第十三章一次函数
一次函数的课件ppt
函数 经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用
一般地,在一个变化过程中有两个变 量x与y,如果对于x的每 一个值, y都有唯 一的值与它对应,那么就说x是自变量, y是 因变量, 此时也称 y是x的函数.
函数概念包含:
汽车行使200㎞时,油箱中还有30l汽 油.
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
实际问题的函数解析式中自变量取值范围: 1. 函数自变量的取值范围既要使实际问题有意 义,同时又要使解析式有意义. 2.实际问题有意义主要指的是:
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
因此,自变量x的取值范围是0≦x≦500
注意:自变量的取值范围从两个方面来判断 1、实际问题要以实际情况来定
2、还要考虑函数关系式不能无意义
(1)如果小聪家每月用电x(x≥100)度,请 写出电费y 与用电量x的函数关系式。
解:电费y与用电量x的函数式为:y = 0.8(x-100)+57 (x≥100)
(2)若小明家8月份用了125度电,则应缴电费少? 解:当x=125时,y = 0.8×(125-100)+57 = 77 ∴应缴电费77元。
(1)问题的实际背景(例如自变量表示人数 时,应为非负整数等) .
(2)保证几何图形存在(例如等腰三角形底 角大于0度小于90度等).
13
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
一次函数图像与性质精选教学PPT课件
1994年的事了。偶尔在一本书里,读到前因后果,和那陌生女子的信。我低一低头,其实并没有泪。我想我懂。 我尚不及为人母,也不曾遭逢死亡,我却曾站在高处林下,看着爱人轻快远去,仿佛有鹳雀在他鞋底翻飞,他是急着赶另一个女子的约会吧?真相凄厉地直逼眼前。不是不知道,在泪落之前应该说再见,我却做不到。因为我爱他。
女子说,她也是母亲,也曾在山崩石裂瞬间,下车问路,一转头,车被人开走,而车上,有她还是稚婴的女儿。 她说她疯了一般扑向大团尾气和泥尘,手袋脱手而飞,惨号大叫,不知道自己说了什么,旁人也听不懂——她是归华美籍,此刻却忘尽英语,只用母语声声狂呼“救命”或者“放下我的孩子”。再也不可能是别的语言了。 高跟鞋妨碍她,一把拽脱劈手扔过去,她死命追赶。忘了人的速度不可能与车抗衡,看不见脚下的石砾、玻璃屑、柏油,唯一的念头就是:女儿。她只是一个纤细的亚裔女子,那一刻却如豹如鹰,势如疯虎,连歹徒也被吓倒了,弃车而逃。而她裙摆全撕,脚踝扭伤,脚底流下殷红的血。
教学重点
1、从实际问题中抽象概括出运动变化的规律,建 立函数关系式. 2、通过函数的性质及定义域范围求函数的最值.
教学难点 从实际问题中抽象概括出运动变化的规律,建立函 数关系式.
典型例题
例1 A校和B校各有旧电脑12台和6台,现决定送 给C校10台、D校8台,已知从A校调一台电脑到 C校、D校的费用分别是40元和80元,从B校调运 一台电脑到C校、D校的运费分别是30元和50元, 试求出总运费最低的调运方案,最低运费是多少?
我开始虚伪,听着谎言却装做一无所知;我学会窥探,四处打听如蛇之祟行,而十分看轻自己; 我的故事越编越好,好莱坞金牌编剧也没这般丰富多采,只为让他多留一分钟。
一次函数课件
一元一次不等式组解法演示
分别求解
首先分别求出每个一元一次不等式的解集。
找公共解集
找出所有一元一次不等式解集的交集,即为 不等式组的解集。可通过数轴法、口诀法或 取解集法等方法求解。
06
拓展:反比例函数和二次 函数简介
一元一次不等式解法演示
去分母 去括号 移项与合并同类项 系数化为1
当不等式两边有公共分母时,可通过去分母简化不等式,注意 保持不等号方向。
当不等式中有括号时,需先去掉括号,再合并同类项。注意括 号前为负号时,去括号后不等号方向要变化。
将不等式两边的同类项进行移项和合并,使不等式变得更简单 。移项时需注意不等号方向。
解出另一个未知数
通过代入后的方程解出另一个未知数。
回代求解
将已解出的未知数代入第一步中解出的未 知数的表达式中,求出第一个未知数的值 。
加减消元法步骤讲解
方程两边同时乘以适当的数
通过观察两个一次方程的系数,选择适当的 数使某个未知数的系数相等或相反。
解出一个未知数
通过加减后的方程解出一个未知数。
将两个方程相加或相减
点坐标是(-b/2a,(4ac-b²)/4a)。
三者之间联系与区别
联系
一次函数、反比例函数和二次函数都是描述变量之间关 系的数学模型,它们的图像都可以在坐标系中表示出来 。同时,三者之间可以相互转化,例如通过复合函数或 函数的变换等方式。
区别
一次函数的图像是一条直线,表示两个变量之间的线性 关系;反比例函数的图像是一对双曲线,表示两个变量 之间的反比关系;二次函数的图像是一条抛物线,表示 两个变量之间的非线性关系。此外,三者在定义、性质 、应用等方面也存在明显的差异。
沪科版八年级上册数学第十三章一次函数练习题(附解析)
沪科版八年级上册数学第十三章一次函数练习题一、单项选择题1、函数 y=3x﹣ 4 与函数 y=2x+3 的交点的坐标是()A.( 5, 6)B.( 7,﹣ 7)C.(﹣ 7,﹣ 17)D.( 7, 17)2、已知一次函数y=kx﹣ k,若 y 随 x 的增大而减小,则该函数的图象经过()A.第一,二,三象限B.第一,二,四象限C.第二,三,四象限D.第一,三,四象限3、函数 y=-x-1 的图像不经过()象限.A.第一B.第二C.第三D.第四4、若点 P(a, b)在第二象限内,则直线y=ax+b 不经过().A.第一象限B.第二象限C.第三象限D.第四象限5、如图表示某加工厂今年前 5 个月每个月生产某种产品的产量c(件)与时间A. 1 月至 3 月每个月产量逐月增t (月)之间的关系,则对这类产品来说,添,4、5 两月产量逐月减小该厂()B. 1 月至 3 月每个月产量逐月增添,4、 5 两月产量与 3 月持平C. 1 月至 3 月每个月产量逐月增添,4、 5 两月产量均停止生产6 、一次函数yx 4 和 y 2x 1D.1 月至 3 月每个月产量不变,4、5 两月均停止生产的图象的交点个数为()个A、没有B、一C、两D、无数7、若直线 y=3x+6 与坐标轴围成的三角形的面积为S,则 S等于().A. 6 B. 12 C.3 D. 24A.加油前油箱中节余油量y(升)与行驶时间t(小时)的函数关系是y=﹣ 8t+25B.途中加油 21 升C.汽车加油后还可行驶 4 小时8、张师D.汽车抵达乙地时油箱中还余油 6 升傅驾车从甲地到乙地,两地相距 500 千米,汽车出发前油箱有油 25 升,途中加油若干升,加油前、后汽车都以100 千米 / 小时的速度匀速行驶,已知油箱中节余油量 y(升)与行驶时间 t (小时)之间的关系以下图.以下说法错误的选项是().9、假如直线经过第一、二、四象限,则m 的取值范围是()A、 m<2B、m>1C、 m≠ 2D、 1<m<2A.甲、乙两人的速度相同B.甲先抵达终点10、甲、乙两人在一次百米赛C.乙用的时间短D.乙比甲跑的行程多跑中,行程 s(米)与赛跑时间t(秒)的关系以下图,则下列说法正确的选项是().11、一次函数y=kx+b 知足 x=0 时 y=-1;x=1 时, y=1,则一次函数的表达式为().A. y=2x+1 B. y=-2x+1 C.y=2x-1 D. y=-2x-112、如图 1,在矩形 ABCD中,动点 P 从点 B 出发,沿矩形的边由运动,设点 PA. 10 B. 16 C. 18 D.20 运动的行程为x,的面积为 y,把 y 看作 x 的函数,函数的图像如图 2 所示,则的面积为()13、一次函数的图像以下图,则以下结论正确的选项是()A.,B.,C.,D.,14、如图 1,在矩形中,动点从点出发,沿→→→方向运动至点处停止.设点运动的行程为,的面积为,假如对于的函数图象如图 2 所示,则当时,点应运动到().A.处B.处C.处D.处15、小李和小陆从 A 地出发,骑自行车沿同一条路行驶到 B 地,他们离出发地的距离 S(单位: km )和行驶时间 t(单位: h)之间的函数关系的图象以下图,依据图中的信息,有以下说法:(1)他们都行驶了 20 km;(2)小陆全程共用了 1.5h;(3)小李和小陆相遇后,小李的速度小于小陆的速度(4)小李在途中逗留了 0.5h 。
