平面ABE 所成角为6π. -------------12 21.解:(1)设A (0x ,0),B (0,0y ),P (,x y ),由2BP PA =得,00(,)2(,)x y y x x y -=--,即000032()223x x x x x y y y y y⎧=-=⎧⎪⇒⎨⎨-=-⎩⎪=⎩,————————————————————2分又因为22009x y +=,所以223()(3)92x y +=,化简得:2214x y +=,这就是点P 的轨迹方程。
2015年河北省石家庄市高考数学一模试卷(理科)
2015年河北省石家庄市高考数学一模试卷(理科) 参考答案与试题解析 一、选择题1.已知i 为虚数单位,则复数13i1i-=+( )A .2i +B .2i -C .12i --D .12i -+ 答案:C考点:复数代数形式的乘除运算. 专题:数系的扩充和复数.分析:直接利用复数代数形式的乘除运算化简求值.解答:解:()()()()13i 1i 13i 24i12i 1i 1i 1i 2-----===--++-,故选:C .点评:本题考查了复数代数形式的乘除运算考查了复数的基本概念,是基础题. 2.已知集合{}0,1,2P =,{}3x Q y y ==,则P Q ⋂=( ) A .{}0,1B .{}1,2C .{}0,1,2D .∅答案:B考点:交集及其运算. 专题:集合.分析:根据集合的基本运算进行求解即可.解答:解:{}{}30x Q y y y y ===>,则{}1,2P Q ⋂=, 故选:B点评:本题主要考查集合的基本运算,比较基础.3.已知cos k α=,k ∈R ,π,π2a ⎛⎫∈ ⎪⎝⎭,则()sin π+α=( )A .C .D .k -答案:A考点:同角三角函数基本关系的运用;运用诱导公式化简求值. 专题:三角函数的求值.分析:由已知及同角三角函数基本关系的运用可求sin α,从而由诱导公式即可得解.解答:解:cos k α=,k ∈R ,π,π2α⎛⎫∈ ⎪⎝⎭,sin α∴=()sin π+sin αα∴=-=故选:A .点评:本题主要考查了同角三角函数基本关系的运用,运用诱导公式化简求值,属于基本知识的考查. 4.下列说法中,不正确的是( )A .已知a ,b ,m ∈R ,命题“若22am bm <,则a b <”为真命题B .命题“0x ∃∈R ,2000x x ->”的否定是:“x ∀∈R ,20x x -≤”C .命题“p 或q ”为真命题,则命题p 和q 命题均为真命题D .“3x >”是“2x >”的充分不必要条件 答案:C考点:命题的真假判断与应用. 专题:简易逻辑.分析:A .利用不等式的基本性质即可判断出正误; B .利用命题的否定定义即可判断出正误;C .利用复合命题的真假判定方法即可判断出正误;D .“3x >”⇒“2x >”,反之不成立,即可判断出正误.解答:解:A .若22am bm <,利用不等式的性质可得:a b <,因此为真命题;B .命题“0x ∃∈R ,2000x x ->”的否定是:“x ∀∈R ,20x x -≤”,正确; C .“p 或q ”为真命题,则命题p 和q 命题至少有一个为真命题,因此不正确;D .“3x >”⇒“2x >”,反之不成立,因此“3x >”是“2x >”的充分不必要条件,正确. 故选:C .点评:本题考查了简易逻辑的判定、不等式的基本性质,考查了推理能力,属于基础题.5.设函数()f x 为偶函数,且当[)0,2x ∈时,()2sin f x x =,当[)2,x ∈+∞时()2log f x x =,则()π43f f ⎛⎫-+= ⎪⎝⎭( ) A.2 B .1 C .3 D2=答案:D考点:函数的值. 专题:计算题.分析:函数()f x 为偶函数,可得ππ33f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭再将其代入()2sin f x x =,进行求解,再根据[)2,x ∈+∞时()2log f x x =,求出()4f ,从而进行求解;解答:解:函数()f x 为偶函数, ππ33f f ⎛⎫⎛⎫∴-= ⎪ ⎪⎝⎭⎝⎭,当[)0,2x ∈时()2sin f x x =,()π2sin23f x ∴=== 当[)2,x ∈+∞时()2log f x x =,()24log 42f ∴==,()π423f f ⎛⎫∴-+= ⎪⎝⎭,故选D ;点评:此题主要考查函数值的求解问题,解题的过程中需要注意函数的定义域,是一道基础题; 6.执行下面的程序框图,如果输入的依次是1,2,4,8,则输出的S 为( )A .2B ..4 D .6答案:B考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的S ,i 的值,当5i =时,不满足条件4i ≤,退出循环,输出S的值为解答:解:模拟执行程序框图,可得 1S =,1i =满足条件4i ≤,1S =,2i = 满足条件4i ≤,S =3i = 满足条件4i ≤,2S =,4i = 满足条件4i ≤,S =5i =不满足条件4i ≤,退出循环,输出S的值为 故选:B .点评:本题主要考查了循环结构的程序框图,正确写出每次循环得到的S 的值是解题的关键,属于基本知识的考查. 7.如图,在三棱柱111ABC A B C -中,侧棱垂直于底面,底面是边长为2的正三角形,侧棱长为3,则1BB 与平面11AB C 所成的角是( )ACBC 1A 1B 1A .π6 B .π4 C .π3 D .π2 答案:A考点:直线与平面所成的角. 专题:计算题. 分析:以B 为坐标原点,建立空间直角坐标系,利用1BB 与平面11AB C 所的一个法向量的夹角,求出则1BB 与平面11AB C 所成的角.解答:解:以B 为坐标原点,以与BC 垂直的直线为x 轴,BC 为y 轴,建立空间直角坐标系,则)1,0A,()10,0,3B ,()10,2,3C,()11,3AB =-,()110,2,0B C =,()10,0,3BB =.设平面11AB C 所的一个法向量为(),,n x y z =则11100AB n B C n ⎧⋅=⎪⎨⋅=⎪⎩即3020y z y ⎧-+=⎪⎨=⎪⎩,取1z =,则得()3,0,1n =,1cos BB <,1131322BB n n BB n⋅>===⨯,1BB ∴与平面11AB C 所成的角的正弦值为12, 1BB ∴与平面11AB C 所成的角为π6故选A .点评:本题考查线面角的计算,利用了空间向量的方法.要注意相关点和向量坐标的准确性,及转化时角的相等或互余关系.8.已知O 、A 、B 三地在同一水平面内,A 地在O 地正东方向2km 处,B 地在O 地正北方向2km 处,某测绘队员在A 、B 之间的直线公路上任选一点C 作为测绘点,用测绘仪进行测绘,O 地为一磁场,的范围内会测绘仪等电子仪器形成干扰,使测量结果不准确,则该测绘队员能够得到准确数据的概率是( )A.1 BC.1- D .12答案:A考点:解三角形的实际应用. 专题:应用题;概率与统计.分析:作出图形,以长度为测度,即可求出概率.解答:解:由题意,AOB △是直角三角形,2OA OB ==,所以AB =,O的范围为14个圆,与AB 相交于C ,D 两点,作OE AB ⊥,则OE =2CD =,所以该测绘队员能够得到准确数据的概率是11=.故选:A .A点评:本题考查利用数学知识解决实际问题,考查概率的计算,正确确定CD 是关键.9.已知抛物线()220y px p =>的焦点F 恰好是双曲线()222210,0x y a b a b-=>>的一个焦点,两条曲线的交点的连线过点F ,则双曲线的离心率为( ) ABC.1 D.1+ 答案:C考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:先根据抛物线方程得到焦点坐标和交点坐标,代入双曲线,把2pc =代入整理得422460c a c a -+=等式两边同除以4a ,得到关于离心率e 的方程,进而可求得e . 解答:解:由题意,两条曲线交点的连线过点F∴两条曲线交点为,2p p ⎛⎫⎪⎝⎭,代入双曲线方程得222241p p a b-=, 又2pc =,代入化简得422460c a c a -+= 42e 6e 10∴-+=(22e 31∴=+1∴ 故选:C .点评:本题考查由圆锥曲线的方程求焦点、考查双曲线的三参数的关系:222c a b =+注意与椭圆的区别.10.一个几何体的三视图如图所示,则该几何体的体积是()正视图侧视图俯视图A .64B .72C .80D .112 答案:B考点:由三视图求面积、体积. 专题:计算题.分析:由几何体的三视图可知,该几何体下部为正方体,边长为4,上部为三棱锥(以正方体上底面为底面),高为3.分别求体积,再相加即可解答:解:由几何体的三视图可知,该几何体下部为正方体,边长为4,体积为3464=,上部为三棱锥,以正方体上底面为底面,高为3.体积21143832⨯⨯⨯=,故该几何体的体积是64872+=. 故选B .点评:本题考查由三视图求几何体的体积,考查由三视图还原几何体直观图,考查与锥体积公式,本题是一个基础题.11.已知平面图形ABCD 为凸四边形(凸四边形即任取平面四边形一边所在的直线,其余各边均在此直线的同侧),且2AB =,4BC =,5CD =,3DA =,则四边形ABCD 面积S 的最大值为( ) A.C.D.答案:B考点:余弦定理;正弦定理.专题:三角函数的图像与性质;解三角形.分析:设AC x =,在ABC △和ACD △中,由余弦定理可得,15cos 8cos 7D B -=,再由三角形的面积公式可得8sin 15sin 2B D S +=,两式两边平方结合两角和的余弦公式和余弦函数的值域,即可求得最大值.解答:解:设AC x =,在ABC △中,由余弦定理可得, 22224224cos 2016cos x B B =+-⨯⨯=-,在ACD △中,由余弦定理可得,22235235cos 3430cos x D D =+-⨯⨯=-, 即有15cos 8cos 7D B -=,又四边形ABCD 面积1124sin 35sin 22S B D =⨯⨯+⨯⨯()18sin 15sin 2B D =+, 即有8sin 15sin 2B D S +=,又15cos 8cos 7D B -=,两式两边平方可得,()264225240sin sin cos cos 494B D B D s ++-=+, 化简可得, ()2240cos 4240B D S -+=-, 由于()1cos 1B D -+≤≤,即有S ≤. 当()cos 1B D +=-即πB D +=时,24240240S -=,解得S =S的最大值为 故选B .点评:本题考查三角形的面积公式和余弦定理的运用,同时考查两角和的余弦公式的运用和余弦函数的最值的求法,属于中档题.12.已知函数()2ln ,041,0x x f x x x x ⎧>⎪=⎨++⎪⎩≤,若关于x 的方程()()()20,f x bf x c b c -+=∈R 有8个不同的实数根,则由点(),b c 确定的平面区域的面积为( )A .16 B .13 C .12 D .23 答案:A考点:分段函数的应用. 专题:函数的性质及应用.分析:题中原方程()()20f x bf x c -+=有8个不同实数解,即要求对应于()f x =某个常数K ,有2个不同的K ,再根据函数对应法则,每一个常数可以找到4个x 与之对应,就出现了8个不同实数解,故先根据题意作出()f x 的简图,由图可知,只有满足条件的K 在开区间()0,1时符合题意.再根据一元二次方程根的分布理论可以得出答案. 解答:解:根据题意作出()f x 的简图:由图象可得当()(]0,1f x ∈时,有四个不同的x 与()f x 对应.再结合题中“方程()()20f x bf x c -+=有8个不同实数解”,可以分解为形如关于k 的方程20k bx c -+=有两个不同的实数根1K 、2K ,且1K 和2K 均为大于0且小于等于1的实数.列式如下:2224001200010b c b b c b c ⎧->⎪⎪<<⎪⎨⎪-⨯+>⎪⎪-+⎩≥,化简得2410002b c b c c b ⎧<⎪⎪⎪-+⎨⎪>⎪<<⎪⎩≥, 此不等式组表示的区域如图:则图中阴影部分的面积即为答案,由定积分的知识得22011111426S b db ⎛⎫=-⨯⨯= ⎪⎝⎭⎰ 故选:A点评:本题考查了函数的图象与一元二次方程根的分布的知识,同时考查定积分等知识,较为综合;采用数形结合的方法解决,使本题变得易于理解. 二、填空题:13.已知平面向量a ,b 的夹角为2π3,2a =,1b =,则a b +=.考点:平面向量数量积的运算. 专题:平面向量及应用.分析:运用数量积的定义求解得出2πcos 3a b a b ⋅=⋅,结合向量的运算,与模的运算转化:()22222a b a ba b a b +=+=++⋅,代入数据求解即可.解答:解:平面向量a ,b 的夹角为2π3,2a =,1b =, 2π1cos=21132a b a b ⎛⎫∴⋅=⋅⨯⨯-=- ⎪⎝⎭, ()222224123a b a ba b a b ∴+=+=++⋅=+-=,即3a b +=.故答案为:点评:本题考查了平面向量的数量积的运用,应用求解向量的模,计算简单,属于容易题.14.将甲、乙、丙、丁四名学生分到两个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同的分法的总数为 . 答案:8考点:计数原理的应用. 专题:计算题.分析:分法包括两种情况:两个班分别为1人和3人,两个班各2个人,据此解答.解答:解:每个班至少分到一名学生,且甲、乙两名学生不能分到一个班,设两个班为1班和2班, ∴分法包括两种情况:两个班分别为1人和3人,两个班各2个人, 若两个班分别为1人和3人,则1人只能为甲或乙,单独的1人可以在1班或2班,因此分法为:224⨯=,若两个班各2个人,则为总的分法减去甲乙在同一个班(都在1班或都在2班)的情况,即分法为:24C 24-=,因此不同的分法的总数为:448+=. 故答案为:8.点评:本题考查排列组合的实际应用,考查利用排列组合解决实际问题,是一个基础题,这种题目是排列组合中经常出现的一个问题.15.设过曲线()e x f x x =--(e 为自然对数的底数)上任意一点处的切线为1l ,总存在过曲线()2cos g x ax x =+上一点处的切线2l ,使得12l l ⊥,则实数a 的取值范围为 .答案:[]1,2-考点:利用导数研究曲线上某点切线方程.专题:导数的概念及应用;不等式的解法及应用;直线与圆.分析:求出函数()e x f x x =--的导函数,进一步求得()10,1e 1x ∈+,再求出()g x 的导函数的范围,然后把过曲线()e xf x x =--上任意一点的切线为1l ,总存在过曲线()2cosg x ax x =+上一点处的切线2l ,使得12l l ⊥转化为集合间的关系求解.解答:解:由()e x f x x =--,得()'e 1x f x =--,e 11x +>,()10,1e 1x∴∈+, 由()2cos g x ax x =+,得()'2sin g x a x =-, 又[]2sin 2,2x -∈-,[]2sin 2,2a x a a ∴-∈-++, 要使过曲线()e x f x x =--上任意一点的切线为1l ,总存在过曲线()2cos g x ax x =+上一点处的切线2l ,使得12l l ⊥, 则2021a a -+⎧⎨+⎩≤≥,解得12a -≤≤. 即a 的取值范围为12a -≤≤. 故答案为: []1,2-.点评:本题考查了利用导数研究过曲线上的某点的切线方程,考查了数学转化思想方法,解答此题的关键是把问题转化为集合间的关系求解,是中档题.16.已知椭圆()222210x y a b a b+=>>的两个焦点分别为1F ,2F ,设P 为椭圆上一点,12F PF ∠的外角平分线所在的直线为l ,过1F ,2F 分别作l 的垂线,垂足分别为R ,S ,当P 在椭圆上运动时,R ,S 所形成的图形的面积为 . 答案:2πa考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:延长2F S 交1F P 的延长线于Q ,可证得2PQ PF =,且S 是2PF 的中点,由此可求得OS 的长度是定值,即可求点S 的轨迹的几何特征.解答:解:由题意,P 是以1F ,2F 为焦点的椭圆上一点,过焦点2F 作12F PF ∠外角平分线的垂线,垂足为S ,延长2F S 交1F P 的延长线于Q ,得2PQ PF =,由椭圆的定义知122PF PF a +=,故有112PF PQ QF a +==, 连接OS ,知OS 是三角形12F F Q 的中位线,OS a ∴=,即点SM 到原点的距离是定值a ,由此知点S 的轨迹是以原点为圆心、半径等于a 的圆. 同理可得,点R 的轨迹是以原点为圆心、半径等于a 的圆. 故点R ,S 所形成的图形的面积为2πa .点评:本题考查求轨迹方程,关键是证出OS 是中位线以及利用题设中所给的图形的几何特征求出1QF 的长度,进而求出OS 的长度,再利用圆的定义得出点M 的轨迹是一个圆,属于难题. 三、解答题:17.设数列{}n a 的前n 项和为n S ,11a =,()11N ,1n n a S n λλ+=+∈≠-*,且1a 、22a 、33a +为等差数列{}n b 的前三项.(Ⅰ)求数列{}n a 、{}n b 的通项公式; (Ⅱ)求数列{}n n a b 的前n 项和. 考点:数列的求和;数列递推式. 专题:等差数列与等比数列.分析:(1)由()11N ,1n n a S n λλ+=+∈≠-*,当2n ≥时,11n n a S λ-=+,可得()11n n a a λ+=+,利用等比数列的通项公式可得3a ,再利用等差数列的通项公式即可得出; (2)利用“错位相减法”、等比数列的前n 项和公式即可得出. 解答:解:(1)()11N ,1n n a S n λλ+=+∈≠-*,∴当2n ≥时,11n n a S λ-=+,1n n n a a a λ+∴-=,即()11n n a a λ+=+,又11a =,2111a a λλ=+=+,∴数列{}n a 为以1为首项,公比为1λ+的等比数列,()231a λ∴=+, 1a 、22a 、33a +为等差数列{}n b 的前三项.()()241113λλ∴+=+++,整理得()210λ-=,解得1λ=. 12n n a -∴=,()13132nb n n =+-=-.(2)()1322n n n a b n -=-⋅,∴数列{}n n a b 的前n 项和()2114272322n n T n -=+⨯+⨯++-⋅, ()()231224272352322n n n T n n -=+⨯+⨯++-⨯+-⨯,()()()()121221132323232213322532521n n nn n n T n n n --⨯-∴-=+⨯+⨯+⨯--⨯=+⨯--⨯=-⨯--()3525n n T n ∴=-⨯+.点评:本题考查了递推式的应用、“错位相减法”、等差数列与等比数列的通项公式及其前n 项和公式,考查了推理能力与计算能力,属于中档题.18.集成电路E 由3个不同的电子元件组成,现由于元件老化,三个电子元件能正常工作的概率分别降为12,12,23,且每个电子元件能否正常工作相互独立,若三个电子元件中至少有2个正常工作,则E 能正常工作,否则就需要维修,且维修集成电路E 所需费用为100元. (Ⅰ)求集成电路E 需要维修的概率; (Ⅱ)若某电子设备共由2个集成电路E 组成,设X 为该电子设备需要维修集成电路所需的费用,求X 的分布列和期望.考点:相互独立事件的概率乘法公式;互斥事件的概率加法公式;离散型随机变量的期望与方差. 专题:概率与统计. 分析:(Ⅰ)由条件利用相互独立事件的概率乘法公式求得3个元件都不能正常工作的概率1P 的值,3个元件中的2个不能正常工作的概率2P 的值,再把1P 和2P 相加,即得所求.(Ⅱ)设ξ为维修集成电路的个数,则ξ服从52,12B ⎛⎫ ⎪⎝⎭,求得()()100P X P k ξξ===的值,可得X 的分布列,从而求得X 的期望.解答:解:(Ⅰ)三个电子元件能正常工作分别记为事件A ,B ,C ,则()12P A =,()12P B =,()23P C =.依题意,集成电路E 需要维修有两种情形:①3个元件都不能正常工作,概率为()()()()1111122312P P ABC P A P B P C ===⨯⨯=. ②3个元件中的2个不能正常工作,概率为()()()211111111212232232233P P ABC P ABC P ABC ++=⨯⨯+⨯⨯+⨯⨯=所以,集成电路E 需要维修的概率为1211512312P P +=+=. (Ⅱ)设ξ为维修集成电路的个数,则ξ服从52,12B ⎛⎫ ⎪⎝⎭,而100X ξ=,()()2257100C 1212k kk P X P k ξξ-⎛⎫⎛⎫====⋅⋅ ⎪ ⎪⎝⎭⎝⎭,0,1,2k =.010*******721443EX ∴=⨯+⨯+⨯=. 点评:本题主要考查相互独立事件的概率乘法公式、互斥事件的概率加法公式,离散型随机变量的分布列,属于中档题.19.