弦弧圆心角1
圆心角与弦、弧之间的关系
:
辫 如图,  ̄A C I B D的顶点A为圆心,B为半径作圆, ) 2 A 交
A B D, C于 E, 延长 F,
证明
。 .
面. 而 . 都搪 七 即可.
交 o 于 G 求证 : = . 廓
连接
‘
在 同 圆或等 圆 中 , 圆心 角 、 和 弦三者 之 问有 下列 关 系 : 弧
1 定理 . 在 同 圆或 等 圆 中 ,相 等 的 圆心 角 所对 的弧 相等 . 所
对 的弦也 相等 . 几何 表达 式
注意
下罔.
应刚定理时 , 在同圆 “
如 图 , QO 中 ,・ AO : C D0. B 面 , : D. 在 ・ . B O A : AB C — 2 推论 . 在 同圆 或 等 圆 中 , 等 的 两 条 弧 、 条 弦 、 个 圆心 相 两 两
在 同 心 圆 00 巾 . 4O = B
C OD. 但 ≠C AB≠C — D. D.
O = C D. B O
此 定理 是证 明弧等 、 等 、 角 弦等 的 另一 个基 本方 法.
3 圆心 角 的度数 等 于 圆心 角所对 弧 的度 数. .
倒 1 如图, A = C 求证 :B C 已知 D B , A =D
日= 4F-. B= 1 . .L .
・
.
‘
D C l /2 LB 3 ∥B . = , = .
2 3 : . . : ・ . 威
即
1 5
浑 浑 噩 噩 的人 生 是 不 值 得 过 的人 ห้องสมุดไป่ตู้ 。— — 苏 格 拉 底
4弧、弦、圆心角定理
BAEDCBAOE DC BA(二)弧、弦、圆心角一、知识回顾1.定义: 叫做圆心角.2.定理:在 中,相等的圆心角所对的弧 ,所对的弦 .3.推论1:在 中,相等的弧所对的 相等,所对的 相等.4.推论2:在 中,相等的弦所对的 相等,所对的 相等.5.定理及推论的综合运用:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中 相等,那么 也相等. 二、例题讲解1、如图(1),弦AD=BC ,E 是CD 上任一点(C ,D 除外),则下列结论不一定成立的是( )A .»»ADBC =; B .AB=CD ; C .∠ AED=∠CEB ; D .¼»A B BC = 2、如图(2),AB 是 ⊙O 的直径,C ,D 是»BE 上的三等分点,∠AOE=60°,则∠COE 是( )A .40°;B .60°;C .80°;D .120°.3、如图(3),AB 是 ⊙O 的直径,»»BC =BD ,∠A=25°,则∠BOD= °.4、如图(4),在⊙O 中,»»AB =AC ,∠A=40°,则∠C= °5、在⊙O 中,»»AB =AC ,∠ACB=60°.求证:∠AOB = ∠BOC = ∠AOC .三、达标练习1、如果两个圆心角相等,那么( ) A .这两个圆心角所对的弦相等; BC .这两个圆心角所对的弦的弦心距相等;D .以上说法都不对 2.在同圆中,圆心角∠AOB=2∠COD ,则»AB与»CD 的关系是( ) A .»»AB=2CD ; B .»»AB CD >; C .»»AB 2CD <; D .不能确定 3.在同圆中,¼»AB BC =,则( ) A .AB+BC=AC ; B .AB+BC >AC ; C AB+BC <AC ;D . 不能确定4.下列说法正确的是( )A .等弦所对的圆心角相等;B .等弦所对的弧相等;C .等弧所对的圆心角相等;D .相等的圆心角所对的弧相等. 5.如图,在⊙O 中,C 、D 是直径上两点,且AC=BD ,MC ⊥AB ,ND ⊥AB ,M 、N 在⊙O 上.求证:¼»AM=BN四、课堂小结在运用定理及推论时易漏条件“在同圆或等圆中”,导致推理不严密,如半径不等的两个同心图,显然相等的圆心角所对的弧、弦均不等.ODCB A图(3)A图(4)A第5题图图(1)图(2)五、课后作业1、如图,已知OA 、OB 是⊙O 的半径,点C 为AB 的中点,M 、N 分别为OA 、OB 的中点,求证:MC=NC2、如图,AB 是⊙O 的弦,»»AE=BF ,半径OE ,OF 分别交AB 于C ,D .求证:△OCD 是等腰三角形.3、如图,在圆O 中,弦AB 、CD 相交于E ,且AB=CD ,求证:CE=BE4、已知:如图,EF 为⊙O 的直径,过EF 上一点P 作弦AB 、CD ,且∠APF=∠CPF . 求证:PA=PC .OA BEFCDONMAC BA B DC E OPAD E FCB。
弧弦圆心角课件
应用三:求解多边形内角和
弧弦圆心角定理
多边形内角和等于(n-2)×180°,其中n为多边形的边数。
弧弦圆心角在多边形中的应用
