高二上学期期末试题
甘肃省兰州金昌两地2022-2023学年高二上学期期末考试化学试卷
兰州、金昌两地2022-2023学年第一学期期末试题高二化学第Ⅰ卷(选择题,56分)一、单项选择题(本题共14小题,每小题4分,共56分)。
1.某一可逆反应A+3B 2C,改变下列条件一定能加快反应速率的是()A. 增大反应物的量B. 升高温度C. 增大压强D. 使用催化剂2.在10L密闭容器中,1molA和3molB在一定条件下反应:A(g)+xB(g)2C(g),2min后反应达到平衡时,测得混合气体共3.4mol,生成0.4molC,则下列计算结果错误的是()A. 平衡时,物质的量比A:B:C=2:11:4B. x值等于4C. A的转化率20%D. B的平均反应速率为0.04mol·L-1·min-13.一定温度下,在2L的密闭容器中,X、Y、Z三种气体的物质的量随时间变化的曲线如图所示,下列描述正确的是()A. 反应开始到10s,用Z表示的反应速率为0.158mol(Ls)-1B. 反应开始到10s,X的物质的量浓度减少了0.79mol·L-1C. 反应开始到10s时,Y的转化率为79.0%D. 反应的化学方程式为:X(g)+Y(g) Z(g)4.已知:4CO(g)+2NO2(g)⇌4CO2(g)+N2(g) ΔH=-1200 kJ·mol−1。
在2 L恒容密闭容器中,按照下表中甲、乙两种方式进行投料,经过一段时间后达到平衡状态,测得甲中CO的转化率为50%。
下列说法中正确的是( )甲乙0.2 mol NO20.1 mol NO20.4 mol CO 0.2 mol COB. 该温度下,反应的平衡常数为5C. 达平衡时,NO2的浓度:甲>乙D. 达平衡时,N2的体积分数:甲<乙5.已知甲烷的热值为56kJ/g,表示甲烷标准燃烧热的热化学方程式的是()A. CH4(g)+2O2(g)=CO2(g)+2H2O(g) △H=-56kJ·mol-1B. CH4(g)+2O2(g)=CO2(g)+2H2O(g) △H=-896kJ·mol-1C. CH4(g)+2O2(g)=CO2(g)+2H2O(1) △H=-896kJ·mol-1D. 2CH4(g)+4O2(g)=2CO2(g)+4H2O(1)△H=-112kJ·mol-12H4是一种高效清洁的火箭燃料。
河南省高二上学期期末考试数学试题(解析版)
一、单选题1.直线的倾斜角为( ) 50x +=A . B .C .D .30︒60︒120︒150︒【答案】D【分析】求出直线的斜率,然后根据斜率的定义即可求得倾斜角.【详解】直线可化为 50x +=y x =则斜率,满足, tan k α==α0180α≤<︒所以倾斜角为. 150︒故选:D2.下列有关数列的说法正确的是( )A .数列1,0,,与数列,,0,1是相同的数列 1-2-2-1-B .如果一个数列不是递增数列,那么它一定是递减数列C .数列0,2,4,6,8,…的一个通项公式为 2n a n =D ,…的一个通项公式为n a =【答案】D【分析】根据数列的定义和表示方法,逐一判断,即可得到本题答案.【详解】对于选项A ,数列1,0,-1,-2与数列-2,-1,0,1中的数字排列顺序不同,不是同一个数列,故A 错误;对于选项B ,常数数列既不是递增数列,也不是递减数列,故B 错误; 对于选项C ,当时,,故C 错误;1n =120a =≠对于选项D ,因为123a a a =====4a ==…,所以数列的一个通项公式为D 正确. n a =故选:D3.已知直线l 过点且方向向量为,则l 在x 轴上的截距为( ) ()3,4-()1,2-A . B .1C .D .51-5-【答案】A【分析】先根据方向向量求得直线的斜率,然后利用点斜式可求得直线方程,再令,即2k =-0y =可得到本题答案.【详解】因为直线的方向向量为,所以直线斜率, l ()1,2-2k =-又直线过点,所以直线方程为,即, l ()3,4-42(3)y x -=-+220x y ++=令,得,所以在x 轴上的截距为-1. 0y ==1x -l 故选:A4.已知,“直线与平行”是“”的( )m ∈R 1:0l mx y +=22:910l x my m +--=3m =±A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C【分析】根据平行的成比例运算即可求解.【详解】直线与平行1:0l mx y +=22:910l x my m +--=则, 210=91m m m ≠--所以, 29m =解得,3m =±经检验,均符合题意, 3m =±故选:C.5.已知等差数列中,,是函数的两个零点,则{}n a 5a 14a 232()=--x x x f 381116a a a a +++=( ) A .3 B .6C .8D .9【答案】B【分析】由等差数列的性质进行计算即可.【详解】由已知,函数的两个零点,即方程的两根,, 232()=--x x x f 2320x x --=1x 2x ∴, 51412331a a x x -+=+=-=∵数列为等差数列, {}n a ∴, 3168115143a a a a a a +=+=+=∴. 3811166a a a a +++=故选:B.6.已知圆关于y 轴对称的圆与直线相切,则m 的值为( )221:230C x y x ++-=2C x m =A .B .3C .或3D .1或1-1-3-【答案】C【分析】先求出关于y 轴对称的圆的标准方程,然后利用圆心到切线的距离等于半径,列出方2C 程求解,即可得到本题答案.【详解】由圆,可得标准方程,圆心为,半径, 221:230C x y x ++-=22(1)4x y ++=(1,0)-2r =故关于轴对称的圆的圆心为,半径,则其标准方程为, y 2C (1,0)2r =22(1)4x y -+=又因为圆与直线相切,所以圆心到切线的距离等于半径, 2C x m =即,解得或. 12m -=1m =-3m =故选:C7.已知数列满足,且,则数列的前项和为( ) {}n a 13n n a a +=11a =-{}2n a n +5A . B . C . D .151-91-91151【答案】B【分析】由等比数列的定义判断出数列为等比数列,再使用分组求和法求解即可. {}n a 【详解】∵数列满足,且, {}n a 13n n a a +=11a =-∴数列是首项为,公比为的等比数列,{}n a 1-3∴,11133n n n a --=-⨯=-∴数列的前项和为,{}2n a n +5()()()()()01234532343638310S =-++-++-++-++-+()()0123433333246810=-----+++++()()51132105132-⨯-+⨯=+-12130=-+.91=-故选:B.8.已知椭圆过点且与双曲线有相同焦点,则椭圆的离心率22221(0)x y a b a b +=>>()3,2-22132x y -=为( )A B C D 【答案】C【分析】由题可得,,联立方程可求得,然后代入公式,即225a b -=22941a b +=22,a b e =可求得本题答案.【详解】因为椭圆与双曲线有相同焦点,所以椭圆两个焦点分别为22132x y -=12(F F ,则①, 2225c a b =-=又椭圆过点,所以②, ()3,2P -22941a b +=结合①,②得,,2215,10a b ==所以, e ==故选:C9.已知圆与圆的公共弦长为2,则m 的值为221:2220C x y x y +-+-=222:20(0)C x y mx m +-=>( )A B .C D .332【答案】A【分析】根据圆的圆心和半径公式以及点到直线的距离公式,以及公共线弦方程的求法即可求解. 【详解】联立和, 222220x y x y +-+-=2220x y mx +-=得,由题得两圆公共弦长,(1)10m x y -+-=2l =圆的圆心为,半径, 221:2220C x y x y +-+-=(1,1)-r 2=圆心到直线(1,1)-(1)10m x y -+-=,===平方后整理得,, 2230m -=所以 m m =故选:A.10.“斐波那契数列”又称黄金分割数列,指的是这样一个数列:1,1,2,3,5,8,13,…,即斐波那契数列满足,,设其前n 项和为,若,则{}n a 121a a ==21++=+n n n a a a n S 2021S m =2023a =( ) A . B .mC .D .1m -1m +2m 【答案】C【分析】由斐波那契数列满足,归纳可得,令{}n a 12121,1,n n n a a a a a --===+21m m a S +=+2021m =,即可求得本题答案.【详解】因为斐波那契数列满足, {}n a 12121,1,n n n a a a a a --===+所以,321a a a =+, 432211a a a a a =+=++, 5433211a a a a a a =+=+++……, 21122111m m m m m m m a a a a a a a a S ++--=+=++++++=+ 则. 2023202111a S m =+=+故选:C11.如图,在直四棱柱中,底面ABCD 是边长为2的正方形,,M ,N 分1111ABCD A B C D -13D D =别是,AB 的中点,设点P 是线段DN 上的动点,则MP 的最小值为( )11B CA B C D 【答案】D【分析】建立空间直角坐标系,设出点的坐标,根据两点距离公式表示,利用二次函数求值P MP 域,即可得到本题答案.【详解】以点为坐标原点,分别以所在直线为轴,轴,轴,建立如图所示的空D 1,,DA DC DD x y z 间直角坐标系.因为底面ABCD 是边长为2的正方形,,所以, 13D D =(1,2,3)M ∵点在平面上,∴设点的坐标为,P xOy P ()[],,0,0,1x y y ∈∵在上运动,∴,∴,∴点的坐标为, P DN 2AD x y AN==2x y =P (2,,0)y y==∵,∴当时, 取得最小值. []0,1y ∈45y =MP 故选:D12.已知双曲线C :l 与C 相交于A ,B 两2221(0)y x b b-=>点,若线段的中点为,则直线l 的斜率为( ) AB ()1,2NA .B .1CD .21-【答案】B【分析】先利用题目条件求出双曲线的标准方程,然后利用点差法即可求出直线的斜率.l 【详解】因为双曲线的标准方程为,2221(0)y x b b-=>所以它的一个焦点为,一条渐近线方程为, (,0)c 0bx y -=所以焦点到渐近线的距离,化简得,解得,d =2222(1)b c b =+22b =所以双曲线的标准方程为,2212y x -=设,所以①,②, 1122(,),(,)A x y B x y 221112y x -=222212y x -=①-②得,,222212121()()02x x y y ---=化简得③,121212121()()()()02x x x x y y y y +--+-=因为线段的中点为,所以, AB ()1,2N 12122,4x x y y +=+=代入③,整理得, 1212x x y y -=-显然,所以直线的斜率. 1212,x x y y ≠≠l 12121y y k x x -==-故选:B二、填空题13.已知A (1,-2,11)、B (4,2,3)、C (x ,y ,15)三点共线,则xy=___________. 【答案】2.【详解】试题分析:由三点共线得向量与共线,即,,AB AC ABk AC = (3,4,8)(1,2,4)k x y -=-+,解得,,∴. 124348x y -+==-12x =-4y =-2xy =【解析】空间三点共线.14.已知抛物线的焦点为F ,直线与抛物线交于点M ,且,则22(0)x py p =>2x =2MF =p =_______. 【答案】2【分析】先求点的纵坐标,然后根据抛物线的定义,列出方程,即可求得的值.M p 【详解】把代入抛物线标准方程,得,2x =22(0)x py p =>2(2,)M p 根据抛物线的定义有,,化简得,,解得. 222p MF MH p==+=244p p +=2p =故答案为:215.已知点,点为圆上的任意一点,点在直线上,其中为坐标原(1,1)--P M 22:1C x y +=N OP O点,若恒成立,则点的坐标为______.|||MP MN =N【答案】11,22⎛⎫-- ⎪⎝⎭【分析】设和的坐标,由,列等式,利用点在圆上,点在直线上,NM |||MP MN =M N OP 化简得恒成立的条件,求得点的坐标.N 【详解】易知直线的方程为,由题意可设,OP 0x y -=00(,)N x x 设,则可得,由,可得(,)M x y ''221x y ''+=||||MP MN 22222200||(1)(1)||()()MP x y MN x x y x ''+++==''-+-, 2002()322()12x y x x y x ''++=''-+++则,化简得,2002()322()12x y x x y x ''''⎡⎤++=-+++⎣⎦200(24)()41x x y x ''++=-即,[]00(12)2()(12)0x x y x ''+++-=若恒成立,则,解得,故.|||MP MN =0120x +=012x =-11,22N ⎛⎫-- ⎪⎝⎭故答案为:11,22⎛⎫-- ⎪⎝⎭16.已知双曲线C :的左、右焦点分别为,,其中与抛物线的22221(0,0)x y a b a b-=>>1F 2F 2F 28y x =焦点重合,点P 在双曲线C 的右支上,若,且,则的面积为122PF PF -=1260F PF ∠=︒12F PF △_______. 【答案】【分析】结合题目条件与余弦定理,先算出的值,然后代入三角形的面积公式12PF PF ⋅,即可得到本题答案. 1212121sin 2F PF S PF PF F PF =⋅∠A 【详解】由双曲线右焦点与抛物线的焦点重合,可得,所以, 2F 28y x =2(2,0)F 124F F =设,则,1122,PF r PF r ==122r r -=因为,所以, 22212121212||||2cos F F PF PF PF PF F PF =+-⋅⋅∠22121212162r r r r +-⨯=则,解得,21212()16r r r r -+=1212r r =所以,. 12121sin 602F PF S r r =︒=A故答案为:三、解答题17.已知数列满足,且点在直线上.{}n a 11a =111,n n a a +⎛⎫⎪⎝⎭2y x =+(1)求数列的通项公式;{}n a (2)设,求数列的前n 项和. 1n n n b a a +={}n b n T 【答案】(1) 121n a n =-(2) 21nn + 【分析】(1)先求出数列的通项公式,从而可得到数列的通项公式;1n a ⎧⎫⎨⎬⎩⎭{}n a (2)根据(1)中数列的通项公式,可写出数列的通项公式,再利用裂项相消的方法即可{}n a {}n b 求得前n 项和.n T 【详解】(1)由题意得,即, 1112n n a a +=+1112n n a a +-=所以数列是首项为,公差为2的等差数列,1n a ⎧⎫⎨⎬⎩⎭111a =故,即. 1112(1)21n n n a a =+-=-121n a n =-(2)由(1)知,11111(21)(21)22121n n n b a a n n n n +⎛⎫===- ⎪-+-+⎝⎭所以1111111112323522121n T n n ⎛⎫⎛⎫⎛⎫=⨯-+⨯-++⨯- ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭ 111111123352121n n ⎛⎫=⨯-+-++- ⎪-+⎝⎭. 111221n ⎛⎫=- ⎪+⎝⎭21n n =+18.已知的顶点坐标分别是,,. ABC A ()3,0A ()1,2B ()1,0C -(1)求外接圆的方程;ABC A (2)若直线l :与的外接圆相交于M ,N 两点,求. 3480x y +-=ABC A MCN ∠【答案】(1) 22(1)4x y -+=(2) 60MCN ∠=︒【分析】(1)设出圆的一般方程,代入点,求出方程组的解,即可得到本题答案; ,,A B C (2)先求出圆心到直线的距离,即可得到,然后求出,即可得到本题答MN 30PMN ∠=︒MPN ∠案.【详解】(1)设圆的一般方程为:,, 220x y Dx Ey F ++++=22(40)D E F +->代入点得,(3,0),(1,2),(1,0)A B C -,解得,9+30142010D F DEF D F +=⎧⎪++++=⎨⎪-+=⎩203D E F =-⎧⎪=⎨⎪=-⎩所以圆的一般方程为:, 22230x y x +--=标准方程为:.22(1)4x y -+=(2)圆心到直线的距离,(1,0)P :3480l x y +-=d 又因为,在等腰中,, 2PM =PMN A 30PMN ∠=︒所以圆心角,则.260120MPN ∠=⨯︒=︒60MCN ∠=︒19.如图所示,在四棱锥中,平面ABCD ,,,且P ABCD -PA ⊥AD BC ∥AB BC ⊥,.1AB AP BC ===2AD =(1)求证:平面;CD ⊥PAC (2)若E 为PC 的中点,求与平面所成角的正弦值.PD AED 【答案】(1)证明见解析【分析】(1)先证,,由此即可证得平面; AC CD ⊥PA CD ⊥CD ⊥PAC (2)建立空间直角坐标系,求出,平面的一个法向量为,然后利用公(0,2,1)PD =- AED ()1,0,1n =- 式,即可求得本题答案. sin cos ,n PD n PD n PDθ⋅==⋅ 【详解】(1)作,垂足为,易证,四边形为正方形.CF AD ⊥F ABCF 所以,又1CF AF DF ===CD ==AC ==因为,所以.222AC CD AD +=AC CD ⊥因为平面,平面,所以.PA ⊥ABCD CD ⊂ABCD PA CD ⊥又,平面,平面,所以平面.AC PA A ⋂=AC ⊂PAC PA ⊂PAC CD ⊥PAC(2)以点为坐标原点,以所在的直线分别为x 轴,y 轴,z 轴,建立如图所示的空间A ,,AB AD AP 直角坐标系,则,,,,. ()0,0,0A ()0,0,1P ()1,1,0C ()0,2,0D 111,,222E ⎛⎫ ⎪⎝⎭则,,. (0,2,0)AD = (0,2,1)PD =- 111(,,)222AE = 设平面的法向量为,AED (),,n x y z = 由,得, 00n AE n AD ⎧⋅=⎪⎨⋅=⎪⎩ 11102220x y z y ⎧++=⎪⎨⎪=⎩令,可得平面的一个法向量为.1z =AED ()1,0,1n =- 设与平面所成角为,PD AED θ则sin cos ,n PD n PD n PDθ⋅====⋅ 20.已知抛物线:()的焦点为,过上一点向抛物线的准线作垂线,垂足C 22y px =0p >F C P 为,是面积为.Q PQF △(1)求抛物线的方程;C (2)过点作直线交于,两点,记直线,的斜率分别为,,证明:()1,0M -l C A B FA FB 1k 2k .120k k +=【答案】(1)24y x =(2)证明见解析【分析】(1)由等边三角形的面积可以求出边的长,再求出中的长,即可求出QF Rt FQN A FN 的值,从而求出抛物线的标准方程;p (2)设过的直线方程,与抛物线方程联立,借助,坐标表示,化简证明即可.M A B 12k k +【详解】(1)如图所示,的面积 PQF △1sin 602PQF S PQ PF =︒A ∴, 4PF PQ QF ===设准线与轴交于点,则在中,, x N Rt FQN A 906030FQN ∠=︒-︒=︒∴, 122p FN QF ===∴抛物线的方程为.C 24y x =(2)由题意知,过点的直线l 的斜率存在且不为,()1,0M -0∴设直线的方程为:(),l l ()1y k x =+0k ≠直线的方程与抛物线的方程联立,得,消去y 整理得, l C 2(1)4y k x y x=+⎧⎨=⎩,()2222240k x k x k +-+=当,即时,设,, ()2242440k k ∆=-->()()1,00,1k ∈-⋃()11,A x y ()22,B x y 则,, 212224k x x k =-+-121=x x 由第(1)问知,,()1,0F ∴直线的斜率,直线的斜率, FA 1111y k x =-FB 2221y k x =-∴. ()()()()()()()()()12112121212121221121011111111x x k x x y y k x k x x k k x x x x x -++--+=+===------+∴原命题得证.21.已知数列满足,且.{}n a 12n n a a +=12314++=a a a (1)求的通项公式;{}n a (2)设,数列的前n 项和为,若对任意的,不等式2n n b n a =⋅{}n b n T n *∈N ()2224844n n T n n λ++-≥-恒成立,求实数λ的取值范围.【答案】(1)2n n a =(2) 3,128⎡⎫+∞⎪⎢⎣⎭【分析】(1)由,可得数列为等比数列,公比,代入到,算出12n n a a +={}n a 2q =12314++=a a a ,即可得到本题答案;1a (2)根据错位相减的方法求得,然后将不等式,逐步等价转化为n T ()2224844n n T n n λ++-≥-,再利用单调性求出的最大值,即可得到本题答案. 2112n n λ-≥2112n nn c -=【详解】(1)因为,所以是公比为2的等比数列, 12n n a a +={}n a 所以,故,1231112414a a a a a a ++=++=12a =故.2n n a =(2),1222n n n b n n +=⋅=⋅则,23411222322n n T n +=⨯+⨯+⨯++⨯ 所以,()345121222321222n n n n n T ++⨯+⨯+⨯++-⨯+⨯= 两式相减得,,()()2234122221222222212412n n n n n n T n n n ++++--=++++-⋅=-⋅=-⋅-- 因此. 2(1)24n n T n +=-⋅+由,可得,所以, ()2224844n n T n n λ++-≥-222844n n n n λ+⋅≥-2112nn λ-≥该式对任意的恒成立,则. n *∈N max2112n n λ-⎛⎫≥ ⎪⎝⎭令,则, 2112n n n c -=()1112111211132222n n n n n n n n c c ++++----=-=当时,,即数列递增,当时,,即数列递减,6n ≤10n n c c +->{}n c 7n ≥10n n c c +-<{}n c所以当时,, 7n =()max 3128n c =所以实数λ的取值范围是. 3,128⎡⎫+∞⎪⎢⎣⎭22.已知椭圆M :的短轴长为. 22221(0)x y a b a b +=>>(1)求椭圆M 的方程;(2)若过点的两条直线分别与椭圆M 交于点A ,C 和B ,D ,且共线,求直线AB 的()1,1Q -,AB CD 斜率.【答案】(1)22193x y +=(2) 13【分析】(1)由短轴长可求出可求出,由此即可求得本题答案; 23b =29a =(2)设点,因为共线,可设()()()()11223344,,,,,,,A x y B x y C x y D x y ,AB CD ,AQ QC BQ QD λλ== ,可得,,代入椭圆方程,然后相减,即可得到本题答案. 13131(1)x x y y λλλλ+-⎧=⎪⎪⎨-+-⎪=⎪⎩24241(1)xx y y λλλλ+-⎧=⎪⎪⎨-+-⎪=⎪⎩【详解】(1)因为短轴长为,b =23b =因为离心率,所以,可得, e 2222213c b a a =-=2213b a =29a =所以椭圆M 的方程为. 22193x y +=(2)设.()()()()11223344,,,,,,,A x y B x y C x y D x y 设,则,即, AQ QC λ= 13131(1)1(1)x x y y λλ-=-⎧⎨--=+⎩13131(1)x x y y λλλλ+-⎧=⎪⎪⎨-+-⎪=⎪⎩代入椭圆方程,得, ()()22112211193x y λλλλ+-++⎡⎤⎡⎤⎣⎦⎣⎦+=即① ()()221141211993x y λλλ+⎛⎫-+-=- ⎪⎝⎭同理可得② ()()222241211993x y λλλ+⎛⎫-+-=- ⎪⎝⎭由②-①,得, 11229393x y x y -=-所以,()12123y y x x -=-所以直线AB 的斜率. 121213y y k x x -==-【点睛】思路点睛:把共线这个条件,转化为,是解决此题的关键. ,AB CD ,AQ QC BQ QD λλ==。
2022-2023学年福建省永春第一中学高二上学期期末考试数学试卷含答案
