四年级应用题第三讲

合集下载

第三讲 典型应用题

第三讲 典型应用题

第三讲 典型应用题用两步或两步以上运算解答的并且有一定解答规律的应用题叫典型应用题。

如平均数问题、行程问题、归一问题、归总问题、植树问题、周期问题、鸡兔同笼问题等。

要特别注意认识各类典型应用题的解题规律及技巧。

一、行程问题:(一)行程问题——一般行程问题、相遇问题速度×时间=路程一般行程问题 路程÷速度=时间路程÷时间=速度速度和×相遇时间=相遇距离相遇问题 相遇距离÷相遇时间=速度和相遇距离÷速度和=相遇时间(相遇时双方所用时间相同)例9:甲、乙两车分别从A 、B 两地出发,相向而行。

出发时,甲、乙的速度之比为5:4,相遇后,甲的速度减少20%,乙的速度增加20%,这样当甲到达B 地时,乙离A 地还有10千米,那么A 、B 两地相距多少千米?解题思路:根据题意和所问的问题可知,相遇问题,速度与路程成正比,速度比就是路程比, 相遇时路程比为5:4,路程总长可看成9份。

相遇后甲的速度为4%)201(5=-⨯,乙的速度为8.4%)201(4=+⨯,相遇后甲乙速度比为:4:4.8,问题是求A 、B 间路长,可利用比应用解,原来每份路程为50)8.45(10=-÷(千米),则全长为450950=⨯(千米)。

解:4%)201(5=-⨯ 8.4%)201(4=+⨯50)8.45(10=-÷(千米)450950=⨯(千米)答:A、B两地相距450千米。

习题巩固:1、一列火车经过某山,上山速度每小时30.5千米,下山速度每小时50.8千米。

知道上山用6小时,下山用4小时。

求这列火车上、下山平均每小时行多少千米?2、甲、乙两地的铁路长390千米,两列火车同时从两地相对开出,快车每小时行80千米,慢车每小时行50千米,两列火车开出后,几小时可以相遇?3、甲、乙两车从相距340千米的A、B两城相向而行,甲车上午8时从A城出发,乙车上午8时30分成B城出发,甲车每小时行30千米,乙车每小时行35千米。

第3讲-列方程解应用题(一)(教师版)

第3讲-列方程解应用题(一)(教师版)

1.综合复习小学所学的多种类型的应用题解法;2.训练列方程解应用题的熟练程度,提高速度和准确度.(此环节设计时间在10-15分钟)在解决和差倍问题时,要注意找到“1倍量”,一般将其设为x后,根据总数的和或差的关系列出方程。

回顾上次课的预习思考内容写出下列应用题中的等量关系:(1) 故宫的面积是72万平方米,比天安门广场面积的2倍少16万平方米。

天安门广场的面积多少万平方米?___________________=____________________________________________。

(2) 妈妈今年的年龄儿子的3倍,妈妈比儿子大24岁。

儿子和妈妈今年分别是多少岁?____________=____________________;____________=____________________。

(3) 甲、乙两人原来存款数相同。

后来甲取出250元,而乙又存入350元,这时乙的存款数正好是甲存款数的4倍。

原来每人存款多少元?(此环节设计时间在50-60分钟)例题1:有甲、乙、丙三所小学的同学来参加幼苗杯数学邀请赛,其中甲校参赛人数比乙校多5人,比丙校多7人.如果乙、丙两校一共有40人参加比赛,那么三所学校各有多少人参加比赛?教法说明:先让学生找出本题中的等量关系,再根据等量关系设未知数。

参考答案:设甲校有x人,则乙校有(x-5)人,丙校(x-7)人,x-5+x-7=40x=26乙:x-5=21(人),丙:x-7=19(人)答:甲、乙、丙三所小学的分别有26、21、19人参加比赛。

试一试:甲、乙、丙三个人每人都有一些弹珠,其中甲的弹珠比乙多3颗,乙的弹珠比丙多9颗,如果甲、丙两人共有100颗弹珠,那么三人各有多少颗弹珠?参考答案:56、53、44试一试:一群黄鼠狼给鸡拜年,黄鼠狼和鸡一共有24只,鸡的总腿数比黄鼠狼的总腿数多18条,求黄鼠狼和鸡各有几只?参考答案:5只、19只此环节设计时间在30分钟左右(20分钟练习+10分钟互动讲解)。

第三讲 分数乘除法应用题中的单位1问题

第三讲  分数乘除法应用题中的单位1问题

第三讲分数乘除法应用题中的单位1问题一正确找准单位“1”,是解答分数(百分数)应用题的关键,每一道分数应用题中总是有关键句(含有分率的句子)。

1、单位1 是与分数作比较的;就是被分成若干份的那个量.;是谁的几分之几;比谁多(少)几分之几;谁就是单位1。

2、单位“1:往往在(比,占,是,相当于、正好等)字的后面的那一个量,注意"比"(占,是,相当于等)后面是分数;你要看单位“1”的话,你就看“的”、“几分之几的”前面的那几个字眼,就是单位“1” ,3、如果单位“1”是已知的,就用乘法。

如果单位“1”是要求的问题的,就用除法。

二、原数量与现数量有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。

这类分数应用题的单位“1”比较难找。

例如,水结成冰后体积增加了1/10,冰融化成水后,体积减少了1/12。

象这样的水和冰两种数量到底谁作为单位“1”?两句关键句的单位“1”是不是相同?用上面讲过的两种方法不容易找出单位“1”。

其实我们只要看,原来的数量是谁?这个原来的数量就是单位“1”!比如水结成冰,原来的数量就是水,那么水就是单位“1”。

冰融化成水,原来的数量是冰,所以冰的体积就是单位“1”。

例1.小英三天读完一本书,第一天读了全书的1/4多6页,第二天读了全书的1/2,第三天读的是第一天的2/3,这本书有多少页?例2.②甲乙丙丁四人共植树60棵,甲植树的棵树是其余3人的3/17,乙、丙植树的棵树分别是其余三人的3/7、1/2,丁植树多少颗?例三③一缸金鱼,红金鱼占总数的1/4,黑金鱼是红金鱼的3/5,其余24条是花金鱼,红金鱼有几条?例四,果园里有桃树和梨树共580棵,桃树棵数的2/5等于梨树的3/7,问这两种果树各有多少棵?例五,羊的只数是牛的75%,那么,牛比羊多几分之几?(相关问题)例六,水结成冰体积增加1/11,那么有4立方米的冰可化成多少千克水?例七,两种商品的售价都是120元,其中一件亏25%,另一件赚25%,结果是亏了还是赚了?例八,一人从海南运一车西瓜到杭州,购买时测得含水量99%,单价1元共购5000千克,到达杭州后,测得含水量为96%,若他以每千克2.2元的价格出售,结果是亏了还是赚了?(运费由供方负责)。

四年级下册数学试题-奥数专题讲练:第三讲 行程问题 竞赛篇(解析版)全国通用

四年级下册数学试题-奥数专题讲练:第三讲 行程问题 竞赛篇(解析版)全国通用

第三讲行程问题编写说明在四年级春季的学习中,我们已经研究了行程问题中一些最基本的相遇与追击以及火车过桥问题.在暑期的三、四讲中我们将继续研究综合行程问题和流水行船问题. 学生对行程问题大都很“晕”,常常不知从何下手,鉴于此,我们尽量按照类别进行介绍,帮助学生一步一步找到解决各个类型的一些思路.在安排行程的题目时,我们选用的题目难度并不大,希望教师能引导孩子们,克服心理恐惧,能部分独立解答相应阶段的行程问题,增加孩子的自信与兴趣!以上观点仅供交流!内容概述行程问题是一类常见的重要应用题,在历次数学竞赛中经常出现.行程问题包括:相遇问题、追及问题、流水行船问题、环形行程问题等等,思维灵活性大,辐射面广,但万变不离根本,就是距离、速度、时间三个基本量之间的关系,即:距离=速度×时间 .在这三个量中,已知两个,可求出第三个未知量.这一讲就是通过例题加深对这三个基本数量关系的理解.解决行程问题时,画图分析是一个非常有效的方法,我们一定要养成画图解决问题的好习惯!你还记得吗【复习1】如右图,A,B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C点第一次相遇,在D点第二次相遇。

已知C离A有80米,D离B有60米,求这个圆的周长。

分析:从A点出发到第一次相遇,两人共走了0.5圈;从A点出发到第二次相遇,两人共走了1.5圈。

因为1.5÷0.5=3,所以第二相遇时甲走的路程是第一次相遇时的3倍,即弧ACD=AC×3=240(米),则弧AB=240—BD=180(米),圆周长为180×2=360(米)【复习2】两名运动员在湖的周围环形道上练习长跑. 甲每分钟跑250米,乙每分钟跑200米,两人同时同地同向出发,经过45分钟甲追上乙;如果两人同时同地反向出发,经过多少分钟两人相遇?分析:环形道一周的长度:(250-200)×45=2250(米).反向出发的相遇时间:2250÷(250+200)=5(分钟).平均速度【例1】一只蚂蚁沿等边三角形的三条边由A点开始爬行一周. 在三条边上它每分钟分别爬行50cm,20cm,40cm(如右图).它爬行一周平均每分钟爬行多少厘米?分析:假设每条边长为200厘米,则总时间=200÷50+200÷20+200÷40=4+10+5=19(分钟),爬行一周的平均速度=200×3÷19=113119(厘米/分钟).【前铺】汽车上山以30千米/时的速度,到达山顶后立即以60千米/时的速度下山.求该车的平均速度.分析:注意平均速度=总路程÷总时间,我们可以把上山的路程看作“1”,那么就有:(1+1)÷(113060)=40(千米/时),在这里我们使用的是特殊值代入法,当然可以选择其他方便计算的数值,比如上山路程可以看作60千米,总时间=(60÷30)+(60÷60)=3,总路程=60×2=120,平均速度=120÷3=40(千米/时).【前铺】汽车往返于A,B两地,去时速度为40千米/时,要想来回的平均速度为48千米/时,回来时的速度应为多少?分析:假设AB两地之间的距离为480÷2=240千米,那么总时间=480÷48=10(小时),回来时的速度=240÷(10-240÷40)=60(千米/时).【巩固】有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡、平路及下坡的路程相等.某人骑自行车过桥时,上坡、走平路和下坡的速度分别为4米/秒、6米/秒和8米/秒,求他过桥的平均速度.分析:假设上坡、平路及下坡的路程均为24米,那么总时间=24÷4+24÷6+24÷8=6+4+3=13(秒),过桥的平均速度=24×3÷13=7513(米/秒).【例2】老王开汽车从A到B为平地(见右图),车速是30千米/时;从B 到C为上山路,车速是22.5千米/时;从C到D为下山路,车速是36千米/时. 已知下山路是上山路的2倍,从A到D全程为72千米,老王开车从A到D共需要多少时间?分析:设上山路为x千米,下山路为2x千米,则上下山的平均速度是:(x+2x)÷(x÷22.5+2x ÷36)=30(千米/时),正好是平地的速度,所以行AD总路程的平均速度就是30千米/时,与平地路程的长短无关.因此共需要72÷30=2.4(时).【例3】甲、乙两地相距6千米,某人从甲地步行去乙地,前一半时间平均每分钟行80米,后一半时间平均每分钟行70米.问他走后一半路程用了多少分钟?分析:(法1)全程的平均速度是每分钟(80+70)÷2=75米,走完全程的时间是6000/75=80分钟,走前一半路程速度一定是80米,时间是3000÷80=37.5分钟,后一半路程时间是80-37.5=42.5分钟(法2)设走一半路程时间是x分钟,则80x+70x=6×1000,解方程得:x=40分钟,因为80×40=3200米,大于一半路程3000米,所以走前一半路程速度都是80米,时间是3000÷80=37.5分钟,后一半路程时间是40+(40-37.5)=42.5分钟【例4】小明从家到学校有两条一样长的路,一条是平路,另一条是一半上坡路、一半下坡路. 小明上学走两条路所用的时间一样多. 已知下坡的速度是平路的1.5倍,那么上坡的速度是平路的多少倍?分析:(法1)设路程为180,则上坡和下坡均是90. 设走平路的速度是2,则下坡速度是3,走下坡用时间90÷3=30,走平路一共用时间180÷2=90,所以走上坡时间是90-30=60 走与上坡同样距离的平路时用时间90÷2=45 因为速度与时间成反比,所以上坡速度是下坡速度的45÷60=0.75倍.(法2)因为距离和时间都相同,所以平均速度也相同,又因为上坡和下坡路各一半也相同,设距离是1份,时间是1份,则下坡时间=0.5÷1.5=1/3,上坡时间=1-1/3=2/3,上坡速度=(1/2)÷(2/3)=3/4=0.75(法3)因为距离和时间都相同,所以:1/2×路程/上坡速度+1/2×路程/1.5=路程/1,得:上坡速度=0.75.沿途数车【例5】小明放学后,沿某路公共汽车路线以不变速度步行回家,该路公共汽车也以不变速度不停地运行. 每隔9分钟就有辆公共汽车从后面超过他,每隔7分钟就遇到迎面开来的一辆公共汽车. 问:该路公共汽车每隔多少分钟发一次车?公共汽车的速度是小明步行速度的几倍?分析:假设小明在路上向前行走了63(7、9的最小公倍数)分钟后,立即回头再走63分钟,回到原地.这时在前63分钟他迎面遇到63÷7=9(辆)车,后63分钟有63÷9=7(辆)车追上他,那么在两个63分钟里他共遇到朝同一方向开来的16辆车,所以发车的时间间隔为:63×2÷(9+7)=778(分).公共汽车的发车时间以及速度都是不变的,所以车与车之间的间隔也是固定不变的. 根据每隔9分钟就有辆公共汽车从后面超过他,我们可以得到:间隔=9×(车速-步速);每隔7分钟就遇到迎面开来的一辆公共汽车,我们可以得到:间隔=7×(车速+步速),所以9×(车速-步速)=7×(车速+步速),化简可得:车速=8倍的步速.【巩固】小红放学后沿着公共汽车的线路以4千米/时的速度往家走,一边走一边数来往的公共汽车. 到家时迎面来的公共汽车数了11辆,后面追过的公共汽车数了9辆. 如果公共汽车按相等的时间间隔发车,那么公共汽车的平均速度是多少?分析:我们可以假设小红放学走到家共用99分钟,那么条件就可以转化为:“每隔9分钟就有辆公共汽车迎面开来,每隔11分钟就有辆公共汽车从后面超过他”.根据汽车间隔一定,可得:间隔=11×(车速-步速)=9×(车速+步速),化简可得:车速=10倍的步速.所以车速为40千米/时.【巩固】小宇以均匀速度走路上学,他观察来往的同一路电车,发现每隔12分钟有一辆电车从后面超过他,每隔4分钟有一辆电车迎面而来.如果电车也是匀速行驶的,那么起点站和终点站隔多少分钟发一辆电车?分析:(法1):[12,4]=12,12×2÷(1+3)=6(分钟).(法2):把电车的间隔距离看作1,那么有:车速+人速=14,车速-人速=112,所以车速=111()24126+÷=,发车间隔时间=1÷16=6(分钟).【例6】在一条马路上,小明骑车与小光同向而行,小明骑车速度是小光速度的3倍,每隔10分有一辆公共汽车超过小光,每隔20分有一辆公共汽车超过小明. 已知公共汽车从始发站每次间隔同样的时间发一辆车,问:相邻两车间隔几分?分析:设车速为a,小光的速度为b,则小明骑车的速度为3b。