初中数学《一次函数》
初中数学《一次函数》全文共四篇示例,供读者参考第一篇示例:一次函数是初中数学中的一个重要知识点,也是进入代数学习的基础。
学习一次函数不仅可以帮助我们更好地理解数学运算的规律,更有利于我们在实际生活中进行问题的解决和分析。
本文将详细介绍一次函数的定义、性质、图像及应用等内容,希望对初中生了解和掌握一次函数有所帮助。
一次函数是指函数表达式为y=ax+b的函数,其中a和b为常数且a≠0。
a被称为函数的斜率,表示函数图像在横坐标上的变化速率;b被称为函数的截距,表示函数图像与纵坐标轴的交点坐标。
在数学中,一次函数也叫做线性函数,因为它的图像是一条直线。
一次函数的图像是一条具有一定斜率和截距的直线。
当a>0时,函数图像是递增的;当a<0时,函数图像是递减的。
斜率的绝对值越大,函数图像的倾斜程度就越大;截距的绝对值越大,函数图像与纵坐标轴的距离就越远。
一次函数在实际生活中有着广泛的应用。
某商品的售价与销量之间的关系就可以用一次函数来描述;某公司的收入与支出之间的关系也可以用一次函数来描述。
通过分析这些函数,我们可以更好地预测未来的趋势,帮助做出更明智的决策。
在学习一次函数时,我们需要掌握一些基本的性质和运算规律。
两条直线平行的条件是它们的斜率相等,截距不相等;两条直线垂直的条件是它们的斜率互为相反数。
我们还需要了解一次函数的表示方法、图像的绘制方法、函数值域和定义域等相关知识,才能更好地理解和运用一次函数。
初中数学《一次函数》是一个重要的知识点,对于学生的数学学习和实际应用都有着重要的意义。
通过认真学习和掌握一次函数的相关内容,我们可以更好地理解数学的规律,提高数学分析和解决问题的能力。
希望同学们能够认真对待一次函数的学习,掌握好基础知识,为将来更深入的数学学习打下坚实的基础。
【作者:初中数学家教老师】第二篇示例:初中数学《一次函数》一次函数是初中数学中的重要概念之一,也是数学学科中的基础知识之一。
初二数学《一次函数》课件
进阶习题
01
A. (4,4) 或 (-4,-4)
02
B. (4,-4) 或 (-4,4)
03
C. (-4,8) 或 (4,-8)
04
D. (-4,-8) 或 (4,8)
高阶习题
1
高阶习题1:已知一次函数 y = kx + b(k≠0) 经过点 (0,2),且与坐标轴围成的三角形的面积为 4,求这个一次函数的解析式.
2
A. y = x + 2 或 y = -x + 2
3
B. y = x - 2 或 y = -x + 2
高阶习题
01
C. y = x + 2 或 y = -x - 2
02
D. 以上都不对
03
高阶习题2:已知一次函数 y = kx + b(k≠0)的图象经过点 P(3,4),它与 x、 y 轴的正半轴分别相交于 A、B 两点,且 OA+OB=15,求此一次函数的解析式 .
详细描述
斜截式为 $y = mx + b$,其中 $m$ 是斜率,$b$ 是截距。这种形式简洁 地表示了直线方程的斜率和截距,便 于理解和计算。
一次函数的点斜式
总结词
点斜式是一次函数的另一种表达方式,用于描述通过某一点的直线方程。
详细描述
点斜式为 $y - y_1 = m(x - x_1)$,其中 $(x_1, y_1)$ 是直线上的一个点,$m$ 是斜率。该形式通过一个已知点和斜率来表示直线方程,具有更强的实际应用价 值。
注重理解而非死记硬背
函数的性质和特点应通过理解来掌握,而不是简单地记忆公式。
多做练习
通过大量的练习,可以更好地掌握一次函数的运用,提高解题能力 。
关于一次函数的所有知识点
关于一次函数的所有知识点一、一次函数的定义。
1. 一般形式。
- 形如y = kx + b(k,b是常数,k≠0)的函数叫做一次函数。
当b = 0时,y=kx(k≠0),此时函数为正比例函数,正比例函数是特殊的一次函数。
2. 定义域。
- 一次函数的定义域是全体实数R。
二、一次函数的图象。
1. 图象形状。
- 一次函数y = kx + b(k≠0)的图象是一条直线。
- 例如y = 2x+1的图象是一条直线,我们可以通过取两个点来画出这条直线,一般取x = 0时,y=1;y = 0时,x=-(1)/(2),然后连接这两个点(0,1)和(-(1)/(2),0)就得到函数图象。
2. 图象与系数的关系。
- 斜率k的影响。
- 当k>0时,直线y = kx + b从左到右上升,y随x的增大而增大。
例如y = 3x+2,k = 3>0,函数图象是上升的。
- 当k<0时,直线y = kx + b从左到右下降,y随x的增大而减小。
比如y=-2x + 3,k=-2<0,函数图象是下降的。
- k的绝对值越大,直线越“陡”。
例如y = 5x+1比y = 2x+1的图象更陡。
- 截距b的影响。
- b为直线y = kx + b与y轴交点的纵坐标。
- 当b>0时,直线与y轴交于正半轴,如y = 2x + 3,直线与y轴交于点(0,3)。
- 当b<0时,直线与y轴交于负半轴,例如y=3x - 2,直线与y轴交于点(0,-2)。
- 当b = 0时,直线过原点,像y = 2x就是过原点的直线。
三、一次函数的性质。
1. 单调性。
- 由前面图象与系数关系可知,当k>0时,函数在R上单调递增;当k<0时,函数在R上单调递减。
2. 函数值的变化。
- 对于一次函数y = kx + b,当x增加Δ x时,y的变化量Δ y=kΔ x。
四、一次函数的解析式的确定。
1. 待定系数法。
- 如果已知一次函数y = kx + b的图象经过两个已知点(x_1,y_1)和(x_2,y_2),将这两个点代入函数解析式得到方程组y_1=kx_1 + b y_2=kx_2 + b,解这个方程组求出k和b的值,就得到一次函数的解析式。
初中数学一次函数知识点
初中数学一次函数知识点一、一次函数的定义一次函数是指具有形式 $y = kx + b$ 的函数,其中 $k$ 和 $b$ 是常数,$k$ 是斜率,$b$ 是截距。
一次函数的图像是一条直线。
二、斜率($k$)1. 斜率 $k$ 表示函数中 $x$ 每变化一个单位,$y$ 相应变化的量的多少。
斜率是直线的倾斜程度的度量。
2. 当 $k > 0$ 时,函数图像从左下方向右上方倾斜;当 $k < 0$ 时,图像从左上方向右下方倾斜。
3. 当 $k = 0$ 时,函数变为常数函数,即 $y = b$,图像为一条水平直线。
三、截距($b$)1. 截距 $b$ 表示当 $x = 0$ 时,函数 $y$ 的值。
它是直线与$y$ 轴的交点。
2. 当 $b > 0$ 时,直线与 $y$ 轴的交点在原点上方;当 $b <0$ 时,交点在原点下方。
