中科大固体物理课程作业解答

合集下载

固体物理答案-第二章

固体物理答案-第二章
NaCl晶体
N0=6.0221023,与N0对应的质量应为
M=23+35.5=58.5(g)
Na原子量
Cl原子量
阿伏加德罗常数
面心立方,最近邻原子有12个, 由N个惰性气体原子构成的分子晶体,其总互作用势能可表示为
(2)计及最近邻和次近邻,次近邻有6个。
2.14 KCl晶体的体积弹性模量为 相邻离子间距缩小0.5%,需要施加多大的压力。 ,若要使晶体中 解:根据体积弹性模量K的定义, 得 ,因而 设R为相邻离子间的距离。KCL具有NaCL结构,平均每体 才有一个离子,若晶体中共含N个离子,则晶体体积 积
式中,V为晶体体积,N为晶体包含的原子数,v为每个原子平 均占据的体积。若以
表示晶体包含的晶胞数,
中每个晶胞的体积,n表示晶胞中所含的粒子数,则(1)式完全 等效于
解:题给
表示晶体
(1)
于是得
(2)
R为离子间的最短距离。题给的各种晶格均为立方格子,如令
证明:
选取负离子O为参考离子,相邻两离子间的距离用R表示。
第j个离子与参考离子的距离可表示为
对于参考
离子O,它与其它离子的互作用势能为
马德隆常数
2.3 设两原子间的互作用能可由 表述。 式中第一项为吸引能,第二项为排斥能; 均为正的常数。证明,要使这两原子系统处于平衡状态,必须n>m。 且 即当 时, 证明:相互作用着的两原子系统要处于稳定平衡状态,相应 于平衡距离 处的能量应为能量的极小值,
为常数,试求
(1)平衡时原子间的最短距离;
(2)平衡时晶体体积;
(3)平衡时体积弹性模量;
(4)抗张强度。
解:
(1)


01

固体物理基础课后1到10题答案

固体物理基础课后1到10题答案

一.本章习题P272习题1.试证理想六方密堆结构中c/a=.一. 说明:C 是上下底面距离,a 是六边形边长。

二. 分析:首先看是怎样密堆的。

如图(书图(a),P8),六方密堆结构每个格点有12个近邻。

(同一面上有6个,上下各有3个)上下底面中间各有一个球,共有六个球与之相切,每个球直径为a 。

中间层的三个球相切,又分别与上下底面的各七个球相切。

球心之间距离为a 。

所以球心之间即格点之间距离均为a (不管是同层还是上下层之间)。

三. 证明:如图OA=a ,OO ’=C/2(中间层是上下面层的一半),AB=a O ’是ΔABC 的三垂线交点33'a AB AO ==∴(由余弦定理)330cos 2,30cos 230cos 2222a a x x a ax x a x ===-+=οοο633.1322384132)2()2()3()2(2222222222''≈===∴+=+=+=a c c a ac a ac OA AO OO2.若晶胞基矢c b a ρρρ,,互相垂直,试求晶面族(hkl )的面间距。

一、分析:我们想到倒格矢与面间距的关系G d ρπ2=。

倒格矢与晶面族 (hkl )的关系321b l b k b h G ρρρρ++=写出)(321b b b ρρρ与正格子基矢 )(c b a ρρρ的关系。

即可得与晶面族(hkl ) 垂直的倒格矢G ρ。

进而求得此面间距d 。

二、解:c b a ρρρΘ,,互相垂直,可令k c c j b b i a a ρρρρρρ===,,晶胞体积abc c b a v =⨯⋅=)(ρρρ倒格子基矢:kcj b i a abc b a v b j b i a k c abc a c v b ia k c jb abc c b v b ρρρρρρρρρρρρρρρρρρπππππππππ2)(2)(22)(2)(22)(2)(2321=⨯=⨯==⨯=⨯==⨯=⨯=而与 (hkl )晶面族垂直的倒格矢 222321)()()(2)(2cl b k a h G k cl j b k i a h b l b k b h G ++=∴++=++=ππρρρρρρρρ故(hkl ) 晶面族的面间距222222)()()(1)()()(222cl b k a h cl b k a h G d ++=++==πππρ3.若在体心立方晶胞的每个面中心处加一个同类原子,试说明这种晶体的原胞应如何选择?每个原胞含有几个原子?1.分析:考虑选取原胞的条件:(即布拉菲晶格的最小单元)(1)体积最小的重复结构单元(2)只包含一个格点(3)能反映晶格的周期性应将几个原子组合成一个格点,然后构成原胞。

固体物理习题参考答案

固体物理习题参考答案

固体物理第一次习题参考答案1.如果将等体积球分别排成下列结构,设x 表示刚球所占体积与总体积之比,证明结构 x简单立方 0.526x π=≈体心立方 30.688x π=≈ 面心立方 20.746x π=≈ 六角密排 20.746x π=≈ 金刚石 30.3416x π=≈解:设钢球半径为r ,立方晶系晶格常数为a ,六角密排晶格常数为a,c 钢球体积为V 1,总体积为V 2(1)简单立方单胞含一个原子,a r =2 52.06343321≈==ππa r V V(2)体心立方取惯用单胞,含两个原子,r a 43= 68.0833423321≈=⋅=ππar V V (3)面心立方取惯用单胞,含4个原子,r a =2 74.0623443321≈=⋅=ππar V V (4)六角密排与面心立方同为密堆积结构,可预期二者具有相同的空间占有率 取图示单胞,含两个原子,a r =2 单胞高度a c 38=(见第2题) 74.062233422321≈=⋅⋅=ππc a r V V (5)金刚石取惯用单胞,含8个原子,r a 2341= 34.01633483321≈=⋅=ππar V V2.试证六方密排密堆积结构中128() 1.6333c a =≈解: 六角密排,如图示,4个原子构成正四面体222)2332(2a a c =⋅+⎪⎭⎫⎝⎛ ⇒ a c 38=3.证明:体心立方晶格的倒格子是面心立方,面心立方的倒格子是体心立方。

