吉林省长春市普通高中2015届高三质量监测(二)数学(理)试题
2015年高考数学全国卷二理科(完美版)
2015年普通高等学校招生全国统一考试 理科(新课标卷二Ⅱ)第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={-2,-1,0,2},B={x|(X-1)(x+2)<0},则A∩B=(A ){-1,0} (B ){0,1} (C ){-1,0,1} (D ){0,1,2}2.若a 为实数且(2+ai )(a -2i )=-4i ,则a =(A )-1 (B )0 (C )1 (D )23.根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图。
以下结论不正确的是(A )逐年比较,2008年减少二氧化硫排放量的效果最显著(B )2007年我国治理二氧化硫排放显现(C )2006年以来我国二氧化硫年排放量呈减少趋势(D )2006年以来我国二氧化硫年排放量与年份正相关4.等比数列{a n }满足a 1=3,a 1+ a 3+ a 5=21,则a 3+ a 5+ a 7 =(A )21 (B )42 (C )63 (D )845.设函数f (x )=⎩⎨⎧≥++-1,2,1),2(log 112x x x x <,则f (-2)+ f (log 212) =(A )3 (B )6 (C )9 (D )126.一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的与剩余部分体积的比值为(A )81 (B )71 (C )61 (D )51 7.过三点A (1,3),B (4,2),C (1,7)的圆交于y 轴于M 、N 两点,则MN=(A )26 (B )8 (C )46 (D )108.右边程序抗土的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”。
执行该程序框图,若输入a,b 分别为14,18,则输出的a=(A )0(B )2(C )4(D )149.已知A,B 是球O 的球面上两点,∠AOB=90,C 为该球面上的动点,若三棱锥O-ABC 体 积的最大值为36,则球O 的表面积为(A )36π (B )64π (C )144π (D )256π10.如图,长方形ABCD 的边AB=2,BC=1,O 是AB 的中点,点P 沿着边BC ,CD 与 DA 运动,∠BOP=x 。
吉林省长市高考数学三模试卷 理(含解析)
2015年吉林省长春市高考数学三模试卷(理科)一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填涂在答题卡上).1.已知集合A={x|﹣1≤x≤1},B={x|x2﹣2x≤0},则A∩B=()A.[﹣1,0] B.[﹣1,2] C.[0,1] D.(﹣∞,1]∪[2,+∞)2.设复数z=1+i(i是虚数单位),则=()A.1﹣i B.1+i C.﹣1﹣i D.﹣1+i3.已知||=1,||=,且⊥(﹣),则向量与向量的夹角为()A.B.C.D.4.已知△ABC中,内角A,B,C的对边分别为a,b,c,若a2=b2+c2﹣bc,bc=4,则△ABC 的面积为()A.B.1 C.D.25.已知a∈{﹣2,0,1,3,4},b∈{1,2},则函数f(x)=(a2﹣2)x+b为增函数的概率是()A.B.C.D.6.阅读如图所示的程序框图,运行相应的程序,若输出的S为,则判断框中填写的内容可以是()A.n=6 B.n<6 C.n≤6 D.n≤87.如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该多面体的体积为()A.B.64 C.D.8.在平面直角坐标系中,若P(x,y)满足,则x+2y的最大值是()A.2 B.8 C.14 D.169.已知直线y=2(x﹣1)与抛物线C:y2=4x交于A,B两点,点M(﹣1,m),若•=0,则m=()A.B.C.D.010.对定义在[0,1]上,并且同时满足以下两个条件的函数f(x)称为M函数:(i)对任意的x∈[0,1],恒有f(x)≥0;(ii)当x1≥0,x2≥0,x1+x2≤1时,总有f(x1+x2)≥f(x1)+f(x2)成立.则下列四个函数中不是M函数的个数是()①f(x)=x2②f(x)=x2+1③f(x)=ln(x2+1)④f(x)=2x﹣1.A.1 B.2 C.3 D.411.已知双曲线=1(a>0,b>0)与函数y=的图象交于点P,若函数y=的图象在点P处的切线过双曲线左焦点F(﹣1,0),则双曲线的离心率是()A.B.C.D.12.若对∀x,y∈[0,+∞),不等式4ax≤e x+y﹣2+e x﹣y﹣2+2恒成立,则实数a的最大值是()A.B.1 C.2 D.二、填空题(本大题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上).13.函数y=的单调递增区间是.14.(x﹣)6的展开式中常数项为.15.已知定义在R上的偶函数f(x)在[0,+∞)单调递增,且f(1)=0,则不等式f(x ﹣2)≥0的解集是.16.底面是正多边形,顶点在底面的射影是底面中心的棱锥叫正棱锥.已知同底的两个正三棱锥内接于同一个球.已知两个正三棱锥的底面边长为a,球的半径为R.设两个正三棱锥的侧面与底面所成的角分别为α、β,则tan(α+β)的值是.三、解答题(本大题包括6小题,共70分,解答应写出文字说明,证明过程或演算步骤). 17.已知{a n}中,a1=1,其前n项和为S n,且满足a n=.(Ⅰ)求证:数列{}是等差数列;(Ⅱ)证明:S1+S2+S3+…+S n<.18.如图,在四棱锥P﹣ABCD中,底面ABCD是菱形,∠DAB=60°,PD⊥平面ABCD,PD=AD=1,点E,F分别为AB和PD中点.(Ⅰ)求证:直线AF∥平面PEC;(Ⅱ)求PC与平面PAB所成角的正弦值.19.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮训练,每人投10次,投中的次数统计如下表:学生1号2号3号4号5号甲班 6 5 7 9 8乙班 4 8 9 7 7(1)从统计数据看,甲、乙两个班哪个班成绩更稳定(用数字特征说明);(2)若把上表数据作为学生投篮命中率,规定两个班级的1号和2号同学分别代表自己的班级参加比赛,每人投篮一次,将甲、乙两个班两名同学投中的次数之和分别记作X和Y,试求X和Y的分布列和数学期望.20.已知椭圆C: +=1(a>b>0)的上顶点为(0,1),且离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)证明:过椭圆C1: +=1(m>n>0)上一点Q(x0,y0)的切线方程为+=1;(Ⅲ)过圆x2+y2=16上一点P向椭圆C引两条切线,切点分别为A,B,当直线AB分别与x 轴、y轴交于M,N两点时,求|MN|的最小值.21.