如图,在四棱锥P ABCD -中,底面ABCD 为梯形,90ABC BAD ∠=∠=︒,AP AD AB ==BC t =,PAB PAD α∠=∠=.(Ⅰ)当t =PA 上确定一个点E ,使得PC ∥平面BDE ,并求出此时AEEP的值;(Ⅱ)当60α=︒时,若平面PAB ⊥平面PCD ,求此时棱BC 的长.BAPDC考点:向量语言表述面面的垂直、平行关系;直线与平面平行的性质;平面与平面垂直的性质. 专题:综合题;空间位置关系与距离.分析:(Ⅰ)在棱PA 上取点E ,使得13AE EP =,连接AC ,BD 交于点F ,证明EF PC ∥,即可证明PC ∥平面BDE ;(Ⅱ)取BC 上一点G 使得BG =DG ,则ABGD 为正方形.过P 作PO ⊥平面ABCD ,垂足为O .连结OA ,OB ,OD ,OG ,以O 坐标原点,分别以OG ,OB ,OF 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,求出平面PAB 的法向量()π1,1,1=-、同平面PCD 的法向量21,1,1n t ⎛⎫=-- ⎪ ⎪⎝⎭,由0m n ⋅=,解得BC 的长. 解答:解:(1)在棱PA 上取点E ,使得13AE EP =,连接AC ,BD 交于点F ,因为AD BC ∥,所以12AF AD FC BC ==,所以AE AFEP AC=,所以,EF PC ∥ 因为PC ⊄平面BDE ,EF ⊂平面BDE 所以PC ∥平面BDE(Ⅱ)取BC 上一点G 使得BG =DG ,则ABGD 为正方形.过P 作PO ⊥平面ABCD ,垂足为O .连结OA ,OB ,OD ,OG . AP AD AB ==,60PAB PAD ∠=∠=︒,所以PAB △和PAD △都是等边三角形,因此PA PB PD ==, 所以OA OB OD ==,即点O 为正方形ABGD 对角线的交点,以O 坐标原点,分别以OG ,OB ,OP 的方向为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系O xyz -.则()0,0,0O ,()0,0,1P ,()1,0,0A -,()0,1,0B ,()0,1,0D -,()1,0,0G设棱BC 的长为t ,则,1,0C ⎫⎪⎪⎝⎭, ()1,0,1PA =--,()0,1,1PB =-,2,1,1PC ⎛⎫=- ⎪⎪⎝⎭,()0,1,1PD =--设平面PAB 的法向量为()π,,x y z =,则 00x z y z --=⎧⎨-=⎩,取()π1,1,1=- 同理平面PCD 的法向量21,1,1n ⎛⎫=-- ⎪ ⎪⎝⎭由0m n ⋅=,解得t =BC 的长为点评:本题主要考查了线面平行的判定定理及性质,考查向量方法的运用,正确建立坐标系,求出平面的法向量是关键.20.在平面直角坐标系xOy 中,一动圆经过点1,02⎛⎫⎪⎝⎭且与直线12x =-相切,设该动圆圆心的轨迹为曲线E .(Ⅰ)求曲线E 的方程;(Ⅱ)设P 是曲线E 的动点,点B 、C 在y 轴上,PBC △的内切圆的方程为()2211x y -+=,求PBC △面积的最小值.考点:直线与圆锥曲线的综合问题.专题:直线与圆;圆锥曲线的定义、性质与方程. 分析:(Ⅰ)运用抛物线的定义,可得轨迹为抛物线,进而得到方程;(Ⅱ)设()00,P x y ,()0,B b ,()0,C c ,求得直线PB 的方程,运用直线和圆相切的条件:d r =,求得b ,c 的关系,求得PBC △的面积,结合基本不等式,即可得到最小值.解答:解:(Ⅰ)由题意可知圆心到1,02⎛⎫⎪⎝⎭的距离等于到直线12x =-的距离,由抛物线的定义可知,圆心的轨迹方程:22y x =. (Ⅱ)设()00,P x y ,()0,B b ,()0,C c , 直线PB 的方程为:()0000y b x x y x b --+=, 又圆心()1,0到PB 的距离为11=,整理得:()2000220x b y b x -+-=,同理可得:()2000220x c y c x -+-=,所以,可知b ,c 是方程()2000220x x y x x -+-=的两根,所以0022y b c x -+=-,002x bc x -=-,依题意0bc <,即02x >, 则()()222000204482x y x c b x +--=-,因为2002y x =,所以:0022x b c x -=- 所以()0001424822S b c x x x =-⋅=-++-≥ 当04x =时上式取得等号,所以PBC △面积最小值为8.点评:本题考查抛物线的定义、方程和性质,主要考查定义法和方程的运用,同时考查直线和圆相切的条件:d r =,考查化简整理的运算能力,属于中档题.21.已知函数()22ln f x x a x x=++.(Ⅰ)若()f x 在区间[]2,3上单调递增,求实数a 的取值范围;(Ⅱ)设()f x 的导函数()'f x 的图象为曲线C ,曲线C 上的不同两点()11,A x y 、()22,B x y 所在直线的斜率为k ,求证:当a ≤4时,1k >.考点:利用导数研究函数的单调性;利用导数研究曲线上某点切线方程. 专题:综合题;导数的综合应用.分析:(1)由函数单调性,知其导函数0≥在[]2,3上恒成立,将问题转化为()222g x x x=-在[]2,3上单调递减即可求得结果;(2)根据题意,将()()12''f x f x -写成()121222121222x x ax x x x x x +-⋅+-利用不等式的性质证明()12221212221x x ax x x x ++->,所以()()1212''f x f x x x ->-,即得1k >. 解答:解:(1)由()22ln f x x a x x =++,得()22'2a f x x x x=-+. 因为()f x 在区间[]2,3上单调递增,所以()22'20af x x x x =-+≥在[]2,3上恒成立,即222a x x -≥在[]2,3上恒成立, 设()222g x x x =-,则()22'40g x x x=--<,所以()g x 在[]2,3上单调递减,故()()max 27g x g ==-,所以7a -≥; (2)对于任意两个不相等的正数1x 、2x 有 ()121212122x x x x x x x x ++>+12x x =≥4.5a =>>,()12221212221x x ax x x x +∴+->, 而()22'2a f x x x x=-+, ()()121222112222''22a a f x f x x x x x x x ⎛⎫⎛⎫∴-=-+--+ ⎪ ⎪⎝⎭⎝⎭()12121222121222x x ax x x x x x x x +=-⋅+->-, 故:()()1212''f x f x x x ->-,即()()1212''1f x f x x x ->-,∴当4a ≤时,1k >.点评:本题考查导数及基本不等式的应用,解题的关键是利用不等式得到函数值的差的绝对值要大于自变量的差的绝对值.四、请考生在第22-24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-1:几何证明选讲] 22.如图,已知O 和M 相交于A 、B 两点,AD 为M 的直径,直线BD 交O 于点C ,点G 为BD 中点,连接AG 分别交O 、BD 于点E 、F 连接CE . (1)求证:AG EF CE GD ⋅=⋅;(2)求证:22GF EF AG CE =.考点:圆的切线的性质定理的证明;与圆有关的比例线段. 专题:证明题;压轴题. 分析:(1)要证明AG EF CE GD ⋅=⋅我们可以分析积等式中四条线段的位置,然后判断它们所在的三角形是否相似,然后将其转化为一个证明三角形相似的问题.(2)由(1)的推理过程,我们易得DAG GDF ∠=∠,又由公共角G ∠,故DFG AGD △∽△,易得2DG AG GF =⋅,结合(1)的结论,不难得到要证明的结论. 解答: 证明:(1)连接AB ,AC ,AD 为M 的直径,90ABD ∴∠=︒,AC ∴为O 的直径,CEF AGD ∴∠=∠, DFG CFE ∠=∠,ECF GDF ∴∠=∠, G 为弧BD 中点,DAG GDF ∴∠=∠, ECB BAG ∠=∠,DAG ECF ∴∠=∠,CEF AGD ∴△∽△, CE AGEF GD∴=,AG EF CE GD ∴⋅=⋅ (2)由(1)知DAG GDF ∠=∠,G G ∠=∠,DFG AGD ∴△∽△,2DG AG GF ∴=⋅,由(1)知2222EF GD CE AG =,22GF EF AG CE ∴=. 点评:证明三角形相似有三个判定定理:(1)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似(2)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似(3)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似.我们要根据已知条件进行合理的选择,以简化证明过程.四、请考生在第22-24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]23.已知曲线1C 的参数方程为2cosx y θθ=⎧⎪⎨=⎪⎩(θ为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2ρ=.(Ⅰ)分别写出1C 的普通方程,2C 的直角坐标方程.(Ⅱ)已知M 、N 分别为曲线1C 的上、下顶点,点P 为曲线2C 上任意一点,求PM PN +的最大值. 考点:参数方程化成普通方程. 专题:坐标系和参数方程. 分析:(1)根据题意和平方关系求出曲线1C 的普通方程,由222x y ρ=+和题意求出2C 的直角坐标方程;(2)方法一:求出曲线2C 参数方程,设P 点的参数坐标,求出点M 、N 的坐标,利用两点间的距离公式求出PM PN +并化简,再化简()2PM PN +,利用正弦函数的最值求出()2PM PN +的最值,即可求出PM PN +的最大值;方法二:设P 点坐标为(),x y ,则224x y +=,求出点M 、N 的坐标,利用两点间的距离公式求出PM PN +并化简,再化简()2PM PN +,再求出()2PM PN +的最值,即可求出PM PN +的最大值.解答:解:(1)因为曲线1C 的参数方程为2cosx y θθ=⎧⎪⎨=⎪⎩(θ为参数),所以曲线1C 的普通方程为22143x y +=,…由曲线2C 的极坐标方程为2ρ=得, 曲线2C 的普通方程为224x y +=;…(2)方法一:由曲线222:4C x y +=,可得其参数方程为2cos 2sin x y αα=⎧⎨=⎩,所以P 点坐标为()2cos ,2sin αα,由题意可知(0,M ,(0,N .因此PM PN +==则()214PM PN +=+ 所以当sin 0α=时,()2PM PN +有最大值28,因此PM PN +的最大值为方法二:设P 点坐标为(),x y ,则224x y +=,由题意可知(0,M ,(0,N .因此PM PN +=则()214PM PN +=+ 所以当0y =时,()2PM PN +有最大值28,因此PM PN +的最大值为点评:本题考查参数方程、极坐标方程与普通方程的转化,两点间的距离公式,以及求最值问题,考查化简、计算能力.四、请考生在第22-24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-5:不等式选讲]24.已知函数()f x =R .(Ⅰ)求实数m 的取值范围.(Ⅱ)若m 的最大值为n ,当正数a 、b 满足2132n a b a b+=++时,求74a b +的最小值.考点:基本不等式;函数的定义域及其求法. 专题:不等式的解法及应用. 分析:(1)由函数定义域为R ,可得130x x m ++--≥恒成立,设函数()13g x x x =++-,利用绝对值不等式的性质求出其最小值即可;(2)由(1)知4n =,变形()12174622432a b a b a b a b a b ⎛⎫+=++++ ⎪++⎝⎭,利用基本不等式的性质即可得出. 解答:解:(1)函数定义域为R ,130x x m ∴++--≥恒成立, 设函数()13g x x x =++-,则m 不大于函数()g x 的最小值,又()()13134x x x x ++-+--=≥,即()g x 的最小值为4,m ∴≤4. (2)由(1)知4n =,()()()23221211746225432423a b a b a b a b a b a b a b a b a b ++⎛⎫⎛⎫∴+=++++=++ ⎪ ⎪++++⎝⎭⎝⎭195244⎛+⨯= ⎝≥, 当且仅当23a b a b +=+,即3210b a ==时取等号. 74a b ∴+的最小值为94. 点评:本题考查了函数的定义域、绝对值不等式的性质、基本不等式的性质、“乘1法”,考查了推理能力与计算能力,属于中档题.。
2015年河北省石家庄市高考一模数学试卷(理科)【解析版】
2015年河北省石家庄市高考数学一模试卷(理科)一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)已知i为虚数单位,则复数=()A.2+i B.2﹣i C.﹣1﹣2i D.﹣1+2i 2.(5分)已知集合P={0,1,2},Q={y|y=3x},则P∩Q=()A.{0,1}B.{1,2}C.{0,1,2}D.∅3.(5分)已知cosα=k,k∈R,α∈(,π),则sin(π+α)=()A.﹣B.C.±D.﹣k4.(5分)下列说法中,不正确的是()A.已知a,b,m∈R,命题“若am2<bm2,则a<b”为真命题B.命题“∃x0∈R,x02﹣x0>0”的否定是:“∀x∈R,x2﹣x≤0”C.命题“p或q”为真命题,则命题p和q命题均为真命题D.“x>3”是“x>2”的充分不必要条件5.(5分)设函数f(x)为偶函数,且当x∈[0,2)时,f(x)=2sin x,当x∈[2,+∞)时f(x)=log2x,则=()A.B.1C.3D.6.(5分)执行下面的程序框图,如果输入的依次是1,2,4,8,则输出的S 为()A.2B.2C.4D.67.(5分)如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,底面是边长为2的正三角形,侧棱长为3,则BB1与平面AB1C1所成的角是()A.B.C.D.8.(5分)已知O、A、B三地在同一水平面内,A地在O地正东方向2km处,B 地在O地正北方向2km处,某测绘队员在A、B之间的直线公路上任选一点C作为测绘点,用测绘仪进行测绘,O地为一磁场,距离其不超过km的范围内会测绘仪等电子仪器形成干扰,使测量结果不准确,则该测绘队员能够得到准确数据的概率是()A.1﹣B.C.1﹣D.9.(5分)已知抛物线y2=2px(p>0)的焦点F恰好是双曲线﹣=1(a>0,b>0)的一个焦点,两条曲线的交点的连线过点F,则双曲线的离心率为()A.B.C.1+D.1+10.(5分)一个几何体的三视图如图所示,则该几何体的体积是()A.64B.72C.80D.11211.(5分)已知平面图形ABCD为凸四边形(凸四边形即任取平面四边形一边所在的直线,其余各边均在此直线的同侧),且AB=2,BC=4,CD=5,DA =3,则四边形ABCD面积S的最大值为()A.B.2C.4D.612.(5分)已知函数f(x)=,若关于x的方程f2(x)﹣bf(x)+c=0(b,c∈R)有8个不同的实数根,则由点(b,c)确定的平面区域的面积为()A.B.C.D.二、填空题:本大题共4小题,每小题5分.13.(5分)已知平面向量,的夹角为,||=2,||=1,则|+|=.14.(5分)将甲、乙、丙、丁四名学生分到两个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同的分法的总数为.15.(5分)设过曲线f(x)=﹣e x﹣x(e为自然对数的底数)上任意一点处的切线为l1,总存在过曲线g(x)=ax+2cos x上一点处的切线l2,使得l1⊥l2,则实数a的取值范围为.16.(5分)已知椭圆=1(a>b>0)的两个焦点分别为F1,F2,设P为椭圆上一点,∠F1PF2的外角平分线所在的直线为l,过F1,F2分别作l的垂线,垂足分别为R,S,当P在椭圆上运动时,R,S所形成的图形的面积为.三、解答题:本大题共5小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(12分)设数列{a n}的前n项和为S n,a1=1,a n+1=λS n+1(n∈N*,λ≠﹣1),且a1、2a2、a3+3为等差数列{b n}的前三项.(Ⅰ)求数列{a n}、{b n}的通项公式;(Ⅱ)求数列{a n b n}的前n项和.18.(12分)集成电路E由3个不同的电子元件组成,现由于元件老化,三个电子元件能正常工作的概率分别降为,,,且每个电子元件能否正常工作相互独立,若三个电子元件中至少有2个正常工作,则E能正常工作,否则就需要维修,且维修集成电路E所需费用为100元.(Ⅰ)求集成电路E需要维修的概率;(Ⅱ)若某电子设备共由2个集成电路E组成,设X为该电子设备需要维修集成电路所需的费用,求X的分布列和期望.19.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD为梯形,∠ABC=∠BAD =90°,AP=AD=AB=,BC=t,∠P AB=∠P AD=α.(Ⅰ)当t=3时,试在棱P A上确定一个点E,使得PC∥平面BDE,并求出此时的值;(Ⅱ)当α=60°时,若平面P AB⊥平面PCD,求此时棱BC的长.20.(12分)在平面直角坐标系xOy中,一动圆经过点(,0)且与直线x=﹣相切,设该动圆圆心的轨迹为曲线E.(Ⅰ)求曲线E的方程;(Ⅱ)设P是曲线E的动点,点B、C在y轴上,△PBC的内切圆的方程为(x ﹣1)2+y2=1,求△PBC面积的最小值.21.(12分)已知函数f(x)=x2++alnx.(Ⅰ)若f(x)在区间[2,3]上单调递增,求实数a的取值范围;(Ⅱ)设f(x)的导函数f′(x)的图象为曲线C,曲线C上的不同两点A(x1,y1)、B(x2,y2)所在直线的斜率为k,求证:当a≤4时,|k|>1.四、请考生在第22-24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-1:几何证明选讲]22.(10分)如图,已知⊙O和⊙M相交于A、B两点,AD为⊙M的直径,直线BD交⊙O于点C,点G为弧中点,连接AG分别交⊙O、BD于点E、F连接CE.(1)求证:AG•EF=CE•GD;(2)求证:.四、请考生在第22-24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]23.已知曲线C1的参数方程为(θ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2.(Ⅰ)分别写出C1的普通方程,C2的直角坐标方程.(Ⅱ)已知M、N分别为曲线C1的上、下顶点,点P为曲线C2上任意一点,求|PM|+|PN|的最大值.四、请考生在第22-24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-5:不等式选讲]24.已知函数f(x)=的定义域为R.(Ⅰ)求实数m的取值范围.(Ⅱ)若m的最大值为n,当正数a、b满足+=n时,求7a+4b的最小值.2015年河北省石家庄市高考数学一模试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)已知i为虚数单位,则复数=()A.2+i B.2﹣i C.﹣1﹣2i D.﹣1+2i【解答】解:=,故选:C.2.(5分)已知集合P={0,1,2},Q={y|y=3x},则P∩Q=()A.{0,1}B.{1,2}C.{0,1,2}D.∅【解答】解:Q={y|y=3x}={y|y>0},则P∩Q={1,2},故选:B.3.(5分)已知cosα=k,k∈R,α∈(,π),则sin(π+α)=()A.﹣B.C.±D.﹣k【解答】解:∵cosα=k,k∈R,α∈(,π),∴sinα==,∴sin(π+α)=﹣sinα=﹣.故选:A.4.(5分)下列说法中,不正确的是()A.已知a,b,m∈R,命题“若am2<bm2,则a<b”为真命题B.命题“∃x0∈R,x02﹣x0>0”的否定是:“∀x∈R,x2﹣x≤0”C.命题“p或q”为真命题,则命题p和q命题均为真命题D.“x>3”是“x>2”的充分不必要条件【解答】解:A.若am2<bm2,利用不等式的性质可得:a<b,因此为真命题;B.命题“∃x0∈R,x02﹣x0>0”的否定是:“∀x∈R,x2﹣x≤0”,正确;C.“p或q”为真命题,则命题p和q命题至少有一个为真命题,因此不正确;D.“x>3”⇒“x>2”,反之不成立,因此“x>3”是“x>2”的充分不必要条件,正确.故选:C.5.(5分)设函数f(x)为偶函数,且当x∈[0,2)时,f(x)=2sin x,当x∈[2,+∞)时f(x)=log2x,则=()A.B.1C.3D.