3. 当 $b = 0$ 时,直线通过原点,即图像通过坐标系的 (0,0) 点。
四、图像与系数的关系1. 直线的斜率和截距决定了直线在坐标系中的位置和形状。
2. 斜率和截距的不同组合可以生成不同的直线,但所有这些直线都是一次函数的图像。
五、一次函数的性质1. 一次函数是单调函数,即在整个定义域内,函数值随着自变量的增加而增加或减少。
2. 一次函数的图像不会与自身相交。
3. 一次函数的图像是连续的,并且在任何区间内都是可导的。
六、一次函数的应用1. 一次函数可以用于描述许多现实世界中的问题,如速度与时间的关系、成本与数量的关系等。
2. 在解决实际问题时,通常需要根据实际情况确定函数的斜率和截距。
七、一次函数的运算1. 一次函数可以通过加减乘除等基本运算进行变换。
2. 两个一次函数的和、差、积、商仍然是一次函数。
八、一次函数的图像绘制1. 确定斜率 $k$ 和截距 $b$。
2. 找到与 $y$ 轴的交点 (0, $b$)。
3. 使用斜率 $k$,从截距点开始,沿着斜率方向移动,找到其他点。
初二数学《一次函数》ppt课件
倾斜度一样(平行)
都经过一、三象限
直线 还经过第二象限
b相同
k不同
都与y轴相交于点(0,2)
都经过一、二、三象限
倾斜度不一样(不平行)
1
-1
2
3
4
5
-4
-3
-2
-5
1
2
3
4
5
-1
-2
-3
-4
-5
0
观察:这些函数的图像 有什么特点?
x
y
在同一个平面直角坐标系中画出下列函数的图象: 1. 2. y=3x y=3x+2
y
x
o
-4
2
7.一个函数图像过点(1,2),且y随x增大而增大,则这个函数的解析式是___
B
如图所示,三峡工程在6月1日至6月10日下阐蓄水期间,水库水位由106米升至135米,高峡平湖初现人间.假设水库水位匀速上升,那么下列图像中,能正确反映这10天水位h(米)随时间t(天)变化的是( )
从图中可以看出: 1.当一次函数的k值相等时,直线互相平行.
2.当一次函数的b值相等时,直线在y轴交于一点.
特殊位置关系—平行
y=3x
y=3x+2
观察函数y=3x和y=3x+2的图象,我 们知道:它们是互相平行的,所以 ,其中 一条直线可以看作是由另一 条直线平移得到的。 你能说出直线y=3x+2是由直线y=3x 向____平移____个单位得到的吗?
3.一次函数y=x+2的图像不经过第____象限
EX
5.一次函数 y 1=kx+b与y 2=x+a的图像如图所示,则下列结论(1)k<0;(2)a>0;(3)当x<3时,y 1<y 2中,正确的有____个
沪科版数学八年级上册13.2一次函数教案
13.2《一次函数》教学设计教学任务分析一、教学内容本课题是义务教育课程标准实验教科书《数学》八年级上册(沪科版),第十三章第二节的第一课时。
本节课主要学习一次函数的概念、图象的有关知识。
二、学生分析学生此前已经学习了一元一次方程、二元一次方程等相关知识,并且通过《平面直角坐标系》相关内容的学习,已经构建了一些数形结合的模型,树立了数形结合的思想。
另外,上一节《函数》有关知识的讲解,让学生体验到函数的变化思想。
在这种情况下,学生学习一次函数的相关内容,学习起来应该是循序渐进、轻松的。
三、设计思想一次函数的概念、图象,以及正比例函数的有关知识是抽象出来的内容。
学生若缺乏感性认识,那么对这方面的掌握是不稳定的,所以在教学中尽可能地让学生经历探索的过程,让学生自己获得认识。
1、教学理念:在教学中遵循新课标下所倡导的教学理念,面向全体学生,突出学生的实践活动和探究活动,培养学生的思维能力和创新能力,提高学生的科学素质。
2、教学原则:以学生为主体,主动参与、自主构建、及时反馈、激励评价。
3、教学方法:讲授、演示、指导探究等。
4、教具准备:多媒体工具。
四、教学目标1、知识与技能理解一次函数的概念、图象,明确一次函数的图象是一条直线。
2、过程与方法经历探索一次函数的过程,发展学生的抽象思维能力。
3、情感、态度与价值观培养抽象思维,发展数形结合的思想,体会一次函数的应用价值。
五、教学的重点、难点1、重点:理解一次函数概念,会画一次函数图象。
2、难点:领会一次函数的概念,培养抽象思维。
六、教学流程复习旧知——情景设置、获得新知——数形结合(画图象)、另获新知——学习范例、应用所学——随堂练习、期待提高——课堂小结、形成认识——布置作业、提高认识教学过程设计【活动1】复习旧知经过上节课的学习,请同学们帮助老师出一些问题考考咱们班的同学,好吗?教师行为:放手让学生活动,只是在学生回答的过程中及时纠正出现的问题。
学生行为:学生思考后积极出题,并回答其他同学的问题。
一次函数课件ppt
点斜式
根据一次函数的定义,通过已知条件确定 函数的解析式。
已知一个点$(x_0, y_0)$和斜率$k$,使用 点斜式$y - y_0 = k(x - x_0)$求函数解析式 。
两点式
截距式
已知两个点$(x_1, y_1)$和$(x_2, y_2)$,使 用两点式$y - y_1 = frac{y_2 - y_1}{x_2 x_1}(x - x_1)$求函数解析式。
的关系。
一次函数与其他数学知识的联系
与线性方程的联系
一次函数可以转化为线性方程的 情势,例如,$y = ax + b$ 可以 转化为 $ax + b = y$。
与几何图形的联系
一次函数的图像是一条直线,可 以通过几何图形来描写其性质和 特点。
04 一次函数的解题方法与技能
一次函数的解题方法
定义法
一次函数的系数
一次函数的斜率为 $a$,表示函数图 像的倾斜程度。
当 $a > 0$ 时,函数图像从左下到右 上倾斜;当 $a < 0$ 时,函数图像从 左上到右下倾斜。
一次函数的应用
一次函数在数学、物理、工程等领域都有广泛应用。
在实际生活中,一次函数可以用来描写一些简单的问题,如速度与时间的关系、 价格与数量的关系等。
一次函数在实际问题中的应用
投资收益
投资者可以通过一次函数猜测投 资收益,例如,假设投资金额和 收益之间的关系可以用一次函数
表示。
人口增长
人口增长可以用一次函数表示, 例如,假设某地区的人口随时间 增长的关系可以用一次函数描写
。
生产效率
在生产进程中,生产效率与时间 的关系可以用一次函数表示,例 如,机器的磨损与生产效率之间
一次函数知识点
一次函数知识点一次函数是数学中一种基本的函数类型,它在解析几何、函数分析等领域中有着广泛的应用。
一次函数的表达式通常写作y = kx + b,其中k是斜率,b是y轴截距。
以下是一次函数的主要知识点总结:1. 定义:一次函数是形如y = kx + b的函数,其中k和b是常数,k≠0。
2. 图像:一次函数的图像是一条直线,这条直线的斜率由k决定,截距由b决定。
3. 斜率:斜率k表示函数图像的倾斜程度,斜率的正负决定了直线的上升或下降方向。
4. 截距:截距b是直线与y轴交点的y坐标,当x=0时,y的值即为b。
5. 增减性:当k>0时,函数随着x的增加而增加;当k<0时,函数随着x的增加而减少。
6. 函数值的正负:当k>0,b>0时,函数值y>0;当k>0,b<0时,函数值y可能为正或负;当k<0,b>0时,函数值y可能为正或负;当k<0,b<0时,函数值y<0。
7. 函数的平移:一次函数可以通过改变k和b的值来实现图像的平移。
8. 函数的对称性:一次函数没有对称性,因为它的图像是一条直线,不会关于任何点或线对称。
9. 函数的交点:两条一次函数的图像相交于一点,这一点的坐标满足两个函数的方程。