定义在R上的函数f(x)满足,.(1)求函数f(x)的解析式;(2)求函数g(x)的单调区间;(3)如果s、t、r满足|s﹣r|≤|t﹣r|,那么称s比t更靠近r.当a≥2且x≥1时,试比较和e x﹣1+a哪个更靠近lnx,并说明理由.请考生在22,23,24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时,用2B铅笔在答题卡上把所选题目对应的标号涂黑.【选修4-1:几何证明选讲】22.如图所示,AB为圆O的直径,CB,CD为圆O的切线,B,D为切点.(1)求证:AD∥OC;(2)若圆O的半径为2,求AD•OC的值.【选修4-4:坐标系与参数方程】23.在直角坐标系xOy中,圆C的参数方程为(θ为参数).(1)以原点为极点、x轴正半轴为极轴建立极坐标系,求圆C的极坐标方程;(2)已知A(﹣2,0),B(0,2),圆C上任意一点M(x,y),求△ABM面积的最大值.【选修4-5:不等式选讲】24.(1)已知a,b都是正数,且a≠b,求证:a3+b3>a2b+ab2;(2)已知a,b,c都是正数,求证:≥abc.2015年吉林省长春市高考数学三模试卷(理科)参考答案与试题解析一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填涂在答题卡上).1.已知集合A={x|﹣1≤x≤1},B={x|x2﹣2x≤0},则A∩B=()A.[﹣1,0] B.[﹣1,2] C.[0,1] D.(﹣∞,1]∪[2,+∞)【考点】交集及其运算.【专题】集合.【分析】直接由一元二次不等式化简集合B,则A交B的答案可求.【解答】解:∵B={x|x2﹣2x≤0}={x|0≤x≤2},∴A∩B={x|﹣1≤x≤1}∩{x|0≤x≤2}={x|0≤x≤1}.则A∩B的区间为:[0,1].故选C.【点评】本题考查了交集及其运算,考查了一元二次不等式的解法,是基础题.2.设复数z=1+i(i是虚数单位),则=()A.1﹣i B.1+i C.﹣1﹣i D.﹣1+i【考点】复数代数形式的乘除运算.【专题】数系的扩充和复数.【分析】利用复数的运算法则即可得出.【解答】解: ==1﹣i,故选:A.【点评】本题考查了复数的运算法则,属于基础题.3.已知||=1,||=,且⊥(﹣),则向量与向量的夹角为()A.B.C.D.【考点】平面向量数量积的运算.【专题】平面向量及应用.【分析】根据已知条件即可得到,所以,从而求得cos=,根据向量夹角的范围即可得出向量的夹角.【解答】解:∵;;∴;∴;∴向量与的夹角为.故选B.【点评】考查非零向量垂直的充要条件,数量积的计算公式,以及向量夹角的范围.4.已知△ABC中,内角A,B,C的对边分别为a,b,c,若a2=b2+c2﹣bc,bc=4,则△ABC 的面积为()A.B.1 C.D.2【考点】余弦定理.【专题】解三角形.【分析】由已知及余弦定理可求cosA,从而可求sinA的值,结合已知由三角形面积公式即可得解.【解答】解:∵a2=b2+c2﹣bc,∴由余弦定理可得:cosA===,又0<A<π,∴可得A=60°,sinA=,∵bc=4,∴S△ABC=bcsinA==.故选:C.【点评】本题主要考查了余弦定理,三角形面积公式的应用,解题时要注意角范围的讨论,属于基本知识的考查.5.已知a∈{﹣2,0,1,3,4},b∈{1,2},则函数f(x)=(a2﹣2)x+b为增函数的概率是()A.B.C.D.【考点】几何概型.【专题】概率与统计.【分析】首先求出所以事件个数就是集合元素个数5,然后求出满足使函数为增函数的元素个数为3,利用公式可得.【解答】解:从集合{﹣2,0,1,3,4}中任选一个数有5种选法,使函数f(x)=(a2﹣2)x+b为增函数的是a2﹣2>0解得a>或者a<,所以满足此条件的a有﹣2,3,4共有3个,由古典概型公式得函数f(x)=(a2﹣2)x+b为增函数的概率是;故选:B.【点评】本题考查了古典概型的概率求法;关键是明确所有事件的个数以及满足条件的事件公式,利用公式解答.6.阅读如图所示的程序框图,运行相应的程序,若输出的S为,则判断框中填写的内容可以是()A.n=6 B.n<6 C.n≤6 D.n≤8【考点】程序框图.【专题】算法和程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的S,n的值,当n=8时,S=,由题意,此时应该不满足条件,退出循环,输出S的值为,故判断框中填写的内容可以是n≤6.【解答】解:模拟执行程序框图,可得S=0,n=2满足条件,S=,n=4满足条件,S==,n=6满足条件,S==,n=8由题意,此时应该不满足条件,退出循环,输出S的值为,故判断框中填写的内容可以是n≤6,故选:C.【点评】本题主要考查了程序框图和算法,正确写出每次循环得到的S的值是解题的关键,属于基础题.7.如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该多面体的体积为()A.B.64 C.D.【考点】由三视图求面积、体积.【专题】空间位置关系与距离.【分析】由三视图可知,该多面体是一个四棱锥,且由一个顶点出发的三条棱两两垂直,长度都为4,代入棱锥体积公式,可得答案.【解答】解:由三视图可知,该多面体是一个四棱锥,且由一个顶点出发的三条棱两两垂直,长度都为4,∴其体积V=×4×4×4=,故选D.【点评】本小题主要考查立体几何中的三视图问题,并且对考生的空间想象能力及利用三视图还原几何体的能力进行考查,同时考查简单几何体的体积公式.8.在平面直角坐标系中,若P(x,y)满足,则x+2y的最大值是()A.2 B.8 C.14 D.16【考点】简单线性规划.【专题】不等式的解法及应用.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.【解答】解:作出不等式对应的平面区域,由z=x+2y,得y=﹣,平移直线y=﹣,由图象可知当直线y=﹣经过点A时,直线y=﹣的截距最大,此时z最大.由,得,即A(2,6),此时z的最大值为z=2+2×6=14.故选:C.【点评】本小题主要考查二元一次不等式组所表示的可行域的获取以及目标函数的几何意义,是线性规划的一种简单应用,对学生的数形结合思想提出一定要求.9.已知直线y=2(x﹣1)与抛物线C:y2=4x交于A,B两点,点M(﹣1,m),若•=0,则m=()A.B.C.D.0【考点】直线与圆锥曲线的关系.【专题】圆锥曲线的定义、性质与方程.【分析】直接利用直线方程与抛物线方程联立方程组求出AB坐标,通过数量积求解m即可.【解答】解:由题意可得:,8x2﹣20x+8=0,解得x=2或x=,则A(2,2)、B(,).