【数学】北京市朝阳区2016届高三上学期期中考试(理)

合集下载

北京市朝阳区2014届高三数学上学期期末考试试题 理

北京市朝阳区2014届高三数学上学期期末考试试题 理

北京市朝阳区2013-2014学年度高三年级第一学期期末统一考试数学试卷(理工类) 2014.1(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1.函数1()1f x x =+- A .[0,)+∞ B .(1,)+∞ C .[0,1)(1,)+∞ D .[0,1)2.如果点()02,P y 在以点F 为焦点的抛物线24y x =上,则PF = A .1 B .2 C .3 D .43.命题p :22,0x x ax a ∀∈++≥R ;命题q :x ∃∈R ,sin cos 2x x +=,则下列命题中为真命题的是A .p q ∧B .p q ∨C .()p q ⌝∨D .()()p q ⌝∧⌝4.在△ABC 中,︒=∠30A,AB =1BC =, 则△ABC 的面积等于A .23 B .43 C .23或3 D .23或435.执行如图所示的程序框图,输出结果是4. 若{}01,2,3a ∈,则0a 所有可能的取值为A .1,2,3B .1C .2D .1,26.已知正方形的四个顶点分别为(0,0)O ,(1,0)A ,(1,1)B ,(0,1)C ,点,D E 分别在线段,OC AB 上运动,且OD BE =,设AD 与OE 交于点G ,则点G 的轨迹方程是A .(1)(01)y x x x =-≤≤B .(1)(01)x y y y =-≤≤C .2(01)y x x =≤≤D .21(01)y x x =-≤≤7.已知平面向量a ,b 的夹角为120,且1⋅=-a b ,则||-a b 的最小值为 A .. 1 8.已知数列{}n a 满足(,01)n n a n k n k *=⋅∈<<N 下面说法正确的是 ①当12k =时,数列{}n a 为递减数列; ②当112k <<时,数列{}n a 不一定有最大项; ③当102k <<时,数列{}n a 为递减数列;④当1k k-为正整数时,数列{}n a 必有两项相等的最大项.A. ①②B. ②④C. ③④D. ②③第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9.某校为了解高一学生寒假期间的阅读情况,抽查并统计了100名同学的某一周阅读时间,绘制了频率分布直方图(如图所示),那么这100名学生中阅读时间在[4,8)小时内的人数为_____.10.在各项均为正数的等比数列{}n a 中,若2228log log 1a a +=,则37a a ⋅= . 11.直线y kx =与圆22(2)4x y -+=相交于O ,A两点,若OA k 的值0.040.05 0.12是_____.12.一个三棱锥的三视图如图所示,则该三棱锥的体积是 ;表面积是 .13.实数,x y 满足3,20,x y x y +≥⎧⎨-≤⎩若(2)y k x ≥+恒成立,则实数k 的最大值是 .14.所有真约数(除本身之外的正约数)的和等于它本身的正整数叫做完全数. 如:6=123++;28=124714++++;496=1248163162124248++++++++.已经证明:若21n-是质数,则12(21)n n--是完全数,n *∈N .请写出一个四位完全数 ;又623=⨯,所以6的所有正约数之和可表示为(12)(13)+⋅+;22827=⨯,所以28的所有正约数之和可表示为2(122)(17)++⋅+;按此规律,496的所有正约数之和可表示为 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本题满分13分)已知函数2()cos sin 1f x x x =--+. (Ⅰ)求函数)(x f 的最小值; (Ⅱ)若5()16f α=,求cos 2α的值.俯视图侧视图正视图16.(本题满分13分)甲、乙两名同学参加“汉字听写大赛”选拔测试,在相同测试条件下,两人5次测试的成绩(单位:分)如下表:(Ⅰ)请画出甲、乙两人成绩的茎叶图. 你认为选派谁参赛更好?说明理由(不用计算); (Ⅱ)若从甲、乙两人5次的成绩中各随机抽取一个成绩进行分析,设抽到的两个成绩中,90分以上的个数为X ,求随机变量X 的分布列和期望EX .17.(本题满分14分)如图,在三棱锥P -ABC 中,PA ⊥平面ABC ,AB AC ⊥. (Ⅰ)求证:AC ⊥PB ;(Ⅱ)设,O D 分别为,AC AP 的中点,点G 为△OAB 内一点,且满足13OG OA OB =+(),求证:DG ∥面PBC ;(Ⅲ)若==2AB AC ,=4PA , 求二面角A PB C --的余弦值.18.(本题满分13分)已知函数()()ln f x x a x =-,a ∈R . (Ⅰ)当0a =时,求函数()f x 的极小值;(Ⅱ)若函数()f x 在(0,)+∞上为增函数,求a 的取值范围.PDOACG19.已知椭圆C 两焦点坐标分别为1(F ,2F ,且经过点1)2P . (Ⅰ)求椭圆C 的标准方程;(Ⅱ)已知点(0,1)A -,直线l 与椭圆C 交于两点,M N .若△AMN 是以A 为直角顶点的等腰直角三角形,试求直线l 的方程.20.(本题满分13分)已知,,a b c 是正数, 1lg a a =,2lg a b =,3lg a c =. (Ⅰ)若,,a b c 成等差数列,比较12a a -与23a a -的大小;(Ⅱ)若122331a a a a a a ->->-,则,,a b c 三个数中,哪个数最大,请说明理由;(Ⅲ)若a t =,2b t =,3c t =(t *∈N ),且1a ,2a ,3a 的整数部分分别是,m 21,m +221,m +求所有t 的值.北京市朝阳区2013-2014学年度高三年级第一学期期末统一考试数学答案(理工类) 2014.1一、选择题 题号 1 2 3 4 5 6 7 8 答案 C C B D B A A C二、填空题 题号 910 11121314答案542±182363238128234(12222)(131)++++⋅+三、解答题15.解:(Ⅰ)因为2()cos sin 1f x x x =--+ 2sin sin x x =- 211(sin )24x =--, 又[]sin 1,1x ∈-,所以当1sin 2x =时,函数)(x f 的最小值为14-.…… 6分(Ⅱ)由(Ⅰ)得2115(sin )2416α--=,所以219(sin )216α-=.于是5sin 4α=(舍)或1sin 4α=-.又2217cos 212sin 12()48αα=-=--=. ……………… 13分16.解:(Ⅰ)茎叶图如右图所示,由图可知,乙的平均成绩大于甲的平均成绩,且乙的方差小于甲的方差,因此应选派乙参赛更好. ……………… 6分 (Ⅱ)随机变量X 的所有可能取值为0,1,2.1144115516(0)25C C P X C C ===, 14115528(1)25C P X C C ===, 115511(2)25P X C C ===, 8 7 5 6 9826 甲 乙5 57 2 58 5随机变量X 的分布列是:160122525255EX =⨯+⨯+⨯=. ……………… 13分17.证明:(Ⅰ)因为PA ⊥平面ABC ,AC ⊂平面ABC ,所以PA AC ⊥.又因为AB AC ⊥,且PA AB =A ,所以AC ⊥平面PAB . 又因为PB ⊂平面PAB ,所以AC ⊥PB . ……………… 4分(Ⅱ)解法1:因为PA ⊥平面ABC ,所以PA AB ⊥,PA AC ⊥.又因为AB AC ⊥, 所以建立如图所示的空间直角坐标系A xyz -. 设=2AC a ,=AB b ,=2PA c , 则(0,0,0)A ,(0,,0)B b ,(2,0,0)C a ,(0,0,2),(0,0,)P c D c ,(,0,0)O a . 又因为13OG OA OB =+(), 所以(,,0)33a bG . 于是(,,)33a bDG c =-,(2,,0)BC a b =-,(0,,2)PB b c =-.设平面PBC 的一个法向量000(,,)x y z =n ,则有0,0BC PB ⎧⋅=⎪⎨⋅=⎪⎩n n .即000020,20.ax by by cz -=⎧⎨-=⎩不妨设01z =,则有002,c c y x b a ==,所以2(,,1)c ca b=n . 因为22(,,1)(,,)1()03333c c a b c a c bDG c c a b a b ⋅=⋅-=⋅+⋅+⋅-=n , 所以DG ⊥n .又因为DG ⊄平面PBC ,所以DG ∥平面PBC . ……………… 9分PD解法2:取AB 中点E ,连OE ,则1()2OE OA OB =+. 由已知13OG OA OB =+()可得23OG OE =, 则点G 在OE 上.连结AG 并延长交CB 于F ,连PF .因为,O E 分别为,AC AB 的中点, 所以OE ∥BC ,即G 为AF 的中点. 又因为D 为线段PA 的中点, 所以DG ∥PF .又DG ⊄平面PBC ,PF ⊂平面PBC , 所以DG ∥平面PBC .……………… 9分(Ⅲ)由(Ⅱ)可知平面PBC 的一个法向量2(,,1)(2,2,1)c ca b==n . 又因为AC ⊥面PAB ,所以面PAB 的一个法向量是(2,0,0)AC =. 又42cos ,323AC AC AC⋅===⨯⋅n n n , 由图可知,二面角A PB C --为锐角,所以二面角A PB C --的余弦值为23. ……………… 14分 18. 解:(Ⅰ)定义域(0,)+∞.当0a =时,()ln f x x x =,()ln 1f x x '=+. 令()0f x '=,得1ex =. 当1(0,)ex ∈时,()0f x '<,()f x 为减函数; 当1(,)ex ∈+∞时,()0f x '>,()f x 为增函数.所以函数()f x 的极小值是11()e e f =-. ……………… 5分(Ⅱ)由已知得()ln x af x x x-'=+.因为函数()f x 在(0,)+∞是增函数,所以()0f x '≥,对(0,)x ∈+∞恒成立. 由()0f x '≥得ln 0x ax x-+≥,即ln x x x a +≥对(0,)x ∈+∞恒成立. 设()ln g x x x x =+,要使“ln x x x a +≥对(0,)x ∈+∞恒成立”,只要min ()a g x ≤.B因为()ln 2g x x '=+,令()0g x '=得21e x =. 当21(0,)ex ∈时,()0g x '<,()g x 为减函数; 当21(,)e x ∈+∞时,()0g x '>,()g x 为增函数. 所以()g x 在()0,+∞上的最小值是2211()e eg =-.故函数()f x 在(0,)+∞是增函数时,实数a 的取值范围是21(,]e-∞-…… 13分 19.解:(Ⅰ)设椭圆标准方程为22221(0)x y a b a b+=>>.依题意1224a PF PF =+==,所以2a =.又c =2221b a c =-=.于是椭圆C 的标准方程为2214x y +=. ……………… 5分 (Ⅱ)依题意,显然直线l 斜率存在.设直线l 的方程为y kx m =+,则由2214x y y kx m ⎧+=⎪⎨⎪=+⎩得222(41)8440k x kmx m +++-=. 因为2222644(41)(44)0k m k m ∆=-+->,得22410k m -+>. ……………… ①设1122(,),(,)M x y N x y ,线段MN 中点为00(,)Q x y ,则12221228414441km x x k m x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩于是000224,4141km mx y kx m k k =-=+=++. 因为AM AN =,线段MN 中点为Q ,所以AQ MN ⊥. (1)当00x ≠,即0k ≠且0m ≠时,0011y k x +=-,整理得2341m k =+. ………………②因为AM AN ⊥,1122(,1),(,1)AM x y AN x y =+=+,所以2212121212(1)(1)(1)(1)()21AM AN x x y y k x x k m x x m m =+++=+++++++22222448(1)(1)()2104141m kmk k m m m k k -=+++-+++=++,整理得25230m m +-=,解得35m =或1m =-. 当1m =-时,由②不合题意舍去.由①②知,35m =时,5k =±. (2)当00x =时,(ⅰ)若0k =时,直线l 的方程为y m =,代入椭圆方程中得x =±设()M m -,)N m ,依题意,若△AMN 为等腰直角三角形,则AQ QN =.即1m =+,解得1m =-或35m =.1m =-不合题意舍去, 即此时直线l 的方程为35y =. (ⅱ)若0k ≠且0m =时,即直线l 过原点.依椭圆的对称性有(0,0)Q ,则依题意不能有AQ MN ⊥,即此时不满足△AMN 为等腰直角三角形.综上,直线l 的方程为35y =530y -+=530y +-=. ………………14分 20.解:(Ⅰ)由已知得1223()()a a a a ---=2lg lg lg a b acb c b-=.因为,,a b c 成等差数列,所以2a cb +=,则1223()()a a a a ---=24lg()aca c +, 因为222a c ac +≥,所以2()4a c ac +≥,即241()aca c ≤+,则1223()()0a a a a ---≤,即12a a -≤23a a -,当且仅当a b c ==时等号成立.……………… 4分(Ⅱ)解法1:令12m a a =-,23n a a =-,31p a a =-,依题意,m n p >>且0m n p ++=,所以0m p >>.故120a a ->,即lg lg a b >;且130a a ->,即lg lg a c >.所以a b >且a c >.故,,a b c 三个数中,a 最大.解法2:依题意lg lg lg a b c b c a >>,即a b c b c a>>. 因为0,0,0a b c >>>,所以2ac b >,2a bc >,2ab c >.于是,3abc b >,3a abc >,3abc c >,所以33a b >,33a c >.因为3y x =在R 上为增函数,所以a b >且a c >.故,,a b c 三个数中,a 最大. ……………… 8分 (Ⅲ)依题意,lg t ,2lg t ,3lg t 的整数部分分别是,m 21,m +221m +,则l g 1m t m ≤<+,所以22lg 22m t m ≤<+.又2lg 2lg t t =,则2lg t 的整数部分是2m 或21m +.当212m m +=时,1m =;当2121m m +=+时,0,2m =.(1) 当0m =时,lg t ,2lg t ,3lg t 的整数部分分别是0,1,1,所以0lg 1t ≤<,21lg 2t ≤<,31lg 2t ≤<.所以12lg 23t ≤<,解得21321010t ≤<. 又因为()12103,4∈,()23104,5∈,所以此时4t =.(2)当1m =时,同理可得1lg 2t ≤<,22lg 3t ≤<,33lg 4t ≤<. 所以41lg 3t ≤<,解得431010t ≤<.又()431021,22∈,此时10,11,12,...20,21t =. (3)当2m =时,同理可得2lg 3t ≤<,25lg 6t ≤<,39lg 10t ≤<,同时满足条件的t 不存在.t .……………… 13分综上所述4,10,11,12,...20,21。