二次函数的实际应用题

二次函数的实际应用题

第三讲:二次函数大题之应用题题型一:利润问题例题1:某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于40%.经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=kx+b,且x=80时,y=40;x=70时,y=50.(1)求一次函数y=kx+b的表达式;(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?例题2:某服装公司试销一种成本为每件50元的T恤衫,规定试销时的销售单价不低于成本价,又不高于每件70元,试销中销售量y(件)与销售单价x(元)的关系可以近似的看作一次函数(如图).(1)求与之间的函数关系式;(2)设公司获得的总利润(总利润=总销售额总成本)为P元,求P与x之间的函数关系式,并写出自变量x的取值范围;根据题意判断:当x取何值时,P的值最大?最大值是多少?变式训练:1、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?2、青年企业家刘敏准备在北川禹里乡投资修建一个有30个房间供旅客住宿的旅游度假村,并将其全部利润用于灾后重建.据测算,若每个房间的定价为60元∕天,房间将会住满;若每个房间的定价每增加5元∕天时,就会有一个房间空闲.度假村对旅客住宿的房间将支出各种费用20元∕天·间(没住宿的不支出).问房价每天定为多少时,度假村的利润最大?3、为了落实国务院副总理李克强同志到恩施考察时的指示精神,最近,州委州政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=-2x+80.设这种产品每天的销售利润为y(元).(1)求y与x之间的函数关系式.(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?4、某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=-10x+500.(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)5、某商场在销售旺季临近时 ,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售价为每件20元,并且每周(7天)涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售。

第三讲 列方程解应用题

第三讲 列方程解应用题

第三讲列方程解应用题班级__________姓名___________应用题:1、一份稿件,甲单独打字需6小时完成,乙单独打字需10小时完成。

现在甲单独打若干小时后,因有事由乙接着打完,共用了7小时,那么甲打字用了多少小时?2、某粮库上午运走全部存粮的又1500袋,下午又运进粮食5500袋,这时粮库中的存粮比原来少,那么原来粮库存粮多少袋?3、甲、乙两人各有钱若干元,已知甲的钱数是乙的4倍,当甲花去后,又花去余下的,如果这时甲给乙7元钱,甲、乙两人的钱数正好相等,求甲原来有多少钱?4、李明到商店买一盒花球、一盒白球,两盒球的数量相等。

花球原价是1元钱2个,白球原价是1元3个。

节日降价,两种球的售价都是2元钱5个,结果李明少花了4元钱。

求他共买了多少个球?5、甲、乙两人各有人民币若干元。

如果甲用去20元,余下的钱与乙相等;如果乙给甲12元,则乙余下的钱的与甲这时身上钱的相等。

求甲、乙原本有人民币各多少元?6、果品店有苹果和梨两种水果,梨占两种水果总数的。

卖了2吨苹果和1吨梨后,梨占两种水果总数的。

求水果店原来有两种水果共多少吨?7、五、六年级电脑班共有学生90人,其中男生有71人。

五年级男生占该年级电脑班学生数的,六年级男生占该年级电脑班学生数的。

求五、六年级各有多少人参加电脑班?8、茶叶店运到一级茶和二级茶各一批,其中二级茶的数是一级茶的。

一级茶的买入价是每千克24.8元,二级茶的买入价是每千克16元。

现在照买入价加价出售,当二级茶全部售完,一级茶剩下时,共盈利460元。

求运到的一级茶有多少千克?9、果品店有苹果和梨两种水果,梨占两种水果总数的。

卖了2吨苹果和2吨梨后,梨占两种水果总数的。

求水果店原来有两种水果共多少吨?10、甲、乙两人共存款2000元,后来甲又存入100元,乙取出自己存款数的,这时甲的存款数是乙的2倍。

求现在两人共存款多少元?。

第三讲 一般分数应用题

第三讲 一般分数应用题

教学目标◆学会找准单位“1”。

◆理解分数应用题在实际生活中的运用。

知识点拨解答分数应用题,必须搞清楚两个问题:1、找准单位“1”;2、找准对应量和对应分率。

经典精讲【例题1】一修路队给贵州山区修了一段公路,第一周修了全长的14,第二周修了余下路的25,第二周比第一周多修了15米。

问:这段公路长多少米?思路点拨:【例题2】有两筐同样重的橘子,如果从第一筐中取出15千克放入第二筐,这时第一筐橘子的质量是第二筐的35。

原来每筐橘子重多少千克?思路点拨:【例题3】大学毕业生王红所办的美术兴趣班,女生占38,后来又有4名女生加入,这样女生就占总人数的49。

这个兴趣班原有多少名同学?思路点拨:【例题4】张玲从家带了一些鸡蛋,第一天吃了全部的13,第二天吃了剩下的13,第三天吃了剩下的12,还剩2个。

张玲一共带开了多少个鸡蛋?思路点拨:第3讲一般的分数应用题巩固精炼【精练1】某煤场存有一批煤,第一周运走运走全部的13又200吨,第二周又运进600吨煤,这时煤场的存煤量比原来少16。

求原来煤场存煤多少吨。

【精练2】学校美术班的人数是书法班人数的512,书法班里有16名同学转入美术班后,美术班的人数是书法班的34。

问:书法班和美术班共有多少名同学?【精练3】甲、乙、丙、丁四人共同加工一批零件。

已知甲完成了39个,乙做的是其他三人的12,丙做的是其他三人的13,丁做的是其他三人的14。

求这批零件共有多少个?【精练4】方方和圆圆各有一盒棋子,一共有360粒。

方方从自己的盒子里拿出14的棋子放入圆圆的盒子后,圆圆盒子里的棋子数恰好比原来增加15。

原来方方有多少粒棋子?。

第三讲 解决问题(二)

第三讲 解决问题(二)

五年级秋季培优第九讲解决问题(二)较复杂的一般应用题中,往往具有两组或两组以上的数量关系交织在一起,但是,再复杂的应用题都可以通过“转化”向基本的问题靠拢。

因此,我们在解答一般应用题时要善于分析,把复杂的问题简单化,从而正确解答。

典例精讲例1 加工一批零件,甲单独加工需要10小时,乙单独加工需要8小时。

已知甲每小时比乙少做3个零件。

这批零件一共有多少个?【思路点拨】因为甲每小时比乙少做3个零件,8小时就比乙少做3×8=24(个)零件,所以,24个零件就是甲(10-8)小时的工作量。

甲每小时加工24÷(10-8)=12(个),这批零件一共有12×10=120(个)。

【详细解答】例2 甲、乙、丙三人拿出同样多的钱买一批苹果,分配时,甲、乙都比丙多拿24千克,结账时甲和乙都要付给丙24元,每千克苹果多少元?【思路点拨】三人拿出同样多的钱买苹果应该分得同样多的苹果。

24×2÷3=16(千克),也就是丙少拿16千克苹果,所以得到24×2=48(元)。

每千克苹果是48÷16=3(元)。

【详细解答】例3 甲城有177吨货物需要只跑一趟运到乙城。

大卡车的载重量是5吨,小卡车的载重量是2吨,大、小卡车跑一趟的耗油量分别是10升和5升。

用多少辆大卡车和小卡车来运输时耗油最少?【思路点拨】大卡车一次运5吨,耗油10升,平均运1吨耗油10÷5=2(升)。

小卡车一次运2吨,耗油5升,平均运1吨货耗油5÷2=2.5(升)。

显然,为使耗油量最少应该尽可能用大卡车。

177÷5=35(辆)……2(吨),余下的2吨正好用一辆小卡车运。

因此,用35辆大卡车和1辆小卡车运耗油最少。

【详细解答】例4 有一栋居民楼,每家都订2份不同的报纸,该居民楼共订了三种报纸,其中《北京日报》34份,《江海晚报》30份,《电脑报》22份。

那么订《江海晚报》和《电脑报》的共有多少家?【思路点拨】这栋楼共订报纸34+30+22=86(份),因为每家都订2份不同的报纸,所以一共有86÷2=43(家)。

第三讲和、差、倍数应用题

第三讲和、差、倍数应用题

第三讲和、差、倍数应用题一、专题分析:和差、和倍、差倍问题我们在五年级就已经学习过了,因为它应用非常广泛,包括在分数的乘、除法中还有广泛的应用,它又是解答各种应用题的基础,所以我们单独提出来再进行系统的复习巩固。

解答这些类型的应用题,除了要掌握解答一般应用题的几个步骤,运用画线段图,可以帮助我们形象地分析数量关系,能较快地直观地列出有关的算式。

(1)和差问题:已知大小两个数的和与它们的差,求这两个数的应用题叫做和差应用题。

基本公式:①和-小数=大数,②和-大数=小数,③(和+差)÷2=大数,④(和—差)÷2=小数。

⑵和倍问题:和倍问题是已知大小两个数的和与它们的倍数关系,求大小两个数的应用题。

基本公式:①和÷(倍数+1)=1倍的数,②1份的数×倍数=几倍的数⑶差倍问题:已知几个数的差以及它们之间的倍数关系,求这几个数的应用题,称为差倍问题。

基本公式:①两数之差÷(倍数-1)=小数(1倍数), ②小数×倍数=大数(几倍数)二、例题与练习:例1、甲、乙两筐共装苹果75千克,从甲筐取出5千克苹果放入乙框中,甲筐苹果比乙筐还多7千克,甲、乙两筐原来有苹果多少千克?练习1、某人买6瓶饮料,每瓶付款1.30元。

喝完全部饮料可退空瓶,每只空瓶退得的钱比瓶中饮料的钱少1.10元。

这人可退得多少钱?练习2、某展览会上,展品中有260件不是甲公司的,有250件不是乙公司的,甲乙两公司在此展览会上共有展品350件。

甲、乙两公司各有展品多少件?例2、有两层书架,共有书173本,从第一层拿走38本后,第二层的数是第一层的2倍还多6本,问第二层原有多少本书?练习1、甲水池有水2600立方米,乙水池有水1200立方米。