永春一中20221-2023学年(上)期末考试高二数学试题一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量()()11,0,1,0,2a b ==- ,,且ka b + 与2a b -互相垂直,则k 的值是()A .1B .15C .35D .752.已知数列{}n a 的前n 项和为n S ,首项11a =,且满足132nn n a a ++=⋅,则11S 的值为()A .4093B .4094C .4095D .40963.已知()()21220222022ln 2f x x xf x '=+-,则()2022f '=()A .2021B .2021-C .2022D .2022-4.如图,在正三棱柱111ABC A B C -中,124AA AB ==,E 是1BB 的中点,F 是11AC 的中点,若过A ,E ,F 三点的平面与11B C 交于点G ,则1A G =()A .73B .279C .273D.5.已知双曲线2222:1(0,0)x y C a b a b-=>>,过点(3,6)P 的直线l 与C 相交于,A B 两点,且AB 的中点为(12,15)N ,则双曲线C 的离心率为()A .2B .32C .355D .526.设等差数列{}n a 的前n 项的和为527,9,16n S a a a =+=,则下列结论不正确的是()A .21n a n =-B .3616a a +=C .2n S n n=+D .数列11n n a a +⎧⎫⎨⎩⎭的前n 和为21nn +7.图1为一种卫星接收天线,其曲面与轴截面的交线为拋物线的一部分,已知该卫星接收天线的口径6AB =,深度2MO =,信号处理中心F 位于焦点处,以顶点O 为坐标原点,建立如图2所示的平面直角坐标系xOy ,若P 是该拋物线上一点,点15,28Q ⎛⎫⎪⎝⎭,则PF PQ +的最小值为()A .4B .3C .2D .18.如图,已知直线:20l x y m ++=与圆22:2O x y +=相离,点P 在直线l 上运动且位于第一象限,过P 作圆O 的两条切线,切点分别是,M N ,直线MN 与x 轴、y 轴分别交于,R T 两点,且ORT 面积的最小值为1625,则m 的值为()A .4-B .9-C .6-D .5-二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知圆22:49O x y +=,直线l 过点(2,6)N ,且交圆O 于,P Q 两点,点M 为线段PQ 的中点,则下列结论正确的是()A .点M 的轨迹是圆B .||PQ 的最小值为6C .若圆O 上仅有三个点到直线l 的距离为5,则l 的方程是43100x y -+=D .使||PQ 为整数的直线l 共有16条10.斐波那契数列又称黄金分割数列,因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”.斐波那契数列用递推的方式可如下定义:用n a 表示斐波那契数列的第n 项,则数列{}n a 满足:121a a ==,21n n n a a a ++=+,记121nin i aa a a ==++⋅⋅⋅+∑,则下列结论正确的是()A .934a =B .()2233n n n a a a n -+=+≥C .20212202120221i i aa a ==⋅∑D .201920211ii aa ==∑11.一块斯里兰卡月光石的截面可近似看成由半圆和半椭圆组成,如图所示,在平面直角坐标系中,半圆的圆心在坐标原点,半圆所在的圆过椭圆的右焦点()3,0F ,椭圆的短轴与半圆的直径重合.若直线()0y t t =>与半圆交于点A ,与半椭圆交于点B ,则下列结论正确的是()A .椭圆的离心率是22B .线段AB 长度的取值范围是(0,32+C .ABF △面积的最大值是)9214+D .OAB 的周长不存在最大值12.在直四棱柱中1111ABCD A B C D -中,底面ABCD 为菱形,160,2,BAD AB AD AA P ∠====为1CC 中点,点Q 满足][()1,0,1,0,1DQ DC DD λμλμ⎡⎤=+∈∈⎣⎦.下列结论正确的是()A .若12λμ+=,则四面体1A BPQ 的体积为定值B .若AQ 平面1A BP ,则1AQ C Q +10310+C .若1A BQ △的外心为O ,则11A B A O ⋅为定值2D .若17A Q =,则点Q 的轨迹长度为23π三、填空题:本题共4小题,每小题5分,16题,第一空答对得2分,共20分.13.在空间直角坐标系O xyz -中,()2,1,1A ,(),0,5B b ,()0,,4C c ,若四边形OABC 为平行四边形,则b c +=________.14.设函数()3221f x x ax bx =+++的导函数为()f x ',若函数()y f x '=的图象的顶点的横坐标为12-,且()10f '=,则ba的值为__________.15.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,以线段12F F 为直径的圆交C 于,A B 两点,其中点A 在第一象限,点B 在第三象限,若113AF BF ≤,则C 的离心率的取值范围是__________.16.对于正整数n ,设n x 是关于x 的方程:()222253log 1nn n n x x x ++++=的实根,记12n n a x ⎡⎤=⎢⎥⎣⎦,其中[]x 表示不超过x 的最大整数,则1a =_____;若πsin 2n n n b a =⋅,n S 为{}n b 的前n 项和,则2022S =______.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本题满分10分)已知曲线31:C y x =和22:2,(R)C y ax x a =+-∈.(1)若曲线1C 、2C 在1x =处的切线互相垂直,求a 的值;(2)若与曲线1C 、2C 在0x x =处都相切的直线的斜率大于3,求a 的取值范围.18.(本题满分12分)如图,在平面直角坐标系xoy 中,已知圆22:40C x y x +-=及点),(1,0)(1,2A B -.(1)若直线l 过点B ,与圆C 相交于M N 、两点,且||3MN =l的方程;(2)圆C 上是否存在点P ,使得222||||1PA PB +=成立?若存在,求点P 的个数;若不存在,请说明理由.19.(本题满分12分)如图,在四棱锥P ABCD -中,已知底面ABCD 是正方形,PC ⊥底面ABCD ,且1,PC BC E ==是棱PB 上动点.(1)若过C ,D ,E 三点的平面与平面PAB 的交线是l ,证明://CD l(2)线段PB 上是否存在点E ,使二面角P AC E --的余弦值是23?若存在,求PE PB 的值;若不存在,请说明理由.20.(本题满分12分)已知数列{}n a ,{}n b 满足1n n n b a a +=-,其中,*N n ∈.(1)若12a =,2nn b =.①求数列{}n a 的通项公式;②试求数列{}n n a ⋅的前n 项和.(2)若2n n b a +=,数列{}n a 的前6291项之和为1926,前77项之和等于77,试求前2024项之和是多少?21.(本题满分12分)已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,,F F P 为双曲线C 上一点,12121cos ,24F PF PF PF ∠==,且焦点到渐近线的距离为3(1)求双曲线C 的方程;(2)设A 为双曲线C 的左顶点,点(),0B t 为x 轴上一动点,过2F 的直线l 与双曲线C 的右支交于,M N 两点,直线,AM AN 分别交直线2a x =于,S T 两点,若π02SBT ∠<<,求t 的取值范围.22.(本题满分12分)已知函数2()4f x x =-,设曲线()y f x =在点()(),n n x f x 处的切线与x 轴的交点为()()*1,0n x n +∈N,其中1x 为正实数.(1)用n x 表示1n x +;(2)若14x =,记2lg2n n n x a x +=-,证明数列{}n a 成等比数列,并求数列{}n x 的通项公式.(3)若14,2n n x b x ==-,n T 是数列{}n b 的前n 项和,证明:3n T <.。
广东省华南师范大学附属中学2022-2023学年高二上学期1月期末考试语文试题
华南师大附中2022-2023学年第一学期期末考试高二语文(选择性必修上、中册)本试卷分选择题和非选择题两部分,共 8 页,满分100 分,考试用时120 分钟,请完成所有情境化试题。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B铅笔将试卷类型和考生号填涂在答题卡相应位置上。
2.选择题每小题选出答案后,用2B铅笔把答题卡上对应的题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再填涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案,不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁。
“大疫不过三”,此刻的我们正处于这场新冠疫情的重要关口,感受着时代百年之大变局。
过去三年的疫情迫使我们花更多时间与自己相处,思考我们的行为、我们想要的Th活以及我们是谁,也让我们更加深刻地明白时代于个人的分量。
疫情下的我们该如何更好地赋予Th命的意义,阅读,是永不过时的选择。
居家学习的这段时间,我校高二年级拟开展了“疫情下的我们”读书沙龙活动,用阅读对抗虚无,用交流抵御孤独。
一、新冠疫情防控三年来,中西医结合、中西药并用已经成为我国疫情防控的一大特点。
高二甲班的同学打算挑选以下文章进行分享,来向同学们介绍中医药在新冠肺炎的预防和救治中做出的贡献。
请你帮助他们对材料进行梳理,完成1-3题。
(共8分)材料一:中国医药学是一个伟大宝库,青蒿素正是从这一宝库中发掘出来的。
通过抗疟药青蒿素的研究经历,深感中西医药各有所长,二者有机结合,优势互补,当具有更大的开发潜力和良好的发展前景。
大自然给我们提供了大量的植物资源,医药学研究者可以从中开发新药。
中医药从神农尝百草开始,在几千年的发展中积累了大量临床经验,对于自然资源的药用价值已经有所整理归纳。
北京市高二上学期期末数学试题(解析版)
一、单选题1.在等比数列中,,,则等于( ) {}n a 11a =84a =234567a a a a a a A .32 B .64 C .128 D .256【答案】B【分析】根据等比数列下标和性质计算可得. 【详解】解:在等比数列中,,, {}n a 11a =84a =则,273645184a a a a a a a a ====所以.7323456464a a a a a a ==故选:B2.双曲线上的点到左焦点的距离为9,则点到右焦点的距离为( )22:1916x y C -=P P A .3 B .15 C .15或3 D .10【答案】C【分析】由双曲线的定义求解即可.【详解】设双曲线的左焦点为,右焦点为,1F 2F因为双曲线方程为,所以,,,22:1916x y C -=3a =4b =5c ==由双曲线的定义得,则, 122PF PF a -=126PF PF -=126PF PF -=±又因为,所以或,19PF =215PF =3由双曲线的性质可知,到焦点距离的最小值为, P 5323c a -=-=<故选:C3.设函数在点处的切线方程为,则( )()f x (1,(1))f 43y x =-()()11lim x f x f x∆→+∆-=∆A . B .C .D .4213-【答案】A【分析】根据导数的几何意义可知,再根据导数值的定义即可选出答案. (1)f '【详解】由导数值的定义,,根据导数的几何意义,,即()()11lim(1)x f x f f x∆→+∆-'=∆(1)4f '=.()()11lim4x f x f x∆→+∆-=∆故选:A4.数列满足,,则( ) {}n a 111n na a +=-13a =2023a =A .3B .C .D .12-5223【答案】A【分析】根据递推公式求得数列中的前几项,从而得到数列的周期,由此即可求得的值. 2023a 【详解】因为,, 111n na a +=-13a =所以,1132111111111111111111111n n n n n n n n n n n a a a a a a a a a a a +++++++------=======---------所以数列是以3为周期的周期数列, {}n a 故. 20231367413a a a +⨯===故选:A.5.已知抛物线,直线l 过定点P (0,1),与C 仅有一个公共点的直线l 有( )条 2:4C y x =-A .1 B .2 C .3 D .4【答案】C【分析】过抛物线外一定点的直线恰好与该抛物线只有一个交点,则分两种情况分别讨论,(0,1)P 一是直线与抛物线的对称轴平行,二是直线与抛物线相切,根据这两种情况进而求解.【详解】过点的直线与抛物线仅有一个公共点,则该直线可能与抛物线的对称(0,1)P l 2:4C y x =-l 轴平行,也可能与抛物线相切,下面分两种情况讨论:当直线与抛物线的对称轴平行时,则直线的方程为:,满足条件;l l 1y =当直线与抛物线相切时,由于点在轴上方,且在抛物线外,则存在两条直线与抛物线相l (0,1)P x 切,易知:是其中一条,0x =不妨设另一条直线的方程为,联立直线与抛物线方程可得:,则l 1y kx =+l 22(24)10k x k x +++=有,解得:,22(24)40k k ∆=+-=1k =-所以过点的直线的方程为:或或, (0,1)P l 1y =0x =1y x =-+故选:.C 6.已知,,则数列的通项公式是( )12a =()1+=-n n n a n a a {}n a n a =A .n B . C .2nD .1n +1nn n +⎛⎫⎪⎝⎭【答案】C【分析】根据题意可得,再利用累乘法计算可得; 11n n a n a n++=【详解】解:由,得, ()1+=-n n n a n a a ()11n n n a na ++=即, 11n n a n a n++=则,,,…,,11n n a n a n -=-1212n n a n a n ---=-2323n n a n a n ---=-2121a a =由累乘法可得,因为,所以,1na n a =12a =2n a n =故选:C .7.我国古代数学典籍《四元玉鉴》中有如下一段话:“河有汛,预差夫一千八百八十人筑堤,只云初日差六十五人,次日转多七人,今有三日连差三百人,问已差人几天,差人几何?”其大意为“官府陆续派遣1880人前往修筑堤坝,第一天派出65人,从第二天开始每天派出的人数比前一天多7人.已知最后三天一共派出了300人,则目前一共派出了多少天,派出了多少人?”( ) A .6天 495人 B .7天 602人 C .8天 716人 D .9天 795人【答案】B【分析】根据题意,设每天派出的人数组成数列,可得数列是首项,公差数7的等差数{}n a 165a =列,解方程可得所求值.【详解】解:设第天派出的人数为,则是以65为首项、7为公差的等差数列,且n n a {}n a ,,123216a a a =++21300n n n a a a --++=∴,, 13002161723n a a ++==107n a =∴天 1177n a a n -=+=则目前派出的人数为人,()17776022a a S +==故选:B .8.已知圆和两点,若圆上存在点,使得()()22:5121C x y -+-=(0,),(0,)(0)A m B m m ->C P ,则的最小值为( )90APB ∠= m A .14 B .13 C .12 D .11【答案】C【分析】将问题转化为以为直径的圆与圆有公共点的问题来列不等式,解不等式求得的AB O C m 取值范围,由此求得的最小值.m【详解】解:以为直径的圆的方程为,圆心为原点,半径为.圆AB O 222x y m +=1r m =的圆心为,半径为.()()22:5121C x y -+-=()5,12C 21r =要使圆上存在点,使得,则圆与圆有公共点, C P 90APB ∠=︒O C所以,即,1212r r OC r r -≤≤+1m +所以, 11313113113113113m m m m m ⎧-≤-≤-≤⎧⎪⇒⎨⎨+≥+≤-+≥⎪⎩⎩或⇒12141212m m m -≤≤⎧⎨≤-≥⎩或又,所以,所以的最小值为. 0m >1214m ≤≤m 12故选:C二、多选题9.已知等差数列则( ) 10,7,4,, A .该数列的通项公式为 313n a n =-+B .是该数列的第13项 25-C .该数列的前5项和最大D .设该数列为,则 {}n a 1238||||||||48a a a a ++++= 【答案】AD【分析】根据首项和公差求出和,利用和计算可得答案.n a n S n a n S 【详解】依题意,所以,故A 正确; 110,3a d ==-1(1)103(1)313n a a n d n n =+-=--=-+由,得,故B 不正确; 31325n a n =-+=-38133n =≠由,得,由,得,所以该数列的前4项和最大,故C 不3130n a n =-+≥4n ≤3130n a n =-+<5n ≥正确;,(1)10(3)2n n n S n -=+⨯-23232n n-+= 123812345678||||||||()a a a a a a a a a a a a ++++=+++-+++ 482S S =-,故D 正确. 223423438238222-⨯+⨯-⨯+⨯=⨯-48=故选:AD10.已知圆,则下列说法正确的是( )22230M x y x +--=:A .点(2,0)在圆M 内B .圆M 关于对称10x y +-=CD .直线与圆M 的相交所得弦长为10x +=【答案】ABD【分析】根据点的坐标与圆的方程的关系判断A ,判断点与直线的位置关系,判断M 10x y +-=B ;配方后得到圆的半径,判断C ;利用弦长公式求弦长判断D. 【详解】整理得:,22230x y x +--=()2214x y -+=因为,时,∴点在圆M 内,A 正确; 2x =0y =222330x y x +--=-<()2,0因为圆心在直线上,所以圆M 关于对称,B 正确; ()1,0M 10x y +-=10x y +-=因为圆M 半径为2,故C 错误;∵圆心到直线的距离为,()1,0M 10x +=1d ==所以直线与圆M 的相交所得弦长为,D 正确. 10x +==故选:ABD.11.已知数列满足,其中,Sn 为数列{}的前n 项{}n a ()12321n a a n a n +++-= ()21nn a b n =+n b和,则下列四个结论中,正确的是( ) A .B .数列{}的通项公式为: 11a =n a 121n a n =+C .数列{}为递减数列 D .若对于任意的都有,则 n a *N n ∈n S λ<12λ≥【答案】ACD【分析】令可求;利用已知求的方法求数列通项公式;根据递减数列的定义判断1n =1a n S n a {}n a 数列的单调性,利用裂项相消法求数列的前n 项和,由条件求的范围. {}n b λ【详解】因为,()12321n a a n a n +++-= 所以当时,, 2n ≥()1213231n a a n a n -+++-=- 两式相减得,所以, ()211n n a -=121n a n =-又因为当时,满足上式,1n =11a =所以数列的通项公式为:,故A 正确,B 错误, {}n a 121n a n =-因为,,所以, 121n a n =-N n *∈()()1112021212121n n a a n n n n +-=-=-<+-+-所以,所以数列为递减数列,故C 正确;1n n a a +<{}n a ,()()()111121212122121n n a b n n n n n ⎛⎫===- ⎪+-+-+⎝⎭所以 12n n S b b b =+++ , 11111111111232352212124221n n n n n ⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪-+++⎝⎭⎝⎭⎝⎭ 因为对于任意的都有,所以,其中,*N n ∈n S λ<max 21n n λ⎛⎫< ⎪+⎝⎭*N n ∈又,所以,故D 正确. 1121221n n n =<++12λ≥故选:ACD.12.已知、分别为双曲线的左、右焦点,点在直线l 上,过点1F 2F 222:1(0)4x yC b b-=>(4,0)M -2F 的直线与双曲线的右支交于A 、B 两点,下列说法正确的是( )A .若直线l 与双曲线左右两支各一个交点,则直线l 的斜率范围为)(,)22b b-B .点2F C .若直线AB垂直于x 轴,且△ABM 为锐角三角形,则双曲线的离心率取值范围为 D .记的内切圆的半径为r 1,的内切圆的半径为,若,则12AF F △1I 12BF F △2I 2r 124r r =b =【答案】ACD【分析】设出直线的方程,与双曲线方程联立,根据题意,两交点的横坐标异号,利用韦达定理l 即可求解,判断选项;求出右焦点到渐近线的距离为,进而判断选项;要使为锐角三A bB ABM :角形,则,所以,进行等量代换求出离心率的取值即可判断选项;根据三245AMF ∠<︒24b c a +>C 角形内切圆的特点先求出两圆的内心在上,然后利用三角形相似求出的值,进而求出,即x a =c b 可判断选项.D 【详解】对于,由题意知:直线的斜率存在,设直线的方程为:, A l l (4)y k x =+设直线与双曲线左右两支的交点分别为,,l 11(,)P x y 22(,)Q x y 联立方程组,整理可得:,22214(4)x y b y k x ⎧-=⎪⎨⎪=+⎩222222(4)326440b k x k x k b ----=则,也即,解得:,故选项正确; 22122264404k b x x b k --⋅=<-2240b k ->22b b k -<<A 对于,设右焦点为,双曲线的渐近线方程为:,由点到直线的距离公式可得:B 2(,0)F c 0bx ay ±=点到双曲线渐近线的距离错误;2F d b ==≠B 对于,若直线AB 垂直于x 轴,则直线的方程为:,设点,,要使C AB x c =2(,)bA c a2(,b B c a-为锐角三角形,由双曲线的对称性可知:,ABM :245AMF ∠<︒则,即,所以,22F M AF >24b c a+>24b ac a <+又因为,则,也即,整理可得:,则2a =2242b ac a ac a <+=+2222c a ac a -<+2230c ac a --<, 230e e --<e <1e >所以,故选项正确; e ∈C 对于,过分别作的垂线,垂足为,D 1I 1212,,AF AF F F ,,DE F则,因为,1122,,AD AE F D F F F F F E ===122AF AF a -=则,又因,1212()()2AD DF AE EF F F F F a +-+=-=12122F F F F F F c =+=则,所以,即在直线上,同理也在直线上,所以11FF OF OF a c =+=+OF a =1I x a =2I x a =轴,12I I x ⊥因为,1212122221,I F A I F F I F B I F F ∠=∠∠=∠则,所以, 1221212121222I F I F I F F I F F F I A B I ∠∠∠∠∠++==22190I F I ∠=︒由可知:,则,也即,1222I FF F FI :::1222I F F F F FI F=2212IF I F FF ⋅=212()r r c a ⋅=-因为,,所以,,故选项正确,2a =124r r =4c =b ==D故选:.ACD三、填空题13.已知直线l 1,若,则实数a =______. ()210130x ay l a x y +-=+++=:,:12l l ⊥【答案】##12-0.5-【分析】根据若,则,运算求解. 12l l ⊥12120A A B B +=【详解】若,则,解得.12l l ⊥()1110a a ⨯++⨯=12a =-故答案为:.12-14.已知函数,则=______. 2()ln 31f x x x x =+-1f '()【答案】7【分析】求出的导数,再将代入,即可得答案. ()f x ()f x '1x =【详解】解:因为, 2()ln 31f x x x x =+-所以,1()ln 6ln 61f x x x x x x x'=+⋅+=++所以. (1)ln16117f '=+⋅+=故答案为:715.设椭圆的左、右焦点分别为、,点M 、N 在C 上(M 位于第一象2222:1(0)x y C a b a b+=>>1F 2F 限),且点M 、N 关于原点O 对称,若,则C 的离心率为______.12290,2||||MF N MF NF ︒∠==【分析】根据几何分析确定四边形为矩形,根据勾股定理构造齐次式即可求出离心率. 12MF NF 【详解】依题意,作图如下,因为点关于原点对称,所以为的中点,,M N O O MN且为的中点,,所以四边形为矩形,O 12F F 190N MF ︒∠=12MF NF 由,设 222MF NF =21,2,MF x MF x ==由椭圆的定义知,解得: 212,MF MF a +=2124,,33a a MF MF ==所以()22224233a a c ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭整理得:,因为, 259e =01e <<所以 e =四、双空题16.已知数列满足,,则______;高斯是德国著名的数学家,近代数学{}n a 11a =12n n a a n ++=3a =奠基者之一,享有“数学王子”的称号,设,用表示不超过的最大整数,称为x ∈R []x x ()[]f x x =高斯函数.设,且数列的前项和为,则______. []1g n n b a ={}n b n n T 2022T =【答案】34956【分析】根据递推公式一一计算即可求出,再归纳出的通项,最后结合高斯函数的定义并项3a {}n a 求和计算可得.【详解】解:因为,, 11a =12n n a a n ++=当时,则, 1n =122a a +=21a =当时,则, 2n =324a a +=33a =当时,则, 3n =346a a +=43a =当时,则,4n =548a a +=55a =,由此可归纳得,当为奇数时,当为偶数时,n n a n =n 1n a n =-显然当时成立,假设当(为奇数)时成立,即,则,即1n =11a =n k =k k a k =12k k a a k ++=也成立,1k a k +=假设当(为偶数)时成立,即,则,即也成立,故归纳成n k =k 1k a k =-12k k a a k ++=11k a k +=+立;因为,[]1g n n b a =当时,则, 110n ≤≤19n a ≤≤[]1g 0n n b a ==当时,则, 11100n ≤≤1199n a ≤≤[]1g 1n n b a ==当时,则, 1011000n ≤≤101999n a ≤≤[]1g 2n n b a ==当时,则,10012022n ≤≤10012021n a ≤≤[]1g 3n n b a ==()232320220101(1010)2(1010)3202210T ∴=⨯+⨯-+⨯-+⨯- 190290031022=⨯+⨯+⨯.4956=故答案为:,.34956五、解答题17.在数列{}中,n a ()*11534N n n a a a n +==-∈,(1)求证:是等比数列: {}2n a -(2)求数列{}的前n 项和. n a n S 【答案】(1)证明过程见详解(2)3(31)22n n S n -=+【分析】(1)根据递推公式和等比数列的定义即可使问题得证; (2)利用等比数列的求和公式,分组求和即可求解.【详解】(1)由题意知:,所以, 134n n a a +=-12362(2)n n n a a a +-=-=-即,又, 1222n n a a +-=-1230a -=≠所以数列是以3为首项,以3为公比的等比数列.{}2n a -(2)由(1)可知:,所以,23n n a -=23nn a =+所以1221n n n S a a a a a -=+++++1231(2+2+2++2+2)(33333)n n -=++++++ 3(13)213n n -=+-. 3(31)22n n -=+18.如图,正方体ABCD —的棱长为2,P 、Q 分别为BD 、的中点.1111D C B A 1CD(1)证明:PQ 平面;:11BCC B (2)求直线与平面所成角的大小. 1CD 11ABC D 【答案】(1)证明见详解 (2) π6【分析】(1)建系,利用空间向量证明线面平行;(2)先求平面的法向量,再利用空间向量求线面夹角. 11ABC D 【详解】(1)如图,以D 为坐标原点建立空间直角坐标系,则,()()()()()()12,0,0,2,2,0,0,2,0,,1,1,0,0,1,10,0,2A B C D P Q 可得,平面的法向量,()1,0,1PQ =-u u u r11BCC B ()0,1,0n = ∵,且平面,1001100PQ n ⋅=-⨯+⨯+⨯=u u u r rPQ ⊄11BCC B ∴PQ 平面.:11BCC B (2)由(1)可得:, ()()()110,2,0,2,0,2,0,2,2AB AD CD ==-=-设平面的法向量为,则, 11ABC D (),,m x y z = 120220m AB y m AD x z ⎧⋅==⎪⎨⋅=-+=⎪⎩令,则,故,1x =0,1y z ==()1,0,1m =∵,1111cos ,2m CD m CD m CD ⋅===u r u u u ru r u u u ru r u u u r 故直线与平面所成角的正弦值为,则其大小为. 1CD 11ABC D 12π619.已知抛物线上一点到抛物线焦点的距离为,()2202C y px p =<<:1P p ⎛ ⎝32(1)求抛物线的方程:C (2)若直线(为参数)与抛物线C 交于两点,且,求直线的方程 :l y x m =+m ,A B OA OB ⊥l 【答案】(1) 22y x =(2) 2y x =-【分析】(1)利用抛物线的定义,列方程求出即可;p (2)联立直线和抛物线方程,设出,,然后用韦达定1122(,),(,)A x y B x y 12120OA OB x x y y ⊥⇔+=理求解.