通过弧弦圆心角定理,可以求解多边形内角和,进而解决与多边形内角相关的问题。同时,也可以利 用多边形内角和的求解方法,推导其他几何图形的内角和公式。
05
弧弦圆心角在三角函数中应用
心角之差。
弧弦圆心角在波动中的应用
02
利用弧弦圆心角可以直观地表示波动的相位,从而方便地描述
两个波之间的相位差以及波的干涉、衍射等现象。
应用实例
03
利用弧弦圆心角分析两个同频率波的干涉现象,可以方便地得
出干涉加强或减弱的条件。
应用三:描述圆周运动中角速度与线速度关系
角速度与线速度关系
在圆周运动中,角速度与线速度之间的关系可以通过弧弦圆心角来描述。具体地,角速度 等于单位时间内转过的弧弦圆心角所对应的弧度数,而线速度则等于角速度与半径的乘积 。
要点二
利用弧弦圆心角关系判断三角函 数方程的解的存在性
在解三角函数方程时,有时需要判断方程是否有解。此时 ,可以利用弧弦圆心角关系来判断方程是否有解。例如, 当方程中的三角函数值超出其定义域时,可以判断该方程 无解。
06
弧弦圆心角在物理中应用
应用一:描述简谐振动中相位差
相位差定义
两个同频率简谐振动的相位之差,等于它们所对应的弧弦圆心角 之差。
。
性质定理二
在同圆或等圆中,如果两条弧相等 ,那么它们所对的圆心角相等,所 对的弦也相等。
性质定理三
在同圆或等圆中,如果两条弦相等 ,那么它们所对的弧相等,所对的 圆心角也相等。
判定方法二:利用三角函数判定
人教版九年级数学上册24.1.3《弧、弦、圆心角》说课稿
人教版九年级数学上册24.1.3《弧、弦、圆心角》说课稿一. 教材分析人教版九年级数学上册第24章《圆》的第三节“弧、弦、圆心角”是整个章节的重要组成部分。
本节内容主要介绍了弧、弦、圆心角的定义及其相互关系,旨在让学生理解和掌握圆的基本概念和性质,为后续学习圆的周长、面积等知识打下基础。
教材从生活实例出发,引出弧、弦、圆心角的概念,并通过观察、操作、猜想、证明等环节,让学生体会圆的性质。
教材注重培养学生的空间想象能力、逻辑思维能力和动手操作能力,使其能够运用所学知识解决实际问题。
二. 学情分析九年级的学生已经具备了一定的数学基础,对图形的认识和观察能力有一定的提高。
但是,对于弧、弦、圆心角的定义和相互关系,学生可能还存在一定的模糊认识。
因此,在教学过程中,教师需要关注学生的认知水平,引导学生从生活实际出发,理解并掌握弧、弦、圆心角的性质。
三. 说教学目标1.知识与技能:理解和掌握弧、弦、圆心角的定义及其相互关系,能够运用所学知识解决实际问题。
2.过程与方法:通过观察、操作、猜想、证明等环节,培养学生的空间想象能力、逻辑思维能力和动手操作能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养其积极思考、合作探究的学习态度。
四. 说教学重难点1.教学重点:弧、弦、圆心角的定义及其相互关系。
2.教学难点:圆心角、弧、弦之间的数量关系。
五. 说教学方法与手段1.教学方法:采用问题驱动、观察猜想、证明验证的教学方法,引导学生主动探究,提高其思维能力。
2.教学手段:利用多媒体课件、实物模型等辅助教学,增强学生的直观感受。
六. 说教学过程1.导入:从生活实例出发,引出弧、弦、圆心角的概念,激发学生的学习兴趣。
2.新课讲解:讲解弧、弦、圆心角的定义,通过观察、操作、猜想、证明等环节,让学生理解并掌握其相互关系。
3.例题讲解:分析并解决典型例题,让学生运用所学知识解决实际问题。
4.课堂练习:布置针对性的练习题,巩固所学知识。
(完整版)圆心角,弧,弦,弦心距之间的关系定理知识点及练习,推荐文档
CD 的弦心距 OF=_______cm,弦 CD 的长为________cm。
7、 已知⊙O 的半径为 5cm,过⊙O 内一已知点 P 的最短的弦长为 8cm,则 OP=_______。
8‘已知 A、B、C 为⊙O 上三点,若 AB 、 BC 、 CA 度数之比为 1:2:3,则
∠AOB=_______,∠BOC=________,∠COA=________。
(I)连过弧中点的半径;(II)连等弧对的弦;(III)作等弧所对的圆心角。
例: 如图,CD为⊙O的弦, AC BD ,OA、OB交CD于F、E。
求证:OE=OF
证法一:连结 OC、OD
OC OD, C D
AC BD , COA BOD(等弧所对的圆心角相等) COF DOE OE OF
∠BOC 的度数。
3、如图 3,C 是⊙O 直径 AB 上一点,过点 C 作弦 DE,使 CD=CO,使 AD 的度数 40°,
AOB 100 , OBC 55 , OEC =
度.
2、如图 4,已知 AB 是⊙ O 的直径,C、D 是⊙ O 上的两点, D 130 ,则 BAC 的度数是
.
