典型环节传递函数-积分环节

合集下载

大学自动控制原理2.4典型环节传递函数

大学自动控制原理2.4典型环节传递函数
02
传递函数的零点和极点决定了系统的动态特性和稳定性。
03
传递函数的分子和分母多项式决定了系统的频率响应特性。
典型环节的分类
比例环节
输出信号与输入信号成正比,传递函 数为 G(s) = K,其中 K 为常数。
02
积分环节
输出信号与输入信号的时间积分成正 比,传递函数为 G(s) = 1 / (sT),其 中 T 为时间常数。
将介绍控制系统的稳定性 分析方法。
掌握频率响应法在控制系 统设计中的应用。
学习如何利用根轨迹法进 行系统性能分析。
了解现代控制系统的基本 概念和分类。
THANKS FOR WATCHING
感谢您的观看
高阶环节的传递函数具有多个极点和零点,这些极点和零点 决定了环节的动态特性,如响应速度、超调和调节时间等。
实例分析
以一个三阶惯性环节为例,其传递函数为 $G(s) = frac{1}{s^3 + 2s^2 + 3s + 1}$,该环节具有三个极点 $s = -1, -1, -1$ 和一个 零点 $s = 0$。
拉普拉斯变换中的频率。
该传递函数是一个有理分式,分 母为线性多项式,分子为常数。
当输入信号 (s) 变化时,输出信 号 (G(s)) 会根据增益 (K) 和时间
常数 (T) 进行相应的变化。
实例分析
实例1
一阶惯性环节在电机控制系统中的应用,用于描述电机的动态响应特性。
实例2
在温度控制系统中的一阶惯性环节,用于描述加热元件的热量传递和散热过程。
04 一阶惯环节
定义与特点
定义
一阶惯性环节的传递函数为 (G(s) = frac{K}{T s + 1}),其中 (K) 是增益,(T) 是时间常 数。

第二章5典型环节.

第二章5典型环节.
jik 06
5
Page: 6
三.积分环节
1 微分方程: xo (t ) xi (t )dt T
X o ( s) 1 传递函数: G( s) X ( s) Ts i
Xi ( s) 1 Ts Xo ( s)
频率特性:
1 j 1 G( j ) 0 j j
1
o
幅频特性 ∶ G( j ) = , 相频特性∶∠G( j ) = - 90
KT 虚频特性: v( ) 1 T 2 2 0
jik 06 9
幅频特性:
1 T 2 2 相频特性: G( j ) arctg(T ) 特殊点: 0, G( j 0) K , G( j 0) 0 ;
G ( j )
K
Page: 10
, G( j) 0, G( j) 90o ;
Page: 3
特殊点: =0, G ( j 0) =0,∠ G( j 0) =90 ;
o
∠G (j∞) =90 = ∞, G(j∞) = ∞,
Nyquist 图:
G ( j ) ( 0 , j ) 90 Im
o
Re
dB 20 lg G
20
Bode图:
A( ) 20 lg
ui(t) R1 ∑ R2 -
z1 xi(t)
Page: 2
xo(t) z2
uo(t)
>1 0 t
R2 R2 u o (t ) u i (t ) G ( s ) K R1 R1
二. 微分环节
时间响应:
Xi ( s)
(t) >1 1 0
t
i ( t ) 微分方程: xo (t ) Tx