北京市朝阳区2017届高三第一学期期中考试数学(理)试题(有答案)[精品]

北京市朝阳区2017届高三第一学期期中考试数学(理)试题(有答案)[精品]

北京市朝阳区2016-2017学年度高三年级第一学期统一考试数学试卷(理工类) 2016.11(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知全集U =R ,集合{}2|20A x x x =-<,{}|10B x x =-≥,则()U AB =ðA .{}|01x x <<B .{}|0x x <C .{}|2x x >D .{}|12x x <<2.下列函数中,在其定义域上既是偶函数又在(0)+∞,上单调递减的是 A .2y x =B .1y x =+C .lg ||y x =-D .2x y =-3.若 2.1log 0.6a =,0.62.1b =,0.5log 0.6c =,则a ,b ,c 的大小关系是 A .a b c >> B .b c a >> C .c b a >> D .b a c >>4.已知函数2()f x ax x =-,若对任意12,[2,)x x ∈+∞,且12x x ≠,不等式1212()()f x f x x x ->-恒成立,则实数a 的取值范围是A .1(,)2+∞ B .1[,)2+∞ C .1(,)4+∞ D .1[,)4+∞ 5.设R m ∈且0m ≠,“不等式4+4m m>”成立的一个充分不必要条件是 A .0m > B .1m > C .2m > D .2m ≥6.已知三角形ABC 外接圆O 的半径为1(O 为圆心),且2OA AB AC ++=0, ||2||OA AB =,则CA BC ⋅等于A .154-B.2- C .154 D.2 7.已知函数21,0,()log ,0,x x f x x x +≤⎧=⎨>⎩则函数1()(())2g x f f x =-的零点个数是A .4B .3C .2D .18. 5个黑球和4个白球从左到右任意排成一排,下列说法正确的是A .总存在一个黑球,它右侧的白球和黑球一样多B .总存在一个白球,它右侧的白球和黑球一样多C .总存在一个黑球,它右侧的白球比黑球少一个D .总存在一个白球,它右侧的白球比黑球少一个第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9.已知平面向量(1,2),(2,)y ==-a b .若a //b ,则y = .10.函数22()cos sin f x x x =-的单调递减区间为 .11.各项均为正数的等比数列{}n a 的前n 项和为n S .若23=a ,245S S =,则1a = ,4S = .12.已知角A 为三角形的一个内角,且3cos 5A =,则tan A = ,tan()4A π+= . 13.已知函数221,0,()(1)2,0xmx x f x m x ⎧+≥=⎨-<⎩在(,)-∞+∞上是具有单调性,则实数m 的取值范围 .14.《九章算术》是我国古代一部重要的数学著作,书中有如下问题“今有良马与驽马发长安,至齐.齐去长安三千里,良马初日行一百九十三里,日增一十三里,驽马初日行九十七里,日减半里.良马先至齐,复还迎驽马,问几何日相逢.”其大意为:“现在有良马和驽马同时从长安出发到齐去,已知长安和齐的距离是3000里,良马第一天行193里,之后每天比前一天多行13里,驽马第一天行97里,之后每天比前一天少行0.5里.良马到齐后,立刻返回去迎驽马,多少天后两马相遇.”试确定离开长安后的第 天,两马相逢.DCA三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知数列{}()N n a n *∈是公差不为0的等差数列,11a =,且248111,,a a a 成等比数列. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设数列11{}n n a a +⋅的前n 项和为n T ,求证1n T <.16.(本小题满分13分)已知函数()sin f x a x x =(a ∈R )的图象经过点(,0)3π. (Ⅰ)求()f x 的最小正周期; (Ⅱ)若3[,]22x ππ∈,求()f x 的取值范围.17.(本小题满分13分)如图,已知,,,A B C D 四点共面,=1CD ,2BC =,4AB =,120ABC ∠=,cos BDC ∠=(Ⅰ)求sin DBC ∠的值; (Ⅱ)求AD 的长.18. (本小题满分13分)已知函数2()cos 4x f x ax x =-+()R a ∈,ππ[,]22x ∈-.(Ⅰ)若函数()f x 是偶函数,试求a 的值;(Ⅱ)当0a >时,求证:函数()f x 在π(0,)2上单调递减.19.(本小题满分14分)已知函数2()e ()xf x x a =-,a ∈R .(Ⅰ)当1a =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)若函数()f x 在(3,0)-上单调递减,试求a 的取值范围; (Ⅲ)若函数()f x 的最小值为2e -,试求a 的值.20.(本小题满分14分)设b a ,是正奇数,数列}{n c (n *∈N )定义如下:b c a c ==21,,对任意3≥n ,n c 是21--+n n c c 的最大奇约数.数列}{n c 中的所有项构成集合A .(Ⅰ)若15,9==b a ,写出集合A ;(Ⅱ)对1≥k ,令221=max {,}k k k d c c -(max{,}p q 表示,p q 中的较大值),求证:k k d d ≤+1; (Ⅲ)证明集合A 是有限集,并写出集合A 中的最小数.北京市朝阳区2016-2017学年度第一学期高三年级统一考试数学答案(理工类) 2016.11一、选择题:(满分40分)三、解答题:(满分80分) 15.(本小题满分13分) 解:(Ⅰ)设{}n a 的公差为d .因为248111,,a a a 成等比数列,所以2428111()a a a =⋅.即2111111()37a d a d a d=⋅+++ .化简得2111(3)()(7)a d a d a d +=+⋅+,即21d a d =.又11a =,且0d ≠,解得1d = .所以有1(1)n a a n d n =+-=. …………………7分 (Ⅱ)由(Ⅰ)得:11111(1)1n n a a n n n n +==-⋅⋅++.所以11111111122311n T n n n =-+-++-=-<++ . 因此,1n T <. …………………13分 16.(本小题满分13分)解:(Ⅰ)因为函数()sin f x a x x =的图象经过点(,0)3π,所以 ()0.322f π=-= 解得 1a = . …………………3分所以()sin 2sin()3f x x x x π==-.所以()f x 最小正周期为2π. …………………6分 (Ⅱ)因为322x ππ≤≤,所以7.636x πππ≤-≤所以当32x ππ-=,即56x π=时,()f x 取得最大值,最大值是2; 当736x ππ-=,即32x π=时,()f x 取得最小值,最小值是 1.- 所以()f x 的取值范围是[1,2]-. …………………13分 17.(本小题满分13分)解:(Ⅰ)在△BDC 中,因为cos 7BDC ∠=,所以sin 7BDC ∠=. 由正弦定理=sin sin DC BCDBC BDC∠∠得,sin sin =DC BDC DBC BC ⋅∠∠= …………5分(Ⅱ)在△BDC 中,由2222cos BC DC DB DC DB BDC =+-⋅⋅∠得,2412DB DB =+-⋅.所以2307DB DB --=. 解得DB =7DB =-(舍). 又因为cos =cos 120ABD DBC ()∠-∠=cos120cos sin120sin DBC DBC ⋅∠+⋅∠1=2-=在△ABD 中,因为222=2cos AD AB BD AB BD ABD +-⋅⋅∠=16724(27+-⨯=,所以AD =. …………13分18.(本小题满分13分)解:(Ⅰ)因为函数()f x 是偶函数,所以22()()()cos()cos 44x x f x a x x ax x --=--+-=++ 2()cos 4x f x ax x ==-+恒成立.所以0a =. …………………4分 (Ⅱ)由题意可知()sin 2xf x x a '=--. 设()sin 2x g x x a =--,则1()cos 2g x x '=-.注意到π(0,)2x ∈,0a >. 由()0g x '<,即1cos 02x -<,解得π03x <<. 由()0g x '>,即1cos 02x ->,解得ππ32x <<. 所以()g x 在π(0,)3单调递减,ππ(,)32单调递增.所以当π(0,)3x ∈,()(0)00g x g a <=-<,所以()f x 在π(0,)3x ∈单调递减,当ππ(,)32x ∈,ππ()()1024g x g a <=--<,所以()f x 在ππ(,)32x ∈单调递减, 所以当0a >时,函数()f x 在π(0,)2上单调递减. ……………………13分 19.(本小题满分14分)解:由题意可知2()e (2)xf x x x a '=+-.(Ⅰ)因为1a =,则(0)1f =-,(0)1f '=-,所以函数()f x 在点(0,(0))f 处的切线方程为(1)(0)y x --=--.即10x y ++=. …………………3分 (Ⅱ)因为函数()f x 在(3,0)-上单调递减,所以当(3,0)x ∈-时,2()e (2)0xf x x x a '=+-≤恒成立.即当(3,0)x ∈-时,220x x a +-≤恒成立.显然,当(3,1)x ∈--时,函数2()2g x x x a =+-单调递减,当(1,0)x ∈-时,函数2()2g x x x a =+-单调递增.所以要使得“当(3,0)x ∈-时,220x x a +-≤恒成立”,等价于(3)0,(0)0.g g -≤⎧⎨≤⎩即3,0.a a ≥⎧⎨≥⎩所以3a ≥. …………………8分(Ⅲ)设2()2g x x x a =+-,则44a ∆=+.①当440a ∆=+≤,即1a ≤-时,()0g x ≥,所以()0f x '≥. 所以函数()f x 在(,)-∞+∞单增,所以函数()f x 没有最小值.②当440a ∆=+>,即1a >-时,令2()e (2)0xf x x x a '=+-=得220x x a +-=,解得1211x x =-=-随着x 变化时,()f x 和()f x '的变化情况如下:所以220x a -≥+. 所以2()e ()0xf x x a =->. 又因为函数()f x 的最小值为2e<0-,所以函数()f x 的最小值只能在21x =-处取得.所以121(1e 1]2e 2e f a ---=--==-.所以1e 1)e -=.11=.解得3a =. …………………………………14分 以下证明解的唯一性,仅供参考:设1()e g a -=因为0a >,所以0->,10<.设0x =->,则1x -=-设()e xh x x =-,则()e (1)xh x x '=-+.当0x >时,()0h x '<,从而易知()g a 为减函数. 当(0,3)a ∈,()0g a >;当(3,)a ∈+∞,()0g a <.所以方程1e 1)e -=只有唯一解3a =.20.(本小题满分14分)解:(Ⅰ)数列}{n c 为:9,15,3,9,3,3,3,…….故集合}3,15,9{=A . ……………3分 (Ⅱ)证明:由题设,对3≥n ,2-n c ,1-n c 都是奇数,所以21--+n n c c 是偶数.从而21--+n n c c 的最大奇约数221--+≤n n n c c c , 所以},m ax {21--≤n n n c c c ,当且仅当21--=n n c c 时等号成立. 所以,对1≥k 有k k k k d c c c =≤-+},m ax {12212,且k k k k k k d d d c c c =≤≤++},m ax {},m ax {21222.所以k k k k d c c d ≤=+++},m ax {12221,当且仅当122-=k k c c 时等号成立.………9分(Ⅲ)由(Ⅱ)知,当3≥n 时,有},m ax {21--≤n n n c c c . 所以对3≥n ,有12max max {,}{,}n c c c a b ≤=. 又n c 是正奇数,且不超过max {,}a b 的正奇数是有限的, 所以数列}{n c 中的不同项是有限的. 所以集合A 是有限集.集合A 中的最小数是b a ,的最大公约数. ……………14分。

北京市朝阳区2017届高三第一学期期中考试数学(理)试题(有答案)[精品]

北京市朝阳区2017届高三第一学期期中考试数学(理)试题(有答案)[精品]