点M(﹣1,m),若•=0,可得(3,2m)(,﹣)=0.化简2m2﹣2m+1=0,解得m=.故选:B.【点评】本题考查直线与抛物线的位置关系的应用,平面向量的数量积的应用,考查计算能力.10.对定义在[0,1]上,并且同时满足以下两个条件的函数f(x)称为M函数:(i)对任意的x∈[0,1],恒有f(x)≥0;(ii)当x1≥0,x2≥0,x1+x2≤1时,总有f(x1+x2)≥f(x1)+f(x2)成立.则下列四个函数中不是M函数的个数是()①f(x)=x2②f(x)=x2+1③f(x)=ln(x2+1)④f(x)=2x﹣1.A.1 B.2 C.3 D.4【考点】函数与方程的综合运用.【专题】函数的性质及应用.【分析】利用已知条件函数的新定义,对四个选项逐一验证两个条件,判断即可.【解答】解:(i)在[0,1]上,四个函数都满足;(ii)x1≥0,x2≥0,x1+x2≤1;对于①,,∴①满足;对于②,=2x1x2﹣1<0,∴②不满足.对于③,=而x1≥0,x2≥0,∴,∴,∴,∴,∴,∴③满足;对于④,=,∴④满足;故选:A.【点评】本题通过函数的运算与不等式的比较,另外也可以利用函数在定义域内的变化率、函数图象的基本形式来获得答案,本题对学生的运算求解能力和数形结合思想提出一定要求.11.已知双曲线=1(a>0,b>0)与函数y=的图象交于点P,若函数y=的图象在点P处的切线过双曲线左焦点F(﹣1,0),则双曲线的离心率是()A.B.C.D.【考点】利用导数研究曲线上某点切线方程;双曲线的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】设出切点坐标,通过导数求出切线方程的斜率,利用斜率相等列出方程,即可求出切点坐标,然后求解双曲线的离心率.【解答】解:设,函数y=的导数为:y′=,∴切线的斜率为,又∵在点P处的切线过双曲线左焦点F(﹣1,0),∴,解得x0=1,∴P(1,1),可得,c2=a2+b2.c=1,解得a=因此,故双曲线的离心率是,故选A;【点评】本小题主要考查过曲线外一点作曲线切线的基本方法,结合双曲线的标准方程与离心率,对考生的运算求解能力和推理论证能力提出较高要求.12.若对∀x,y∈[0,+∞),不等式4ax≤e x+y﹣2+e x﹣y﹣2+2恒成立,则实数a的最大值是()A.B.1 C.2 D.【考点】函数恒成立问题.【专题】函数的性质及应用.【分析】利用基本不等式和参数分离可得a≤在x>0时恒成立,构造函数g(x)=,通过求导判断单调性求得g(x)的最小值即可得到a的最大值.【解答】解:当x=0时,不等式即为0≤e y﹣2+e﹣y﹣2+2,显然成立;当x>0时,设f(x)=e x+y﹣2+e x﹣y﹣2+2,不等式4ax≤e x+y﹣2+e x﹣y﹣2+2恒成立,即为不等式4ax≤f(x)恒成立.即有f(x)=e x﹣2(e y+e﹣y)+2≥e x﹣2•2+2=2+2e x﹣2(当且仅当y=0时,取等号),由题意可得4ax≤2+2e x﹣2,即有a≤在x>0时恒成立,令g(x)=,g′(x)=,令g′(x)=0,即有(x﹣1)e x﹣2=1,令h(x)=(x﹣1)e x﹣2,h′(x)=xe x﹣2,当x>0时h(x)递增,由于h(2)=1,即有(x﹣1)e x﹣2=1的根为2,当x>2时,g(x)递增,0<x<2时,g(x)递减,即有x=2时,g(x)取得最小值,为,则有a≤.当x=2,y=0时,a取得最大值.故选:D【点评】本题考查不等式恒成立问题注意转化为求函数的最值问题,运用参数分离和构造函数运用导数判断单调性是解题的关键.二、填空题(本大题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上).13.函数y=的单调递增区间是[0,] .【考点】两角和与差的余弦函数;正弦函数的图象.【专题】三角函数的图像与性质.【分析】化简可得y=sin(x+),解不等式2kπ﹣≤x+≤2kπ+可得函数所有的单调递增区间,结合x∈[0,]可得.【解答】解:化简可得y=sinxcos+cosxsin=sin(x+),由2kπ﹣≤x+≤2kπ+可得2kπ﹣≤x≤2kπ+,k∈Z,当k=0时,可得函数的一个单调递增区间为[﹣,],由x∈[0,]可得x∈[0,],故答案为:[0,].【点评】本题考查两角和与差的三角函数,涉及三角函数的单调性,属基础题.14.(x﹣)6的展开式中常数项为﹣.【考点】二项式系数的性质.【专题】计算题;二项式定理.【分析】利用二项展开式的通项公式求出二项展开式的第r+1项,令x的指数为0得常数项.【解答】解:展开式的通项公式为T r+1=(﹣)r C6r x6﹣2r,令6﹣2r=0得r=3,得常数项为C63(﹣)3=﹣.故答案为:﹣.【点评】二项展开式的通项公式是解决二项展开式的特定项问题的工具.15.已知定义在R上的偶函数f(x)在[0,+∞)单调递增,且f(1)=0,则不等式f(x ﹣2)≥0的解集是{x|x≥3或x≤1}.【考点】奇偶性与单调性的综合.【专题】函数的性质及应用.【分析】根据函数的奇偶性和单调性之间的关系,将不等式进行转化,即可得到不等式的解集.【解答】解:∵偶函数f(x)在[0,+∞)上为增函数,f(1)=0,∴不等式f(x﹣2)≥0等价为f(|x﹣2|)≥f(1),即|x﹣2|≥1,即x﹣2≥1或x﹣2≤﹣1,即x≥3或x≤1,故不等式的解集为{x|x≥3或x≤1},故答案为:{x|x≥3或x≤1}.【点评】本题主要考查不等式的解法,利用函数的奇偶性和单调性之间的关系是解决本题的关键,综合考查函数性质的应用.16.底面是正多边形,顶点在底面的射影是底面中心的棱锥叫正棱锥.已知同底的两个正三棱锥内接于同一个球.已知两个正三棱锥的底面边长为a,球的半径为R.设两个正三棱锥的侧面与底面所成的角分别为α、β,则tan(α+β)的值是.【考点】两角和与差的正切函数;球内接多面体.【专题】三角函数的求值;空间位置关系与距离.【分析】由题意画出图象以及过球心的截面圆,由球和正三棱锥的几何特征可得:两个正三棱锥的侧面与底面所成的角分别为α、β,再求出涉及的线段的长度,根据两角和的正切函数和正切函数的定义求出tan(α+β)的值.【解答】解:由题意画出图象如下图:由图得,右侧为该球过SA和球心的截面,由于三角形ABC为正三角形,所以D为BC中点,且AD⊥BC,SD⊥BC,MD⊥BC,故∠SDA=α,∠MDA=β.设SM∩平面ABC=P,则点P为三角形ABC的重心,且点P在AD上,SM=2R,AB=a,∴,因此=,故答案为:.【点评】本题通过对球的内接几何体的特征考查利用两角和的正切函数的进行计算,对考生的空间想象能力与运算求解能力以及数形结合思想都提出很高要求,本题是一道综合题,属于较难题.三、解答题(本大题包括6小题,共70分,解答应写出文字说明,证明过程或演算步骤). 17.已知{a n}中,a1=1,其前n项和为S n,且满足a n=.