10. 函数的应用:一次函数在现实生活中有着广泛的应用,如计算斜率、预测趋势、解决实际问题等。
11. 函数的解析:通过解析一次函数的方程,可以找到函数图像上任意一点的坐标。
12. 函数的变换:一次函数可以通过缩放、平移等方式进行变换,以适应不同的数学和实际问题。
13. 函数的方程:一次函数的方程可以表示为y = kx + b,也可以表示为x = (y - b) / k。
14. 函数的解析式:解析式是描述一次函数图像特征的数学表达式,它包含了斜率和截距的信息。
15. 函数的图像绘制:通过绘制一次函数的图像,可以直观地理解函数的性质和变化趋势。
掌握这些知识点,可以帮助我们更好地理解和应用一次函数,解决与之相关的数学问题。
一次函数(待定系数法)课件
题目2
已知直线方程为 y = ax + 3,若该直线与 y 轴的交点
为 (0, 2),求 a 的值。
题目3
已知直线方程为 y = mx + n,若该直线经过点 (1, 2) 和点 (2, 4),求 m 和 n 的
值。
习题解答
在此添加您的文本17字
解答1:将点 (3, 5) 代入直线方程 y = 2x + b,得到 5 = 2*3 + b,解得 b = -1。
第四步
将求得的 $a$ 和 $b$ 值代入一次函数解 析式中,得到函数的表达式。
03
一次函数(待定系数法)的实际应用
一次函数在生活中的应用
一次函数在经济学中常被用来 描述成本、收益和产量之间的 关系。例如,成本函数、收益 函数和供给函数等。
在物理学中,一次函数可以用 来描述物体的位移与时间之间 的关系,如匀速直线运动。
一次函数的截距b决定了函数与y轴的交点位置,截距b越大,函数与y轴 交点越高;截距b越小,函数与y轴交点越低。
02
待定系数法
待定系数法的定义
01
待定系数法是一种数学方法,通 过设置未知数来表达已知量,从 而建立数学模型解决问题。
02
在一次函数中,待定系数法通常 用于确定函数的解析式,通过已 知的两个点或一个点和一个斜率 来求解。
一次函数(待定系数法)ppt课件
CONTENTS
• 一次函数简介 • 待定系数法 • 一次函数(待定系数法)的实际应
用 • 习题与解答 • 总结与展望
01
一次函数简介
一次函数的定义
一次函数是形如y=kx+b 的函数,其中k和b是常数 ,k≠0。
初中八年级上册第13章一次函数图象与性质
初中八年级上册第13章一次函数图象与性质一、教材分析本节教材是初中数学8年级(上)第13章第3节第二课时的内容,函数是数学中重要的基本概念之一,也是初中数学的重要内容之一,它揭示了现实世界中数量关系之间相互依存和变化的实质,是刻画和研究现实世界变化规律的重要模型。
第13章,既是学生函数的入门,也是进一步学习的基础。
作为本节内容,一方面,这是在学习了《变量与函数》、《函数的图像》的基础上,对函数意义的进一步深入和拓展;另一方面,又为学习后面一次函数等知识奠定了基础,是进一步研究现实世界中数量关系的工具性内容。
鉴于这种认识,我认为,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。
二、学情分析从心理特征来说,初中阶段的学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。
但同时,这一阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的关注或表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
从认知状况来说,学生在此之前已经学习了《变量与函数》、《函数的图像》,对函数的意义已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于函数图像的理解,由于其抽象程度较高,学生可能会产生一定的困难,所以教学中应注意发展学生数形结合的思想。
三、教学目标1、知识与技能理解一次函数和正比例函数的图象是一条直线,熟练地作出一次函数和正比例函数的图象,掌握 k与b的取值对直线位置的影响。
掌握一次函数的性质.渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性.2、过程与方法经历一次函数的作图过程,探索某些一次函数图象的异同点。
3、情感态度与价值观体会用类比的思想研究一次函数,体验研究数学问题的常用方法:由特殊到一般,由简单到复杂。
四、教学重难点1.教学重点一次函数与正比例函数概念、图象及性质2.教学难点:由一次函数的图象归纳得出一次函数的性质及对性质的理解五、教法与学法1.教法根据本班学生活泼好动、思维活跃的特点结合本课教学重点难点,在教学内容组织与安排上,我进行如下处理:以猜想探索—归纳性质—应用练习为主线, 让学生通过图形分析,找出变化规律,在原有知识基础上有所提高,掌握学习函数知识是从定义、图象、性质三方面进行研究的2.学法本课的学法主要有迁移融合、自主探究和合作交流。
一次函数
基本性质
1、作法与图形:通过如下3个步骤: (1)列表:每确定自变量x的一个值,求出因变量y的一个值,并列表; (2)描点:一般取两个点,根据“两点确定一条直线”的道理,即在平面直角坐标系中,以自变量的值为横 坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。 一般地,y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点即可画出。 正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点画出。 (3)连线:可以作出一次函数的图象——一条直线。因此,作一次函数的图象只需知道2点,并连成直线即 可。 2、性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。(2)一次函数与y轴 交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图象都是过原点。 3、函数不是数,它是指某一变化过程中两个变量之间的关系。
一次函数及其图象是初中代数的重要内容,也是高中解析几何的基石,更是中考的重点考查内容。 一次函数的图像是一条直线。
函数由来
“函数”一词最初是由德国的数学家莱布尼茨在17世纪首先采用的,当时莱布尼茨用“函数”这一词来表示 变量x的幂,即x2,x3,….接下来莱布尼茨又将“函数”这一词用来表示曲线上的横坐标、纵坐标、切线的长度、 垂线的长度等等所有与曲线上的点有关的变量,就这样“函数”这词逐渐盛行。
1、当时间t一定,距离s是速度v的一次函数。s=vt。 2、如果水池抽水速度f一定,水池里水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。 3、当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y是重物重量x的一次函数,即y=kx+b (k为任意正数)。
常见题型一次函数及其图象是初中代数的重要内容,也是高中解析几何的基石,更是中考的重点考查内容。 其中求一次函数解析式就是一类常见题型。现以部分中考题为例介绍几种求一次函数解析式的常见题型。希 望对大家的学习有所帮助。 一、定义型 例1、已知函数是一次函数,求其解析式。 解:由一次函数定已知 ,故一次函数的解析式为y=-6x+3。 注意:利用定义求一次函数y=kx+b解析式时,要保证k≠0。如本例中应保证m-3≠0。 二、点斜型 例2、已知一次函数y=kx-3的图象过点(2,-1),求这个函数的解析式。 解:一次函数的图象过点(2,-1),,即k=1。故这个一次函数的解析式为y=x-3。