3、如图 5,AB 是半圆 O 的直径,E 是 BC 的中点,OE 交弦 BC 于点 D,已知 BC=8cm,DE=2cm,则
AD 的长为
A. 40 B. 50 C. 70 D. 80
8、如图 3,AB 为⊙O 的直径,C、D 是⊙O 上的两点, BAC 20 , AD CD ,则
∠DAC 的度数是( )
A. 70° D
B. 45° C
C. 35°
D. 30°
A
O
B
如图 3 二、填空题
弧、弦、圆心角
老师点评:绕O 点旋转,O 点就是固定点,旋转30°,就是旋转角∠ BOB弧、弦、圆心角的关系教学内容1.圆心角的概念.2.有关弧、弦、圆心角关系的定理:在同圆或等圆中,?相等的圆心角所对的弧相等,所对的弦也相等.3.定理的推论:在同圆或等圆中,如果两条弧相等,?那么它们所对的圆心角相等,所对的弦相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.教学目标了解圆心角的概念:掌握在同圆或等圆中,圆心角、弦、弧中有一个量的两个相等就可以推出其它两个量的相对应的两个值就相等,及其它们在解题中的应用.通过复习旋转的知识,产生圆心角的概念,然后用圆心角和旋转的知识探索在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,最后应用它解决一些具体问题.重难点、关键1.重点:定理:在同圆或等圆中,相等的圆心角所对的弧相等,?所对弦也相等及其两个推论和它们的应用.2.难点与关键:探索定理和推导及其应用.教学过程一、复习引入(学生活动)请同学们完成下题.已知△ OAB,如图所示,作出绕O点旋转30°、45°、60°的图形.、探索新知如图所示,∠ AOB 的顶点在圆心,像这样顶点在圆心的角叫做圆心角.的位置,你能发现哪些等量关系?为什么?(学生活动)请同学们按下列要求作图并回答问题:如图所示的⊙ O 中,分别作相等的圆心角∠ AOB?和∠ A?′OB?′将圆心角 ∠AOB 绕圆心 O 旋转到∠ A ′OB ′AB =A'B',AB=A ′B ′理由:∵半径 OA 与 O ′A ′重合,且∠ AOB= ∠A ′OB∴半径 OB 与 OB ′重合∵点 A 与点 A ′重合,点 B 与点 B ′重合∴ AB 与 A'B'重合,弦 AB 与弦 A ′B ′重合∴ AB =A'B',AB=A ′B ′ 因此,在同一个圆中,相等的圆心角所对的弧相等,所对的弦相等. 在等圆中,相等的圆心角是否也有所对的弧相等,所对的弦相等呢??请同学们现在动手作一作.(学生活动)老师点评:如图 1,在⊙O 和⊙O ′中, ?分别作相等的圆心角 ∠AOB 和∠A ′O ′B ′得到如图 2,滚动一个圆,使 O 与 O ′重合,固定圆心, 将其中的一个圆旋转一个角度,使得 OA 与 O ′A ′重合. B '你能发现哪些等量关系?说一说你的理我能发现:AB =A'B',AB=A /B/.现在它的证明方法就转化为前面的说明了,?这就是又回到了我们的数学思想上去呢──化归思想,化未知为已知,因此,我们可以得到下面的定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.同样,还可以得到:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,?所对的弦也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,?所对的弧也相等.(学生活动)请同学们现在给予说明一下.请三位同学到黑板板书,老师点评.例1.如图,在⊙ O 中,AB 、CD 是两条弦,OE⊥AB,OF⊥ CD,垂足分别为EF.(1)如果∠AOB=∠COD,那么OE与OF的大小有什么关系?为什么?(2)如果OE=OF,那么AB与CD的大小有什么关系?AB 与CD 的大小有什么关系??为什么?∠ AOB 与∠COD 呢?分析:(1)要说明OE=OF,只要在直角三角形AOE 和直角三角形COF 中说明AE=CF,即说明AB=CD ,因此,只要运用前面所讲的定理即可.(2)∵OE=OF,∴在Rt△AOE 和Rt△COF 中,又有AO=CO 是半径,∴ Rt△AOE ≌Rt?△COF,∴AE=CF,∴ AB=CD ,又可运用上面的定理得到AB =CD解:(1)如果∠ AOB=∠COD,那么OE=OF理由是:∵∠ AOB= ∠COD∴AB=CD∵OE⊥AB,OF⊥CD11∴AE= AB ,CF= CD∴AE=CF又∵ OA=OC∴Rt△OAE≌Rt△OCF∴OE=OF(2)如果OE=OF,那么AB=CD ,AB =CD ,∠ AOB=∠COD 理由是:∵OA=OC,OE=OF∴Rt△OAE≌Rt△OCF∴AE=CF又∵ OE⊥ AB ,OF⊥ CD11∴AE= AB ,CF= CD22∴AB=2AE ,CD=2CF∴AB=CD∴ AB=CD ,∠ AOB=∠COD三、巩固练习教材P89 练习 1 教材P90 练习2.四、应用拓展例2.如图3和图4,MN 是⊙ O的直径,弦AB 、CD?相交于MN ?上的一点P,?∠APM= ∠CPM.(1)由以上条件,你认为AB 和CD 大小关系是什么,请说明理由.(2)若交点P 在⊙ O 的外部,上述结论是否成立?若成立,加以证明;若不成立,请说明理由.NB分析:(1)要说明AB=CD ,只要证明AB、CD 所对的圆心角相等,?只要说明它们的一半相等.上述结论仍然成立,它的证明思路与上面的题目是一模一样的.