(Ⅰ)求证:数列{}是等差数列;(Ⅱ)证明:S1+S2+S3+…+S n<.【考点】数列的求和;等差关系的确定.【专题】点列、递归数列与数学归纳法.【分析】(Ⅰ)根据数列的递推关系进行化简结合等差数列的定义即可证明数列{}是等差数列;(Ⅱ)求出S n的通项公式,利用放缩法进行证明不等式.【解答】解:(Ⅰ)当n≥2时,a n=S n﹣S n﹣1=,…即S n﹣1﹣S n=2S n S n﹣1,则﹣,…从而{}构成以1为首项,2为公差的等差数列.…(Ⅱ)∵{}构成以1为首项,2为公差的等差数列,∴=1+2(n﹣1)=2n﹣1,即S n=,∴当n≥2时, S n===(﹣).…从而S1+S2+S3+…+S n<1+(1﹣)<﹣.…【点评】本题主要考查数列求和以及,等差数列的判断,根据数列的递推关系结合等差数列的定义是解决本题的关键.18.如图,在四棱锥P﹣ABCD中,底面ABCD是菱形,∠DAB=60°,PD⊥平面ABCD,PD=AD=1,点E,F分别为AB和PD中点.(Ⅰ)求证:直线AF∥平面PEC;(Ⅱ)求PC与平面PAB所成角的正弦值.【考点】直线与平面所成的角;直线与平面平行的判定.【专题】空间位置关系与距离;空间角.【分析】(Ⅰ)首先利用中点引出中位线,进一步得到线线平行,再利用线面平行的判定定理得到结论.(Ⅱ)根据直线间的两两垂直,尽力空间直角坐标系,再求出平面PAB的法向量,最后利用向量的数量积求出线面的夹角的正弦值.【解答】解:(Ⅰ)证明:作FM∥CD交PC于M.∵点F为PD中点,∴.∵点E为AB的中点.∴,又AE∥FM,∴四边形AEMF为平行四边形,∴AF∥EM,∵AF⊄平面PEC,EM⊂平面PEC,∴直线AF∥平面PEC.(Ⅱ)已知∠DAB=60°,进一步求得:DE⊥DC,则:建立空间直角坐标系,则 P(0,0,1),C(0,1,0),E(,0,0),A(,﹣,0),B(,,0).所以:,.设平面PAB的一个法向量为:,.∵,则:,解得:,所以平面PAB的法向量为:∵,∴设向量和的夹角为θ,∴cosθ=,∴PC平面PAB所成角的正弦值为.【点评】本题考查的知识要点:线面平行的判定的应用,空间直角坐标系的建立,法向量的应用,线面的夹角的应用,主要考查学生的空间想象能力和应用能力.19.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮训练,每人投10次,投中的次数统计如下表:学生1号2号3号4号5号甲班 6 5 7 9 8乙班 4 8 9 7 7(1)从统计数据看,甲、乙两个班哪个班成绩更稳定(用数字特征说明);(2)若把上表数据作为学生投篮命中率,规定两个班级的1号和2号同学分别代表自己的班级参加比赛,每人投篮一次,将甲、乙两个班两名同学投中的次数之和分别记作X和Y,试求X和Y的分布列和数学期望.【考点】离散型随机变量及其分布列;极差、方差与标准差;离散型随机变量的期望与方差.【专题】概率与统计.【分析】(1)求出两个班数据的平均值都为7,求出甲班的方差,乙班的方差,推出结果即可.(2)X、Y可能取0,1,2,求出概率,得到分布列,然后分别求解期望.【解答】解:(1)两个班数据的平均值都为7,甲班的方差,乙班的方差,因为,甲班的方差较小,所以甲班的成绩比较稳定.(2)X可能取0,1,2,,,,所以X分布列为:X 0 1 2P数学期望Y可能取0,1,2,,,,所以Y分布列为:Y 0 1 2P数学期望.【点评】本小题主要考查统计与概率的相关知识,其中包括方差的求法、基本概率的应用以及离散型随机变量的数学期望的求法.本题主要考查学生的数据处理能力.20.已知椭圆C: +=1(a>b>0)的上顶点为(0,1),且离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)证明:过椭圆C1: +=1(m>n>0)上一点Q(x0,y0)的切线方程为+=1;(Ⅲ)过圆x2+y2=16上一点P向椭圆C引两条切线,切点分别为A,B,当直线AB分别与x 轴、y轴交于M,N两点时,求|MN|的最小值.【考点】直线与圆锥曲线的综合问题;椭圆的简单性质.【专题】直线与圆;圆锥曲线的定义、性质与方程.【分析】(Ⅰ)运用离心率公式和椭圆的a,b,c的关系,解得a,b,进而得到椭圆方程;(Ⅱ)讨论直线的斜率不存在和存在,设出直线方程,联立椭圆方程,运用判别式为0,解得方程的一个跟,得到切点坐标和切线的斜率,进而得到切线方程;(Ⅲ)设点P(x P,y P)为圆x2+y2=16上一点,求得切线PA,PB的方程,进而得到切点弦方程,再由两点的距离公式可得|MN|,结合基本不等式,即可得到最小值.【解答】解:(Ⅰ)由题意可得b=1,e==,又a2﹣b2=c2,解得a=2,b=1,即有椭圆C方程为+y2=1.(Ⅱ)证明:当斜率存在时,设切线方程为y=kx+t,联立椭圆方程+=1,可得n2x2+m2(kx+t)2=m2n2,化简可得:(n2+m2k2)x2+2m2ktx+m2(t2﹣n2)=0,①由题可得:△=4m4k2t2﹣4m2(n2+m2k2)(t2﹣n2)=0化简可得:t2=m2k2+n2,①式只有一个根,记作x0,x0=﹣=﹣,x0为切点的横坐标,切点的纵坐标y0=kx0+t=,所以=﹣,所以k=﹣,所以切线方程为:y﹣y0=k(x﹣x0)=﹣(x﹣x0),化简得: +=1.当切线斜率不存在时,切线为x=±m,也符合方程+=1,综上+=1(m>n>0)上一点Q(x0,y0)的切线方程为+=1;(Ⅲ)设点P(x P,y P)为圆x2+y2=16上一点,PA,PB是椭圆+y2=1的切线,切点A(x1,y1),B(x2,y2),过点A的椭圆的切线为+y1y=1,过点B的椭圆的切线为+y2y=1.由两切线都过P点, +y1y P=1, +y2y P=1即有切点弦AB所在直线方程为+yy P=1.M(0,),N(,0),|MN|2=+=(+)•=(17++)≥(17+2)=,当且仅当=即x P2=,y P2=时取等,则|MN|,即|MN|的最小值为.【点评】本题考查椭圆的方程和性质,主要考查椭圆的离心率和方程的运用,考查直线和椭圆的位置关系,联立直线和椭圆方程,运用判别式为0,考查化简整理的运算能力,以及基本不等式的运用,属于中档题.21.定义在R上的函数f(x)满足,.(1)求函数f(x)的解析式;(2)求函数g(x)的单调区间;(3)如果s、t、r满足|s﹣r|≤|t﹣r|,那么称s比t更靠近r.当a≥2且x≥1时,试比较和e x﹣1+a哪个更靠近lnx,并说明理由.【考点】导数在最大值、最小值问题中的应用;函数解析式的求解及常用方法;利用导数研究函数的单调性.【专题】导数的综合应用.【分析】(1)求出函数的导数,利用赋值法,求出f′(1)=f′(1)+2﹣2f(0),得到f(0)=1.然后求解f′(1),即可求出函数的解析式.(2)求出函数的导数g′(x)=e x+a,结合a≥0,a<0,分求解函数的单调区间即可.