北京市朝阳区2016-2017学年度高三年级第一学期统一考试数学试卷(理工类) 2016.11(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知全集U =R ,集合{}2|20A x x x =-<,{}|10B x x =-≥,则()U AB =ðA .{}|01x x <<B .{}|0x x <C .{}|2x x >D .{}|12x x <<2.下列函数中,在其定义域上既是偶函数又在(0)+∞,上单调递减的是 A .2y x =B .1y x =+C .lg ||y x =-D .2x y =-3.若 2.1log 0.6a =,0.62.1b =,0.5log 0.6c =,则a ,b ,c 的大小关系是 A .a b c >> B .b c a >> C .c b a >> D .b a c >>4.已知函数2()f x ax x =-,若对任意12,[2,)x x ∈+∞,且12x x ≠,不等式1212()()f x f x x x ->-恒成立,则实数a 的取值范围是A .1(,)2+∞ B .1[,)2+∞ C .1(,)4+∞ D .1[,)4+∞ 5.设R m ∈且0m ≠,“不等式4+4m m>”成立的一个充分不必要条件是 A .0m > B .1m > C .2m > D .2m ≥6.已知三角形ABC 外接圆O 的半径为1(O 为圆心),且2OA AB AC ++=0, ||2||OA AB =,则CA BC ⋅等于A .154-B.2- C .154 D.2 7.已知函数21,0,()log ,0,x x f x x x +≤⎧=⎨>⎩则函数1()(())2g x f f x =-的零点个数是A .4B .3C .2D .18. 5个黑球和4个白球从左到右任意排成一排,下列说法正确的是A .总存在一个黑球,它右侧的白球和黑球一样多B .总存在一个白球,它右侧的白球和黑球一样多C .总存在一个黑球,它右侧的白球比黑球少一个D .总存在一个白球,它右侧的白球比黑球少一个第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9.已知平面向量(1,2),(2,)y ==-a b .若a //b ,则y = .10.函数22()cos sin f x x x =-的单调递减区间为 .11.各项均为正数的等比数列{}n a 的前n 项和为n S .若23=a ,245S S =,则1a = ,4S = .12.已知角A 为三角形的一个内角,且3cos 5A =,则tan A = ,tan()4A π+= . 13.已知函数221,0,()(1)2,0xmx x f x m x ⎧+≥=⎨-<⎩在(,)-∞+∞上是具有单调性,则实数m 的取值范围 .14.《九章算术》是我国古代一部重要的数学著作,书中有如下问题“今有良马与驽马发长安,至齐.齐去长安三千里,良马初日行一百九十三里,日增一十三里,驽马初日行九十七里,日减半里.良马先至齐,复还迎驽马,问几何日相逢.”其大意为:“现在有良马和驽马同时从长安出发到齐去,已知长安和齐的距离是3000里,良马第一天行193里,之后每天比前一天多行13里,驽马第一天行97里,之后每天比前一天少行0.5里.良马到齐后,立刻返回去迎驽马,多少天后两马相遇.”试确定离开长安后的第 天,两马相逢.DCA三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知数列{}()N n a n *∈是公差不为0的等差数列,11a =,且248111,,a a a 成等比数列. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设数列11{}n n a a +⋅的前n 项和为n T ,求证1n T <.16.(本小题满分13分)已知函数()sin f x a x x =(a ∈R )的图象经过点(,0)3π. (Ⅰ)求()f x 的最小正周期; (Ⅱ)若3[,]22x ππ∈,求()f x 的取值范围.17.(本小题满分13分)如图,已知,,,A B C D 四点共面,=1CD ,2BC =,4AB =,120ABC ∠=,cos BDC ∠=(Ⅰ)求sin DBC ∠的值; (Ⅱ)求AD 的长.18. (本小题满分13分)已知函数2()cos 4x f x ax x =-+()R a ∈,ππ[,]22x ∈-.(Ⅰ)若函数()f x 是偶函数,试求a 的值;(Ⅱ)当0a >时,求证:函数()f x 在π(0,)2上单调递减.19.(本小题满分14分)已知函数2()e ()xf x x a =-,a ∈R .(Ⅰ)当1a =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)若函数()f x 在(3,0)-上单调递减,试求a 的取值范围; (Ⅲ)若函数()f x 的最小值为2e -,试求a 的值.20.(本小题满分14分)设b a ,是正奇数,数列}{n c (n *∈N )定义如下:b c a c ==21,,对任意3≥n ,n c 是21--+n n c c 的最大奇约数.数列}{n c 中的所有项构成集合A .(Ⅰ)若15,9==b a ,写出集合A ;(Ⅱ)对1≥k ,令221=max {,}k k k d c c -(max{,}p q 表示,p q 中的较大值),求证:k k d d ≤+1; (Ⅲ)证明集合A 是有限集,并写出集合A 中的最小数.北京市朝阳区2016-2017学年度第一学期高三年级统一考试数学答案(理工类) 2016.11一、选择题:(满分40分)三、解答题:(满分80分) 15.(本小题满分13分) 解:(Ⅰ)设{}n a 的公差为d .因为248111,,a a a 成等比数列,所以2428111()a a a =⋅.即2111111()37a d a d a d=⋅+++ .化简得2111(3)()(7)a d a d a d +=+⋅+,即21d a d =.又11a =,且0d ≠,解得1d = .所以有1(1)n a a n d n =+-=. …………………7分 (Ⅱ)由(Ⅰ)得:11111(1)1n n a a n n n n +==-⋅⋅++.所以11111111122311n T n n n =-+-++-=-<++ . 因此,1n T <. …………………13分 16.(本小题满分13分)解:(Ⅰ)因为函数()sin f x a x x =的图象经过点(,0)3π,所以 ()0.322f π=-= 解得 1a = . …………………3分所以()sin 2sin()3f x x x x π==-.所以()f x 最小正周期为2π. …………………6分 (Ⅱ)因为322x ππ≤≤,所以7.636x πππ≤-≤所以当32x ππ-=,即56x π=时,()f x 取得最大值,最大值是2; 当736x ππ-=,即32x π=时,()f x 取得最小值,最小值是 1.- 所以()f x 的取值范围是[1,2]-. …………………13分 17.(本小题满分13分)解:(Ⅰ)在△BDC 中,因为cos 7BDC ∠=,所以sin 7BDC ∠=. 由正弦定理=sin sin DC BCDBC BDC∠∠得,sin sin =DC BDC DBC BC ⋅∠∠= …………5分(Ⅱ)在△BDC 中,由2222cos BC DC DB DC DB BDC =+-⋅⋅∠得,2412DB DB =+-⋅.所以2307DB DB --=. 解得DB =7DB =-(舍). 又因为cos =cos 120ABD DBC ()∠-∠=cos120cos sin120sin DBC DBC ⋅∠+⋅∠1=2-=在△ABD 中,因为222=2cos AD AB BD AB BD ABD +-⋅⋅∠=16724(27+-⨯=,所以AD =. …………13分18.(本小题满分13分)解:(Ⅰ)因为函数()f x 是偶函数,所以22()()()cos()cos 44x x f x a x x ax x --=--+-=++ 2()cos 4x f x ax x ==-+恒成立.所以0a =. …………………4分 (Ⅱ)由题意可知()sin 2xf x x a '=--. 设()sin 2x g x x a =--,则1()cos 2g x x '=-.注意到π(0,)2x ∈,0a >. 由()0g x '<,即1cos 02x -<,解得π03x <<. 由()0g x '>,即1cos 02x ->,解得ππ32x <<. 所以()g x 在π(0,)3单调递减,ππ(,)32单调递增.所以当π(0,)3x ∈,()(0)00g x g a <=-<,所以()f x 在π(0,)3x ∈单调递减,当ππ(,)32x ∈,ππ()()1024g x g a <=--<,所以()f x 在ππ(,)32x ∈单调递减, 所以当0a >时,函数()f x 在π(0,)2上单调递减. ……………………13分 19.(本小题满分14分)解:由题意可知2()e (2)xf x x x a '=+-.(Ⅰ)因为1a =,则(0)1f =-,(0)1f '=-,所以函数()f x 在点(0,(0))f 处的切线方程为(1)(0)y x --=--.即10x y ++=. …………………3分 (Ⅱ)因为函数()f x 在(3,0)-上单调递减,所以当(3,0)x ∈-时,2()e (2)0xf x x x a '=+-≤恒成立.即当(3,0)x ∈-时,220x x a +-≤恒成立.显然,当(3,1)x ∈--时,函数2()2g x x x a =+-单调递减,当(1,0)x ∈-时,函数2()2g x x x a =+-单调递增.所以要使得“当(3,0)x ∈-时,220x x a +-≤恒成立”,等价于(3)0,(0)0.g g -≤⎧⎨≤⎩即3,0.a a ≥⎧⎨≥⎩所以3a ≥. …………………8分(Ⅲ)设2()2g x x x a =+-,则44a ∆=+.①当440a ∆=+≤,即1a ≤-时,()0g x ≥,所以()0f x '≥. 所以函数()f x 在(,)-∞+∞单增,所以函数()f x 没有最小值.②当440a ∆=+>,即1a >-时,令2()e (2)0xf x x x a '=+-=得220x x a +-=,解得1211x x =-=-随着x 变化时,()f x 和()f x '的变化情况如下:所以220x a -≥+. 所以2()e ()0xf x x a =->. 又因为函数()f x 的最小值为2e<0-,所以函数()f x 的最小值只能在21x =-处取得.所以121(1e 1]2e 2e f a ---=--==-.所以1e 1)e -=.11=.解得3a =. …………………………………14分 以下证明解的唯一性,仅供参考:设1()e g a -=因为0a >,所以0->,10<.设0x =->,则1x -=-设()e xh x x =-,则()e (1)xh x x '=-+.当0x >时,()0h x '<,从而易知()g a 为减函数. 当(0,3)a ∈,()0g a >;当(3,)a ∈+∞,()0g a <.所以方程1e 1)e -=只有唯一解3a =.20.(本小题满分14分)解:(Ⅰ)数列}{n c 为:9,15,3,9,3,3,3,…….故集合}3,15,9{=A . ……………3分 (Ⅱ)证明:由题设,对3≥n ,2-n c ,1-n c 都是奇数,所以21--+n n c c 是偶数.从而21--+n n c c 的最大奇约数221--+≤n n n c c c , 所以},m ax {21--≤n n n c c c ,当且仅当21--=n n c c 时等号成立. 所以,对1≥k 有k k k k d c c c =≤-+},m ax {12212,且k k k k k k d d d c c c =≤≤++},m ax {},m ax {21222.所以k k k k d c c d ≤=+++},m ax {12221,当且仅当122-=k k c c 时等号成立.………9分(Ⅲ)由(Ⅱ)知,当3≥n 时,有},m ax {21--≤n n n c c c . 所以对3≥n ,有12max max {,}{,}n c c c a b ≤=. 又n c 是正奇数,且不超过max {,}a b 的正奇数是有限的, 所以数列}{n c 中的不同项是有限的. 所以集合A 是有限集.集合A 中的最小数是b a ,的最大公约数. ……………14分。