2-4 典型环节及其传递函数

2-4 典型环节及其传递函数
1
气阻的数学表达式为 ∆p = R∆q ∆p 式中, 是气体压力降 ; ( N/m 2 ) ∆q ( N ⋅ s) 是气体重量流量 ; R 是气阻值。 因而它的传递函数为 ∆P( s ) G( s ) = =R ∆Q ( s ) (3)喷嘴一挡板机构 喷嘴一挡板机构由恒节流孔 1,背压室 2,喷嘴 3,和挡板 4 组成,如图 2-18 所示。 ∆h 它的作用是把输入挡板的微小位移 转换成相应 的气压信号输出。在忽略背压室气容影响时,可把喷嘴 1 2 4 一挡板机构看作一个比例环节,即 3 D ∆p D = k 1 ∆h 式中, 是喷嘴背压的变化; ∆p D ∆h 是挡板开度变化量; 是比例系数。 k1 d (4)放大器 h 在自动控制系统中用得最多的是运算放大 器,它是一个具有高放大倍数直接耦合式放大器。 1 − 恒节流孔 2 − 背压室 运算放大器一般由集成电路构成,其符号如图 2- 3 − 喷嘴 4 − 挡板 19 所示。 图 2-17 喷嘴挡板机构结构示意图 图中三角形尖端代表输出端,输出电压为 u 0 (t ) 它有两个输入端,一个是同相输入端 b 用 “十”表示,一个是反相输入端 a 用“一”表示。当 放大器工作在放大区而不是饱和区时,输出电压 与同相输入端电压 和反相输入 u 0 (t ) u i (t ) u ( t ) 端电压 之间的电压差成正比。即 i1 a u 0 (t ) = k [u i2 (t ) − u i1 ( t )] + 也可写成 b ∆u 0 (t ) = k∆u i (t ) U i1 因而其传递函数为 Ui2 U0 ∆U 0 ( s ) G( s ) = =k 图 2-19 运算放大器符号图 ∆U i ( s ) 式中, 为开环放大倍数,这个数值很高,可达到 。所以集成运算放大器工作在 k 10 6 ~ 10 7 无反馈状态时输入电阻很高。它有以下两个主要特点: ①由于开环输入电阻很高,运算放大器两个输入端的电流接近于零。 ②由于开环放大倍数很高,所以 b 端和 C 端电位接近相等,即 。 u i2 ≈ ui1 运算放大器本身虽属放大环节,但可用它来组成其他各种基本环节。

自动控制原理实验典型环节的时域响应

自动控制原理实验典型环节的时域响应

实验名称:典型环节的时域响应一、目的要求1、熟悉并掌握TD-ACC+(或TD-ACS)设备的使用方法及各典型环节模拟电路的构成方法。

2、熟悉各种典型环节的理想阶跃响应曲线和实际阶跃响应曲线。

对比差异分析原因。

3了解参数变化对典型环节动态特性的影响。

二、原理简述1、比例环节传递函数:Uo(s)/Ui(s)=K.2、积分环节传递函数:Uo(s)/Ui(s)=1/TS3、比例微分环节传递函数:Uo(s)/Ui(s)=K+1/TS4、惯性环节传递函数: Uo(s)/Ui(s)=K/(TS+1)5、比例微分环节传递函数:Uo(s)/Ui(s)=K[(1+TS)/(1+τS)]6、比例积分微分环节传递函数:Uo(s)/Ui(s)=Kp+1/TiS+TdS三、仪器设备PC机一台,TD-ACC(或TD-ACS)实验系统一套四、线路视图1、比例环节2、积分环节3、比例积分环节4、惯性环节5、比例微分环节6、比例积分微分环节五、内容步骤1、按所列举的比例环节的模拟电路图将线连接好,检查无误后开启设备电源。

2、将信号源单元的“ST”端插针与“S”端插针用短路块短接,。

将开关设在方波档,分别调节调幅和调频电位器,使得“out”端输出的方波幅值为1V,周期为10S左右。

3、将2中的方波信号加至环节的输入端Ui,用示波器的“CH1”和“CH2”表笔分别检测模拟电路的输入Ui端和输出端Uo端,观测输出端的实际响应曲线Uo(t),记录实验波形及结果。

4、改变几组参数,重新观测结果。

5、用同样的方法分别搭接积分环节、比例积分环节、比例微分环节、惯性环节、比例积分微分环节的模拟电路图。

观测这些环节对阶跃信号的实际响应曲线,分别记录实验波形及结果。

六、数据处理1、比例环节①R0=200K,R1=100K;②R0=200K,R1=200K;2、积分环节①R0=200K,C=1uF;②R0=200K,C=2uF;3、比例积分环节①R0=R1=200K,C=1uF;②R0=R1=200K,C=2uF;4、惯性环节①R0=R1=200K,C=1uF;②R0=R1=200K,C=2uF;5、比例微分环节①R0=R2=100K,R3=10K,C=1uF,R1=100K;②R0=R2=100K,R3=10K,C=1uF,R1=200K;6、比例积分微分环节①R2=R3=10K,R0=100K,C1=C2=1uF,R1=100K;②R2=R3=10K,R0=100K,C1=C2=1uF,R1=200K;七、分析讨论在误差允许的情况下,输出的结果与理论值相符。