(3)构造,通过函数的导数,判断函数的单调性,结合当1≤x≤e时,当1≤x≤e时,推出|p(x)|<|q(x)|,说明比e x﹣1+a 更靠近lnx.当x>e时,通过作差,构造新函数,利用二次求导,判断函数的单调性,证明比e x﹣1+a更靠近lnx.【解答】解:(1)f′(x)=f′(1)e2x﹣2+2x﹣2f(0),所以f′(1)=f′(1)+2﹣2f (0),即f(0)=1.又,所以f′(1)=2e2,所以f(x)=e2x+x2﹣2x.(2)∵f(x)=e2x﹣2x+x2,∴,∴g′(x)=e x﹣a.①当a≤0时,g′(x)>0,函数f(x)在R上单调递增;②当a>0时,由g′(x)=e x﹣a=0得x=lna,∴x∈(﹣∞,lna)时,g′(x)<0,g(x)单调递减;x∈(lna,+∞)时,g′(x)>0,g(x)单调递增.综上,当a≤0时,函数g(x)的单调递增区间为(∞,∞);当a>0时,函数g(x)的单调递增区间为(lna,+∞),单调递减区间为(﹣∞,lna).(3)解:设,∵,∴p(x)在x∈[1,+∞)上为减函数,又p(e)=0,∴当1≤x≤e时,p(x)≥0,当x>e时,p(x)<0.∵,,∴q′(x)在x∈[1,+∞)上为增函数,又q′(1)=0,∴x∈[1,+∞)时,q'(x)≥0,∴q(x)在x∈[1,+∞)上为增函数,∴q(x)≥q(1)=a+1>0.①当1≤x≤e时,,设,则,∴m(x)在x∈[1,+∞)上为减函数,∴m(x)≤m(1)=e﹣1﹣a,∵a≥2,∴m(x)<0,∴|p(x)|<|q(x)|,∴比e x﹣1+a更靠近lnx.②当x>e时,,设n(x)=2lnx﹣e x﹣1﹣a,则,,∴n′(x)在x>e时为减函数,∴,∴n(x)在x>e时为减函数,∴n(x)<n(e)=2﹣a﹣e e﹣1<0,∴|p(x)|<|q(x)|,∴比e x﹣1+a更靠近lnx.综上:在a≥2,x≥1时,比e x﹣1+a更靠近lnx.【点评】本小题主要考查函数与导数的综合应用能力,具体涉及到用导数来描述函数的单调性等情况.本小题主要考查考生分类讨论思想的应用,对考生的逻辑推理能力与运算求解有较高要求.请考生在22,23,24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时,用2B铅笔在答题卡上把所选题目对应的标号涂黑.【选修4-1:几何证明选讲】22.如图所示,AB为圆O的直径,CB,CD为圆O的切线,B,D为切点.(1)求证:AD∥OC;(2)若圆O的半径为2,求AD•OC的值.【考点】相似三角形的性质.【专题】选作题;立体几何.【分析】(1)连接BD,OD,利用切线的性质,证明BD⊥OC,利用AB为直径,证明AD⊥DB,即可证明AD∥OC;(2)证明Rt△BAD∽Rt△COB,可得,即可求AD•OC的值【解答】(1)证明:连接BD,OD,∵CB,CD是圆O的两条切线,∴BD⊥OC,又AB为直径,∴AD⊥DB,∴AD∥OC.(2)解:∵AD∥OC,∴∠DAB=∠COB,∴Rt△BAD∽Rt△COB,∴,∴AD•OC=AB•OB=8.【点评】本小题主要考查平面几何的证明,具体涉及到圆的切线的性质,三角形相似等内容.本小题重点考查考生对平面几何推理能力.【选修4-4:坐标系与参数方程】23.在直角坐标系xOy中,圆C的参数方程为(θ为参数).(1)以原点为极点、x轴正半轴为极轴建立极坐标系,求圆C的极坐标方程;(2)已知A(﹣2,0),B(0,2),圆C上任意一点M(x,y),求△ABM面积的最大值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【专题】坐标系和参数方程.【分析】(1)圆C的参数方程为,通过三角函数的平方关系式消去参数θ,得到普通方程.通过x=ρcosθ,y=ρsinθ,得到圆C的极坐标方程.(2)求出点M(x,y)到直线AB:x﹣y+2=0的距离,表示出△ABM的面积,通过两角和的正弦函数,结合绝对值的几何意义,求解△ABM面积的最大值.【解答】解:(1)圆C的参数方程为(θ为参数)所以普通方程为(x﹣3)2+(y+4)2=4.,x=ρcosθ,y=ρsinθ,可得(ρcosθ﹣3)2+(ρsinθ+4)2=4,化简可得圆C的极坐标方程:ρ2﹣6ρcosθ+8ρsinθ+21=0.(2)点M(x,y)到直线AB:x﹣y+2=0的距离为△ABM的面积所以△ABM面积的最大值为【点评】本小题主要考查极坐标系与参数方程的相关知识,具体涉及到极坐标方程与平面直角坐标方程的互化、平面内直线与曲线的位置关系等内容.本小题考查考生的方程思想与数形结合思想,对运算求解能力有一定要求.【选修4-5:不等式选讲】24.(1)已知a,b都是正数,且a≠b,求证:a3+b3>a2b+ab2;(2)已知a,b,c都是正数,求证:≥abc.【考点】不等式的证明.【专题】证明题;不等式.【分析】(1)由条件a≠b推出:a2﹣2ab+b2>0,通过变形,应用不等式的性质可证出结论;(2)利用基本不等式,再相加,即可证明结论.【解答】证明:(1)∵a≠b,∴a﹣b≠0,∴a2﹣2ab+b2>0,∴a2﹣ab+b2>ab.而a,b均为正数,∴a+b>0,∴(a+b)(a2﹣ab+b2)>ab(a+b)∴a3+b3>a2b+ab2 成立;(2)∵a,b,c都是正数,∴a2b2+b2c2≥2acb2,a2b2+c2a2≥2bca2,c2a2+b2c2≥2abc2,三式相加可得2(a2b2+b2c2+c2a2)≥2abc(a+b+c),∴a2b2+b2c2+c2a2)≥abc(a+b+c),∴≥abc.【点评】本题考查不等式的证明,考查基本不等式的运用,考查综合法,属于中档题.。
吉林省长春实验中学2015届高考数学三模试卷(理科)
吉林省长春实验中学2015届高考数学三模试卷(理科)一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)复数(i为虚数单位)的共轭复数为()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i2.(5分)命题“对任意x∈R,都有x2≥0”的否定为()A.对任意x∈R,都有x2<0 B.不存在x∈R,都有x2<0C.存在x0∈R,使得x02≥0 D.存在x0∈R,使得x02<03.(5分)已知函数f(x)为奇函数,且当x>0时,,则f(﹣1)=()A.﹣2 B.0C.1D.24.(5分)设等比数列{a n}中,前n项之和为S n,已知S3=8,S6=7,则a7+a8+a9=()A.B.C.D.5.(5分)已知向量,且,则sin2θ+cos2θ的值为()A.1B.2C.D.36.(5分)如图,设区域D={(x,y)|0≤x≤1,0≤y≤1},向区域D内随机投一点,且投入到区域内任一点都是等可能的,则点落入到阴影区域M={(x,y)|0≤x≤1,0≤y≤x3}的概率为()A.B.C.D.7.