如果甲水池里的水以每分钟23立方米的速度流入乙水池,那么多少分钟后,乙水池里的水是甲水池的4倍?练习2、两个个数的和是161.7,把较大的数的小数点向左移动一位后就和较小数相等,这两个数各是多少?例3、父亲现年50岁,女儿现年14岁,问几年前父亲的年龄是女儿年龄段5倍?练习1、有大小两个水池,大水池里已有水300立方米,小水池里已有水70立方米,现在往两个水池里注入同样多的水后,大水池水量是小水池的3倍,问每个水池注入了多少立方米的水?练习2、一个小数,把它扩大100倍后就比原数扩大482.13,原来这个小数是多少?练习3、有两堆煤,第一堆比第二堆多50吨,当两堆煤各用去75吨后,剩下的第一堆煤是第二堆的3倍,两堆煤原来各有多少吨?。

第三讲:和差倍关系

第三讲:和差倍关系

和倍问题和倍问题:已知两个数的和与它们之间的倍数关系,求这两个数各是多少的应用题,叫和倍应用题。

解答和倍应用题的基本数量关系是:和÷(倍数+1)=小数小数×倍数=大数(和—小数=大数)例1:学校有科技书和故事书共480本,科技书的本数是故事书的3倍,两种书各有多少本?为了便于理解,我们画图来分析:故事书| | }︸︸︸} 480本?本}科技书| | | | }︸︸︸︸︸︸︸︸︸︸︸︸︸?本由图可知,如果把故事书的本数看做1份,那么科技书的本数就是这样的3倍,两种书的总本数就是这样的1+3=4份,把480本书平均分成4份,1份是故事书的本数,3份是科技书的本数。

480÷(1+3)=120(本)120×3=360(本)或480-120=360(本)答:有故事书120本,科技书360本。

即时练习:(1)用锡和铝制成的合金是720千克,其中铝的重量是锡的5倍,铝和锡各用了多少千克?(2)甲、乙两数的和是112,甲数除以乙数的商是6,甲、乙两数各是多少?(3)一块长方形黑板的周长是96分米,长是宽的3倍,这块长方形黑板的长和宽各是多少分米?例2:果园里有梨树、桃树和苹果树共1200棵,其中梨树的棵树是苹果树的3倍,桃树的棵树是苹果树的4倍,求梨树、桃树和苹果树各有多少棵?思路导航:如果把苹果树的棵树看作1份,三种树的总棵数是这样的:1+3+4=8份。

所以,苹果树有1200÷8=150(棵),梨树有150×3=450(棵),桃树有150×4=600(棵)1200÷(1+3+4)=150(棵)150×3=450(棵)150×4=600(棵)答:梨树有450棵,苹果树有150棵,桃树有600棵。

即时练习:(1)某专业户李大伯养鸡、鸭、鹅共960只,养鸡的只数是鹅的3倍,养鸭的只数是鹅的4倍,鸡、鸭、鹅各养了多少只?(2)甲、乙、丙三数之和是360,又知甲为乙的3倍,丙为乙的2倍,求甲、乙、丙各是多少?(3)商店有铅笔、钢笔、圆珠笔共560支,圆珠笔的支数是钢笔的3倍,铅笔的支数和圆珠笔的支数同样多。

四年级上册第三讲 奇思巧解答案

四年级上册第三讲 奇思巧解答案

第三讲奇思巧解1、有一个街心花园,把10棵树栽成5行,每行4棵,该怎样栽种?请画图说明。

解:类似的还有:类似的题还有:7棵树栽6行,每行3棵,问怎么栽树。

答案是:2、红蓝墨水各一瓶,用一支滴管从红墨水中吸一滴滴到蓝墨水中,搅拌后在从蓝墨水中吸一滴同样体积的墨水滴到红墨水中。

这时红墨水中的蓝墨水多还是蓝墨水中的红墨水多?解:一样多。

第一次取出的墨水=红墨水A+红墨水B,(从红墨水瓶中取出又在第二次倒回的部分设为红墨水A,取出未倒回的红墨水为B)第二次取出的墨水=红墨水A+蓝墨水,两次取出的量相等,即红墨水A+红墨水B=红墨水A+蓝墨水,即没倒回的红墨水被蓝墨水取代。

3、有12只形状、大小完全一样的零件,其中有一只重量较轻的不合格品,你能用天平只称3次就能找出这个不合格品吗?解:(1)分为三组,每组4个,任取2组,置于天平两边;如果平衡,不合格的在另一组,如果不平衡,不合格品在轻的那边;(2)将上次称出的不合格品的那组,再分为4组,每组1个,先称2组,如果一端轻则这组里有不合格品。

(3)如果平衡,不合格品在另外2个中,再称另外2个,不合格品在轻的那边。

4、有9颗外形完全相同的珠子,其中8颗是珍珠,另一颗是假珠,且假珠与珍珠重量不相同。

试问用天平(无法码)称,至少称几次可以把假珠找出来?解:称3次即可。

分为A、B、C组,每组3个。

第一次:A、B置于天平两边;第二次:A、C置于天平两边;比较三者大小,判断出假的是轻的,或者是重。

将比其它两组轻(或重)的那组取出第三次:取任意2个置于天平两边;相等则第3个是假的。

若不相等,则根据上次的判断得出结果。

5、袋装洗衣粉共有10堆(每堆不少于10袋),已知9堆是合格的产品,每袋1千克,1堆是不合格的,每袋900克,从外形上是看不出来哪一堆是不合格的。

若用台称一堆一堆地去称,则称的次数比较多。

请大家想想办法,能否只称一次就能找到那一堆不合格产品?解:(1)将10堆洗衣粉编号为1,2,3,……,10(2)第1堆,取出1袋;第2堆,取出2袋;……;第10堆,取出10袋,共55袋。

第三讲--简单的分数应用题

第三讲--简单的分数应用题

第三讲简单的分数应用题(一)一、基础知识:1、分数应用题的一般关系式是:表示单位“1”的量(标准量)×分率=分率的对应量。

2、解题思路:①一道分数应用题中,先根据分率所在的哪个条件,找出并判断“1”。

分率是“谁的”几分之几,谁就是单位“1”(分率是一个不带单位的、不具体的分数,反映的是两个数之间的一种倍数关系。

)单位“1”的量的判断:根据分率来判断把哪个数量平均分成多少份,哪个数量就是单位“1”。

②表示单位“1”的量是已知的,则该题用“×”。

表示单位“1”的量是未知的,则该题用“÷”或方程。

③解题的关键是:寻找“与数量对应的分率”,“与分率对应的数量”。

二、例题解析:(一)基本方法例1、指出下面每组中单位“1”和对应分率。

①一只鸡的重量是鸭的。

把( )平均分为3份,把()看作单位“1”,( )相当于这样的2份,2/3对应的数量是()。

②甲的相当于乙。

把( )平均分为5份,把()看作单位“1”,( )相当于这样的3份,3/5对应的数量是()。

③现价是原价的。

把( )平均分为40份,把()看作单位“1”,( )相当于这样的3份,3/40对应的数量是()。

现价比原价少的部分对应的分率是()。

④小红的书比小明少。

把( )平均分为8份,把()看作单位“1”,( )相当于这样的7份,7/8对应的数量是()。

小明的书对上衣多少元?例5、商店运来一批水果,运来苹果20筐,梨的筐数是苹果的3/4,梨的筐数同时又是桔子的3/5。

运来桔子多少筐?例6、学校买来54本新书,其中科技书占 1/6,文艺书占1/3,文艺书比科技书多多少本?(二)能力拓展例7、小强看一本故事书,每天看16页,看了5天后,还剩全书的3/5没有看,这本故事书有多少页?分析:把全书看作单位“1”,是未知的,可以用除法或方程解答。

3/5与没有看的页数相对应,看了的已知量16×5与1—3/5相对应。

例8、客车由甲城开往乙城要10小时,货车由乙城开往甲城要15小时, 两车同时从两城相向开出,多少小时两车相遇?如果相遇时客车走了600千米,甲乙两城之间的公路长多少千米?分析:本题的关键是要求相遇时间,我们知道相遇时间=相遇距离÷速度和,而本题要求的就是相遇距离,怎么办?可以假设全程为单位“1”。

第三讲 差倍问题(1) 许晓蕾

第三讲 差倍问题(1) 许晓蕾

第三讲差倍问题(1)知识导航:什么是差倍应用题呢?已知两数的差以及它们之间的倍数关系,求这两个数各是多少的应用题就叫做差倍应用题。

此类应用题的解题规律是两数之差÷(倍数-1)=较小的数(1倍数)较小的数×倍数=较大的数(几倍数)或较小的数+两数之差=较大的数典型习题:【例1】小王买了一支钢笔和一支圆珠笔。

一支钢笔比圆珠笔贵4元,且钢笔的价钱正好是圆珠笔的3倍,求每支钢笔和每支圆珠笔各多少元?【练习一】1、学校开展捐书活动,四(1)班捐书本数比四(2)班多80本,四(1)班捐书本数是四(2)班的3倍。

四(1)和四(2)各捐书多少本?2、兰兰的课外书比亮亮多30本,又知兰兰的课外书是亮亮的7倍,两人各有课外书多少本?【例2】五年级学生参加课外活动,做游戏的人数比打球的3倍多6人,已知做游戏的比打球得多70人,打球的和做游戏的各有多少人?【练习二】1、一台彩色电视机比一台黑白电视机贵1900元,一台彩色电视机的价钱比黑白电视机的5倍少100元。

每台彩色电视机多少元?2、学校开展体育活动比赛,参加跳绳比赛的人数比踢毽子的4倍少15人,跳绳人数比踢毽子的多24人,参加跳绳和踢毽子比赛的各有多少人?【例3】两根同样长的铁丝,第一根减去160厘米,第二根减去260厘米,余下的部分第一个是第二根的3倍。

原来两根铁丝各为多少厘米?1、四(1)班和四(2)班的人数同样多。

如果从四(1)班调出20人,从四(2)班调出38人去大扫除,四(1)班剩下的人数正好是四(2)班的2倍。

原来两班各有多少人?2、有两根同样长的绳子,第一根截去12米,第二根接上14米,这时第二根长度是第一根长的3倍,两根绳子原来各长多少米?【例4】肖红有存款6400元,王刚有存款4800元。

两人各取出同样多的钱后,肖红的存款是王刚的3倍。

问:取款后两人各有存款多少元?【练习四】1、红色电线长120米,黄色电线长80米,两捆电线用去同样多后,剩下的红色电线是黄色的5倍,红、黄电线各剩下多少米?2、食堂里原来有大米560千克,面粉340千克。

3第三讲 和差应用题

3第三讲 和差应用题

文化培训学校六年级浅奥2013年9月6日星期四姓名:. 第三讲和差应用题【知识串讲】在理解的基础上熟记和差问题的基本解题结构形式:(和+差)÷2=较大的数(和—差)÷2=较小的数【能力培养】培养学生的观察比较能力、理解能力及判断综合能力。

【思维训练】首先用图形思想去理解题意,然后用假设思想求出整倍的和,最后用对应思想和代入思想求出较大数和较小数。

【方法与技巧】一般先画出“比较关系”,特殊情形下优先画出“相等关系”,最后画出“一共关系”。

例1、两层书架上共有104本故事书,如果从第一层取出12本放入第二层,那么两层书架上的书的本数相等,问两层书架上原来各有多少本书?练1、三年级甲、乙两班共有110人,如果从甲班分3个同学去乙班,两个班的人数就相等。

原来甲、乙两班各有多少人?例2、美美比妈妈小23岁,爸爸比妈妈大3岁,3人年龄一共是73岁。

美美年龄是多少岁?练2、有红、蓝、紫三块布,共长98米。

红布比紫布多7米,紫布比蓝布多8米,蓝布长多少米?例3、把长108厘米的铁丝围成一个长方形,共围了2圈,,使长比宽多7厘米,长和宽各是多少厘米?练3、小华每天早晨沿长和宽相差40米的操场跑步,每天跑6圈,共跑2400米,问这个操场的面积是多少平方米?例4、师傅、徒弟两人合作零件2小时,共生产零件80个,如果分别工作3小时,师傅比徒弟多做零件30个。

问两人每小时各做零件多少个?练4、甲、乙两个打字员合打2小时,共打800字,如果分别打3小时,甲比乙多打300字,求甲、乙两个打字员每小时各打多少字?例5、甲、乙两箱水果共有50千克,若从甲箱中取出6千克放到乙箱中,这时甲箱比乙箱多2千克。

求两箱原有水果多少千克?练5、一个两层书架共放书72本,若从上层中拿出9本给下层,上层还比下层多4本,上、下层个放书多少本?例6、四个人年龄之和是77水,最小的10岁,他与最大的年龄之和比另外两个人年龄之和大7岁,最大的年龄多少岁?练6、某校四个年级共有438名学生,其中一年级119人,四年级101人,一、二年级的总人数比三、四年级的总人数少52人,二、三年级各有多少人?例7、有人问小虎今年多少岁,他编了一道有趣的数学题回答说:“爷爷、爸爸和我三个人年龄的和是120岁,爷爷比爸爸大30岁,爷爷和爸爸的年龄的和正好比我大100岁,那么三人的年龄各是多少岁?练7、小明、小红和小芳一共做了72道数学题,小明比小红多做了8道题,小芳做的比小明和小红做的总数少12道。