解:(1)AB=CD理由:过O 作OE、OF 分别垂直于AB 、CD,垂足分别为E、F∵∠ APM= ∠CPM∴∠ 1=∠2OE=OF连结OD、OB 且OB=OD ∴Rt△OFD≌Rt△OEB ∴DF=BE 根据垂径定理可得:AB=CD (2)作OE⊥AB ,OF⊥CD,垂足为E、F∵∠ APM= ∠CPN且OP=OP,∠ PEO=∠PFO=90° ∴Rt△OPE≌Rt△OPF∴OE=OF连接OA 、OB、OC、OD易证Rt△OBE≌Rt△ODF,Rt△OAE ≌Rt△OCF∴∠ 1+∠2=∠3+∠ 4 ∴AB=CD五、归纳总结(学生归纳,老师点评)本节课应掌握:1.圆心角概念.2.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都部分相等,及其它们的应用.六、布置作业1.教材P94-95 复习巩固4、5、6、7、8.1、你勤奋充电,你努力工作,你保持身材,你对人微笑,这些都不是为了取悦他人,而是为了扮靓自己,照亮自己的心,告诉自己:我是一股独立向上的力量2、前行的路,不怕万人阻挡,只怕自己投降;人生的帆,不怕狂风巨浪,只怕自己没胆量!有路,就大胆去走;有梦,就大胆飞翔3、人生就要活得漂亮,走得铿锵。
24.1.3弧,弦,圆心角(教案)
举例:讲解圆心角与所对弧的关系时,可通过实际操作或动画演示,让学生直观地观察到当圆心角变化时,所对弧的长度也随之变化,强化这一重点知识。
2.教学难点
-弧、弦、圆心角的定义理解:学生对这些几何概念的理解可能存在困难,需要通过具体实例和直观演示来加深理解。
此外,学生在解决与弧、弦、圆心角相关的问题时,往往容易忽视圆心角与所对弧的关系。这说明我在讲解这个重点时,可能没有让学生充分理解和消化。为了帮助学生更好地掌握这个关系,我计划在接下来的课程中,设计更多具有针对性的练习题,并适时给予指导和反馈。
在课堂总结环节,我发现部分学生对今天的知识点仍然存在疑问。这提示我在今后的教学中,要更加重视课堂总结,及时解答学生的疑问,确保他们能够扎实掌握所学知识。
-圆心角与所对弧关系的应用:学生在运用这一性质解决实际问题时可能会感到困惑,需要通过大量练习和案例分析来提高应用能力。
-弧和弦的分类判定:学生在判断优弧、劣弧、半圆和弦时可能会混淆,需要通过对比分析和具体练习来突破。
举例:针对教学难点,教师可以通过以下方式帮助学生突破:
-设计互动环节,让学生动手操作圆规和直尺,在纸上画出不同类型的弧和弦,通过直观感受加深对概念的理解。
3.重点难点解析:在讲授过程中,我会特别强调圆心角与所对弧的关系以及弧和弦的分类这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与弧、弦、圆心角相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用圆规和直尺画出不同类型的弧和弦,演示圆心角与所对弧的关系。
人教版九年级数学上册24.1.3弧、弦、圆心角课件
的顺 的位序位置排置列关顺 关过,系序系点若,排,O列并并A作D,说说=O若明明BEC理理A,D由由=根A..BB据C于题,点意根E补据,全题交图意形补DC,全于探图点究形,AFB探, ,究 AB ,
C(D2的)位当置A关B 、系,CD并位说于明圆理心由O. 的异侧时,
连C交接D 的AOB位A于,置点关OB系G,,,并OC说,明理OD由..
D
F
C
∵ AD=BC ,
12
O
A
E
B
∴ 1 2 .
G
∴ 1 2,
解: AB交交∥∵AACBBDA于于D. =点点BGGC ,,,
证明:∵∵∵ ∴连OAA接E1DD==OBBAACC2B,,,,,OB , OC , OD ,
过点 O∴∴∴ ∵作O11E3OEA224BA,,,B,于点 E ,交交DDCC于于点点FF,, 交 AB 于点 G .
12
3 O4 E
G
B
∴
∴∴ ∴3DDDFFF4OOO,≌≌ CCCFFFOOO
, , 90
,
已知 AB 是 O 的弦, C , D 是 O 上位于弦 AB
例3 已知 AB 是 O 的弦, C , D 是 O 上位于弦 AB
顺同 顺序侧序排的排两列同 列个,侧,点若的若,两AADD且个==点ABBCC,,,,且B根根,A据据,C题题,B意意,D作作四C图图,点,,在D探探圆四究究上点按在AABB逆圆,,时上CC针按DD逆时针
的顺 的CD位序位的置排置位列关顺 关C置D,系序系D关的若,排,3 系位列并并A,置D,说说4 =并关C若明明B说系C理理A明,,D由由=理根并..B由据说C∴∵题 .明,A意理根1B+补由据为全题 .2+图意O形∴ ∵ ∴补C的O,全直D探图113径+++究形1, 8,224A0++B探.,究CC3OOADDB,41,18800,,
弧、弦与圆心角关系定理(1)
探究二
在同圆中,
︵ ︵
(1)、如果 AB A ' B '. 那么∠AOB=∠A′OB′, AB A ' B '. 成立吗 ?
(1)
探究二
在同圆中,
(2)、如果 那么∠AOB=∠A′OB′, ︵ ︵ AB A ' B '. AB A ' B '. 成立吗 ?
( 2)
小结
弧、弦与圆心角的关系定理
同圆或等圆中,两个 圆心角、两条弧、两条弦 中有一组量相等,它们所 对应的其余各组量也相 等.
1、如图,AD=BC, 求证:AB=DC
2、如图,BC为⊙O的直径,OA是⊙O的半径,弦BE∥OA, 求证:AC=AE 3、如图,某地有一圆弧形拱桥,桥下水面宽为7.2米,拱顶高出水面 2.4米.现有一艘宽3米、船舱顶部为长方形并高出水面2米的货 船要经过这里,此货船能顺利通过这座拱桥吗?