证:体心立方基矢取为⎪⎪⎪⎩⎪⎪⎪⎨⎧+-=++-=-+=)(2)(2)(2321k j i a a k j i a a k j i a a其中a 为晶格常数其倒格子基矢,按定义)(2)(21111114212)(223321j i b j i a kj ia a a a b+=+=--⋅=⨯Ω=πππ)(2)(2132k j b a a b +=⨯Ω=π)(2)(2213k i b a a b +=⨯Ω=π可见,体心立方的倒格子是晶格常数为a b π4=的面心立方。

固体物理答案陆栋.pdf

固体物理答案陆栋.pdf

《固体物理学》习题解答( 仅供参考 )参加编辑学生柯宏伟(第一章),李琴(第二章),王雯(第三章),陈志心(第四章),朱燕(第五章),肖骁(第六章),秦丽丽(第七章)指导教师黄新堂华中师范大学物理科学与技术学院2003级2006 年 6 月第一章晶体结构1.氯化钠与金刚石型结构是复式格子还是布拉维格子,各自的基元为何?写出这两种结构的原胞与晶胞基矢,设晶格常数为 a。

解:氯化钠与金刚石型结构都是复式格子。

氯化钠的基元为一个 Na+和一个 Cl-组成的正负离子对。

金刚石的基元是一个面心立方上的C原子和一个体对角线上的C原子组成的C原子对。

由于 NaCl 和金刚石都由面心立方结构套构而成,所以,其元胞基矢都为:⎧⎪a1=a2( j + k)⎪⎪⎨a 2=a2( k + i)⎪⎪⎪a 3=a ( i +j)⎩ 2相应的晶胞基矢都为:⎧a =a i,⎪⎨b =a j,⎪⎩c =a k.2.六角密集结构可取四个原胞基矢a1, a 2,a 3与 a4,如图所示。

试写出O'A1A3、A1 A3 B3 B1、 A2 B2 B5 A5、 A1 A2 A3 A4 A5 A6这四个晶面所属晶面族的晶面指数(h k l m)。

解:(1).对于O'A1A3面,其在四个原胞基矢上的截矩分别为:1,1,- 1 ,1。

所以,其晶面2( )指数为。

(2).对于A1A3B3B1面,其在四个原胞基矢上的截矩分别为:1,1,-12,∞。

所以,其晶面指数为(1120)。

(3).对于A2B2B5A5面,其在四个原胞基矢上的截矩分别为:1,-1,∞,∞。

1所以,其晶面指数为 (1 100)。

(4).对于 A 1 A 2 A 3 A 4 A 5 A 6 面,其在四个原胞基矢上的截矩分别为:∞ ,∞ ,∞ ,1。

所以, 其晶面指数为 (0001) 。

3. 如将等体积的硬球堆成下列结构,求证球体可能占据的最大体积与总体积的比为:简立方: π6 ;体心立方: 83π;面心立方: 62π ;六角密集: 62π ;金刚石:3π 。

固体物理习题解答

固体物理习题解答

《固体物理学》部分习题解答补充:证明“晶体的对称性定律”。

证明:晶体中对称轴的轴次n并不是任意的,而是仅限于 n=1,2,3,4,6这一原理称为“晶体的对称性定律”。

现证明如下:设晶体中有一旋转轴n 通过某点O,根据前一条原理必有一平面点阵与你n 垂直,而在其中必可找出与 n垂直的属于平移群的素向量a,将a作用于O得到A 点将-a作用于O点得到A’点:若a= ,则L( )及L(- )必能使点阵复原,这样就可得点阵点B,B’,可得向量BB’,显然BB与a平行,因为空间点阵中任意互相平行的两个直线点阵的素向量一定相等,因而向量BB’的长度必为素向量a的整数倍即:BB’= ma由图形关系可得:=即m=0,±1,±2m n-2 -1 p 2-1 - 30 0 41 62 1 2p 1所以 n=1,2,3,4,6综上所述可得结论:在晶体结构中,任何对称轴或轴性对称元素的轴次只有一重,二种,三重,四重或六重等五种,而不可能存在五重和七重及更高的其它轴次,这就是晶体对称性定律。