高斯小学奥数四年级下册含答案第03讲_多人多次相遇与追及

高斯小学奥数四年级下册含答案第03讲_多人多次相遇与追及

第三讲多人多次相遇与追及在之前的课程中,我们已经学过了如何处理两个对象之间的相遇追及问题.本讲我们进一步学习过程更为复杂的三个对象之间的行程问题.本讲中画线段图非常重要,你还记得画行程图要注意什么吗?例题1有甲、乙、丙三个人,甲每分钟走40米,乙每分钟走60米,丙每分钟走50米.A 、B 两地相距2700米.甲从A 地,乙、丙从B 地同时出发相向而行.请问,甲在与乙相遇之后多少分钟又与丙相遇?「分析」全程已知,三个人的速度也都已知,那么甲乙的相遇时间、甲丙的相遇时间都是可以计算出来的. 练习1有冰冰、雪雪、霜霜三个人,冰冰每秒钟走4米,雪雪每秒钟走5米,霜霜每秒钟走6米.A 、B 两地相距990米.雪雪从A 地,霜霜、冰冰从B 地同时出发相向而行.请问,雪雪与霜霜相遇之后多少秒又与冰冰相遇?例题2叮叮、咚咚两人开车从A 地,铛铛则从B 地同时出发,相向而行.叮叮的速度为每小时70千米,铛铛的速度为每小时50千米.出发3小时后,叮叮与铛铛相遇.又过了1小时,咚咚也与铛铛相遇.请问:咚咚的车速是多少?「分析」请在图中把过程补全,并标出相应的数据,例如速度、时间、路程等.然后注意分析,看看哪个过程是可以计算的? 练习2小春、小秋两人从A 地,小夏则从B 地同时出发,相向而行.小春的速度为每小时60千米,小夏的速度为每小时40千米.出发3小时后,小春与小夏相遇.又过了1小时,小秋也与小夏相遇.请问:小秋的速度是多少?A 地B 地叮叮咚咚铛铛例题3甲、乙两辆汽车的速度分别为每小时52千米和每小时40千米,两车同时从A 地出发到B 地去,出发6小时后,甲车遇到一辆迎面开来的卡车.又过了1小时,乙车也遇到了这辆卡车.请问:这辆卡车的速度是多少?「分析」本题的运动过程和上题类似吗?请先把图补充完整,仍然是标出数据进行分析,看看哪个过程是可以计算的? 练习3甲、乙两辆汽车的速度分别为每小时60千米和每小时45千米,两车同时从A 地出发到B 地去,出发7小时后,甲车遇到一辆迎面开来的卡车.又过了1小时,乙车也遇到了这辆卡车.请问:这辆卡车的速度是多少?通过前面几道例题,同学们会发现解决多人多次的相遇与追及等更为复杂的行程问题,画线段图是相当重要的.然而我们不但要学会画图,还要学会看图.“横看成岭侧成峰”,同一个对象从不同的角度去观察往往会有不同的认识.就像例题4中红色的那条线段,既可以看成甲、乙两车的路程差,也可以看成乙车与卡车的路程和.当运动过程趋于复杂时,尤其需要这种从不同角度看待问题的思维习惯,这样才能充分利用好题目中的条件.A 地B 地甲车卡车乙车例题4甲、乙、丙三人走路,甲每分钟走60米,乙每分钟走50米,丙每分钟走40米.如果甲从A 地,乙和丙从B 地同时出发相向而行,甲和乙相遇后,过了15分钟又与丙相遇,求A 、B 两地间的距离为多少米?「分析」请自己画出详细的线段图,好好分析一下,还能像前面两个例题那样一段一段计算吗?如果不能,该怎么办呢? 练习4刘备、关羽、张飞三人,刘备每分钟走40米,关羽每分钟走60米,张飞每分钟走50米.如果刘备从A 地,关羽和张飞从B 地同时出发相向而行,刘备和关羽相遇后,过了10分钟又与张飞相遇,求A 、B 两地间的距离为多少米?上面几道例题的运动过程是一样的,在这样的运动过程里面,会有两次相遇运动和一次追及运动.在这个运动过程中有一段路程既是路程和又是路程差,需要同学们格外注意.接下来我们来看一下和速度倍数相关的行程问题.大家想象一下,如果甲、乙两人同时出发同向前进,甲的速度是乙的3倍,那么5分钟后,甲的路程是乙的几倍?30分钟后,甲的路程又是乙的几倍?2个小时后,甲的路程又是乙的几倍?其实上述问题的答案都是3倍.不管时间过了多久,只要甲、乙两人的时间相同,他们路程的倍数关系就等于速度的倍数关系. 例题5A 、B 两城相距48千米,甲、乙、丙三人分别以每小时4千米、2千米、2千米的速度行走.甲、乙两人从A 城,丙从B 城同时出发,相向而行.请问:出发多长时间后,甲正好在乙和丙的中点?「分析」速度分别是4、2、2,那么我们可以把三人的路程分别设为几份呢?请试着画出线段图,标份数进行分析.A B甲乙 丙例题6A 、B 两城相距50千米,甲、乙、丙三人分别以每小时4千米、2千米、2千米的速度前进.甲、乙两人从A 城,丙从B 城同时出发,相向而行.请问:出发多长时间后,丙正好在甲和乙的中点?「分析」同上题,还是需要把路程设份数,画出线段图进行分析.但要注意,丙在甲、乙的中点,应该是在甲、丙相遇错开后发生的.形象的来说,本讲行程问题最大的特点就是“繁”——人多、车多、过程多.怎么解决这样复杂的问题呢?首先,必须有勇气,只要有勇气,你就敢面对这样的问题,积极开动脑筋去想. 其次,必须有耐心,只要有耐心,你就能动手去画图,细致的分析每一组数量关系,再花上些时间,题目自然能够搞定.或许有人会说,这根本不是什么解题技巧,画线段图、分析倍数关系才是解题.其实,这些只是技巧中的皮毛,真正的技巧是一种智慧,而勇气和耐心就是这种智慧的内涵. 课堂内外换个角度看问题有这样一个故事:有个年轻人为贫所困,便向一位老者请教.老者问:“你为什么失意呢?”年轻人说:“我总是这样穷.”“你怎么能说自己穷呢?你还这么年轻.”“年轻又不能当饭吃.”年轻人说.老者一笑:“那么,给你一万元,让你瘫痪在床,你干吗?”“不干.”“把全世界的财富都给你,但你必须现在死去,你愿意吗?”“我都死了,要全世界的财富干什么?”老者说:“这就对了,你现在这么年轻,生命力旺盛,就等于拥有全世界最宝贵的财富,又怎能说自己穷呢?”年轻人一听,又找回了对生活的信心.美国心理学家艾里斯曾提出一个叫“情绪困扰”的理论.他认为,引起人们情绪结果的因素不是事件本身,而是个人的信念.所以,许多在现实中遭遇挫折的人,往往认为“自己倒霉”,“想不通”,这些其实都是本人的片面认识和解释,正是这种认识才产生了情绪的困扰.实际情况是,人们的烦恼和不快,常常与自己的情绪有关,同自己看问题的角度有关.能否战胜挫折,关键在于自己要有主心骨,任何情况下都不被一时的失意和不快左右,永远怀AB甲乙丙着希望和信心,就能从逆境和灾难中解脱出来.再拿前面提到的那个自认为很穷的年轻人来说吧,其实,穷与富只是相对而言,并没有一个客观标准.一个人即使没有多少物质财富,但他有青春和生命,有奋发进取的精神状态,就不能说他穷.如果一个人热爱生命,就会感到充实和富有.概而言之,任何事情都不是绝对的,就看你怎么去对待它.作业1.小竹、小松两人从A地,小梅则从B地同时出发,相向而行.小竹的速度为每小时55千米,小梅的速度为每小时45千米.出发4小时后,小竹与小梅相遇.又过了1小时,小松也与小梅相遇.A、B两地相距多少千米?小松每小时走多少千米?2.甲、乙两辆汽车的速度分别为每小时80千米和每小时65千米,两车同时从A地出发到B地去,出发8小时后,甲车遇到一辆迎面开来的卡车,这时乙车与卡车相距多少千米?又过了1小时,乙车也遇到这辆卡车.这辆卡车每小时行多少千米?3.哈利、罗恩、赫敏三人,哈利每分钟走60米,罗恩每分钟走50米,赫敏每分钟走45米.如果哈利从A地,罗恩和赫敏从B地同时出发,相向而行.哈利和罗恩相遇2分钟后,又与赫敏相遇.当哈利和罗恩相遇时,赫敏和罗恩相距多少米?A、B两地间的距离为多少米?4.东、西两城相距60千米.小明从东向西跑,每小时跑8千米;小光从西向东走,每小时走4千米;小亮骑自行车从东向西,每小时骑行11千米.3人同时动身,途中小亮遇见小光即折回向东骑,遇见了小明又折回向西骑,再遇见小光又折回向东骑,如此不断往返,直到三人在途中相遇为止.则小亮共行了多少千米?5.老贺、老郭和老刘同时出发,分别以每小时1千米、3千米、1千米的速度前进.其中老贺从A出发往B走,另外两人则从B出发往A走.已知A、B两地相距36千米,在出发后多少小时,老郭正好在老贺与老刘的中点?第三讲 多人多次相遇与追及1. 例题1答案:3分钟详解:甲和乙相遇时的路程和是2700千米,速度和是100米/分,所以相遇时间是270010027÷=分钟.甲和丙相遇时的路程和也是2700千米,速度和是90千米/时,所以相遇时间是27009030÷=分钟,又过了3分钟甲和丙才相遇.2. 例题2答案:40千米/时详解:首先画出线段图(如下图),有两次相遇,其中还隐藏了一次追及问题. AB 全程:()70503360+⨯=千米咚咚和铛铛相遇时间是4小时,他们速度和是:360490÷=千米/时, 那么咚咚的速度是905040-=千米/时.3. 例题3答案:32千米/时详解:首先画出线段图,包括两次相遇和一次追及.在这类型的题目中,有一段非常重要的路程(即红色部分标出的).这段是甲车、乙车6个小时行驶的路程差,也是乙车和卡车1个小时的路程和.如果能够求出这段路程是多少,就可以将两个运动过程联系起来.甲车和乙车的速度差是12千米/时,6个小时行驶的路程差是72千米.所以乙车和卡车1个小时行驶的路程和是72千米.乙车和卡车的速度和是72172÷=千米/时.所以卡车的速度是724032-=千米/时.4. 例题4答案:16500米详解:画出线段图如下,从出发到①时刻,有甲和乙的相遇、乙和丙的同向行驶,由甲、乙相遇求AB 距离、即路程和,速度和已知,需要求时间.乙、丙同向行驶,A 地B 地咚 铛50km/h70km /h 叮A 地 B 地甲车乙车52千米40千米速度差已知,如果知道路程差就可以求时间.①→②时间内,是甲、丙的相遇过程,时间为15分钟,知道速度和,可得①→②甲、丙路程和为()4060151500+⨯=米.接下来的关键和例4是一样的,路程和同时也是路程差,即乙、丙路程差为1500米,追及时间为()150********÷-=分钟,即从出发到①时刻共150分钟,全程为()506015016500+⨯=米.5. 例题5答案:6小时详解:先将行程图补充完整(见下图).设甲走了“4”,乙和丙都走了“2”.此时甲在乙、丙中点,所以图中红色线段表示的路程是相等的,都是“2”.所以全程是“8”,即48千米,所以“1”是6千米,甲走了“4”是24千米,速度是4千米/时,所以行走时间是6小时.另外一个方法是,乙、丙的速度是一样的,其实,乙、丙中点始终就是全程的中点.所以甲行驶到乙、丙中点时,甲一定也在全程的中点,所以甲走了24千米,速度是4千米/时,行走时间仍然是6小时.6. 例题6答案:10小时详解:先将行程图补充完整(见下图).设甲走了“4”,乙和丙都走了“2”.此时丙在甲、乙中点,所以图中红色线段表示的路程是相等的,都是“1”.所以全程是“5”,即50千米,所以“1”是10千米.甲走了“4”是40千米,速度是4千米/时,所以行走时间是10小时.B乙 丙 50米/40米/60米/分千米/时 A B 甲乙 4千米/2千米/A B2千米/4千米/7. 练习1答案:20分钟详解:雪雪和霜霜相遇时的路程和是990千米,速度和是11米/分,所以相遇时间是9901190÷=分钟.雪雪和冰冰相遇时的路程和也是990千米,速度和是9千米/时,所以相遇时间是9909110÷=分钟,又过了20分钟雪雪和冰冰才相遇.8. 练习2答案:35千米/时详解:有两次相遇,其中还隐藏了一次追及问题. AB 全程:()60403300+⨯=千米小秋和小夏相遇时间是4小时,他们速度和是:300475÷=千米/时, 那么小秋的速度是754035-=千米/时.9. 练习3答案:60千米/时简答:首先画出线段图,包括两次相遇和一次追及.在这类型的题目中,有一段非常重要的路程(即红色部分标出的).这段是甲车、乙车7个小时行驶的路程差,也是乙车和卡车1个小时的路程和.如果能够求出这段路程是多少,就可以将两个运动过程联系起来.甲车和乙车的速度差是15千米/时,7个小时行驶的路程差是105千米.所以乙车和卡车1个小时行驶的路程和是105千米.乙车和卡车的速度和是1051105÷=千米/时.所以卡车的速度是1054560-=千米/时.10. 练习4答案:9000米简答:画出线段图如下,从出发到①时刻,有刘和关的相遇、关和张的同向行驶,由刘、关相遇求AB 距离、即路程和,速度和已知,需要求时间.关、张同向行驶,速度差已知,如果知道路程差就可以求时间.①→②时间内,是刘、关的相遇过程,时间为10分钟,知道速度和,可得①→②;刘、张路程和为()405010900+⨯=米.接下来的关键和例4是一样的,路程和同时也是路程差,即关、张路程差为900米,追及时间为()900605090÷-=分钟,即从出发到①时刻共90分钟,全程为A 地B 地 甲车乙车 60千米45千米()4060909000+⨯=米.11. 作业1答案:400;35简答:全程长:()55454400+⨯=千米,小松与小梅用了5小时相遇,所以小松的速度为:40054535÷-=千米∕时.12. 作业2答案:120;55简答:8小时内甲、乙两车的路程差为()80658120-⨯=千米.甲、乙两辆车的路程差就是后面1小时内乙车与卡车的路程和,所以卡车的速度为:12016555÷-=千米∕时.13. 作业3答案:210;4620简答:哈利和赫敏2分钟内的路程和也是罗恩和赫敏的路程差,根据这个关系可知当哈利和罗恩相遇时,赫敏和罗恩相距()26045210⨯+=米.可求出哈利与罗恩相遇所用的时间是()210504542÷-=分,全程为()4260504620⨯+=米.14. 作业4答案:55简答:小亮行驶的总时间就是小明、小光的相遇时间:()60845÷+=小时,所以路程为55千米.15. 作业5答案:6简答:当老郭在老贺与老刘的中点时,老郭的路程是“3”份,老贺和老刘的路程都是“1”份.这时老郭和老刘相距“2”份,老郭和老贺也相距“2”份,全程36千米相当于是“6”份,“1”份是6米,也即老贺走了616÷=小时,老郭正好在老贺与老刘的中点.B关 张 60米/50米/40米/分。