【数学】北京市朝阳区2016届高三上学期期中考试(文).docx

【数学】北京市朝阳区2016届高三上学期期中考试(文).docx

北京市朝阳区 2016 届高三上学期期中考试数学试卷(文科)(考试时间120 分钟满分150 分)本试卷分为选择题(共40 分)和非选择题(共110 分)两部分第一部分(选择题共40 分)一、选择题:本大题共8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,选出符合题目要求的一项 .1. 已知集合A{ x x2} ,B={ x (x1)(x3)0} ,则A∩B=()A . { x x 1}B.{ x 2 x 3}C.{ x 1 x 3}D. { x x 2 或x 1}2. 设平面向量a( x,1) ,b (4, x) , 且a b1,则实数x的值是()A .2B .111 C. D .353.下列函数在(,0)(0, ) 上既是偶函数,又在(0, ) 上单调递增的是()A .y x2B .y x 1C.y log 2 x D. y2x4.已知tan 1,那么 tan(π3) 等于()4A .2B.2C.1D.1 225.要得到函数y sin(2 x) 的图象,只需将函数y sin 2x 的图象()3A .向左平移个单位B.向右平移个单位66 C.向左平移个单位D.向右平移个单位336.下列命题正确的是()A.“x 1”是“x23x 2 0 ”的必要不充分条件1C. 若 p q 为假命题,则 p, q 均为假命题D. 命题 “若 x 23x 20 ,则 x2 ”的否命题为 “若 x 2 3x 20, 则 x 27.在 ABC 中,已知 AB AC4 , BC3 , M , N 分别是 BC 边上的三等分点,则AM AN的值是()21 C . 6D . 8A . 5B .48. 已知函数 f (x)x 2, 0 x a,若存在实数 b ,使函数 g(x)f ( x) b 有两个零点,2x ,xa.则实数 a 的取值范围是()A . (0, 2)B . (2, )C . (2, 4)D . (4, )第二部分(非选择题共110 分)二、填空题:本大题共6 小题,每小题 5 分,共 30 分 .把答案填在答题卡上 .1 9.若集合 { a,0,1} ={ c, , 1} ,则 a _____,b_______.b10.设等差数列a n 的前 n 项和为 S n ,若 a 3 a 6 12 , S 4 8 ,则 a 9 的值是.11.给出四个命题:①平行于同一平面的两个不重合的平面平行;②平行于同一直线的两个不重合的平面平行;③垂直于同一平面的两个不重合的平面平行;④垂直于同一直线的两个不重合的平面平行;其中真命题的序号是 ________.12.已知函数 f (x) 2sinx (0 )的最小正周期为,则,在 0,( ) 内满足 f ( x 0 ) 0的 x 0=.π π13. 若函数 f (x) a sin xcosx 在区间 ( ,) 上单调递增,则实数 a 的取值范围是 .6 414. 如 图 , 在 ABC 中 , A B A C 4 ,BAC 90 , D 是 BC 的 中 点 , 若 向 量AM1AB mAC ( m R ),且点 M 在 ACD 的内部(不含边界) ,则 AM BM 的取值范4围是.三、解答题:本大题共 6 小题,共80 分 .解答应写出文字说明,演算步骤或证明过程.15. (本小题满分13 分)已知函数 f ( x) 2 3sin xcosx2cos 2x. 222(Ⅰ)求 f ( x) 的最小正周期;(Ⅱ)求 f ( x) 的单调递减区间.16.(本小题满分 13 分)设等差数列a n的前n项和为 S n,n N ,公差d0, S315, 已知a1, a4, a13成等比数列 .(Ⅰ)求数列a n的通项公式;(Ⅱ)设 b n a2n,求数列b n的前n项和T n.17.(本小题满分14 分)如图 , 在三棱柱ABC A1B1C1中,CC1底面ABC ,AC CB ,点 D 是 AB 的中点.(Ⅰ)求证:AC BC1;(Ⅱ)求证:AC1∥平面 CDB1.(Ⅲ )设AB2AA1, AC BC ,在线段A1 B1上是否存在点M ,使得 BM CB1?若存在,确定点 M 的位置;若不存在,说明理由.18.(本小题满分 13 分)在 ABC 中,角A,B,C所对的边分别为a,b,c.已知 cos B 1 .2(Ⅰ)若 a 2, b 2 3 ,求 ABC 的面积;(Ⅱ)求 sin A sin C 的取值范围.19. (本小题满分13 分)已知函数 f ( x) a ln x x2( a 1) x ,a R.2(Ⅰ)若函数 f ( x) 在区间 (1,3) 上单调递减,求 a 的取值范围;(Ⅱ)当 a 1 时,证明1 f ( x).220.(本小题满分 14 分)已知函数 f ( x) e x (ax2bx 1) (其中 a ,b R ),函数f ( x)的导函数为f ( x),且f ( 1)0.(Ⅰ )若b 1 ,求曲线 y f (x) 在点 (0, f (0)) 处的切线方程;(Ⅱ )若函数 f (x) 在区间 [ 1,1] 上的最小值为0 ,求 b 的值.参考答案一、:(分 40分)号12345678答案B D C A B B C C 二、填空:(分 30分)号91011121314答案1,115①④ 2 ,[1, )2,62(注:两空的填空,第一空 3 分,第二空 2 分)三、解答:(分 80 分)15.(本小分 13 分)(I )由已知可得:f ( x)3sin x cosx 12sin( x)1 .6所以 f (x) 的最小正周期 2 .⋯⋯⋯⋯⋯⋯⋯ ..7 分(II )由2k x2k, k Z ,22得 2k x2k, k Z .33因此函数 f (x) 的减区 [2 k,2 k] , k Z.33⋯⋯⋯⋯⋯⋯⋯..13分16.(本小分 13 分)解:( I)依意,3a32 d15,12( a13d)2a1 ( a1 12d ).a13,解得d2.因此 a n a1( n 1)d 3 2(n 1) 2n 1, 即a n2n 1 .⋯⋯⋯⋯⋯⋯⋯..6分(Ⅱ )依意,b n a2n22n12n 11.T n b1 b2b n(221)(231)(2n 1 1)=2223...2n1n4(1 2 n )n122n2n 4.⋯⋯⋯⋯⋯⋯⋯ ..13分17.(本小分14 分)( I)在三棱柱ABC A1 B1 C1中,因 CC1底面ABC,AC底面ABC,所以 CC1AC .又 AC BC ,BC CC1 C ,所以 AC平面BCC1B1.而BC1平面BCC1B1,AC BC1.⋯⋯⋯⋯⋯⋯⋯..4分(Ⅱ )CB1与 C1 B 的交点E,DE,因 D 是 AB 的中点, E 是BC1的中点,E 所以 DE ∥AC1.因 DE平面CDB1,AC1平面CDB1,所以AC1∥平面CDB1.⋯⋯⋯⋯⋯⋯⋯ ..9分(Ⅲ )在段A1B1上存在点M,使得BM CB1,且M段A1B1的中点 .明如下:因 AA1底面 ABC , CD底面 ABC ,M 所以 AA1CD .E 由已知 AC BC ,D段AB的中点,所以 CD AB .又 AA 1 AB A ,所以 CD 平面 AAB B .1 1取 段 A 1 B 1 的中点 M , 接 BM . 因 BM 平面 AA 1B 1 B ,所以 CD BM .由已知 AB 2AA 1 ,由平面几何知 可得 BM B 1 D .又 CD B 1D D ,所以 BM 平面 B 1CD .又 11BC平面 B CD ,所以 BMCB 1 .⋯⋯⋯⋯⋯⋯⋯..14分18. (本小 分 13 分)(I )在ABC 中,因 cos B1 ,2所以 B2π, sin B3 .32由正弦定理ab ,sin A sin B可得2 2 31 sin A, sin A.322又 A 角, A,所以 C .66所以 S ABC1ab sin C211 22 3223 .. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分(II ) sin A sinCsin( C) sinC3= sin C3cosC 1 ( sin C)22=3sin 2C1(1 cos2C )441sin(2C) 1 .264因 C(0,) ,3所以2C5( ,) .666 sin(2C)( 1 ,1].62所以 sin A sin C 的取范是1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯13分(0, ] .419.(本小分 13 分)解:( I)函数的定域(0,) .因 f ( x)a(ax2(a 1)x a( x1)( x a) x1)x x. x又因函数 f ( x) 在(1,3)减,所以不等式( x1)(x a)0 在(1,3)上成立.g( x) ( x1)(x a) , g (3)0 ,即 93(a1)a0 即可,解得 a 3.所以a的取范是[3,) .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分(Ⅱ)当 a 1 , f ( x)ln x x2,2f (x)1xx21(x1)(x 1) x x x.令 f(x)0 ,得x1或 x 1 (舍).当 x 化, f ( x), f ( x) 化情况如下表:x(0,1)1(1, )f ( x)0+f (x)极小所以 x 1,函数f ( x)的最小f (1)1 . 2所以 f (x)1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯13分成立 .220.(本小分 14 分)解:因 f (x)e x (ax2bx1) ,所以f( x)e x[ ax2(2a b) x b 1] .因 f(1)0 ,所以 a(2 a b)b10 .所以 a 1 .⋯⋯⋯⋯⋯⋯⋯⋯2 分( Ⅰ)当a1, b1,f (0)1, f (0) 2 ,所以曲 y f (x) 在点(0, f (0)) 的切方程y12( x0) .即 2x y 10.⋯⋯⋯⋯⋯⋯⋯⋯4 分(Ⅱ )由已知得f ( x)e x (x2bx 1),所以f ( x) e x[ x2(2b) x b 1]e x ( x 1)(x b1).( 1)当b11,即 b0,令 f(x) e x (x1)(x b1) 0 得,x 1 或 x b1 ;(x1)(1)0 得,.令) e (f x x x b b 1 x1所以函数 f (x) 在 (1,) 和 (,b1)上增,在( b1, 1) 上减.所以函数 f (x) 在区 [1,1] 上增.所以函数 f ( x) 在区 [1,1] 上的最小 f ( 1) e 1 (2b)0 .解得 b 2 .然合意.( 2)当b11,即 b0 ,f ( x)e x( x1)20 恒成立,所以函数 f ( x) 在 (,) 上增.所以函数 f (x) 在区 [ 1,1] 上增.所以函数 f ( x) 在区 [ 1,1]上的最小 f (1) e 1 (2b) 0 .解得 b 2 .然不符合意.( 3)当b11,即 b0 ,令 f ( x) e x ( x1)(x b1) 0 得,x1或 x b 1 ;x1)(1) 0得,.令( ) e (f x x x b1x b 1所以函数 f (x) 在 (, 1) 和 ( b 1,) 上增,在 (1, b1) 上减.①若 b 11,即 b 2 ,函数 f ( x) 在区 [ 1,1] 上减.所以函数 f (x) 在区 [ 1,1] 上的最小 f (1)e(2b)0 .解得 b 2 .然合意.②若 b 11,即 2b0 ,函数 f ( x) 在在 (1,b1) 上减,在( b 1,1) 上增.此,函数 f ( x) 在区 [1,1] 上的最小 f ( b1) e b 1(b2)0 .解得 b 2 .然不合意.上所述, b 2 或b 2 所求.⋯⋯⋯⋯⋯⋯⋯⋯14分。

北京市朝阳区2017届高三第一学期期中考试数学(理)试题(有答案)[精品]

北京市朝阳区2017届高三第一学期期中考试数学(理)试题(有答案)[精品]

北京市朝阳区2016-2017学年度高三年级第一学期统一考试数学试卷(理工类) 2016.11(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知全集U =R ,集合{}2|20A x x x =-<,{}|10B x x =-≥,则()U AB =ðA .{}|01x x <<B .{}|0x x <C .{}|2x x >D .{}|12x x <<2.下列函数中,在其定义域上既是偶函数又在(0)+∞,上单调递减的是 A .2y x =B .1y x =+C .lg ||y x =-D .2x y =-3.若 2.1log 0.6a =,0.62.1b =,0.5log 0.6c =,则a ,b ,c 的大小关系是 A .a b c >> B .b c a >> C .c b a >> D .b a c >>4.已知函数2()f x ax x =-,若对任意12,[2,)x x ∈+∞,且12x x ≠,不等式1212()()f x f x x x ->-恒成立,则实数a 的取值范围是A .1(,)2+∞ B .1[,)2+∞ C .1(,)4+∞ D .1[,)4+∞ 5.设R m ∈且0m ≠,“不等式4+4m m>”成立的一个充分不必要条件是 A .0m > B .1m > C .2m > D .2m ≥6.已知三角形ABC 外接圆O 的半径为1(O 为圆心),且2OA AB AC ++=0, ||2||OA AB =,则CA BC ⋅等于 A .154-B.2- C .154 D.27.已知函数21,0,()log ,0,x x f x x x +≤⎧=⎨>⎩则函数1()(())2g x f f x =-的零点个数是A .4B .3C .2D .18. 5个黑球和4个白球从左到右任意排成一排,下列说法正确的是A .总存在一个黑球,它右侧的白球和黑球一样多B .总存在一个白球,它右侧的白球和黑球一样多C .总存在一个黑球,它右侧的白球比黑球少一个D .总存在一个白球,它右侧的白球比黑球少一个第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9.已知平面向量(1,2),(2,)y ==-a b .若a //b ,则y = .10.函数22()cos sin f x x x =-的单调递减区间为 .11.各项均为正数的等比数列{}n a 的前n 项和为n S .若23=a ,245S S =,则1a = ,4S = .12.已知角A 为三角形的一个内角,且3cos 5A =,则tan A = ,tan()4A π+= . 13.已知函数221,0,()(1)2,0xmx x f x m x ⎧+≥=⎨-<⎩在(,)-∞+∞上是具有单调性,则实数m 的取值范围 .14.《九章算术》是我国古代一部重要的数学著作,书中有如下问题“今有良马与驽马发长安,至齐.齐去长安三千里,良马初日行一百九十三里,日增一十三里,驽马初日行九十七里,日减半里.良马先至齐,复还迎驽马,问几何日相逢.”其大意为:“现在有良马和驽马同时从长安出发到齐去,已知长安和齐的距离是3000里,良马第一天行193里,之后每天比前一天多行13里,驽马第一天行97里,之后每天比前一天少行0.5里.良马到齐后,立刻返回去迎驽马,多少天后两马相遇.”试确定离开长安后的第 天,两马相逢.DCA三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知数列{}()N n a n *∈是公差不为0的等差数列,11a =,且248111,,a a a 成等比数列. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设数列11{}n n a a +⋅的前n 项和为n T ,求证1n T <.16.(本小题满分13分)已知函数()sin f x a x x =-(a ∈R )的图象经过点(,0)3π. (Ⅰ)求()f x 的最小正周期; (Ⅱ)若3[,]22x ππ∈,求()f x 的取值范围.17.(本小题满分13分) 如图,已知,,,A B C D 四点共面,=1CD ,2BC =,4AB =, 120ABC ∠=,cos 7BDC ∠=. (Ⅰ)求sin DBC ∠的值; (Ⅱ)求AD 的长.18. (本小题满分13分)已知函数2()cos 4x f x ax x =-+()R a ∈,ππ[,]22x ∈-. (Ⅰ)若函数()f x 是偶函数,试求a 的值;(Ⅱ)当0a >时,求证:函数()f x 在π(0,)2上单调递减.19.(本小题满分14分)已知函数2()e ()xf x x a =-,a ∈R .(Ⅰ)当1a =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)若函数()f x 在(3,0)-上单调递减,试求a 的取值范围; (Ⅲ)若函数()f x 的最小值为2e -,试求a 的值.20.(本小题满分14分)设b a ,是正奇数,数列}{n c (n *∈N )定义如下:b c a c ==21,,对任意3≥n ,n c 是21--+n n c c 的最大奇约数.数列}{n c 中的所有项构成集合A .(Ⅰ)若15,9==b a ,写出集合A ;(Ⅱ)对1≥k ,令221=max {,}k k k d c c -(max{,}p q 表示,p q 中的较大值),求证:k k d d ≤+1; (Ⅲ)证明集合A 是有限集,并写出集合A 中的最小数.北京市朝阳区2016-2017学年度第一学期高三年级统一考试数学答案(理工类) 2016.11一、选择题:(满分40分)三、解答题:(满分80分) 15.(本小题满分13分) 解:(Ⅰ)设{}n a 的公差为d .因为248111,,a a a 成等比数列,所以2428111()a a a =⋅.即2111111()37a d a d a d=⋅+++ .化简得2111(3)()(7)a d a d a d +=+⋅+,即21d a d =.又11a =,且0d ≠,解得1d = .所以有1(1)n a a n d n =+-=. …………………7分(Ⅱ)由(Ⅰ)得:11111(1)1n n a a n n n n +==-⋅⋅++.所以11111111122311n T n n n =-+-++-=-<++ . 因此,1n T <. …………………13分 16.(本小题满分13分)解:(Ⅰ)因为函数()sin f x a x x =的图象经过点(,0)3π,所以 ()0.322f a π=-= 解得 1a = . …………………3分所以()sin 2sin()3f x x x x π==-.所以()f x 最小正周期为2π. …………………6分 (Ⅱ)因为322x ππ≤≤,所以7.636x πππ≤-≤所以当32x ππ-=,即56x π=时,()f x 取得最大值,最大值是2; 当736x ππ-=,即32x π=时,()f x 取得最小值,最小值是 1.- 所以()f x 的取值范围是[1,2]-. …………………13分 17.(本小题满分13分)解:(Ⅰ)在△BDC 中,因为cos 7BDC ∠=sin 7BDC ∠=. 由正弦定理=sin sin DC BCDBC BDC∠∠得,sin sin =DC BDC DBC BC ⋅∠∠=. …………5分(Ⅱ)在△BDC 中,由2222cos BC DC DB DC DB BDC =+-⋅⋅∠得,2412DB DB =+-⋅.所以2307DB DB -⋅-=. 解得DB =7DB =-(舍). 又因为cos =cos 120ABD DBC ()∠-∠=cos120cos sin120sin DBC DBC ⋅∠+⋅∠1=2-=-在△ABD 中,因为222=2cos AD AB BD AB BD ABD +-⋅⋅∠=16724(27+-⨯=,所以AD = …………13分18.(本小题满分13分)解:(Ⅰ)因为函数()f x 是偶函数,所以22()()()cos()cos 44x x f x a x x ax x --=--+-=++ 2()cos 4x f x ax x ==-+恒成立.所以0a =. …………………4分 (Ⅱ)由题意可知()sin 2xf x x a '=--. 设()sin 2x g x x a =--,则1()cos 2g x x '=-.注意到π(0,)2x ∈,0a >. 由()0g x '<,即1cos 02x -<,解得π03x <<. 由()0g x '>,即1cos 02x ->,解得ππ32x <<. 所以()g x 在π(0,)3单调递减,ππ(,)32单调递增.所以当π(0,)3x ∈,()(0)00g x g a <=-<,所以()f x 在π(0,)3x ∈单调递减,当ππ(,)32x ∈,ππ()()1024g x g a <=--<,所以()f x 在ππ(,)32x ∈单调递减, 所以当0a >时,函数()f x 在π(0,)2上单调递减. ……………………13分 19.(本小题满分14分)解:由题意可知2()e (2)xf x x x a '=+-.(Ⅰ)因为1a =,则(0)1f =-,(0)1f '=-,所以函数()f x 在点(0,(0))f 处的切线方程为(1)(0)y x --=--.即10x y ++=. …………………3分 (Ⅱ)因为函数()f x 在(3,0)-上单调递减,所以当(3,0)x ∈-时,2()e (2)0xf x x x a '=+-≤恒成立.即当(3,0)x ∈-时,220x x a +-≤恒成立.显然,当(3,1)x ∈--时,函数2()2g x x x a =+-单调递减,当(1,0)x ∈-时,函数2()2g x x x a =+-单调递增.所以要使得“当(3,0)x ∈-时,220x x a +-≤恒成立”,等价于(3)0,(0)0.g g -≤⎧⎨≤⎩即3,0.a a ≥⎧⎨≥⎩所以3a ≥. …………………8分(Ⅲ)设2()2g x x x a =+-,则44a ∆=+.①当440a ∆=+≤,即1a ≤-时,()0g x ≥,所以()0f x '≥. 所以函数()f x 在(,)-∞+∞单增,所以函数()f x 没有最小值.②当440a ∆=+>,即1a >-时,令2()e (2)0xf x x x a '=+-=得220x x a +-=,解得1211x x =-=-随着x 变化时,()f x 和()f x '的变化情况如下:所以220x a -≥+>. 所以2()e ()0xf x x a =->. 又因为函数()f x 的最小值为2e<0-,所以函数()f x 的最小值只能在21x =-处取得.所以121(1e 1]2e 2e f a ---=--==-.所以1e 1)e -=.11=.解得3a =. …………………………………14分 以下证明解的唯一性,仅供参考:设1()e g a -=因为0a >,所以0->,10-<.设0x =->,则1x -=. 设()e xh x x =-,则()e (1)xh x x '=-+.当0x >时,()0h x '<,从而易知()g a 为减函数. 当(0,3)a ∈,()0g a >;当(3,)a ∈+∞,()0g a <.所以方程1e 1)e -=只有唯一解3a =.20.(本小题满分14分)解:(Ⅰ)数列}{n c 为:9,15,3,9,3,3,3,…….故集合}3,15,9{=A . ……………3分 (Ⅱ)证明:由题设,对3≥n ,2-n c ,1-n c 都是奇数,所以21--+n n c c 是偶数.从而21--+n n c c 的最大奇约数221--+≤n n n c c c , 所以},m ax {21--≤n n n c c c ,当且仅当21--=n n c c 时等号成立. 所以,对1≥k 有k k k k d c c c =≤-+},m ax {12212,且k k k k k k d d d c c c =≤≤++},m ax {},m ax {21222.所以k k k k d c c d ≤=+++},m ax {12221,当且仅当122-=k k c c 时等号成立.………9分(Ⅲ)由(Ⅱ)知,当3≥n 时,有},m ax {21--≤n n n c c c . 所以对3≥n ,有12max max {,}{,}n c c c a b ≤=. 又n c 是正奇数,且不超过max {,}a b 的正奇数是有限的, 所以数列}{n c 中的不同项是有限的. 所以集合A 是有限集.集合A 中的最小数是b a ,的最大公约数. ……………14分。