典型环节数学模型与阶跃响应

典型环节数学模型与阶跃响应

第三章 自动控制系统的数学模型
当输入量r(t)=1(t)时, 输出量 C(s)为
K 1 C ( s ) G ( s ) R( s ) Ts 1 s
可得其单位阶跃响应为
c(t)= L-1[C(s)]=K(1-e-t/T)
第三章 自动控制系统的数学模型
当K=1时, 惯性环节的单位阶跃响 应曲线如上图 (b)所示。 对惯性环节的阶 跃 响 应 曲 线 进 行 分 析, 可 得 C(0)=0 , C(T)=0.632 , C(3T)=0.95 , C(4T)=0.982 , C(∞)→1。因此, 惯性环节在输入量突变 时, 输出量不能突变, 只能随着时间的 推移按指数规律变化, 这表明该环节具 有惯性特点。 常见的惯性环节如下图所 示。
2 n G( s ) 2 2 s 2n s n
振荡环节的方框图如下图 (a)所示。
c(t) c(t) R(s)
2 n 2 s 2 2 n s n
C(s)
1
r(t)
0 (a) (b)
t
图 振荡环节方框图及单位阶跃响应曲线 (a) 振荡环节方框图; (b) 振荡环节单位阶跃响应
第三章 自动控制系统的数学模型
对上式作拉氏变换, 可得 T2s2C(s)+2ζTsC(s)+C(s)=R(s) 移项整理有
C ( s) 1 G( s) 2 2 R( s) T s 2Ts 1
第三章 自动控制系统的数学模型
令T=1/ωn, ωn为该环节的无阻尼自然 振荡频率, 则上式可改写成如下形式:
振荡环节的单位阶跃响应曲线一般 如上图 (b)所示。 振荡环节的单位阶跃响应, 随着阻 尼比 ζ 的不同, 表现出不同的动态响应 过程, 如下图 所示。

传递函数

传递函数

(t)
则在零初始条件下,对上式进行拉氏变换,可得系 统传递函数的一般形式:
G(s) Xo Xi
s s

b0 s m a0sn
b1sm1 a1sn1

bm1s bm (n m) an1s an
2.2.1 传递函数的性质
性质1 传递函数只表示输出量与输入量的关系,是一 种函数关系。这种函数关系由系统的结构和参 数所决定,与输入信号和输出信号无关。这种 函数关系在信号传递的过程中得以实现,故称 传递函数。
输出量与输入量之间能用一阶线性微分方程描述的
环节称为一阶惯性环节:

T xo (t) x0 (t) xi (t)
一阶惯性环节的传递函数为:
G(s)
1
Ts 1
式中 T-时间常数,表征环节惯性,和结构参数有关。
特点:含一个储能元件,当输入量突然变化时,由于物理状
态不能突变,输出量也就不能立即复现,而是按指数规律逐渐变
性质5
如果系统的G(s)未知,可以给系统加上已知 的输入,研究其输出,从而得出传递函数。
2.2.1 传递函数的性质
性质6 传递函数G(s)的拉氏反变换是脉冲响应g(t)。
脉冲响应(脉冲过渡函数)g(t)是系统在单位 脉冲输入时的输出响应。
Xi (s) L[ (t)] 1
xo (t) L1[ X o (s)] L1[G(s) Xi (s)] L1[G(s)]
这样,任何复杂的系统总可归结为由一些典型环节所 组成,从而给建立数学模型,研究系统特性带来方 便,使问题简化。
2.2.3 典型环节及其传递函数
系统的传递函数可以写成:
b
c
K

2-4 典型环节及其传递函数

2-4 典型环节及其传递函数


G ( s ) = R / Ts ,这也是一个积分环节。从物理意义上说,由于液箱的液容 C 太大,或液阻 R
太大,液箱流出水量不足以影响液位,如果流入水量不变,液位将随时间不断增高(积分作 用)。 另外对直流伺服电动机,由于电气时间常数和机电时间常数大小,忽略不计时,该电动 机以转速为输出量,电枢电压为输入量时的动态特性成为比例环节,其传递函数为 N (s) G( s ) = =k U a (s) 如以电动机输出轴转角为输出量,相应的传递函数是 a ( s) k G( s ) = = U a (s) s 这是一个积分环节。可见,对于同一部件,不同输入或不同输出时,其传递函数是不同的。 最后,考虑气动仪表中常用的气容,它是一个气体容室能储存或放出气体,对气体量的 变化起惯性作用,类似于电路中的电容,见图 2-20。 通常采用“气容”这个概念来定量地表示气室储存气体的能力,其定义为 ∆m C= ∆p 式中, 是空气储存量的增量; ∆m ∆p 是气室压力的增量。 气体的质量流量(kg/s)为 ∆q (t ) = d (∆m ) / dt
5
R2 R1
Ui Ri
图 2-23 运算放大器 组成的一阶惯性环节