晶体的对称性定律证明:1.3 证明:体心立方晶格的倒格子是面心立方;面心立方晶格的倒格子是体心立方 。

解 由倒格子定义2311232a a b a a a π⨯=⋅⨯ 3121232a a b a a a π⨯=⋅⨯ 1231232a a b a a a π⨯=⋅⨯体心立方格子原胞基矢123(),(),()222a a a a i j k a i j k a i j k =-++=-+=-+倒格子基矢231123022()()22a a a ab i j k i j k a a a v ππ⨯==⋅-+⨯+-⋅⨯202()()4a i j k i j k v π=⋅-+⨯+-2()j k a π=+ 同理31212322()a a b i k a a a aππ⨯==+⋅⨯32()b i j a π=+ 可见由123,,b b b为基矢构成的格子为面心立方格子 面心立方格子原胞基矢123()/2()/2()/2a a j k a a k i a a i j =+=+=+倒格子基矢2311232a a b a a a π⨯=⋅⨯ 12()b i j k a π=-++同理22()b i j k a π=-+ 32()b i j k a π=-+可见由123,,b b b为基矢构成的格子为体心立方格子1.4 证明倒格子原胞的体积为03(2)v π,其中0v 为正格子原胞体积证 倒格子基矢2311232a a b a a a π⨯=⋅⨯3121232a a b a a a π⨯=⋅⨯1231232a a b a a a π⨯=⋅⨯倒格子体积*0123()v b b b =⋅⨯3*23311230(2)()()()v a a a a a a v π=⨯⋅⨯⨯⨯ 3*00(2)v v π=1.5 证明:倒格子矢量112233G hb h b h b =++垂直于密勒指数为123()hh h 的晶面系。

《固体物理学》答案[1]

《固体物理学》答案[1]

* v0 =
(2π )3 v0
1.5 证明:倒格子矢量 G = h1b1 + h2 b2 + h3b3 垂直于密勒指数为 ( h1h2 h3 ) 的晶面系。 证:
v v v uuu v uuu r a r a a a CA = 1 − 3 , CB = 2 − 3 h1 h3 h2 h3 uuu r v Gh1h2h3 ⋅ CA = 0 容易证明 v uuu r Gh1h2h3 ⋅ CB = 0 v v v v G = h1b1 + h2b2 + h3b3 与晶面系 (h1h2 h3 ) 正交。 v v v h k l ( ) 2 + ( )2 + ( )2 ;说明面 a b c
图 1.3 体心立方晶胞
(2)对体心立方晶体,任一个原子有 8 个最近邻,若原子刚性球堆积,如图 1.3 所示,体心位置 O 的原 子 8 个角顶位置的原子球相切, 因为晶胞空间对角线的长度为 3a = 4r , V = a 3 , 晶胞内包含 2 个原子, 所
2* 4 3π( 以ρ = a3
3a 3 4

3 ε 23 2 1 − ε 23 2 ε 33
由上式可得
ε 23 = 0, ε 32 = 0, ε 11 = ε 22 . ε 11 ε = 0 0 0 ε 11 0 0 0 . ε 33
于是得到六角晶系的介电常数
附:证明不存在 5 度旋转对称轴。 证:如下面所示,A,B 是同一晶列上 O 格点的两个最近邻格点,如果绕通过 O 点并垂直于纸面的转轴顺时 针旋转θ 角,则 A 格点转到 A 点,若此时晶格自身重合,点处原来必定有一格点,如果再绕通过 O 点的
3a = 8r , 晶胞体积 V = a 3

固体物理参考答案(前七章)

固体物理参考答案(前七章)

固体物理习题参考答案(部分)第一章 晶体结构1.氯化钠:复式格子,基元为Na +,Cl -金刚石:复式格子,基元为两个不等价的碳原子 氯化钠与金刚石的原胞基矢与晶胞基矢如下:原胞基矢)ˆˆ()ˆˆ()ˆˆ(213212211j i a a i k a a k j a a +=+=+= , 晶胞基矢 ka a j a a ia a ˆˆˆ321===2. 解:31A A O ':h:k;l;m==-11:211:11:111:1:-2:1 所以(1 1 2 1) 同样可得1331B B A A :(1 1 2 0); 5522A B B A :(1 1 0 0);654321A A A A A A :(0 0 0 1)3.简立方: 2r=a ,Z=1,()63434r 2r a r 3333πππ===F体心立方:()πππ833r4r 342a r 3422a 3r 4a r 4a 33333=⨯=⨯=∴===F Z ,,则面心立方:()πππ622r 4r 34434442r 4a r 4a 233ar 33=⨯=⨯=∴===F Z ,,则 六角密集:2r=a, 60sin 2c a V C = a c 362=,πππ622336234260sin 34223232=⨯⨯⨯=⨯=⎪⎭⎫ ⎝⎛a a c a r F a金刚石:()πππ163r 38r 348a r 3488Z r 8a 33333=⨯=⨯===F ,, 4. 解:'28109)31arccos(312323)ˆˆˆ()ˆˆˆ(cos )ˆˆˆ()ˆˆˆ(021*******12211=-=-=++-⋅+-=⋅=++-=+-=θθa a k j i a k j i a a a a a kj i a a kj i a a 5.解:对于(110)面:2a 2a a 2S =⋅=所包含的原子个数为2,所以面密度为22a2a22=对于(111)面:2a 2323a 22a 2S =⨯⨯= 所包含的原子个数为2,所以面密度为223a34a 232=8.证明:ABCD 是六角密堆积结构初基晶胞的菱形底面,AD=AB=a 。

固体物理试题解答

固体物理试题解答

一.简答题(20)1、玻恩-卡门边界条件及其重要意义。

玻恩-卡门边界条件:设想在一长为Na 的有限晶体边界之外,仍然有无穷多个相同的晶体,并且各块晶体内相对应的原子的运动情况一样,即第j 个原子和第tN +j个原子的运动情况一样,其中t=1,2,3…。