1、在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 也相等. 相等 , 所对的 2、在同圆或等圆中,相等的弧所对的圆心角_____ 相等 ; 弦________ 相等 ,所对 3、在同圆或等圆中,相等的弦所对的圆心角______ 相等 . 的弧_________ 在同圆或等圆中,两个 圆心角、两条弧、两条 弦中有一组量相等,它 们所对应的其余各组量 也相等.
75
练习
3、 如图,在⊙O中, AB=AC ,∠ACB=60°,
求证:∠AOB=∠BOC=∠AOC 证明:
A
⌒
⌒
∵ AB =
AC
B
O
∴ AB=AC.⊿ABC是等腰三角形 又∠ACB=60°, ∴ ⊿ABC是等边三角形 , AB=BC=CA. ∴ ∠AOB=∠BOC=∠AOC.
人教版数学九年级上册《24.1.3弧、弦、圆心角》教学设计1
人教版数学九年级上册《24.1.3弧、弦、圆心角》教学设计1一. 教材分析《24.1.3弧、弦、圆心角》是人教版数学九年级上册的一章,主要介绍了圆的基本概念和性质。
本章内容是学生在学习了直线、圆等基础知识后的进一步拓展,对于学生理解和掌握圆的相关知识具有重要意义。
本节课的内容包括弧、弦、圆心角的定义及其关系,通过学习,学生能够理解弧、弦、圆心角的含义,掌握它们之间的相互关系,并能运用这些知识解决实际问题。
二. 学情分析九年级的学生已经具备了一定的几何基础知识,对直线、圆等概念有一定的了解。
但是,对于弧、弦、圆心角这些概念,学生可能还比较陌生,需要通过实例和练习来逐渐理解和掌握。
同时,学生在这个年龄段好奇心强,善于接受新知识,但同时也可能存在一定的难度,因此需要教师在教学过程中注重启发引导,激发学生的学习兴趣,帮助他们理解和掌握知识。
三. 教学目标1.知识与技能目标:通过学习,使学生了解弧、弦、圆心角的定义及其关系,能够运用这些知识解决实际问题。
2.过程与方法目标:通过观察、操作、思考、交流等过程,培养学生的几何思维能力和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养他们积极思考、合作交流的良好学习习惯。
四. 教学重难点1.重点:弧、弦、圆心角的定义及其关系。
2.难点:理解和运用弧、弦、圆心角之间的关系解决实际问题。
五. 教学方法1.情境教学法:通过实例和图片,引导学生观察和思考,激发学生的学习兴趣。
2.问题驱动法:提出问题,引导学生思考和讨论,培养学生的解决问题的能力。
3.合作学习法:小组讨论,共同解决问题,培养学生的团队合作意识。
六. 教学准备1.准备相关实例和图片,用于引导学生观察和思考。
2.准备练习题,用于巩固所学知识。
3.准备课件,用于辅助教学。
七. 教学过程1.导入(5分钟)利用实例和图片,引导学生观察和思考,引出弧、弦、圆心角的概念。
2.呈现(10分钟)讲解弧、弦、圆心角的定义及其关系,通过动画和实物模型演示,帮助学生理解和掌握。
2019人教版初中数学课标版九年级上册第二十四章221圆的有关性质说课稿语文
人教版九年级上册第24章第1节《弧、弦、圆心角》说课稿各位老师:我今天说课的课题是人教版九年级上册第24章第1节《弧、弦、圆心角》。
接下来,我将从教材,学情,教法,学法,教学过程五个方面来说课。
教材分析1.地位与作用本节课是在学习了旋转,圆的有关知识和垂径定理的基础上进行的。
整节课是以圆的旋转不变性为主线。
通过感性认识到理性认识的转化,展开对弧、弦、圆心角之间关系的研究的。
是对圆的性质的进一步学习。
它将为证明线段相等、角相等提供重要依据,将为今后学习圆的有关内容打下基础,在本章中起着承上启下的重要作用。
2.教学目标知识与技能:1.理解圆的旋转不变性和圆心角的概念.2.掌握弧、弦、圆心角关系定理及推论并能解决有关问题.过程与方法:1.培养学生观察、分析、归纳的能力.2.向学生渗透旋转变换思想及由特殊到一般的认识规律.情感与态度:通过引导学生对图形的观察,激发学生探究,发现数学问题的兴趣和欲望.3.教学重难点重点: 掌握弧、弦、圆心角关系定理及推论并能解决相关问题.难点: 利用圆的旋转不变性推导弧、弦、圆心角关系定理及推论.弧、弦、圆心角的关系定理的灵活运用.学情分析九年级学生已初步具备数学分析、解决问题的能力,但学生对圆的旋转不变性不甚了解,所以在探讨弧、弦、圆心角之间的相等关系时可能感到困难。
学生尽管逻辑思维能力很强,但对于圆的认识还很浅肤,对圆的相关概念很少接触,故而在掌握知识的深度和灵活性方面还有欠缺。
本节课引导学生积极参与探究活动,充分理解圆的旋转不变性,同时通过变式训练,让学生能够灵活应用定理来解决问题。
教法分析本节课采取观察,猜想,证明,归纳的教学模式。
采用引导发现,探究证明的教学方法。
学法分析本节课采取动手操作,猜想验证,归纳总结,反思拓展的学习方法。
接下来,重点说一说本节课的教学过程。
教学过程一.创设情境导入新课导语:古希腊数学家这样描述圆:在一切平面图形中,圆是最美的!我们知道圆是轴对称图形,并由圆的轴对称性得到了垂径定理及推论。
公开课24.1.3圆心角、弧、弦、弦心距之间的关系
D
圆心角、弧、弦、弦心距之间的关系
在自己的圆内作两条长度相同的弦,量 一量它们所对的圆心角
D B C
O A
圆心角、弧、弦、弦心距之间的关系
两位同学作一条长度数相同的弦,看 一看它们所对的圆心角是否相同
B O A
O' B' A'
四、练习
如图,AB、CD是⊙O的两条弦. AOB COD AB = CD (1)如果AB=CD,那么___________ ,_________________ .