+
C
U0
式中,时间常数 T=RC。 实际上这是纯微分环节与一阶惯性环节相串联后构成的环节;当时间常数 T<<1 时,一阶 惯性环节相当于 1:1 的比例环节,因而总的传递函数相当于微分环节的传递函数。 当然也可以用运算放大器来组成微分环节,如 R 图 2-24 所示。 该运放电路的传递函数为 if C U 0 (s) Ui G( s ) = = − RCs U i (s) U0 这就相当于一个纯微分环节。 + i

2

典型环节的传递函数

典型环节的传递函数
典型环节的传递函数
1、比例环节 凡输出量与输入量成正比,输出不失真也不延迟 而按比例地反映输入的环节,称为比例环节又叫 放大环节、无惯性环节、零阶环节
•动力学方程为:
xotKxit
•传递函数为:
Gs
Xo s Xi s
K
典型环节的传递函数
2、积分环节(纯积分环节) 凡输出量与输入量的积分成正比,称为积分环节, 又称为理想积分环节
•动力学方程为:
Tdxdottxotxit
•传递函数为:
GsXXoi ss
1 Ts1
典型环节的传递函数
5、导前环节(一阶微分环节) 又称为一阶微分环节,是一个相位超前环节。
•传递函数为:
GsXXoi ssTs1
典型环节的传递函数
6、振荡环节(二பைடு நூலகம்积分环节) 振荡环节是二阶环节,又称二阶振荡环节
•传递函数为:
•动力学方程为:
xotT1xi tdt
•传递函数为:
Gs
Xo s Xi s
1 Ts
典型环节的传递函数
3、微分环节(纯微分环节) 凡输出量与输入量的微分成正比,称为微分环节, 又称为理想微分环节
•动力学方程为:
xo
t
T
dxi t
dt
•传递函数为:
Gs
Xo s Xi s
Ts
典型环节的传递函数
4、惯性环节(一阶积分环节) 又称一阶惯性环节,是一个相位滞后环节。
G sX Xo isss22 n 2 nsn 2
GsX Xo issT2s22 1Ts1
典型环节的传递函数
7、二阶微分环节
•传递函数为:
G sX Xo isss22 n 2 nsn 2 GsX Xo issT2s22Ts1

控制工程基础第二章-3

控制工程基础第二章-3

Uo ( s ) R2 G( s ) K Ui ( s ) R1
第二章 控制系统的数学模型
§2-3 传递函数及基本环节的传递函数
惯性环节
凡运动方程为一阶微分方程:
d T xo ( t ) xo ( t ) Kxi ( t ) dt
形式的环节称为惯性环节。其传递函数为:
Xo( s ) K G( s ) X i ( s ) Ts 1
运动方程为:
式中,T—微分环节的时间常数
在物理系统中微分环节不独立存在,而是和 其它环节一起出现。
第二章 控制系统的数学模型
§2-3 传递函数及基本环节的传递函数
无源微分网络
1 ui ( t ) i ( t )dt i ( t )R C uo ( t ) i ( t )R
RCs Ts G( s ) , T RC RCs 1 Ts 1
G( s ) K 1 C , T Cs K Ts 1 K
第二章 控制系统的数学模型
§2-3 传递函数及基本环节的传递函数
微分环节 输出量正比于输入量的微分。
dx i (t ) x o (t ) T dt X o ( s) 传递函数为: G ( s) Ts X i ( s)

t
0
xi ( t )dt
传递函数为: G( s )
Xo( s ) 1 X i ( s ) Ts
式中,T—积分环节的时间常数。
第二章 控制系统的数学模型
§2-3 传递函数及基本环节的传递函数
积分环节特点:
.输出累加特性; .输出的滞后作用; .记忆功能。
如当输入量为常值 A 时,由于:
1 t 1 xo (t ) 0 Adt At T T