2016-2017学年北京市朝阳区高三(上)期中数学试卷和答案(文科)

2016-2017学年北京市朝阳区高三(上)期中数学试卷和答案(文科)

2016-2017学年北京市朝阳区高三(上)期中数学试卷(文科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.(5分)已知集合A={x|x(x﹣1)<0,x∈R},B={x|<x<2,x∈R},那么集合A∩B=()A.?B.C.{x|﹣2<x<2,x∈R}D.{x|﹣2<x <1,x∈R}2.(5分)下列四个函数中,在其定义域上既是奇函数又是单调递增函数的是()A.y=x﹣1 B.y=tanx C.y=x3 D.3.(5分)已知sinx=,则sin2x的值为()A.B.C.或D.或﹣4.(5分)设x∈R且x≠0,则“x>1”是“x+>2”成立的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5.(5分)设m,n是两条不同的直线,α,β是两个不同的平面.下列命题正确的是()A.若m?α,n?β,m⊥n,则α⊥βB.若α∥β,m⊥α,n∥β,则m⊥n C.若α⊥β,m⊥α,n∥β,则m∥n D.若α⊥β,α∩β=m,n⊥m,则n⊥β6.(5分)已知三角形ABC外接圆O的半径为1(O为圆心),且+=,||=2||,则?等于()A.B.C.D.7.(5分)已知函数f(x)=则函数g(x)=f(f(x))﹣的零点个数是()A.4 B.3 C.2 D.18.(5分)5个黑球和4个白球从左到右任意排成一排,下列说法正确的是()A.总存在一个黑球,它右侧的白球和黑球一样多B.总存在一个白球,它右侧的白球和黑球一样多C.总存在一个黑球,它右侧的白球比黑球少一个D.总存在一个白球,它右侧的白球比黑球少一个二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9.(5分)设平面向量=(1,2),=(﹣2,y),若∥,则y=.10.(5分)已知角A为三角形的一个内角,且cosA=,sinA=.cos2A=.11.(5分)已知a=log2.10.6,b=2.10.6,c=log0.50.6,则a,b,c的大小关系是.12.(5分)各项均为正数的等比数列{{a n}的前n项和为S n,若a3=2,S4=5S2,则a1的值为,S4的值为.13.(5分)已知函数f(x)=在(﹣∞,+∞)上是具有单调性,则实数m的取值范围.14.(5分)《九章算术》是我国古代一部重要的数学著作,书中有如下问题:“今有良马与驽马发长安,至齐.齐去长安三千里,良马初日行一百九十三里,日增一十三里,驽马初日行九十七里,日减半里.良马先至齐,复还迎驽马,问几何日相逢.”其大意为:“现在有良马和驽马同时从长安出发到齐去,已知长安和齐的距离是3000里,良马第一天行193里,之后每天比前一天多行13里,驽马第一天行97里,之后每天比前一天少行0.5里.良马到齐后,立刻返回去迎驽马,多少天后两马相遇.”试确定离开长安后的第天,两马相逢.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)已知数列{a n}(n∈N*)是公差不为0的等差数列,若a1=1,且a2,a4,a8成等比数列.。