【详解】(1)根据抛物线的定义,到焦点的距离等于到准线的距离,即,结合题干条P 3122pp =+件,解得,故抛物线方程为:02p <<1p =22y x =(2)设,依题意:1122(,),(,)A x y B x y ()()112212120,,00OA OB OA OB x y x y x x y y ⊥⇔⋅=⇔⋅=⇔+=,联立直线和抛物线:,得到,,解得,由韦达定22y x y x m⎧=⎨=+⎩2220y y m -+=480m ∆=->12m <理:,在抛物线上,故,于是,于是122y y m =1122(,),(,)A x y B x y 21122222y x y x ⎧=⎨=⎩22212124y y x x m ==,解得或,但时,其中一点和重合,不符题意,时,220m m +=0m =2m =-0m =,A B O 2m =-符合判别式条件.综上可知,,此时直线方程为:2m =-2y x =-20.已知数列的前n 项和为,且,______.请在①:②{}n a n S 11n n n S S a +=++*()N n ∈3914a a +=,,成等比数列:③,这三个条件中任选一个补充在上面题干中,并解答下面问2a 5a 11a 844S =题.注:如果选择多个条件分别解答,按第一个解答计分. (1)求数列的通项公式; {}n a (2)若,设数列{}的前n 项和,求证: 2nn n a b =n b n T 13n T ≤<*()N n ∈【答案】(1) 1n a n =+(2)证明见解析【分析】(1)先根据推出数列为等差数列,公差.若选①,根据等差中项11n n n S S a +=++{}n a 1d =求出,再求出,根据和可得通项公式;若选②,根据等比中项列式求出,可得;若6a 1a 1a d 1a n a 选③,根据等差数列求和公式列式求出,可得. 1a n a (2)利用错位相减法求出,根据为正数,得,根据为递增数列,可得. n T 32n n +3nT <n T 11n T T =≥【详解】(1)由,得,得, 11n n n S S a +=++11n n n S S a +-=+11n n a a +-=所以数列为等差数列,公差.{}n a 1d =若选①,因为,所以,, 3914a a +=6214a =67a =所以,, 6157a a d =+=12a =所以,1(1)211n a a n d n n =+-=+-=+若选②,因为,,成等比数列,所以,2a 5a 11a 25211a a a =所以,所以,2111(4)()(10)a d a d a d +=++2111(4)(1)(10)a a a +=++所以,所以. 12a =1(1)211n a a n d n n =+-=+-=+若选③,因为,所以, 81878442S a ⨯=+=12a =所以, 1(1)211n a a n d n n =+-=+-=+(2)由(1)知,,则, 1n a n =+12n nn b +=则, 12323412222n nn T +=++++ , 23411234122222n n n T ++=++++ 所以,23411111111222222n n n n n T T ++-=+++++- 所以, 1111(1)1142112212n n n n T -+-+=+--所以,因为为正数,所以, 332n n n T +=-32nn +3n T <因为, 11433322n n n nn n T T ++++-=--+112642022n n n n n +++--+==>所以,所以数列为递增数列, 1n n T T +>{}n T 所以, 14312n T T ≥=-=综上所述:.13n T ≤<*()N n ∈21.在平面五边形中(如图1),是梯形,,,ABCDE ABCD //AD BC 22AD BC ==AB =,是等边三角形.现将沿折起,连接,得四棱锥90ABC ∠=ADE V ADE V ADEB EC E ABCD-(如图2)且EC =(1)求证:平面平面; EAD ⊥ABCD (2)在棱上有点,满足,求二面角的余弦值. EB F 13EF EB=E AD F --【答案】(1)证明见解析【详解】(1)在图1中,取的中点,连,依题意得,,如图:AD O ,OC OE OC OA ⊥OE OA ⊥则 OC AB ==2OE ==折叠后,在图2中,,如图:OE AD ⊥在中,,所以, COE :OC =OE =EC 222EC OC OE =+OE OC ⊥由,,,平面,平面, OE AD ⊥OE OC ⊥OC AD O = OC ⊂ABCD AD ⊂ABCD 得平面,又平面, OE ⊥ABCD OE ⊂EAD 所以平面平面。
高二上学期数学期末测试题
高二上学期数学期末测试题The document was prepared on January 2, 2021高 二 上 学 期 数 学 期 末 测 试 题一、选择题:1.不等式212>++x x 的解集为 A.()()+∞-,10,1 B.()()1,01, -∞- C.()()1,00,1 - D.()()+∞-∞-,11, 2.0≠c 是方程 c y ax =+22 表示椭圆或双曲线的 条件 A .充分不必要B .必要不充分C .充要D .不充分不必要3.若,20πθ≤≤当点()θcos ,1到直线01cos sin =-+θθy x 的距离为41,则这条直线的斜率为 B.-1 C.23 D.-334.已知x 的不等式01232>+-ax ax 的解集是实数集 R ,那么实数a 的取值范围是A.0,916 B.0, 916 C.916,0 D.⎪⎭⎫⎢⎣⎡38,0 5.过点2,1的直线l 被04222=+-+y x y x 截得的最长弦所在直线方程为: A. 053=--y x B. 073=-+y x C. 053=-+y x D. 013=+-y x6.下列三个不等式:①;232x x >+②2,0,≥+≠∈ba ab ab R b a 时、;③当0>ab 时,.b a ba +>+其中恒成立的不等式的序号是 A.①② B.①②③ C.① D.②③7.圆心在抛物线x y 22=上,且与x 轴和该抛物线的准线都相切的一个圆的方程是 A .041222=---+y x y x B .01222=+-++y x y x C .01222=+--+y x y xD .041222=+--+y x y x8.圆C 切y 轴于点M 且过抛物线452+-=x x y 与x 轴的两个交点,O 为原点,则OM 的长是 A .4 B . C .22 D .29.与曲线1492422=+y x 共焦点,而与曲线1643622=-y x 共渐近线的双曲线方程为A .191622=-x yB .191622=-y xC .116922=-x yD .116922=-y x10.抛物线x y 42-=上有一点P,P 到椭圆1151622=+y x 的左顶点的距离的最小值为A .32B .2+3C .3D .32-11.若椭圆)1(122>=+m y mx与双曲线)0(122>=-n y nx 有相同的焦点F 1、F 2,P 是两曲线的一个交点,则21PF F ∆的面积是 A .4B .2C .1D .12.抛物线px y 22=与直线04=-+y ax 交于两点AB,其中点A坐标为1,2,设抛物线焦点为F,则|FA |+|FB |= A.7 B.6 C.5 D.4二、填空题13. 设函数,2)(+=ax x f 不等式6|)(|<x f 的解集为-1,2,则不等式()1≤x f x的解集为 14.若直线)0,0(022>>=+-b a by ax 始终平分圆014222=+-++y x y x 的圆周,则ba11+的最小值为______ 15.若曲线15422=++-a y a x 的焦点为定点,则焦点坐标是 . 16.抛物线x y 22-=上的点M 到焦点F 的距离为3,则点M 的坐标为____________. 三、解答题: 18.已知椭圆)0(1:2222>>=+b a by a x C 经过点)221(,M ,其离心率为22,设直线m kx y l +=:与椭圆C 相交于B A 、两点.Ⅰ求椭圆C 的方程;Ⅱ已知直线l 与圆3222=+y x 相切,求证:OA ⊥OBO 为坐标原点;Ⅲ以线段OA,OB 为邻边作平行四边形OAPB,若点Q 在椭圆C 上,且满足OP OQ λ=O 为坐标原点,求实数λ的取值范围.19.已知圆C y 轴对称,经过抛物线x y 42=的焦点,且被直线x y =分成两段弧长之比为1:2,求圆C 的方程.20. 平面内动点Px,y 与两定点A-2, 0, B2,0连线的斜率之积等于-1/3,若点P 的轨迹为曲线E,过点Q (1,0)-作斜率不为零的直线CD 交曲线E 于点C D 、.1求曲线E 的方程; 2求证:AC AD ⊥;3求ACD ∆面积的最大值.21.已知直线l 与圆0222=++x y x 相切于点T ,且与双曲线122=-y x 相交于A 、B 两点.若T 是线段AB 的中点,求直线l 的方程. 22、设椭圆)0(12222>>=+b a by a x 的左焦点为F ,上顶点为A ,过点A 与AF 垂直的直线分别交椭圆与x 轴正半轴Q P 、两点,且PQ AP 58=I 求椭圆离心率e ;II 若过A,F,Q 三点的圆恰好与直线033:=++y x l 相切,求椭圆方程答案一、ABDB A CD D A A C A 二、13. {x|x>21或52≤x }; 14. 4 ; 15.0,±3; 16.-5,25±. 三、17.解:由062322<--+-x x x x ,得0)2)(3()2)(1(<+---x x x x 18.Ⅰ椭圆方程为2212x y +=;Ⅱ见解析Ⅲ22λ-<<且0λ≠.解析试题分析:Ⅰ由已知离心率为22,可得等式222b a =;又因为椭圆方程过点(1M 可求得21b =,22a =,进而求得椭圆的方程; Ⅱ由直线l 与圆2223x y +=相切,可得m 与k 的等式关系即222(1)3m k =+,然后联立直线l 与椭圆的方程并由韦达定理可得122412kmx x k +=-+,21222212m x x k -=+,进而求出=21y y 222212m k k -+,所以由向量的数量积的定义可得→→⋅OB OA 的值为0,即结论得证;Ⅲ由题意可分两种情况讨论:ⅰ当0m =时,点A 、B 原点对称;ⅱ当0m ≠时,点A 、B不原点对称.分别讨论两种情形满足条件的实数λ的取值范围即可.试题解析:Ⅰ222c e a b c a==+离心率,222a b ∴= 222212x y b b ∴+=椭圆方程为,将点(12M ,代入,得21b =,22a =∴所求椭圆方程为2212x y +=.Ⅱ因为直线l 与圆2223x y +=相切,所以=即222(1)3m k =+ 由22,22y kx m x y =+⎧⎨+=⎩,得222(12)4220k x kmx m +++-=.设点A 、B 的坐标分别为11(,)A x y 、22(,)B x y ,则122412kmx x k +=-+,21222212m x x k -=+,所以1212()()y y kx m kx m =++=221212()k x x km x x m +++=222212m k k -+,所以1212OA OB x x y y ⋅=+=222212m k -++222212m k k -+=22232212m k k --+=0,故OA OB ⊥, Ⅲ由Ⅱ可得121222()212my y k x x m k +=++=+, 由向量加法平行四边形法则得OA OB OP +=,OP OQ λ=,OA OB OQ λ∴+= ⅰ当0m =时,点A 、B 原点对称,则0λ= 此时不构成平行四边形,不合题意. ⅱ当0m ≠时,点A 、B 不原点对称,则0λ≠,由OA OB OQ λ+=,得12121(),1().Q Q x x x y y y λλ⎧=+⎪⎪⎨⎪=+⎪⎩ 即224,(12)2.(12)Q Qkm x k m y k λλ-⎧=⎪+⎪⎨⎪=⎪+⎩点Q 在椭圆上,∴有222242[]2[]2(12)(12)km mk k λλ-+=++, 化简,得222224(12)(12)m k k λ+=+.2120k +≠,∴有2224(12)m k λ=+. ①又222222164(12)(22)8(12)k m k m k m ∆=-+-=+-,∴由0∆>,得2212k m +>. ②将①、②两式,得2224m m λ>0m ≠,24λ∴<,则22λ-<<且0λ≠.综合ⅰ、ⅱ两种情况,得实数λ的取值范围是22λ-<<且0λ≠.19.解:设圆C 的方程为)(2a y x -+22r =, 抛物线x y 42=的焦点()0,1F221r a =+∴ ①又直线x y =分圆的两段弧长之比为1:2,可知圆心到直线x y =的距离等于半径的,21即22r a = ②解①、②得2,12=±=r a 故所求圆的方程为 2)1(22=±+y x20.1223144x y +=(2)x ≠±;2略;31. 解析试题分析:1根据题意可分别求出连线PA ,PB 的斜率PA k ,PB k ,再由条件斜率之积为13列出方程,进行化简整理可得曲线E 的方程,注意点P 不与点,A B 重合.根据斜率的计算公式可求得2PA y k x ,2PB yk x ,所以12223y yx x x ,化简整理可得曲线E 的方程为223144x y +=(2)x ≠±; 2若要证AB AC ,只要证0AB AC ,再利用两个向量数量积为零的坐标运算进行证明即可.那么由题意可设直线BC 的方程为1myx ,1122,,,C x y D x y ,联立直线与椭圆的方程消去x ,可得y 的一元二次方程032)3(22=--+my y m ,由违达定理知33,32221221+-=+=+m y y m m y y ,则12122623x x m y y m ,()()21212243113m x x my my m -+⋅=--=+,又112,ACx y ,222,AD x y ,所以()()()121212*********AC AD x x y y x x x x y y ⋅=+++=++++=,从而可以证明AB AC ;3根据题意可知122111223ACDS AQ y y m △=⋅-=⨯=+,=故当0m =时,ACD △的面积最大,最大面积为1.试题解析:1设动点P 坐标为(,)x y ,当2x ≠±时,由条件得:1223y y x x ⋅=--+,化简得223144x y +=, 故曲线E 的方程为223144x y +=(2)x ≠±. 4分说明:不写2x ≠±的扣1分 2CD 斜率不为0,所以可设CD 方程为1+=x my ,与椭圆联立得:032)3(22=--+my y m 设),(),,(2211y x D y x C , 所以33,32221221+-=+=+m y y m m y y ,. 6分 01323)1(31)()1(),2(),2(2222212122211=+++++-=++++=+⋅+m m m m y y m y y m y x y x ,所以AC AD ⊥ 8分3ACD ∆面积为2222221)3(334394||21+-+=++=-m m m m y y , 10分 当0=m 时ACD △的面积最大为1. 12分考点:1.椭圆的方程;2.向量法证明两直线垂直;3.三角形面积的计算.21.解:直线l 与x 轴不平行,设l 的方程为 a my x += 代入双曲线方程 整理得而012≠-m ,于是122--=+=m amy y y B A T 从而 12--=+=m a a my x T T 即 )1,1(22mam am T -- 点T 在圆上 012)1()1(22222=-+-+-∴mam a m am 即22+=a m ① 由圆心)0,1(-'O .l T O ⊥' 得 1-=⋅'l T O k k 则 0=m 或 122+=a m当0=m 时,由①得 l a ∴-=,2的方程为 2-=x ;当122+=a m 时,由①得 1=a l m ∴±=,3的方程为13+±=y x . 故所求直线l 的方程为2-=x 或 13+±=y x22.解:I ),()、)(,(),由,(设b A b a c c F x Q 000220-=- 知),(),,(0b x AQ b c FA -==. cb x b cx AQ FA 2020,0,==-∴⊥ .设PQ AP y x P 58),,(11=由,得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+==+=b b yc b x x 135581,138581581201 因为点P 在椭圆上,所以1)135()138(22222=+bb ac b 整理得ac c a ac b 3232222=-=)(,即 02322=-+⇒e e .21=⇒e II 由I,a c a c a c b ac b 21,21;23,3222====得由得 于是AQF a Q a F ∆-),0,23(),0,21(的外接圆圆心为)0,21(a ,半径.21a FQ r ==因为这个圆与直线033:=++y x l 相切,所以a a =+2|321|,解得a =2, ∴c=1,b=3,所求椭圆方程为13422=+y x。
高二上学期英语期末考试试题(有答案)
高二上学期英语期末考试试题(有答案)本部分共15小题,每小题1.5分,共22.5分。
听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
每段对话或独白读两遍。
听第6段材料,回答第6、7题。
6.What does the man want to do?A。
To buy a car。
B。
To rent a car。
C。
To repair a car.7.What does the woman suggest the man do?A。
To take a taxi。
B。
To rent a car。
C。
To buy a car.听第7段材料,回答第8、9题。
8.What does the man want to buy?A。
A XXX.9.What does the woman think of the blue shirt?A。
It’s too expensive。
B。
It’s too bright。
C。
It’s too smal l.听第8段材料,回答第10至12题。
10.What’s the nship een the speakers?A。
XXX.11.What is the man’s problem?A。
He can’t find his keys。
B。
He lost his wallet。
C。
He ot his password.12.What does the woman suggest the man do?A。
To look for his keys in the car。
B。
To buy a new wallet。
C。
To reset his password.听第9段材料,回答第13至15题。
13.What does the man want to do?A。
河南省天一大联考2024_2025学年高二数学上学期期末考试试题理
河南省天一大联考2024-2025学年高二数学上学期期末考试试题 理考生留意:1.答题前,考生务必将自己的姓名、考生号填写在试卷和答题卡上,并将考生号条形码粘贴在答题卡上的指定位置。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.不等式282x x -+<-1的解集为 A.(-3,2) B.(-3,-2) C.(-3,4) D.(-2,4) 2.下列命题为真命题的是A.∃x 0∈R ,x 02+4x 0+6≤0 B.正切函数y =tanx 的定义域为R C.函数y =1x的单调递减区间为(-∞,0)∪(0,+∞) D.矩形的对角线相等且相互平分 3.已知直线x +2y =4过双曲线C :22221(0,0)x y a b a b-=>>的一个焦点及虚轴的一个端点,则此双曲线的标准方程是A.2211612x y -= B.221164x y -= C.221124x y -= D.221258x y -= 4.已知{a n }为等差数列,公差d =2,a 2+a 4+a 6=18,则a 5+a 7= A.8 B.12 C.16 D.205.已知直线l 和两个不同的平面α,β,若α⊥β,则“l //α”是“l ⊥β”的 A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,A =60°,c =4,a =,则sinAsinB=A.23B.3 D.37.在四棱锥P -ABCD 中,PD ⊥平面ABCD ,AB//DC ,CADC =90°,AD =AB =3,PD =4,DC =6,则DB 与CP 所成角的余弦值为A.5B.6C.26D.138.已知等比数列{a n }的前n 项和为S n ,公比q>0,a 1=1,a 12=9a 10,要使数列{λ+S n }为等比数列,则实数λ的值为 A.13 B.12C.2D.不存在 9.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,B =23π,b =b 2+c 2-a 2。
山东部分地区2023-2024学年高二上学期语文期末试卷分类汇编:语言文字运用Ⅱ(含答案)
语言文字运用Ⅱ山东省滨州市2023-2024学年高二上学期期末语文试题(二)语言文字运用Ⅱ(本题共3小题,共12分)阅读下面的文字,完成小题。
“好漂亮啊!”我第一次看见玉雕般晶莹剔透的盐花,是在青藏铁路的格尔木工务段。
一排再普通不过的平房里,形态各异的盐花,如雪莲、如牡丹、如珊瑚、如蘑菇,成了独特的盆景。
天然的艺术造型,惟妙惟肖,可谓鬼斧神工,令人赞叹。
这些神奇的盐花生长于察尔汗盐湖,是盐在结晶后凝成的美丽形态。
我信步湖上,见脚下盛开着大片的盐花。
这些固化的雪浪花,在阳光的照耀下,幻化着赤橙黄绿青蓝紫,呈现出霓虹般的绚丽色彩。
盐湖上是厚十五至十八米的盐盖,全长超过三十公里。
而这段青藏铁路,就铺设在盐湖之上。
那一刻,我①。
我不曾想到,在列车飞奔的滚滚车轮之下,是不惧艰难的建设者深入盐湖,奋力打下五万七千根支撑铁轨的挤密沙桩。
又到隆冬时节,察尔汗盐湖上一片银白。
穷极视野,②。
人的嗅觉器官是咸涩的,腾起的雾是咸涩的,连过路的风都是咸涩的。
年复一年,飘雪凝霜,养护铁路的工人,眉毛、胡须上都挂着盐粒的微雕,如果放大若干倍,就是肉眼可见的盐花。
察尔汗盐湖上盛开的盐花,犹如这铁路人绽放的青春,纯洁美丽,永不枯萎……20. 请在文中横线处补写恰当的语句,使整段文字语意连贯完整,内容贴切,逻辑严密,每处不超过10个字。
21. 文中两处画波浪线的句子,都使用了比喻,请分别分析其构成和表达效果。
22. 文中加点的数量词语,具有怎样的表达效果?请结合语境加以分析。
山东省潍坊市2023-2024学年第一学期期末考试高二语文试题(二)语言文字运用Ⅱ(本题共3小题,10分)阅读下面的文字,完成20~22题。
那个房间里有一个姑娘,头戴毡帽,身穿皮袄,脸容消瘦,脖子上露着青筋,不算漂亮,只有她的眼睛和眼睛上面扬起的两道眉毛却好看。
“喏,薇拉·叶夫列莫夫娜,你跟他谈吧,”年老的女主人说,“他就是公爵。
我走了。
”①“我能在哪方面为您效劳吗”聂赫留朵夫说。
2022-2023学年高二上学期化学期末考试试卷(含答案)
2022-2023学年高二上学期化学期末考试试卷(含答案)一、单选题(本大题共19小题)1. 下列食品添加剂中,其使用目的与反应速率有关的是( ) A .抗氧化剂 B .调味剂 C .着色剂D .增稠剂2. 已知人体体液中存在维持体液pH 相对稳定的平衡: CO 2+ H 2OH 2CO 3H ++3HCO -,则下列说法不合理的是A .当人体体内的酸碱平衡失调时,血液的pH 是诊断疾病的一个重要参数B .如果CO 2进入体液,会使体液的pH 减小C .当强酸性物质进入体液后,平衡向左移动D .静脉滴注生理盐水,体液的pH 会有大幅改变3. 某反应使用催化剂后,其反应过程中能量变化如图,下列说法正确的是A .使用催化剂后,活化能不变B .总反应为放热反应C .反应①是放热反应,反应②是吸热反应D .ΔH=ΔH 2−ΔH 1 4. 恒温下,反应aX(g)bY(g)+cZ(s)达到平衡状态,把容器容积缩小到原来的一半,且达到新的平衡状态时,X 的物质的量浓度从0.1 mol/L 增大到0.19 mol/L 。
下列判断中正确的是 A .a >bB .a >b+cC .a=b+cD .a <b5. 下列离子方程式中,属于水解反应的是A .CH 3COOH+H 2O CH 3COO -+ H 3O +B .SO 2+H 2O HSO 3-+ H +C .CO 23-+ H 2OHCO 3-+ OH -D .HCO -3+ H 2OCO 23-+ H 3O +6. 1913年德国化学家哈伯发明了以低成本制造大量氨的方法,从而大大满足了当时日益增长的人口对粮食的需求。
下列是哈伯法的流程图,其中不是为提高原料转化率而采取的措施是A.①②B.②③C.①③D.②⑤7. H2O、H2O2都是由氢、氧元素组成的重要化合物。
下列表述正确的是A.H2O2的电子式为B.H2O2是非极性分子C.O的基态原子轨道表示式为D.H2O易与Cu2+形成配位键,其中配位数为48. 下列实验操作、现象及结论均正确的是A.A B.B C.C D.D9. 下列说法中正确的是A.电解精炼铜时,电解质溶液的浓度不变B.用Na2S作沉淀剂,除去废水中的Cu2+和Hg2+C.用浓硫酸清洗锅炉中的水垢D.氯化铝是一种电解质,可用电解氯化铝的方法制铝10. 下列实验事实不能证明醋酸是弱电解质的是A.相同pH的醋酸溶液和盐酸分别与同样颗粒大小的锌反应时,产生H2的起始速率相等B.常温下,测得0.1 mol·L-1醋酸溶液的pH=4C.常温下,将pH=1的醋酸溶液稀释1 000倍,测得pH<4D.相同浓度的盐酸和醋酸,醋酸溶液的导电性比盐酸的弱11. 氧化亚铜常用于制船底防污漆。
2022-2023学年云南省玉溪市高二上学期期末教学质量检测数学试题(解析版)