【解答】解:∵函数f(x)为偶函数,∴f(﹣)=f(),∵当x∈[0,2)时f(x)=2sin x,∴f(x)=2sin=2×=;∵当x∈[2,+∞)时f(x)=log2x,∴f(4)=log24=2,∴=+2,故选:D.6.(5分)执行下面的程序框图,如果输入的依次是1,2,4,8,则输出的S 为()A.2B.2C.4D.6【解答】解:模拟执行程序框图,可得S=1,i=1满足条件i≤4,S=1,i=2满足条件i≤4,S=,i=3满足条件i≤4,S=2,i=4满足条件i≤4,S=2,i=5不满足条件i≤4,退出循环,输出S的值为2.故选:B.7.(5分)如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,底面是边长为2的正三角形,侧棱长为3,则BB1与平面AB1C1所成的角是()A.B.C.D.【解答】解:以B为坐标原点,以与BC垂直的直线为x轴,BC为y轴,建立空间直角坐标系,则A(,1,0),B1(0,0,3),C1(0,2,3),=(﹣,﹣1,3),=(0,2,0),=(0,0,3).设平面AB1C1所的一个法向量为=(x,y,z)则即,取z=1,则得=(,0,1),∵cos<,>===,∴BB1与平面AB1C1所成的角的正弦值为,∴BB1与平面AB1C1所成的角为故选:A.8.(5分)已知O、A、B三地在同一水平面内,A地在O地正东方向2km处,B 地在O地正北方向2km处,某测绘队员在A、B之间的直线公路上任选一点C作为测绘点,用测绘仪进行测绘,O地为一磁场,距离其不超过km的范围内会测绘仪等电子仪器形成干扰,使测量结果不准确,则该测绘队员能够得到准确数据的概率是()A.1﹣B.C.1﹣D.【解答】解:由题意,△AOB是直角三角形,OA=OB=2,所以AB=2,O地为一磁场,距离其不超过km的范围为个圆,与AB相交于C,D两点,作OE⊥AB,则OE=,所以CD=2,所以该测绘队员能够得到准确数据的概率是1﹣=1﹣.故选:A.9.(5分)已知抛物线y2=2px(p>0)的焦点F恰好是双曲线﹣=1(a>0,b>0)的一个焦点,两条曲线的交点的连线过点F,则双曲线的离心率为()A.B.C.1+D.1+【解答】解:由题意,∵两条曲线交点的连线过点F∴两条曲线交点为(,p),代入双曲线方程得,又=c代入化简得c4﹣6a2c2+a4=0∴e4﹣6e2+1=0∴e2=3+2=(1+)2∴e=+1故选:C.10.(5分)一个几何体的三视图如图所示,则该几何体的体积是()A.64B.72C.80D.112【解答】解:由几何体的三视图可知,该几何体下部为正方体,边长为4,体积为43=64,上部为三棱锥,以正方体上底面为底面,高为3.体积×,故该几何体的体积是64+8=72.故选:B.11.(5分)已知平面图形ABCD为凸四边形(凸四边形即任取平面四边形一边所在的直线,其余各边均在此直线的同侧),且AB=2,BC=4,CD=5,DA =3,则四边形ABCD面积S的最大值为()A.B.2C.4D.6【解答】解:设AC=x,在△ABC中,由余弦定理可得,x2=22+42﹣2×2×4cos B=20﹣16cos B,在△ACD中,由余弦定理可得,x2=32+52﹣2×3×5cos D=34﹣30cos D,即有15cos D﹣8cos B=7,又四边形ABCD面积S=×2×4sin B+×3×5sin D=(8sin B+15sin D),即有8sin B+15sin D=2S,又15cos D﹣8cos B=7,两式两边平方可得,64+225+240(sin B sin D﹣cos B cos D)=49+4s2,化简可得,﹣240cos(B+D)=4S2﹣240,由于﹣1≤cos(B+D)<1,即有S≤2.当cos(B+D)=﹣1即B+D=π时,4S2﹣240=240,解得S=2.故S的最大值为2.故选:B.12.(5分)已知函数f(x)=,若关于x的方程f2(x)﹣bf(x)+c=0(b,c∈R)有8个不同的实数根,则由点(b,c)确定的平面区域的面积为()A.B.C.D.【解答】解:根据题意作出f(x)的简图:由图象可得当f(x)∈(0,1]时,有四个不同的x与f(x)对应.再结合题中“方程f2(x)﹣bf(x)+c=0有8个不同实数解”,可以分解为形如关于k的方程k2﹣bk+c=0有两个不同的实数根K1、K2,且K1和K2均为大于0且小于等于1的实数.列式如下:,化简得,此不等式组表示的区域如图:则图中阴影部分的面积即为答案,由定积分的知识得S=﹣×1×1=故选:A.二、填空题:本大题共4小题,每小题5分.13.(5分)已知平面向量,的夹角为,||=2,||=1,则|+|=.【解答】解:∵平面向量,的夹角为,||=2,||=1,∴=||•||cos=2×=﹣1,∴|+|2=()2=||2+||2+2=4+1﹣2=3,即|+|=.故答案为:.14.(5分)将甲、乙、丙、丁四名学生分到两个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同的分法的总数为8.【解答】解:∵每个班至少分到一名学生,且甲、乙两名学生不能分到一个班,设两个班为1班和2班,∴分法包括两种情况:两个班分别为1人和3人,两个班各2个人,若两个班分别为1人和3人,则1人只能为甲或乙,单独的1人可以在1班或2班,因此分法为:2×2=4,若两个班各2个人,则为总的分法减去甲乙在同一个班(都在1班或都在2班)的情况,即分法为:﹣2=4,因此不同的分法的总数为:4+4=8.故答案为:8.15.(5分)设过曲线f(x)=﹣e x﹣x(e为自然对数的底数)上任意一点处的切线为l1,总存在过曲线g(x)=ax+2cos x上一点处的切线l2,使得l1⊥l2,则实数a的取值范围为[﹣1,2].【解答】解:由f(x)=﹣e x﹣x,得f′(x)=﹣e x﹣1,∵e x+1>1,且k1k2=﹣1,∴∈(0,1),由g(x)=ax+2cos x,得g′(x)=a﹣2sin x,又﹣2sin x∈[﹣2,2],∴a﹣2sin x∈[﹣2+a,2+a],要使过曲线f(x)=﹣e x﹣x上任意一点的切线为l1,总存在过曲线g(x)=ax+2cos x上一点处的切线l2,使得l1⊥l2,则,解得﹣1≤a≤2.即a的取值范围为﹣1≤a≤2.故答案为:[﹣1,2].16.(5分)已知椭圆=1(a>b>0)的两个焦点分别为F1,F2,设P为椭圆上一点,∠F1PF2的外角平分线所在的直线为l,过F1,F2分别作l的垂线,垂足分别为R,S,当P在椭圆上运动时,R,S所形成的图形的面积为πa2.【解答】解:由题意,P是以F1,F2为焦点的椭圆上一点,过焦点F2作∠F1PF2外角平分线的垂线,垂足为S,延长F2S交F1P的延长线于Q,得PQ=PF2,由椭圆的定义知PF1+PF2=2a,故有PF1+PQ=QF1=2a,连接OS,知OS是三角形F1F2Q的中位线,∴OS=a,即点S到原点的距离是定值a,由此知点S的轨迹是以原点为圆心、半径等于a的圆.同理可得,点R的轨迹是以原点为圆心、半径等于a的圆.故点R,S所形成的图形的面积为πa2.三、解答题:本大题共5小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(12分)设数列{a n}的前n项和为S n,a1=1,a n+1=λS n+1(n∈N*,λ≠﹣1),且a1、2a2、a3+3为等差数列{b n}的前三项.(Ⅰ)求数列{a n}、{b n}的通项公式;(Ⅱ)求数列{a n b n}的前n项和.【解答】解:(1)∵a n+1=λS n+1(n∈N*,λ≠﹣1),∴当n≥2时,a n=λS n﹣1+1,∴a n+1﹣a n=λa n,即a n+1=(1+λ)a n,又a1=1,a2=λa1+1=λ+1,∴数列{a n}为以1为首项,公比为λ+1的等比数列,∴a3=(λ+1)2,∵a1、2a2、a3+3为等差数列{b n}的前三项.∴4(λ+1)=1+(λ+1)2+3,整理得(λ﹣1)2=0,解得λ=1.∴a n=2n﹣1,b n=1+3(n﹣1)=3n﹣2.(2)a n b n=(3n﹣2)•2n﹣1,∴数列{a n b n}的前n项和T n=1+4×2+7×22+…+(3n﹣2)•2n﹣1,2T n=2+4×22+7×23+…+(3n﹣5)×2n﹣1+(3n﹣2)×2n,∴﹣T n=1+3×2+3×22+…+3×2n﹣1﹣(3n﹣2)×2n=﹣(3n ﹣2)×2n=(5﹣3n)×2n﹣5,∴T n=(3n﹣5)×2n+5.18.(12分)集成电路E由3个不同的电子元件组成,现由于元件老化,三个电子元件能正常工作的概率分别降为,,,且每个电子元件能否正常工作相互独立,若三个电子元件中至少有2个正常工作,则E能正常工作,否则就需要维修,且维修集成电路E所需费用为100元.(Ⅰ)求集成电路E需要维修的概率;(Ⅱ)若某电子设备共由2个集成电路E组成,设X为该电子设备需要维修集成电路所需的费用,求X的分布列和期望.【解答】解:(Ⅰ)三个电子元件能正常工作分别记为事件A,B,C,则P(A)=,P(B)=,P(C)=.依题意,集成电路E需要维修有两种情形:①3个元件都不能正常工作,概率为P1=P()=P()P()P()=××=.②3个元件中的2个不能正常工作,概率为P2=P(A)+P(B)+P(C)=++×=.所以,集成电路E需要维修的概率为P1+P2=+=.(Ⅱ)设ξ为维修集成电路的个数,则ξ服从B(2,),而X=100ξ,P(X=100ξ)=P(ξ=k)=••,k=0,1,2.X的分布列为:∴EX=0×+100×+200×=.19.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD为梯形,∠ABC=∠BAD =90°,AP=AD=AB=,BC=t,∠P AB=∠P AD=α.(Ⅰ)当t=3时,试在棱P A上确定一个点E,使得PC∥平面BDE,并求出此时的值;(Ⅱ)当α=60°时,若平面P AB⊥平面PCD,求此时棱BC的长.【解答】解:(1)在棱P A上取点E,使得=,﹣﹣﹣﹣﹣﹣﹣2连接AC,BD交于点F,因为AD∥BC,所以=,所以=,所以,EF∥PC因为PC⊄平面BDE,EF⊂平面BDE所以PC∥平面BDE﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣4(Ⅱ)取BC上一点G使得BG=,连结DG,则ABGD为正方形.过P作PO⊥平面ABCD,垂足为O.连结OA,OB,OD,OG.AP=AD=AB,∠P AB=∠P AD=60°,所以△P AB和△P AD都是等边三角形,因此P A=PB=PD,所以OA=OB=OD,即点O为正方形ABGD对角线的交点,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣7以O坐标原点,分别以的方向为x轴,y轴,z轴的正方向建立如图所示的空间直角坐标系O﹣xyz.则O(0,0,0),P(0,0,1),A(﹣1,0,0),B(0,1,0),D(0,﹣1,0),G(1,0,0)设棱BC的长为t,则C(t,1﹣t,0),=(﹣1,0,﹣1),=(0,1,﹣1),=(t,1﹣t,﹣1),=(0,﹣1,﹣1)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣9设平面P AB的法向量为=(x,y,z),则,取=(﹣1,1,1)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣10同理平面PCD的法向量=(1﹣,1,﹣1)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣11由=0,解得t=2,即BC的长为2﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣1220.(12分)在平面直角坐标系xOy中,一动圆经过点(,0)且与直线x=﹣相切,设该动圆圆心的轨迹为曲线E.(Ⅰ)求曲线E的方程;(Ⅱ)设P是曲线E的动点,点B、C在y轴上,△PBC的内切圆的方程为(x ﹣1)2+y2=1,求△PBC面积的最小值.【解答】解:(Ⅰ)由题意可知圆心到(,0)的距离等于到直线x=﹣的距离,由抛物线的定义可知,圆心的轨迹方程:y2=2x.(Ⅱ)设P(x0,y0),B(0,b),C(0,c),直线PB的方程为:(y0﹣b)x﹣x0y+x0b=0,又圆心(1,0)到PB的距离为1,即=1,整理得:(x0﹣2)b2+2y0b﹣x0=0,同理可得:(x0﹣2)c2+2y0c﹣x0=0,所以,可知b,c是方程(x0﹣2)x2+2y0x﹣x0=0的两根,所以b+c=,bc=,依题意bc<0,即x0>2,则(c﹣b)2=,因为y02=2x0,所以:|b﹣c|=||所以S=|b﹣c|•|x0|=(x0﹣2)++4≥8当x0=4时上式取得等号,所以△PBC面积最小值为8.21.(12分)已知函数f(x)=x2++alnx.(Ⅰ)若f(x)在区间[2,3]上单调递增,求实数a的取值范围;(Ⅱ)设f(x)的导函数f′(x)的图象为曲线C,曲线C上的不同两点A(x1,y1)、B(x2,y2)所在直线的斜率为k,求证:当a≤4时,|k|>1.【解答】解:(1)由,得.因为f(x)在区间[2,3]上单调递增,所以≥0在[2,3]上恒成立,即在[2,3]上恒成立,设,则,所以g(x)在[2,3]上单调递减,故g(x)max=g(2)=﹣7,所以a≥﹣7;(2)对于任意两个不相等的正数x1、x2有>==,∴,而,∴==>,故:>,即>1,∴当a≤4时,.四、请考生在第22-24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-1:几何证明选讲]22.(10分)如图,已知⊙O和⊙M相交于A、B两点,AD为⊙M的直径,直线BD交⊙O于点C,点G为弧中点,连接AG分别交⊙O、BD于点E、F 连接CE.(1)求证:AG•EF=CE•GD;(2)求证:.【解答】证明:(1)连接AB,AC,∵AD为⊙M的直径,∴∠ABD=90°,∴AC为⊙O的直径,∴∠CEF=∠AGD,∵∠DFG=∠CFE,∴∠ECF=∠GDF,∵G为弧BD中点,∴∠DAG=∠GDF,∴∠DAG=∠ECF,∴△CEF∽△AGD,∴,∴AG•EF=CE•GD(2)由(1)知∠DAG=∠GDF,∠G=∠G,∴△DFG∽△ADG,∴DG2=AG•GF,由(1)知,∴.四、请考生在第22-24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]23.已知曲线C1的参数方程为(θ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2.(Ⅰ)分别写出C1的普通方程,C2的直角坐标方程.(Ⅱ)已知M、N分别为曲线C1的上、下顶点,点P为曲线C2上任意一点,求|PM|+|PN|的最大值.【解答】解:(1)因为曲线C1的参数方程为(θ为参数),所以曲线C1的普通方程为,…(2分)由曲线C2的极坐标方程为ρ=2得,曲线C2的普通方程为x2+y2=4;…(4分)(2)法一:由曲线C2:x2+y2=4,可得其参数方程为,所以P点坐标为(2cosα,2sinα),由题意可知M(0,),N(0,).因此|PM|+|PN|==+…(6分)则(|PM|+|PN|)2=14+2.所以当sinα=0时,(|PM|+|PN|)2有最大值28,…(8分)因此|PM|+|PN|的最大值为.…(10分)法二:设P点坐标为(x,y),则x2+y2=4,由题意可知M(0,),N(0,).因此|PM|+|PN|=+=+…(6分)则(|PM|+|PN|)2=14+2.所以当y=0时,(|PM|+|PN|)2有最大值28,…(8分)因此|PM|+|PN|的最大值为.…(10分)四、请考生在第22-24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-5:不等式选讲]24.已知函数f(x)=的定义域为R.(Ⅰ)求实数m的取值范围.(Ⅱ)若m的最大值为n,当正数a、b满足+=n时,求7a+4b的最小值.【解答】解:(1)∵函数定义域为R,∴|x+1|+|x﹣3|﹣m≥0恒成立,设函数g(x)=|x+1|+|x﹣3|,则m不大于函数g(x)的最小值,又|x+1|+|x﹣3|≥|(x+1)﹣(x﹣3)|=4,即g(x)的最小值为4,∴m≤4.(2)由(1)知n=4,∴7a+4b===,当且仅当a+2b=3a+b,即b=2a=时取等号.∴7a+4b的最小值为.。
河北省石家庄市2015届高三上学期复习质量检测(一)英语试题及答案
石家庄市2015届高三复习教学质量检测(一)英语第一部分听力(每题1.5分,满分30分)1.What did the woman find?A A packetB A walletC An ID card2.Why is the coach special to the woman?A He teaches her to be kindB He is her father.C He is skilled in baseball3.What does the woman want most?A Much workB Less ambitionC A better job4.When are they likely to see a game together?A Next weekB Next monthC Next year5.What is probably the woman’s brother?A A photographerB A football playerC A singer6.What is the probable relationship between the speakers?A Doctor and patientB Wife and husbandC Secretary and boss7.What does the woman advise the man to do?A Enjoy his lifeB Change his dietC Give up all fat foods8.Where does the conversation probably take place?A At a railway stationB At an airportC At a hotel9.When will the man have to leave?A At 12:00B At 13:00C At 14:0010.Where did the theft happen?A In a shopB On a busC In the street11.What did the old lady think the man speaker was at first?A A passer-byB A policeman.C A thief12.What did the old lady do in the end ?A She apologizedB She ran offC She called the police.13.What’s probably the man?A.A hostB. A pianistC. A journalist14.How much is the ticket for the jazz performance on Thursday night?A.