(5分)设α、β、γ为平面,m、n、l为直线,则m⊥β的一个充分条件是()A.α⊥β,α∩β=l,m⊥l B.α∩γ=m,α⊥γ,β⊥γC.α⊥γ,β⊥γ,m⊥αD.n⊥α,n⊥β,m⊥α8.(5分)过抛物线y2=2px(p>0)的焦点作直线交抛物线于P,Q两点,若线段PQ中点的横坐标为3,|PQ|=10,则抛物线方程是()A.y2=4x B.y2=2x C.y2=8x D.y2=6x9.(5分)已知两个实数a,b(a≠b),满足ae a=be b.命题p:lna+a=lnb+b;命题q:(a+1)(b+1)>0,则下列命题正确的是()A.p真q假B.p假q真C.p真q真D.p假q假10.(5分)已知E,F分别是矩形ABCD的边BC与AD的中点,且BC=2AB=2,现沿EF 将平面ABEF折起,使平面ABEF⊥平面EFDC,则三棱锥A﹣FEC外接球的体积为()A.πB.πC.πD.2π11.(5分)若函数f(x)=cos2x+asinx在区间(,)是减函数,则a的取值范围是()A.(2,4)B.(﹣∞,2]C.(﹣∞,4]D.(Ⅰ)6人站成一排,甲站在乙的前面(甲、乙可以不相邻)的不同站法种数;(Ⅱ)6人站成一排,甲、乙相邻,且丙与乙不相邻的不同站法种数;(Ⅲ)把这6名学生全部分到4个不同的班级,每个班级至少1人的不同分配方法种数;(Ⅳ)6人站成一排,求在甲、乙相邻条件下,丙、丁不相邻的概率.20.(12分)抛物线C1:x2=4y在点A,B处的切线垂直相交于点P,直线AB与椭圆C2:+=1相交于C,D两点.(1)求抛物线C1的焦点F与椭圆C2的左焦点F1的距离;(2)设点P到直线AB的距离为d,试问:是否存在直线AB,使得|AB|,d,|CD|成等比数列?若存在,求直线AB的方程;若不存在,请说明理由.21.(12分)已知函数f(x)=ln(x+1)﹣x.(Ⅰ)求f(x)的最大值;(Ⅱ)设g(x)=f(x)﹣ax2(a≥0),l是曲线y=g(x)的一条切线,证明:曲线y=g(x)上的任意一点都不可能在直线l的上方;(Ⅲ)求证:(1+)(1+)(1+)…<e(其中e为自然对数的底数,n∈N*).请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分.作答时请写清题号.【选修4-1:几何证明选讲】22.(10分)选修4﹣1几何证明选讲已知△ABC中AB=AC,D为△ABC外接圆劣弧,上的点(不与点A、C重合),延长BD至E,延长AD交BC的延长线于F.(I)求证.∠CDF=∠EDF(II)求证:AB•AC•DF=AD•FC•FB.【选修4-4:坐标系与参数方程】23.在直角坐标系xOy中,直线l的参数方程为(t为参数,0≤α<π).以原点为极点,x轴的正半轴为极轴建立极坐标系.已知曲线C的极坐标方程为ρcos2θ=4sinθ.(1)求直线l与曲线C的平面直角坐标方程;(2)设直线l与曲线C交于不同的两点A、B,若|AB|=8,求α的值.【选修4-5:不等式选讲】24.设函数f(x)=|x﹣1|+|x﹣a|(a∈R)(1)当a=4时,求不等式f(x)≥5的解集;(2)若f(x)≥4对x∈R恒成立,求a的取值范围.吉林省长春实验中学2015届高考数学三模试卷(理科)参考答案与试题解析一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)复数(i为虚数单位)的共轭复数为()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i考点:复数代数形式的乘除运算.专题:计算题.分析:复数分母实数化,然后求出复数的共轭复数即可.解答:解:==1+i.∴所求复数的共轭复数为:1﹣i.故选:B.点评:本题考查复数的基本运算,复数的基本概念,考查计算能力.2.(5分)命题“对任意x∈R,都有x2≥0”的否定为()A.对任意x∈R,都有x2<0 B.不存在x∈R,都有x2<0C.存在x0∈R,使得x02≥0 D.存在x0∈R,使得x02<0考点:命题的否定;全称命题.专题:简易逻辑.分析:直接利用全称命题的否定是特称命题,写出命题的否定命题即可.解答:解:因为全称命题的否定是特称命题,所以命题“对任意x∈R,都有x2≥0”的否定为.存在x0∈R,使得x02<0.故选D.点评:本题考查命题的否定,全称命题与特称命题的否定关系,基本知识的考查.3.(5分)已知函数f(x)为奇函数,且当x>0时,,则f(﹣1)=()A.﹣2 B.0C.1D.2考点:函数的值.专题:函数的性质及应用.分析:利用奇函数的性质,f(﹣1)=﹣f(1),即可求得答案.解答:解:∵函数f(x)为奇函数,x>0时,f(x)=x2+,∴f(﹣1)=﹣f(1)=﹣2,故选A.点评:本题考查奇函数的性质,考查函数的求值,属于基础题.4.(5分)设等比数列{a n}中,前n项之和为S n,已知S3=8,S6=7,则a7+a8+a9=()A.B.C.D.考点:等比数列的前n项和.专题:计算题.分析:由S6减S3得到a4+a5+a6的值,然后利用等差比数列的性质找出a4+a5+a6的和与a1+a2+a3的和即与S3的关系,由S3的值即可求出公比q的值,然后再利用等比数列的性质求出a7+a8+a9的值.解答:解:a4+a5+a6=S6﹣S3=7﹣8=﹣1,a4+a5+a6=a1q3+a2q3+a3q3=(a1+a2+a3)q3,所以q3=,则a7+a8+a9=a4q3+a5q3+a6q3=.故选B.点评:此题考查学生灵活运用等比数列的性质化简求值,是一道中档题5.(5分)已知向量,且,则sin2θ+cos2θ的值为()A.1B.2C.D.3考点:三角函数的恒等变换及化简求值;数量积判断两个平面向量的垂直关系.专题:计算题.分析:由题意可得=0,即解得tanθ=2,再由sin2θ+cos2θ==,运算求得结果.解答:解:由题意可得=sinθ﹣2cosθ=0,即tanθ=2.∴sin2θ+cos2θ===1,故选A.点评:本题主要考查两个向量数量积公式的应用,两个向量垂直的性质;同角三角函数的基本关系的应用,属于中档题.6.(5分)如图,设区域D={(x,y)|0≤x≤1,0≤y≤1},向区域D内随机投一点,且投入到区域内任一点都是等可能的,则点落入到阴影区域M={(x,y)|0≤x≤1,0≤y≤x3}的概率为()A.B.C.D.考点:几何概型.专题:概率与统计.分析:根据积分的几何意义求出区域M的面积,然后根据几何概型的概率公式即可得到结论.解答:解:根据积分的几何意义可知区域M的面积为=|=,区域D的面积为1×1=1,则由几何概型的概率公式可得点(x,y)恰好落在区域M内的概率等于,故选:A点评:本题主要考查几何概型的概率的计算,利用积分的几何意义求出区域M的面积是解决本题的关键.7.