2022-2023学年云南省玉溪市高二上学期期末教学质量检测数学试题一、单选题1.已知集合{}1,2A =,()(){}210B x x x =-+<,则A B =( ) A .{}1 B .{}2C .{}1,2D .∅【答案】A【分析】求一元二次不等式的解集,再求集合A 与集合B 的交集即可. 【详解】∵{|(2)(1)0}{|12}B x x x x x =-+<=-<<,∴{1}A B ⋂=. 故选:A. 2.已知复数()21i1i z +=-,则z 的虚部为( ) A .1- B .12-C .12D .1【答案】C【分析】由复数的运算结合定义求解. 【详解】()2221i1i i i 11i 2i 2i 221i z +++====-+---,即z 的虚部为12. 故选:C3.欧几里得大约生活在公元前330~前275年之间,著有《几何原本》《已知数》《圆锥曲线》《曲面轨迹》等著作.若从上述4部书籍中任意抽取2部,则抽到《几何原本》的概率为( ) A .12B .13C .14D .56【答案】A【分析】运用列举法解决古典概型.【详解】记4部书籍分别为a 、b 、c 、d ,则从从4部书籍中任意抽取2部的基本事件为ab 、ac 、ad 、bc 、bd 、cd 共有6个,抽到《几何原本》的基本事件为ab 、ac 、ad 共有3个,所以抽到《几何原本》的概率为:3162P ==. 故选:A.4.过点()1,0-的直线l 与圆C :222440x y x y +-+-=相交于A ,B 两点,弦AB 长的最小值为( )A .1BC .2D .【答案】C【分析】判断点(1,0)-在圆C 内,根据当l 垂直于圆心与定点所在直线时,弦长||AB 最短,代入公式||AB =.【详解】∵圆C :222440x y x y +-+-=,即:22(1)(2)9x y -++=, ∴圆C 的圆心(1,2)C -,半径为3. 又∵22(11)(02)9--++<, ∴点(1,0)M -在圆C 内, ∴当l CM ⊥时,弦长||AB 最短. 又∵||CM ==∴||2AB ===. 故选:C.5.已知等比数列{}n a 满足220n n a a +-=,10n n a a +<,12a =,则6a 的值为( ) A .4 B.-C .8 D.-【答案】D【分析】由10n n a a +<得出0q <,再由通项结合220n n a a +-=得出q ,进而得出6a 的值. 【详解】设公比为q ,110,0n n n na a a q a ++<∴=<. 220n n a a +-=,111120n n a q a q +-∴-=.即()12220n qq--=,解得q =55612(a a q ==⨯=-故选:D6.已知直线1l :()31302a x y +++=和直线2l :210x ay ++=,则12l l ∥的充要条件为( ) A .2a = B .3a =- C .25a =-D .2a =或3a =-【答案】B【分析】根据两直线平行得出关于实数a 的方程,解出即可. 【详解】∵12//l l ,∴313221a a +=≠,即:2602? a a a ⎧+-=⎨≠⎩,解得:3a =-.故选:B.7.碳14的半衰期为5730年.在考古中,利用碳14的半衰期可以近似估计目标物所处的年代.生物体内碳14含量y 与死亡年数x 的函数关系式是5730012x y A ⎛⎫= ⎪⎝⎭(其中0A 为生物体死亡时体内碳14含量).考古学家在对考古活动时挖掘到的某生物标本进行研究,发现该生物体内碳14的含量是原来的60%,由此可以推测到发掘出该生物标本时,该生物体在地下大约已经过了(参考数据:lg 20.3≈,lg30.5≈)( )A .2292年B .3580年C .3820年D .4728年【答案】C【分析】运用对数运算性质解方程即可.【详解】由题意知,5730001()0.62xA A =,所以16lg lg 5730210x =,即lg 2lg 61lg 2lg310.30.510.25730x -=-=+-≈+-=-, 即:lg 20.25730x-≈-,解得:0.20.2573057303820lg 20.3x ≈⨯≈⨯=(年). 故选:C.8.若22lg 2lg 5a =+,ln 44b =,ln 55c =,则,,a b c 的大小关系为( ) A .a b c << B .a c b << C .b a c << D .c b a <<【答案】D【分析】根据,b c 的形式可构造函数()()ln 3xf x x x=>,利用导数可求得()f x 单调性,由()()45f f >可得,b c 大小关系;根据基本不等式和对数运算可求得12a b >>,由此可得结果. 【详解】令()()ln 3x f x x x =>,则()1ln 0xf x x -'=<,f x 在()3,+∞上单调递减,()()45f f ∴>,即ln 4ln 545>,c b ∴<; ()2222lg 2lg5lg 2lg 5lg 2lg52lg 2lg512lg 2lg5122+⎛⎫+=+-=->-⨯ ⎪⎝⎭111242=-⨯=,12a ∴>, 又2ln 4ln 2111ln 2ln e 44222b ===<=,b a ∴<,c b a ∴<<. 故选:D.【点睛】关键点点睛:本题考查通过构造函数的方式比较大小的问题,解题关键是能够根据所给数值的共同形式,准确构造函数,将问题转化为同一函数的不同函数值的大小关系比较问题,从而利用函数单调性来确定结果.二、多选题9.如图,在ABC 中,若点D ,E ,F 分别是BC ,AC ,AB 的中点,设AD ,BE ,CF 交于一点O ,则下列结论中成立的是( )A .BC AC AB =- B .1122AD AC AB =+ C .2233AO AC AB =+ D .2233OC AC AB =- 【答案】AB【分析】利用向量的加减法则进行判断.【详解】根据向量减法可得BC AC AB =-,故A 正确; 因为D 是BC 的中点,所以1122AD AC AB =+,故B 正确; 由题意知O 是ABC 的重心, 则()2211133233AO AD AC AB AC AB ==⨯+=+,故C 错误; 221111121()()332333333OC CF CB CA CB CA CA AB CA AC AB =-=-⨯+=--=-+-=-,故D 错误.故选:AB.10.函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则下列说法正确的是( )A .()π2sin 26f x x ⎛⎫=- ⎪⎝⎭B .()f x 的图象关于点5π,012⎛⎫- ⎪⎝⎭对称C .()f x 在3π,π4⎛⎫⎪⎝⎭上单调递增D .若将()f x 的图象向右平移π6个单位长度,则所得图象关于y 轴对称【答案】ABD【分析】根据三角函数的性质以及函数图象变换即可求解. 【详解】由题意可知,7πππ2,212122T A ==-=,则2ππT ω==,则2ω=,所以()()2sin 2f x x ϕ=+,又因为()f x 的图象过点π,012⎛⎫⎪⎝⎭,所以ππ22π2π126k k ϕϕ⋅+=⇒=-+,因为π2ϕ<,所以π6ϕ=-,所以()2sin 26f x x π⎛⎫=- ⎪⎝⎭,故A 正确;()5π5ππ2sin 22sin π012126f ⎡⎤⎛⎫⎛⎫-=⋅--=-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故B 正确; 令πππ2π22π,Z 262k xk k ,解得:ππππ,Z 63k xk k ,令1k =可得:5π4π63x ≤≤,所以C 不正确; 将()f x 的图象向右平移π6个单位长度,则πππ2sin 22sin 22cos 662y x x x ⎡⎤⎛⎫⎛⎫=--=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦为偶函数,关于y 轴对称,所以D 正确. 故选:ABD.11.已知双曲线M :()222108x y a a -=>的左、右焦点分别为1F ,2F ,过1F 作M 的一条渐近线的垂线,垂足为A ,连接2AF ,记e 为双曲线M 的离心率,C 为12AF F △的周长,若直线2AF 与另一条渐近线交于点B ,且2AB BF =,则( )A .e =B .22eC .8C =+D .8C =+【答案】AD【分析】不妨设垂足A 在第二象限,从而可求得1AF ,再根据2AB BF =,可得1OB AF ∕∕,则1AF OB k k =,即可求出a ,进而可得离心率,求出直线1AF 斜率,即可得12AF F ∠,再在12AF F △中,利用余弦定理求得2AF 即可.【详解】双曲线M :()222108x y a a -=>的渐近线方程为0bx ay ±=,()1,0F c -, 不妨设垂足A 在第二象限,即点A 在直线0bx ay +=上, 则12222bc AF b a b-===+,因为2AB BF =,所以B 为2AF 的中点, 又因O 为12F F 的中点,所以1OB AF ∕∕, 则1AF OB k k =,即a bb a=,所以228a b ==, 故224c a b =+=, 所以2ce a==, 所以11AF OB k k ==,则12πtan 4AF F ∠=, 在12AF F △中,11222,8AF F F ==,则22221121121222cos 8642228402AF AF F F AF F F AF F =+-∠=+-⨯⨯⨯=, 所以2210AF =,所以12AF F △的周长822210C =++.故选:AD.12.如图,在棱长为2的正方体1111ABCD A B C D -的表面上有一动点G ,则下列说法正确的是( )A .当点G 在线段11A C 上运动时,三棱锥1G ACB -的体积为定值 B .当点G 在线段AC 上运动时,1B G 与11A C 所成角的取值范围为ππ,42⎡⎤⎢⎥⎣⎦C .使得AG 与平面ABCD 所成角为45°的点G 的轨迹长度为π42+D .若P 是线段1AB 的中点,当点G 在底面ABCD 上运动且满足//PG 平面11B CD 时,线段PG 长的最6【答案】ACD【分析】对于选项A ,运用等体积法转化可得;对于选项B ,通过作平行线研究异面直线所成的角;对于选项C ,通过线面垂直找到线面角,再根据线面角可得点G 的轨迹计算即可.对于选项D ,通过面面平行的判定定理证得面1A BD //面11B CD ,从而得到点G 的轨迹,在PBD △中,运用等面积法求得PG 的最小值.【详解】对于选项A ,因为1CC ⊥面1111D C B A ,11B D ⊂面1111D C B A ,所以111CC B D ⊥, 当点G 在线段11A C 上运动时, 因为1111B D A C ⊥,111B D CC ⊥,1111AC CC C =,11A C 、1CC ⊂面11ACC A ,所以11B D ⊥面11ACC A , 又因为11//AC A C ,所以111111111111111422222323223223G ACB B AGC AGC V V S B D AC AA B D --==⨯=⨯⨯⨯⨯=⨯⨯⨯⨯△.所以三棱锥1G ACB -的体积为定值43,故选项A 正确;对于选项B ,因为11//AC A C ,所以异面直线1B G 与11A C 所成角为1B GC ∠或其补角,在△1AB C 中,1122AB BC AC ===1π3B CG ∠=, 所以1ππ32B GC ≤∠≤,故1B G 与11A C 所成角的取值范围为ππ[,]32,故选项B 错误;对于选项C ,∵1BB ⊥面ABCD ,则145B AB ︒∠=,∴当G 在线段1AB 上时,AG 与面ABCD 所成角为45︒,122AB =, 同理:当G 在线段1AD 上时,AG 与面ABCD 所成角为45︒,122AD =, 若点G 在面1111D C B A 上,∵面ABCD //面1111D C B A , ∴AG 与面1111D C B A 所成角为45︒,又∵1AA ⊥面1111D C B A ,1AG ⊂面1111D C B A , ∴11AA A G ⊥,145A GA ︒∠=, ∴112AG AA ==, ∴点G 在以1A 为圆心 ,2为半径的圆上, 又∵点G 在面1111D C B A 上,∴点G 在圆与四边形1111D C B A 的交线11B D 上,∴11B D 的长为12ππ4r ⨯=,∴点G 的轨迹长度为11112222ππ42B D AB AD l ++=++=+, 故选项C 正确;对于选项D ,连接DP 、DB ,取AB 的中点E ,连接DE 、PE ,则1//PE AA ,1AA ⊥平面ABCD ,所以PE ⊥平面ABCD ,DE ⊂平面ABCD ,所以PE DE ⊥,如图所示,∵11//BB DD 且11=BB DD , ∴四边形11BDD B 为平行四边形, ∴11//BD B D ,又∵BD ⊄面11B CD ,11B D ⊂面11B CD ,∴//BD 面11B CD , 同理1//A B 面11B CD , 又∵1BDA B B =,BD 、1A B ⊂面1A BD ,∴面1A BD //面11B CD , 又∵//PG 面11B CD , ∴∈G 面1A BD ,又∵∈G 面ABCD ,面1A BD面ABCD BD =,∴G BD ∈,即:G 的轨迹为线段BD . ∴当PG BD ⊥时,PG 最短.在Rt DAB 中,2AD AB ==,1AE =,所以BD =,DE ,在1Rt A AB △中,112PB A B ==在Rt PED 中,1PE =,所以PD =在PBD △中,因为222PB PD BD +=,所以PB PD ⊥,所以由等面积法得1122PBD S PB PD BD h =⋅=⋅△,即:1122=⨯,解得:h =线段PG 故选项D 正确. 故选:ACD.三、填空题13.为估计某中学高一年级男生的身高情况,随机抽取了25名男生身高的样本数据(单位:cm ),按从小到大排序结果如下164.0164.0165.0165.0166.0167.0167.5168.0168.0170.0170.0170.5171.0171.5172.0172.0172.5172.5173.0174.0174.0175.0175.0176.0176.0据此估计该中学高一年级男生的第75百分位数约为___________. 【答案】173【分析】根据百分位数的定义求解即可. 【详解】由75%2518.75⨯=,所以该中学高一年级男生的第75百分位数为第19个数,即173. 故答案为:17314.若正数x ,y 满足112x y+=,则9x y +的最小值是___________. 【答案】8【分析】利用常数“1”代换结合基本不等式进行求解. 【详解】因为112xy +=,则11112x y ⎛⎫+= ⎪⎝⎭, ()111191999101028222y x y x x y x y x y x y x y ⎛⎫⎛⎫⎛⎫+=+⋅+=⋅++≥+⋅= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 当且仅当9y x x y =,即2,23x y ==时等号成立, 所以9x y +的最小值是8. 故答案为:8.15.已知等腰三角形底角的正切值为52,则顶角的正弦值是___________.【答案】459##459 【分析】由倍角公式结合同角三角函数的基本关系求解.【详解】如下图所示,等腰三角形ABC ,其中A 为顶角,因为5tan 2B =,所以 ()2222sin cos 2tan 545sin sin 2sin 22sin cos 5sin cos tan 1914B B B A B B B B B B B π=-======+++.故答案为:45916.已知函数()f x 的定义域为R ,()32y f x =++是偶函数,当3x ≥时,()2log f x x =,则不等式()()221f x f x +>-的解集为___________.【答案】533x x x ⎧⎫-⎨⎬⎩⎭或【分析】运用函数的奇偶性可得()f x 关于3x =对称,再运用函数的单调性、对称性可得|21||4|x x ->-,解绝对值不等式即可.【详解】∵(3)2y f x =++是偶函数,∴(3)2(3)2f x f x ++=-++,即:(3)(3)f x f x +=-+∴()f x 关于3x =对称.∵当3x ≥时,2()log f x x =,∴()f x 在[3,)+∞上单调递增,又∵(22)(1)f x f x +>-,∴|223||13|x x +->--,即:|21||4|x x ->-,∴22(21)(4)x x ->-,即:234150x x +->,解得:3x <-或53x >. 故答案为:{|3x x <-或5}3x >.四、解答题17.已知数列{}n a 是递增的等比数列,n S 为{}n a 的前n 项和,满足22a =,37S =(1)求{}n a 的通项公式;(2)若数列2log n n b a =,求数列{}n b 的前n 项和n T .【答案】(1)12n n a -=(2)()12n n n T -=【分析】(1)根据等比数列单调性和通项公式可构造方程求得公比q ,进而得到n a ;(2)利用等差数列求和公式可求得n T .【详解】(1)设等比数列{}n a 的公比为q ,{}n a 为递增的等比数列,220a =>,1q ∴>,23222227a S a a q q q q ∴=++=++=,解得:12q =(舍)或2q ,2122n n n a a q --∴==.(2)由(1)得:12log 21n n b n ,又10b =,11n n b b +-=,∴数列{}n b 是以0为首项,1为公差的等差数列,()()01122n n n n n T +--∴==. 18.已知ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,且满足()2cos cos 0c a B b C -+=(1)求ABC ∠;(2)如图,点D 在AC 延长线上,且CD BC =,4AB =,7AD =,求ABC 的面积.【答案】(1)π3. 333 【分析】(1)由正弦定理边化角及和角公式化简可得结果;(2)在△ABC 中应用余弦定理解得BC 的值,代入三角形面积公式计算即可.【详解】(1)∵()2cos cos 0c a B b C -+=,∴由正弦定理得()sin 2sin cos sin cos 0C A B B C -+=,即sin cos 2sin cos sin cos 0C B A B B C -+=,()sin 2sin cos B C A B +=,即sin 2sin cos A A B =, ∵ sin 0A ≠,∴ 1cos 2B = 又∵()0,πB ∈,∴ 3B π=. (2)设CD x =,则7AC x =-, 在△ABC 中,()22247π1cos 3242x x x +--==⨯,解得:3310x = 则△ABC 的面积11333333sin 423210ABC S AB BC π=⨯⨯⨯=⨯⨯△19.2022年,某市教育体育局为了解九年级语文学科教育教学质量,随机抽取100名学生参加某项测试,得到如图所示的测试得分(单位:分)频率分布直方图.(1)根据测试得分频率分布直方图,求a 的值;(2)根据测试得分频率分布直方图估计九年级语文平均分;(3)猜测平均数和中位数(不必计算)的大小存在什么关系?简要说明理由.【答案】(1)0.007a =(2)79.2(3)中位数大于平均数,理由见解析【分析】(1)由频率之和等于1,得出a 的值;(2)由频率分布直方图求平均数的方法求解;(3)观察频率分布直方图数据的分布,得出平均数和中位数的大小关系.【详解】(1)解:()0.0030.0050.0150.02201a ++++⨯=解得0.007a =(2)语文平均分的近似值为()0.003300.005500.015700.02900.00711020⨯+⨯+⨯+⨯+⨯⨯79.2=, 所以,语文平均分的近似值为79.2.(3)中位数大于平均数.因为和中位数相比,平均数总在“长尾巴”那边.20.如图,三棱柱111ABC A B C 为直三棱柱,侧面11ABB A 是正方形,2AB AC ==,D 为线段11A B 上的一点(不包括端点)且1AC CD ⊥(1)证明:AC AB ⊥;(2)当点D 为线段11A B 的中点时,求直线1AC 与平面BCD 所成角的正弦值【答案】(1)证明见解析 (2)22【分析】(1)法一:由线面垂直的判定定理证得11A B ⊥平面11AAC C ,则11A B AC ⊥,又11//AB A B ,所以AB AC ⊥.法二:设1B D k AB =,由空间向量基本定理表示出1,AC CD ,由1AC CD ⊥可得10AC CD ⋅=,代入化简即可得出AC AB ⊥.(2)建立空间直角坐标系,分别求出直线1AC 的方向向量和平面BCD 的法向量,由线面角的向量公式求解即可.【详解】(1)法一:证明:连接1A C ,在直三棱柱111ABC A B C 中,∵1AB AC A A ==,∴四边形11ACC A 是正方形,∴11A C AC ⊥,又∵1AC CD ⊥且1CD AC C ⋂=,1,CD AC ⊂平面1A CD , ∴1AC ⊥平面1A CD ,因为11A B ⊂平面1A CD ,∴111AC A B ⊥,又∵111A B AA ⊥,11,AC AA ⊂平面11AAC C ,11A AC AA ⋂=,∴11A B ⊥平面11AAC C ,AC ⊂平面11AAC C ,∴11A B AC ⊥,又∵11//AB A B ,∴AB AC ⊥,法二:证明:设1B D k AB =,11AC AC AA =+,()()()1111CD CB BD AC BB B B AB D k AB AC B =+=-++=+-+∵1AC CD ⊥,∴10AC CD ⋅=,即()()1111111k AB AC AC AC BB AC k AB AA AC AA BB AA +⋅-⋅+⋅++⋅-⋅+⋅()1400040k AB AC =+⋅-++-+=又∵点D 不与11A B 的端点重合,∴10k +≠,∴0AB AC ⋅=,即AC AB ⊥.(2)由(1)得AC ,AB ,1AA 两两互相垂直,如图建立空间直角坐标系,()0,0,0A ,()12,0,2C ,()2,0,0C ,()0,2,0B ,()0,1,2D()12,0,2AC =,()0,1,2BD =-,()2,1,2CD =-设平面BCD 的法向量为(),,n x y z =0202200n BD y z x y z n CD ⎧⋅=-+=⎧⎪⇒⎨⎨-++=⋅=⎩⎪⎩,令2x =,则2,1==y z , 可求得()2,2,1n =设直线1AC 与平面BCD 所成角为θ, 11162sin cos 62AC nAC n AC n θ⋅=⋅===⋅, ∴直线1AC 与平面BCD 2 21.已知31,22a ⎛⎫=- ⎪ ⎪⎝⎭,π2πcos ,sin 33b x x ωω⎛⎫⎛⎫⎛⎫=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,0ω>,设()f x a b =⋅ (1)若函数()y f x =图象相邻的两对称轴之间的距离为π,求()f x ;(2)当函数()y f x =在定义域内存在1x ,()212x x x ≠,使()()1212f x f x +=,则称该函数为“互补函数”.若函数()y f x =在π3π,22⎡⎤⎢⎥⎣⎦上为“互补函数”,求ω的取值范围.【答案】(1)()sin f x x =(2)3ω≥【分析】(1)根据数量积的坐标公式及辅助角公式将函数()f x 化简,再根据()y f x =相邻的对称轴距离为π求出ω,即可得解;(2)分3ππ222T -≥、3ππ22T -<、3ππ222T T ≤-<三种情况讨论,分别求出ω的取值范围,即可得解.【详解】(1)解:因为31,22a ⎛⎫=- ⎪ ⎪⎝⎭,π2πcos ,sin 33b x x ωω⎛⎫⎛⎫⎛⎫=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以()3π12πcos sin2323f x a b x x ωω⎛⎫⎛⎫=⋅=--+ ⎪ ⎪⎝⎭⎝⎭ π1πππsin sin sin 32333x x x x ωωωω⎡⎤⎛⎫⎛⎫⎛⎫=-+-=-+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 又因为函数()y f x =相邻的对称轴距离为π,所以2πT =,即2π2πω=,解得1ω=,所以()sin f x x =.(2)解:因为函数()sin x y f x ω==在π3π,22⎡⎤⎢⎥⎣⎦上为“互补函数”, 函数()y f x =在定义域内存在1x ,()212x x x ≠使()()1212f x f x +=,即()()122f x f x +=, ①当3ππ222T -≥,即3ππ2π2220ωω⎧-≥⋅⎪⎨⎪>⎩,解得4ω≥,显然成立; ②当3ππ22T -<,即3ππ2π220ωω⎧-<⎪⎨⎪>⎩,解得02ω<<时,显然不成立; ③当3ππ222T T ≤-<时,即24ω≤<时, 所以ππ223π5π22ωω⎧≤⎪⎪⎨⎪≥⎪⎩或者π5π223π9π22ωω⎧≤⎪⎪⎨⎪≥⎪⎩或者π9π223π13π22ωω⎧≤⎪⎪⎨⎪≥⎪⎩, 解得ω的取值范围为34ω≤<,综上所述3ω≥.22.已知曲线C :()222210x y a b a b +=>>,且点M ⎛ ⎝⎭和点N ⎛ ⎝⎭在曲线C 上. (1)求曲线C 的方程;(2)若点O 为坐标原点,直线AB 与曲线C 交于A ,B 两点,且满足OA OB ⊥,试探究:点O 到直线AB 的距离是否为定值.如果是,请求出定值;如果不是,请说明理由【答案】(1)2213x y += (2)【分析】(1)方法1:待定系数法(代入曲线的标准方程中)求得椭圆的方程. 方法2:待定系数法(代入曲线的一般式方程中)求得椭圆的方程.(2)分类讨论①若直线AB 斜率存在时,由韦达定理及0OA OB ⋅=可得2k 与2m 的关系式,代入计算点O 到直线AB 的距离即可. ②当直线AB 的斜率不存在时检验也成立.【详解】(1)方法1:由已知M ⎛ ⎝⎭及点N ⎛ ⎝⎭在曲线C 上, 则2222161938199a b ab ⎧+=⎪⎪⎨⎪+=⎪⎩,解得:2231a b ⎧=⎨=⎩, 所以曲线C 的方程为2213x y +=. 方法2:由已知可设曲线C 的方程为221mx ny +=,(0)n m >>,因为M ⎛ ⎝⎭及点N ⎛ ⎝⎭在曲线C 上, 则61938199m n m n ⎧+=⎪⎪⎨⎪+=⎪⎩,解得:131m n ⎧=⎪⎨⎪=⎩ , 所以曲线C 的方程为2213x y +=. (2)设()11,A x y ,()22,B x y ,①若直线AB 斜率存在,设直线的方程为y kx m =+,则:22330y kx m x y =+⎧⎨+-=⎩ 消去y 后得()222136330k x kmx m +++-=,则222222Δ364(13)(33)3612120k m k m k m =-+-=-+>, 122613km x x k +=-+,21223313m x x k -=+, 由OA OB ⊥知,()()()()2212121212121210x x y y x x kx m kx m k x x km x x m +=++⋅+=++++=22433m k ⇒=+,此时0∆>,又点O 到直线AB的距离d所以d ==.②当直线AB 的斜率不存在时,A 、B 两点关于x 轴对称, 而且当11x y =时,代入方程2213x y +=,可得1x = 所以直线AB的方程为x =, 此时O 点到直线AB的距离d =. 综上所述,点O 到直线AB。
山东省高二上学期期末数学试题(解析版)