(完整word版)一次函数
2.2.1 一次函数的性质与图象【学习目标】1.理解一次函数的概念,掌握一次函数的性质.(重点)2.会用一次函数的图象和性质解题.(难点) 【重点】会用一次函数的图象和性质解题 【难点】会用一次函数的图象和性质解题1.一次函数的概念函数 叫做一次函数,它的定义域为R ,值域为R .一次函数的图象是直线,其中k 叫做该直线的斜率,b 叫做该直线在y 轴上的 .一次函数又叫 .2.一次函数的性质(1)平均变化率:即为直线的斜率k ;设(x 1,y 1),(x 2,y 2)为直线上任意两点,则 . (k 与两点在直线上的位置无关).(2)单调性:k >0时,y =kx +b 为增函数,k <0时,y =kx +b 为 .(3)奇偶性:b =0时,y =kx +b 为奇函数(此时为正比例函数),b ≠0时既不是奇函数也不是偶函数. (4)直线y =kx +b 与坐标轴的交点:与x 轴的交点坐标为⎝ ⎛⎭⎪⎪⎫-b k ,0,与y 轴的交点坐标为(0,b ).1.思考辨析(1)函数y =7x是一次函数.( )(2)函数y =2x +3是单调递增函数.( )(3)一次函数y =x -1的图象过第一、二、三象限.( ) 2.设函数f (x )=(2a -1)x +b 在R 上是增函数,则有( ) A .a ≥12 B .a ≤12 C .a >-12 D .a >123.一次函数y =-2x +3的图象与两坐标轴的交点坐标是( )A .(0,3),⎝ ⎛⎭⎪⎪⎫32,0 B .(1,3),⎝ ⎛⎭⎪⎪⎫32,1 C .(3,0),⎝ ⎛⎭⎪⎪⎫0,32 D .(3,1),⎝ ⎛⎭⎪⎪⎫1,32 4.已知一次函数y 1=x 2+2,y 2=x3+3,当x ∈________时,y 1>y 2.【情境引入】(1)已知y =(α+1) x α-1+2是一次函数,则α=______.(2)已知函数y =3mx +2m +1,试求m 为何值时,①这个函数为正比例函数;②这个函数为一次函数;③函数值y随x的增大而减小.[跟踪训练]1.下列函数:①y=-2x,②y=15-6x,③c=7t-35,④y=1x+2,⑤y=13x,⑥y=x2x,其中正比例函数是________,一次函数是________.(填序号)画出函数y=2x+1的图象,利用图象求:(1)方程2x+1=0的根;(2)不等式2x+1≥0的解集;(3)图象与坐标轴的两个交点间的距离.母题探究:(变结论)本例中已知条件不变,求(1)当-3≤y≤3时,x的取值范围?(2)图象与坐标轴围成的三角形的面积.[探究问题]已知函数y=x+1,y=2x,y=-x+1,图2211.上述函数的图象有何特点?2.观察以上图象,试说明函数的单调性.已知函数y=(2m-1)x+1-3m,当m为何值时:(1)这个函数为一次函数;(2)函数值y随x的增大而减小;(3)此函数为奇函数;(4)此函数图象与直线y=x+1的交点在y轴上.[跟踪训练]2.已知f(x)为一次函数且满足4f(1-x)-2f(x-1)=3x+18,求函数f(x)在[-1,1]上的最大值,并比较f(2 017)和f(2 018)的大小.1.过点(3,m)、(m,-4)的一次函数解析式y=25x+b,则实数m的值是( )A.2 B.-4 C.0 D.-22.函数y=kx-1与y=-kx在同一坐标系中的大致图象可能是下图中的( )3.对于函数y=5x+6,y的值随x的值减小而________.4.若一次函数y=(3a-8)x+a-2的图象与两坐标轴都交于正半轴,则a的取值范围是________.5.已知y=(m-1)xm2-3m+3+2是一次函数,且为增函数,求m的值.【课堂小结】【总结反思】一、选择题1.一次函数y=kx+b(k>0,b<0)的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限2.函数y=kx+k2-k过点(0,2)且是减函数,则k的值为( )A.-2 B.-1C .-1,2D .1,-23.若函数y =ax 2+x b -1+2表示一次函数,则a ,b 的值分别为( )A.⎩⎪⎨⎪⎧a =1,b =1B.⎩⎪⎨⎪⎧a =0,b =1C.⎩⎪⎨⎪⎧a =0,b =2D.⎩⎪⎨⎪⎧a =1,b =24.一个水池有水60 m 3,现将水池中的水排出,如果排水管每小时排水量为3 m 3,则水池中剩余水量Q 与排水时间t 之间的函数关系是( )A .Q =60-3tB .Q =60-3t (0≤t ≤20)C .Q =60-3t (0≤t <20)D .Q =60-3t (0<t ≤20)5.两条直线y 1=ax +b 与y 2=bx +a 在同一坐标系中的图象可能是下图中的( )二、填空题6.已知点A (-4,a ),B (-2,b )都在直线y =12x +k (k 为常数)上,则a 与b 的大小关系是a ________b (填“>”“<”或“=”).7.一次函数f (x )=(1-m )x +2m +3在[-2,2]上总取正值,则m 的取值范围是________.8.一次函数y =(3a -7)x +a -2的图象与y 轴的交点在x 轴上方,且y 随x 的增大而减小,则a 的取值范围是________.三、解答题9.某航空公司规定乘客所携带行李的质量x (kg)与其运费y (元)由如图222所示的一次函数确定,求乘客可免费携带行李的最大质量.图22210.已知函数y =(2m +1)x +2-3m ,m 为何值时: (1)这个函数为正比例函数;(2)这个函数为一次函数;(3)函数值y 随x 的增大而增大;(4)这个函数图象与直线y =x +1的交点在x 轴上.[冲A 挑战练]一、选择题1.已知kb <0,且不等式kx +b >0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎪x >-bk ,则函数kx +b >0的图象大致是( )2.过点A (-1,2)作直线l ,使它在x 轴,y 轴上的截距相等,则这样的直线有( )A .1条B .2条C .3条D .4条二、填空题3.已知一次函数y =f (x )的图象过点(0,-3),不等式f (x -1)>0的解集为{x |x >2},则f (x )=________. 4.若一次函数y =f (x )在区间[-1,2]上的最小值为1,最大值为3,则y =f (x )的解析式为________. 三、解答题5.对于每个实数x ,设f (x )取y =x -3,y =-x -4,y =-2三个函数中的最大者,用分段函数的形式写出f (x )的解析式,并求f (x )的最小值.答案1.思考辨析[解析] (1)× 函数y =7x是反比例函数(2)√ 函数y =2x +3的斜率k =2>0,所以函数是单调递增函数.(3)× 一次函数y =x -1的斜率k >0,b <0所以其图象过一、三、四象限. [答案] (1)× (2)√ (3)×2.D [∵y =f (x )为R 上的增函数,∴2a -1>0,∴a >12.]3.A [当x =0时,y =3,过点(0,3);当y =0时,x =32,过点⎝ ⎛⎭⎪⎫32,0,故选A.]4.(6,+∞) [由y 1>y 2可得x 2+2>x3+3,解得x >6,所以x ∈(6,+∞).]解](1)由题意得⎩⎨⎧α+1≠0,α-1=1,解得⎩⎨⎧α≠-1,α=2,即α=2.