第三讲 应用题综合强化

第三讲 应用题综合强化

第三讲应用题综合强化和差倍分问题1、甲、乙、丙三所小学学生人数的总和为1999,已知甲校学生人数的2倍,乙校学生人数减3,丙校学生人数加4都是相等的,问甲、乙、丙各校学生的人数是多少?2、有5堆苹果,较小的3堆平均有18个苹果,较大的2堆,苹果数之差为5个,又较大的3堆平均有26个苹果,较小的2堆苹果数之差为7个,最大堆与最小堆平均有22个苹果,问每堆各有多少个苹果?3、某日停电,房间里燃起了长、短两根蜡烛,它们的燃烧速度是一样的,开始时长蜡烛是短蜡烛长度的2倍,当送电后吹灭蜡烛,发现此时长蜡烛是短蜡烛长度的3倍,短蜡烛燃烧掉的长度是5厘米,问原来两根蜡烛各有多长?4、小明、小红、小玲共有73块糖,如果小玲吃掉3块,那么小玲与小红的糖就一样多,如果小红给小明3块糖,那么小明的糖就是小红的糖的2倍,问小红有多少块糖?【练习一】甲乙两位学生原计划每天自学时间相同,若甲每天增加自学时间半小时,乙每天减少自学时间半小时,则乙自学6天的时间仅相当于甲自学1天的时间。

问:甲、乙原定每天自学的时间是多少?【练习二】某小学原来参加室外活动的人数比参加室内活动的人数多480人,现在把室内活动的50人改为室外活动,这样室外活动的人数正好是室内人数的5倍,则参加室内、室外活动的共有多少人?年龄问题5、(07年湖北省“创新杯”初赛题)现在哥哥的年龄恰好是弟弟年龄的2倍,而9年前哥哥的年龄是弟弟年龄的5倍,则哥哥现在的年龄是_______岁6、已知祖孙三人,祖父和父亲的年龄差与父亲和孙子的年龄差相同,祖父和孙子年龄纸鹤为82岁,明年祖父年龄恰好等于孙子年龄的5倍,求祖孙三人各几岁?【练习三】小芬家由小芬和她的父母组成,小芬的父亲比母亲大4岁,今年全家年龄的和是72岁,10年前这一家全家年龄和是44岁,今年三人各是多少岁?还原问题7、有一堆棋子,把它四等分后剩下一枚,取走三份又一枚,剩下的再四等分又剩一枚,再取走三份又一枚,剩下的再四等分又剩一枚。

第三讲 假设法解应用题

第三讲   假设法解应用题

第三讲假设法解应用题例1:鸡兔同笼,共30个头,100条腿,问:鸡兔各几只?[分析与解答]30个头,说明鸡、兔一共有30只,假设这30只都是鸡的话,那么一共有2×30=60条腿,这和实际有100条腿相比,少了100—60=40条,就是因为这30只里还有兔子,如果有一只兔,它有4条腿,而我们把它当成鸡算了,就少算了4—2=2条腿。

那么一共有多少只兔子呢?一共少算了40条腿?40÷2=20只,有20只兔子,有30—20=10只鸡。

兔:(100—2×30)÷(4—2)=20(只)鸡:30—20=10(只)当然,也可以假设这30只都是兔子,是同样的算理,同样的答案。

鸡:(30×4-100)÷(4—2)=10(只)兔:30-10=20(只)答:鸡有10只,兔子有20只。

小试身手1(1)小芳买了0.50元和0.80元的贺卡共50张,总共用去29.5元,问:两种卡片各买了多少张?(35,15)(2)小明的储蓄罐里1元和5角硬币一共40枚,有33元。

1元和5角的硬币各有多少枚?例2:数学竞赛共10题,做对一题得10分,做错一题倒扣6分,不做不得分也不扣分,小明10题全做,得了68分,他做错了多少道题?小试身手21、在一次抢答赛上,规定答对一题可得5分,如果答错,要扣2分,已知小华共答了20道题,得到51分,他答对了几道题?(13)2、一批货物共有1000件,现需一辆货车将它运走,物主和货车司机商定:每天货物的运费是0.8元。

但若损坏1件,不但得不到运费,还要赔偿物主货物的成本10元,结果货车司机共得到运费746元。

问损坏了几件货物?例3:有两袋大米共重100千克,第一袋重量的12 等于第二袋重量的13 ,这两袋大米各重多少千克?[分析与解答]“第一袋重量的12 等于第二袋重量的13 ”,我们可以把这个相等的量假设成1份的重量,那么第一袋有这样的1÷12 =2份,第二袋有这样的份。

第3讲 比例应用题-完整版

第3讲 比例应用题-完整版

第三讲比例解应用题内容概述涉及两个或多个量之间比例的应用题.熟练掌握比的转化和运算;对条件较多的应用题,学会通过列表的方法逐步分析求解了解正比例与反比例的概念,掌握行程问题和工程问题中的正反比例关系。