一、单选题1.在空间直角坐标系中,已知点,则点P 关于x 轴的对称点的坐标是( ) (1,3,5)P A . B . (1,3,5)--(1,3,5)--C . D .()1,3,5--()1,3,5---【答案】C【分析】直接根据空间点关于轴对称的结论即可得到答案.x 【详解】根据空间点关于轴对称,则轴上坐标不变,轴上坐标取相反数, x x ,y z 故点P 关于x 轴的对称点的坐标是. ()1,3,5--故选:C.2.已知直线,且,则实数a 的值为( ) ()1: 4 10 l x a y +-+=2: 5 50l a x y ++=12//l l A .5 B .1 C .5或 D .1-1-【答案】D【分析】根据给定条件,列出方程求解,再验证判断作答.【详解】直线,,由解得或, ()1: 4 10 l x a y +-+=2: 5 50l a x y ++=(4)50a a --=5a =1a =-当时,直线与重合,不符合题意, 5a =1: 10 l x y ++=2: 5 5 50l x y ++=当时,直线与平行, 1a =-1: 5 10 l x y -+=2: 5 50l x y --=所以实数a 的值为. 1-故选:D3.电子设备中电平信号用电压的高与低来表示,高电压信号记为数字1,低电压信号记为数字0,一串由0和1组成的不同排列代表不同的电平信号,所用数字只有0和1,例如001100就是一个信息.某电平信号由6个数字构成,已知其中至少有四个0,则满足条件的电平信号种数为( ) A .42 B .22 C .20 D .15【答案】B【分析】根据给定的信息,利用组合知识分类列式求解作答.【详解】依题意,求电平信号种数可以有3类办法,电平信号的6个数字中有4个0,有种, 46C 电平信号的6个数字中有5个0,有种,电平信号的6个数字中有6个0,有种,56C 66C 由分类加法计数原理得满足条件的电平信号种数为.456666C C C 156122++=++=故选:B4.已知P (B )=0.3,,,则=( ) ()0.9P BA =∣(0.2PB A =∣()P A A .B .C .D .671713110【答案】A【分析】根据已知利用全概率公式得,即可求解. ()()()()()||P B P A P B A P A P B A =⋅+⋅()P A 【详解】由全概率公式可得: ()()()()()||P B P A P B A P A P B A =⋅+⋅可得,解得:. ()()()0.30.910.2P A P A =⨯+-⨯()17P A =则. 6()7P A =故选:A.5.已知每门大炮击中目标的概率都是0.5,现有10门大炮同时对某一目标各射击一次.记恰好击中目标3次的概率为A ;若击中目标记2分,记10门大炮总得分的期望值为B ,则A ,B 的值分别为( ) A .,5 B .,10 C .,5 D .,10 15128151281525615256【答案】B【分析】根据题意得其机种次数和期望符合二项分布,利用其期望公式即可得到值,再利用其概B 率公式计算值即可.A 【详解】设10门大炮击中目标的次数为,则根据题意可得,X ()1~10,2X B 门大炮总得分的期望值为,10∴1102102B =⨯⨯=, 373101115(3)C 122128A P X ⎛⎫⎛⎫∴===⨯⨯-=⎪ ⎪⎝⎭⎝⎭故选:B.6.羽毛球单打实行“三局两胜”制(无平局).甲乙两人争夺比赛的冠军.甲在每局比赛中获胜的概率均为,且每局比赛结果相互独立,则在甲获得冠军的条件下,比赛进行了三局的概率为34( ) A .B .C .D .13252345【答案】A【分析】求出甲获胜的概率、甲获得冠军且比赛进行了三局的概率,利用条件概率公式求概率即可.【详解】由甲获胜的概率为,33133313274444444432⨯+⨯⨯+⨯⨯=而甲获得冠军且比赛进行了三局,对应概率为,133313944444432⨯⨯+⨯⨯=所以在甲获得冠军的条件下,比赛进行了三局的概率为. 927132323÷=故选:A7.3D 打印是快速成型技术的一种,通过逐层打印的方式来构造物体.如图所示的笔筒为3D 打印的双曲线型笔筒,该笔筒是由离心率为3的双曲线的一部分围绕其旋转轴逐层旋转打印得到的,已知该笔筒的上底直径为6cm ,下底直径为8cm ,高为8cm (数据均以外壁即笔筒外侧表面计算),则笔筒最细处的直径为( )A B C D 【答案】C【分析】画出笔筒的轴截面,建立平面直角坐标系,设出双曲线的方程,根据题意写出点的坐标,把点的坐标代入双曲线方程即可求解.【详解】该塔筒的轴截面如图所示,以为笔筒对应双曲线的实轴端点, C 以所在直线为轴,过点且与垂直的直线为轴, OC x O OC y 建立平面直角坐标系,设与分别为上,下底面对应点. A B 由题意可知,设,则,3,4,8A B A B x x y y ==-=()3,A m ()4,8B m -设双曲线的方程为,因为双曲线的离心率为22221(0,0)x y a b a b -=>>3=所以,所以方程可化简为,b =()22288*x y a -=将和的坐标代入式可得,解得, A B ()*()222272812888m a m a ⎧-=⎪⎨--=⎪⎩12m a ⎧=⎪⎪⎨⎪⎪⎩则笔筒最细处的直径为. 2a =故选:C.8.已知,,满足,则的最小值为( ) ()0,0O ()3,0A (),P a b2PO PA =214a b +-A B .C .D .4210-【答案】D【分析】由可整理得到点轨迹方程,设,,可将所求式子化2PO PA =P 42cos a θ=+2sin b θ=,由此可得最小值.()10θϕ+-【详解】由得:,整理可得:, 2PO PA =()222243a b a b ⎡⎤+=-+⎣⎦()2244a b -+=则可令,,,42cos a θ=+2sin b θ=[)0,2πθ∈(其中), ()21442cos 4sin10a b θθθϕ∴+-=+++-1tan 2ϕ=则当时,()sin 1θϕ+=min 21410a b +-=-故选:D.二、多选题9.已知方程,其中,则( ) 221mx ny +=220m n +≠A .时,方程表示椭圆 0mn >B .时,方程表示双曲线 0mn <C .时,方程表示抛物线0n =D .时,方程表示焦点在轴上的椭圆 0n m >>x 【答案】BD【解析】当时,表示双曲线,时表示焦点在x 轴上的双曲线,0mn <22+111x y m n =0,0m n ><表示焦点在y 轴上的双曲线;当时表示焦点在y 轴上的椭圆,当时表0,0m n <>0m n >>0n m >>示焦点在x 轴上的椭圆.【详解】若,则不表示椭圆,故A 错误;0,0m n <<221mx ny +=若,则表示焦点在x 轴上的双曲线,若,则表示焦0,0m n ><22111x y m n -=-0,0m n <>22111y x n m -=-点在y 轴上的双曲线,故B 正确;当时,若,则方程表示两条垂直于x 轴的直线,若则不表示任何图形,故C 错0n =0m ≠0m =误;时,,表示焦点在x 轴上的椭圆,D 正确. 0n m >>110n m<<22111x y m n +=故选:BD【点睛】本题考查圆锥曲线的标准方程,由标准方程判断焦点的位置,属于基础题. 10.下列四个关系式中,一定成立的是( )A .3477C C =B .222334100101C C C C ++⋅⋅⋅+=C .()111A A m m n n n +++=D .若m ,,且,则 *n ∈N 2023m n <≤20232023C C m n<【答案】AC【分析】根据组合数性质与排列数性质判断.【详解】由组合数性质知一定成立,A 正确;3477C C =,B 错;222222223341003341033041001401+111C C C C C C C C C C C ++⋅⋅⋅+++⋅⋅⋅+++⋅⋅⋅=-=-=+=- ,C 正确;()()()()()()()()111A 11111111A m m n n n n n n n m n n n n m ++⎡⎤+=+--+=+-+-++=⎣⎦ 由组合数性质知且,当时,递增,当时,递*n ∈N 2023n ≤11012n ≤≤2023C n 10122023n ≤≤2023C n减,因此D 错. 故选:AC .11.若随机变量服从两点分布,其中,,分别为随机变量的均值与X ()103P X ==()E X ()D X X 方差,则下列结论正确的是( ) A . B . ()()1P X E X ==()324E X +=C . D . ()324D X +=()49D X =【答案】AB【分析】根据随机变量服从两点分布推出,根据公式先计算出、,由此X 2(1)3P X ==()E X ()D X 分别计算四个选项得出结果.【详解】随机变量服从两点分布,其中,,X 1(0)3P X ==2(1)3P X ∴==,122()01333E X =⨯+⨯=,2221222()(0)(1)33339D X =-⨯+-⨯=在A 中,,故A 正确;(1)()P X E X ==在B 中,,故B 正确; 2(32)3()23243E X E X +=+=⨯+=在C 中,,故C 错误; 2(32)9()929D X D X +==⨯=在D 中,,故D 错误. 2()9D X =故选:AB .12.已知正方体中,AB =2,P 为正方体表面及内部一点,且,1111ABCD A B C D -1AP AB AD λμ=+其中,,则( )[0,1]λ∈[0,1]μ∈A .当时,PD 1λμ+=B .当时,存在点P ,使得 21λμ+=AP BD ⊥C .当时,直线AP 与平面ABCD 所成角正切值的取值范围是 12μ=1,12⎡⎤⎢⎥⎣⎦D .当时,三棱锥的体积为定值 12λ=1P BC D -【答案】ABD【分析】当时,点P 在上,求出的最小值判断A ,取的中点,连接1λμ+=1BD PD AB K ,是上的动点,平面,可判断B ,取的中点分别为111,,KD AC AC P 1KD BD ⊥11ACC A11,AD BC ,N M ,当时,点P 的轨迹是NM 上的动点,可求直线AP 与平面ABCD 所成角正切值的取值范围12μ=判断C ,取AB ,的中点G ,H ,当时,点P 的轨迹是GH 上的动点,可证平面11D C 12λ=//GH ,判断D.1BC D 【详解】当时,点P 在上,如图,1λμ+=1BD在中,1BD DA 111sin DD D BD BD ∠===时,取得最小值为A 正确;1PD BD ∴⊥PD 1sin BD D BD ⨯∠==取的中点,连接,,AB K 111,,KD AC AC 2AB AK ∴=112AP AB AD AK AD λμλμ∴=+=+ 当时,是上的动点,在正方体中平面,故存在点为 21λμ+=P1KD BD ⊥11ACC A P 平面与的交点时,使,故B 正确; 11ACC A 1KD AP BD ⊥如图,取的中点分别为,当时,点P 的轨迹是NM 上的动点,易得平面11,AD BC ,N M 12μ=//MN ABCD ,故P 到平面的距离为定值1,设直线AP 与平面ABCD 所成角为,当P 点在N 时AP 的α投影最小,最大,此时,当点P 在N时AP 的投影最大,最小,此时αtan 1NFAFα==αAP 与平面ABCD 所成角正切值的取值范围是,故C tan ME AE α===⎤⎥⎦错误;取AB ,的中点G ,H ,当时,点P 的轨迹是GH 上的动点,易得平面11D C 12λ=1//,GH BC GH ⊄,平面,平面,故点P 到平面的距离为定值,三棱锥1BC D 1BC ⊂1BC D //GH ∴1BC D 1BC D ∴的体积为定值,故D 正确.1P BC D -故选:ABD三、填空题13.已知随机变量X 服从正态分布,且,,则()2,N μσ()200.5P X >=()300.24P X >=______.(1030)P X ≤≤=【答案】0.52##1325【分析】先根据对称性得到,结合求出答案.20μ=()300.24P X >=【详解】由对称性可知,,故. 20μ=(1030)12(30)120.240.52P X P X ≤≤=->=-⨯=故答案为:0.5214.如图是一座抛物线型拱桥,拱桥是抛物线的一部分且以抛物线的轴为对称轴,当水面在l 时,拱顶离水面2米,水面宽4米.当水位下降,水面宽为6米时,拱顶到水面的距离为______米.【答案】4.5##92【分析】建立平面直角坐标系,设抛物线方程为,求出抛物线的方程,再代点的坐标即得2x my =解.【详解】如图,建立平面直角坐标系,设抛物线方程为, 2x my =将代入,得,所以. ()2,2A -2x my =2m =-22x y =-设,代入,得. ()03,B y 092y =-0 4.5y =-所以拱桥到水面的距离为. 4.5m 故答案为:4.5.15.在正六棱柱中,若底面边长为1,高为3,则BC 到平面的距离111111ABCDEF A B C D E F -11ADC B 为______.【分析】取的中点,证明平面,平面平面,再11,,AD BC B C ,,O M N //BC 11ADC B OMN ⊥11ADC B 求出斜边上的高作答.Rt OMN △【详解】在正六棱柱中,取的中点,连接111111ABCDEF A B C D E F -11,,AD BC B C ,,O M N ,如图,,,MN OM ON,平面,平面,则平面, 11////B C BC AD BC ⊄11ADC B AD ⊂11ADC B //BC 11ADC B 平面,则平面,平面, 11//,MN BB BB ⊥ABCDEF MN ⊥ABCDEF AD ⊂ABCDEF 即,而,即有,,平面, MN AD ⊥OM BC ⊥OM AD ⊥OM MN M = ,OM MN ⊂OMN 则平面,又平面,因此平面平面, AD ⊥OMN AD ⊂11ADC B OMN ⊥11ADC B 在平面内过作于,而平面平面, OMN M MH ON ⊥H OMN 11ADC B ON =于是平面,线段长即为BC 到平面的距离,MH ⊥11ADC B MH 11ADC B,中,,1cos30OM =⨯=3MN =Rt OMN △ON ==所以BC 到平面的距离11ADC BOM MN MH ON ⋅===四、双空题16.如图,我们把由半椭圆和半椭圆合成的曲线称作“果圆”.()2210169y x x +=≤()22102516x y x +=>,,是相应半椭圆的焦点,则的周长为______,直线与“果圆”交于,两1F 2F 3F 123F F F A yt =A B 点,且中点为,点的轨迹方程为______.AB M M【答案】8+()221016y x x +=>【分析】根据各半椭圆方程可得,,的坐标,再根据两点间距离公式求得距离及周长;分1F 2F 3F 别表示点,的坐标,利用中点公式表示,消参即可得到点,得轨迹方程.A B M M 【详解】由,,是相应半椭圆的焦点, 1F2F 3F 可得,,, (1F (20,F ()33,0F 所以,,,12F F =134F F==234F F ==故所求周长为;448++=+设,(),Mx y 联立直线与,得,y t =()2210169y x x +=≤x =即点,A t ⎛⎫ ⎪⎝⎭联立直线与,得 y t =()22102516x y x +=>x 即点,且不重合,即,B t ⎫⎪⎭,A B 4t ≠又为中点,M AB 所以2x t ty t ⎧⎪==⎪⎨⎪+==⎪⎩即,整理可得,,x =0x >22116y x +=0x >故答案为:,.8+()221016y x x +=>五、解答题17.已知的展开式中,所有项的系数之和是512.3nx ⎛ ⎝(1)求展开式中含项的系数;3x (2)求的展开式中的常数项.11(21)nx x ⎛⎫+- ⎪⎝⎭【答案】(1)27 (2) 17【分析】(1)利用赋值法得所有项的系数和,求解n ,然后利用二项式展开式通项公式求解即可;(2)把式子化简为,然后分别利用二项式展开式通项公式求解常数项即可.()()992121x x x--+【详解】(1)因为的展开式中,所有项的系数之和是512.3nx ⎛ ⎝所以令,得,所以, 1x =2512n =9n =所以的展开式通项公式为, 3nx ⎛ ⎝()()13991922199C 3C 31rr rr rr r r T x x x ----+⎛⎫=-=- ⎪⎝⎭令,解得,所以展开式中含项为, 3932r -=8r =3x ()8813399C 3127T x x =-=所以展开式中含项的系数为27.3x (2)由(1)知,,从而, 9n =()()()9921112121n x x x x x -⎛⎫+-=-+⎪⎝⎭因为的展开式的通项为,()921x -()()919C 21rrrr T x -+=-所以的常数项为,()921x -()()099109C 211T x =-=-又的常数项为,()921x x-()()98889C 2118x x--=所以的展开式中的常数项为.()91121x x ⎛⎫+- ⎪⎝⎭11817-+=18.已知抛物线经过点,为抛物线的焦点,且. 2:2(0)C y px p =>(),P a a ()0a >F 5PF =(1)求抛物线的标准方程;C (2)过点的直线与抛物线相交于,两点,求面积的最小值(为坐标原点) ()4,0M l C A B ABO A O 【答案】(1) 24y x =(2)16【分析】(1)首先求出抛物线的焦点坐标与准线方程,将点坐标代入抛物线方程求出,P 2a p =再根据焦半径公式计算可得;(2)分直线的斜率不存在与存在两种情况讨论,当直线的斜率存在时,设直线的方程AB AB AB 为,,,联立直线与抛物线方程,消元,列出韦达定理,根据()()40y k x k =-≠()11,A x y ()22,B x y 面积公式计算可得.【详解】(1)抛物线的焦点为,准线方程为,()2:20C y px p =>,02p F ⎛⎫ ⎪⎝⎭2p x =-由抛物线经过点,,()2:20C y px p =>(),P a a ()0a >可得,即, 22a pa =2a p =又,可得, 5PF =52pa +=解得,,2p =4a =故抛物线的标准方程为.C 24y x =(2)当直线的斜率不存在时,直线方程为,AB 4x =由,解得,此时,所以的面积.244y x x ⎧=⎨=⎩4y =±8AB =ABO A 184162S =⨯⨯=当直线的斜率存在时,设直线的方程为.AB AB ()()40y k x k =-≠由得,. ()244y k x y x ⎧=-⎨=⎩24160ky y k --=216640k ∆=+>设,,由根与系数的关系得,, ()11,A x y ()22,B x y 124y y k+=1216y y =-所以 1212ABO AOM BOM S S S OM y y =+=⋅-△△△12OM =, 16=>综上所述,面积的最小值为.ABO A 1619.年是共青团建团一百周年,为了铭记历史、缅怀先烈、增强爱国主义情怀,某学校组织2022了共青团团史知识竞赛活动.在最后一轮晋级比赛中,甲、乙、丙三名同学回答一道有关团史的问题,已知甲回答正确的概率为,甲、丙两人都回答正确的概率是,乙、丙两人都回答正确的概2312率是.每个人回答是否正确互不影响. 14(1)若规定三名同学都需要回答这个问题,求甲、乙、丙三名同学中至少人回答正确的概率; 1(2)若规定三名同学需要抢答这道题,已知甲抢到答题机会的概率为,乙抢到答题机会的概率为2515,丙抢到的概率为,求这个问题回答正确的概率. 25【答案】(1) 1718(2) 1930【分析】(1)根据独立事件概率乘法公式可求得乙、丙回答正确的概率,结合对立事件概率公式可求得结果;(2)根据全概率公式直接计算即可.【详解】(1)记甲回答正确为事件,乙回答正确为事件,丙回答正确为事件,则事件A B C 相互独立; ,,A B C 由题意知:,,,()23P A =()12P AC =()14P BC =,, ()()()132243P AC P C P A === ()()()114334P BC P B P C ∴===则甲、乙、丙三名同学中至少人回答正确的概率.1()213171111133418p P ABC ⎛⎫⎛⎫⎛⎫=-=--⨯-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)记该问题回答正确为事件,甲、乙、丙抢到答题机会分别为事件, D 123,,A A A 则,,,,,, ()125P A =()215P A =()325P A =()123P A A =()213P B A =()334P C A =.()()()()()()()112233P D P A A P A P B A P A P C A P A ∴=++2211321935354530=⨯+⨯+⨯=20.如图,已知直角梯形,,,,,四边形ABCD //AB CD AD DC ==2AB DC =90ADC ∠=︒为正方形,且平面⊥平面.AFCE ACFE ABCD(1)求证:⊥平面;BC ACFE (2)点M 为线段的中点,求直线与平面所成角的正弦值. EF BF MAB 【答案】(1)证明见解析【分析】(1)由余弦定理得到,再由勾股定理逆定理得到,结合面面垂直得到24BC =BC AC ⊥线面垂直;(2)建立空间直角坐标系,利用空间向量求解线面角的正弦值.【详解】(1)已知直角梯形ABCD ,,,//AB CD AD DC =,所以为等腰直角三角形,90ADC ∠=︒ADC △可得,,,2AC ==45CAB ∠=︒AB =所以在中,由余弦定理得, CAB △28422cos 454BC =+-⨯⋅︒=所以,得.222AB AC BC =+BC AC ⊥因为平面平面ABCD ,平面平面,平面, ACFE ⊥ACFE ⋂ABCD AC =BC ⊂ABCD 所以⊥平面.BC ACFE (2)根据(1)中所证可得:两两垂直,,,CA CB CF 故以C 为坐标原点,分别为轴建立如图所示空间直角坐标系: ,,CA CB CF ,,x y z 则,,,.()2,0,0A ()0,2,0B ()1,0,2M ()0,0,2F ,,,(2,2,0)AB =- (1,2,2)BM =-(0,2,2)BF =-设为平面MAB 的一个法向量,(),,m x y z =由,取,则, ()()()(),,2,2,0220,,1,2,2220m AB x y z x y m BM x y z x y z ⎧⋅=⋅-=-+=⎪⎨⋅=⋅-=-+=⎪⎩ 2x =2,1==y z 故,(2,2,1)m =设直线与平面所成角为,BF MAB θ则.||sin cos ,||||m BF m BF m BF θ⋅=〈〉==⋅即直线与平面 BF MAB 21.新冠疫情不断反弹,各大商超多措并举确保市民生活货品不断档,超市员工加班加点工作.某大型超市为答谢各位员工一年来的锐意进取和辛勤努力,拟在年会后,通过摸球兑奖的方式对500位员工进行奖励,规定:每位员工从一个装有5种面值奖券的箱子中,一次随机摸出2张奖券,奖券上所标的面值之和就是该员工所获得的奖励额.(1)若箱子中所装的5种面值的奖券中有2张面值为100元,其余3张均为50元,试比较员工获得100元奖励额与获得150元奖励额的概率的大小;(2)公司对奖励总额的预算是7万元,预定箱子中所装的5种面值的奖券有两种方案:第一方案是3张面值30元和2张面值130元;第二方案是3张面值50元和2张面值100元.为了使员工得到的奖励总额尽可能地符合公司的预算且每位员工所获得的奖励额相对均衡,请问选择哪一种方案比较好?并说明理由.【答案】(1)员工获得100元奖励额的概率小于获得150元奖励额的概率 (2)应选择第二种方案,理由见解析【分析】(1)根据超几何分布求出员工获得100元奖励额与获得150元奖励额的概率,比较大小即可得出答案;(2)分别求出选择方案一和方案二的分布列,进而求出对应的数学期望和方差,比较方差和期望的大小即可得出答案.【详解】(1)用表示员工所获得的奖励额.X 因为,, ()2325C 3100C 10P X ===()112325C C 63150C 105P X ====所以,()()100150P X P X =<=故员工获得100元奖励额的概率小于获得150元奖励额的概率. (2)第一种方案:设员工所获得的奖励额为,则的分布列为1X 1X 1X 60 160 260P 310 35110所以的数学期望为, 1X ()13316016026014010510E X =⨯+⨯+⨯=的方差为; 1X ()2221331(60140)(160140)(260140)360010510D X =-⨯+-⨯+-⨯=第二种方案:设员工所获得的奖励额为,则的分布列为2X 2X 2X 100 150 200P 310 35110所以的数学期望为, 2X ()233110015020014010510E X =⨯+⨯+⨯=的方差为, 2X ()2222331(100140)(150140)(200140)90010510D X =-⨯+-⨯+-⨯=又因为(元),()()1250050070000E X E X ==所以两种方案奖励额的数学期望都符合要求,但第二种方案的方差比第一种方案的小, 故应选择第二种方案.22.已知椭圆的短轴长为,且过点.()2222:10y x C a b a b+=>>4()1,3A (1)求椭圆的标准方程;C (2)直线与椭圆相交于、两点,以为直径的圆过点,求点到直线距离的最大值.C P Q PQ A A l【答案】(1)221124y x +=【分析】(1)根据椭圆过点,结合短轴长列方程,解方程即可;A (2)法一:当直线斜率不存在时,设点与的坐标,根据,解方程可得直线方程,当P Q AP AQ ⊥斜率存在时,设直线方程为,联立直线与椭圆,结合韦达定理及,可得y kx m =+AP AQ ⊥,即可得直线过定点,进而确定距离的最值.法二:将椭圆方程转化为322k m =+,设直线方程为,与椭圆联立构造齐()()()()2236331610y y x x -+-+-+-=()()131m x n y -+-=次式得,所以则,是方()()233616663011y y n m m m x x --⎛⎫+++++= ⎪--⎝⎭11131AP y k k x -==-22231AQ y k k x -==-程的两个根,则,即,代入直线方程,可得直线过定点,进而确定1263161m k k n +⋅==-+332m n =--距离的最值.【详解】(1)椭圆的短轴长为,所以,, C 424b =2b =代入点,得,所以 ()1,3A 29114a +=212a =椭圆的方程为;C 221124y x +=(2)法一:当直线斜率不存在时,则有、,直线的方程为:, l ()11,P x y ()11,Q x y -l 1x x =因为以直径的圆过点,所以,PQ A AP AQ ⊥, ()()()()()221111111133190AP AQ x x y y x y ⋅=-⋅-+---=-+-= 又,可得,解得或(舍去),22111124y x +=211210x x --=112x =-11x =当直线斜率存在时,设直线的方程为:,l l y kx m =+设点,()11,P x y ()22,Q x y 联立,得,221124y kx m y x =+⎧⎪⎨+=⎪⎩()22232120k x kmx m +++-=由韦达定理得,,12223km x x k -+=+2122123m x x k -=+()()()()12121133AP AQ x x y y ⋅=-⋅-+--()()()()12121133x x kx m kx m =-⋅-++-+-()()()()22121213113k x x m k x x m =++--+++-⎡⎤⎣⎦()()()222221221311333m km k m k m k k --=++--++-⎡⎤⎣⎦++, ()()()222222992233033k mk m m k m k m k k ---+---++-===++点点不在直线上,所以,则有,经检验,此时,满足题意, ()1,3A l 30k m +-≠230k m -+=0∆>所以直线的方程为,直线过定点l 13132222y kx m kx k k x ⎛⎫=+=++=++ ⎪⎝⎭l 13,22⎛⎫- ⎪⎝⎭综上,直线恒过定点,记作l 13,22⎛⎫- ⎪⎝⎭13,22M ⎛⎫- ⎪⎝⎭则当时,点到直线距离最大,最大值为AM l ⊥A l AM ==法二:齐次化构造椭圆的标准方程为,即221124y x +=22312y x +=变形为, ()()223331112y x ⎡⎤⎡⎤-++-+=⎣⎦⎣⎦即, ()()()()2236331610y y x x -+-+-+-=设直线的方程为 l ()()131m x n y -+-=与椭圆方程联立构造齐次式为()()()()()()()()2236313316113y y m x n y x x m x n y ⎡⎤⎡⎤-+--+-+-+--+-⎣⎦⎣⎦ ()()()()()()()2261366136310n y m n x y m x =+-++--++-=即: ()()233616663011y y n m n m x x --⎛⎫+++++= ⎪--⎝⎭设点,()11,P x y ()22,Q x y则,是方程的两个根, 11131AP y k k x -==-22231AQ y k k x -==-又因为, AP AQ ⊥所以,即 1263161m k k n +⋅==-+332m n =--代入直线方程得:,()()336210n x y x -+--+=故直线过定点,记作记作l 13,22⎛⎫- ⎪⎝⎭13,22M ⎛⎫- ⎪⎝⎭则当时,点到直线距离最大,最大值为AM l ⊥A l AM ==【点睛】(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.。
山东省潍坊市诸城市2022高二数学上学期期末考试试题(含解析)
∴ ,
∴x+y=(x+y)( )=5+ ≥5+2 =9,当且仅当x=2y取等号,结合x+4y=xy,
解得x=6,y=3
∴x+y的最小值为9,
故答案为A.