(5分)设α、β、γ为平面,m、n、l为直线,则m⊥β的一个充分条件是()A.α⊥β,α∩β=l,m⊥l B.α∩γ=m,α⊥γ,β⊥γC.α⊥γ,β⊥γ,m⊥αD.n⊥α,n⊥β,m⊥α考点:直线与平面垂直的判定.专题:证明题;转化思想.分析:根据面面垂直的判定定理可知选项A是否正确,根据平面α与平面β的位置关系进行判定可知选项B和C是否正确,根据垂直于同一直线的两平面平行,以及与两平行平面中一个垂直则垂直于另一个平面,可知选项D正确.解答:解:α⊥β,α∩β=l,m⊥l,根据面面垂直的判定定理可知,缺少条件m⊂α,故不正确;α∩γ=m,α⊥γ,β⊥γ,而α与β可能平行,也可能相交,则m与β不一定垂直,故不正确;α⊥γ,β⊥γ,m⊥α,而α与β可能平行,也可能相交,则m与β不一定垂直,故不正确;n⊥α,n⊥β,⇒α∥β,而m⊥α,则m⊥β,故正确故选D点评:本小题主要考查空间线面关系、面面关系以及充分条件的判定等知识,考查化归与转化的数学思想方法,以及空间想象能力、推理论证能力,属于基础题.8.(5分)过抛物线y2=2px(p>0)的焦点作直线交抛物线于P,Q两点,若线段PQ中点的横坐标为3,|PQ|=10,则抛物线方程是()A.y2=4x B.y2=2x C.y2=8x D.y2=6x考点:抛物线的简单性质;抛物线的标准方程.专题:圆锥曲线的定义、性质与方程.分析:利用抛物线的定义可得,|PQ|=|PF|+|QF|=x1++x2 +,把线段PQ中点的横坐标为3,|PQ|=10代入可得P值,然后求解抛物线方程.解答:解:设抛物线y2=2px(p>0)的焦点为F,由抛物线的定义可知,|PQ|=|PF|+|QF|=x1++x2 +=(x1+x2)+p,线段PQ中点的横坐标为3,又|PQ|=10,∴10=6+p,可得p=4∴抛物线方程为y2=8x.故选:C.点评:本题考查抛物线的定义、标准方程,以及简单性质的应用,利用抛物线的定义是解题的关键.9.(5分)已知两个实数a,b(a≠b),满足ae a=be b.命题p:lna+a=lnb+b;命题q:(a+1)(b+1)>0,则下列命题正确的是()A.p真q假B.p假q真C.p真q真D.p假q假考点:复合命题的真假.专题:导数的综合应用;简易逻辑.分析:考察函数f(x)=xe x,在x∈R上的单调性即可判断出p,q的真假.解答:解:考察函数f(x)=xe x,x∈R,f′(x)=(x+1)e x,令f′(x)>0,解得x>﹣1,此时函数f(x)单调递增;令f′(x)<0,解得x<﹣1,此时函数f(x)单调递减.∴当x=﹣1时,函数f(x)取得极小值即最小值,∴f(x)≥f(﹣1)=﹣.对于命题p:由于a<0,b<0,lna+a=lnb+b不可能成立,因此是假命题;对于命题q:a<﹣1,0>b>﹣1,则(a+1)(b+1)<0,因此q也是假命题.综上可得:p,q都是假命题.故选:D.点评:本题考查了利用导数研究函数的单调性、简易逻辑的判定,考查了推理能力与计算能力,属于难题.10.(5分)已知E,F分别是矩形ABCD的边BC与AD的中点,且BC=2AB=2,现沿EF 将平面ABEF折起,使平面ABEF⊥平面EFDC,则三棱锥A﹣FEC外接球的体积为()A.πB.πC.πD.2π考点:球的体积和表面积.专题:空间位置关系与距离.分析:由题意,三棱锥A﹣FEC外接球是正方体AC的外接球,由此三棱锥A﹣FEC外接球的半径是,由求的体积公式可得.解答:解:由题意,三棱锥A﹣FEC外接球是正方体AC的外接球,由此三棱锥A﹣FEC 外接球的半径是,所以三棱锥A﹣FEC外接球的体积为;故选B.点评:本题考查了三棱锥外接球的体积求法;关键是明确外接球的半径,再由球的体积公式解答.11.(5分)若函数f(x)=cos2x+asinx在区间(,)是减函数,则a的取值范围是()A.(2,4)B.(﹣∞,2]C.(﹣∞,4]D.令t=sinx,则原函数化为y=﹣2t2+at+1.∵x∈(,)时f(x)为减函数,则y=﹣2t2+at+1在t∈(,1)上为减函数,∵y=﹣2t2+at+1的图象开口向下,且对称轴方程为t=.∴≤,解得:a≤2.∴a的取值范围是(﹣∞,2].故选:B.点评:本题考查复合函数的单调性,考查了换元法,关键是由换元后函数为减函数求得二次函数的对称轴的位置,是中档题.12.(5分)设双曲线=1(a>0,b>0)的右焦点为F,过点F作与x轴垂直的直线l交两渐近线于A、B两点,与双曲线的其中一个交点为P,设O为坐标原点,若(m,n∈R),且mn=,则该双曲线的离心率为()A.B.C.D.考点:双曲线的简单性质;平面向量的基本定理及其意义.专题:计算题.分析:求出A、C坐标,然后求出P的坐标,代入双曲线方程,利用,即可求出双曲线的离心率.解答:解:由题意可知,代入=,得,代入双曲线方程,得,所以4e2mn=1,因为,即可得;故选C.点评:本题考查双曲线的基本性质,考查双曲线离心率的求法,考查计算能力.二.填空题:本大题共4小题,每小题5分.13.(5分)盒子中装有编号为1,2,3,4,5,6,7,8,9的九个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是(结果用最简分数表示).考点:古典概型及其概率计算公式.专题:概率与统计.分析:利用组合知识求出从1,2,3,4,5,6,7,8,9九个球中,任意取出两个球的取法种数,再求出从5个奇数中任意取出2个奇数的取法种数,求出取出的两个球的编号之积为奇数的概率,利用对立事件的概率求出取出两个球的编号之积为偶数的概率.解答:解:从1,2,3,4,5,6,7,8,9九个球中,任意取出两个球的取法种数为种.取出的两个球的编号之积为奇数的方法种数为种.则取出的两个球的编号之积为奇数的概率为.所以取出两个球的编号之积为偶数的概率是.故答案为点评:本题考查了古典概型及其概率计算公式,考查了简单的排列组合知识,考查了对立事件的概率,解答的关键是明确取到的两数均为奇数时其乘积为奇数,是基础题.14.(5分)在x(1+)6的展开式中,含x3项系数是15.(用数字作答)考点:二项式系数的性质.专题:二项式定理.分析:利用二项展开式的通项公式求出第r+1项,令x的指数为2,即可求解含x3的项的系数解答:解:(1+)6展开式的通项为T r+1=C6r()r=C6r,令r=4得含x2的项的系数是C64=15,∴在x(1+)6的展开式中,含x3项系数是:15.故答案为:15点评:本题考查二项展开式上通项公式是解决二项展开式的特定项问题的工具.15.(5分)已知函数f (x)=|x﹣3|+1,g (x)=ax.若方程f (x)=g (x)有两个不相等的实根,则实数a的取值范围是(,1).考点:根的存在性及根的个数判断.专题:函数的性质及应用.分析:将函数表示成分段函数为f(x)=,作出函数的图象,看图说话就可以了.解答:解:函数f (x)=|x﹣3|+1=,函数的图象如图:,当k=时,有一个交点;<k<1时,有两个交点.