北京市朝阳区高三上学期期中考试数学理试题含答案精编版

北京市朝阳区高三上学期期中考试数学理试题含答案精编版

北京市朝阳区2016-2017学年度高三年级第一学期统一考试数学试卷(理工类) 2016.11(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知全集U =R ,集合{}2|20A x x x =-<,{}|10B x x =-≥,则()U AB =ðA .{}|01x x <<B .{}|0x x <C .{}|2x x >D .{}|12x x <<2.下列函数中,在其定义域上既是偶函数又在(0)+∞,上单调递减的是 A .2y x =B .1y x =+C .lg ||y x =-D .2x y =-3.若 2.1log 0.6a =,0.62.1b =,0.5log 0.6c =,则a ,b ,c 的大小关系是 A .a b c >> B .b c a >> C .c b a >> D .b a c >>4.已知函数2()f x ax x =-,若对任意12,[2,)x x ∈+∞,且12x x ≠,不等式1212()()0f x f x x x ->-恒成立,则实数a 的取值范围是A .1(,)2+∞B .1[,)2+∞C .1(,)4+∞D .1[,)4+∞ 5.设R m ∈且0m ≠,“不等式4+4m m>”成立的一个充分不必要条件是 A .0m > B .1m > C .2m > D .2m ≥ 6.已知三角形ABC 外接圆O 的半径为1(O 为圆心),且2OA AB AC ++=0,||2||OA AB =,则CA BC ⋅等于A .154-B.C .154 D7.已知函数21,0,()log ,0,x x f x x x +≤⎧=⎨>⎩则函数1()(())2g x f f x =-的零点个数是A .4B .3C .2D .18. 5个黑球和4个白球从左到右任意排成一排,下列说法正确的是A .总存在一个黑球,它右侧的白球和黑球一样多B .总存在一个白球,它右侧的白球和黑球一样多C .总存在一个黑球,它右侧的白球比黑球少一个D .总存在一个白球,它右侧的白球比黑球少一个第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9.已知平面向量(1,2),(2,)y ==-a b .若a //b ,则y = .10.函数22()cos sin f x x x =-的单调递减区间为 .11.各项均为正数的等比数列{}n a 的前n 项和为n S .若23=a ,245S S =,则1a = ,4S = .12.已知角A 为三角形的一个内角,且3cos 5A =,则t a n A = ,tan()4A π+= .13.已知函数221,0,()(1)2,0xmx x f x m x ⎧+≥=⎨-<⎩在(,)-∞+∞上是具有单调性,则实数m 的取值范围 .14.《九章算术》是我国古代一部重要的数学著作,书中有如下问题:“今有良马与驽马发长安,至齐.齐去长安三千里,良马初日行一百九十三里,日增一十三里,驽马初日行九十七里,日减半里.良马先至齐,复还迎驽马,问几何日相逢.”其大意为:“现在有良马和驽马同时从长安出发到齐去,已知长安和齐的距离是3000里,良马第一天行193里,之后每天比前一天多行13里,驽马第一天行97里,之后每天比前一天少行0.5里.良马到齐后,立刻返回去迎驽马,多少天后两马相遇.”试确定离开长安后的第 天,两马相逢.DCA三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知数列{}()N n a n *∈是公差不为0的等差数列,11a =,且248111,,a a a 成等比数列.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设数列11{}n n a a +⋅的前n 项和为n T ,求证:1n T <.16.(本小题满分13分)已知函数()sin f x a x x =(a ∈R )的图象经过点(,0)3π. (Ⅰ)求()f x 的最小正周期; (Ⅱ)若3[,]22x ππ∈,求()f x 的取值范围.17.(本小题满分13分)如图,已知,,,A B C D 四点共面,=1CD ,2BC =,4AB =,120ABC ∠=,cos 7BDC ∠=. (Ⅰ)求sin DBC ∠的值; (Ⅱ)求AD 的长.18. (本小题满分13分)已知函数2()cos 4x f x ax x =-+()R a ∈,ππ[,]22x ∈-. (Ⅰ)若函数()f x 是偶函数,试求a 的值;(Ⅱ)当0a >时,求证:函数()f x 在π(0,)2上单调递减.19.(本小题满分14分)已知函数2()e ()xf x x a =-,a ∈R .(Ⅰ)当1a =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)若函数()f x 在(3,0)-上单调递减,试求a 的取值范围; (Ⅲ)若函数()f x 的最小值为2e -,试求a 的值.20.(本小题满分14分)设b a ,是正奇数,数列}{n c (n *∈N )定义如下:b c a c ==21,,对任意3≥n ,nc 是21--+n n c c 的最大奇约数.数列}{n c 中的所有项构成集合A . (Ⅰ)若15,9==b a ,写出集合A ;(Ⅱ)对1≥k ,令221=max {,}k k k d c c -(max{,}p q 表示,p q 中的较大值),求证:k k d d ≤+1;(Ⅲ)证明集合A 是有限集,并写出集合A 中的最小数.北京市朝阳区2016-2017学年度第一学期高三年级统一考试数学答案(理工类) 2016.11一、选择题:(满分40分)二、填空题:(满分30分)(注:两空的填空,第一空3分,第二空2分) 三、解答题:(满分80分) 15.(本小题满分13分) 解:(Ⅰ)设{}n a 的公差为d .因为248111,,a a a 成等比数列,所以2428111()a a a =⋅.即2111111()37a d a d a d=⋅+++ .化简得2111(3)()(7)a d a d a d +=+⋅+,即21d a d =.又11a =,且0d ≠,解得1d = .所以有1(1)n a a n d n =+-=. …………………7分(Ⅱ)由(Ⅰ)得:11111(1)1nn a a n n n n +==-⋅⋅++.所以11111111122311n T n n n =-+-++-=-<++ . 因此,1n T <. …………………13分 16.(本小题满分13分)解:(Ⅰ)因为函数()sin f x a x x =的图象经过点(,0)3π,所以 ()0.3f π==解得 1a = . …………………3分所以()sin 2sin()3f x x x x π==-.所以()f x 最小正周期为2π. …………………6分 (Ⅱ)因为322x ππ≤≤,所以7.636x πππ≤-≤所以当32x ππ-=,即56x π=时,()f x 取得最大值,最大值是2;当736x ππ-=,即32x π=时,()f x 取得最小值,最小值是 1.-所以()f x 的取值范围是[1,2]-. …………………13分 17.(本小题满分13分)解:(Ⅰ)在△BDC 中,因为cos BDC ∠=sin BDC ∠=. 由正弦定理=sin sin DC BCDBC BDC∠∠得,sin sin =DC BDC DBC BC ⋅∠∠= …………5分(Ⅱ)在△BDC 中,由2222cos BC DC DB DC DB BDC =+-⋅⋅∠得,2412DB DB =+-⋅.所以230DB DB --=. 解得DB =DB =. 又因为cos =cos 120ABD DBC ()∠-∠=cos120cos sin120sin DBC DBC ⋅∠+⋅∠1=2-+=-在△ABD 中,因为222=2cos AD AB BD AB BD ABD +-⋅⋅∠=16724(27+-⨯=,所以AD =. …………13分18.(本小题满分13分)解:(Ⅰ)因为函数()f x 是偶函数,所以22()()()cos()cos 44x x f x a x x ax x --=--+-=++ 2()cos 4x f x ax x ==-+恒成立.所以0a =. …………………4分(Ⅱ)由题意可知()sin 2xf x x a '=--. 设()sin 2xg x x a =--,则1()cos 2g x x '=-.注意到π(0,)2x ∈,0a >.由()0g x '<,即1cos 02x -<,解得π03x <<.由()0g x '>,即1cos 02x ->,解得ππ32x <<.所以()g x 在π(0,)3单调递减,ππ(,)32单调递增.所以当π(0,)3x ∈,()(0)00g x g a <=-<,所以()f x 在π(0,)3x ∈单调递减,当ππ(,)32x ∈,ππ()()1024g x g a <=--<,所以()f x 在ππ(,)32x ∈单调递减,所以当0a >时,函数()f x 在π(0,)2上单调递减. ……………………13分19.(本小题满分14分)解:由题意可知2()e (2)xf x x x a '=+-. (Ⅰ)因为1a =,则(0)1f =-,(0)1f '=-,所以函数()f x 在点(0,(0))f 处的切线方程为(1)(0)y x --=--.即10x y ++=. …………………3分 (Ⅱ)因为函数()f x 在(3,0)-上单调递减,所以当(3,0)x ∈-时,2()e (2)0x f x x x a '=+-≤恒成立.即当(3,0)x ∈-时,220x x a +-≤恒成立.显然,当(3,1)x ∈--时,函数2()2g x x x a =+-单调递减,当(1,0)x ∈-时,函数2()2g x x x a =+-单调递增. 所以要使得“当(3,0)x ∈-时,220x x a +-≤恒成立”, 等价于(3)0,(0)0.g g -≤⎧⎨≤⎩即3,0.a a ≥⎧⎨≥⎩所以3a ≥. …………………8分(Ⅲ)设2()2g x x x a =+-,则44a ∆=+.①当440a ∆=+≤,即1a ≤-时,()0g x ≥,所以()0f x '≥. 所以函数()f x 在(,)-∞+∞单增,所以函数()f x 没有最小值.②当440a ∆=+>,即1a >-时,令2()e (2)0xf x x x a '=+-=得220x x a +-=,解得1211x x =-=-随着x 变化时,()f x 和()f x '的变化情况如下:当x ∈( , 1-∞-时,22( 12x a ≥-=++.所以220x a -≥+. 所以2()e ()0xf x x a =->. 又因为函数()f x 的最小值为2e<0-,所以函数()f x 的最小值只能在21x =-处取得.所以121(1e 1]2e 2e f a ---=--==-.所以1e 1)e -=.11=.解得3a =. …………………………………14分 以下证明解的唯一性,仅供参考:设1()e g a -=因为0a >,所以0->,10<.设0x =->,则1x -= 设()e xh x x =-,则()e (1)xh x x '=-+.当0x >时,()0h x '<,从而易知()g a 为减函数. 当(0,3)a ∈,()0g a >;当(3,)a ∈+∞,()0g a <.所以方程1e 1)e -=只有唯一解3a =.20.(本小题满分14分)解:(Ⅰ)数列}{n c 为:9,15,3,9,3,3,3,…….故集合}3,15,9{=A . ……………3分 (Ⅱ)证明:由题设,对3≥n ,2-n c ,1-n c 都是奇数,所以21--+n n c c 是偶数.从而21--+n n c c 的最大奇约数221--+≤n n n c c c , 所以},m ax {21--≤n n n c c c ,当且仅当21--=n n c c 时等号成立. 所以,对1≥k 有k k k k d c c c =≤-+},m ax {12212,且k k k k k k d d d c c c =≤≤++},m ax {},m ax {21222.所以k k k k d c c d ≤=+++},m ax {12221,当且仅当122-=k k c c 时等号成立.………9分(Ⅲ)由(Ⅱ)知,当3≥n 时,有},m ax {21--≤n n n c c c . 所以对3≥n ,有12max max {,}{,}n c c c a b ≤=. 又n c 是正奇数,且不超过max {,}a b 的正奇数是有限的, 所以数列}{n c 中的不同项是有限的. 所以集合A 是有限集.集合A 中的最小数是b a ,的最大公约数. ……………14分。

北京市朝阳区2016届高三上学期期中统一考试数学(理)试题含解析

北京市朝阳区2016届高三上学期期中统一考试数学(理)试题含解析

第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知集合{3,}A x x x =≤∈R ,{10,}B x x x =-≥∈N ,则AB =( )A .{0,1}B .{0,12},C .{2,3}D . {1,2,3} 【答案】.D 【解析】试题分析:{10,}{1,}B x x x x x x =-≥∈=≥∈N N 又{3,}A x x x =≤∈R所以{1,2,3}AB =故答案选.D考点:1.常见数集的表示;2.集合的运算.2.已知(0,)α∈π,且3cos 5α=-,则tan α=( ) A .34 B .34- C .43 D .43-【答案】.D考点:同角三角函数关系.3. 已知等差数列{}n a 的公差为2,若124, , a a a 成等比数列,那么1a 等于( )A. 2B. 1C. 1-D. 2- 【答案】A 【解析】试题分析:因为数列{}n a 的公差为2的等差数列 所以212a a =+,411(41)26a a a =+-⨯=+ 因为1a ,2a ,3a 成等比数列所以2214a a a =,即2111(2)(6)a a a +=+,解得12a = 故答案选A .考点:1.等差数列的通项公式;2.等比数列中项. 4. 给出下列命题:①若给定命题p :x ∃∈R ,使得210x x +-<,则p ⌝:,x ∀∈R 均有012≥-+x x ; ②若q p ∧为假命题,则q p ,均为假命题;③命题“若0232=+-x x ,则2=x ”的否命题为“若 ,0232=+-x x 则2≠x其中正确的命题序号是( )A .① B. ①② C. ①③ D. ②③ 【答案】A 【解析】试题分析:①若给定命题p :x ∃∈R ,使得210x x +-<,则p ⌝:,x ∀∈R 均有012≥-+x x ;故①是正确的;②若q p ∧为假命题,则p 或q 为假命题,故②是错误的;③命题“若0232=+-x x ,则2=x ”的否命题为“若 2320,x x -+≠则2≠x ,故③是错误的. 故答案选A .考点: 命题的真假判断.5. 已知函数()sin()(00)2f x A x x A ωϕωϕπ=+∈>><R ,,,的图象(部分)如图所示,则()f x 的解析式是( )A .()2sin()6f x x π=π+B .()2sin(2)6f x x π=π+C .()2sin()3f x x π=π+D .()2sin(2)3f x x π=π+【答案】A . 【解析】试题分析:由题图可知函数的周期514()263T =-=,2A = 由周期公式2T πω=,得ωπ=所以()2sin()f x x πϕ=+ 由题图知,当13x =时,()f x 取得最大值 所以22326k k πππϕπϕπ+=+⇒=+,k Z ∈因为||2πϕ<,所以6πϕ=所以()2sin()6f x x ππ=+故答案选A .考点:三角函数的图像和性质. 6. 设p :2101x x -≤-,q :2(21)(1)0x a x a a -+++<,若p 是q 的充分不必要条件,则实数a 的取值范围是( )A .1(0,)2B .1[0,)2C .1(0,]2D .1[,1)2【答案】B考点:1.解不等式;2.命题的充分必要性.7. 在ABC ∆中,已知4AB AC ⋅=3=,,M N 分别是BC 边上的三等分点,则⋅的值是( ) A .5 B .421C .6D .8【答案】C 【解析】试题分析:因为M 、N 分别是BC 边上的三等分点所以2133AM AB AC =+,1233AM AB AC =+ 所以222112252()()3333999AM AN AB AC AB AC AB AB AC AC ⋅=+⋅+=+⋅+2225()99AB AC AB AC =++⋅又BC AC AB =-所以2222222()2324BC AC AB AC AB AC AB AC AB =-=+-⋅⇒=+-⨯ 得2217AC AB += 所以25174699AM AN ⋅=⨯+⨯= 故答案选C考点:1.向量的线性关系;2.向量的数量积.8. 已知定义在R 上的函数⎩⎨⎧-∈-∈+=),0 ,1[,2),1 ,0[,2)(22x x x x x f 且)()2(x f x f =+.若方程()2=0f x kx --有三个不相等的实数根,则实数k 的取值范围是( )A .1(,1)3B .11(,)34--C .11(,1)(1,)33--D .1111(,)(,)3443--【答案】C 【解析】试题分析:由(2)()f x f x +=,知函数()f x 的周期为2 作函数()f x 和函数()2g x kx =+的图像,如下图所示:函数()2g x kx =+恒过定点(0,2)321303l k -==---32110m k -==---32110n k -==-321303q k -==-结合图像可知,k 的取值范围为11(,1)(1,)33--故答案选C考点:1.方程根的存在性;2.函数零点个数;3.函数的周期性.第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9. 已知三个数π221(),log 3,log π2,其中最大的数是 . 【答案】2log π考点:指数函数的性质.10.已知平面向量2113()(-),,,a =b =.若向量()λ⊥a a +b ,则实数λ的值是 . 【答案】5- 【解析】试题分析:因为平面向量21(),a =,13(-),b = 所以(2,13)a b λλλ+=-+ 由()a a b λ⊥+所以()0a a b λ⋅+=,即(2,1)(2,13)02(2)1(13)0λλλλ⋅-+=⇒⨯-+⨯+= 解得5λ=-考点:向量的数量积.11.如图,在ABCD 中,E 是CD 中点,BE xAB yAD =+,则x y += .【答案】12【解析】试题分析:连接BD ,又E 为CD 的中点所以1122BE BD BC =+ 又BD AD AB =-,BC AD = 所以111()222BE AD AB AD AD AB =-+=- 又BE xAB yAD =+ 所以1x =,12y =- 所以12x y +=考点:向量的线性运算.12. 若函数()2sin()f x x ωϕ=+(0,0ωϕ≠>)是偶函数,则ϕ的最小值为 . 【答案】2π考点:三角函数的性质. 13. 若函数sin ()cos a xf x x-=在区间ππ(,)63上单调递增,则实数a 的取值范围是 .【答案】[2,)+∞ 【解析】试题分析:因为函数sin ()cos a xf x x-=在区间ππ(,)63上单调递增所以()0f x '≥在区间ππ(,)63恒成立, 22cos sin (sin )(sin )sin 1()cos cos x x a x x a x f x x x-⋅--⋅--'== 因为2cos 0x >,所以sin 10a x -≥在区间ππ(,)63恒成立所以1sin a x≥因为(,)63x ππ∈,所以11sin 2223sin x x<<⇒<<所以a 的取值范围是[2,)+∞考点:1.恒成立问题;2.导函数的应用.14. 如图,已知边长为4的正方形ABCD ,E 是BC 边上一动点(与B 、C 不重合),连结AE ,作EF ⊥AE 交∠BCD 的外角平分线于F .设BE x =,记()f x EC CF =⋅,则函数()f x 的值域是 ;当ECF ∆面积最大时,EF = .F EDCBA【答案】(0,4],【解析】试题分析:如图,作FG BC ⊥,交BC 延长线于G ,则CGFG =,易证得ABE EGF ∆∆∽,所以AB BEEG FG= 设FG CG m ==,则4EG EC CG x m =+=-+ 所以44xm x x m m=⇒=-+所以()(4)cos (4)4f x EC CF x x x π=⋅=-⋅=-由题知04x <<,所以0()4f x <≤ 故()f x 的值域是(0,4]2111(4)[(2)4]222ECF S EC FG x x x ∆=⨯=-=--+ 因为04x <<,所以当BCF ∆面积最大时,2x =,即2BE CG FG === 则4EG EC CG =+=在Rt EGF ∆中,222224220EF EG FG =+=+=所以EF =考点:1.向量的数量积;2.二次函数的最值.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15. (本小题满分13分)已知函数2()cos 2cos 222xx x f x =-. (Ⅰ)求π()3f 的值;(Ⅱ)求函数)(x f 的单调递减区间及对称轴方程. 【答案】(Ⅰ)0;(Ⅱ)25[2,2],33k k k Z ππππ++∈,2,3x k k Z ππ=+∈.试题解析:由2()cos 2cos 222x x x f x =-则()(cos 1)f x x x -+cos 1x x =--2sin()16x π=--(Ⅰ)()2sin()10336f πππ=--=(Ⅱ)令322,262k x k k Z πππππ+≤-≤+∈,得2522,33k x k k Z ππππ+≤≤+∈ 所以函数()f x 的单调递减区间是25[2,2],33k k k Z ππππ++∈ 令,62x k k Z πππ-=+∈,得2,3x k k Z ππ=+∈ 即函数()f x 的对称轴方程2,3x k k Z ππ=+∈ 考点:1.三角函数的恒等变换;2.三角函数的性质. 16. (本小题满分13分)已知等差数列{}n a 的首项11a =,公差1d =,前n 项和为n S ,且1n nb S =. (Ⅰ)求数列{}n b 的通项公式; (Ⅱ)求证:1232n b b b b ++++<.【答案】(Ⅰ)2(1)n b n n =+;(Ⅱ)证明略,详见解析.试题解析:(Ⅰ)因为数列{}n a 是首项11a =,公差1d =的等差数列 所以由等差数列的前n 项和公式得,数列{}n a 前n 项和为21122n S n n =+ 由1n nb S =,得2(1)n b n n =+(Ⅱ)由(Ⅰ)知222(1)1n b n n n n ==-++所以123222222222212233411n b b b b n n n ++++=-+-+-++-=-++ 又201n >+,所以1232n b b b b ++++< 考点:1.等差数列的求和公式;2.数列的求和方法. 17.(本小题满分13分)在ABC ∆中,角C B A ,,所对的边分别为c b a ,,.且21cos -=B . (Ⅰ)若322==b a ,,求角C ; (Ⅱ)求C A sin sin ⋅的取值范围. 【答案】(Ⅰ)6C π=;(Ⅱ)1(0,]4.试题解析: (Ⅰ)因为1cos 02B =-<,且B 是ABC ∆的内角,所以23B π=,得sin 2B =, 再由正弦定理sin sin abA B =,得1sin 2A =, 所以6A π=又A B C π++= 所以6C π= (Ⅱ)因为1cos 02B =-<,且B 是ABC ∆的内角, 所以23B π=, 故3A C π+=,既得3C A π=-,所以21sin sin sin sin()cos cos 32A C A A A A A π⋅=⋅-=-11112cos 2sin(2)44264A A A π=+-=+- 因为3A C π+=,所以5102sin(2)1366626A A A πππππ<<⇒<+<⇒<+≤ 所以1110sin(2)2644A π<+-≤故sin sin A C ⋅的取值范围1(0,]4考点:1.正弦定理;2.三角函数的性质.18. (本小题满分13分)已知函数2()ln (1)2x f x a x a x =+-+. (Ⅰ)当0a >时,求函数()f x 的单调区间;(Ⅱ)当1a =-时,证明1()2f x ≥. 【答案】(Ⅰ)当1a =时,函数()f x 的单调递增区间是(0,)+∞,无单调递减区间, 当1a >时,函数()f x 的单调递增区间是(,),(0,1)a +∞,单调递减区间为(1,)a , 当1a <时,函数()f x 的单调递增区间是(1,),(0,)a +∞,单调递减区间为(,1)a ; (Ⅱ)证明略.【解析】试题分析:(Ⅰ)易求得函数()f x 的定义域为(0,)+∞,由函数2()ln (1)2x f x a x a x =+-+,则2(1)()x a x a f x x-++'=,令()0f x '>或()0f x '<,即可求得函数()f x 的单调区间; (Ⅱ)当1a =-时,2()ln 2x f x x =-+,要证1()2f x ≥,只需证min 1()2f x ≥,所以此问就是求函数()f x 在定义域区间的最小值.试题解析: (Ⅰ)易求得函数()f x 的定义域为(0,)+∞, 已知函数2()ln (1)2x f x a x a x =+-+, 所以2(1)()(1)a x a x a f x x a x x-++'=+-+=, 令()0f x '>,即2(1)0(1)()0x a x a x x a -++>⇒-->当1a =时,()0f x '≥恒成立,所以函数()f x 的单调递增区间是(0,)+∞,无单调递减区间。