$8 B $10 C $1215.When will the band Megablitz perform?A.On ThursdayB. On FridayC. On Saturday16.Where will the New Seventies Soul Night be held?A.At the Sound ClubB. At the Jazz CafeC. At the Queen’s Hall17.Why won’t the speaker come to work today?A.He is illB. His son is illC. He has to go to his son’s school.18.What does the speaker ask Raman to do?A.Contact the trainer.B. Book a roomC. Organize the projector19.How will Alison deal with the lunch?A.She will cook itB. She will order it from a cafe.C. She will take the people to a restaurant.20.What will everyone in the meeting need to have、A.A pen and a notebookB. A phone.C. A computer第二部分阅读理解(每题2分,共40分)AWhen I entered Oxford University, I wasn’t particularly interested in joining the rowing club. I just wanted to know what it’s like to row in one of those narrow boats, so I signed up with the intention of quitting after the first session. At least that’s what I thought.Six months later, I found myself sitting in a rowing boat with three teammates, waiting for a 2,000-meter race to start. In the boat alongside us sat a c rew from the university’s team, two of whom had won medals at the Beijing Olympics in 2008. My crew was only rowing at college-level and we had only trained a few times as a team, so facing such strong athletes was quite terrifying.I tried to focus my mind on the race, not on my opponents.Go! We pushed off with all our might and rowed as fast as we could. As we reached the halfway mark, the other crew was ahead of us. But to my amazement we were gaining on them. If we could win the race, we would get through to the final! We pushed even harder, ignoring the pain in our legs and drawing energy from the cheers of our college friends. I could already sense the sweet taste of victory.But then, disaster. One of my teammates lost control of his oar(桨), knocking him nearly out of the boat. We came to a sudden stop, and watched as our opponents crossed the finishing line. It was the most disappointing moment in my life. I wanted to punch my teammate who had ruined everything and push him into the water. But when I saw how angry he was with himself, I gave him a hug.Although we lost, I’m still proud of how well we did that day facing a much stronger team. WhatI remember now is the thrill of racing, not the pain of defeat.21.Why did the author join the rowing club?A.He was fond of rowingB. He signed with the team.C. He was curious about rowing.D. He wanted to quit another club.22.How did the author feel before the race?A.WorriedB. AmazedC. DisappointedD. Surprised23.Why did they lose the game?A.They hurt their legs.B. The opponents were too strong.C. They were worn out.D. A group member made a mistake.24. Which can be the best title of the text?A. A Valuable LessonB. 2000 Meters I will Never ForgetC. Learn to ForgiveD. Never Quit Until the Last MinuteBLet’s check out some of the best-rated running cell phone apps that make our fitness program more efficient and more fun.RunKeeperPlatform: iOS, AndroidPrice: free, pro version $10Voted best running app on , a US-based Weblog on software, Runkeeper letsyou track your running activities on a map, including data on distance, time and calories burned. Compare your performance with previous runs, and share new personal bests on social media. The pro version adds more features, such as audio updates during runs.Similar: Nike+, Endomondo, Runmeter V5.0Get RunningPlatform: iOS, AndroidPrice: $2.99Want to get fit but don’t know where to star t? Get Running will help you take the first step. With a nine-week training program its goal is to gradually build up your stamina (耐力) until you can run for 30 minutes (or 5000 meters). A human coaching voice guides you through the program with advice and encouragement. Track your progress and share the results online.Similar: Run Coach, adidas miCoach, RuntasticUpbeat WorkoutsPlatform: iOS, AndroidPrice: $2.99With this app, rather than spend hours putting together the perfect playlist before your next jog, you can just get up and go. Upbeat Workouts measures your SPM ( strides per minute ) and searches your device for songs that have a matching BPM ( beats per minute). Slow down and a more relaxing song will play; speed up and feel and energetic tune. You can also set a desired SPM for runs at a continuous speed.Similar: Tempo Run, UpBeatStrava Run, iRacePlatform: iOS, AndroidPrice: freeAre you the competitive type? If so, you will love Strava Run. In addition to mapping your runs via GPS and providing running statistics (统计资料), it lets you compete against other users and join challenges. Can you make it to the top of the leader board? Alternatively, search for real races in your city with iRace (iOS only) and challenge your friends to join.Similar: Yog, Sociercise, Race Finder25.To run with Runkeeper, you _______.A need to share your personal informationB should download it on C must have a phone with iOS platformD can get it without paying26.Which of the following is a beginner more likely to choose?A.The app similar to Tempo RunB. The app with a coaching voice.B.C. The app with audio updates. D. The app tracking your running routine.27.In what way is Upbeat Workouts different from other apps?A.It can run on iOS platformB. It’s designed with songs in it.C. It can choose songs according to your speed.D. Users spend less time setting the playlist.28.If you want to compete with other online, ________ is the best choice.A.RunKeeperB. Get RunningC. Upbeat WorkoutsD. Strava Run, iRaceCComputer viruses are electronic programs that destroy information on a computer or cause thecomputer to stop working.Computer experts say the “ I love you ” virus is one of the most dangerous they have ever seen. It began spreading May Fourth and quickly attacked computers in more than twenty countries. It may have caused a loss of 10 billion dollars in destroyed information and lost computer work time.The virus got in each computer as electronic mail that appeared to be sent from a friend with title “ I love you.” When the computer user opened the message, the virus did several things. First, it found the computer’s address book and immediately mai led copies of itself to each computer address listed. It destroyed electronic pictures kept in the computer’s memory. It also searched for secret words used to protect computer information and attempted to steal them. The “I love you” virus quickly spread through computers used in governments and private businesses. Electronic address books in these computers quickly sent copies of the virus to other business computers. Within days the “ I love you ” virus had spread from computer to computer around the wor ld.Experts in computer crime are still investigating the incident. They have followed electronic evidence to the Philippines where there are no laws against this kind of computer activity. It is a crime in many countries, but not in the Philippines.Inter national legal experts say new laws are needed that ban computer programs like the “ I love you” virus. They say people who invent and spread harmful programs must be punished. Computer experts say as many as 50,000 computer viruses may now exist and they warn computer users to be careful about what electronic mail they open.29.How does the “I love you” virus spread?A.By finding the computer’s address book and mailing copies of itself.B. By destroying the programs that protect computer information.C. By sending virus from business computers to government computers.D. By searching for secret words and attempting to steal them.30.What can we infer from the text?A.The “I love you” virus isn’t as dangerous as those ever seen.B. The “I love you” virus can sprea d through the internet quickly.C. The “I love you” virus copies electronic pictures in the computers.D. The “I love you” virus doesn’t exist in the Philippines.31.What do computer experts suggest?ws should be made against computer viruses.B. The government pay those who suffered a loss.C. Computer users be careful when opening e-mails.D. Those who invented the virus be punishedDRock-paper-scissors is a game played all around the world. As kids, we have relied on it to settle disagreements with friends--from which channel to watch to who gets to eat the last ice cream--all because we think the results are completely random.But are they?Wang Zhijian, PhD, a professor at Zhejiang University,believes that there is a regulation behind this simple game. So, he gathered 360 students, divided them into groups of six and had each group play 300 rounds of rock-paper-scissors, reported USA Today.After the first results, Wang thought he was wrong, because players chose each of the threemoves about one-third of the time, suggesting that the game is random after all. However, Wang later noticed a surprising regulation of behavior in the data.When players won a round, they usually stuck to the same choice. But when they lost,they tended to change to a more powerful move. For example, if Player A had just thrown down scissors to beat Player B's paper, Player A was more likely to throw down scissors again while Player B was likely to choose rock, since rock beats scissors.Acc ording to Wang, this might be a function that is called “conditional response”. So, for the next step of his study, as he told BBC, Wang plans to do some research about how human brains make quick decisions when competing.Now that you've learned how to pr edict the moves of your opponent, you’ll have an advantage next time you play rock-paper-scissors with your friends. But there is one problem:make sure they haven’t read about Wang's study, or your advantage will disappear.32. What does the underlined wor d “ random” in the first paragraph probably mean?A. EqualB. AmusingC. UnpredictableD. Strange33. What’s Wang’s discovery of the surprising regulation of behavior?A. 300 rounds of rock-paper-scissors can be done at onceB. The game rock-paper-scissors is random after all.C. The game is based on “conditional response”.D. The response of players doesn’t seem random.34. If Player A has used rock to beat Player B’s scissors, what will they probably do next?A. Player A is more likely to choose scissors.B. Player B is more likely to choose paper.C. Player A is more likely to choose paper.D. Player B is more likely to choose rock.35. What will Wang study in the future?A. How human brains make quick decisions in a competition.B. The functions of the game that are planted into our brains.C. How to improve players’ ability to predict opponents’ moves.D. The psychological cause of the players who always win.