1 C
A
2 O D
五、例题
例1 如图,在⊙O中, AB = 求证∠AOB=∠BOC=∠AOC
AC
,∠ACB=60°,
A
证明:
∵
AB =
AC
B
O
∴ AB=AC. 又∠ACB=60°, ∴ AB=BC=CA.
·
C
∴ ∠AOB=∠BOC=∠AOC.
你会做吗?
三, 如图,在⊙O中,AC=BD, 1 45 ,求∠2的度数。 解: ∵ AC=BD
B
AOE 180 3 35
75
︵ ︵ 1. 如图,在⊙ O 中, AB=AC,∠B=70°. 求 ∠C度数. ︵ ︵ ︵ 2.如图,AB是直径,BC=CD=DE, ∠BOC=40°,求∠AOE的度数
第 1题
第 2题
3,如图:在圆O中,已知AC=BD,
试说明:(1)OC=OD
(已知)
图 23.1.5
∴ AC-BC=BD-BC (等式的性质) ∴ AB=CD
∴ ∠1=∠2=45° (在同圆中,相等的弧所对的 圆心角相等)
六、练习
如图,AB是⊙O 的直径,BC = CD ∠COD=35°,求∠AOE 的度数. 解:
圆心角,弦,弧的关系
③AB=A′B′
• 在同圆或等圆中,如果轮换下面三组条件: • ①两个圆心角,②两条弧,③两条弦,你能得出
什么结论?与同伴交流你的想法和理由.
A
A
B
●O
B
●O
●O′
A′
B′
⌒⌒
如由条件: ②AB=A′B′
可推出
A′
B′
①∠AOB=∠A′O′B′
③AB=A′B′
推论
• 在同圆或等圆中,如果①两个圆心角,② 两条弧,③两条弦中,有一组量相等,那么 它们所对应的其余各组量都分别相等.
7个金蛋你可以任选一个,如果出现“恭喜你”的字样, 你将直接过关;否则将有考验你的数学问题,当然你可以 自己作答,也可以求助你周围的老师或同学.
3
5
7
1
2
4
6
判断:
1、等弦所对的弧相等。 (× )
2、等弧所对的弦相等。 (√ )
3、圆心角相等,所对的弦相等。( )
× 4、弦相等,所对的圆心角相等。( )
合,B与∴A⌒BB′重与合A⌒.'B' 重合,AB与A′B′重合.
AB A'B', ABA'B'.
三、定理
弧、弦与圆心角的关系定理
在同圆或等圆中,相等的圆心角所对的弧相等, 所对的弦也相等.
在同圆或等圆中,相等的弧所对的圆心角 _相__等__, 所对的弦___相_等____;
在同圆或等圆中,相等的弦所对的圆心角 __相__等__,所对的弧___相__等____.
A
A
B
●O
B
●O
●O′
A′
B′
如由条件: ③AB=A′B′
《24.1.3 弧、弦、圆心角》教学设计教学反思-2023-2024学年初中数学人教版12九年级上册
《弧、弦、圆心角》教学设计方案(第一课时)一、教学目标:1. 理解弧、弦、圆心角的概念和关系。
2. 掌握圆心角与弧、弦的关系公式。
3. 能够运用所学知识解决简单的实际问题。
二、教学重难点:1. 教学重点:理解弧、弦、圆心角的概念,掌握圆心角与弧、弦的关系。
2. 教学难点:将理论知识与实际问题相结合,学会运用所学知识解决实际问题。
三、教学准备:1. 准备教学用具:黑板、粉笔、圆规、量角器等。
2. 制作课件:包括概念图、例题和练习题。
3. 了解学生已有知识基础,设计适当的教学活动,帮助学生建立新知识与已有知识之间的联系。
4. 针对教学难点,设计一些具有启发性的教学活动,如小组讨论、案例分析等,帮助学生理解和应用所学知识。
四、教学过程:1. 引入课题通过展示一些生活中与圆有关的图片,让学生观察并思考这些图片中哪些地方用到了圆弧、弦和圆心角的知识。
引导学生思考圆弧、弦和圆心角之间的关系,并引出本节课的课题。
2. 探索新知通过观察、测量和计算等方式,让学生探究圆弧、弦和圆心角之间的关系。
教师可准备一些材料,如不同大小、不同位置的圆、尺子、量角器等,让学生自己动手操作,探索其中的规律。
探究活动一:测量不同大小圆的圆弧、弦和圆心角,并记录数据。
通过数据分析,发现圆弧、弦和圆心角之间的关系。
探究活动二:制作一个半径为定值的一组同心圆,并依次取AB为一条弦,通过观察和测量可以发现哪些规律?探究活动三:通过计算弧长和半径的比值与弦长的关系,进一步理解圆心角、弧长和弦长之间的关系。
3. 课堂互动在探究过程中,鼓励学生提出自己的问题和观点,教师进行解答和指导。
同时,也可以让学生相互讨论,交流自己的想法和经验,促进学生的思考和表达能力。
4. 课堂小结在课堂结束前,教师对本节课所学的知识进行总结,并强调圆弧、弦和圆心角之间的联系和应用。
让学生回顾本节课的主要内容,加深对本节课的理解和掌握。
5. 作业布置课后布置一些与本节课相关的练习题和思考题,让学生进一步巩固和应用所学的知识,同时也可以培养学生的独立思考和解决问题的能力。
弧、弦、圆心角定理(1)
探究3:在⊙O中,如果∠AOB= ∠COD,那么,A⌒B与C⌒D,
弦AB与弦CD有怎样的数量关系?