2.4传递函数及典型环节传递函数

2.4传递函数及典型环节传递函数
典型环节示例 1 比例环节
输出量不失真、无惯性地跟随输入量, 两者成比例关系。
传递函数及典型环节的传递函数
比例环节的传递函数为:
传递函数及典型环节的传递函数
2 惯性环节: 凡运动方程为一阶微分方程
形式的环节称为惯性环节。其传递函数为:
K—环节增益(放大系数) T—时间常数,表征环节的惯性,和 环节结构参数有关
传递函数及典型环节的传递函数
如:有源积分网络
传递函数及典型环节的传递函数
液压缸
传递函数及典型环节的传递函数
5 二阶振荡环节 含有两个独立的储能元件,且所存储的 能量能够相互转换,从而导致输出带有 振荡的性质,运动方程为:
传递函数:
传递函数及典型环节的传递函数
振荡环节传递函数的另一常用标准形式为 (K=1)
无源微分网络
无源网络
显然,无源微分网络包括有惯性环节和微 分环节,称之为惯性微分环节,只有当 |Ts|<<1时,才近似为微分环节。
传递函数及典型环节的传递函数
除了上述微分环节外,还有一类一阶微分环 节,其传递函数为:
微分环节的输出是输入的导数,即输出反 映了输入信号的变化趋势,从而给系统以 有关输入变化趋势的预告。因此,微分环 节常用来改善控制系统的动态性能。
2) 传递函数是s 的复变函数。传递函数中的 各项系数和相应微分方程中的各项系数对应 相等,完全取决于系统结构参数;
传递函数及典型环节的传递函数
3) 传递函数是在零初始条件下定义的,即在零时 刻之前,系统对所给定的平衡工作点处于相对静 止状态。因此,传递函数原则上不能反映系统在 非零初始条件下的全部运动规律; 4) 传递函数只能表示系统输入与输出的关系,无 法描述系统内部中间变量的变化情况。

自动控制理论第二章2

自动控制理论第二章2

一、结构图的基本概念 把方块图和传递函数结合起来,就称为动态结构图。 是描述系统各组成元件之间信号传递关系的一种数学图形。 两种图形研究方法:方框图和信号流程图方法。
参考输入
r(t)
系统或环节
输出 C(t)
R(s)
G (s )
C(s)
结构图给出了信息传递的方向又给出了输入输出的定量关 系。即C(s)=R(s)G(s)。
C u(t) i R y(t)
R RCs Y ( s) U ( s) 1 sC R RCs 1
G( s) Y ( s) s U (s) s 1
τ=RC
—时间常数
实际的比例微分电路
C R1 ui(t) R2 uo(t)
R2 U o ( s) U i ( s) R R2 1 R1 R1 Cs R 1 R1Cs 1 R1 Cs
B
A
1 G2
+ -
G2
G1
B
三、方框图的运算规则 1、串联运算规则
几个环节串联,总的传递函数等于每个环节的传 递函数的乘积。
例:隔离放大器串联的RC电路
并联运算规则
同向环节并联的传递函数等于所有并联的环节传递 函数之和。
反馈运算规则
四、方框图的等效变换
常用的方框图等效变换方法有二:
一是环节的合并,二是信号分支点或相加点的移动。

传递函数:
C ( s) K G( s) R( s ) s
R( s ) 1 s
单位阶跃响应:
r (t ) 1(t ) K 1 C ( s ) G ( s ) R( s ) s s c(t ) Kt
常见物理系统:电机拖动系统 设以电动机的转速为n转/分为输入量,以减速齿轮带 动负载运动的轴角位移θ(单位为rad)为输出量,则

典型环节

典型环节

[G ( jω )]
1
ω →∞
0
G ( jω ) =
(1 − T ω ) + (2ζTω )
2 2 2
1
2
ωn ωn ωn
1 ω ≤ T
ς↑
ω →0
ς↓
2ζTω − arctan 1 − T 2ω 2 ∠ G ( jω ) = 2ζTω − π − arctan 1 − T 2ω 2
6、勾画出大致曲线。