七选五:Effective time management is the primary means to a less stressful life. High school, especially during your senior year, can be frustrating (令人沮丧的). This is the time of your life when you are preparing yourself for college and the real world. 36● Plan each day.Planning your day can help you accomplish more and feel more in control of your life. Write a to-do list, putting the most important tasks at the top. 37● Prioritize(按重要性排列) your weekly schedule as a student.Prioritizing tasks will ensure that you spend your time and energy on those that are truly important to you. 38 Friends will want to hang out with you on the weekends, but they will understand if you explain to them that you need to study or catch up on college-related work.● 39Keep a diary of everything you do for three days to determine how you are spending your time. Look for time that can be used more wisely. For example, if you take a bus to school, you can use the time to catch up on reading. Thus, you can free up some time to exercise or spend with yourfamily or friends.● Get plenty of sleep, eat a healthy diet and exercise regularly.40 It will help improve your efficiency so that you can complete your work in less time.A.A healthy lifestyle can improve your focus and concentration.B.How do you manage your time doing all your activities without being overly stressed?C.Take a break before you need one.D.Any academic studies must come first, then extra curriculum activities, and then social life.E.Evaluate how you’re spending your time.F.You need to try every possible means to save time.G.Every daily activity should be considered seriously.第三部分英语知识运用(每题1.5分,共45分)第一节完形填空While my friend and I were having lunch the other day, a lady in a wheelchair was pushed by a waiter to the table next to us. He put an apron on her and 41 her a plate. We were 42 the lunch and I almost forgot the lady. But 43 something caught my attention. I couldn’t 44 but notice that she was alone, and that she was having a 45 time eating. She could hardly get her fork to her mouth. I looked at my 46 . An hour had passed and she was 47 alone.Should I see 48 she needed my help or would I 49 her if I offered? Here we were sitting right next to her talking and laughing while she 50 to feed herself. While I kept up the appearance of a joyful time, my heart 51 inside.After lunch, we walked on past her. As we approached the 52 , I knew I couldn’t leave all her alone 53 finding out if I could do something for her, so I 54 her table.“Excuse me, but I 55 you are alo ne. I wondered if I could help you?”56 she replied, “I… I would like to have a drink of water.”I 57 glass and helped her put it to her 58 . She smiled and said, “You are an angel.”I have never thought of myself as an angel, but the smile on her face and the 59 in her eyes told me we could all be angels to someone if we just won’t walk on by as if we haven’t seen a need. The beauty of her 60 will stay in my heart forever.41 A sold B showed C lent D prepare42 A ordering B enjoying C cooking D buying43 A suddenly B immediately C gradually D quickly44 A stand B help C wait D assist45 A great B boring C difficult D relaxing46 A table B food C plate D watch47 A still B also C even D always48 A when B if C how D where49 A embarrass B shock C frighten D confuse50 A managed B continued C pretended D struggled51 A prayed B cried C beat D failed52 A exit B table C street D restaurant53 A by B without C after D in54 A rush to B glanced at C return to D sat at55 A suggested B hoped C noticed D expected56 A Seriously B Coldly C Curiously D Doubtfully57 A picked up B found out C cleaned up D took out58 A seat B bag C lips D hands59 A sorrow B secret C power D light60 A personality B smile C kindness D action第二节语法填空A long time ago, there was a huge apple tree. A little boy came and 61 (lie) under it every day. He would climb to the tree top, eat the apples, and take a nap 62 the shade. He loved the tree and the tree loved to play with him.In the 63 (follow) years, the boy came and cut the branches to build a house, used the trunk on 64 he used to climb to make a boat and then never showed up for a long time.Finally, the boy returned. “Sorry, my boy, 65 I don't have anything for you anymore. No more66 (apple) for you...” the tree said. “I don't have teeth 67 (bite),” the boy replied. “No more trunk for you to climb on.” “I am 68 old for that now,” the boy said. “I really can’t give you anything...the only thing 69 (leave) is my dying roots,” the tree said with tears. “I don't need much now, just a place to rest. I’m tired after all these years,” the boy replied. “Good! Old tree roots are 70 best place to lean on and rest. Come, come, sit down with me and rest.” The boy sat down and the tree was glad, smi ling with tears.第四部分写作第一节短文改错(每题1分,共10分)In the summer holiday, we travelled to Qingdao and paid visit to my uncle there. It’s a long and bored journey.But the moment I arrived, I fall in love with the city. It’s such beautiful a city that I can h ardly find any word todescribe it. The streets are cleaning and the sky is blue. If you walk along the coast, you can feel the wind toblowing on your face. The sea is vast and sometimes you can find a boat or a ship. You may also do some fishingas far as it is permitted. Moreover, I think the driver there drive too fast in the street. You can never be too carefullywhen crossing the street.第二节书面表达(满分25分)假定你是李华。
河北省普通高中2015届高三上学期1月教学质量监测数学(理)试题 word版无答案
2014-2015年普通高中高三教学质量检测理科数学第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知集合2{|230},{|M x x x N x y =--<==,则M N =( )A .[)1,3B .(]1,3C .()1,-+∞D .()1,3 2、已知复数21z i=-,则z z -对应的点所在的象限为( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3、已知双曲线的一个焦点与抛物线28x y =0y ±=,则该双曲线的标准方程为( )A .2213x y -=B .2213y x -= C .221916x y -= D .221169x y -= 4、下列结论中正确的是( )A .“1x ≠”是“(1)0x x -≠”的充分不必要条件;B .已知随机变量ξ服从正态分布(5,1)N ,且(46)0.7P ξ≤≤=,则(6)0.3P ξ>=C .将一组数据中的每个数据都减去同一个数后,平均数与方差没有变化;D .某单位有职工750嗯,其中青年职工350嗯,中年职工250人,老年职工150人,为了解该单位职工的健康情况,应采用系统抽样的方法从中抽取样本。
5、若1cos 21sin 22αα+=,则tan 2α=( )A .54B .54-C .43D .43-6、已知数列{}{},n n a b 满足112,1a b ==,且11113114413144n n n n n n a a b b b a ----⎧=++⎪⎪⎨⎪=++⎪⎩,则1133()()a b a b +-=( )A .78 B .58 C .916 D .7167、执行如图所示的程序框图,则输出c 的值是( )A .8B .13C .21D .348、如图所示的一个几何体的三视图,则该几何 体的表面积为( )A .124π+B .206π+C .126π+D .164π+9、已知函数()sin 2f x x =的图象向左平移6π个单位后,得到函数()y g x =的图象,下列关于()y g x =的说法正确的是( ) A .图象关于点(,0)3π-对称 B .图象关于6x π=-对称C .在区间5[,]126ππ--上单调递增 D .在区间[,]63ππ-上单调递减 10、已知抛物线28y x =的焦点为F ,直线(2)y k x =+与抛物线交于,A B 两点,则直线FA 与直线FB 的斜率之和为( ) A .0 B .2 C .-4 D .4 11、函数()sin23(21)1(39)xf x x x π=----≤≤的所有零点之和为( )A .6B .10C .12D .1812、已知()2(ln )f x x x a a =-+,则下列结论中错误的是( )A .()0,0,0a x f x ∃>∀>≥B .()0,0,0a x f x ∃>∃>≤C .()0,0,0a x f x ∀>∀>≥D .()0,0,0a x f x ∀>∃>≤第Ⅱ卷本卷包括必考题和选考题两部分第13题-第21题为必考题,每个试题考生都必须作答,第22题-第24题为选考题,考生根据要求作答。
河北省2015届高三数学教学质量监测试卷 理(一)
河北省“五个一名校联盟” 2015届高三教学质量监测(一)数学(理科)试卷(满分:150分,测试时间:120分钟) 第I 卷(选择题,共60分)一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{}0232<+-=x x x A ,{}822<<=xx B ,则 ( )A.B A =B.B A ⊆C.B A ⊇D.∅=⋂B A2.已知复数iz 2321+-=,则 =+||z z ( )A.i 2321--B.i 2321+-C. i 2321+D. i 2321-3.已知113::<+≥x q k x p ,,如果p 是q 的充分不必要条件,则实数k 的取值范围是 ( ) A. ),2[+∞B. ),2(+∞C. ),1[+∞D. ]1,(--∞4.在等差数列{}n a 中,9a =12162a +,则数列{}n a 的前11项和11S = ( )A .24B .48C .66D .1325.在154)212(+x 的展开式中,系数是有理数的项共有 ( )A.4项B.5项C.6项D.7项6.b a ,2,1==b 且a b a ⊥+)(,则a 与b 的夹角为( )A.30 B.60 C.120 D.1507.学校计划利用周五下午第一、二、三节课举办语文、数学、英语、理综4科的专题讲座,每科一节课,每节至少有一科,且数学、理综不安排在同一节,则不同的安排方法共有 ( ) A.36种 B. 30种 C. 24种 D. 6种8.如图给出的是计算1111352013+++的值的一个程序框图,则判断框内应填人的条件是 ( )A .1006≤iB .1006>iC .1007≤iD .1007>i9.设变量x ,y 满足约束条件,则目标函数z=x2+y2的取值范围是( )A. B. C. ( 1 , 16 ) D.10.一个几何体的三视图及尺寸如图所示, 则该几何体的外接球半径为 ( ) A. B.C. D.11.若圆C:222430x y x y ++-+=关于直线260ax by ++=对称,则由点(,)a b 向圆所作的切线长的最小值是 ( )开始,1==s i 否结束输出s是121-+=i s s 1+=i i 5 5 6 5 56626俯视图 侧视图A. 2B. 4C. 3D.612.已知定义在R 上的函数)(x f 是奇函数且满足)()23(x f x f =-,3)2(-=-f ,数列{}n a 满足11-=a ,且21n nS a n n =⨯+,(其中n S 为{}n a 的前n 项和),则=+)()(65a f a f ( ).A .3-B .2-C .3D .2第II 卷(非选择题,共90分)本卷包括必考题和选考题两部分 。
河北省石家庄市2015届高三一模考试数学试题(理科扫描版)
p
0 100 200
49 144
35 72
25 144
………………10 分
49 35 25 250 100 200 144 72 144 3 5 250 或 EX 100 E 100 2 . 12 3 EX 0
…………12 分
因为 EF ∥ PC , 所以
AE AF 1 = . -------------4 EP FC 3
证明二 在棱 PA 上取点 E ,使得 连接 AC,BD 交于点 F ,
AE 1 ,------------2 EP 3
因为AD ∥ BC,
AF AD 1 , FC BC 2 AE AF 所以 , EP FC 所以
所以, EF ∥ PC 因为 PC 平面 BDE , EF
平面 BDE
所以 PC ∥平面 BDE -------------4 (2)取 BC 上一点 G 使得 BG 2, 连结 DG ,则 ABGD 为正方形. 过 P 作 PO ⊥平面 ABCD ,垂足为 O . 连结 OA, OB, OD, OG .