【点睛】本题考查了“乘1法”与基本不等式的性质,考查了推理能力与计算能力,属于中档题.解决二元的范围或者最值问题,常用的方法有:不等式的应用,二元化一元的应用,线性规划的应用,等.
A. B. C.1D.0
【答案】C
【解析】
【分析】
以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出异面直线A1E与GF所成的角的余弦值.
【详解】
以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,
∵AA1=AB=2,AD=1,点E、F、G分别是DD1、AB、CC1的中点,
故答案为 或 .
【点睛】求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出 ,代入公式 ;②只需要根据一个条件得到关于 的齐次式,结合 转化为 的齐次式,然后等式(不等式)两边分别除以 或 转化为关于 的方程(不等式),解方程(不等式)即可得 ( 的取值范围).
16.若函数 对于 时,恒有 ,则实数 的取值范围是_____.
【详解】(1)设 为等比数列 的公比,则由 , ,
得 ,即 ,解得 或 (舍去),因此 ,
所以 的通项公式为 ;
(2)∵ 是首项为1,且 ,
所以数列 是公差为2的等差数列,
∴ ,
∴
【点睛】这个题目考查的是数列通项公式的求法及数列求和的常用方法;数列通项的求法中有常见的已知 和 的关系,求 表达式,一般是写出 做差得通项,但是这种方法需要检验n=1时通项公式是否适用;数列求和常用法有:错位相减,裂项求和,分组求和等.
浙江省温州市2023-2024学年高二上学期期末教学质量统一检测数学试题(A)含答案
2023学年第一学期温州市高二期末教学质量统一检测数学试题(A 卷)(答案在最后)本试卷分选择题和非选择题两部分,共4页,满分150分,考试时间120分钟.考生注意:1.考生答题前,务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题卷上.2.选择题的答案须用2B 铅笔将答题卷上对应题目的答案涂黑,如要改动,须将原填涂处用橡皮擦净.3.非选择题的答案须用黑色字迹的签字笔或钢笔写在答题卷上相应区域内,答案写在本试题卷选择题部分上无效.一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知直线方程10x y ++=,则倾斜角为()A.45° B.60°C.120°D.135°【答案】D 【解析】【分析】求出直线的斜率,进而得到直线的倾斜角.【详解】直线10x y ++=的斜率为-1,设直线的倾斜角为θ,则tan 1θ=-,因为[)0,πθ∈,所以3π1354θ== .故选:D.2.在空间四边形ABCD 中,点M ,G 分别是BC 和CD 的中点,则()12AB BD BC ++=()A.ADB.GAC.AGD.MG【答案】C 【解析】【分析】根据已知可得2BD BC BG +=,代入即可得出答案.【详解】因为,点G 是CD 的中点,所以,2BD BC BG +=,所以,()12AB BD BC AB BG AG ++=+=.故选:C.3.已知函数()f x 满足()πsin cos 3f x f x x ⎛⎫=-⎪⎝⎭',则π3f ⎛⎫' ⎪⎝⎭的值为()A.B.2C.D.2【答案】A 【解析】【分析】求出导函数,代入π3x =,即可得出答案.【详解】由已知可得,()πcos sin 3f x f x x ⎛⎫'+⎪⎝⎭'=,则ππππ1πcos sin 3333232f f f ⎛⎫⎛⎫⎛⎫'''=+=+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以,π3f ⎛⎫'= ⎪⎝⎭.故选:A.4.已知n S 为等比数列{}n a 的前n 项和,21nn S m =⋅-,则4a =()A.2B.4C.8D.16【答案】C 【解析】【分析】根据n a 与n S 的关系,求出当2n ≥时,12n n a m -=⋅,以及12n na a +=,22a m =.由等比数列的可得212221a m a m ==-,求出m 的值,代入得出12n n a -=,48a =.【详解】由已知可得,1121a S m ==-,当2n ≥时,()11121212nn n n n n a S S m m m ---=-=⋅--⋅-=⋅,所以,11222nn n n a m a m +-⋅==⋅,且22a m =.由{}n a 为等比数列,可知212221a ma m ==-,解得1m =.所以,11122n n n a --=⋅=,48a =.故选:C.5.已知圆锥有一个内接圆柱,当圆柱的侧面积最大时,圆柱与圆锥的高之比为()A.13B.12C.23D.2【答案】B 【解析】【分析】画出圆锥及其内接圆柱的轴截面,利用条件结合圆柱的侧面积公式求圆柱的侧面积,利用二次函数的图象和性质求解即可.【详解】设圆锥的底面半径为R ,高为h ;圆柱的底面半径为r ,高为x ,画出圆锥及其内接圆柱的轴截面,如图则r h x R h-=,∴h x xr R R R h h-==-.∴圆柱侧面积22π2π·2π·2π(0)x R S r x R R x x Rx x h h h ⎛⎫==-=-+<< ⎪⎝⎭.22ππ(0)22R h Rh x x h h ⎛⎫=--+<< ⎪⎝⎭∴当2hx =时,圆柱侧面积最大,此时圆柱与圆锥的高之比为21x h =.故选:B.6.传说古希腊毕达哥拉斯学派的数学家用沙粒或小石子来研究数.他们根据沙粒或小石头所排列的形状把数分成许多类,如图的1,5,12,22称为五边形数....,若五边形数所构成的数列记作{}n a ,下列不是数列{}n a 的项的是()A.35B.70C.145D.170【答案】D 【解析】【分析】根据已知得出的前几项,进而得出递推公式11,132,2n n n a a n n -=⎧=⎨+-≥⎩.根据累加法求得通项公式为232n n na -=.分别令n a 取35,70,145,170,求出n 的正整数解的情况,即可得出答案.【详解】由已知可得,11a =,21154322a a a ==+=+⨯-,322127332a a a ==+=+⨯-,4332210331a a a ==+=+⨯+,所以,132,2n n a a n n -=+-≥.当2n ≥时,累加法求和如下11a =,214a a =+,327a a =+,L132n n a a n -=+-,两边同时相加可得,12312114732n n a a a a a a a n -++++=+++++++- ,整理可得,()232131473222n n n n na n -+-=++++-==.对于A 项,令23352n n-=可得,23700n n --=,解得5n =或143n =-(舍去).所以,535a =,故A 项错误;对于B 项,令23702n n -=可得,231400n n --=,解得7n =或203n =-(舍去).所以,770a =,故B 项错误;对于C 项,令231452n n-=可得,232900n n --=,解得10n =或293n =-(舍去).所以,10145a =,故C 项错误;对于D 项,令231702n n -=可得,233400n n --=,解得*16n +=∉N (舍去)或*16n =∉N (舍去).所以,170不是数列{}n a 的项,故D 项正确.故选:D.7.已知F 为椭圆22143x y +=的左焦点,过点F 的直线l 交椭圆于A ,B 两点,125AF BF ⋅=,则直线AB 的斜率为()A.2± B. C. D.1±【答案】B 【解析】【分析】求出F 坐标,设()()1122,,,A x y B x y ,直线斜率为k ,倾斜角为θ,结合图象得出12,sin sin y y AF BF θθ==,表示出直线的方程为()1y k x =+,与椭圆联立,根据韦达定理得出2122943k y y k -=+,进而推得222129sin 543k k θ=+,根据三角函数基本关系式化简,得出方程,求解即可得出答案.【详解】易知2a =,b =,1c =,点()1,0F -.不妨设()()1122,,,A x y B x y ,120,0y y ><,直线斜率为k ,倾斜角为θ,易知12,sin sin y y AF BF θθ==,且直线的方程为()1y k x =+,联立直线与椭圆的方程()221143y k x x y ⎧=+⎪⎨+=⎪⎩,消去x 可得,()22243690k y ky k +--=.根据韦达定理可得,2122943k y y k -=+.又1212122212sin sin sin sin 5y y y y y y AF BF θθθθ-⋅=⋅===,所以有12212sin 5y y θ=-,所以,222129sin 543k k θ=+.又22tan k θ=,代入可得,()()22222222129tan 12sin 12tan sin 54tan 35sin cos 5tan 1θθθθθθθθ===+++所以,()22229tan 12tan 4tan 35tan 1θθθθ=++,解得2tan 3θ=,所以23k =,k =.故选:B.8.若函数()xxf x a b =+在()0,∞+上单调递增,则a 和b 的可能取值为()A.ln1.1a =,10b =B.ln11a =,0.1b =C.0.2e a =,0.8b =D.0.2e a -=, 1.8b =【答案】D 【解析】【分析】二次求导得到()ln ln xxf x a a b b '=+在()0,∞+上单调递增,要想()xxf x a b =+在()0,∞+上单调递增,只需()0ln ln 0f a b '=+≥,A 选项,构造()1ln h x x x =--,1x >,求导得到单调性,求出0.1ln1.10>>,得到10ln1.1100.11ab =<⨯=;B 选项,ln110.1ln11110ab ==<;C 选项,令()()1e x q x x =-,()0,1x ∈,求导得到其单调性,求出0.210.8e ab =<;D 选项,构造()e 1x w x x =--,()1,0x ∈-,求导得到单调性,得到0.2e 0.8->,从而求出0.21.8e 1.80.81ab -=>⨯>.【详解】()xxf x a b =+,0a >且1a ≠,0b >且1b ≠,()ln ln x x f x a a b b '=+,令()()g x f x '=,则()()()22ln ln 0x x g x a a b b '=+>恒成立,故()ln ln xxf x a a b b '=+在()0,∞+上单调递增,要想()xxf x a b =+在()0,∞+上单调递增,只需()0ln ln 0f a b '=+≥,即只需1≥ab ,A 选项,10ln1.1ab =令()1ln h x x x =--,1x >,则()1110x h x x x='-=->在()1,+∞上恒成立,故()1ln h x x x =--在()1,+∞上单调递增,故()()1.110h h >=,即0.1ln1.10>>,故10ln1.1100.11ab =<⨯=,A 错误;B 选项,由于ln1110<,故ln110.1ln11110ab ==<,B 错误;C 选项,0.20.8e ab =,令()()1e xq x x =-,()0,1x ∈,则()()e 1e e 0xxxq x x x '=-+-=-<恒成立,故()()1e xq x x =-在()0,1x ∈上单调递减,故()()0.201q q <=,即0.210.8e ab =<,C 错误;D 选项,0.21.8e ab -=,令()e 1xw x x =--,()1,0x ∈-,则()e 10xw x '=-<恒成立,故()e 1xw x x =--在()1,0x ∈-上单调递减,故()()0.200w w ->=,即0.2e 10.20.8->-=,故0.21.8e 1.80.8 1.441ab -=>⨯=>,D 正确.故选:D【点睛】比较大小或证明不等式常用的不等式放缩如下:e e x x ≥,e 1x x ≥+,()ln 10x x x ≤->,11ln1x x ≤-,111ln 11x x x⎛⎫<+< ⎪+⎝⎭等,根据不等式特征,选择合适的函数进行求解.二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.9.以下选项中的两个圆锥曲线的离心率相等的是()A.22142x y -=与22142x y += B.22142x y -=与22124y x -=C.22142x y +=与22124x y += D.240y x +=与220x y +=【答案】CD 【解析】【分析】根据椭圆、双曲线以及抛物线的离心率公式,分别求出各个圆锥曲线的离心率,即可得出答案.【详解】对于A 项,双曲线22142x y -=的离心率为2e ===;椭圆22142x y +=的离心率为22e ===≠,故A 错误;对于B 项,双曲线22142x y -=的离心率为2e ===;双曲线22124y x -=的离心率为2e ===≠,故B 错误;对于C 项,椭圆22142x y +=的离心率为22e ===;椭圆22124x y +=的离心率为2e ===,故C 项正确;对于D 项,方程240y x +=可化为抛物线24y x =-,方程220x y +=可化为抛物线22x y =-,而且抛物线的离心率均为1,故D 项正确.故选:CD.10.已知函数()323f x x x =+,则()A.()13f ¢-=-B.()f x 有两个极值点C.()f x 在区间()3,3-上既有最大值又有最小值D.()()()511622f f f -+-+=【答案】ABD 【解析】【分析】求导得出导函数,代入=1x -,即可判断A 项;根据导函数得出函数的单调性,即可得出函数的极值,进而判断B 项;根据B 项的单调性与极值,结合函数的极值以及()3f -、()3f ,即可判断C 项;求出()51,1,22f f f ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭的值,即可判断D 项.【详解】对于A 项,由已知可得,()236f x x x '=+,所以()1363f -=-=-'.故A 正确;对于B 项,解()0f x '=可得,0x =或2x =-.解()0f x '>可得,<2x -或0x >,所以()f x 在(),2∞--上单调递增,在()0,∞+上单调递增;解()0f x '<可得,20x -<<,所以()f x 在()2,0-上单调递减.所以,()f x 在2x =-处取得极大值,在0x =处取得极小值.故B 正确;对于C 项,由B 知,()f x 在2x =-处取得极大值,在0x =处取得极小值.因为()327270f -=-+=,()28124f -=-+=,()00f =,()3272754f =+=.显然()()32f f >-,所以,()f x 在区间()3,3-上没有最大值.故C 错误;对于D 项,因为325552532228f ⎛⎫⎛⎫⎛⎫-=-+⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()1132f -=-+=,32111732228f ⎛⎫⎛⎫⎛⎫=+⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.所以,()511622f f f ⎛⎫⎛⎫-+-+= ⎪ ⎪⎝⎭⎝⎭.故D 项正确.故选:ABD.11.已知数列{}n a 的前n 项和为n S ,且10a <,120a a +>,则下列命题正确的是()A.若{}n a 为等差数列,则数列{}n S 为递增数列B.若{}n a 为等比数列,则数列{}n S 为递增数列C.若{}n a 为等差数列,则数列{}n a 为递增数列D.若{}n a 为等比数列,则数列{}n a 为递增数列【答案】ACD 【解析】【分析】AC 选项,得到公差0d >,110a d a +>->,结合等差数列求和公式得到110n n S S a nd +-=+>对1n ≥恒成立,A 正确,推出()11n n a a n +>≥得到C 正确;BD 选项,得到公比211a q a =<-,举出反例得到C 错误,由10a >,且11n na q a +=>,得到D 正确.【详解】因为10a <,120a a +>,所以20a >,且211a a a >=-,AC 选项,若{}n a 为等差数列,则公差210d a a =->,110a d a +>->,则()112n n n S na d -=+,110n n S S a nd +-=+>对1n ≥恒成立,则数列{}n S 为递增数列,A 正确;由于21a a >,故21a a >,又0d >,故()102n n a a n +>>≥,则()11n n a a n +>≥,数列{}n a 为递增数列,C 正确;BD 选项,若{}n a 为等比数列,则公比211a q a =<-,不妨设2q =-,11a =-,则232,4a a ==-,故1313S S =->=-,则数列{}n S 不为递增数列,B 错误;由于1q >,故11n na q a +=>,又10a >,故数列{}n a 为递增数列,D 正确.故选:ACD12.已知在直三棱柱111ABC A B C -中,14AA =,2AC BC ==,ACBC ⊥,点,,E F T 分别为棱1A A ,1C C ,AB 上的动点(不含端点),点M 为棱BC的中点,且1A E FC ==,则()A.1//A B 平面EFTB.M ∈平面EFTC.点A 到平面EFT距离的最大值为2D.平面1B EF 与平面ABC所成角正弦值的最小值为2【答案】ABC 【解析】【分析】以点C 为原点建立空间直角坐标系,设()04CF t t =<<,利用向量法逐一分析判断即可.【详解】如图,以点C 为原点建立空间直角坐标系,设()04CF t t =<<,则4,2AE t BT t =-=,AB =,故4BT t BA =,所以4tBT BA =,则()()()()2,0,4,0,0,,2,0,0,0,2,0E t F t A B -,故()112,2,0,,04422t t BT BA t t ⎛⎫==-=- ⎪⎝⎭ ,所以11,2,022T t t ⎛⎫-⎪⎝⎭,对于A ,()12,0,4A ,则()12,2,4A B =-- ,()111112,2,412,2,412244ET t t t t t A B ⎛⎫⎛⎫⎛⎫=---=-⋅-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以1//ET A B,则1//ET A B ,又ET ⊂平面EFT ,1A B ⊄平面EFT ,所以1//A B 平面EFT ,故A 正确;对于B ,()0,1,0M ,则()()110,1,,,2,,2,0,4222FM t FT t t t FE t ⎛⎫=-=--=- ⎪⎝⎭,假设M ∈平面EFT ,则,,,M E F T 四点共面,所以存在唯一实数对(),λμ,使得FT FE FM λμ=+,即()()11,2,2,0,420,1,22t t t t t λμ⎛⎫--=-+-⎪⎝⎭,所以()12212242t t t t t λμλμ⎧=⎪⎪⎪-=⎨⎪-=--⎪⎪⎩,解得14122t t λμ⎧=⎪⎪⎨⎪=-⎪⎩,所以,,,M E F T 四点共面,即M ∈平面EFT ,故B 正确;对于C ,()0,0,4AE t =-,设平面EFT 的法向量为(),,m x y z =,则有()2420m FE x t z m FM y tz ⎧⋅=+-=⎪⎨⋅=-=⎪⎩,令1z =,则,2y t x t ==-,所以()2,,1m t t =-,所以点A 到平面EFT 距离为m AEm⋅= 令()4,0,4p t p =-∈,则4t p =-,故m AEm⋅====,当127p =,即72p =时,max142m AEm ⎛⎫⋅ ⎪== ⎪⎝⎭ ,所以点A 到平面EFT 距离的最大值为2,故C 正确;对于D ,因为1AA ⊥平面ABC ,所以()10,0,4AA =即为平面ABC 的一条法向量,()10,2,4B ,则()10,2,4FB t =-,设平面1B EF 的法向量为(),,n a b c =,则有()()12420240n FE a t c n FB b t c ⎧⋅=+-=⎪⎨⋅=+-=⎪⎩ ,令1c =,则12,22a t b t =-=-,故12,2,12n t t ⎛⎫=-- ⎪⎝⎭,设平面1B EF 与平面ABC 所成的角为θ,则111cos cos ,AA n AA n AA nθ⋅===,则sin θ==,当125t =时,()min 2sin 3θ=,所以平面1B EF 与平面ABC 所成角正弦值的最小值为23,故D 错误.故选:ABC.【点睛】方法点睛:求空间角的常用方法:(1)定义法:由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应的三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量的夹角(两直线的方向向量、直线的方向向量与平面的法向量、两平面的法向量)的余弦值,即可求得结果.非选择题部分三、填空题:本大题共4小题,每小题5分,共20分.13.等差数列{}n a 的前n 项和为n S ,已知32432S S S =+,且41a =,则公差d =______.【答案】1-【解析】【分析】根据已知可推得3422a a ==,进而得出答案.【详解】由32432S S S =+可得,()32432S S S S -=-,即342a a =,又41a =,所以32a =,431d a a =-=-.故答案为:1-.14.已知圆1C :22870x y x +-+=和圆2C :2260x y y m +++=外离,则整数m 的一个取值可以是______.【答案】6(答案不唯一,或7或8)【解析】【分析】写出两圆的圆心及半径,利用两点之间坐标公式求出圆心的距离,利用两圆相离的关系列出不等式,求出整数m 的值.【详解】由题意,将两圆的方程化为标准方程:得:圆1:C ()2249x y -+=,圆2:C 22(3)9x y m ++=-,圆1C 的圆心为()4,0,圆2C 的圆心为()0,3-,圆1C 的半径为3,圆2C ,5=.所以3590m <->⎪⎩,解得59m <<,所以整数m 的取值可能是6,7,8.故答案为:6(答案不唯一,或7或8).15.两个正方形ABCD ,ABEF 的边长都是1,且它们所在的平面互相垂直,M 和N 分别是对角线AC 和BF 上的动点,则MN 的最小值为______.【答案】3【解析】【分析】建立空间坐标系,设点坐标的得到线段长度表达式,配方利用二次函数最小值.【详解】因为平面ABCD ⊥平面ABEF ,平面ABCD ⋂平面ABEF AB =,BC AB ⊥,BC ⊂平面ABCD ,根据面面垂直的性质定理知CB ⊥平面ABEF ,BC BE ∴⊥,从而BC ,AB ,BE 两两垂直,如图建立空间直角坐标系,设()()()()1,0,0,0,0,1,1,1,0,0,1,0A C F E (),,,0,2CM a BN b a b ⎡⎤==∈⎣⎦ ,∴(,0,1)22a a M -,(,,0)22b b N .22222()(0)(1)212222b a ab a b MN a a b =-+-+-=+--+=223221()2433a b a ⎛⎫-+-+ ⎪⎝⎭,当222,33a b ==时,MN 最小,最小值为33;故答案为:3316.已知双曲线C :22221x y a b-=的左、右焦点分别为1F ,2F ,l :3y x =是C 的一条渐近线,P 是C 第一象限上的点,直线1PF 与l 交于点Q ,12QF QF ⊥,则12tan 2F PF ∠=______.【答案】31-##13-+【解析】【分析】作出图形,合理转化条件,硬解出P 点的纵坐标,利用焦点三角形面积相等求解即可.【详解】如图连接2PF 设(3)Q x ,易知3y x =是C 的一条渐近线,3ba=,则3b a =,而2()1312b ce a a=+=+==,故2c a =,则双曲线的方程为222213x y a a -=,1(2,0)F a -,2(2,0)F a ,则1(23)F Q x a += ,2(23)Q F x a x =-,由12QF QF ⊥得222x a x -4+3=0,解得x a =,则()Q a ,故133F Q k a ==,则1FQ的方程为(2)3y x a =+2a x -=,联立方程组2x a =-,222213x y a a-=,设22(,)P x y ,11(,)T x y ,可得22890y a -+=,故122y y +=,21298y y a =,由图易得21y y >,则2132y y a -==,解得234y a =,易知12122F PF S c =⨯=V ,由焦点三角形面积公式得12212123tan tan 22F PFb a S F PF F PF ==∠∠V ,22123tan2a F PF =∠,解得12tan 12F PF∠=.1四、解答题:本大题共6小题,共70分.