典型问题兴趣篇:1.圆珠笔和铅笔的价格比是4:3,20支圆珠笔和21支铅笔共用71.5元,请问:圆珠笔的单价是每支多少元?答案:2元【解析】解答如果把每支圆珠笔的价格看成4份,那么每支铅笔的价格就是3份.因此20支圆珠笔的总价是4×20=80份,21支铅笔的总价是3×21=63份,所以它们的总价之比是80:63.而20支圆珠笔和21支铅笔一共71.5元,那么20支圆珠笔的价格就是808071.571.5408063143⨯=⨯=+元;所以圆珠笔的单价是40÷20=2元.2.已知甲比乙小5,甲数的34等于乙数的23,请问:甲数是多少?答案:40【解析】解答由题意,有32=43甲乙,等式两边同时乘以12去分母得9甲=8乙,即甲:乙=8:9.所以甲数是5÷(9-8)×8=40.3.一段路程分为上坡和下坡两段,这两段的长度之比是4:3.已知墨莫在上坡时每小时走3千米,下坡时每小时走4.5千米,如果墨莫走完全程用了半小时,请问:这段路程一共有多少千米?答案:3 1 4【解析】上坡和下坡路程之比是4:3,行人速度分别是3千米/小时和4.5千米/小时.由于时间=路程÷速度,那么上坡与下坡的时间之比就是(4÷3):(3÷4.5)=42=2133::.因为全程共用了12小时,所以上坡用了121=22+13⨯小时,下坡用了111=22+16⨯小时.因此上坡路程为13=13⨯千米,下坡为134.5=64⨯千米,全程一共331+=144千米.4.加工一个零件,甲要2分钟,乙要3分钟,丙要4分钟.现有1170个零件,甲、乙、丙三人各加工多少个零件,才能使得他们同时完成任务?答案:甲540个零件,乙360个零件,丙270个零件【解析】设总时间为单位“1”.由于甲每加工一个零件需要2分钟,所以甲共加工总零件数的“1”÷2 =“12”,同样,乙共加工总零件数的“13”,丙共加工总零件数的“14”,三人加I 零件的个数比为111::=6:4:3234.由于一共有1170个零件,因此甲要加工61170=5406+4+3⨯个零件,乙要加工41170360643⨯=++个零件,丙要加工31170=2706+4+3⨯个零件.5.有两块重量相同的铜锌合金.第一块合金中铜与锌的重量比是2:5,第二块合金中铜与锌的重量比是1:3.现在把这两块合金合铸成一块大的,求合铸所成的合金中铜与锌的重量之比.答案:15:41【解析】设一块合金的重量为1份,则第一块合金中铜的重量是221257⨯=+份,锌的重量是551257⨯=+份;第二块合金中铜的重量是111134⨯=+份,锌的重量是331134⨯=+份,两块合金中铜的总重量是21157428+=份,锌的总重量是53417428+=份.因此,合铸之后铜与锌的重量比是1541:15:412828=.6.已知甲、乙、丙三个班总人数的比为3:4:2,甲班男、女生人数的比为5:4,丙班男、女生人数的比为2:1,而且三个班所有男生和所有女生人数的比为13:14.请问:(1)乙班男、女生人数的比是多少?(2)如果甲班男生比乙班女生少12人,那么甲、乙、丙三个班各有多少人?答案:(1)1:2(2)甲班36人,乙班48人,丙班24人【解析】(1)假设男生人数一共有13份,女生人数一共有14份,则三个班总人数为13+14=27份.于是甲班总人数为3279342⨯=++份,乙班总人数为42712342⨯=++份,丙班总人数为2276342⨯=++份.其中甲班男生人数有59545⨯=+份,女生人数有49445⨯=+份,丙班男生人数有26421⨯=+份,女生人数有16221⨯=+份.所以,乙班男生人数有13-5-4=4份,女生人数有14-4-2 =8份,因此,乙班男、女生人数的比例为4:8=1:2.(2)由第(1)问知,甲班男生比乙班女生少8-5=3份,则1份就是12÷3=4人.因此甲班人数有4×9=36人,乙班人数有4×12=48人,丙班人数有4×6=24人.7.甲、乙两包糖的重量比是5:3,如果从甲包取出10克放入乙包后,甲、乙两包糖的重量比变为7:5.请问:这两包糖重量的总和是多少克?答案:240克【解析】甲、乙两包糖的总重量是不变的,设这个总重量为5+3和7+5的最小公倍数,即24份.那么甲包原有524158⨯=份,甲包后来有7241412⨯=份,所以10克对应15-14=1份.因此两包糖重量的总和是24×10=240克.8.小明从甲地到乙地,去时每小时走5千米,回来时每小时走7千米,来回共用了4小时,问:小明去时用了多长时间?答案:2小时20分钟【解析】小明走同一段路,往返的速度之比是5:7,那么所用的时间之比就是7:5.而小明来回共用4小时,那么去时用了771427533⨯==+小时,即2小时20分钟.9.小高从家去学校,平时总是7:50到校.有一天他起晚了,结果晚出发了10分钟,为了不至于迟到,他将速度提高了五分之一,跑步前往学校,最后在7:55到校.请问:小高这天是几点出发的?答案:7:30【解析】小高今天比平时晚出发10分钟,晚到5分钟,那么他在路上少用了10-5=5分钟,小高今天的速度比平时快15,则今天和平时的速度比为11:16:55⎛⎫+= ⎪⎝⎭,那么他今天在路上用的时间就是平时所用时间的比为5:6.今天小高在路上比平时少用了5分钟,那么今天就要用5÷(6-5)×5=25分钟.而小高今天7:55到达,所以他今天7:30出发.10.康师傅加工一批零件,加工720个之后,他的工作效率提高了20%,结果提前4天完成任务;如果康师傅从一开始就把工作效率提高12.5%,那么也可以提前4天完成任务.问:这批零件共有多少个?答案:2160个【解析】康师傅加工了720个零件后,工作效率提高了20%,相当于变成原来的6120%5+=,那么所用时间就是原来的56.如果提前4天完成任务.那么不改变工作效率,康师傅还需要继续工作541246⎛⎫÷-= ⎪⎝⎭天.如果一开始康师傅就提高工作效率,变成原来的9112.5%8+=,那么所用时间就变成原来的89,要比原来提前4天完成任务,那么康师傅原来需要841369⎛⎫÷-= ⎪⎝⎭天完成任务.比较两次计算的结果,康师傅加工720个零件相当于原来工作36-24=12天,那么他原来每天加工720÷12=60个零件,因此这批零件一共有60×36=2160个.拓展篇1.萱萱和卡莉娅共折了100只千纸鹤.折完后,萱萱将自己所折千纸鹤的16给了卡莉娅,这时卡莉娅的千纸鹤数量变为萱萱的13,那么卡莉娅折了多少只千纸鹤?答案:10只【解析】萱萱给卡莉娅后,卡莉娅和萱萱的比是1:3,萱萱还剩3100754⨯= 只千纸鹤,这是萱萱原来的56,所以萱萱原来有575906÷=只千纸鹤.因此卡 莉娅折了10只千纸鹤.2.学校组织体检,收费标准如下:老师每人3元,女生每人2元,男生每人1元.已知老师和女生的人数比为2:9,女生和男生的人数比为3:7,共收体检费945元.那么老师、女生和男生各有多少人?答案:老师42人,女生189人,男生441人【解析】老师、女生、男生每人交费的比是3:2:1:将“老师和女生的人数比为2:9,女生和男生的人数比为3:7”化为连比得,老师:女生:男生=2:9:21;根据“总交费=每人交费数×人数”,利用复合比得三人交费的比是,老师:女生:男生=3×2:2×9:1×21=2:6:7.他们一共缴费945元,那么女生缴费6945378267⨯=++元,女生有378÷2=189人.因此老师有2189429⨯=人.男生有71894413⨯=人.3.徐福记的巧克力糖每6块包成一小袋,水果糖每15块包成一大袋.现有巧克力糖和水果糖各若干袋,而且巧克力糖比水果糖多30袋.如果巧克力糖的总块数与水果糖的总块数之比为7:10,那么它们各有多少块?答案:巧克力糖420块,水果糖600块【解析】一袋巧克力糖与一袋水果糖的糖数之比为6:15=2:5,两种糖的总糖数之比为7:10.根据总糖数袋数=每袋中糖数 ,则袋数之比就是:710=7:425.而巧克力糖比水果糖多30袋,则巧克力糖有⨯730=707-4袋,即6×70=420块;水果糖有70-30=40袋,即15× 40=600块.4.甲、乙、丙三人合买一台电视机.甲付的钱数等于乙付的钱数的2倍,也等于丙付的钱数的3倍.已知甲比丙多付了680元,请问:(1)甲、乙、丙三人所付的钱数之比是多少?(2)这台电视机售价多少元?答案:(1)6:3:2 (2) 1870元【解析】解答甲与己所付钱数之比为2:1,甲与丙所付钱数之比为3:1.由于甲付的钱数同时出现在两个比例中,于是要把甲转化为2和3的最小公倍数6,则甲与乙所付钱数之比为6:3,甲与丙所付钱数之比为6:2,所以甲、乙、丙三人所付钱数之比为6:3:2.而甲比丙多付680元,那么甲、乙、丙三人一共付了6+3+2116806801870624⨯=⨯=-元,这正好就是电视机的价格.5.一把小刀售价3元,如果小明买了这把小刀,那么小明与小强剩余的钱数之比是2:5;如果小强买了这把小刀,那么两人剩余的钱数之比变为8:13.问:小明原来有多少元钱?答案:12元【解析】观察发现,不论谁买了这把小刀,两人剩余的总钱数是相同的,所以将两个比的总份数统一为21份.那么如果小明买这把小刀,小明与小强剩余的钱数之比为6:15;如果小强买这把小刀,小明与小强剩余的钱数之比为8:13,所以小刀的3元相当于2份,小明原有3÷2×8=12元.6.两根粗细相同、材料相同的蜡烛,长度比为29:26,燃烧50分钟后,长蜡烛与短蜡烛的长度比为11:9,那么较长的那根还能燃烧多少分钟? 答案:66分钟【解析】观察发现,这两只蜡烛燃烧的时候差不变,所以将两个比的差统一为6份,那么原长度比为58:52,后来的长度比为33:27,所以50分钟对应58-33=25份,所以较长的那根还能燃烧50÷25×33=66分钟.7.某俱乐部男、女会员的人数比是3:2,分为甲、乙、丙三组,已知甲、乙、丙三组的人数比是10:8:7,甲组中男、女会员的人数比是3:1,乙组中男、女会员的人数比是5:3.求丙组中男、女会员的人数比.答案:5:9【解析】假设甲组人数为10份,则乙组人数为8份,丙组人数为7份,三组总人数为10+8+7=25份.而三组中男会员有3251532⨯=+份,女会员有2251032⨯=+份,而甲组中男会员有31107312⨯=+份,女会员有11107222-=份;乙组中男会员有58553⨯=+份,女会员有8-5=3份.因此丙组中男会员有111575222--=份,女会员有111023422--=,从而男、女会员人数比为112:45:922=.8.某次数学竞赛设一、二、三等奖,已知:①甲、乙两校获一等奖的人数比为1:2,但它们获一等奖人数占各自获奖总人数的百分数之比为2:5;②甲、乙两校获二等奖人数占两校获奖人数总和的25%,其中乙校是甲校的3.5倍;③甲校三等奖获奖人数占该校获奖人数的80%.请问:乙校获三等奖人数占该校获奖人数的百分比是多少?答案:31.25%【解析】由题意得,甲校获一等奖人数:乙校获一等奖人数=1:2,=2:5甲校获一等奖人数乙校获一等奖人数:甲校获奖总人数乙校获奖总人数,则有甲校获奖总人数:乙校获奖总人数=(1÷2):(2÷5) =5:4.不妨设甲、乙两校获奖人数分别为5份和4份,此时两校获奖总人数为5+4=9份,那么两校获二等奖总人数为9925%4⨯=份,其中甲校获二等奖的有91141 3.52⨯=+份,乙校获二等奖的有9 3.5741 3.54⨯=+份.把已经算出的结果填在表格中,如下图所示,而甲校获三等奖的有5×80%=4份,则甲校获一等奖的有115422--=份,乙校获一等奖的有1212⨯=份,因此乙校获三等奖的有754144--=份,填在表格中,如下图所示.所以乙校获三等奖人数占乙校获奖人数的55431.25%416÷==.9.如果单独完成某项工作,甲需24天,乙需36天,丙需48天.现在甲先做,乙后做,最后由丙完成,甲、乙工作的天数比为1:2,乙、丙工作的天数比为3:5.问:完成这项工作一共用了多少天?答案:38天【解析】假设整个工作量为单位“1”,则甲、乙、丙的工作效率分别为111243648、、 .由甲与乙、乙与丙工作的天数比可知, 甲、乙完成的工作量之比为1111:2:3:424362418⎛⎫⨯== ⎪⎝⎭,乙、丙完成的工作量之比为11153:5:4:536481248⎛⎫⎛⎫⨯⨯== ⎪ ⎪⎝⎭⎝⎭, 则甲、乙、丙完成的工作量之比为3:4:5,三人各自完成的工作量分别是313454=++,413453=++,5534512=++,因此甲、乙、丙各自工作了116424÷=天,1112336÷=天,51201248÷=天,一共用了6+12+20=38天.10.已知猫跑5步的路程与狗跑3步的路程相同,猫跑7步的路程与兔跑5步的路程相同.而猫跑3步的时间与狗跑5步的时间相同,猫跑5步的时间与兔跑7步的时间相同.求猫、狗和兔的速度之比.答案:225:625:44l【解析】猫与狗各跑1步,经过的路程比为3:5,所用时间比是5:3.猫与兔各跑1步,经过的路程比为5:7,所用时间比是7:5.因此猫、狗、兔各跑1步,经过的路程比为15:25:21,所用时间比为35:21:25.所以它们的速度比就是152521::225:625:441352125=.11.星期天早晨,哥哥和弟弟都要到奶奶家去.弟弟先走5分钟,哥哥出发25分钟后追上了弟弟.如果哥哥每分钟多走5米,出发20分钟后就可以追上弟弟.问:弟弟每分钟走多少米?答案:100米【解析】弟弟先走5分钟,哥哥出发后25分钟追上了弟弟,则哥哥走25分钟的路程弟弟要走5+25=30分钟,哥哥原来速度与弟弟的速度比是30:25=6:5.哥哥提速后,走20分钟的路程弟弟要走5+20=25分钟,哥哥提速后速度与弟弟的速度比是25:20=5:4.所以哥哥原来速度:哥哥增加速度:弟弟速度65::124:25:2054=.而哥哥每分钟多走5米,因此弟弟的速度是每分钟5÷(25—24)×20=100米.12.一项工程,由若干台机器在规定时间内完成.如果增加2台机器,只需用规定时间的78就可完成;如果减少2台机器,就要推迟23小时才能完成,请问: (1)在规定时间内完成这项工程需几台机器?(2)由1台机器去完成这项工程,需要多少小时?答案:(1)14台(2)56小时【解析】(1)增加2台机器后,时间比为:8:7t t =现原,则效率比为:7:8v v =现原.所以原来有2×7=14台机器.(2)如果减少2台机器,那么效率比变为:14:127:6v v ==现原,时间比为:6:7t t =现原,所以14台机器完成这工程需要2643⨯=小时,所以一台机器完成这工程需要4×14=56小时.13.一支解放军部队从驻地乘车赶往某地抗洪抢险,如果行驶1个小时后,将车速提高五分之一,就可比预定时间提前20分钟赶到;如果先按原速度行驶72千米,再将车速提高三分之一,就可比预定时间提前30分钟赶到,问:这支解放军部队一共需要行驶多少千米?答案:216千米【解析】汽车按原速行驶1个小时后,车速比原来提高15,提速后的速度与原速之比就是6:5,则所用时间与原计划行驶这段路程的时间之比为5:6.而一共少用了20分钟,那么如果继续按原速行驶,还需要行驶20÷(6-5)×6=120分钟.汽车先按原速行驶72千米,再将车速提高13,提速后的速度与原速之比就是4:3,则行驶后面这段路程所用时间与原计划时间之比为3:4,现在少用了30分钟,那么如果继续按原速行驶,还需行驶30÷(4-3)×4=120分钟.比较两种方案可知,汽车1小时行驶的路程正是72千米,因此这支部队的总行程是72×(1+120÷l60)=216千米.14.一项工作由甲、乙两人合作,恰可在规定时间内完成.如果甲效率提高三分之一,则只需用规定时间的56即可完成;如果乙效率降低四分之一,那么就要推迟75分钟才能完成.请问:规定时间是多少小时? 答案:1114小时 【解析】甲效率提高13,与原来甲的效率之比为4:3.而两人工作时间变成原来的56,那么两人工作效率之和与原来的比就是6:5.假设两人原来工作效率之和是5份,那么甲效率增加了1份,因此甲原来的工作效率是3份,乙原来的工作效率是2份. 乙的效率降低14变为132142⎛⎫⨯-= ⎪⎝⎭份,这时两人工作效率之知与原来的比为313:54:59:1022⎛⎫+== ⎪⎝⎭,所用时间与规定时间之比就是10:9.两人要推迟75分钟完成任务,因此规定时间是1017517567599⎛⎫÷-=÷= ⎪⎝⎭分钟,即1114小时.超越篇1.甲、乙两人分别同时从A 、B 两地开始,修建一条连接A 、B 两地的公路,并按修路的距离分配240万元工程款.如果按原计划,甲应分得100万元,而在实际施工的时候.乙每天比原计划多修1千米,结果乙实际分得了150万元.那么乙实际施工时,每天修多少千米? 答案:164千米 【解析】甲、乙分得的金钱之比由100:140=5:7变为了90:150=3:5,说明工作总量由5:7变为了3:5,因为两人同时工作同时结束,所以两入的工作时间是相同的,又工作总量与工作效率成正比,那么两人的工作效率之比由5:7变为了3:5.根据甲的工作效率没变,得到5:7=15:21,3:5=15:25,又乙的工作效率提高了4份,4份是1千米/天,乙的实际工作效率是25份,即254千米/天.2.孙悟空有仙桃,机器猫有甜饼,米老鼠有泡泡糖,他们按下面比例互换:仙桃与甜饼为3:5,仙桃与泡泡糖为3:8,甜饼与泡泡糖为5:8.现在孙悟空共拿出39个仙桃与其他两位互换,机器猫共拿出甜饼90个与其他两位互换,米老鼠共拿出S8个泡泡糖与其他两位互换,请问:米老鼠与孙悟空和机器猫各交换泡泡糖多少个?答案:与孙悟空交换24个,与机器猫交换64个【解析】方法一:孙悟空有39个仙桃,则襁能交换13次;机器猫有90个甜饼,则他能交换18次;米老鼠有88个泡泡糖,则他能交换11次,很容易得到孙悟空和机器猫要交换131811102+-=次,所以孙悟空和米老鼠交换13-10=3次,交换3×8=24个泡泡糖,机器猫和米老鼠交换18-10=8次,交换8×8=64个泡泡糖.方法二:为方便看条件,将三种物品交换的连比写出来,仙桃:甜饼:泡泡糖=3:5:8.设米老鼠与孙悟空交换x 个泡泡糖,与机器猫交换(88-x )个泡泡糖,那么孙悟空还剩3398x ⎛⎫- ⎪⎝⎭个仙桃,机器猫还剩()590888x ⎡⎤--⎢⎥⎣⎦个甜饼,这两人剩余的要恰好能交换,则()355393908888x x ⎛⎫⎡⎤⨯-=⨯-- ⎪⎢⎥⎝⎭⎣⎦,解得24x =.所以米老鼠与孙悟空交换泡泡糖24个,与机器猫交换88-24=64个.3.有两包糖,每包糖内装有奶糖、水果糖和巧克力糖,已知:①第一包糖的粒数是第二包糖的23; ②在第一包糖中,奶糖占25%,在第二包糖中,水果糖占50%;③巧克力糖在第一包糖中所占的百分比是在第二包糖中所占的百分比的两倍.当两包糖混合在一起时,巧克力糖占28%.求第一包与第二包中水果糖占所有糖的百分比.答案:44%【解析】根据题意,为数据便于计算,设第一包有200粒糖,第二包有300粒糖,列表:由此表和条件③,得1402200300x x -=⨯,解得80x =. 所以第一包中的水果糖有70份,两包一共220份,占总数的44%.4.某工地用三种型号的卡车运送土方.已知甲、乙、丙三种卡车载重量之比为10:7:6,速度比为3:4:5,运送土方的路程之比为15:14:14,三种车的辆数之比为10:5:7.工程开始时,乙、丙两种车全部投入运输,但甲种车只有一半投入,直到10天后,另一半甲种车才投入工作,又干了15天才完成任务,求甲种车完成的工作量与总工作量之比.答案:16:41.【解析】甲种车实际相当于只工作了20天,三种车的工作天数之比是4:5:5.根据下面三个算式来计算相应的复合比:(1)路程=速度×时间; (2)趟数=天数÷时间; (3)工作量=趟数×载重量×辆数,这里面的时间指的是运送一次需要的时间.首先可求出时间比为151414::50:35:28345=.然后求出趟数比为455::56:100:125503528=.最后求出工作量之比为56×10×10:100×7×5:125×6×7=16:10:15.甲种车完成的工作量与总工作量之比是16:41.5.在一个490米长的圆形跑道土,甲、乙两人从相距50米的A 、B 两地,相背出发,相遇后,乙返回,甲方向不变,继续前进,甲的速度提高五分之一,乙的速度提高四分之一,当乙回到B 地时,甲刚好回到A 地,此时他们都按现有速度与方向前进,请问:当甲再次追上乙时,甲(从开始出发算起)一共走了多少米?答案:2602【解析】设相遇处为C 点,如右图所示.由于乙由B 到C ,再由C 到B 是原路返回,所以路程相同,于是速度和时间成反比.乙前后速度比是4:5,所以时间比为5:4.于是甲前后两段的时间比是5:4,又因为甲前后的速度比是5:6,所以甲前后两段的路程比为(5×5):(4×6)=25:24.于是从A 逆时针到C 的路程是254902502524⨯=+米,BC 长490-250-50=190米.因为相遇后,甲从C 逆时针到A ,共走240米,乙从C 返回B ,共走190米,则甲、乙的速度比是240:190=24:19.从C 点开始计算,因为甲、乙速度比是24:19,所以当甲跑245圈时,乙跑195圈,甲第一次追上乙.此时甲共跑2449025026025⨯+=米.6.将A 、B 两种细菌分别放在两个容器里.在光线亮时,A 细菌需12小时分裂完毕,B 细菌需15小时分裂完毕;在光线暗时,A 细菌的分裂速度要下降40%,B 细菌的分裂速度反而提高10%.现在两种细菌同时开始分裂并同时分裂完毕,试问:在分裂过程中,光线暗的时间有多少小时?答案:6小时【解析】方法一:光线亮时两种细菌分裂的速度比为11::5:41215A B v v ==,光线暗时两种细菌分裂的速度比为()():5140%:4110%15:22A B v v =⨯-⨯+=,为了将两次速度比的份数统一,所以把光线亮时两种细菌分裂的速度比扩倍为:25:20A B v v =.两种细菌分裂完成需要的量是12×25=300份和15×20=300份,恰好相等. 注意到亮时速度差5份,暗时速度差7份,所以亮、暗时间比为:7:5t t =亮暗,那么量的比为亮:暗=7×25:15×5=7:3,光线暗的时间为3130067315⨯⨯=+小时.方法二:细菌A 的分裂速度在光线亮时是112,光线暗时是()11140%1220⨯-=;细菌B 的分裂速度在光线亮时是115,光线暗时是()111110%15150⨯+=.设在分裂过程中,光线亮的时间有x 个小时,光线暗的时间有y 个小时,依题意得:1111220111115150x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ ,解得8.46x y =⎧⎨=⎩,所以光线暗的时间有6个小时.7.某大学本科共有四个年级,男生总人数和女生总人数的比为7:5.又已知: ①一年级男生和二年级女生的比是3:2,二年级男生和一年级女生的比也是3:2;②三年级和四年级的人数相等,且三年级男生比四年级女生多100人; ③三、四年级男生总数与女生总数的比为6:5; ④二年级的男生占学生总数的24%.请问:一年级男生和女生的人数分别是多少? 答案:男生1272人,女生1152人. 【解析】列表分析:根据三、四年级人数相等,得到d+100+5e-d =6e-d-100+d ,即e=200. 再根据男生总人数和女生总人数,得到二元一次方程组:72312007254821000525b a a a b a ⎧++=⎪⎪⎨⎪++=⎪⎩,解得600424a b =⎧⎨=⎩ 所以一年级男生有1272人,女生有1112人.8.如图3-1所示?A 、B 、C 、D 、E 、F 是六个齿轮.其中A 和B 相互咬合,B 和C 相互咬合,D 和E 、E 和F 也都相互咬合;而C 和D 是同轴的两个齿轮,也就是说C 和D 转动的圈数始终相同,当A 转了7圈时,B 恰好转了5圈;当E 转了8圈时,F 恰好转了9圈;当C 转了5圈时,B 和E 恰好共转了28圈,请问: (1)如果A 、E 转的总圈数总是和B 、F 转的总圈数相同,那么当A 、F 共转了100圈时,D 转了多少圈?(注:图片只是示意图,并不代表实际齿数) (2)如果A 、E 的总齿数和B 、F 的总齿数相等,D 的齿数是C 的齿数的2倍,那么当A 转了210圈时,D 和F 分别转了多少圈?答案: (1) 15圈 (2)D 转了134721 ,F 转了11314圈 【解析】根据6个齿轮的连接方式可以看出:A 、B 、C 三个齿轮转过的路程相同,D 、E 、F 三个齿轮转过的路程相同,C 、D 两个齿轮转过的圈数相同. (1)如果A 、E 转的总圈数总是相B 、F 转的总圈数相同,那么圈A +圈E =圈B +圈F ,所以圈A -圈B =圈F -圈E .由已知圈A :圈B = 7:5,圈F :圈E =9:8,根据差不变,可知圈A :圈B :圈E :圈F =7:5:16:18.那么当A 、F 共转100圈时,B 和E共转了84圈,C 和D 都转了8451528⨯=圈.(2)如果A 、E 的总齿数和B 、F 的总齿数相等,那么齿B -齿A =齿E -齿F.因为齿A :齿B =5:7,齿F :齿E =8:9,根据差不变,可知齿A :齿B :齿E :齿F =5:7:18:16,齿B :齿E =7:18.因为D 的齿数是C 的齿数的2倍,所以D 与C 的路程比是2:1,也就是说B 和E 的路程比是1:2,利用复合比可算出圈B :圈E12:9:7718==.因为[16,28]=112,所以当B 和E 共转112圈时,C 转了11252028⨯=圈,B 转了91126397⨯=+圈,E 转了71124997⨯=+圈.可求出圈B :圈C =63:20.又因为圈A :圈B =7:5,可求出圈A :圈C =441:100.因此当A 转了210圈时,C 转了134721圈.又因为齿A :齿F =5:16,A 和F 的路程比是1:2,利用复合比可求出圈A :圈F 12:8:5516==.所以当A 转了210圈时,F 转了11314圈.。