D
通过观察,我们发现:
在同一个圆中,当圆心角相等时, 那么所对的弧相等,所对的弦也相等
C B
O·
A
即∠AOB=∠COD,那么,A⌒B=C⌒D,AB=CD.
弧、弦与圆心角的关系定理
定理: 在同圆或等圆中,相等的圆心角所对的弧相等,
所对的弦相等.
①∠AOB=∠COD
推论:
知一得二
②A⌒B=C⌒D ③AB=CD
C
D O
在同圆或等圆中,如果两条弧相等,那么它们所 对的圆心角相等,所对的弦相等.
在同圆或等圆中,如果两条弦相等,那么它们所 对的圆心角相等,所对的优弧和劣弧分别相等.
B A
想一想:可否把“在同圆或等圆中”的条件去掉呢?为
射电望远镜FAST—— “中国天眼”
隋唐洛阳城国家 遗址公园——明堂天堂
第二十四章 圆
24.1 圆的有关性质Βιβλιοθήκη 24.1.3 弧、弦、圆心角
学习目标
1.知道圆心角的概念,掌握圆的中心对称性和旋转不变性. 2.探索圆心角、弧、弦之间关系定理并利用其解决相关问
题.(重点) 3.知道圆心角、弧、弦之间关系定理中的“在同圆或等圆”
A
B
C
O·
O·
D
圆心角、弧、弦之间的关系 探究2:在等圆中,如果∠AOB= ∠COD,那么,A⌒B与C⌒D,弦AB 与弦CD有怎样的数量关系?
A
B
C
O·
O·
D
在两个等圆中,当圆心角相等时, 那么所对的弧相等,所对的弦也相等
即∠AOB=∠COD,那么,A⌒B=C⌒D,
圆心角为一弧度
圆心角为一弧度
圆心角为一弧度表示一个特定的角度大小,其定义基于弧度制这一角的度量单位。
在弧度制中,弧长等于半径的弧所对应的圆心角即为1弧度。
根据定义,1弧度大约等于57.3°,或者更精确地说是π/180弧度,近似值为0.01745弧度。
因此,当说一个扇形的圆心角为1弧度时,意味着这个扇形的圆心角大小等于弧长等于其半径的弧所对应的角度。
这种角度度量方式在数学和物理中广泛使用,特别是在涉及圆的性质和与圆相关的计算时。
如果要计算与这样的圆心角相关的扇形面积,可以使用扇形面积公式。
对于圆心角为α弧度、半径为r的扇形,其面积S可以用以下公式计算:
S = (1/2) × α × r^2
在这个例子中,α=1弧度,r是扇形的半径。
将这些值代入公式,就可以得到该扇形的面积。
《弧、弦、圆心角》说课稿
24.1.3《弧、弦、圆心角》说课稿xxx 我说的课是《24.1.3弧、弦、圆心角》,所用的教材是人教版义务教育课程标准实验教科书<<数学>〉九年级上册第二十四章第一节的第三部分《弧、弦、圆心角》。
下面我从“教材分析”,“教学目标”、“教法学法”、“教学过程”、“课后反思”五个方面进行说明。
一、教材分析1. 教材的地位与作用本节课的教学内容是《弧、弦、圆心角》,圆心角所对的弧、圆心角所对的弦等概念,弧、弦、圆心角之间的关系定理是同圆中证明弧相等、角相等、线段相等的主要依据,这个关系也是本节的重点内容。
重点介绍圆心角,圆心角所对的弧,所对的弦等概念。
如何利用圆的旋转不变性探究弧、弦、圆心角之间的关系定理;如何利用这些关系解决有关的证明,计算问题。
2.教学目标知识与能力:①认识圆心角,圆心角所对的弧,圆心角所对的弦。
②掌握弧、弦、圆心角之间的关系。
③能利用弧、弦、圆心角之间的关系解决有关的证明,计算问题。
过程与方法:①通过演示与讲解,使学生明确圆心角,圆心角所对的弧,圆心角所对的弦;②通过探究弧、弦、圆心角之间的关系,培养学生的推理总结能力,发展学生的逻辑思维能力。
③通过相关的证明或计算题目的训练,提高学生运用所学知识解决实际问题的能力情感态度与价值观:通过对圆的旋转变换的实验、操作、观察、逻辑思维推理等过程,激发学生的学习兴趣,培养学生的思维能力。
3.重难点:重点:弧、弦、圆心角之间的关系难点:利用弧、弦、圆心角之间的关系解决有关的证明、计算等问题。
二、教法分析根据学生现有的知识水平及学生的年龄特征和心理特征,通过动手实验操作使学生把圆与一般的中心对称图形区别开来,由此激发兴趣,学习新的知识,然后指导学生通过旋转操作后观察、探究、讨论、自己得出结论。
教师再加以点拨总结。
这样学生的印象比较深,掌握的也比较牢固。
接着设计相应的例题与练习使学生利用已探究的知识解决证明或计算题,使学生真正具备解决问题的能力,促进学生共同进步。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
即: AB= A′B′
︵ 重合,AB与A′B′重合. 因此, AB 与 A′B′ ︵ ︵
︵
AB= A′B′
这样,我们就得到下面的定理:
在同圆或等圆中,相等的圆心角所对的弧相等, 所对的弦也相等.