北京市朝阳区高三年级期中考试文科数学

北京市朝阳区高三年级期中考试文科数学

北京市朝阳区2016-2017学年度高三年级第一学期统一考试数学试卷(文史类) 2016.11(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1. 已知集合{|(1)0,}A x x x x =-<∈R ,1{|2,}2B x x x =<<∈R ,那么集合A B = A.∅B .1{|1,}2x x x <<∈R C .{|22,}x x x -<<∈R D .{|21,}x x x -<<∈R2.下列四个函数中,在其定义域上既是奇函数又是单调递增函数的是 A .1y x =- B .tan y x =C .3y x =D .2y x=-3. 已知3sin 5x =,则sin 2x 的值为 A . 1225 B .2425 C .1225或1225- D .2425或2425-4. 设x ∈R 且0x ≠,则“1x >”是“1+2x x>”成立的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5. 设m ,n 是两条不同的直线,α,β是两个不同的平面.下列命题正确的是A .若,,m n m n αβ⊂⊂⊥,则αβ⊥B .若//,,//m n αβαβ⊥,则 m n ⊥C .若,,//m n αβαβ⊥⊥,则//m nD .若,,m n m αβαβ⊥=⊥,则n β⊥6. 已知三角形ABC 外接圆O 的半径为1(O 为圆心),且OB OC +=0, ||2||OA AB =,则CA BC ⋅等于( ) A .154-B .34-C .154D .347. 已知函数21,0,()log ,0,x x f x x x +≤⎧=⎨>⎩则函数()1()()2g x f f x =-的零点个数是A .4B .3C .2D .18. 5个黑球和4个白球从左到右任意排成一排,下列说法正确的是( )A .总存在一个黑球,它右侧的白球和黑球一样多B .总存在一个白球,它右侧的白球和黑球一样多C .总存在一个黑球,它右侧的白球比黑球少一个D .总存在一个白球,它右侧的白球比黑球少一个第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9. 设平面向量(1,2),(2,)y ==-a b ,若a //b ,则y = .10. 已知角A 为三角形的一个内角,且3cos 5A =,sin A = . cos2A = . 11. 已知 2.1log 0.6a =,0.62.1b =,0.5log 0.6c =,则a ,b ,c 的大小关系是 . 12. 设各项均为正数的等比数列{}n a 的前n 项和为n S ,若23=a ,245S S =,则1a 的值为 ,4S 的值为 .13.已知函数221,0,()(1)2,0,xmx x f x m x ⎧+≥=⎨-<⎩在(,)-∞+∞上具有单调性,则实数m 的取值范围是 .14. 《九章算术》是我国古代一部重要的数学著作.书中有如下问题:“今有良马与驽马发长安,至齐。

2016-2017年北京市朝阳区高三(上)期中数学试卷及参考答案(文科)

2016-2017年北京市朝阳区高三(上)期中数学试卷及参考答案(文科)

2016-2017学年北京市朝阳区高三(上)期中数学试卷(文科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.(5分)已知集合A={x|x(x﹣1)<0,x∈R},B={x|<x<2,x∈R},那么集合A∩B=()A.?B.C.{x|﹣2<x<2,x∈R}D.{x|﹣2<x <1,x∈R}2.(5分)下列四个函数中,在其定义域上既是奇函数又是单调递增函数的是()A.y=x﹣1 B.y=tanx C.y=x3 D.3.(5分)已知sinx=,则sin2x的值为()A.B.C.或D.或﹣4.(5分)设x∈R且x≠0,则“x>1”是“x+>2”成立的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5.(5分)设m,n是两条不同的直线,α,β是两个不同的平面.下列命题正确的是()A.若m?α,n?β,m⊥n,则α⊥βB.若α∥β,m⊥α,n∥β,则m⊥n C.若α⊥β,m⊥α,n∥β,则m∥n D.若α⊥β,α∩β=m,n⊥m,则n⊥β6.(5分)已知三角形ABC外接圆O的半径为1(O为圆心),且+=,||=2||,则?等于()A.B.C.D.7.(5分)已知函数f(x)=则函数g(x)=f(f(x))﹣的零点个数是()A.4 B.3 C.2 D.18.(5分)5个黑球和4个白球从左到右任意排成一排,下列说法正确的是()A.总存在一个黑球,它右侧的白球和黑球一样多B.总存在一个白球,它右侧的白球和黑球一样多C.总存在一个黑球,它右侧的白球比黑球少一个D.总存在一个白球,它右侧的白球比黑球少一个二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9.(5分)设平面向量=(1,2),=(﹣2,y),若∥,则y=.10.(5分)已知角A为三角形的一个内角,且cosA=,sinA=.cos2A=.11.(5分)已知a=log2.10.6,b=2.10.6,c=log0.50.6,则a,b,c的大小关系是.12.(5分)各项均为正数的等比数列{{a n}的前n项和为S n,若a3=2,S4=5S2,则a1的值为,S4的值为.13.(5分)已知函数f(x)=在(﹣∞,+∞)上是具有单调性,则实数m的取值范围.14.(5分)《九章算术》是我国古代一部重要的数学著作,书中有如下问题:“今有良马与驽马发长安,至齐.齐去长安三千里,良马初日行一百九十三里,日增一十三里,驽马初日行九十七里,日减半里.良马先至齐,复还迎驽马,问几何日相逢.”其大意为:“现在有良马和驽马同时从长安出发到齐去,已知长安和齐的距离是3000里,良马第一天行193里,之后每天比前一天多行13里,驽马第一天行97里,之后每天比前一天少行0.5里.良马到齐后,立刻返回去迎驽马,多少天后两马相遇.”试确定离开长安后的第天,两马相逢.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)已知数列{a n}(n∈N*)是公差不为0的等差数列,若a1=1,且a2,a4,a8成等比数列.。

【数学】北京市朝阳区2016届高三上学期期中考试(文)

【数学】北京市朝阳区2016届高三上学期期中考试(文)