四年级奥数教程及训练 03还原法解应用题

四年级奥数教程及训练 03还原法解应用题

四年级奥数第三讲还原法解题【知识点和基本方法】还原法:有些应用题的思考,是从应用题所叙述事情的最后结果出发,利用已知条件一步步倒着推理,逐步靠拢所求,直到解决问题,这种思考问题的方法,通常我们把它叫做倒推法(还原法)。

下面看一组问题的解答:(1)某数加上1得10,求某数。

某数+1=10,某数=10-1=9(2)某数减去2得8,求某数。

某数-2=8,某数=8+2=10(3)某数乘以3得24,求某数。

某数×3=24 某数=24÷3=8(4)某数除以4得6,求某数某数÷4=6 某数=6×4=24通过观察不难发现,还原类问题的解法是:怎么样来的就怎么样回去。

也就是说,原来是加法,回过来是减法;原来是减法,回过头是加法;同样,原来是乘法,回过去是除法;原来是除法,回过去是乘法,这是我们今天要学习的还原法问题中的一种,我们可以称为直接还原问题,还有一类是间接还原问题,解题的思路是一致的,就是相对复杂一些,需要借助于一些辅助手段来解题,比如线段示意图、表格等。

【例题精讲】例1一棵石榴树上结有石榴,石榴数目减去6,乘以6,加上6,除以6,结果等于6。

请计算一下,石榴树上一共有多少个石榴?分析:根据题目意思,列出下面的流程图:石榴树上的石榴数目—减去6—乘以6—加上6—除以6—6用逆推法帮助思考:石榴树上的石榴数目—加上6—除以6—减去6—乘以6—6很容易计算:(6×6-6)÷6+6=11个例2有一位老人说:把我的年龄加上14后除以3,再减去26,最后用25乘,恰巧是100岁。

这位老人今年多少岁?分析:根据题意,列出下面的流程图:老人的年龄—加上14—除以3—减去26—乘以25—100岁用逆推法帮助思考:老人的年龄—减去14—乘以3—加上26—除以25—100岁很容易计算出:(100÷25+26)×3-14=76岁例3联通公司出售手机,第一个月售出的比总数的一半多20部,第二个月售出的比第一个月剩下的一半多15部,还剩下75部。

第三讲 和差问题

第三讲 和差问题

第三讲和差问题专题简析:已知两个数的和与差,求出这两个数各是多少的应用题,叫和差应用题。

解答和差应用题的基本数量关系是:(和-差)÷2=小数小数+差=大数(和-小数=大数)解答和差应用题的关键是选择适当的数作为标准,设法把若干个不相等的数变为相等的数,某些复杂的应用题没有直接告诉我们两个数的和与差,可以通过转化求它们的和与差,再按照和差问题的解法来解答。