[答案] 2(2)①若y =3mx +2m +1是正比例函数,则m 应满足⎩⎨⎧m ≠0,2m +1=0.解得m =-12.∴当m =-12时,这个函数是正比例函数.②当m ≠0时,这个函数为一次函数.③根据一次函数性质可知,当m <0时,y 随x 的增大而减小.[规律方法] 对于函数y =kx a +b ,当a =1,k ≠0时,为一次函数;当a =1,k ≠0,b =0时,为正比例函数.[跟踪训练]1.[答案] ①⑤ ①②③⑤轴交点B ⎝ ⎛⎭⎪⎫-12,0,过A 、B 作直线,直线AB 就是函数[解] 因函数y =2x +1的图象与y 轴交点A (0,1),与xy =2x +1的图象.如图所示:(1)直线AB 与x 轴的交点为B ⎝ ⎛⎭⎪⎫-12,0,所以方程2x +1=0的根为x =-12.(2)从图象上可以看到,射线BA 上面的点的纵坐标都不小于零,即y =2x +1≥0.因为射线BA 上点的横坐标满足x ≥-12,∴不等式2x +1≥0的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫xx ≥-12.(3)图象与x 轴的交点为B ⎝ ⎛⎭⎪⎫-12,0,与y 轴交于点A (0,1),因此,|OA |=1,|OB |=12.由勾股定理得:|AB |=|OA |2+|OB |2=12+⎝ ⎛⎭⎪⎫122=52. [规律方法] 解决与图象有关的问题,要做好图,识图分析,注意数形结合思想的应用. 母题探究:[解] (1)过(0,-3)点作平行于x 轴的直线,交直线AB 于点D (-2,-3).过点(0,3)作平行于x 轴的直线,交直线AB 于点C (1,3).从图象中可见,线段DC 上的点的纵坐标满足-3≤y ≤3,而横坐标满足-2≤x ≤1. ∴当-3≤y ≤3时,x 的取值范围为-2≤x ≤1. (2)∵△AOB 是直角三角形, ∴S △AOB =12|OB |·|OA |=12×12×1=14.[探究问题]1.提示:图象都为直线.2.提示:函数y =x +1,y =2x 为增函数,函数y =-x +1为减函数.[思路探究] 本题主要考查一次函数的概念、奇偶性与单调性,第(1)(2)(3)问易求,对于第(4)问要重视方程组的作用.[解] (1)当2m -1≠0,即m ≠12时,此函数为一次函数.(2)根据一次函数的性质,可知当2m -1<0,即m <12时,函数值y 随x 的增大而减小.(3)当2m -1≠0,且1-3m =0,即m =13时,此函数为奇函数.(4)在y =x +1中,令x =0,y =1,∴(0,1)是在y =(2m -1)x +1-3m 的图象上,∴m =0,∴当m =0时,两直线的交点在y 轴上. [规律方法] 一次函数的值域或一次函数的最大值、最小值,常利用一次函数的单调性来求解. [跟踪训练]2.[解] 设f (x )=kx +b (k ≠0).由已知可得4[k (1-x )+b ]-2[k (x -1)+b ]=3x +18.整理,得-6kx +6k +2b =3x +18.∴⎩⎨⎧-6k =3,6k +2b =18,解得⎩⎪⎨⎪⎧k =-12,b =212.∴f (x )=-12x +212,易得f (x )在[-1,1]上为减函数(在R 上也是减函数).∴函数f (x )在[-1,1]上的最大值为f (-1)=11且f (2 017)>f (2 018).1.D [由Δy Δx =-4-m m -3=25,得m =-2.]2.B [在A 中,直线是上升的,知k >0,由曲线的位置知-k >0,即k <0,矛盾;在B 中,曲线的位置正好使k >0,故选B.] 3.减小 [由于一次函数的斜率5>0,所以一次函数是增函数,所以y 值随x 的减小而减小.]4.⎝ ⎛⎭⎪⎫2,83[由题意,得⎩⎨⎧3a -8<0,a -2>0,解得2<a <83.]5.[解]∵函数为一次函数且单调递增,∴⎩⎨⎧m 2-3m +3=1,m -1>0,∴⎩⎨⎧m =1或m =2,m >1.∴m =2.一、选择题1.B [直线y =kx +b (k >0,b <0)经过点(0,b ),在y 轴的负半轴上,且y 是x 的增函数.]2.B [将点的坐标代入函数关系式,得k 2-k =2,即k 2-k -2=0,所以k =-1或k =2,由于一次函数为减函数,即k <0,所以k =-1,故选B.]3.C[若函数为一次函数,则有⎩⎨⎧a =0,b -1=1,即⎩⎨⎧a =0.b =2.]4.B [∵每小时的排水量为3 m 3,t 小时后的排水量为3t m 3,故水池中剩余水量Q =60-3t ,且0≤3t ≤60,即0≤t ≤20.] 5.A [对于A ,y 1中a >0,b <0,y 2中b <0,a >0,y 1和y 2中的a 、b 符号分别相同,故正确; 对于B ,y 1中a >0,b >0,y 2中b <0,a >0,故不正确; 对于C ,y 1中a >0,b <0,y 2中b <0,a <0,故不正确; 对于D ,y 1中a >0,b >0,y 2中b <0,a <0,故不正确.] 二、填空题6.< [过A 、B 两点的直线的斜率为12,则b -a -2--4=12,即b -a 2=12,所以b =a +1,因此a <b .]7.⎝ ⎛⎭⎪⎫-14,+∞[对于一次函数不论是增函数还是减函数,要使函数值在[-2,2]上总取正值,只需⎩⎨⎧f-2>0,f2>0.即⎩⎨⎧2m -2+2m +3>0,2-2m +2m +3>0.解之得m >-14.]8.2<a <73 [∵关于x 的一次函数的图象与y 轴的交点在x 轴上方,且y 随x 的增大而减小,∴⎩⎨⎧3a -7<0a -2>0,解得2<a <73.]三、解答题9.[解] 设题图中的函数解析式为y =kx +b (k ≠0),其中y ≥0.由题图,知点(40,630)和(50,930)在函数图象上,∴⎩⎨⎧630=40k +b ,930=50k +b ,得⎩⎨⎧k =30,b =-570.∴函数解析式为y =30x -570.令y =0,得30x -570=0,解得x =19. ∴乘客可免费携带行李的最大质量为19 kg.10.[解](1)由⎩⎨⎧2m +1≠0,2-3m =0;得⎩⎪⎨⎪⎧m ≠-12,m =23.即m =23;(2)当2m +1≠0时,函数为一次函数,所以m ≠-12;(3)由题意知函数为增函数,即2m +1>0,所以m >-12;(4)直线y =x +1与x 轴的交点为(-1,0),将点的坐标(-1,0)代入函数表达式,得-2m -1+2-3m =0,所以m =15.[冲A 挑战练]一、选择题1.B[由kb <0,得k 与b 异号,由不等式kx +b >0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >-bk ,知k >0,所以b <0,因此选B.] 2.B [当直线在两个坐标轴上的截距都为0时,点A 与坐标原点的连线符合题意,当直线在两坐标轴上的截距相等且都不为0时,只有当直线斜率为-1时符合,这样的直线只有一条,因此共2条.]二、填空题3.3x -3 [设一次函数为y =kx +b (k ≠0),因y =f (x )的图象过点(0,-3),所以b =-3.f (x -1)>0,即kx -k -3>0,由题意知,k +3k=2,所以k =3.]4.f (x )=23x +53或f (x )=-23x +73[设f (x )=kx +b (k ≠0)当k >0时,⎩⎨⎧-k +b =1,2k +b =3,即⎩⎪⎨⎪⎧k =23,b =53.∴f (x )=23x +53.