2
2 2 ∴ 4( 1) 1 ( 1) 3 ,整理得 2 1 0 ,得 1 ……………………4 分
∴ an 2
n 1
, bn 1 3(n 1) 3n 2 ………………………………………………6 分
解法 2:∵ a1 1, an1 Sn 1(n N ), ∴ a2 S1 1 1, a3 S2 1 (1 1) 1 2 1,
n
( ) , pB () 18 解: (Ⅰ) 三个电子元件能正常工作分别记为事件 A, B, C , 则 pA
河北正定中学2015届上学期高三第一次考试数学 含答案
高三第一次月考试卷数学 第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{|ln }A x y x ==,集合{2,1,1,2}B =--,则A B =A.(1,2)B. {1,2}C. {1,2}--D.(0,)+∞2.已知函数()f x 的定义域为(1,0)-,则函数(21)f x +的定义域为A .1(1,)2-- B .(1,0)- C .(1,1)- D .1(,1)23.下列函数中,在其定义域内,既是奇函数又是减函数的是 A.x x f -=)(B 。
xx f 1)(=C.x x x f 22)(-=- D 。
x x f tan )(-=4.已知点1()22P -在角θ的终边上,且[0,2)θπ∈,则θ的值为A 。
56π B 。
23π C.116π D.53π5.下列说法错误的是 A .若2:,10p x R xx ∃∈-+=,则 2:,10p x R x x ⌝∀∈-+≠;B .“1sin 2θ=”是“30θ=”的充分不必要条件;C .命题“若0a =,则0ab ="的否命题是:“若0a ≠,则0ab ≠”;D .已知1cos ,:=∈∃x R x p ,01,:2>+-∈∀x x R x q ,则“q p ⌝∧”为假命题。
6.设函数()f x 的定义域为R ,0(0)x x≠是()f x 的极小值点,以下结论一定正确的是A .0,()()x R f x f x ∀∈≥B .0x -是()f x -的极大值点C .0x -是()f x -的极小值点 D .0x -是()f x --的极大值点 7.设a ∈R ,函数ax xe ex f -+=)(的导数是()f x ',若)(x f x '是偶函数,则=aA 。
1 B. 0 C 。
1-D 。
1±8.已知函数221,1(),1x x f x x ax x ⎧+<=⎨+≥⎩,若4)]0([2+=a f f ,则实数a = A 。
河北省石家庄市2015届高三毕业班教学质量检测(一)物理试题(扫描版)
河北省石家庄市2015届高三毕业班教学质量检测(一)物理石家庄市2015届高三复习教学质量检测(一)理科综合物理部分参考答案二、选择题:本大题共8小题,每小题6分。
在每小题给出的四个选项中,第14~18题只有一项符合题目要求。
第19~21题有多项符合题目要求。
全部选对的得6分,选对但不全的得3分,有选错的得0分。
22.(1)BCD (3分)(2)A(3分)(3) 甲(2分)23.(1)AB (3分)(2)0.49 0.02 (3分)(3)C(2分)24.(14分)解:(1)(7分)m处于静止状态,其合力为零。
(1分)以m为研究对象,由平衡条件得:水平方向F cos60°-F T cosθ=0 ①(2分)竖直方向F sin60°+F T sinθ-mg=0 ②(2分)由③④得θ=30°(2分)(2)(7分)M 、m 整体处于静止状态,可看做整体,系统所受合力为零。
(1分) 以M 、m 整体为研究对象。
由平衡条件得水平方向F cos60°-μF N =0 ③(2分)竖直方向F N +F sin60°-Mg -mg =0 ④(2分)由①②得μ=33(2分) 说明:其他方法正确可参照给分。
25.(16分)解:(1)(9分)物体A 上滑过程中,由牛顿第二定律得:sin mg ma θ=(2分)设物体A 滑到最高点所用时间为t ,由运动学公式:10v at =-(2分) 物体B 做平抛运动,如图所示,由几何关系可得:水平位移011cos372x v t =(2分);其水平方向做匀速直线运动,则2x v t =(2分)联立可得:16m/s v =(1分)(2)(7分)物体B 在竖直方向做自由落体运动,则2B 12h gt =(2分) 物体A 在竖直方向:01A 37sin 21v h = (2分) 如图所示,由几何关系可得:B A h h h += (2分)联立得:m 8.6=h (1分)26. (16分)解:(1)(6分)A 、B 都进入圆轨道后,两环具有相同角速度,则两环速度大小一定相等(1分)整体机械能守恒:25122322mg R mg R mv +=(3分)解得:v =2分)(2)(5分)运动过程中A 环距轨道最低点的最大高度为h 1,如图所示,整体机械能守恒:2232mg R mg R mg h R mgh +=-+()(3分) 解得:1103h R =(2分)(3)(5分)若将杆长换成,A 环离开底部的最大高度为h 2。
河北省石家庄市2015届高三上学期复习质量检测(一)英语试题 Word版含答案
石家庄市2015届高三复习教学质量检测(一)英语第一部分听力(每题1.5分,满分30分)1.What did the woman find?A A packetB A walletC An ID card2.Why is the coach special to the woman?A He teaches her to be kindB He is her father.C He is skilled in baseball3.What does the woman want most?A Much workB Less ambitionC A better job4.When are they likely to see a game together?A Next weekB Next monthC Next year5.What is probably the woman’s brother?A A photographerB A football playerC A singer6.What is the probable relationship between the speakers?A Doctor and patientB Wife and husbandC Secretary and boss7.What does the woman advise the man to do?A Enjoy his lifeB Change his dietC Give up all fat foods8.Where does the conversation probably take place?A At a railway stationB At an airportC At a hotel9.When will the man have to leave?A At 12:00B At 13:00C At 14:0010.Where did the theft happen?A In a shopB On a busC In the street11.What did the old lady think the man speaker was at first?A A passer-byB A policeman.C A thief12.What did the old lady do in the end ?A She apologizedB She ran offC She called the police.13.What’s probably the m an?A.A hostB. A pianistC. A journalist14.How much is the ticket for the jazz performance on Thursday night?A.$8 B $10 C $1215.When will the band Megablitz perform?A.On ThursdayB. On FridayC. On Saturday16.Where will the New Seventies Soul Night be held?A.At the Sound ClubB. At the Jazz CafeC. At the Queen’s Hall17.Why won’t the speaker come to work today?A.He is illB. His son is illC. He has to go to his son’s school.18.What does the speaker ask Raman to do?A.Contact the trainer.B. Book a roomC. Organize the projector19.How will Alison deal with the lunch?A.She will cook itB. She will order it from a cafe.C. She will take the people to a restaurant.20.What will everyone in the meeting need to have、A.A pen and a notebookB. A phone.C. A computer第二部分阅读理解(每题2分,共40分)AWhen I entered Oxford University, I wasn’t particularly interested in joining the rowing club. I just wanted to know what it’s like to row in one of those narr ow boats, so I signed up with the intention of quitting after the first session. At least that’s what I thought.Six months later, I found myself sitting in a rowing boat with three teammates, waiting for a 2,000-meter race to start. In the boat alongs ide us sat a crew from the university’s team, two of whom had won medals at the Beijing Olympics in 2008. My crew was only rowing at college-level and we had only trained a few times as a team, so facing such strong athletes was quite terrifying. I tried to focus my mind on the race, not on my opponents.Go! We pushed off with all our might and rowed as fast as we could. As we reached the halfway mark, the other crew was ahead of us. But to my amazement we were gaining on them. If we could win the race, we would get through to the final! We pushed even harder, ignoring the pain in our legs and drawing energy from the cheers of our college friends. I could already sense the sweet taste of victory.But then, disaster. One of my teammates lost control of his oar(桨), knocking him nearly out of the boat. We came to a sudden stop, and watched as our opponents crossed the finishing line. It was the most disappointing moment in my life. I wanted to punch my teammate who had ruined everything and push him into the water. But when I saw how angry he was with himself, I gave him a hug.Although we lost, I’m still proud of how well we did that day facing a much stronger team. What I remember now is the thrill of racing, not the pain of defeat.21.Why did the author join the rowing club?A.He was fond of rowingB. He signed with the team.C. He was curious about rowing.D. He wanted to quit another club.22.How did the author feel before the race?A.WorriedB. AmazedC. DisappointedD. Surprised23.Why did they lose the game?A.They hurt their legs.B. The opponents were too strong.C. They were worn out.D. A group member made a mistake.24. Which can be the best title of the text?A. A Valuable LessonB. 2000 Meters I will Never ForgetC. Learn to ForgiveD. Never Quit Until the Last MinuteBLet’s check out some of the best-rated running cell phone apps that make our fitness program more efficient and more fun.RunKeeperPlatform: iOS, AndroidPrice: free, pro version $10Voted best running app on , a US-based Weblog on software, Runkeeper lets you track your running activities on a map, including data on distance, time and calories burned. Compare your performance with previous runs, and share new personal bests on social media. The pro version adds more features, such as audio updates during runs.Similar: Nike+, Endomondo, Runmeter V5.0Get RunningPlatform: iOS, AndroidPrice: $2.99Want to get fit but don’t know where to start? Get Running will help you take the first step. With a nine-week training program its goal is to gradually build up your stamina (耐力) until you can run for 30 minutes (or 5000 meters). A human coaching voice guides you through the program with advice and encouragement. Track your progress and share the results online.Similar: Run Coach, adidas miCoach, RuntasticUpbeat WorkoutsPlatform: iOS, AndroidPrice: $2.99With this app, rather than spend hours putting together the perfect playlist before your next jog, you can just get up and go. Upbeat Workouts measures your SPM ( strides per minute ) and searches your device for songs that have a matching BPM ( beats per minute). Slow down and a more relaxing song will play; speed up and feel and energetic tune. You can also set a desired SPM for runs at a continuous speed.Similar: Tempo Run, UpBeatStrava Run, iRacePlatform: iOS, AndroidPrice: freeAre you the competitive type? If so, you will love Strava Run. In addition to mapping your runs via GPS and providing running statistics (统计资料), it lets you compete against other users and join challenges. Can you make it to the top of the leader board? Alternatively, search for real races in your city with iRace (iOS only) and challenge your friends to join.Similar: Yog, Sociercise, Race Finder25.To run with Runkeeper, you _______.A need to share your personal informationB should download it on C must have a phone with iOS platformD can get it without paying26.Which of the following is a beginner more likely to choose?A.The app similar to Tempo RunB. The app with a coaching voice.B.C. The app with audio updates. D. The app tracking your running routine.27.In what way is Upbeat Workouts different from other apps?A.It can run on iOS platformB. It’s designed with songs in it.C. It can choose songs according to your speed.D. Users spend less time setting the playlist.28.If you want to compete with other online, ________ is the best choice.A.RunKeeperB. Get RunningC. Upbeat WorkoutsD. Strava Run, iRaceCComputer viruses are electronic programs that destroy information on a computer or cause the computer to stop working.Computer expert s say the “ I love you ” virus is one of the most dangerous they have ever seen. It began spreading May Fourth and quickly attacked computers in more thantwenty countries. It may have caused a loss of 10 billion dollars in destroyed information and lost computer work time.The virus got in each computer as electronic mail that appeared to be sent from a friend with title “ I love you.” When the computer user opened the message, the virus did several things. First, it found the computer’s address book and i mmediately mailed copies of itself to each computer address listed. It destroyed electronic pictures kept in the computer’s memory. It also searched for secret words used to protect computer information and attempted to steal them. The “I love you” virus q uickly spread through computers used in governments and private businesses. Electronic address books in these computers quickly sent copies of the virus to other business computers. Within days the “ I love you ” virus had spread from computer to computer around the world.Experts in computer crime are still investigating the incident. They have followed electronic evidence to the Philippines where there are no laws against this kind of computer activity. It is a crime in many countries, but not in the Philippines.International legal experts say new laws are needed that ban computer programs like the “ I love you” virus. They say people who invent and spread harmful programs must be punished. Computer experts say as many as 50,000 computer viruses may now exist and they warn computer users to be careful about what electronic mail they open.29.How does the “I love you” virus spread?A.By finding the computer’s address book and mailing copies of itself.B. By destroying the programs that protect computer information.C. By sending virus from business computers to government computers.D. By searching for secret words and attempting to steal them.30.What can we infer from the text?A.The “I love you” virus isn’t as dangerous as those ever seen.B. The “I love you” v irus can spread through the internet quickly.C. The “I love you” virus copies electronic pictures in the computers.D. The “I love you” virus doesn’t exist in the Philippines.31.What do computer experts suggest?ws should be made against computer viruses.B. The government pay those who suffered a loss.C. Computer users be careful when opening e-mails.D. Those who invented the virus be punishedDRock-paper-scissors is a game played all around the world. 错误!未找到引用源。