例1:三、四年级同学共植树128棵,四年级比三年级多植树20棵,求三、四年级各植树多少棵?1,两堆石子共有800吨,第一堆比第二堆多200吨。

两堆各有多少吨?2,用锡和铝混合制成600千克的合金,铝的重量比锡多400千克。

锡和铝各是多少千克?例2:两筐梨子共有120个,如果从第一筐中拿10个放到第二筐中,那么两筐的梨子个数相等。

两筐原来各有多少个梨?1,红星小学三(1)班和三(2)班共有学生108人,从三(1)班转3人到三(2)班,则两班人数同样多。

两个班原来各有学生多少人?2,某汽车公司两个车队共有汽车80辆,如果从第一车队调10辆到第二车队,两个车队的汽车辆数就相等。

两个车队原来各有汽车多少辆?例3:今年小勇和妈妈两人的年龄和是38岁,3年前,小勇比妈妈小26岁。

今年妈妈和小勇各多少岁?1,今年小刚和小强俩人的年龄和是21岁,1年前,小刚比小强小3岁。

今年小刚和小强各多少岁?2,黄茜和胡敏两人今年的年龄和是23岁,4年后,黄茜将比胡敏大3岁。

黄茜和胡敏今年各多少岁?例4:甲乙两个仓库共有大米800袋,如果从甲仓库中取出25袋放到乙仓库中,则甲仓库比乙仓库还多8袋。

两个仓库原来各有多少袋大米?1.甲、乙两箱洗衣粉共有90袋,如果从甲箱中取出4袋放到乙箱中,则甲箱比乙箱还多6袋。

两箱原来各有多少袋?2.甲、乙两筐香蕉共重60千克,从甲筐中取5千克放到乙筐,结果甲筐比乙筐还多2千克。

两筐原来各有多少千克香蕉?家庭练习1,甲、乙两人年龄的和是35岁,甲比乙小5岁。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学四年级数学应用题练习1、某车间要生产电视机1560台,已经生产了8天,每天生产120台,剩下的每天生产150台,还要几天才能完成任务?2、一个服装车间原来做一套服装用布48分米,改用新法裁剪,每套可节约用布3分米,原来计划做3000套服装的布,现在可以多做几套?3、一个养鸡场一月份运出肉鸡13600只,二月份运出的肉鸡是一月份的2倍,三月份运出的比前两个月的总数少800只,三月份运出了多少只?4、计划生产一批零件,王师傅每天生产90个,12天才能完成。

结果每天比原计划多生产18个,可以提前几天完成?5、4筐西红柿共重80千克,5筐青菜共重125千克。

平均每筐青菜比西红柿重多少千克?6、食堂运来1200千克煤,烧了16天,还剩480千克。

平均每天烧多少千克?7、新村小学430名同学,分乘5辆汽车去农村参观。

前4辆车各坐84人,第5辆车要坐多少人,才能保证全部坐上车?8、学校图书室买来故事书和科技书共1020本,其中故事书有850本,故事书比科技书多多少本?故事书是科技书的多少倍?9、红华服装厂要做一批校服,已经做了12天,平均每天做1450,还差109件,一共要做多少件?10、一个养禽专业户,养鸭890只,养鸡的只数是养鸭的3倍少15只。

那么,这个养禽专业户养鸭和鸡共多少只?11、小华有邮票84张,小荣的邮票比小华多18张,小梅的邮票是小荣的2倍少41张,小梅有邮票多少张?12、厂里有一批化肥,已经装了84袋,每袋60千克,还剩下1860千克。

如果把这批化肥平均分3次运完,每次运多少千克?13、一个修路队,修一条长5600米的公路,已经修了12天,还剩下800米。

平均每天修多少米?修好这条公路一共用多少天?14、一筐桔子连筐重26千克,卖出桔子的一半后,连筐重14千克,桔子和筐各有多少千克?15、动物园的3只大象每天吃1620千克的食物,一只熊猫5天吃食物120千克。

一只大象每天吃的食物比一只熊猫多多少千克?16、某酒店接待一批客人,如果每间客房住2人,只需要36间客房;如果每间客房住3人,可以少用几间客房?17、服装公司计划25天生产1275套校服,前5天生产195套,要在原计划天数内完成任务,以后每天平均要生产多少套?18、电冰箱厂原计划每天生产50台电冰箱可以在预定的时间里完成。

实际每天生产60台,结果提前3天完成了任务。

这批电冰箱共有多少台?19、服装厂计划生产鼓号队礼服,每天做75套,生产了24天,比原计划多生产200套。

那么,原计划生产多少套?20、四年级同学种树400棵,五年级比四年级的2倍少68棵。

四、五年级一共种树多少棵?21、甲、乙两人制造机器零件,甲制造了120个,比乙多制造20个。

那么,两人一共制造了多少个机器零件?22、一个施工队安装一条水管,头3天装了234米。

照这样的速度,又用了15天把水管全部装完。

这条水管一共长多少米?23、修房子需用水泥50吨,用一辆载重4吨的汽车运了5次,剩下的用一辆载重量为5吨的汽车来运,还要运多少次?24、制造一批零件,原计划做240个,用12天可以完成任务,实际每天比原计划多做4个。

这样,完成任务少用多少天?25、包装一批机器零件,小木箱每箱可以装30个,大木箱每箱比小木箱多装20个。

结果用大木箱装比用小木箱装可少用4个木箱。

这批零件共有多少个?26、甲乙两班共有学生86人,丙班是甲乙两班学生总数的一半,甲班学生比丙班学生多3人。

乙班有学生多少人?27、一堆煤,原计划每天烧2吨,可以烧84天;改建炉灶后,每天节约600千克。

这堆煤现在可以烧多少天?28、李师傅计划在10天内生产零件572个,前6天平均每天生产54个,余下的4天做完。

那么,后4天平均每天生产多少个零件?29、甲乙两个冷库共存肉92吨,其中乙库存的肉比甲库存的3倍少4吨。

两个冷库各存肉多少吨?30、一台磨粉机3小时磨面粉360千克。

照这样计算,9小时能磨面粉多少千克?31、全校师生523人参加植树劳动,如果70人分成一组,那么最多够分成几组?32、水果店运来苹果450千克,运来梨325千克,苹果和梨每筐都重25千克.运来的梨比苹果少多少筐?33、一批货物用18辆汽车要20次才能运完。

如果用24辆汽车来运,多少次可以运完?34、往一只空水壶里灌饮料,灌进3杯饮料,连壶共重360克,灌进8杯饮料,连壶共重760克。

空水壶重多少克?35、妈妈今年40岁,4年前妈妈年龄是女儿的4倍。

今年女儿多少岁?36、20只兔可换2只羊,9只羊可换3头猪,8头猪可换2头牛,12头牛可换多少只兔?(提示:如果你列不出算式,可以只写推理过程及答案)37、期末考试,小红的语文和数学成绩加起来是199分;数学和常识成绩加起来是196分;语文和常识成绩加起来是197分。

小红的语文、数学、常识各是多少分?38、石家庄到承德的公路长是546千米。

红红一家从石家庄开车到承德游览避暑山庄,如果平均每小时行驶78千米,上午8时出发,那么几时可以到达?39、一块长方形菜地,长是9米,宽是6米。

这块菜地一共收青菜972千克。

平均每平方米收青菜多少千克?40、上海东方明珠电视塔是亚洲最高的电视塔,它的高度是468米。

一楼房有12层,高39米。

电视塔的高度相当于几个12层住宅楼的高度?41、王爷爷家养的4头奶牛每个星期产奶896千克,平均1头奶牛每天产多少奶呢?42、4辆汽车3次运水泥960袋,平均每辆汽车每次运水泥多少袋?43、(1)水波小学每间教室有3个窗户,每个窗户安装12块玻璃,9间教室一共安装多少块玻璃?(2)杨柳小学有12间教室,每间教室有3个窗户,一共安装324块玻璃。

平均每个窗户安装多少块玻璃?44、小红买了2盒绿豆糕,一共重1千克。

每盒装有20块,平均每块重多少克?45、一辆大巴车从张村出发,如果每小时行驶60千米,4小时就可以到达李庄。

结果只用了3个小时就到达了。

这辆汽车实际平均每小时行驶多少千米?46、白塔村计划修一条水渠,如果每天修16米,18天就能修完。

第一天修了24米,照第一天的进度,几天能修完?47、虹光宾馆购进100条毛巾,每条6元。

如果用这些钱购买8元一条的毛巾,可以买多少条?48、一包A4复印纸,每天用25张,20天正好用完。

如果每天少用5张,那么可以用多少天?49、一个养蜂专业户,今年饲养蜜蜂24箱。

去年5箱蜜蜂酿了375千克蜂蜜,照去年的酿蜜量计算,今年可以酿多少千克蜂蜜?50、冬冬家在15平方米的土地上共育苗135棵,照这样计算,要育苗990棵,需要多大面积的土地?51、红石村小学分成6个小组去浇树,每组有4人,一共浇树360棵,平均每人浇树多少棵?52、一箱鸡蛋的个数是一篮鸡蛋个数的3倍。

一箱鸡蛋有96个,6篮鸡蛋有多少个?53、一列火车,提速前平均每小时行驶71千米,从秦皇岛到邯郸用12小时,提速后平均每小时行驶95千米,提速后从秦皇岛开往邯郸大约需要几小时?54、王阿姨是一位做儿童服装的巧手,一周可以做75套儿童服装。

现在是每周5天工作制,(1)照这样算,15天可以做多少套?(2)做120套儿童服装需要多少天?55、一辆从北京到青岛的长途客车,中途经过天津和济南。

早晨6:30从北京发车,平均每小时行驶85千米,大约何时可以到达青岛?北京到天津137km;天津到济南360km;济南到青岛393km。

56、阳光小学有师生960名,6月份共用60吨。

(1)学校平均每天用水多少吨?(2)照这样计算,1吨水可供多少人用一天?一个月呢?57、125名男同学,119名女同学由3名教师带领去参观历史博物馆,参观时只能分批进入,每次最多允许进50人,算一算,至少要分几批?58、一本故事书448页,明明用16天看完,芳芳每天比明明多看4页,芳芳每天看多少页?59、班里为开展体育活动,拿班费去买篮球和排球,已知买3个篮球2个排球得用161元,如果买3个篮球和5个排球得用245元,那么一个篮球多少元?一个排球多少元?60、明明是个爱学习的孩子,他每个星期除星期日外每天都做一些口算题,如果一个星期做300道,照这样计算,(1)明明3个星期共可以做多少道?(2)650道题明明几天就能做完?61、一只山雀5天大约能吃800只害虫,照这样计算,一只山雀一个月大约能吃多少只害虫?(一个月按30天计算。

)62、一辆长客车3小时行了174千米,照这样的速度,它12小时可以行多少千米?63、张爷爷买3只小羊用了75元,他还想再买5只这样的小羊,需要准备多少钱?64、5箱蜜蜂一年可以酿375千克蜂蜜。

小林家养了这样的蜜蜂12箱,一年大约可以酿多少千克蜂蜜?65、育英小学的180名少先队员在“爱心日”帮助军属做好事。

这些少先队员平均分成5队,每队分成4组活动,平均每组有多少名少先队员?66、刘叔叔带700元买化肥,买了16袋化肥,剩60元。

每袋化肥的价钱是多少?67、春芽鸡场星期一收的鸡蛋,18千克装一箱。

装好8箱后还剩16千克。

星期一收了多少千克鸡蛋?68、王叔叔从县城开车去王庄送化肥。

去的时候每小时行40千米,用了3小时,返回时只用了2小时。

返回时平均每小时行多少千米?69、一辆旅游车在平原和山区各行了2小时,最后到达山顶。

已知旅游车在平原每小时行50千米,山区每小时行30千米。

这段路程有多长?70、学校要为图书馆增添两种新书,每种3套。

已知《儿童百科全书》每套125元,《数学猜想》每套18元,共要化多少钱?71、学校准备发练习本,发给15个班,每班144本,还要留40本作为备用。

学校应买多少练习本?72、一棵树苗16元,买3棵送1棵。

一次买3棵,每棵便宜多少钱?73、洗发水每瓶15元,商场开展促销活动,买2瓶送1瓶。

一次买2瓶,每瓶便宜多少元?74、一束鲜花20元,买4束送1束。

李阿姨一次买4束,每束便宜多少钱?76、这辆汽车每秒行18米,车的长度是18米,隧道长324米,这辆汽车全部通过隧道要用多长时间?77、春光粮油公司要出口680吨粮食,如果用22吨的集装箱,需要多少个?如果选用17吨的集装箱,需要多少个?78、某化肥厂计划9天生产化肥6300吨,实际每天比计划多生产85吨,实际每天生产多少吨?79、一个钢厂上半年计划炼钢543万吨,第一季度完成了255万吨。

要按时完成计划,第二季度平均每月要炼钢多少万吨?80、饮料厂生产了1200罐饮料,要将这些饮料每8罐装一盒,每6盒装一箱,这些饮料共可以装多少箱?81、将一根51米的绳子在树杆上绕了18圈还剩15米,绕树杆的一圈长度是多少米?82、甲乙两地相距288千米,李师傅骑摩托车以每小时42千米的速度从甲地开往乙地,4小时离乙地还有多少千米?83、学校组织同学们进行团体操训练,如果每列15人,需站28列。

相关文档
最新文档