当频率ω = 0 时,其开环幅相特性完全由比例环节和积分环 节决定。 节决定。 G 开环传递函数不含积分环节, 开环传递函数不含积分环节,即v = 0 时,( jω ) 曲线从正实 开始; 轴 开始;G ( j0) = K∠0° G 开环传递含有一个积分环节, 开环传递含有一个积分环节,即 v = 1 时, ( jω ) 曲线从负虚 π G 轴方向开始; 轴方向开始; ( j 0 ) = ∞ ∠ − 2 π G 曲线从负实轴方向开始; 当 v = 2 时,曲线从负实轴方向开始; ( j 0 ) = ∞∠ − 2 2 其余依次类推。 其余依次类推。 ,(即 中分母阶次n 当频率 ω = ∞ 时,若 n > m ,(即 G ( s ) 中分母阶次 大 于分子阶次m) 的模值等于0, 于分子阶次 )其 G ( jω ) 的模值等于 ,相为 ( m − n ) π 。 2 即 π G ( j ∞ ) = 0∠ ( m − n ) 2
G ( jω) = G ( jω) e j∠G( jω) = u (ω) + jv (ω)
a) 令∠G ( jω ) = −π 。解出与负实轴交点处对应的频率 ω x 的值。再将 ω x 代入 G ( j ω ) 中,求得与负实轴交 的值。 点的模值。 点的模值。 b) 令 v (ω ) = 0 解出 ω x ,再将 ω x 代入 u (ωx ) 中求得与负 实轴交点的坐标。 实轴交点的坐标。

典型环节的传递函数

典型环节的传递函数

典型环节的传递函数
传递函数是一种表示线性时不变系统的方法,它可以表示为输入和输出之间的关系。

典型环节的传递函数是指在不同应用场景下,系统的输入和输出之间具有特定的数学关系。

下面列举一些常见的典型环节的传递函数:1、比例环节:
传递函数:G(s) = K
特性方程:y = Kx
2、一阶滞后环节:
传递函数:G(s) = K/(Ts+1)
特性方程:y(t) = Kx(t-t0)
3、积分环节:
传递函数:G(s) = Ks/(Ts+1)
特性方程:y(t) = K∫x(t) dt
4、微分环节:
传递函数:G(s) = Ks
特性方程:y(t) = Ky(t) + Kd/dt[y(t)]
5、二阶振荡环节:
传递函数:G(s) = (K/T)(s^2+ω^2)/(s^2+2ζω_n s+ω_n^2)
特性方程:(T/K)(y''(t)+2ζω_n y'(t)+ω_n^2 y(t))=x''(t)+2ζω_n x'(t)+ω_n^2 x(t)
其中,K表示增益,T表示时间常数,s表示复变量,x表示输入,y 表示输出,ω_n表示无阻尼固有频率,ζ表示阻尼比。

自动控制原理_2.4典型环节传递函数

自动控制原理_2.4典型环节传递函数

B盘以角速度ω 转动时,因 B盘和I 轴
间以滑动键联接,故B盘滑动就会改变
偏心量e;当时e=0,A盘转动而 B盘不
转;e增大, B盘角速度ω 正比的增大, 设K为比例常数,B盘转角为θ (t)。 输入— e 输出—θ (t)
解: (t ) Ke(t )
(t ) K e(t )dt
di(t ) 1 ui (t ) L i(t ) R i(t )dt dt C 1 uo (t ) i(t )dt C
§2.4.6 延时环节(迟延环节)
xo (t ) xi (t )
τ为延迟时间
L[ x0 (t )] L[ xi (t )] G( s ) L[ xi (t )] L[ xi (t )]
当|Ts|<<1时,G(s)=Ts,
才近似为理想的微分环节。
此系统为包含有惯性环节及微分环节的系统。
(1)预见输入(ቤተ መጻሕፍቲ ባይዱ输入提前)
比例环节
R(s) r(t) t
1
1
X o ( s)
xo (t )
o
45
t

比例+微分
R(s) r(t ) t
1 Ts
X o ( s)
xo (t )
K G( s ) Ts 1
K为惯性环节的增益或放大系数;T为时间常数
理想的一阶惯性环节
1 G( s ) Ts 1
例1. 无源滤波电路
ui uo C为电容 R为电阻
1 ui (t ) i (t ) R i (t )dt C 解: 1 uo (t ) i (t )dt C 1 U i (t ) I ( s) R I (s) Cs LT得: 1 U o (t ) I ( s) Cs

第二章5典型环节

第二章5典型环节

当从 0—→∞变化时,频率特性曲线在第 三、四象限。
与虚轴交于(

1
2
)。
Nyquist图:
特点:
0.5
0
∞ Im
0
1
Re
-0.5
2
越小,曲线与横轴 -1
围成的面积越大;
谐振频率r
-1.5
越接近固有频率n
-2 -1
1 - 2
-0.5
jik 06
0.7 0.5
Nyquist图:
趋势:当从 0—→∞变化时,G( j) 逐渐减
小到 0 ,相位从0o逐渐变到- 90o。Im
特点:半圆,园心为 (K ,j0),半径为 K 。
2
2
∵ν(ω)总是小于零,∴曲线是下半圆。
Page: 10
G ( j ) K Re
K2