解答应写出文字说明.证明过程或演算步骤.17.如图,四棱锥P ABCD -的底面是边长为1的菱形,2π3ABC ∠=,PD ⊥平面ABCD ,1PD =,M 为PB的中点.(1)求证:平面MAC ⊥平面PDB ;(2)求CP 与平面MAC 所成角的正弦值.【答案】(1)证明过程见讲解.(2)24【解析】【分析】(1)利用直线与平面的垂直的性质,平面与平面的判断定理进行证明.(2)利用空间向量求解.【小问1详解】因为四边形ABCD 为菱形,所以AC BD ⊥.因为PD⊥平面ABCD ,因为AC ⊂平面ABCD ,所以PD AC ⊥,因为PD BD D ⋂=,,PD BD ⊂平面PBD ,所以AC ⊥平面PBD ,因为AC ⊂平面MAC ,所以平面MAC ⊥平面PDB .【小问2详解】连接BD ,交AC 于O ,因为四边形ABCD 为菱形,所以O 为BD 的中点,因为M 为PB 的中点,所以MO 为PBD △的中位线,所以MO PD ∥,因为PD⊥平面ABCD ,所以MO ⊥平面PBD ,如图建立空间直角坐标系.根据题意有0,,02C ⎛⎫ ⎪ ⎪⎝⎭,1,0,12P ⎛⎫- ⎪⎝⎭,所以13,,122CP ⎛⎫=-- ⎪ ⎪⎝⎭,易知平面MAC 的一个法向量为()1,0,0n =,设CP 与平面MAC 所成角为θ,则·sin cos ,4CP n CP n CP n θ==== ,所以CP 与平面MAC所成角的正弦值4.18.已知圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3:1;③圆心到直线l:-=5,求该圆的方程.x y20【答案】或【解析】【详解】(法一)设圆P的圆心为P(a,b),半径为r,则点P到x轴,y轴的距离分别为|b|,|a|.由题意可知圆P截x轴所得劣弧对的圆心角为90°圆P截x轴所得的弦长为,2|b|=,得r2=2b2,圆P被y轴所截得的弦长为2,由勾股定理得r2=a2+1,得2b2-a2=1.又因P(a,b)到直线x-2y=0的距离为,得d=,即有综前述得,解得,,于是r2=2b2=2所求圆的方程是,或(法二)设圆的方程为,令x=0,得,所以,得再令y=0,可得,所以,得,即,从而有2b2-a2=1.又因为P (a ,b )到直线x -2y=0的距离为,得d=,即有综前述得,解得,,于是r 2=2b 2=2所求圆的方程是,或19.已知数列{}n a 满足11n n n a a a +=+,112a =.(1)求证:数列1n a ⎧⎫⎨⎬⎩⎭为等差数列;(2)设数列{}n a 前n 项和为n S ,且2n n S S k ->对任意的*N n ∈恒成立,求k 的取值范围.【答案】(1)证明见解析(2)13k <【解析】【分析】(1)证明111n na a +-为定值即可;(2)先求出数列{}n a 的通项,要使2n n S S k ->对任意的*N n ∈恒成立,只需要()2min n n k S S <-即可,令2n n nb S S =-,利用单调法求出数列{}n b 的最小项即可得解.【小问1详解】因为11n n n a a a +=+,所以11111n n n n a a a a ++==+,即1111n na a +-=,所以数列1n a ⎧⎫⎨⎬⎩⎭是首项为112a =,公差为1的等差数列;【小问2详解】由(1)得11n n a =+,所以11n a n =+,要使2n n S S k ->对任意的*N n ∈恒成立,只需要()2min n n k S S <-即可,令2n n n b S S =-,则()1221222211n n n n n n n n n b b S S S S a a a ++++++-=---=+-11111111023222232422324n n n n n n n n =+->+-=->++++++++,所以数列{}n b 是递增数列,所以()1212min 13n b b S S a ==-==,即()2min 13n n S S -=,所以13k <.20.已知函数()ln f x x ax =-.(1)讨论()f x 的单调性;(2)求证:当0a >时,()4f x+<【答案】(1)答案见解析(2)证明见解析【解析】【分析】(1)求导,再分0a ≤和0a >两种情况讨论即可得解;(2)由(1)可得当0a >时,()max 1f x f a ⎛⎫= ⎪⎝⎭,要证()4f x +<,只需要证明()max 4f x +<即可,即ln 30a+>,令()()ln 30g a a a =+>,利用导数求出()g a 的最小值即可得证.【小问1详解】函数()ln f x x ax =-的定义域为()0,∞+,()11ax f x a x x'-=-=,当0a ≤时,()0f x '>,所以函数()f x 在()0,∞+上单调递增,当0a >时,令()0f x '>,则10x a<<,令()0f x '<,则1x a >,所以函数()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ∞⎛⎫+ ⎪⎝⎭上单调递减,综上所述,当0a ≤时,函数()f x 在()0,∞+上单调递增;当0a >时,函数()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ∞⎛⎫+ ⎪⎝⎭上单调递减;【小问2详解】由(1)可得当0a >时,()max 1ln 1f x f a a ⎛⎫==-- ⎪⎝⎭,要证()4f x +<()max 4f x +<即可,即ln 30a -+-,即ln 30a +->,令()()ln 30g a a a =+>,则()1g a a '==,当04a <<时,()0g a '<,当4a >时,()0g a '>,所以函数()g a 在()0,4上单调递减,在()4,∞+上单调递增,所以()()min 4ln 423ln 410g a g ==+-=->,所以ln 30a +>,所以当0a >时,()4f x +<21.已知点()2A 在双曲线C :22221x y a a -=上,(1)求C 的方程;(2)如图,若直线l 垂直于直线OA ,且与C 的右支交于P 、Q 两点,直线AP 、AQ 与y 轴的交点分别为点M 、N ,记四边形MPQN 与三角形APQ 的面积分别为1S 与2S ,求12S S 的取值范围.【答案】(1)221x y -=(2)3(,1)4【解析】【分析】(1)由点()2A在双曲线C上,代入求得a的值,即可求解;(2)根据题意,设直线l为2y x m=+,联立方程组,由0∆>,求得12m<-,且21212,4(1)x x x x m+=-=+,利用弦长公式求得则PQ=,进而得到229S m=-,再由直线AP和AQ的方程,得到21MNm=-,求得AMN的面积3521Sm=-,进而得到122511,24209S mS m m=-<--+,结合函数的性质,即可求解.【小问1详解】解:由点()2A在双曲线2222:1x yCa a-=上,可得22541a a-=,解得21a=,所以双曲线C的方程为221x y-=.【小问2详解】解:由直线l垂直于OA,可得直线l的斜率为12OAkk=-=,设直线l的方程为2y x m=+,且1122(,),(,)P x y Q x y,联立方程组2221y x mx y⎧=+⎪⎨⎪-=⎩,整理得224(1)0x m+++=,因为直线l与双曲线C的右支交于,P Q两点,则()()2212212Δ16(1)0410mx xx x m⎧=-+>⎪⎪+=->⎨⎪=+>⎪⎩,解得12m<-,可得21212,4(1)x x x x m+=-=+,则12PQ x=-===又由点A到直线220l y m -+=的距离为1293d m ==-,所以21292S PQ d m =⋅=-,直线AP的方程为2y x -=+,令0x =,可得2M y =+,直线AQ的方程为2y x -=+,令0x =,可得2N y =+则M N MN y y =-===21m==-,所以AMN 的面积3521S m =-,又由23312221S S S S S S S -==-,则12255111,(21)(29)24209S m S m m m m =-=-<----+,令()22542094(162f m m m m =-+=--,可得函数()f m 在1(,2-∞-上单调递减,且1(202f -=,所以()20f m >,所以123(,1)4S S ∈,即12S S 的取值范围为3(,1)4.【点睛】方法点睛:解答圆锥曲线的最值与范围问题的方法与策略:(1)几何转化代数法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用圆锥曲线的定义、图形、几何性质来解决;(2)函数取值法:若题目的条件和结论的几何特征不明显,则可以建立目标函数,再求这个函数的最值(或值域),常用方法:①配方法;②基本不等式法;③单调性法;④三角换元法;⑤导数法等,要特别注意自变量的取值范围;(3)涉及直线与圆锥曲线的综合问题:通常设出直线方程,与圆锥曲线联立方程组,结合根与系数的关系,合理进行转化运算求解,同时抓住直线与圆锥曲线的几何特征应用.22.设函数()()2e axf x x =-.(1)若曲线()y f x =在点()()0,0f 处的切线方程为30y x b -+=,求a ,b 的值;(2)若当0x >时,恒有()2f x x >--,求实数a 的取值范围;(3)设*n ∈N 时,求证:()()2222223521ln 112231n n n n +++⋅⋅⋅+<+++++.【答案】(1)1,2a b =-=(2)(],1-∞(3)证明见解析【解析】【分析】(1)求导,根据题意结合导数的几何意义列式求解;(2)构建()()2g x f x x =++,由题意可知:当0x >时,恒有()0g x >,且()00g =,结合端点效应分析求解;(3)由(2)可知:当1,0a x ≤>时,()2e 20ax x x -++>,令1a =,12e x t =,可得221ln 1t t t -<+,再令1n t n +=,可得()()2221ln 1ln 1n n n n n +<+-++,利用累加法分析证明.【小问1详解】因为()()2e ax f x x =-,则()()e 2e ax ax f x a x =+-',则()02f =-,()012f a '=-,即切点坐标为()0,2-,斜率12k a =-,由题意可得:2300123b a --⨯+=⎧⎨-=⎩,解得1,2a b =-=.【小问2详解】令()()()22e 2axg x f x x x x =++=-++,则()()()e 2e 121e 1ax ax axg x a x ax a =+-+=-++',由题意可知:当0x >时,恒有()0g x >,且()00g =,则()01210g a =+'-≥,解得1a ≤,若1a ≤,则有:①当a<0时,()()()()242e 22e e 2e 1e 22ax ax ax ax ax x g x x x x x x x ---⎛⎫⎛⎫=-++=++=+-+ ⎪ ⎪++⎝⎭⎝⎭,因为0x >,可知()2e0ax x +>,令()41e 2ax h x x -=-++,因为41,e 2ax y y x -=-=+在()0,∞+内单调递增,可得()h x 在()0,∞+内单调递增,则()()00h x h >=,即()()()2e 0axg x x h x =+>,符合题意;②当0a =时,则()2220g x x x x =-++=>在()0,∞+内恒成立,符合题意;③当01a <≤时,令()()x g x ϕ=',则()()()e 21e 22e ax ax ax x a a ax a a ax a ϕ=+-+=-+',因为0x >,则22220ax a a -+>-+≥,e 0ax >,可知()()22e 0ax x a ax a ϕ+'=->在()0,∞+内恒成立,则()x ϕ在()0,∞+内单调递增,可得()()0220x a ϕϕ>=-≥,则()g x 在()0,∞+内单调递增,可得()()00g x ϕ>=,符合题意;综上所述:实数a 的取值范围为(],1-∞.【小问3详解】由(2)可知:当1,0a x ≤>时,()2e 20axx x -++>,令1a =,可得()2e 20xx x -++>,令12e 1x t =>,则2e ,2ln x t x t ==,则()22ln 22ln 20t t t -++>,整理得221ln 1t t t -<+,令*11,n t n n +=>∈N ,则22111ln 11n n n n n n +⎛⎫- ⎪+⎝⎭<+⎛⎫+ ⎪⎝⎭,整理得()()2221ln 1ln 1n n n n n +<+-++,则()()2222223521ln 2ln1,ln 3ln 2,,ln 1ln 12231n n n n n +<-<-⋅⋅⋅<+-++++,所以()()()2222223521ln 1ln1ln 112231n n n n n +++⋅⋅⋅+<+-=+++++.【点睛】方法点睛:两招破解不等式的恒成立问题(1)分离参数法第一步:将原不等式分离参数,转化为不含参数的函数的最值问题;第二步:利用导数求该函数的最值;第三步:根据要求得所求范围.(2)函数思想法第一步:将不等式转化为含待求参数的函数的最值问题;第二步:利用导数求该函数的极值;第三步:构建不等式求解.。
2022-2023学年四川省泸州市高二上学期期末考试数学(文)试题【含答案】
2022-2023学年四川省泸州市高二上学期期末考试数学(文)试题一、单选题1.抛物线22y x =的焦点坐标为()A .10,2⎛⎫ ⎪⎝⎭B .()0,1C .1,02⎛⎫ ⎪⎝⎭D .()1,0【答案】C【分析】由标准方程可确定焦点位置和焦点横坐标,从而得到结果.【详解】由抛物线方程知其焦点在x 轴上且122p =,∴其焦点坐标为1,02⎛⎫ ⎪⎝⎭.故选:C.2.完成下列两项调查:①从某社区125户高收入家庭、280户中等收入家庭、95户低收入家庭中选出100户,调查社会购买能力的某项指标;②从某中学的15名艺术特长生中选出3名调查学习负担情况.宜采用的抽样方法依次是()A .①简单随机抽样,②系统抽样B .①分层抽样,②简单随机抽样C .①系统抽样,②分层抽样D .①②都用分层抽样【答案】B【分析】可以从总体的个体有无差异和总数是否比较多入手选择抽样方法,①中某社区420户家庭的收入差异较大;②中总体数量较少,且个体之间无明显差异.【详解】①中某社区420户家庭的收入有了明显了差异,所以选择样本时宜选用分层抽样法;②个体没有差异且总数不多可用简单随机抽样法.故选:B【点睛】本题主要考查抽样方法的特点及适用范围,属于容易题.3.点(0,0)与点(2,2)-关于直线l 对称,则l 的方程是()A .20x y ++=B .20x y -+=C .20x y +-=D .20x y --=【答案】B【分析】求出两个定点的中点坐标及这两个定点确定的直线斜率作答.【详解】过点(0,0)与点(2,2)-直线的斜率为20120-=---,则直线l 的斜率为111-=-,点(0,0)与点(2,2)-的中点为(1,1)-,所以直线l 的方程为11y x -=+,即20x y -+=.故选:B4.下列叙述中,错误的是()A .数据的标准差比较小时,数据比较分散B .样本数据的中位数不受少数几个极端值的影响C .数据的极差反映了数据的集中程度D .任何一个样本数据的改变都会引起平均数的改变【答案】A【分析】利用样本数字特征的基本概念逐项判断,可得出合适的选项.【详解】数据的标准差比较小时,数据比较集中,故A 错误;样本数据的中位数不受少数几个极端值的影响,故B 正确;数据的极差反映了数据的集中程度,故C 正确;任何一个样本数据的改变都会引起平均数的改变,故D 正确.故选:A.二、多选题5.已知a ,b ,c 满足c b a <<,且0ac <,那么下列各式中不一定成立的是()A .ab ac>B .()0c b a ->C .22cb ab <D .()0ac a c -<【答案】C【分析】由已知可得0a >,0c <,再由不等式的基本性质逐一判断即可.【详解】解:因为c b a <<,且0ac <,所以0a >,0c <,对于A ,0a >,0b c ->,所以()0ab ac a b c -=->,所以ab ac >,故A 正确;对于B ,()0c b a ->,故B 正确;对于C ,当0b =时,22cb ab =,故C 错误;对于D ,0ac <,0a c ->,所以()0ac a c -<,故D 正确.故选:C .三、单选题6.某研究机构对儿童记忆能力x 和识图能力y 进行统计分析,得到如下数据.由表中数据,求得线性回归方程为45y x a =+.若某儿童的记忆能力为12时,则他的识图能力约为()记忆能力x46810识图能力y 3568A .9.2B .9.7C .9.5D .9.9【答案】C 【分析】求出,x y ,线性回归方程 45y x a =+恒过(),x y ,代入即可求出a ,再令x =12,代入求解即可.【详解】由表中数据可得,()14681074x =⨯+++=,()13568 5.54y =⨯+++=,线性回归方程为45y x a =+,则45.575a =⨯+,解得0.1a =-,故41510y x =-,当x =12时, 41129.5510y =⨯-=.故选:C.7.设l ,m ,n 表示不同的直线,α,β,y 表示不同的平面,给出下列三个命题:①若m ∥l ,且m ⊥α,则l ⊥α;②若α⊥β,β⊥y ,则α∥y ;③若α∩β=l ,β∩y =m ,α∩y =n ,则l ∥m ∥n .其中正确命题的个数是()A .0B .1C .2D .3【答案】B【分析】由线面、面面的平行、垂直的判定与性质逐一判断即可.【详解】l ,m ,n 表示不同的直线,α,β,y 表示不同的平面,对于①,若m ∥l ,且m ⊥α,则由线面垂直的判定定理得l ⊥α,故①正确;对于②,若α⊥β,β⊥y ,则α与y 相交或平行,故②错误;对于③,如图,若α∩β=l ,β∩y =m ,α∩y =n ,结合图形得l ,m ,n 交于同一点,故③错误.故选:B.8.《九章算术》中介绍了一种研究两个整数间关系的方法即“更相减损术”,该方法的算法流程图如图所示,若输入a =12,b =8,i =0,则输出的结果为()A .a =6,i =2B .a =5,i =3C .a =4,i =2D .a =4,i =3【答案】D 【分析】模拟程序运行的过程,分析循环中各变量值的变化,可得答案.【详解】初始值a =12,b =8,i =0,第一次执行循环体后,i =1,a =4,不满足退出循环的条件;第二次执行循环体后,i =2,b =4,不满足退出循环的条件;第三次执行循环体后,i =3,a =b =4,满足退出循环的条件;故输出i =3,a =4,故选:D.9.直线l 经过点()1,2A ,在x 轴上的截距的取值范围是()3,3-,则其斜率的取值范围是()A .11,2⎛⎫- ⎪⎝⎭B .1,12⎛⎫- ⎪⎝⎭C .()1,1,2⎛⎫-∞-⋃+∞ ⎪⎝⎭D .()1,1,2⎛⎫-∞-⋃+∞ ⎪⎝⎭【答案】C【分析】由直线的点斜式方程即可表示出直线l 的方程,得到其在x 轴的截距,列出不等式,即可得到结果.【详解】设直线l 的斜率为k ,则方程为()21y k x -=-,令0y =,解得21x k=-,故直线l 在x 轴上的截距为21k-,∵在x 轴上的截距的取值范围是()3,3-,∴2313k-<-<,解得1k <-或12k >.故选:C.10.如图,一隧道内设双行线公路,其截面由一个长方形和抛物线构成.为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上高度之差至少要有0.5m ,已知行车道总宽度|AB |=6m ,那么车辆通过隧道的限制高度约为()A .3.1mB .3.3mC .3.5mD .3.7m【答案】B 【分析】根据题意,以抛物线的顶点为原点,对称轴为y 轴,建立直角坐标系,得到抛物线方程,即可得到结果.【详解】取隧道截面,以抛物线的顶点为原点,对称轴为y 轴,建立直角坐标系,则()4,4C -,设抛物线方程()220x py p =->,将点C 代入抛物线方程得2p =,∴抛物线方程为24x y =-,行车道总宽度6m AB =,∴将3x =代入抛物线方程,则 2.25m y =-,∴限度为6 2.250.5 3.25m --=.故选:B.11.已知底面是正三角形的直三棱柱的高是它底面边长的33倍,若其外接球的表面积为60π,则该棱柱的底面边长为()A .3B .4C .6D .8【答案】C【分析】先设底面边长为a ,从而用a 表示出棱柱的高(它的一半即为球心到底面的距离d )和底面外接圆的半径r ,再由球的表面积求出球的半径,然后利用222R r d =+即可列式求解.【详解】设该棱柱的底面边长为a ,则该棱柱的高为33a ,设正三角形的外接圆的半径为r ,则由正弦定理得2πsin 3ar =,即3a r =,设其外接球的半径为R ,则24π60π=R ,即215R =,又22236a R r ⎛⎫=+ ⎪ ⎪⎝⎭,所以236a =,即6a =,则该棱柱的底面边长为6,故选:C.12.已知F 1,F 2为双曲线C :2222x y a b-=1(a >0,b >0)的左,右焦点,过F 2作C 的一条渐近线的垂线,垂足为P ,且与C 的右支交于点Q ,若1//OQ PF (O 为坐标原点),则C 的离心率为()A .2B .3C .2D .3【答案】A【分析】因为1//OQ PF ,O 是12F F 的中点,所以Q 为PF 2的中点.又2QF OP ⊥,2F 到渐近线b y x a =的距离为b ,得出21QF F ∠的余弦值,在△QF 2F 1中,利用双曲线的定义和余弦定理列方程求解即可.【详解】根据对称性不妨设P 为第一象限的点,∵O 为F 1F 2的中点,又1//OQ PF ,∴Q 为PF 2的中点,又F 2(c ,0)到b y x a=的距离22bc d b a b ==+,∴|PF 2|=b ,∴|QF 2|=2b ,连接1QF ,所以12222b QF QF a a =+=+,又|F 1F 2|=2c ,∵PO 的斜率为b a,又QF 2⊥PO ,∴QF 2的斜率为a b -,∴21tan a QF F b ∠=,∴21cos b QF F c∠=,在△QF 2F 1中,由余弦定理可得:224242222b b c a b b c c ⎛⎫+-+ ⎪⎝⎭=⋅⋅,化简可得a =b ,∴双曲线C 的离心率为221b a+=2.故选:A.四、填空题13.写出使“方程2213x y m m+=-表示焦点在x 轴上的双曲线”的m 的一个值___.【答案】4(答案不唯一,可以是大于3的任意实数)【分析】由双曲线焦点在x 轴上的特征求解即可.【详解】∵方程2213x y m m+=-表示焦点在x 轴上的双曲线,则030m m >⎧⎨-<⎩,即3m >,∴“方程2213x y m m+=-表示焦点在x 轴上的双曲线”的m 的一个值4(答案不唯一,可以是大于3的任意实数).故答案为:4(答案不唯一,可以是大于3的任意实数).14.已知变量x ,y 满足约束条件320x y y x y +≤⎧⎪≤⎨⎪≥⎩,则2z x y =+的最大值是_____.【答案】5【分析】作出不等式组对应的平面区域,再由几何意义求解即可.【详解】作出不等式组对应的平面区域如图:由2z x y =+得1122y x z =-+,平移直线1122y x z =-+,由图象可知当直线1122y x z =-+经过点A 时,直线1122y x z =-+的截距最大,此时z 最大,由23y x x y =⎧⎨+=⎩解得(1,2)A ,此时1225z =+⨯=,故答案为:5.15.如图所示,用一个平行于圆锥SO 底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3cm ,则圆台O ′O 的母线长为________cm.【答案】9【分析】设圆台的母线长为y ,小圆锥底面与被截的圆锥底面半径分别是x 、4x ,利用相似知识,求出圆台的母线长.