书P109其重要意义:P992、说明淬火后的金属材料变硬的原因。

P143我们已经知道晶体的一部分相对于另一部分的滑移,实际是位错线的滑移,位错线的移动是逐步进行的,使得滑移的切应力最小。

这就是金属一般较软的原因之一。

显然,要提高金属的强度和硬度,似乎可以通过消除位错的办法来实现。

但事实上位错是很难消除的。

相反,要提高金属的强度和硬度,通常采用增加位错的办法来实现。

金属淬火就是增加位错的有效办法。

将金属加热到一定高温,原子振动的幅度比常温时的幅度大得多,原子脱离正常格点的几率比常温时大得多,晶体中产生大量的空穴、填隙缺陷。

这些点缺陷容易形成位错。

也就是说,在高温时,晶体内的位错缺陷比常温时多得多。

高温的晶体在适宜的液体中急冷,高温时新产生的位错来不及恢复和消退,大部分被保留了下来。

数目众多的位错相互交织在一起,某一方向的位错的滑移,会受到其他方向位错的牵制,使位错滑移的阻力大大增加,使得金属变硬。

3、杂化轨道理论。

P61为了解释金刚石中碳原子具有4个等同的共价键,1931年泡林(Pauling )和斯莱特(Slater )提出了杂化轨道理论。

碳原子有4个价电子2s ,2p x ,2p y ,2p z ,它们分别对应ϕ2s ,ϕ2px ,ϕ2py ,ϕ2pz 量子态,在构成共价键时,它们“混合”起来重新组成四个等价的轨道,其中每一个轨道包含有s 41和p 43的成分,这种轨道称为杂化轨道,分别对应4个新的量子态()z y x p p p 222s 2121ϕϕϕϕψ+++= ()z y x p p p 222s 2221ϕϕϕϕψ--+= ()z y x p p p 222s 2321ϕϕϕϕψ-+-= ()zy x p p p 222s 2421ϕϕϕϕψ+--= 4个电子分别占据ψ1,ψ2,ψ3,ψ4新轨道,在四面体顶角方向形成4个共价键。

固体物理习题解答参考答案晶体结构

固体物理习题解答参考答案晶体结构
r r r r r r r R = l ( 2i ) + m ( 2 j ) + n 2k + (i + j + k )
r
( )
。由 R 所定义的也是一个点阵常数为
r
r r r ( i 2 的 SC 点阵,但相对于上面一个 SC 点阵位移了一个矢量 + j + k ) ,
这个点正好位于体心位置。 上面两个 SC 点阵穿套起来正好是一个 bcc 点阵,故 ni 或全为奇数,或全为偶数所定义的是一个 bcc 点阵。 (2)若
体心立方晶格原胞基矢 a1 = (−i + j + k ) a2 = (i − j + k ) a3 = (i + j − k ) 体心立方晶格原胞体积 倒格子基矢:
r
a 2
r
r
r r
ห้องสมุดไป่ตู้
a r 2
r
r r
a r 2
r
r
同理: 可见由 为基矢构成的格子为面心立方格子。
面心立方格子原胞基矢: 面心立方格子原胞体积: 倒格子基矢: 同理 可见由 为基矢构成的格子为体心立方格子。
(2) 体心立方(书P3,图1-3)
r 取 原 子 球 相 切 时 的 半 径 ( 体 对 角 线 的 1/4 ) , r= 3a / 4 ,n=2, V = a 3 所 以
ρ=
n 4π r 3 3 = 3π / 8 V
(3) 面心立方(书P4,图1-7)
r 取 原 子 球 相 切 时 的 半 径 ( 面 对 角 线 的 1/4 ) r= 2a / 4 ,n=4, V = a 3 , 所 以
则由 ε = AxT ε Ax 得

固体物理 习题解答 第二章

固体物理 习题解答  第二章

2.1证明对于六角密堆积结构,理想的c/a 比为(8/3)1/2≈1.633。

又:金属Na 在273K 因马氏体相变从体心立方转变为六角密堆积结构,假定相变时金属的密度维持不变,已知立方相的晶格常数a=0.423nm ,设六角密堆积结构相的c/a 维持理想值,试求其晶格常数。

解:2c a a A B C D E O a a(1)a AC AE AO 333332===a a a AO AD OD 32312222=-=-=633.138322221≈⎪⎭⎫ ⎝⎛===a OD a c(2)体心立方每个单胞包含2个基元,一个基元所占的体积为23c c a V =, 单位体积内的格点数为.1Vc六角密堆积每个单胞包含6个基元,一个基元所占的体积为32122223843436/323a a a c a c a a V s =⎪⎭⎫ ⎝⎛⨯==⨯⎪⎪⎭⎫ ⎝⎛⨯⨯=因为密度不变,所以 s c V V 11=,即:33222/a a c =nm a a c s 377.02/61==nma c s 615.0633.1==2.2证明简单六角布拉维格子的倒格子仍为简单六角布拉维格子,并给出其倒格子的晶格常数。