当k <0时,⎩⎨⎧-k +b =3,2k +b =1,即⎩⎪⎨⎪⎧k =-23,b =73,∴f (x )=-23x +73.∴f (x )的解析式为f (x )=23x +53或f (x )=-23x +73.]三、解答题5.对于每个实数x ,设f (x )取y =x -3,y =-x -4,y =-2三个函数中的最大者,用分段函数的形式写出f (x )的解析式,并求f (x )的最小值. [解] 在同一坐标系中作出函数y =x -3,y =-x -4,y =-2的图象,如图所示.由⎩⎨⎧y =-x -4,y =-2,得⎩⎨⎧x =-2,y =-2,即A (-2,-2).由⎩⎨⎧y =x -3,y =-2,得⎩⎨⎧x =1,y =-2,即B (1,-2).根据图象,可得函数f (x )的解析式为f (x )=⎩⎨⎧-x -4,x <-2,-2,-2≤x ≤1,x -3,x >1.由上述过程及图象可知,当-2≤x ≤1时,f (x )均取到最小值-2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《一次函数》综合练习一.精心选一选:1.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中,自变量是 ( )A.沙漠B.体温C.时间D.骆驼 2.下面两个变量是成正比例变化的是 ( )A . 正方形的面积和它的边长.B . 变量x 增加,变量y 也随之增加;C . 矩形的一组对边的边长固定,它的周长和另一组对边的边长.D . 圆的周长与它的半径.3. 下面哪个点不在函数y=-2x+3的图象上 ( ) A .(-5,13) B .(0.5,2) C .(3,0) D .(1,1)4.在函数21-=x y中,自变量x 的取值范围是 ( )A . x ≥2B . x>2C . x ≤2D . x<2 5.已知点(-4,y 1),(2,y 2)都在直线y= - 12x+2上,则y 1 y 2大小关系是 ( )A . y 1 > y 2B . y 1 = y 2C .y 1 < y 2D . 不能比较 6.下列各图给出了变量x 与y 之间的函数是 ( )7.直线y=kx +b 经过一、二、四象限,则k 、b 应满足 ( )A . k>0, b<0B . k>0, b>0C . k<0, b<0;D . k<0, b>0 8.关于函数12+-=x y ,下列结论正确的是 ( )A .图象必经过点(﹣2,1)B .图象经过第一、二、三象限C .当21>x 时,0<y D .y 随x 的增大而增大 9.已知一次函数y= ax+4与y = bx-2的图象在x 轴上相交于同一点, 则ba的值是 ( ) A .4 B .-2 C . 12 D . - 1210.已知一次函数y=kx+b,y 随着x 的增大而减小,且kb<0,则在直角坐标系内它的大致图象是 ()AB DA .B .C .D .11.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车。
车修好后,因怕耽误上课,他比修车前加快了骑车速度匀速行驶。
下面是行驶路程s(米)关于时间t(分)的函数图像,那么符合这个同学行驶情况的图像大致是 ( )A B C D A . B . C . D .12.已知函数y= -x+m 与y= mx- 4的图象的交点在x 轴的负半轴上那么m 的值为( )A .±2B .±4C .2D . -2 二.细心填题: (本大题共6个小题;每小题3分,共18分.) 13.若一次函数()12+-=k kx y 是正比例函数,则k 的值为 。
14.一次函数y=-3x+6的图象与x 轴的交点坐标是 ,与y 轴的交点坐标是 。
15.设地面(海拔为0km )气温是200C ,如果每升高1km ,气温下降60C , 则某地的气温t (0C )与高度h (km )的函数关系式是 。
16.根据右图所示的程序计算变量y的值,若输入自变量x 的值为32, 则输出的结果是_______。
17.小明根据某个一次函数关系式填写了右表:其中有一格不慎被墨汁遮住了,想想看,该空格里原来填的数是__________。
18.若函数y=-x-4与x 轴交于点A ,直线上有一点M ,若△AOM 的面积为8, 则点M 的坐标 . 三. 解一解: (本大题共8小题,共计46分)18. (本题6分)在同一坐标系内画出一次函数y 1=-x+1 与y 2=2x-2的图象, 并根据图象回答下列问题:(1).写出直线y 1=-x+1 与y 2=2x-2的交点坐标(2).直接写出,当x 取何值时y 1 <y 219.(本题5分)已知直线b kx y +=平行于直线y=-3x+4,且与直线y=2x-6的交点在x 轴上,求此一次函数的解析式。
20.(本题5分)已知函数y=(2m+1)x+m -3 (1)若这个函数的图象经过原点,求m 的值(2)若这个函数的图象不经过第二象限,求m 的取值范围.21.(本题6分) 如图是某汽车行驶的路程S (km)与时间t (min) 的函数关系图.观察图中所提供的信息,解答下列问题:(1)汽车在前9分钟内的平均速度是多少?(2)汽车在中途停了多长时间? (3)当16≤t ≤30时,求S 与t 的函数关系式.22.(本题6分)两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给出的数据信息,解答问题:(1)求整齐叠放在桌面上饭碗的高度y(cm)与饭碗数x (个)之间的一次函数解析式(不要求写出自变量x 的取值范围);(2 )若桌面上有12个饭碗,整齐叠放成一摞,求出它的高度。
23.(本题7分)某房地产开发公司计划建A 、B 两种户型的住房共80套,该公司所筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:/min15 cm 10.5cm(1)该公司对这两种户型住房有哪几种建房方案? (2)该公司如何建房获得利润最大?(3)根据市场调查,每套B 型住房的售价不会改变,每套A 型住房的售价将会提高a 万元(a>0),且所建的两种住房可全部售出,该公司又将如何建房获得利润最大? 注:利润=售价-成本 24.(5分)春、秋季节,由于冷空气的入侵,地面气温急剧下降到0℃以下的天气现象称为“霜冻”。
由霜冻导致植物生长受到影响或破坏的现象称为霜冻灾害。
某种植物在气温是0℃以下持续时间超过3小时,即遭受霜冻灾害,需采取预防措施。
下图是气象台某天发布的该地区气象信息,预报了次日0时~8时气温随时间变化情况,其中0时~5时,5时~8时的图像分别满足一次函数关系。
请你根据图中信息,针对这种植物判断次日是否需要采取防霜冻措施,并说明理由。
25.(本题8分)如图,直线y = kx+6与x 轴y 轴分别相交于点E,F.点E 的坐标为(- 8, 0), 点A 的坐标为(- 6,0). 点P (x,y )是第二象限内的直线上的一个动点。