同样,还可以得到: 在同圆或等圆中,如果两条弧相等,那么它们所对的圆心 角_____, 所对的弦________; 相等 相等 在同圆或等圆中,如果两条弦相等,那么他们所对的圆心 相等 相等 角______,所对的弧________.
︵ ︵
A
O
B
C
如图,AB是⊙O的直径, BC=CD=DE,
︵ ︵ ︵
∠COD=35°,求∠AOE的度数。
证明: ∵ BC=CD=DE ∴∠COB=∠COD=∠DOE=35°
︵ ︵ ︵
E
D
C
A
O
B
∴∠AOE=180°-∠COB-∠COD-∠DOE
=180°-35°×3 = 75°
例2:如图所示,AB是⊙0的直径,M、N分别是AO、 BO的中点,CM⊥AB交圆于点C,DN⊥AB交圆与点D, ︵ ︵ 求证: AC=BD
A
Oα
A1
B1
等对等定理整体理解:
等圆心角 (1)圆心角
(2) 弧 等弦 等弧
知 一 推 二
(3) 弦
如图,AB、CD是⊙O的两条弦。 ︵ ︵ (1)如果AB=CD,那么 AB=CD , ∠AOB=∠COD 。 ︵ ︵ (2)如果AB=CD,那么 AB=CD , ∠AOB=∠COD 。 ︵ ︵ (3)如果∠AOB=∠COD,那么 AB=CD, AB=CD 。 (4)如果AB=CD,OE⊥AB于E,
A E B
OF⊥CD于F,OE与OF相等吗?
O
为什么? OE=OF(三角形全等或全等三
角形同一边上的高相等)
C
D F
图3
例1: 如图,在⊙O中, AB=AC,∠ACB=60°,
︵ ︵
求证∠AOB=∠BOC=∠AOC。
证明: ∵AB=AC ∴AB=AC,△ABC是等腰三角形 又∠ACB=60° ∴△ABC是等边三角形,AB=BC=CA ∴∠AOB=∠BOC=∠AOC
B
O
O
A
B
.
A
∠AOB是圆心角
∠AOB不是圆心角
任意给出一个圆心角,对应出现两个量:
题:这三个量之间会有什么关系呢?
如图,将圆心角∠AOB绕圆心O 旋转到∠A′OB′的位置, 你能发现哪些等量关系?为什么?
A′ B B′ B′
A′ B
· O
根据旋转的性质:
O
·
A
A
(1)∠AOB=∠A′OB′,则射线OA与OA′重合,OB与OB′重合. (2)OA=OA′,OB=OB′,则点A与A′重合,B与B′重合.
C O A B D
圆心角的定义 圆心角定理 等对等定理
圆心角定理的应用
C
D
A
M
O N
证明:连接OC、OD ∵ M、N分别是AO、BO的中点, 而OA=OB ∴ OM=ON 在Rt△COM和Rt△DON中 B OC=OD OM=ON ∴ Rt△COM≌ Rt△DON(HL) ∴ ∠AOC= ∠BOD
︵ ︵ ∴AC=BD
小林根据在一个圆中圆心角、弦、弧三个量
之间的关系认为:在如图中已知∠AOB=2 ∠COD, ⌒ ⌒ 则有AB=2CD,AB=2CD,你同意他的说法吗?
如图,在圆0和圆01中,如果圆心角∠AOB=∠A1O1B1, ⌒ ⌒ 那么弦AB与 A1B1相等吗?AB与A1B1相等吗?为什么?
A1 B1
A O
B
O1
不相等,因为他们不是在等圆中
等对等定理
同圆或等圆中,两
个圆心角、两条圆心角
B
α
所对的弧、两条圆心角
所对的弦中如果有一组 量相等,它们所对应的 其余各组量也相等。
4.2 弧、弦、圆心角;
三河中学
朱娟
o
平行四边形绕对角线交点o旋转180°后与原来的 平行四边形重合,我们知道这样的图形叫中心对称图形, o是对称中心。
1、圆是中心对称图形吗?它的对称中心在哪里?
圆是中心对称图形,
·
它的对称中心是圆心.
2、圆除了旋转180°后能重合外,旋转的角度是多少 的时候也能与原图形重合?
把圆O的半径ON绕圆心O旋转任意一个角度,
N
O
把圆O的半径ON绕圆心O旋转任意一个角度, 由此可以看出,点N'仍落在圆上。
N' N
O
圆特有的性质:
圆的旋转不变性
平行四边形绕对角线的交点0任意旋转一个 角度后并不总能与原图形重合;而⊙ 0绕圆心 旋转任意一个角度后总能与原图形重合。
圆心角:我们把顶点在圆心的角叫做圆心角.