解:简单六角布拉维格子的基矢为:⎪⎪⎩⎪⎪⎨⎧=+==z c a y a x a a x a a ˆˆ23ˆ2ˆ321倒格矢为:()()()⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧==⨯•⨯=⎪⎪⎭⎫ ⎝⎛==⨯•⨯=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-=⨯•⨯=z c c a za a a a a ab y ac a yac a a a a a b y x a ca y ac xac a a a a a b ˆ223ˆ2322ˆ332223ˆ22ˆ21ˆ23332223ˆ21ˆ23222232121323211322321321πππππππππ容易看出此倒格子为简单六角布拉维格子 晶格常数为:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧===c b a b a b πππ23343343212.3画出体心立方和面心立方晶格结构的金属在(100),(110)和(111)面上的原子排列。

固体物理习题解答-完整版

固体物理习题解答-完整版
n
2.3
若一晶体的相互作用能可以表示为 u ( r ) = − 求 1 )平衡间距 r 0
α
r
m
+
β
rn
3 )体弹性模量 4 )若取
2 )结合能 W (单个原子的)
m = 2, n = 10, r0 = 0.3 nm, W = 4 eV ,计算 α , β 值。
解 1)晶体内能 U ( r ) =
N α β (− m + n ) 2 r r
⎛ ε 11 3ε 22 ⎜ + 4 4 0 ⎞ ⎜ ⎟ ⎜ 3ε 11 3ε 22 ε 23 ⎟ = ⎜ − + 4 4 ⎜ ε 33 ⎟ ⎠ ⎜ 3ε 23 − ⎜ 2 ⎝ − 3ε 11 3ε 22 + 4 4 3ε 11 ε 22 + 4 4 − − 3ε 23 ⎞ ⎟ 2 ⎟ ε ⎟ − 23 ⎟ 2 ⎟ ε 33 ⎟ ⎟ ⎠
h k l ( )2 + ( )2 + ( )2 a b c
说明面指数简单的晶面,其面密度较大,容易解理 证 简单正交系 a ⊥ b ⊥ c 倒格子基矢 b1 = 2π
a1 = ai , a2 = bj , a3 = ck b2 = 2π a3 × a1 a1 ⋅ a2 × a3 b3 = 2π a1 × a2 a1 ⋅ a2 × a3
⎛ ε 11 ε 12 ⎜ 假 设 六 角 晶 系 统 的 介 电 常 数 为 ε = ⎜ ε 21 ε 22 ⎜ε ⎝ 31 ε 32
⎛ ε 11 ε 12 ⎜ ⎜ ε 21 ε 22 ⎜ε ⎝ 31 ε 32
ε 13 ⎞ ⎟ ε 23 ⎟ 则 由 ε = AT ε Ax 得 ε 33 ⎟ ⎠
x
ε 13 ⎞ ⎛ ε 11 − ε 12 − ε 13 ⎞ 0 ⎞ ⎛ ε 11 0 ⎟ ⎟ ⎜ ⎟ ⎜ ε 23 ⎟ = ⎜ − ε 21 ε 22 ε 23 ⎟ 可见 ε = ⎜ 0 ε 22 ε 23 ⎟ 将上式代入 ε = AzT ε Az ⎜ ⎜0 ε ε 33 ⎟ ε 33 ⎟ ε 33 ⎟ 32 ⎠ ⎠ ⎝ ⎠ ⎝ − ε 31 ε 32

《固体物理学》基础知识训练题及其参考标准答案

《固体物理学》基础知识训练题及其参考标准答案

《固体物理学》基础知识训练题及其参考标准答案《固体物理》基础知识训练题及其参考答案说明:本内容是以黄昆原著、韩汝琦改编的《固体物理学》为蓝本,重点训练读者在固体物理方面的基础知识,具体以19次作业的形式展开训练。

第一章作业1:1.固体物理的研究对象有那些?答:(1)固体的结构;(2)组成固体的粒子之间的相互作用与运动规律;(3)固体的性能与用途。

2.晶体和非晶体原子排列各有什么特点?答:晶体中原子排列是周期性的,即晶体中的原子排列具有长程有序性。

非晶体中原子排列没有严格的周期性,即非晶体中的原子排列具有短程有序而长程无序的特性。

3.试说明体心立方晶格,面心立方晶格,六角密排晶格的原子排列各有何特点?试画图说明。

有那些单质晶体分别属于以上三类。

答:体心立方晶格:除了在立方体的每个棱角位置上有1个原子以外,在该立方体的体心位置还有一个原子。

常见的体心立方晶体有:Li,Na,K,Rb,Cs,Fe等。

面心立方晶格:除了在立方体的每个棱角位置上有1个原子以外,在该立方体每个表面的中心还都有1个原子。

常见的面心立方晶体有:Cu, Ag, Au, Al等。

六角密排晶格:以ABAB形式排列,第一层原子单元是在正六边形的每个角上分布1个原子,且在该正六边形的中心还有1个原子;第二层原子单元是由3个原子组成正三边形的角原子,且其中心在第一层原子平面上的投影位置在对应原子集合的最低凹陷处。

常见的六角密排晶体有:Be,Mg,Zn,Cd等。

4.试说明, NaCl,金刚石,CsCl, ZnS晶格的粒子排列规律。

答:NaCl:先将两套相同的面心立方晶格,并让它们重合,然后,将一套晶格沿另一套晶格的棱边滑行1/2个棱长,就组成Nacl晶格;金刚石:先将碳原子组成两套相同的面心立方体,并让它们重合,然后将一套晶格沿另一套晶格的空角对角线滑行1/4个对角线的长度,就组成金刚石晶格;Cscl::先将组成两套相同的简单立方,并让它们重合,然后将一套晶格沿另一套晶格的体对角线滑行1/2个体对角线的长度,就组成Cscl晶格。