(1).求K 的值;(2).当点P 运动过程中,试写出△OPA 的面积S 与x 的函数关系式,并写出自变量x 的取值范围;(3).探究:当P 运动到什么位置(求P 的坐标)时,△OPA 的面积为27/8,并说明理由一次函数习题精选一、看准了再选1.函数y x=x 的取值范围是( ) A .x ≥-1 B.x ≠0 C.x>-1且0x ≠ D.x ≥-1且0x ≠2.某人账户现存款a 元,每月支出b 元,每月收入c 元,•则账户余额与月份数的函数图像只能是下列图形中的( ) A .(1)和(2) B .(2)和(3) C .(3)和(4) D .(3)3.图1是水滴进玻璃容器的示意图(滴水速度不变),图2是容器中水高度随滴水时间变化的图像.给出下列对应:(1):(a )——(e ) (2):(b )——(f ) (3):(c )——h (4):(d )——(g )其中正确的是( ) A .(1)和(2) B.(2)和(3) C. (1)和(3) D.(3)和(4) 4.“龟兔赛跑外传”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉.当它醒来时,发现乌龟快到终点了,于是急忙飞快的追赶,终于抢在乌龟前面先到达了终点……用s 1,s 2分别表示乌龟和兔子所行的路程,t 为时间,则下列图象中与故事情节相吻合的是( )5.下列说法正确的是( )A .正比例函数是一次函数B .一次函数是正比例函数C .正比例函数不是一次函数D .不是正比例函数就不是一次函数 6.下列函数中,y 是x 的一次函数的是( )A.y=-3x+5 B.y=-3x2 C.y=1xD.7.已知等腰三角形的周长为20cm,将底边y(cm)表示成腰长x(cm)•的函数关系式是y=20-2x,则其自变量的取值范围是()A.0<x<10 B.5<x<10 C.x>0 D.一切实数8.一次函数y=kx+b满足x=0时,y=-1;x=1时,y=1,则这个一次函数是( •)A.y=2x+1 B.y=-2x+1 C.y=2x-1 D.y=-2x-19.下列一次函数中,y随x值的增大而减小的()A.y=2x+1 B.y=3-4x C..y=(5-2)x10.已知一次函数y=mx+│m+1│的图象与y轴交于(0,3),且y随x•值的增大而增大,则m的值为()A.2 B.-4 C.-2或-4 D.2或-411.已知一次函数y=mx-(m-2)过原点,则m的值为()A.m>2 B.m<2 C.m=2 D.不能确定12.下列关系:①面积一定的长方形的长s与宽a;②圆的周长s与半径a;•③正方形的面积s与边长a;④速度一定时行驶的路程s与行驶时间a.其中s是a的正比例函数的有()A.1个 B.2个 C.3个 D.4个13.一次函数的图象经过点A(-2,-1),且与直线y=2x-3平行,•则此函数的解析式为() A.y=x+1 B.y=2x+3 C.y=2x-1 D.y=-2x-514.已知一次函数y=kx+b,当x=1时,y=2,且它的图象与y•轴交点的纵坐标是3,则此函数的解析式为()A.0≤x≤3 B.-3≤x≤0 C.-3≤x≤ D.不能确定15.已知点(a,b)、(c,d)都在直线y=2x+1上,且a>c,则b与d的大小关系是( • ) A.b>d B.b=d C.b<d D.b≥d16.已知自变量为x的一次函数y=a(x-b)的图象经过第二、三、四象限,则( • )A.a>0,b<0 B.a<0,b>0 C.a<0,b<0 D.a>0,b>017.如图所示的图象中,不可能是关于x的一次函数y=mx-(m-3)的图象的是()18.已知一次函数y=kx+b的图象如图所示,则k、b的符号是( )A. k>0,b>0 B . k>0,b<0C . k<0,b>0 D. k<0,b<019.一次函数y=kx-b和正比例函数y=kbx在同一坐标系内的大致图像不.可能..的是()ABCDx20.关于函数y= -x-2的图像,有如下说法:①.图像过点(0,-2) ②图像与x轴的交点是(-2,0)③由图象可知y随x的增大而增大④图像不经过第一象限⑤图像是与y= -x+2平行的直线,其中正确说法有()A.5个 B. 4个 C. 3个 D. 2个21.一次函数y=(m-1)x+m2+2的图象与y轴的交点的纵坐标是3,则m的值是()2.1.1.5.-=-±±yDCBA22.直线AB∥x轴,且A点坐标为(1,-2),则直线AB上任意一点的纵坐标都是-•2,此时我们称直线AB为y=-2,那么直线y=3与直线x=2的交点是()A.(3,2) B.(2,3) C.(-2,-3) D.(-3,-2)23.已知一次函数y=kx+b的图象(如图),当x<0时,y的取值范围是()A.y>0 B.y<0 C.-2<y<0 D.y<-224 .函数y=kx+b(k、b为常数)的图象如图所示,则关于x的不等式kx+b>0的解集是()A、x>0B、x<0C、x<2D、x>225.已知方程kx+b=0的解是x=3,则函数y=kx+b的图象可能是()二,想好了再填1.已知函数y=(k-1)x+k2-1,当k________时,它是一次函数,当k=_______•时,它是正比例函数.2.从甲地向乙地打长途电话,按时间收费,3分钟内收费2.4元,每加1分钟加收1元,若时间t≥3(分)时,电话费y(元)与t之间的函数关系式是_________.3.已知A、B、C是一条铁路线(直线)上顺次三个站,A、B两站相距100•千米,现有一列火车从B站出发,以75千米/时的速度向C站驶去,设x(•时)表示火车行驶的时间,y (千米)表示火车与A站的距离,则y与x的关系式是_________.4.在同一坐标系中,对于函数①y=-x-1,②y=x+1,③y=-x+1,④y=-2(x+1)的图象,通过点(-1,0)的是________,相互平行的是_______,交点在y•轴上的是_____.(填写序号)5.若从5%的盐水y千克中,蒸发x千克水分,制成含盐20%的盐水,则函数y•与自变量x 之间的关系是____________.6.函数y=kx+b的图象平行于直线y=-2x,且与y轴交于点(0,3),则k=______,b=_______.7.已知一次函数的图象经过点A(1,4)、B(4,2),•则这个一次函数的解析式为___________.8.如图1,该直线是某个一次函数的图象,•则此函数的解析式为_________.9.如图2,线段AB的解析式为____________.(1) (2)10.已知y-2与x成正比例,且x=2时,y=4,则y与x的函数关系式是_________;当y=3时,x=__________.11.一条平行于直线y=-3x的直线交x轴于点(2,0),则该直线与y•轴的交点是_________.12.已知一次函数y=kx+b的图象经过点(0,-4),且x=2时y=0,则k=______,b=•_______.13.直线y=2-3x不经过第______________象限,y随x的增大而___________.14.直线y=2x+b的图象过点(3,5),则该直线与x轴的交点是______,与y轴的交点是______.15.直线y=kx+b和直线y=-3x+8平行,且过点(0,-2)•则此直线的解析式为________.16.春野樱买了一张面值100元的IC卡从A地向B地打长途电话,按通话时间收费,3分钟内收2.4元,以后每超过1分钟加收1元,春野樱第一次通话t分钟(3≤t≤45),则IC 卡上所余的费用y(元)与t(分)之间的关系是____________________________.17.请写出一个符合下列全部条件的函数解析式_______________________:(1)图象不经过第三象限,(2)当x<-1时y随x的增大而减小,(3)图象经过点(1,-1)18.函数y= -x+b当自变量x的取值范围是-3<x<-1,函数值y的取值范围是1<y<a,则ab=____ 19.两直线y=x-5、y= - x+3与y轴围成的三角形的面积是__________.20.有这样的一道题目:“已知,一次函数y=kx+b的图象经过点A(o,&),B(-1, #),则△AOB 的面积是2,使说明理由。