北京市朝阳区2016届高三上学期期中考试数学试卷(文科)(考试时间120分钟满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1. 已知集合}2{>=x x A ,B ={(1)(3)0}x x x --<,则A ∩B =()A .{1}x x >B .{23}x x <<C .{13}x x <<D .{2x x >或1}x < 2. 设平面向量(,1)x =a ,(4,)x =b , 且⋅a b 1=-, 则实数x 的值是() A .2- B .1- C .13-D .15- 3.下列函数在(,0)(0,)-∞+∞ 上既是偶函数,又在),0(+∞上单调递增的是()A .2y x =-B .1y x -=C .2log y x =D .2x y =-4.已知1tan 3θ=,那么πtan ()4θ+等于() A .2 B .2- C .12D .12-5.要得到函数sin(2)3y x π=-的图象,只需将函数sin 2y x =的图象()A .向左平移π6个单位 B .向右平移π6个单位 C .向左平移π3个单位 D .向右平移π3个单位6. 下列命题正确的是()A. “1<x ”是“0232>+-x x ”的必要不充分条件B. 若给定命题p :x ∃∈R ,使得210x x +-<,则p ⌝:,x ∀∈R 均有012≥-+x xC. 若q p ∧为假命题,则q p ,均为假命题D. 命题“若0232=+-x x ,则2=x ”的否命题为“若,0232=+-x x 则2≠x7.在ABC ∆中,已知4AB AC ⋅=,3=BC ,,M N 分别是BC 边上的三等分点,则ANAM ⋅的值是() A .5 B .421 C .6 D .88. 已知函数2,()2.x x x a f x x a ⎧≤<=⎨≥⎩, 0, 若存在实数,使函数()()g x f x b =-有两个零点,则实数的取值范围是()A .(0,2)B .(2,)+∞C .(2,4)D .(4,)+∞第二部分(非选择题共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9.若集合{}1,0,a ={}1,1,-bc ,则_____,_______.a b ==10.设等差数列{}n a 的前n 项和为n S ,若3612a a +=,48S =,则9a 的值是. 11.给出四个命题: ①平行于同一平面的两个不重合的平面平行; ②平行于同一直线的两个不重合的平面平行; ③垂直于同一平面的两个不重合的平面平行; ④垂直于同一直线的两个不重合的平面平行;其中真命题的序号是________.12.已知函数()2sin f x x ω=(0>ω)的最小正周期为π,则=ω,在(0,)π内满足0)(0=x f 的0x =.13. 若函数()sin cos f x a x x =+在区间ππ(,)64上单调递增,则实数a 的取值范围是.14.如图,在ABC ∆中,4A B A C==,90BAC ∠= ,D 是BC 的中点,若向量14AM AB mAC=+(m ∈R ),且点M 在ACD ∆的内部(不含边界),则AM BM ⋅ 的取值范围是.b a三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15. (本小题满分13分)已知函数2()23sin cos 2cos 222x x xf x =+.(Ⅰ)求)(x f 的最小正周期; (Ⅱ)求)(x f 的单调递减区间.16. (本小题满分13分)设等差数列{}n a 的前n 项和为n S ,n *∈N ,公差30,15,d S ≠=已知1341,,a a a 成等比数列.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设2n n b a =,求数列{}n b 的前n 项和n T .17.(本小题满分14分)如图, 在三棱柱111ABC A B C -中,1CC ⊥底面ABC ,CB AC ⊥,点D 是AB 的中点. (Ⅰ)求证:1AC BC ⊥; (Ⅱ)求证:1AC ∥平面1CDB .(Ⅲ)设12AB AA =,AC BC =,在线段11A B 上是否存在点M ,使得1BM CB ⊥?若存在,确定点M 的位置;若不存在,说明理由.18. (本小题满分13分)在ABC ∆中,角C B A ,,所对的边分别为c b a ,,.已知21cos -=B . (Ⅰ)若322==b a ,,求ABC ∆的面积; (Ⅱ)求C A sin sin ⋅的取值范围.19. (本小题满分13分)已知函数,. (Ⅰ)若函数在区间上单调递减,求的取值范围; (Ⅱ)当时,证明1()2f x ≥.2()ln (1)2x f x a x a x =+-+a ∈R ()f x (1,3)a 1a =-20. (本小题满分14分)已知函数2()e (1)x f x ax bx =++(其中a ,b ∈R ),函数()f x 的导函数为()f x ',且(1)0f '-=.(Ⅰ)若1b =,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)若函数()f x 在区间[1,1]-上的最小值为0,求b 的值.参考答案一、选择题:(满分40分) 题号 1 2 3 4 5 6 7 8 答案BDCABBCC二、填空题:(满分30分) 题号 910 11 12 13 14答案1,1-15 ①④2,2π[1,)+∞()6,2-(注:两空的填空,第一空3分,第二空2分) 三、解答题:(满分80分) 15. (本小题满分13分) (I )由已知可得:()3sin cos 1f x x x =++ 2sin()16x π=++.所以)(x f 的最小正周期为2π. …………………..7分(II )由2222k x k ππ3ππ+≤+≤π+6,k ∈Z , 得2233k x k π4ππ+≤≤π+,k ∈Z .因此函数)(x f 的单调递减区间为[2,2]33k k π4ππ+π+,k ∈Z .…………………..13分 16. (本小题满分13分) 解:(I )依题意,1211132315,2(3)(12).a d a d a a d ⨯⎧+=⎪⎨⎪+=+⎩ 解得13,2.a d =⎧⎨=⎩因此1(1)32(1)21,21n n a a n d n n a n =+-=+-=+=+即. …………………..6分(Ⅱ)依题意,1212212+=+⨯==+n n n n a b .12n n T b b b =+++ 231(21)(21)(21)n +=++++++=23122...2n n +++++4(12)12n n-=+-22 4.n n +=+- …………………..13分17.(本小题满分14分)(I )在三棱柱111ABC A B C -中,因为1CC ⊥底面ABC ,AC ⊂底面ABC , 所以1CC AC ⊥.又AC BC ⊥,1BC CC C = , 所以11AC BCC B ⊥平面. 而111BC BCC B ⊂平面,则1AC BC ⊥. …………………..4分 (Ⅱ)设1CB 与1C B 的交点为E ,连结DE , 因为D 是AB 的中点,E 是1BC 的中点, 所以DE ∥1AC .因为1DE CDB ⊂平面,11AC CDB ⊄平面, 所以1AC ∥1CDB 平面.…………………..9分(Ⅲ)在线段11A B 上存在点M ,使得1BM CB ⊥,且M 为线段11A B 的中点.证明如下:因为1AA ⊥底面ABC ,CD ⊂底面ABC ,所以1AA CD ⊥.由已知AC BC =,D 为线段AB 的中点, 所以CD AB ⊥.EEM又1AA AB A = , 所以CD ⊥平面11AA B B .取线段11A B 的中点M ,连接BM . 因为BM ⊂平面11AA B B ,所以CD BM ⊥.由已知12AB AA =,由平面几何知识可得1BM B D ⊥. 又1CD B D D = ,所以BM ⊥平面1B CD . 又1B C ⊂平面1B CD , 所以1BM CB ⊥.…………………..14分18. (本小题满分13分)(I )在ABC ∆中,因为1cos 2B =-,所以2π3B =,3sin .2B = 由正弦定理,sin sin a bA B = 可得223,sin 32A =则1sin 2A =.又A 为锐角,则6A π=,所以6C π=.所以1sin 2ABC S ab C ∆=1122322=⨯⨯⨯ 3=. .……………………………………………………………6分(II )sin sin sin()sin 3A C C C π⋅=-⋅=31sin (cos sin )22C C C ⋅- =31sin 2(1cos 2)44C C --11sin(2)264C π=+-. 因为(0,)3C π∈,所以52(,)666C πππ+∈.则1sin(2)(,1]62C π+∈.所以C A sin sin ⋅的取值范围是1(0,]4. ………………………………………13分19. (本小题满分13分) 解:(I )函数的定义域为.因为2(1)(1)()()(1)a x a x a x x a f x x a x x x-++--'=+-+==.又因为函数在单调减,所以不等式(1)()0x x a --≤在上成立. 设()(1)()g x x x a =--,则(3)0g ≤,即93(1)0a a -++≤即可,解得. 所以的取值范围是. …………………………………7分(Ⅱ)当时,,.令()0f x '=,得1x =或1x =-(舍). 当x 变化时,(),()f x f x '变化情况如下表:x(0,1)1 (1,)+∞()f x ' - 0 +()f x极小值所以时,函数的最小值为. 所以1()2f x ≥成立. ………………………………13分(0,)+∞()f x (1,3)(1,3)3a ≥a [3,)+∞1a =-2()ln 2x f x x =-+211(1)(1)()x x x f x x x x x-+-'=-+==1x =()f x 1(1)2f =20. (本小题满分14分)解:因为2()e (1)x f x ax bx =++,所以2()e [(2)1]x f x ax a b x b '=++++. 因为(1)0f '-=,所以(2)10a a b b -+++=.所以1a =. ……………………2分 (Ⅰ)当1a =时,1b =时,(0)1,(0)2f f '==,所以曲线()y f x =在点(0,(0))f 处的切线方程为12(0)y x -=-.即210x y -+=. ……………………4分 (Ⅱ)由已知得2()e (1)x f x x bx =++,所以2()e [(2)1]e (1)(1)x x f x x b x b x x b '=++++=+++. (1)当11b --<-,即0b >时,令()e (1)(1)0x f x x x b '=+++>得,1x >-或1x b <--; 令()e (1)(1)0x f x x x b '=+++<得,11b x --<<-.所以函数()f x 在(1,)-+∞和(,1)b -∞--上单调递增,在(1,1)b ---上单调递减. 所以函数()f x 在区间[1,1]-上单调递增.所以函数()f x 在区间[1,1]-上的最小值为1(1)e (2)0f b --=-=. 解得2b =.显然合题意. (2)当11b --=-时,即0b =时,2()e (1)0x f x x '=+≥恒成立,所以函数()f x 在(,)-∞+∞上单调递增.所以函数()f x 在区间[1,1]-上单调递增.所以函数()f x 在区间[1,1]-上的最小值为1(1)e (2)0f b --=-=. 解得2b =.显然不符合题意. (3)当11b -->-时,即0b <时,令()e (1)(1)0xf x x x b '=+++>得,1x <-或1x b >--;令()e (1)(1)0xf x x x b '=+++<得,11x b -<<--.11 所以函数()f x 在(,1)-∞-和(1,)b --+∞上单调递增,在(1,1)b ---上单调递减. ①若11b --≥,即2b ≤-时,函数()f x 在区间[1,1]-上单调递减.所以函数()f x 在区间[1,1]-上的最小值为(1)e(2)0f b =+=.解得2b =-.显然合题意.②若11b --<,即20b -<<时,函数()f x 在在(1,1)b ---上单调递减,在(1,1)b --上单调递增.此时,函数()f x 在区间[1,1]-上的最小值为1(1)e (2)0b f b b ----=+=.解得2b =-.显然不合题意.综上所述,2b =或2b =-为所求. ……………………14分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市朝阳区2016届高三上学期期中考试
数学试卷(理科)
(考试时间120分钟 满分150分)
本试卷分为选择题(共40分)和非选择题(共110分)两部分
第一部分(选择题 共40分)
一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出
符合题目要求的一项.
1.已知集合{3,}A x x x =≤∈R ,{10,}B x x x =-≥∈N ,则A
B =( )
A .{0,1}
B .{0,12},
C .{2,3}
D . {1,2,3} 2.已知(0,)α∈π,且3
cos 5
α=-
,则tan α=( ) A .
34 B .34- C .43 D .43
- 3. 已知等差数列{}n a 的公差为2,若124, , a a a 成等比数列,那么1a 等于( ) A. 2 B. 1 C. 1- D. 2- 4. 给出下列命题:
①若给定命题p :x ∃∈R ,使得210x x +-<,则p ⌝:,x ∀∈R 均有012
≥-+x x ; ②若q p ∧为假命题,则q p ,均为假命题;
③命题“若0232
=+-x x ,则2=x ”的否命题为“若 ,0232
=+-x x 则2≠x , 其中正确的命题序号是( )
A .① B. ①② C. ①③ D. ②③
5.已知函数()sin()(00)2
f x A x x A ωϕωϕπ
=+∈>><R ,,,的图象(部分)如图所示,则
()f x 的解析式是( )
A .()2sin()6f x x π
=π+
B .()2sin(2)6f x x π
=π+
C .()2sin()3f x x π
=π+
D .()2sin(2)
3f x x π
=π+
6.设p :
21
01
x x -≤-,q :2(21)(1)0x a x a a -+++<,若p 是q 的充分不必要条件,则实数a 的取值范围是( )
A .1(0,)2
B .1[0,)2
C .1
(0,]2
D .1[,1)2
7.在ABC ∆中,已知4AB AC ⋅=,
3=BC ,,M N 分别是BC 边上的三等分点,则AN
AM ⋅的值是( ) A .5
B .
4
21
C .6
D .8
8.已知定义在R 上的函数⎩⎨⎧-∈-∈+=),
0 ,1[,2),
1 ,0[,2)(2
2x x x x x f 且)()2(x f x f =+.若方()2=0
f x kx --有三个不相等的实数根,则实数k 的取值范围是( )
A .1(,1)3
B .11(,)34--
C .11(,1)(1,)33--
D .1111(,)(,)3443
--
第二部分(非选择题 共110分)
二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9.已知三个数π
221
(),log 3,log π2
,其中最大的数是 .
10.已知平面向量2113()(-),,,a =b =.若向量()λ⊥a a +b ,则实数λ的值是 .
11.如图,在ABCD 中,E 是CD 中点,BE xAB yAD =+,则x y +
= .
E
D
C
B
A
12.若函数()2sin()f x x ωϕ=+(0,0ωϕ≠>)是偶函数,则ϕ的最小值为 . 13. 若函数sin ()cos a x f x x -=
在区间ππ
(,)63
上单调递增,则实数a 的取值范围是 .
14. 如图,已知边长为4的正方形ABCD ,E 是BC 边上一动点(与B 、C 不重合),连结AE ,作EF ⊥AE 交∠BCD 的外角平分线于F .设BE x =,记()f x EC CF =⋅,则函数()f x 的值域是 ;当ECF ∆面积最大时,EF = .
三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15. (本小题满分13分)
已知函数2()23sin cos 2cos 222
x x x
f x =-.
(Ⅰ)求π
()3
f 的值;
(Ⅱ)求函数)(x f 的单调递减区间及对称轴方程.
16. (本小题满分13分)
已知等差数列{}n a 的首项11a =,公差1d =,前n 项和为n S ,且1n n
b S =. (Ⅰ)求数列{}n b 的通项公式; (Ⅱ)求证:1232n b b b b ++++<.
17.(本小题满分13分)
在ABC ∆中,角C B A ,,所对的边分别为c b a ,,.且2
1
cos -=B . (Ⅰ)若322==b a ,,求角C ; (Ⅱ)求C A sin sin ⋅的取值范围.
18. (本小题满分13分)
已知函数. (Ⅰ)当0a >时,求函数的单调区间;
(Ⅱ)当时,证明1()2
f x ≥.
19. (本小题满分14分)
已知函数2
()e (1)x f x ax bx -=++(其中e 是常数,0a >,b ∈R ),函数()f x 的导
函数为()f x ',且(1)0f '-=.
(Ⅰ)若1a =,求曲线()y f x =在点(0,(0))f 处的切线方程;
2
()ln (1)2
x f x a x a x =+-+()f x 1a =-
(Ⅱ)当1
5
a >时,若函数()f x 在区间[1,1]-上的最大值为4e ,试求,a
b 的值.
20. (本小题满分14分)
已知实数数列}{n a 满足:),2,1(||12 =-=++n a a a n n n ,b a a a ==21,,记集合{|}.n M a n *=∈N
(Ⅰ)若2,1==b a ,用列举法写出集合M ;
(Ⅱ)若0,0<<b a ,判断数列}{n a 是否为周期数列,并说明理由; (Ⅲ)若0,0≥≥b a ,且0≠+b a ,求集合M 的元素个数的最小值.
答案。

相关文档
最新文档