思考∶若图形为上半圆,其频率特性应是怎样的?
G
180 90
- 90
(s -1 )
超前90o
jik 06
3
L(ω)
40db 20db 0db -20db --40db
Page: 4
微分环节L(ω)
G(s)=10s
0.1 0.2
12
[+20]
ω
10 20
100
G(s)= s
G(s)=0.1s
jik 06
4
Page: 5
实例:永磁式测速发电机
jik 06
dB 20 lg G
40
20
20 dB dec
T
G
(s-1)
10 T
90
45
0
(s-1 )

典型环节的频率特性

典型环节的频率特性

第五章频率域方法典型环节的频率特性用频率法研究控制系统的稳定性和动态响应,是根据系统的开环频率特性进行的,而控制系统的开环频率特性通常是由若干个典型环节的频率特性组成的,如直流电机的传递函数为()(1)mm K G s s T s =+可以将该传递函数分解为三个典型环节的乘积,分别是mK 放大环节:1s积分环节:11m T s +惯性环节:掌握好典型环节的频率特性,就能方便地得出系统的开环频率特性。

一、比例环节(放大环节)幅频特性()A Kω=相频特性()0ϕω︒=对数幅频特性()20lg L Kω=Kj()G s K =幅相特性曲线(K>0)(Nyquist 曲线)对数频率特性曲线(K>1)(Bode 图)典型环节的频率特性20lg K/dBL ϕω2π−ω(j )G Kω=AAKϕ2π−ϕω幅频、相频特性曲线(K>0)二、积分环节1()G s s =幅频特性1()A ωω=相频特性()2πϕω=−j2π−ω=ω∞幅相特性曲线(Nyquist 曲线)1()20lg20lg L ωωω==−对数幅频特性对数幅频特性曲线是斜率为-20分贝/十倍频程的直线,该直线在弧度/秒处与零分贝线相交。

1ω=1(j )j G ωω=AAϕ2π−ϕω幅频、相频特性曲线/(rad/s)ω对数频率特性曲线(Bode 图)20dB/dec−/dBL o /()ϕ三、惯性环节(一阶系统)1()1G s Ts =+幅频特性21()()1A T ωω=+相频特性()arctan T ϕωω=−幅相频特性曲线(Nyquist 曲线)j=1/Tω=ω∞=0ωω1-45︒1(j )1+j G T ωω=Aϕ90︒−ϕω145︒−1TA幅频、相频特性曲线对数频率特性曲线(Bode 图)T ω/dBL o /()ϕ2()20lg ()1L T ωω=−+对数幅频相频特性()arctan T ϕωω=−3(dB)L =−45ϕ︒=−当频率时1T ω=2()20lg ()1L T ωω=−+对数幅频()20lg 20lg 20lg L T Tωωω≈−=−−转折频率:1=Tω当频率时1T ω<()20lg10 (dB)L ω≈=当频率时1T ω>惯性环节(一阶系统)1()1G s Ts =+1(j )1+j G T ωω=对数频率特性曲线(Bode 图)T ω 20dB/dec−对数幅频渐近特性曲线3(dB)−dBL /o /()ϕ四、振荡环节(二阶系统)222()2nn nG s s s ωζωω=++2221()[1()][2()]n n A ωωωζωω=−+22()()arctan 1()n n ζωωϕωωω⎛⎫=− ⎪−⎝⎭/nωωA=0ζ=0.2ζ=0.5ζ=0.7ζ=1ζ/nωωo /()ϕ(0) 1 ()1(2) ()0n A A A ωζ==∞=()0d A d ωω=212m nωωζ=−令,得20<<2ζ⎛⎫ ⎪ ⎪⎝⎭(0)0 ()2 ()=n ϕϕωπϕπ==−∞−21()21m m A A ωζζ==−幅频、相频特性曲线(0, 0)n ζω≥>当时,,当时无峰值。

典型环节传递函数-积分环节

典型环节传递函数-积分环节
1/T。
1.微分方程
.
积分环节(Integrating Element)
2.传递函数与功能框
积分环节的 功能框图
阶跃响应
.
积分环节(Integrating Element)
3.动态
反变换可得
.
积分环节(Integrating Element)
4.举例
.
如水箱的水位与水流量烘箱的温度与热流量或功率机械运动中的转速与转矩位移与速度速度与加速度电容的电量与电流等等
积分环节(Integrating Element)
积分环节的特点是它的输出量为输入量对时间的积累。 因此,凡是输出量对输入量有储存和积累特点的元件一般 都含有积分环节。如水箱的水位与水流量,烘箱的温度与 热流量(或功率),机械运动中的转速与转矩,位移与速度, 速度与加速度,电容的电量与电流等等。积分环节也是自 动控制系统中遇到的最多的环节之一。