固体物理习题解答

固体物理习题解答
函数,能量本征值和本征函数在 k 空间具有倒格矢反演和 周期性,电子波矢 k 是与平移对称性相联系的量子数 。 非晶态也具有相似的基本能带结构,即:导带、价带和禁带。 但非晶态的电子态与晶态比较有本质区别。非晶态不存在 周期性,因此 k 不再是具有类似特征的量子数。 非晶态能带中电子态分扩展态和局域态二类。扩展态的电子为 整个固体共有,可在整个固体内找到,在外场中运动类似 晶体中电子;局域态的电子基本局限在某一区域,状态波 函数只能在围绕某一不大的尺度内显著不为零,它们依靠 声子协助,进行跳跃式导电。
方 (110)晶面的格点面密度最大。根据
dhkl
h2
a k2
l2
,有面心立方
d111
a ,体心立方 3
d110
a 2
因此,最大格点面密度表达式,
dh1h2h3 2 / Gh1h2h3
面心立方111
4 a3
a 3
43 3a2

体心立方110
2 a3
a 2
2 a2
第一章 习题
1.7 证明体心立方格子和面心立方格子互为倒格子。
k * N
由于晶体原胞数 N 很大,倒格子原胞体积 很小, k 在波矢空间准连续取值,因 此,同一能带中相邻 k 值的能量差别 很小, 所以 En(k) 可近似看成是 k 的 准连续函数。
第四章 思考题
5、近自由电子模型和紧束缚模型有何特点?它们有共同之处吗? 答: 近自由电子近似模型是当晶格周期势场起伏很小,电子的行为
第一章 思考题
2、晶体结构可分成布拉菲格子和复式格子吗?
答: 可以。 以原子为结构参考点,可以把晶体分成布拉菲格子和复式格
子。 任何晶体,以基元为结构参考点,都是布拉菲格子描述。 任何化合物晶体,都可以复式格子描述? 不是所有的单质晶体,都是布拉菲格子描述? 单质晶体,以原子为结构参考点,也可以分成布拉菲格子和

固体物理习题解答

固体物理习题解答

《固体物理学》习题解答( 仅供参考)参加编辑学生柯宏伟(第一章),李琴(第二章),王雯(第三章),陈志心(第四章),朱燕(第五章),肖骁(第六章),秦丽丽(第七章)指导教师黄新堂华中师范大学物理科学与技术学院2003级2006年6月第一章晶体结构1. 氯化钠与金刚石型结构是复式格子还是布拉维格子,各自的基元为何?写出这两种结构的原胞与晶胞基矢,设晶格常数为a。

解:氯化钠与金刚石型结构都是复式格子。

氯化钠的基元为一个Na+和一个Cl-组成的正负离子对。

金刚石的基元是一个面心立方上的C原子和一个体对角线上的C原子组成的C原子对。

由于NaCl和金刚石都由面心立方结构套构而成,所以,其元胞基矢都为:123()2()2()2a a a ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩a j k a k i a i j 相应的晶胞基矢都为:,,.a a a =⎧⎪=⎨⎪=⎩a ib jc k2. 六角密集结构可取四个原胞基矢123,,a a a 与4a ,如图所示。

试写出13O A A '、1331A A B B 、2255A B B A 、123456A A A A A A 这四个晶面所属晶面族的晶面指数()h k l m 。

解:(1).对于13O A A '面,其在四个原胞基矢上的截矩分别为:1,1,12-,1。

所以,其晶面指数为()1121。

(2).对于1331A A B B 面,其在四个原胞基矢上的截矩分别为:1,1,12-,∞。

所以,其晶面指数为()1120。

(3).对于2255A B B A 面,其在四个原胞基矢上的截矩分别为:1,1-,∞,∞。

所以,其晶面指数为()1100。

(4).对于123456A A A A A A 面,其在四个原胞基矢上的截矩分别为:∞,∞,∞,1。

所以,其晶面指数为()0001。

3. 如将等体积的硬球堆成下列结构,求证球体可能占据的最大体积与总体积的比为: 简立方:6π;体心立方:8;面心立方:6;六角密集:6;金刚石:16。

固体物理学课后题答案

固体物理学课后题答案

固体物理学课后题答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一章 晶体结构1.1、 如果将等体积球分别排成下列结构,设x 表示钢球所占体积与总体积之比,证明:结构 X简单立方52.06=π体心立方68.083≈π 面心立方74.062≈π 六角密排74.062≈π 金刚石34.063≈π解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。

因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。

这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。

它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1) a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06834343333====πππrra r x(2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)334(3423423333≈=⨯=⨯=πππr r a r x (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)22(3443443333≈=⨯=⨯=πππr r a r x(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062)22(3443443333≈=⨯=⨯=πππr r a r x (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.06333834834833333≈=⨯=⨯=πππr r a r x 1.3、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。