【真题】2015-2016年河北省石家庄市高三(上)期末数学试卷(理科)与答案
2015-2016学年河北省石家庄市高三(上)期末数学试卷(理科)一、本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|(x﹣1)(x+2)<0},B={x|﹣3<x<0},则A∩B=()A.(﹣∞,﹣2)B.(﹣2,0)C.(0,1)D.(1,+∞)2.(5分)若复数z=(i是虚数单位),则z的共轭复数为()A.1﹣2i B.1+2i C.﹣1﹣2i D.﹣1+2i3.(5分)下面四个条件中,使a>b成立的充分不必要条件是()A.|a|>|b|B.>C.a2>b2D.lga>lgb 4.(5分)设S n为等差数列{a n}的前n项和,若a1=1,S7=70,则a2=()A.2B.3C.4D.55.(5分)已知偶函数f(x)满足f(x+5)=f(x﹣5),且0≤x≤5时,f(x)=x2﹣4x,则f(2016)=()A.﹣1B.0C.1D.126.(5分)执行如图所示的程序框图,若输入的c的值为3,则输出的结果是()A.27B.9C.8D.37.(5分)设函数f(x)=sinωx(ω>0),将f(x)的图象向左平移个单位长度后,所得的图象与y=cosωx的图象重合,则ω的最小值等于()A.B.3C.6D.98.(5分)设x,y满足约束条件,若目标函数z=x+y的最大值为2,则实数a的值为()A.2B.1C.﹣1D.﹣29.(5分)设单位向量、对于任意实数λ都有|+|≤|﹣λ|成立,则向量、的夹角为()A.B.C.D.10.(5分)一个三棱锥的三视图如图所示,则该三棱锥的表面积为()A.2+2+B.16+2C.8+2D.8+11.(5分)过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2C.D.12.(5分)在菱形ABCD中,A=60°,AB=,将△ABD沿BD折起到△PBD的位置,若二面角P﹣BD﹣C的大小为,则三棱锥P﹣BCD的外接球体积为()A.πB.πC.πD.π二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)(1﹣2x)5的展开式中x3的项的系数是(用数字表示)14.(5分)某同学从语文、数学、英语、物理、化学、生物六科中选择三个学科参加测试,则数学和物理不同时被选中的概率为.15.(5分)已知a>0,且a≠1,设函数f(x)=的最大值为1,则a的取值范围为.16.(5分)已知P为椭圆+=1上一个动点,A(﹣2,1),B(2,﹣1),设直线AP和BP分别与直线x=4交于M、N两点,若△ABP与△MNP的面积相等,则|OP|的值为.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(10分)在△ABC中,BC=,∠A=60°.(Ⅰ)若cosB=,求AC的长;(Ⅱ)若AB=2,求△ABC的面积.18.(12分)已知数列{a n}的前n项和S n=﹣(n∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=a n•log3a n,求数列{b n}的前n项和.19.(12分)某上市公司为了解A市用户对其产品的满意度,从该市随机调查了20个用户,得到用户对其产品的满意度评分,并用茎叶图记录分数如图所示.(Ⅰ)根据样本数据估计A市用户对产品的满意度评分的平均值;(Ⅱ)根据用户满意度评分,若评分在70分以上(含70分),用户对产品满意,根据所给数据,以事件发生的频率作为相应事件发生的概率,若从A市随机抽取3个用户,记X表示对产品满意的用户个数,求X的分布列及均值.20.(12分)如图,三棱柱中ABC﹣A1B1C1中,点A1在平面ABC内的射影D为棱AC的中点,侧面A1ACC1为边长为2的菱形,AC⊥CB,BC=1.(Ⅰ)证明:AC1⊥平面A1BC;(Ⅱ)求二面角B﹣A1C﹣B1的大小.21.(12分)已知抛物线C1:x2=2py(p>0),点A(p,)到抛物线C1的准线的距离为2.(Ⅰ)求抛物线C1的方程;(Ⅱ)过点A作圆C2:x2+(y﹣a)2=1的两条切线,分别交抛物线于M,N两点,若直线MN的斜率为﹣1,求实数a的值.22.(12分)已知函数f(x)=lnx﹣mx.(Ⅰ)若f(x)的最大值为﹣1,求实数m的值;(Ⅱ)若f(x)的两个零点为x1,x2,且ex1≤x2,求y=(x1﹣x2)f′(x1+x2)的最小值.(其中e为自然对数的底数,f′(x)是f(x)的导函数)2015-2016学年河北省石家庄市高三(上)期末数学试卷(理科)参考答案与试题解析一、本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|(x﹣1)(x+2)<0},B={x|﹣3<x<0},则A∩B=()A.(﹣∞,﹣2)B.(﹣2,0)C.(0,1)D.(1,+∞)【解答】解:由A中不等式解得:﹣2<x<1,即A=(﹣2,1),∵B=(﹣3,0),∴A∩B=(﹣2,0),故选:B.2.(5分)若复数z=(i是虚数单位),则z的共轭复数为()A.1﹣2i B.1+2i C.﹣1﹣2i D.﹣1+2i【解答】解:z====2i+1,则z的共轭复数为1﹣2i.故选:A.3.(5分)下面四个条件中,使a>b成立的充分不必要条件是()A.|a|>|b|B.>C.a2>b2D.lga>lgb【解答】解:A.|a|>|b|,a>b不一定成立,例如取a=﹣2,b=1,因此不符合题意;B.,a>b不一定成立,例如取a=1,b=2,因此不符合题意;C.a2>b2,a>b不一定成立,例如取a=﹣2,b=1,因此不符合题意;D.lga>lgb⇒a>b>0⇒a>b,因此使a>b成立的充分不必要条件是lga>lgb.故选:D.4.(5分)设S n为等差数列{a n}的前n项和,若a1=1,S7=70,则a2=()A.2B.3C.4D.5【解答】解:∵S n为等差数列{a n}的前n项和,a1=1,S7=70,∴,解得d=3,∴a2=1+3=4.故选:C.5.(5分)已知偶函数f(x)满足f(x+5)=f(x﹣5),且0≤x≤5时,f(x)=x2﹣4x,则f(2016)=()A.﹣1B.0C.1D.12【解答】解:函数f(x)满足f(x+5)=f(x﹣5),可得函数的周期为:10.0≤x≤5时,f(x)=x2﹣4x,则f(2016)=f(﹣4)=f(4)=42﹣4×4=0.故选:B.6.(5分)执行如图所示的程序框图,若输入的c的值为3,则输出的结果是()A.27B.9C.8D.3【解答】解:模拟执行程序框图,可得a=1,b=2,S=3,c=3条件3<1不成立,执行c=b,可得c=2,S=23=8,输出S的值为8.故选:C.7.(5分)设函数f(x)=sinωx(ω>0),将f(x)的图象向左平移个单位长度后,所得的图象与y=cosωx的图象重合,则ω的最小值等于()A.B.3C.6D.9【解答】解:函数f(x)=sin(ωx)(ω>0)向左平移个单位后得到:g(x)=sin[ω(x+]=sin(ωx+ω)所得的图象与y=cosωx的图象重合,令:ω=kπ+(k∈Z)即:ω=6k+3,当k=0时,ω=3.故选:B.8.(5分)设x,y满足约束条件,若目标函数z=x+y的最大值为2,则实数a的值为()A.2B.1C.﹣1D.﹣2【解答】解:先作出不等式组的图象如图,∵目标函数z=x+y的最大值为2,∴z=x+y=2,作出直线x+y=2,由图象知x+y=2如平面区域相交A,由得,即A(1,1),同时A(1,1)也在直线3x﹣y﹣a=0上,∴3﹣1﹣a=0,则a=2,故选:A.9.(5分)设单位向量、对于任意实数λ都有|+|≤|﹣λ|成立,则向量、的夹角为()A.B.C.D.【解答】解:设单位向量、的夹角为θ,∵对于任意实数λ都有|+|≤|﹣λ|成立,∴对于任意实数λ都有|+|2≤|﹣λ|2成立,即++||||cosθ≤+λ2﹣2λ||||cosθ,即1++cosθ≤1+λ2﹣2λcosθ,即λ2﹣2λcosθ﹣(+cosθ)≥0恒成立,∴△=4cos2θ+4(+cosθ)≤0,整理可得(cosθ+)2≤0,再由(cosθ+)2≥0可得(cosθ+)2=0,故cosθ=﹣,∵θ∈[0,π],∴θ=故选:C.10.(5分)一个三棱锥的三视图如图所示,则该三棱锥的表面积为()A.2+2+B.16+2C.8+2D.8+【解答】解:由题意作图如右,△ABC与△ADC是全等的直角三角形,其中AB==3,BC=2,=S△ABC=×2×3=3,故S△ADC△BDC是等腰直角三角形,BC=CD=2,故S=×2×2=2,△BCD△ADB是等腰三角形,AB=AD=3,BD=2,故点A到BD的距离AE==,=×2×=,故S△BAD故表面积S=3+3+2+=8+,故选:D.11.(5分)过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2C.D.【解答】解:设F(c,0),则直线AB的方程为y=(x﹣c)代入双曲线渐近线方程y=﹣x得A(,﹣),由=2,可得B(﹣,﹣),把B点坐标代入双曲线方程﹣=1,即=1,整理可得c=a,即离心率e==.故选:C.12.(5分)在菱形ABCD中,A=60°,AB=,将△ABD沿BD折起到△PBD的位置,若二面角P﹣BD﹣C的大小为,则三棱锥P﹣BCD的外接球体积为()A.πB.πC.πD.π【解答】解:取BD中点E,连接AE,CE,则∠PEC=,PE=CE=设△BCD的外接圆的圆心与球心的距离为h,三棱锥P﹣BCD的外接球的半径为R,则,∴R=,h=,∴三棱锥P﹣BCD的外接球体积为=.故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)(1﹣2x)5的展开式中x3的项的系数是﹣80(用数字表示)=C5r(﹣2x)r,令r=3,得x3的项的系【解答】(1﹣2x)5的展开式的通项为T r+1数是C53(﹣2)3=﹣80故答案为:﹣8014.(5分)某同学从语文、数学、英语、物理、化学、生物六科中选择三个学科参加测试,则数学和物理不同时被选中的概率为.【解答】解:某同学从语文、数学、英语、物理、化学、生物六科中选择三个学科参加测试,基本事件总数n==20,数学和物理同时被选中的情况有:=4,∴数学和物理不同时被选中的概率为:p=1﹣=.故答案为:.15.(5分)已知a>0,且a≠1,设函数f(x)=的最大值为1,则a的取值范围为[,1).【解答】解:∵当x≤3时,f(x)=x﹣2,故f(3)=3﹣2=1,故当x=3时f(x)有最大值,故当x>3时,2+log a x≤1,故log a x≤﹣1,故,解得,a∈[,1),故答案为:[,1).16.(5分)已知P为椭圆+=1上一个动点,A(﹣2,1),B(2,﹣1),设直线AP和BP分别与直线x=4交于M、N两点,若△ABP与△MNP的面积相等,则|OP|的值为.【解答】解:设P(m,n),N(4,t),M(4,s),设m,n>0,即有+=1,①直线AB的方程为y=﹣x,P到AB的距离为d=,△PAB的面积为S=•2•=|m+2n|,由A,M,P共线,可得=,即有s=,由B,N,P共线,可得=,即有t=,即有|s﹣t|=||,则△PMN的面积为(4﹣m)•||,由△ABP与△MNP的面积相等,可得(4﹣m)2=m2﹣4,②解得m=,n2=,则|OP|==.故答案为:.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(10分)在△ABC中,BC=,∠A=60°.(Ⅰ)若cosB=,求AC的长;(Ⅱ)若AB=2,求△ABC的面积.【解答】解:(1)在△ABC中,BC=,∠A=60°.因为cosB=,则sinB=,…(2分)由正弦定理得:,即=,得AC=,…(5分)(2)在△ABC中,BC=,∠A=60°,AB=2.由余弦定理得:cos∠A==,则AC2﹣2AC﹣3=0,得AC=3.…(8分)所以△ABC的面积为S==.…(10分)18.(12分)已知数列{a n}的前n项和S n=﹣(n∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=a n•log3a n,求数列{b n}的前n项和.【解答】解:(Ⅰ)因为S n=﹣,=﹣,当n≥2时,S n﹣1两式相减得:a n=3n,因为a1=S1=3也满足.综上,a n=3n(n∈N*);(Ⅱ)b n=a n•log3a n=3n•n,则数列{b n}的前n项和T n=1•3+2•9+3•27+…+3n•n,3T n=1•9+2•27+3•81+…+3n+1•n,两式相减得:﹣2T n=3+9+27+…+3n﹣3n+1•n=﹣3n+1•n,化简得:T n=.19.(12分)某上市公司为了解A市用户对其产品的满意度,从该市随机调查了20个用户,得到用户对其产品的满意度评分,并用茎叶图记录分数如图所示.(Ⅰ)根据样本数据估计A市用户对产品的满意度评分的平均值;(Ⅱ)根据用户满意度评分,若评分在70分以上(含70分),用户对产品满意,根据所给数据,以事件发生的频率作为相应事件发生的概率,若从A市随机抽取3个用户,记X表示对产品满意的用户个数,求X的分布列及均值.【解答】解:(Ⅰ)由茎叶图知:样本平均数为:(50+60×3+70×6+80×8+90×2+8+6+7+9+3+5+7+8×3+2+4+5+6+6+7+8+9+6+8)=80,…(2分)估计A市用户对产品的满意度评分的平均值约为80分.…(4分)(2)样本数据中对产品满意的用户为16个,由题意得,从A市随机抽取一个用户,该用户对产品满意的概率为0.8,记X表示对产品满意的用户个数,X的可能取值为0,1,2,3,X~B(3,0.8)…(6分)P(X=0)==0.008,P(X=1)=,P(X=2)==0.384,P(X=3)=,…(8分)∴X的分布列为:X0123P0.0080.0960.3840.512…(10分)X的均值EX=0×0.008+1×0.096+2×0.384+3×0.512=2.4.…(12分)20.(12分)如图,三棱柱中ABC﹣A1B1C1中,点A1在平面ABC内的射影D为棱AC的中点,侧面A1ACC1为边长为2的菱形,AC⊥CB,BC=1.(Ⅰ)证明:AC1⊥平面A1BC;(Ⅱ)求二面角B﹣A1C﹣B1的大小.【解答】解:(1)由题意得A1D⊥平面ABC,∴平面A1ACC1⊥平面ABC,∵平面A1ACC1∩平面ABC=AC,CA⊥CB∴BC⊥平面A1ACC1∴BC⊥AC1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣2连接A1C∵侧面A1ACC1为菱形∴A1C⊥AC1,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣4∴AC1⊥平面A1BC,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)直角三角形A1AD中,∵AA1=2,AD=1,∴A1D=,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣6过C作CM∥A1D交A1C1于M点,分别以C为坐标原点,以CA,CB,CM的方向为x轴,y轴,z轴正方向建立如图所示的空间直角坐标系C﹣xyz,则C(0,0,0),B(0,1,0),D(1,0,0),A(2,0,0),A1(1,0,),由=,得C1(﹣1,0,),∴=(﹣3,0,),由=得B1(﹣1,1,),∴=(﹣1,1,),=(1,0,),﹣﹣﹣﹣﹣﹣﹣﹣8设平面A1B1C的一个法向量为=(x,y,z),由得,令z=1,解得=(﹣,﹣2,1)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣10由题得==(﹣3,0,)为平面A1BC的一个法向量,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣11cos<,>====,则<,>=.因此二面角B﹣A1C﹣B1的大小为.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣1221.(12分)已知抛物线C1:x2=2py(p>0),点A(p,)到抛物线C1的准线的距离为2.(Ⅰ)求抛物线C1的方程;(Ⅱ)过点A作圆C2:x2+(y﹣a)2=1的两条切线,分别交抛物线于M,N两点,若直线MN的斜率为﹣1,求实数a的值.【解答】解:(1)由抛物线定义可得:,∴p=2,∴抛物线C1的方程为:x2=4y.…(4分)(2)设直线AM,AN的斜率分别为k1,k2,将l AM:y﹣1=k1(x﹣2)代入x2=4y,得:x2﹣4k1x+8k1﹣4=0,>0,∴k1∈R,且k1≠1,由韦达定理得:x M=4k1﹣2,同理x N=4k2﹣2,…(6分)∴=(x M+x N)=k1+k2﹣1,…(8分)又∵直线l MN:y﹣1=k1(x﹣2)与圆相切,∴,整理可得:,同理,…(10分)∴k1,k2是方程3k2+4k(a﹣1)+a2﹣2a=0的两个根,…(11分)∴k1+k2=﹣,代入k MN=k1+k2﹣1=﹣1,解得a=1.…(12分)22.(12分)已知函数f(x)=lnx﹣mx.(Ⅰ)若f(x)的最大值为﹣1,求实数m的值;(Ⅱ)若f(x)的两个零点为x1,x2,且ex1≤x2,求y=(x1﹣x2)f′(x1+x2)的最小值.(其中e为自然对数的底数,f′(x)是f(x)的导函数)【解答】解:(Ⅰ)f(x)的导数为f′(x)=﹣m=,m≤0时,f′(x)>0,f(x)在(0,+∞)单调递增,f(x)=lnx﹣mx在(0,+∞)无最大值.m>0,易知当x∈(0,)时,f′(x)>0,f(x)在(0,)单调递增;当x∈(,+∞)时,f′(x)<0,f(x)在(,+∞)单调递减,故f(x)max=f()=ln﹣1=﹣1.即m=1.综上可得m=1.(Ⅱ)y=(x1﹣x2)f′(x1+x2)═(x1﹣x2)(﹣m)=﹣m(x1﹣x2).又,故lnx1﹣lnx2=mx1﹣mx2,即ln=m(x1﹣x2).故y=﹣m(x1﹣x2)=+ln=+ln,令g (t )=+lnt (t=≥e ).而g′(t )=+=>0,故g (t )在[e ,+∞)单调递增. 故g (t )min =g (e )=+1=.则y 的最小值为.赠送—高中数学知识点二次函数(1)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=-③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔xy1x 2x 0>a O∙ab x 2-=0)(>k f k x y1x 2x O∙ab x 2-=k<a 0)(<k f②x 1≤x 2<k ⇔③x 1<k <x 2 ⇔ af (k )<0④k 1<x 1≤x 2<k 2 ⇔xy1x 2x 0>a O ∙∙1k2k 0)(1>k f 0)(2>k f ab x 2-=xy1x 2x O∙<a 1k ∙2k 0)(1<k f 0)(2<k f ab x 2-=⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合xy1x 2x 0>a O ∙∙1k2k 0)(1>k f 0)(2<k fxy1x 2x O∙<a 1k∙2k 0)(1>k f 0)(2<k f⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上) ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a->,则()m f q =①若02b x a -≤,则()M f q = ②02b x a->,则()M f p =(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2b q a->,则()M f q =①若02b x a -≤,则()m f q = ②02b x a->,则()m f p =.x>O-=f(p)f (q)()2bf a-0x x>O-=f(p) f(q) ()2b f a-0xx<O-=f (p) f (q) ()2bf a-x<O-=f (p)f(q)()2b f a-x<O-=f (p)f(q)()2bf a-0xx<O-=f (p)f (q)()2b f a-x<O-=f (p)f (q)()2b f a-0x第21页(共21页)。
2015年石家庄高三质检一考试英语试卷及答案
石家庄市2015届高三复习教学质量检测(一)英语参考答案听力(20×1.5=30):1—5 BACCA 6—10 ABCBC 11—15 CAACB 16—20 ABCBA阅读理解(15×2=30):21—24 CADB 25—28 DBCD 29—31 ABC 32—35 CDBA七选五阅读填空(5×2=10):36—40 BGDEA完形填空(20×1.5=30):41—45 DBABC 46—50 DABAD 51—55 BABCC 56—60 DACDB语法填空(10×1.5=15):61. lay 62. under/in 63. following 64. which65. but66. apples 67. to bite 68. too 69. left70. the短文改错(10×1=10):参考答案In the summer holiday, we travelled to Qingdao and paid ∧ visit to my uncle there.aIt’s a long and bored journey. But the moment I arrived, I fall in love with the city.boring fellIt’s such beautiful a city that I can hardly find any word to describe it. The streets are cleaning andso clean the sky is blue. If you walk along the coast, you can feel the wind to blowing on your face.The sea is vast and sometimes you can find a boat or a ship. You may also do some fishing as far aslongit’s permitted. Moreover, I think the driver there drive too fast in the street. You can never be However driverstoo careless when crossing the street.careful书面表达(满分25分):One possible version:Dear Tom,I’m so glad to receive your email. I’m really sorry for this late reply.Recently, I’ve been so busy with an important exam at the beginning of the new term that I failed to reply to your letter in time. As a senior III student, I had to devote most of my time to reviewing my lessons during the summer vacation. However, I still managed to spare some time to travel to several places of interest and read novels to refresh myself.In the new term, I’ll work hard and try to make greater progress, hoping to be admitted to my dream university.Best wishes. (105)Yours sincerely,Li Hua书面表达评分细则1、本题总分为25分,按5个档次给分。