控制工程基础:2.4 传递函数以及典型环节的传递函数

控制工程基础:2.4 传递函数以及典型环节的传递函数

(s+pj )
j 1
m
(is 1)
K
i1 n
(Tjs 1)
j 1
(零极点形式、首一多 项式形式、伊万思形式)
(时间常数形式、尾一 多项式形式、伯德形式)
(动态)方框图: R(s)
C(s)
G(s)
m
G(s)
C(s) R(s)
b0sm b1sm1 bm1s bm a0sn a1sn1 an1s an
举例
2、用复阻抗概念求电路的传递函数
L
R2


ur
u1 R1 C


Ls
R2



uc Ur(s) U1(s) R1 1/Cs




Uc(s)

举例
RLC网络示意图
3、等效刚度法
设等效弹性刚度为:fa
f1
k1
→ 则 fa =k1+f1s
并联弹簧的弹性刚度等于各弹簧弹性刚度之和。
k2 设等效弹性刚度为:fb
R(0)
s0 an r()
传递函数的阶:特征多项式的阶次n即为传递函数的 阶次,对应的系统为n阶系统。
二、传递函数的性质
性质1: 传递函数是复变量s的有理真分式函数,所有 的系数均为实常数,且m≤n。
性质2: 传递函数由系统的结构和参数确定,与输入 信号的形式与大小无关。
性质3: 如果传递函数已知,那么可以研究系统在各 种输入信号作用下的输出响应。
N(s) – 分母多项式,又称特征多项式,它决定着系统 响应的基本特点和动态本质。
一般情况下,要求n≥m
G(s) C(s) b0sm b1s m1 bm1s bm M (s) R(s) a0s n a1s n1 an1s an N (s)

典型环节的传递函数

典型环节的传递函数

式中,K—环节增益(放大系数); T—时间常数,表征环节的惯性,和 环节结构参数有关
特点:有一个阻尼元件存在,当有一个输入信号时,不会 马上达到一定值,而是需要一个缓慢上升的过程。
xi (t )
x0 (t )
忽略质量,由达朗贝尔 原理可知 o 0 数学模型 ( xi xo )k cx o kxo kxi csX o ( s ) kX o ( s ) kX i ( s ) cx X o (s) k 1 传递函数 G ( s ) X i ( s ) cs k Ts 1

如图所示弹簧-阻尼系统。
Xi(t)
kx i (t ) x 0 (t ) D
dx0 (t ) dt
Xo(t)
kX i (s) X o (s) DsXo (s)
D s 1X o (s) X i (s) k
X (s) 1 G (s) 0 X i (s) D s 1 k
LCuo (t ) RCuo (t ) uo (t ) ui (t ) ( LCs 2 RCs 1)U o ( s ) U i ( s )
U o (s) 1 G (s) 2 U i ( s ) LCs RCs 1
2 n 1/( LC ) 2 2 2 s ( R / L) s 1/( LC ) s 2n s n
特点:输出量与输入量成正比,输出不失真也不延迟,而 是按比例反映输入,即线性变化。
R2
由运算放大器构成的比例环节
R2 uo (t ) ui (t ) Kui (t ) R1 拉氏变换 U o ( s ) KU i ( s ) G ( s )
如图所示齿轮传动副,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
输出量随着时间的增长而不断增加,增长的斜率为1/T。
1.微分方程
.
积分环节(Integrating Element)
2.传递函数与功能框
积分环节的 功能框图
阶跃响应
.
积分环节(Integrating Element)
3.动态
反变换可得
.
积分环节(Integrating Element)
4.举例
积分环节(Integrating Element)
积分环节的特点是它的输出量为输入量对时间的积累。 因此,凡是输出量对输入量有储存和积累特点的元件一般 都含有积分环节。如水箱的水位与水流量,烘箱的温度与 热流量(或功率),机械运动中的转速与转矩,位移与速度, 速度与加速度,电容的电量与电流等等。积分环节也是自 动控制系统中
相关文档
最新文档