《固体物理学》概念和习题 答案

《固体物理学》概念和习题 答案

《固体物理学》概念和习题固体物理基本概念和思考题:1.给出原胞的定义。

答:最小平行单元。

2.给出维格纳-赛茨原胞的定义。

答:以一个格点为原点,作原点与其它格点连接的中垂面(或中垂线),由这些中垂面(或中垂线)所围成的最小体积(或面积)即是维格纳-赛茨原胞。

3.二维布喇菲点阵类型和三维布喇菲点阵类型。

4. 请描述七大晶系的基本对称性。

5. 请给出密勒指数的定义。

6. 典型的晶体结构(简单或复式格子,原胞,基矢,基元坐标)。

7. 给出三维、二维晶格倒易点阵的定义。

8. 请给出晶体衍射的布喇格定律。

9. 给出布里渊区的定义。

10. 晶体的解理面是面指数低的晶面还是指数高的晶面?为什么?11. 写出晶体衍射的结构因子。

12. 请描述离子晶体、共价晶体、金属晶体、分子晶体的结合力形式。

13. 写出分子晶体的雷纳德-琼斯势表达式,并简述各项的来源。

14. 请写出晶格振动的波恩-卡曼边界条件。

15. 请给出晶体弹性波中光学支、声学支的数目与晶体原胞中基元原子数目之间的关系以及光学支、声学支各自的振动特点。

(晶体含N个原胞,每个原胞含p个原子,问该晶体晶格振动谱中有多少个光学支、多少个声学支振动模式?)16. 给出声子的定义。

17. 请描述金属、绝缘体热容随温度的变化特点。

18. 在晶体热容的计算中,爱因斯坦和德拜分别做了哪些基本假设。

19. 简述晶体热膨胀的原因。

20. 请描述晶体中声子碰撞的正规过程和倒逆过程。

21. 分别写出晶体中声子和电子分别服从哪种统计分布(给出具体表达式)?22. 请给出费米面、费米能量、费米波矢、费米温度、费米速度的定义。

23. 写出金属的电导率公式。

24. 给出魏德曼-夫兰兹定律。

25. 简述能隙的起因。

26. 请简述晶体周期势场中描述电子运动的布洛赫定律。

27. 请给出在一级近似下,布里渊区边界能隙的大小与相应周期势场的傅立叶分量之间的关系。

28. 给出空穴概念。

29. 请写出描述晶体中电子和空穴运动的朗之万(Langevin)方程。

中科大研究生高等计算固体力学作业参考答案

中科大研究生高等计算固体力学作业参考答案

高等计算固体力学作业参考答案 *解答: 设332210)(x a x a x a a x +++=φ, 余量)()(22x Q dxd x R +=φ由边界条件0)0(=φ, 可得00=a ;由10==Lx dxd φ可得010322321=-++L a L a a(1)(a) 配点法: 取x=L/3和2L/3为配点, 要求:0)3/(=L R (2) 0)3/2(=L R(3)解方程组(1)-(3),可得La a L a 21 ,1 ,2/10321=-=+= (b) 子域法: 取2/0L x ≤≤和L x L ≤≤2/为子域, 则0)(2/0=⎰dx x R L (4) 0)(2/=⎰dx x R LL(5)*任何问题请email to: yqhuang@解方程组(1),(4),(5),可得La a L a 31 ,4/3 ,2/10321=-=+= (b) 伽辽金法. 取权函数33221,,x W x W x W ===,则0)10()(101=--=⎰L x Ldx d W dx x R W φ(6) 0)10()(202=--=⎰L x Ldx d W dx x R W φ(7) 0)10()(303=--=⎰Lx Ldx d W dx x R W φ(8)解方程组(6)-(8),可得La a L a 165,32/23 ,321710321=-=+=解答: 微分算子为) ()() () (2222c y x L +∂∂+∂∂=,取任意函数u, v ,dsnvu ds n u v dxdy u vL ds n v u ds n y u v n x u v dxdy cu y u x u v ds n y v u n x v u dxdy cuv y v y u x v x u dxdy cv y v x v u dxdy v uL y x y x ⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰∂∂+∂∂-=∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂-⎪⎪⎭⎫ ⎝⎛+∂∂+∂∂=⎪⎪⎭⎫⎝⎛∂∂+∂∂+⎪⎪⎭⎫ ⎝⎛+∂∂∂∂-∂∂∂∂-=⎪⎪⎭⎫⎝⎛+∂∂+∂∂=)()(22222222故算子是自伴随的.原问题等价于: (假设φ已满足1Γ上的边界条件)0212121212121)()(222222222222222=⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛∂∂-⎪⎭⎫ ⎝⎛∂∂-=+⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛∂∂-⎪⎭⎫ ⎝⎛∂∂-=+⎪⎪⎭⎫⎝⎛++⎪⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂-=⎪⎭⎫⎝⎛-∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛++∂∂∂∂-∂∂∂∂-=⎪⎭⎫⎝⎛-∂∂-⎪⎪⎭⎫ ⎝⎛++∂∂+∂∂⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ΓΓΓΓΓds q dxdy Q c y x ds q dxdy Q c y x ds q dxdy Q c y y x x ds q n ds n dxdy Q c y y x x ds q n dxdy Q c y x φφφφφδδφφφφφδδφδφφδφφδφφδφφδφφδφδφφδφδφφδφφφδφφφφδφ等价的自然变分原理为:()⎰⎰⎰Γ+⎪⎪⎭⎫⎝⎛++⎪⎪⎭⎫ ⎝⎛∂∂-⎪⎭⎫ ⎝⎛∂∂-=∏2222212121ds q dxdy Q c y x φφφφφφ 或()⎰⎰⎰Γ-⎪⎪⎫ ⎛--⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=∏2221222ds q dxdy Q c y x φφφφφφ解答: 此时问题的变分原理简化为()⎰⎰⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=∏dxdy y x φφφφ42122 将近似函数代入可以得到:截面的扭矩⎰⎰2Tφ=dxdy解答:()()()()()()0=Γ⎪⎭⎫⎝⎛∂∂+Γ⎪⎭⎫ ⎝⎛+-∂∂+Ω⎥⎦⎤⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂-=Γ--Γ⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+Ω⎥⎦⎤⎢⎣⎡-⎪⎪⎭⎫⎝⎛∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂-=Γ--Ω⎥⎦⎤⎢⎣⎡-∂∂∂∂+∂∂∂∂=Γ--Ω⎥⎦⎤⎢⎣⎡-⎪⎪⎭⎫⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂=∏⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰Γ-ΓΓΩΓΓΩΓΩΓΩqq qqq d n k d q n k d Q y k y x k x d q d n y k n x k d Q y k y x k x d q d Q y y k x x k d q d Q y y k x x ky x δφφδφαφφδφφφδφαφδφδφφδφφδφδφφδφφδφαφδφδφδφφδφφδφαφδφδφφδφφδφφδ由变分δφ的任意性,可得相应的欧拉方程和边界条件:0=+⎪⎪⎭⎫⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂Q y k y x k x φφ, Ω内 q Γ上的自然边界条件: 0=+-∂∂q nkαφφq Γ-Γ上的强迫边界条件: 0=δφ,或φφ=解答: 方法1:设A,B 两点的坐标为(x 1,y 1,z 1), (x 2,y 2,z 2), 并设x=x(s),y=y(s),z=z(s), 则dsdxx x ds dy 21--=问题的泛函可以表示为:),()()(11222222z x L ds dsdz ds dx x dz dy dx ds L BAB ABA =+-=++==⎰⎰⎰ 问题转化为求泛函L(x,z)在满足端点条件下的最小值问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