河北省石家庄市2015届高三毕业班教学质量检测(一)数学(理)试题 Word版含答案
石家庄市2015届高三复习教学质量检测(一)高三数学(理科)(时间120分钟,满分150分)一、选择题(每小题5分,共60分) 1.复数21i i =- A .1i + B .1i - C .1i - D .12i -2.已知集合2{|230}A x x x =--≤,{0,1,2,3,4}B =,则AB =A .{1,2,3}B .{0,1,2,3}C .{1,0,1,2,3}-D .{0,1,2}3.已知向量(2,6)=--a ,||=b ,10⋅=-a b ,则向量a 与b 的夹角为 A .150︒ B .30-︒ C .120︒ D .60-︒4.已知双曲线2221()4x y a R a -=∈的右焦点与抛物线212y x =的焦点重合,则该双曲线的离心率为A .35 B C D 5.设()f x 是定义在R 上的周期为3的函数,当[2,1)x ∈-时,242,20(),,01x x f x x x ⎧--≤≤=⎨<<⎩,则5()2f =A .1-B .1C .12D .0 6.设a 、b 表示不同的直线,α、β、γ表示不同的平面,则下列命题中正确的是 A .若a α⊥且a b ⊥,则//b α B .若γα⊥且γβ⊥,则//αβ C .若//a α且//a β,则//αβ D .若//γα且//γβ,则//αβ7.已知函数3()sin34(,)f x a x bx a R b R =++∈∈,'()f x 为()f x 的导函数,则(2014)(2014)'(2015)'(2015)f f f f +-+--=A .8B .2014C .2015D .08.为了得到函数3cos 2y x =的图象,只需把函数3sin(2)6y x π=+的图象上所有的点A .向右平行移动3π个单位长度 B .向右平行移动6π个单位长度 C .向左平行移动3π个单位长度 D .向左平行移动6π个单位长度9.阅读如下程序框图,运行相应的程序,则程序运行后输出的结果为A .7B .9C .10D .11 10.二项式71(2)x x+的展开式中31x的系数是A .42B .168C .84D .2111.某几何体的三视图如右图,若该几何体的所有顶点都在一个球面上,则该球面的表面积为A .4πB .283π C .443π D .20π侧视图俯视图正视图12.设函数()2(,x f x e x a a R e =+-∈为自然对数的底数),若曲线sin y x =上存在点00(,)x y ,使得00(())f f y y =,则a 的取值范围是A .1[1,1]e e --++B .[1,1]e +C .[,1]e e +D .[1,]e二、填空题(每题5分,共20分)13.曲线23(x y e e =+为自然对数的底数)在0x =处的切线方程为_____.14.实数,x y 满足402200,0x y x y x y +-≤⎧⎪-+≥⎨⎪≥≥⎩,则x y -的最小值为_____.15.已知圆22:1C x y +=,过第一象限内一点(,)P a b 作圆C 的两条切线,切点分别为A B 、,若60APB ∠=︒,则a b +的最大值为_____.16.观察右图的三角形数阵,依此规律,则第61行的第2个数是_____.... ... ... ...11 27 40 40 27 119 18 22 18 97 11 11 75 6 53 31三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤).17.(本小题满分10分)在ABC ∆中,角A 、B 、C 的对边长分别为a 、b 、c ,且3a =,2b =,2A B =,求co s B 和c 的值.18.(本小题满分12分)已知{}n a 为公差不为0的等差数列,13a =,且1a 、4a 、13a 成等比数列. (I )求数列{}n a 的通项公式;(II )若2n n n b a =,求数列{}n b 的前n 项和.19.(本小题满分12分)某学校为了解学生身体发育情况,随机从高一年级中抽取40人作样本,测量出他们的身高(单位:cm ),身高分组区间及人数见下表:2148ba[175,180][170,175)[165,170)[160,165)[155,160)人数分组(I )求a 、b 的值并根据题目补全频率分布直方图;(II )在所抽取的40人中任意选取两人,设Y 为身高不低于170cm 的人数,求Y 的分布列及期望.20.(本小题满分12分)如图所示,在四棱锥P ABCD -中,底面ABCD 为正方形,侧棱PA ⊥底面ABCD ,1PA AD ==,E 、F 分别为PD 、AC 的中点.(I )求证://EF 平面PAB ;(II )求直线EF 与平面ABE 所成角的大小.21.(本小题满分12分)定长为3的线段AB 的两个端点A 、B 分别在x 轴、y 轴上滑动,动点P 满足2BP PA =. (I )求点P 的的轨迹曲线C 的的方程;(II )若过点(1,0)的直线与曲线C 交于M 、N 两点,求OM ON ⋅的最大值.22.(本小题满分12分)已知函数2()ln ,f x x x ax a R =+-∈. (I )若3a =,求()f x 的单调区间;(II )若()f x 有两个极值点1x 、2x ,记过点11(,())A x f x ,22(,())B x f x 的直线的斜率为k ,问是否存在a ,使22ak a =-?若存在,求出a 的值;若不存在,请说明理由. 石家庄市2015届高三第一次质量检测数学理科答案一、选择题:1-5CBCDA 6-10DADBC 11-12BA 二、填空题:13.24y x =+ 14.1- 15. 16.3602 三、解答题 17.因为c=2,不合题意舍去,所以52c =.....................................10分 18.解(1)设{}n a 的公差为d ,由题意得2(33)3(312)d d +=+,得2d =或0d =(舍),……………………2分所以{}n a 的通项公式为3(1)221n a n n =+-=+……………………4分 (2)2(21)2nnn n b a n ==+123325272(21)2n n S n =+++++………………①…………②……………………6分222222,............2sin sin sin 3cos .............62sin 2494cos 2629100 (85)2c= (92)==∴===+-+-==-+==a bA B A BA aB B b a c b c B ac cc c c 解:分sinA=sin2B=2sinBcosB.........4分分分解得或分23412325272(21)2n n S n +=+++++①-②得123132222222(21)2n n n S n +-=++++-+…………………8分1+12(12)22(21)2122(21)2n n n n n +-=+-+-=---……………………10分 ∴1(21)22n n S n +=-+……………………12分19. 解:(1)解:a=6 b=10……………………………2分……….5分(2)P (Y=0)=13063240228=C CP (Y=1)=6528240112128=C C C P (Y=2)=13011240212=C C35E (P )=.…………………………12分20(1)分别取PA 和AB 中点M 、N ,连接MN 、ME 、NF ,则=NF ∥12AD ,=ME ∥12AD ,所以=NF ∥ME ,∴四边形M E F N为平行四边形.-------------2∴EF MN ∥,又,EF PAB ⊄平面,MN PAB ⊂平面∴EF ∥PAB 平面.- ------------4(2) 由已知得,底面ABCD 为正方形,侧棱PA ⊥底面ABCD ,所以AP AB AD ,,两两垂直.如图所示,以A 为坐标原点,分别以,,为轴轴,轴,z y x 的正方向,建立空间直角坐标系x y z A -,所以(001),(000),B (1P A C D ,,,,,,,,,,1111(0),(0)2222E F ,,,,,所以,11(0)22EF =-,,, 11(0),(100)22AE AB ==,,,,,- ------------6设平面ABE 法向量(,,)n a b c =,0,0,n AE n AB ==所以11022b c a ⎧+=⎪⎨⎪=⎩令1,0,1b a c ===-则 所以(0,1,1)n =-为平面ABE 的一个法向量 -------------8 设直线EF 与平面ABE 所成角为α, 于是1sin cos ,2EF n EF n EF nα=<>==.-------------10所以直线EF 与平面ABE 所成角为6π. -------------12 解法2:在平面PAD 内作EH ∥PA H 于, 因为侧棱PA ⊥底面ABCD ,所以EH ⊥底面ABCD . -------------6E 为PD 的中点,12EH =,1111224ABFS =⨯⨯= 11111334224E ABF ABF V S EH -==⨯⨯= -------------8设点F 到平面ABE 的距离为h,E ABF F ABE V V --=1112224ABES AB AE =⨯⨯=⨯⨯=1133ABFABES EH Sh =,h =-------------10设直线EF 与平面ABE 所成角为α,1sin 2h EF α==,所以直线EF 与平面ABE 所成角为6π. -------------1221.解:(1)设A (0x ,0),B (0,0y ),P (,x y ),由2BP PA =得,00(,)2(,)x y y x x y -=--,即000032()223x x x x x y y y y y⎧=-=⎧⎪⇒⎨⎨-=-⎩⎪=⎩,————————————————————2分 又因为22009x y +=,所以223()(3)92x y +=,化简得:2214x y +=,这就是点P 的轨迹方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
石家庄市2015届高三复习教学质量检测(一)高三数学(理科)(时间120分钟,满分150分)第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、复数21ii =-( ) A .1i + B .1i - C .1i - D .12i - 2、已知集合2{|230},{0,1,2,3,4}A x x x B =--≤=,则集合AB =( )A .{}1,2,3B .{}0,1,2,3C .{}1,0,1,2,3-D .{}0,1,2 3、已知向量(2,6),10,10a b a b =--=⋅=,则向量a 与b 的夹角为( ) A .150 B .30- C .120 D .60-4、已知双曲线2221()4x y a R a -=∈的右焦点与抛物线212y x =的焦点重合,则该双曲线的离心率为( )A .35 B .3 C .3 D .55、设()f x 是定义在R 上的周期为3的函数,当[]2,1x ∈-时,()2422001x x f x xx ⎧--≤≤=⎨<<⎩,则5()2f =( ) A .1- B .1 C .12D .0 6、设,a b 表示不同的直线,,,αβγ表示不同的平面,则下列命题中正确的是( ) A .若a α⊥且a b ⊥,则//b α B .若γα⊥且γβ⊥,则//αβC .若//a α且//a β,则//αβD .若//γα且//γβ,则//αβ 7、已知函数()3sin34(,)f x a x bx a R b R =++∈∈,()f x '为()f x 的导函数, 则()()2014(2014)2015(2015)f f f f ''+-+--=( ) A .8 B .2014 C .2015 D .08、为了得到函数3cos 2y x =的图象,只需把函数3sin(2)6y x π=+的图象上所有的点( )A .向右平移动3π个单位长度 B .向右平移动6π个单位长度 C .向左平移动3π个单位长度 D .向左平移动6π个单位长度9、阅读如下的程序框图,运行相应的程序,则程序运行后输出的结果为( )A .7B .9C .10D .11 10、二项式71(2)x x+的展开式中31x 的系数是( ) A .42 B .168 C .84 D .2111、某几何体的三视图如右图,若该几何体的所有顶点都 在一个球面上,则该球的表面积为( ) A .4π B .283πC .443πD .20ο12、设函数()2(,xf x e x a a R e =+-∈为自然对数的底数),若曲线sin y x =上存在点00(,)x y ,使得00(())f f y y =,则a 的取值范围是( )A .11,1e e -⎡⎤-++⎣⎦ B .[]1,1e + C .[],1e e + D .[]1,e第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上。
. 13、曲线23(x y e e =+为自然数的底数)在0x =处的切线方程为14、实数,x y 满足条件402200,0x y x y x y +-≤⎧⎪-+≥⎨⎪≥≥⎩,则z x y =-的最小值为15、已知圆22:1C x y +=,过第一象限内一点(,)P a b 作圆C 的两条切线,切点分别为,A B ,若60APB ∠=,则a b +的最大值为16、观察右图的三角形数阵,依次规律, 则第61行的第2个数是三、解答题:本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤 17、(本小题满分12分)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且3,2,2a b A B ===,求cos B 和c 的值。
18、(本小题满分12分){}n a 为公差不为0的等差数列,13a =,且1413,,a a a 成等比数列 (1)求数列{}n a 的通项公式;(2)若2n n n b a =,求数列{}n b 的前n 项和。
19、(本小题满分12分)某学校为了解学生身体发育情况,随机从高一学生中抽取40人作样本,测量出他们的身高(单位:cm ),身高分组区间及人数见下表:(1)求,a b 的值并根据题目补全直方图;(2)在所抽取的40人中任意选取两人,设Y 为身高超过170cm 的人数,求Y 的分布列及数学期望。
20、(本小题满分12分)如图所示,在四棱锥P ABCD -中,底面ABCD 为正方形, 侧棱PA ⊥底面ABCD ,1,,PA AD E F ==分别为,PD AC 的中点。
(1)求证://EF 平面PAB ;(2)求直线EF 与平面ABE 所成角的大小。
21、(本小题满分12分)定长为3的线段AB 的两个端点,A B 分别在x 轴,y 轴上滑动,动点P 满足2BP PA =. (1)求点P 的轨迹曲线C 的方程;(2)若过点()1,0的直线与曲线C 交于,M N 两点,求OM ON ⋅的最大值。
22、(本小题满分12分)已知函数()2ln ,f x x x ax a R =+-∈ (1)若3a =,求()f x 的单调区间;(2)若()f x 由两个极值点12,x x ,记过点1122(,()),(,())A x f x B x f x 的直线的斜率k ,问是否存在a ,使22ak a =-,若存在,求出a 的值,若不存在,请说明理由。
石家庄市2015届高三第一次质量检测数学理科答案一、选择题:1-5CBCDA 6-10DADBC 11-12BA二、填空题:13.24y x =+ 14.1- 15. 16.3602 三、解答题 17.222222,............2sin sin sin 3cos .............62sin 2494cos 2629100 (85)2c= (92)==∴===+-+-==-+==a bA B A BA aB B b a c b c B ac cc c c 解:分sinA=sin2B=2sinBcosB.........4分分分解得或分因为c=2,不合题意舍去,所以52c =.....................................10分 18.解(1)设{}n a 的公差为d ,由题意得2(33)3(312)d d +=+,得2d =或0d =(舍),……………………2分所以{}n a 的通项公式为3(1)221n a n n =+-=+……………………4分 (2)2(21)2n n n n b a n ==+123325272(21)2n n S n =+++++………………①…………②……………………6分①-②得123132222222(21)2n n n S n +-=++++-+…………………8分1+12(12)22(21)2122(21)2n n n n n +-=+-+-=--- (10)分∴1(21)22n n S n +=-+……………………12分 19. 解:(1)解:a=6 b=10……………………………2分……….5分(2)P (Y=0)=130********=C C P (Y=1)=6528240112128=C C C P (Y=2)=13011240212=C C23412325272(21)2n n S n +=+++++…………………11分 35E(P )=.…………………………12分 20(1)分别取PA 和AB 中点M 、N ,连接MN 、ME 、NF ,则=NF ∥12AD ,=ME ∥12AD ,所以=NF ∥ME , ∴四边形MEFN 为平行四边形. -------------2∴EF MN ∥,又,EF PAB ⊄平面,MN PAB ⊂平面∴EF ∥PAB 平面.- ------------4(2) 由已知得,底面ABCD 为正方形,侧棱PA ⊥底面ABCD ,所以AP AB AD ,,两两垂直. 如图所示,以A 为坐标原点,分别以,,为轴轴,轴,z y x 的正方向,建立空间直角坐标系xyz A -,所以(001),(000),B(1,0,0),(110),(010)P A C D ,,,,,,,,,,1111(0),(0)2222E F ,,,,,所以,11(0)22EF =-,,, 11(0),(100)22AE AB ==,,,,,- ------------6设平面ABE 法向量(,,)n a b c =,0,0,n AE n AB ==所以11022b c a ⎧+=⎪⎨⎪=⎩令1,0,1b a c ===-则 所以(0,1,1)n =-为平面ABE 的一个法向量 -------------8 设直线EF 与平面ABE 所成角为α,于是1sin cos ,2EF n EF n EF nα=<>==.-------------10所以直线EF 与平面ABE 所成角为6π. -------------12 解法2在平面PAD 内作EH ∥PA H 于, 因为侧棱PA ⊥底面ABCD ,所以EH ⊥底面ABCD . -------------6E 为PD 的中点,12EH =,1111224ABFS =⨯⨯= 11111334224E ABF ABFV SEH -==⨯⨯= -------------8设点F 到平面ABE 的距离为h,E ABF F ABE V V --=1112224ABES AB AE =⨯⨯=⨯⨯=1133ABFABES EH Sh =,h =设直线EF 与平面ABE 所成角为α,1sin 2h EF α==,所以直线EF 与平面ABE 所成角为6π. -------------1221.解:(1)设A (0x ,0),B (0,0y ),P (,x y ),由2BP PA =得,00(,)2(,)x y y x x y -=--,即000032()223x x x x x y y y y y⎧=-=⎧⎪⇒⎨⎨-=-⎩⎪=⎩,————————————————————2分又因为22009x y +=,所以223()(3)92x y +=,化简得:2214x y +=,这就是点P 的轨迹方程。
————————————————————4分(2)当过点(1,0)的直线为0y =时,(2,0)(-2,0)4OM ON ==-当过点(1,0)的直线不为0y =时可设为1x ty =+,A (1x , 1y ),B (2x ,2y )联立22141x y x ty ⎧+=⎪⎨⎪=+⎩并化简得:22(4)230t y ty ++-=,由韦达定理得:12224t y y t +=-+,12234y y t =-+, ————————————————————6分所以212121212121222222222(1)(1)(1)()132414(4)1717(1)1444444OM ON x x y y ty ty y y t y y t y y t t t t t t t t t t =+=+++=++++---+-++=+++===-++++++————————————————————10分又由222412(4)16480t t t ∆=++=+>恒成立,所以t R ∈,对于上式,当0t =时,()m a x 14O M O N=综上所述OM ON 的最大值为 14…………………………………………12分22.解:(Ⅰ)()f x 的定义域为(0,)+∞,当3a =时,21123()23x x f x x x x+-'=+-=当102x <<或1x >,时,()0f x '>,........................2分 当112x <<时,()0f x '<.......... ()f x ∴的单调递增区间为1(0,),(1,)2+∞,单调递减区间为1(,1)2..........4分(Ⅱ)2112()2x axf x x a x x+-'=+-=令2()21u x x ax =-+,则28a ∆=-,1当0∆<,即a -<时,()0f x '>,()f x ∴在(0,)+∞上单调递增,此时()f x 无极值; ..............5分 2当0∆=,即a =±()0f x '≥,()f x ∴在(0,)+∞上单调递增,此时()f x 无极值.............6分 3当0∆>,即a <-或a >方程()0u x =有两个实数根12x x ==若a <-,两个根120x x <<,此时, 则当x ∈(0,)+∞时,()0f x '>,()f x ∴在(0,)+∞上单调递增,此时()f x 无极值.................7分若a >()0u x =的两个根120,0x x >>,不妨设12x x <,则当1(0,)x x ∈和2(,)x +∞时,()0f x '>,()f x 在区间1(0,)x 和2(,)x +∞单调递增, 当12(,)x x x ∈时,()0f x '<,()f x 在区间12(,)x x 上单调递减, 则()f x 在1x x =处取得极大值,在2x x =处取得极小值, 且12121,22a x x x x +== 22121112221212()()ln ln f x f x x x ax x x ax k x x x x -+---+==-- 1212121212ln ln ln ln ()2x x x x ax x a x x x x --=++-=---1212ln ln 222x x a ax x a -=-=--即121212ln ln 21x x x x a x x -==-+ ……………………(*)............9分11即11122121221ln 1x x x x x x x x x x --==++ 令12(0,1)x t x =∈,则上式等价于:1ln 1t t t -=+ 令()(1)ln 1g t t t t =+-+ 则11()ln 1ln t g t t t t t+'=+-=+ 令1()ln m t t t=+ 22111()0t m t t t t -'=-=< ()m t ∴在区间(0,1)上单调递减,且()(1)10m t m >=>,即()0g t '>在区间(0,1)恒成立()g t ∴在区间(0,1)上单调递增,且()(1)0g t g <=∴对(0,1)t ∀∈,函数()g t 没有零点, 即方程1ln 1t t t -=+在(0,1)t ∈上没有实根,.....................11分 即(*)式无解,∴不存在实数a ,使得22a k a =-. ..............12分。