【详解】:∵截得的圆台上、下底面的面积之比为1:16,∴圆台的上、下底面半径之比是1:4,如图,设圆台的母线长为y ,小圆锥底面与被截的圆锥底面半径分别是x 、4x ,根据相似三角形的性质得334x y x=+.解此方程得y=9.所以圆台的母线长为9cm .故答案为9cm .【点睛】本题考查圆锥与圆台的关系,考查计算能力.属基础题.16.关于曲线:1C x x y y +=有如下四个命题:①曲线C 经过第一、二、四象限;②曲线C 与坐标轴围成的面积为π2;③直线x y m +=与曲线C 最多有两个公共点;④直线x y m -=与曲线C 有且仅有一个公共点.其中所有真命题的序号是________(填上所有正确命题的序号).【答案】①③④【分析】分0,0x y ≥≥,0,0x y <>,0,0x y ><,0,0x y <<四种情况讨论,去绝对值符号,作出曲线的图象,根据图象逐一分析即可.【详解】当0,0x y ≥≥,可得曲线方程为221x y +=,为圆的一部分;当0,0x y <>,可得曲线方程为221y x -=,为双曲线的一部分;当0,0x y ><,可得曲线方程为221x y -=,为双曲线的一部分;当0,0x y <<,曲线方程为221x y --=,不存在这样的曲线;作出曲线得图象,如图所示,由图可知,曲线C 经过第一、二、四象限,故①正确;②中,围成的面积S =21ππ144S =⋅⋅=,故②不正确;③中,因为直线x y m +=的斜率与双曲线的渐近线的斜率相等,圆心O 到直线的距离||12m d ==,0m >,则2m =时,直线与曲线相切,只有一个交点,当()0,2m ∈时,直线与曲线有两个交点,当2m >或0m ≤时,直线与曲线无交点,所以直线x y m +=与曲线C 最多有两个公共点,故③正确;④由图象知直线x y m -=与曲线C 有且仅有一个公共点,故④正确.故答案为:①③④.【点睛】关键点点睛:去绝对值符号,作出曲线的图象,是解决本题的关键.五、解答题17.已知函数2()1f x x x m =-+,R m ∈.(1)若关于x 的不等式()0f x >的解集为R ,求m 的取值范围;(2)解关于x 的不等式()10f x x m --+<.【答案】(1)()2,2-(2)答案见解析【分析】(1)由题意可得判别式小于0,由此即可求出m 的范围;(2)化简不等式,然后讨论1m =,1m >,1m <三种情况,根据一元二次不等式的解法即可求解.【详解】(1)因为不等式()0f x >的解集为R ,则240m ∆=-<,解得22m -<<,所以实数m 的范围为()2,2-;(2)不等式()10f x x m --+<化简为2(1)0x m x m -++<,即(1)()0x x m --<,因为方程2(1)0x m x m -++=的两根分别为11x =,2x m =,当1m =时,不等式化为2(10)x -<,此时不等式无解,当1m >时,解不等式可得1x m <<,当1m <时,解不等式可得1m x <<,综上可得:当1m =时,不等式的解集为∅,当1m >时,不等式的解集为(1,)m ,当1m <时,不等式的解集为(,1)m .18.如图,在四棱锥S ABCD -中,底面ABCD 为菱形,E ,F 分别为SD 、BC 的中点.(1)证明://EF 平面SAB ;(2)若平面SAD ⊥平面ABCD ,且△SAD 是边长为2的等边三角形,120BAD ∠=︒.求四棱锥S ABCD -的体积.【答案】(1)证明见解析(2)2【分析】(1)根据题意,取SA 中点M ,连接BM ,EM ,即可证明MEFB 为平行四边形,再由线面平行的判定定理即可证明;(2)根据题意,取AD 的中点N ,连接SN ,由线面垂直的判定定理即可得到SN ⊥平面ABCD ,再由三棱锥的体积公式即可得到结果.【详解】(1)证明:取SA 中点M ,连接BM ,EM .又E 分别为SD 的中点,所以//ME AD ,且ME =12AD ,因为底面ABCD 为菱形,F 分别为BC 的中点,所以BF =12AD ,//BF AD ,所以//ME BF ,且ME =BF .所以MEFB 为平行四边形.所以//EF BM .又因为EF ⊄平面SAB ,BM ⊂平面SAB ,所以//EF 平面SAB .(2)取AD 的中点N ,连接SN ,因为SAD 是边长为2的等边三角形,所以SN ⊥AD ,因为平面SAD ⊥平面ABCD ,平面SAD ∩平面ABCD =AD ,SN ⊂平面SAD ,所以SN ⊥平面ABCD ,因为菱形ABCD 中,120BAD ∠=︒,AD =2,所以3sin 22232ABCD S AB AD BAD =⋅⋅∠=⨯⨯=,因为SA =AD =SD =2,N 是AD 的中点,易得SN =3.所以三棱锥S ﹣ABC 的体积V =11233233ABCD S SN ⋅=⨯⨯=.19.某线上零售产品公司为了解产品销售情况,随机抽取50名线上销售员,分别统计了他们2022年12月的销售额(单位:万元),并将数据按照[12,14),[14,16)…[22,24]分成6组,制成了如图所示的频率分布直方图.(1)根据频率分布直方图,估计该公司销售员月销售额的平均数是多少(同一组中的数据用该组区间的中间值代表)?(2)该公司为了挖掘销售员的工作潜力,拟对销售员实行冲刺目标管理,即根据已有统计数据,于月初确定一个具体的销售额冲刺目标,月底给予完成这个冲刺目标的销售员额外的奖励.若该公司希望恰有20%的销售人员能够获得额外奖励,你为该公司制定的月销售额冲刺目标值应该是多少?并说明理由.【答案】(1)18.32(万元)(2)20.8万元,理由见解析【分析】(1)根据概率和为1算出a 的值,再根据频率分布直方图即可计算结果;(2)根据频率分布直方图即可求解.【详解】(1)根据频率分布直方图可得:(0.03+a +0.12+0.14+0.1+0.04)×2=1,解得a =0.07,∴该公司销售员月销售额的平均数为:x =13×0.03×2+15×0.07×2+17×0.12×2+19×0.14×2+21×0.1×2+23×0.04×2=18.32(万元);(2)设该公司制定的月销售额冲刺目标值应该是x ,则根据频率分布直方图可得:(22﹣x )×0.1+0.08=0.2,解得x =20.8,∴该公司制定的月销售额冲刺目标值应该是20.8万元.20.已知圆心为C 的圆过点()3,0A ,()2,3B ,在①圆心在直线10x y --=上;②经过点()1,2M -这两个条件中任选一个作为条件.(1)求圆C 的方程;(2)经过直线70x y +-=上的点P 作圆C 的切线,已知切线长为4,求点P 的坐标.注:如果选择多个条件分别作答,按第一个解答计分.【答案】(1)条件选择见解析,()2214x y -+=(2)()3,4或()5,2【分析】(1)根据题意,若选①,可得直线AB 垂直平分线所在直线方程,然后与直线10x y --=联立,即可得到圆心,从而得到圆C 的方;若选②,可设圆的方程一般式,然后将点的坐标代入,即可得到结果;(2)根据题意,由条件列出方程,然后求解,即可得到结果.【详解】(1)若选①,∵圆过点()3,0A ,()2,3B ,则直线AB 的斜率为3323k ==--,所以与直线AB 垂直的直线斜率32k '=,且AB 的中点为323,22⎛⎫+ ⎪ ⎪⎝⎭,即53,22⎛⎫ ⎪ ⎪⎝⎭,则AB 的垂直平分线所在直线方程为335232y x ⎛⎫-=- ⎪⎝⎭,即310x y --=,又知圆心在直线10x y --=上,∴31010x y x y ⎧--=⎪⎨--=⎪⎩,解得1,0x y ==,所以圆心()1,0C .半径为2r AC ==.所以圆的标准方程为()2214x y -+=.若选②,设圆的方程为220x y Dx Ey F +++==,(其中2240D E F +->),则930432301420D F D E F D E F ++=⎧⎪++++=⎨⎪++-+=⎩,解得2,0,3D E F =-==-,所以,圆方程为22230x y x +--=,化为标准方程为()2214x y -+=.(2)设(),7P x x -,∵经过直线70x y +-=上的点P 作圆C 的切线,切线长为4,∴()()()22221744x x -+-=+,化简得22165020x x -+=,∴28150x x -+=,解得3x =或5x =,∴点P 的坐标为()3,4或()5,2.21.已知曲线C 上任意点到点F (1,0)距离比到直线x +2=0的距离少1.(1)求C 的方程,并说明C 为何种曲线;(2)已知A (1,2)及曲线C 上的两点B 和D ,直线AB ,AD 的斜率分别为k 1,k 2,且k 1+k 2=1,求证:直线BD 经过定点.【答案】(1)y 2=4x ,抛物线;(2)证明见解析.【分析】(1)设曲线C 上的点P (x ,y ),化简方程22(1)1|2|x y x -++=--,即得解;(2)由直线AB ,AD 的斜率之和为1,可以用齐次式方程,设直线BD 的方程,将求出C 的方程也整理,两式联立,可得齐次式方程,曲线斜率之和,整理可得直线恒过的定点的坐标.【详解】(1)设曲线C 上的点(,)P x y ,由题意22(1)1|2|x y x -++=--,且2x >-,整理可得:24y x =;可得曲线C 的方程为24y x =,曲线为抛物线;(2)证明:显然直线AB ,BD 的斜率存在,设1(B x ,1)y ,2(D x ,2)y ,11121y k x -=-,22221y k x -=-,利用齐次式方程,所以设直线BD 的方程为(1)(2)1m x n y -+-=,设抛物线的方程为2[(2)2]4[(1)1]y x -+=-+,整理可得:2(2)4(2)4(1)0y y x -+---=,将(1)(2)1m x n y -+-=代入2(2)4(2)4(1)0y y x -+---=,整理可得:2(2)4(2)[(1)(2)]4(1)[(1)(2)]0y y m x n y x m x n y -+--+----+-=,即22(14)(2)(44)(1)(2)4(1)0n y m n x y m x +-+-----=,两边同时除以2(1)x -可得:222(14)()(44)4011y y n m n m x x --+⋅+-⋅-=--,△0>,设方程的根为1k ,2k ,则124414m n k k n-+=-+,由题意可得44114m n n --=+,整理可得41m -=,与(1)(2)1m x n y -+-=对应项相等,可得14x -=-且20y -=,解得3x =-,2y =,即直线(1)(2)1m x n y -+-=恒过定点(3,2)-,即可证得直线BD 恒过定点(3,2)-.22.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为105,短轴长为23.(1)求C 的方程;(2)过C 的右焦点F 的直线l 交C 于A ,B 两点,若点M 满足0MA MB += ,过点M 作AB 的垂线与x轴和y 轴分别交于D ,E 两点.记MFD △,△OED (O 为坐标原点)的面积分别为1S 、2S ,求1221S S S S +的取值范围.【答案】(1)22153x y +=(2)97,36⎛⎫+∞ ⎪⎝⎭【分析】(1)由短轴长可求出b ,由离心率的值可求出a ,即可求出椭圆方程;(2)由题意可知直线l 的斜率存在且不为0,将直线和椭圆方程联立,进而求出点M 的坐标,由直线MD 的方程可求出点D ,E 的坐标,求出MFD △,△OED 的面积的表达式,再由三角形相似,可得对应边的比,进而求出面积比,最后由函数的单调性求出范围.【详解】(1)由题意可得223b =,解得3b =,221015c b e a a ==-=,解得,25a =,所以椭圆的方程为:22153x y +=;(2)由(1)得右焦点(2F ,0),由题意可得直线l 的斜率存在且不为0,设直线l 的方程为2x my =+,设1(A x ,1)y ,2(B x ,2)y ,因为点M 满足0MA MB += ,所以M 为AB 的中点,联立222153x my x y ⎧=+⎪⎨+=⎪⎩,整理可得:22(53)6290m y my ++-=,因为F 在椭圆内部,显然0∆>,1226253m y y m +=-+,122953y y m -=+,所以AB 的中点M 的纵坐标为23253m m -+,代入直线l 的方程为22325225353m x m m m -=⋅+=++,即252(53M m +,232)53m m -+,即直线ME 的方程为225232()5353m y m x m m =---++,令0x =,解得22253E m y m=+,即222(0,)53m E m +,令0y =,解得22253D x m =+,即222(53D m +,0),12DOE S OD OE =⋅ ,12MFD S MF MD = ,由题意可得△DOE ∽△DMF ,所以DOOEDM MF =,设DO OEk DM MF ==,则212S k S =,而2222222222228||84(53)||18(1)9(1)522232()()535353OD m k DM m m m m m m +====++--++++,所以21222149(1)9(1)4S S m S S m ++=++,设211t m =+>,令12211649981()944S S t f t t S S t t ⎛⎫ ⎪=+=+=+ ⎪ ⎪⎝⎭,1t >,函数在()1,+∞单调递增,所以4997()9436f t >+=,所以1221S S S S +的取值范围为97,36⎛⎫+∞ ⎪⎝⎭.。
2023-2024学年河南省郑州市高二上学期期期末生物试题
2023-2024学年河南省郑州市高二上学期期期末生物试题1. 2023年杭州亚运会上,河南运动员表现出色。
运动员在科学训练和比赛过程中,均需要检测相关指标,下列指标是组成内环境成分的是()A.血红蛋白B.尿素C.呼吸酶D.溶酶体中的酶2.下图表示人体细胞与外界环境之间进行物质交换的过程。
I、II、I、N不表示能直接与内环境进行物质交换的4种器官或系统,①②表示有关的生理过程。
下列有关说法错误的是()A.与内环境和细胞相比较,I内的O 2浓度最高,CO 2浓度最低B.II、III内的液体是组织液,也是内环境的一部分C.②表示肾小管和集合管的重吸收作用D.IV表示的器官是皮肤3.足球赛场上,球员依赖神经系统对同伴、对手、裁判、足球等信息进行处理并迅速做出反应,此过程中躯体和内脏器官保持高度协调。
下列相关叙述错误的是()A.参与的传出神经中既有躯体运动神经也有内脏运动神经B.比赛时心跳加快,副交感神经活动占据优势C.赛场上球员能够“憋尿”,说明高级中枢对低级中枢进行着调控D.球员下肢的运动受大脑皮层、脊髓等的共同控制4.下图为条件反射的建立过程示例,下列有关叙述错误的是()A.过程1发生了非条件反射,食物为非条件刺激B.过程2狗未分泌唾液,说明铃声属于无关刺激C.过程4狗仅听到铃声也分泌唾液,说明铃声已变为条件刺激D.如果之后铃声反复单独出现而没有食物,铃声和食物之间则不再有联系5.下列有关神经系统的结构和功能的叙述,正确的是()A.神经胶质细胞数量多于神经元,起辅助神经元的作用B.轴突是神经元短而粗的突起,有利于神经元充分接收信息C.中枢神经系统包括交感神经和副交感神经D.感觉性记忆是短时记忆,可能与新突触的建立有关6.尼古丁依赖是烟草(含电子烟)成瘾的主要原因。
药物伐尼克兰可以消除尼古丁对中脑边缘系统多巴胺能神经元(可释放多巴胺的神经元)的刺激。
下列叙述错误的是()A.作为神经递质的多巴胺从多巴胺能神经元中释放的方式是胞吐B.尼古丁可刺激多巴胺能神经元产生兴奋,导致多巴胺大量释放C.药物伐尼克兰可通过促进中脑边缘系统释放多巴胺来达到戒烟目的D.普通香烟和电子烟中均含有尼古丁,吸烟有害健康7.雄性激素与人体的运动、肌肉力量的增长、疲劳的消除有密切关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008—2009学年度第一学期期末考试试题(高二语文)班级:姓名:序号:________一.选择题(1×8=8)1.下列加点字的注音完全正确的是()A.躯.体(qū) 烧沸.(fèi) 慰藉.(jì) 捣.破(dǎo)B.脂.膏(zhǐ) 耕耘.(yún) 河畔.(bàn) 荡漾.(yàng)C.青荇.(xìng) 柔波.(bō) 榆荫.(yīn) 浮藻.(zǎo)D.沉淀.(diàn) 漫溯.(suò) 揉.碎(róu) 斑斓.(lán)2.下列加点字的读音有误的一项是()A.庸.知(rōng)嗟.乎(jié)李蟠.(fán)阿谀.(yú)B.或不.焉(fǒu)巫.医(wū)师襄.(xiāng)欤.(yú)C.苌.弘(cháng)句读.(dòu)经传.(zhuàn)贻.之(yí)D.郯.子(tán)老聃.(dān)官盛.(shèng)好.古文(hào)3.选出没有错别字的一项是()A.他带黑眼镜,穿羊毛衫,用棉花堵住耳朵眼。
B.只有政府的告事和报纸上的文章,其中规定着禁止什么,他才觉得一清二楚。
C.他通宵做恶梦,到早晨我们一块儿到学校去的时候,他没精打彩,脸色苍白。
D.他躺在被子底下,战战兢兢,深怕会出什么事,深怕小贼溜进来。
4.下列词语解释有误的一项是()A.抱怨:心中不满,数说别人不对。
B.皎洁:洁白。
C.讪讪:不好意思,难为情的意思。
D.讷讷:说话迟钝。
5.下列加点成语使用错误的一项是()A.她们心不在焉....地胡乱吃了几口。
B.他站在那里,不知所措....的嘟囔着。
C.哦,五彩缤纷....的一分钟,你饱含着姑娘们的多少喜怒哀乐。
D.人们对充满这大千世界的色彩.形象所构成的画面习以为常....,对到了手的东西往往漠不关心。
6.为了适应格律要求,诗词中常有打破一般语言表达顺序的现象。
如用正常语序翻译“独立寒秋,湘江北去,橘子洲头”,最恰当的是()A.寒秋时节,我独自站在橘子洲头,凝望着滚滚北去的湘江。
B.我独自站在寒秋之中,凝望着从橘子洲头流过的滚滚北去的湘江。
C.寒秋时节,我独自站在滚滚北去的湘江边的橘子洲头。
D.我独自站在寒秋之中,湘江滚滚北去,从橘子洲头流过。
7.依次填入下列各句空白处最恰当的词语是()(1)但是他觉着在官方的批准默许里面,老是包藏着使人怀疑的成分……(2)让他们骑他们的自行车,快快活活地玩一阵好了。
(3)为了避免我们的谈话被人家误解闹出什么乱子起见,我得把我们的谈话内容报告校长。
(4)他说什么男子中学里也好,女子中学里也好,年轻人都不安分,教室里闹闹吵吵……A.和尽量以致尽管B.或者不管以致尽管C.和尽管甚至不管D.或者尽管以致不管8.下列句中问号使用不当的一项()A.“这是怎么回事?或者,也许是我的眼睛骗了我?……”B.难道这还用解释吗?密哈益·沙维奇,难道这不是理所当然吗?C.可是光辖制中学算得了什么?全城都受着他辖制呢!D.您猜怎么着?他凭他那种唉声叹气,降服了我们。
二.填空(1×9=9)1.《装在套子里的人》选自。
作者契诃夫是世纪后期国著名的批判现实主义作家。
他的小说深刻揭露了社会的各种病态,抨击了制度。
2.韩愈,字,自谓郡望昌黎,世称。
他是唐代著名,与柳宗元一起倡导,对后世影响很大,被推崇为“”之首。
三.默写相关语句。
(1×11=11)1.看万山红遍,;,百舸争流。
鹰击长空,,。
2.那河畔的金柳,;,。
3.是故弟子不必不如师,。
闻道有先后,,如是而已。
4.彼童子之师,,。
四.阅读(32分)(一)忽然她在一个青缎子盒子里发现一挂精美的钻石项链,她高兴得心也跳起来了。
她双手拿着那项链发抖,她把项链绕着脖子挂在她那长长的高领上,站在镜前对着自己的影子出神好半天。
随后,她迟疑而焦急.....的问:“你能借给我这件吗?我只借这一件。
”“当然可以。
”她跳起来,搂住朋友的脖子,狂热的亲吻她,接着就带着这件宝物跑了。
根据文章内容回答下列问题。
(12分)1.(4分)上面这段文字出自《项链》,文中的主人公是。
《项链》的作者是,是国人,作者有的美称。
2.这段心理变化过程揭示了她怎样的思想性格?()A.易满足B.感谢她的朋友借给她项链C.爱慕虚荣,追求享乐D.爱美,爱打扮3.上文中加点字所表现的“她”的心情是()A.想借到首饰却不知怎样开口B.急于借到又害怕丢面子C.想开口借又怕遭到拒绝D.不好意思开口又怕失掉机会4.“我只借这一件”表现的心态是()A.特别喜欢这件B.恐怕对方拒C.表明只借这一件D.除了这一件不想借别的5.“当然可以”这一句理解正确的是()A.主人首饰太多,不在乎这一件B.主人不好意思不借C.主人慷慨大方D.为后文交待项链是假的埋下伏笔(二)小葱青青白的雪,青的葱,红红的是她的小手。
她总是那么静静地站着。
低着头,眼朝下看。
扎两条小辫子,穿一身红底蓝花的棉袄,棉裤。
一双黑布棉鞋羞涩地卧在白雪中。
脸蛋红红的,那双小手也是红的。
看不到双眼。
那眼睛一定很美,很清澈……白白的雪轻轻地盖在小街和屋顶上,只有那小葱是青青的。
说不清什么时候起,这小镇里有了她。
她的小葱总是那么嫩,那么青,像她自己一样。
她从不吆喝,从不抬价。
换了别人,这样的葱,一定会扯开嗓子吆喝出“小葱拌豆腐,一清二白”等诱人的词句。
啊,天真冷啊。
她把两只小手放在嘴边,用热气哈一哈。
然后,给一位大姐姐称葱,帮大姐姐放在篮子里。
她依然不说话,朝下看。
地上的雪真白,只是没有太阳,要不,它会耀眼的。
“小妹妹,给钱。
”大姐姐把钱递给她。
她轻轻地摇摇头。
“为什么?”大姐姐一怔。
“大姐姐,我……”她抬起头来,目光在大姐姐的脸上扫了一下,迅速地落在左胸那枚“浙江中学”的校徽上,声音有些激动,也带有几多憧憬。
“我妈说,等过两年,弟弟初中毕业了,就让我继续上学。
”“……”“大姐姐,我不要钱,我知道你是老师,常来买葱,我想求你帮我看看本子,这是我弟弟的书做的作业。
”说着她迅速从菜篓底下拿出两个用塑料布包着的本子,递给老师。
女教师接过本子,一下子惊呆了。
本子上工工整整写着初中作业。
她不知道说什么才好。
“小妹妹,多大啦?你住哪里的?”“我今年15岁了。
住杏树湾,我还有一个弟弟,一个妹妹,弟弟正上初中呢!”“父母呢?”“两年前,爸爸从城里卖菜回来,跌到沟里,腿断了。
妈妈在家里侍侯爸爸,还看园子。
爸爸好了以后,我也可以上学了!”女教师嘴唇动了几下,想说什么,但没有说出来,只是眼睛发红,发潮。
她一下子将小妹妹搂在怀里,紧紧地握住那两只冰冷的小手。
想把它暖和,永远的热下去。
“好妹妹,你来我们班里上学吧!”“……我不上,我还要卖菜呢。
我上了,弟弟就上不成了。
我妈说……”女教师把小妹妹搂得更紧了。
太阳出来了。
那雪更白,那葱更青。
……两年后,小妹妹上了县师范。
临走前,她给女教师送去一篮子葱。
葱洗得真干净,扎得整整齐齐,多嫩的小葱啊!她俩没有说话,都哭了……啊,小葱青青……(12分)1.题目“小葱青青”有何寓意?()A.青春B.卖葱的少女C.热心的女教师D.少女的单纯,质朴2.这篇小说的线索是()A.少女卖葱B.小葱C.少女D.白雪3.“她一下子将小妹妹搂在怀里,……永远的热下去。
”这个细节表现了女教师的怎样的内心世界?4.“太阳出来了。
那雪更白,那葱更青”有何寓意?(三)呜呼!以赂秦之地封天下之谋臣,以事秦之心礼天下之奇才,并力西向,则吾恐秦人食之不得下咽也。
悲夫!有如此之势,而为秦人积威之所劫,日削月割,以趋于亡。
为国者无使为积威之所劫哉!夫六国与秦皆诸侯,其势弱于秦,而犹有可以不赂而胜之之势;苟以天下之大,而从六国破亡之故事,是又在六国下矣。
(8分)1.下列加点字的解释,有误的一项是()A.以事秦之心礼.天下之奇才礼:礼节B.而为秦人积威之所劫.劫:胁迫,挟制C.苟.以天下之大苟:假如D.而从.六国破亡之故事丛:跟随2.比较下列加点的虚词的用法,正确的一项是()①为.国者无使为.积威之所劫哉②而.犹有可以不赂而.胜之之势A.两个“为”字不同,两个“而”字相同B.两个“为”字相同,两个“而”字相同C.两个“为”字不同,两个“而”字也不同D.两个“为”字相同,两个“而”字不同3.下面加点字与“日削月割,以趋于亡”中的“日”、“月”用法相同的是()A.沛公军.霸上B.范增数目.项王C.有席.卷天下,包举宇内,囊括四海之意D.履.至尊而制六合4.“则吾恐秦人食之不得下咽也”一句正确的含义是()A.我就担心秦国人吃不下咽喉去了。
B.那么我担心秦国人吃饭不能咽下咽喉去了。
C.那么我担心秦国人吃不下咽喉去了。
D.我就担心秦国人吃饭不能咽下咽喉去了。
五.作文(40分)材料12007年02月27日重庆晚报报道:今年大年初二,因嫌儿孙春节回家团聚时间太短,七旬老人梁忠秀一时想不开,当二十多个儿孙一起离开她时,她悄悄服毒自尽。
连日来,梁老太的子孙对此伤心欲绝。
材料2据市老龄委一份资料显示:目前我市共有老年人414万,其中“空巢”老人181万,有7个区县的“空巢”率达70%以上,今年有80%的老人盼望子女回家过春节。
根据以上两个材料写一篇作文。
要求:①立意自定;②文体自选;③题目自拟;④不少于700字。