F m* dv dt
在周期场中电子的有效质量m*与k有关。
❖ 在能带底: E(k)取极小值,
❖ 在能带顶: E(k)取极大值,
d 2E dk 2
0
d 2E dk 2
0
m*>0; m*<0
• 导出k=0点上的有效质量张量,并找出主轴 方向
对非简并的半导体采用玻尔兹曼统计处理,在玻尔兹曼统计中E=3/2kBT
一位线性谐振子
Chapter 1 金属自由电子气模型
费米面上的电子能态密度
Cv
2
2
nkB
T TF
自由电子气模型
晶体结构
简单立方: 体心立方: 面心立方:
C 第一层原子ABC组成边长a=2r的正三角形,第二层原子D与之相切,组成正四面体
证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方
定义(x, y, z) (x)( y)(z),代入薛定谔方程可得:
-
h2 2m
(
(
y)
(
z)d2 ( x2x)(x)
(
z
)
d
2 ( y2
y)
(
x)
(
y)
d
2 ( z2
z)
)
E
(
x)
(
y)
(
z)
则: 1 (x)
d
2 ( x) x2
-
2m h2
1 Ex ; ( y)
d
2( y) y2
-
2m h2
Ey;
中科大固体物理(春季学期)课程答案
授课教师:朱老师
一维无限深方势阱
X<-a --a<X<a
X>a
-a
a
a=L/2
1 (a) 2 (-a)
0
a
x
a
2
(x) xdx
a 2x sin2 n x dx= a
0
0a
a2
(x- x )2 (x- a )2 x2 + a2 ax
2
4
a
(x)
1 (z)
d
2(z) z2
-
2m h2
Ez
通解:(x)=A sin kx x B cos kx x 边界条件:(0)=(L) 0
kx
nx lx
;ky
ny ly
;kz
nz lz
归一化后可得:
(x,
y,
z)
(
2
)
3 2
L
sin(kx x)
sin(ky y)
sin(kz z)
E
2h2
2mL2
nx2 ny2 nz2
晶格振动
此题的计算说明了电子只有在极低温度下才会贡献晶格热容,在室温时电子对 热容的贡献可以忽略不计
固体中的原子键合
Madelung常数
金刚石的消光条件
结构因子: Fhkl f j exp(2 i(hxj ky j lz j ))
代入得
Chapter 3 能带论
一维周期场近自由电子近似
简单六角晶体:
=V1(Gc )(1+1+exp(-i2 )+3exp(-i ))
晶体中的电子运动
对于能带宽度分别求出带顶和带底能量(两种极值情况),即可获得能带的宽度 对于半经典模型,一维情况有:
2
(x2 +
a2
ax)dx
a2
(1
0
6 2 2)
So the three-dimensional Schrödinger wave equation is
V(x, y, z) 0
(0 x, y, z L)
(x, y, z 0, x, y, z L)
x, y, z相互独立;(x),(y),(z)也相互独立
三、电子的加速度和有效质量
晶体中电子的运动方程:
{r v
1
ur E
ur
h
k
ur
dk
F h
dt
由以上两式可直接导出在外力作用下电子的加速度。
1. 一维情况
a
dv dt
d dt
1 h
dE dk
1 h
dk dt
d 2E dk 2
h2
F
d2E dk 2
引入电子的有效质量:
m*
h2
d 2E
dk 2
相关文档
最新文档