故答案为(,1)点评:本题考察了分段函数及其应用,以及函数交点问题,属于基础题.16.(5分)设等差数列{a n}的前n项和为S n,且满足S17>0,S18<0,则,,…,(n∈N*,n≤18))中最大的项是.考点:等差数列的性质.专题:计算题;等差数列与等比数列.分析:由题意可得a9>0,a10<0,由此可知>0,>0,…,<0,<0,…,<0,由此可得答案.解答:解:∵等差数列{a n}中,S17>0,且S18<0即S17=17a9>0,S18=9(a10+a9)<0∴a10+a9<0,a9>0,∴a10<0,∴等差数列{a n}为递减数列,故可知a1,a2,…,a9为正,a10,a11…为负;∴S1,S2,…,S17为正,S18,S19,…为负,∴知>0,>0,>0…,<0,<0,…,<0,又∵S1<S2<…<S9,a1>a2>…>a9,∴,,…,(n∈N*,n≤18)中最大的项为故答案为:.点评:本题考查学生灵活运用等差数列的前n项和的公式化简求值,掌握等差数列的性质,属中档题.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知f(x)=•,其中=(2cosx,﹣sin2x),=(cosx,1),x∈R.(1)求f(x)的单调递减区间;(2)在△ABC中,角A,B,C所对的边分别为a,b,c,f(A)=﹣1,a=,且向量=(3,sinB)与=(2,sinC)共线,求边长b和c的值.考点:平面向量数量积的运算;正弦定理;余弦定理.专题:平面向量及应用.分析:(1)利用向量的数量积公式得到f(x)的解析式,然后化简求单调区间;(2)利用向量共线,得到b,c的方程解之.解答:解:(1)由题意知.3分∵y=cosx在a2上单调递减,∴令,得∴f(x)的单调递减区间,6分(2)∵,∴,又,∴,即,8分∵,由余弦定理得a2=b2+c2﹣2bccosA=(b+c)2﹣3bc=7.10分因为向量与共线,所以2sinB=3sinC,由正弦定理得2b=3c.∴b=3,c=2.12 分.点评:本题考查了向量的数量积公式的运用以及三角函数的化简与性质的运用.18.(12分)如图:四棱锥P﹣ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=,点F是PB的中点,点E在边BC上移动.(1)证明:无论点E在BC边的何处,都有PE⊥AF;(2)当BE等于何值时,PA与平面PDE所成角的大小为45°.考点:用空间向量求直线与平面的夹角;直线与平面垂直的性质.专题:计算题;空间角.分析:(1)建立如图所示空间坐标系,得出P、B、F、D的坐标.设BE=x得E(x,1,0),算出的坐标,得出,由此可得无论点E在BC边的何处,都有PE⊥AF;(2)利用垂直向量数量积为零的方法,算出是平面PDE的一个法向量,结合=(0,0,1)与题中PA与平面PDE所成角,利用空间向量夹角公式建立关于x的方程,解出x的值即可得到PA与平面PDE所成角的大小为45°时,BE的长.解答:解:(1)分别以AD、AB、AP所在直线为x、y、z轴,建立如图所示空间坐标系则可得P(0,0,1),B(0,1,0),F(0,,),D(,0,0)设BE=x,则E(x,1,0)∴=(x,1,﹣1)得=x•0+1×+(﹣1)×=0可得,即AF⊥PE成立;(2)求出=(,0,﹣1),设平面PDE的一个法向量为则,得∵PA与平面PDE所成角的大小为45°,=(0,0,1)∴sin45°==,得=解之得x=或x=∵BE=x,∴BE=,即当BE等于时,PA与平面PDE所成角的大小为45°.点评:本题利用空间坐标系研究了线线垂直和直线与平面所成角大小.着重考查了空间垂直位置关系的判定与证明、直线与平面所成角和向量的夹角公式等知识,属于中档题.19.(12分)现有6名学生,按下列要求回答问题(列出算式,并计算出结果):(Ⅰ)6人站成一排,甲站在乙的前面(甲、乙可以不相邻)的不同站法种数;(Ⅱ)6人站成一排,甲、乙相邻,且丙与乙不相邻的不同站法种数;(Ⅲ)把这6名学生全部分到4个不同的班级,每个班级至少1人的不同分配方法种数;(Ⅳ)6人站成一排,求在甲、乙相邻条件下,丙、丁不相邻的概率.考点:古典概型及其概率计算公式;计数原理的应用.专题:概率与统计.分析:利用排列、组合知识和等可能事件的概率计算公式求解.解答:解:(Ⅰ)6人站成一排,甲站在乙的前面(甲、乙可以不相邻)的不同站法种数为:=360.(Ⅱ)6人站成一排,甲、乙相邻,且丙与乙不相邻的不同站法种数为:=192.(Ⅲ)把这6名学生全部分到4个不同的班级,每个班级至少1人的不同分配方法种数为:+=1560.(Ⅳ)6人站成一排,求在甲、乙相邻条件下,丙、丁不相邻的概率为:P==.点评:本题考查计数原理的应用,考查概率的求法,是基础题,解题时要注意排列、组合知识和等可能事件的概率计算公式的合理运用.20.(12分)抛物线C1:x2=4y在点A,B处的切线垂直相交于点P,直线AB与椭圆C2:+=1相交于C,D两点.(1)求抛物线C1的焦点F与椭圆C2的左焦点F1的距离;(2)设点P到直线AB的距离为d,试问:是否存在直线AB,使得|AB|,d,|CD|成等比数列?若存在,求直线AB的方程;若不存在,请说明理由.考点:直线与圆锥曲线的综合问题.专题:综合题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)确定求抛物线C1的焦点F、椭圆C2的左焦点F1的坐标,即可求抛物线C1的焦点F与椭圆C2的左焦点F1的距离;(Ⅱ)设直线AB:y=kx+m,与抛物线方程联立,说明直线AB过抛物线C1的焦点F,再求出P的坐标,可得点P(2k,﹣1)到直线AB:kx﹣y+1=0的距离,从而求出|CD|,再求出|AB|,利用|AB|,d,|CD|成等比数列,即可得出结论.解答:解:(I)抛物线C1的焦点F(0,1),…(1分)椭圆C 2的左焦点,…(2分)则.…(3分)(II)设直线AB:y=kx+m,A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),由,得x2﹣4kx﹣4m=0,…(4分)故x1+x2=4k,x1x2=﹣4m.由x2=4y,得,故切线PA,PB的斜率分别为,,再由PA⊥PB,得k PA k PB=﹣1,即,故m=1,这说明直线AB过抛物线C1的焦点F.…(7分)由,得,,即P(2k,﹣1).…(8分)于是点P(2k,﹣1)到直线AB:kx﹣y+1=0的距离.…(9分)由,得(1+2k2)x2+4kx﹣2=0,…(10分)从而,…(11分)同理,|AB|=4(1+k2).…(12分)若|AB|,d,|CD|成等比数列,则d2=|AB|•|CD|,…(13分)即,化简整理,得28k4+36k2+7=0,此方程无实根,所以不存在直线AB,使得|AB|,d,|CD|成等比数列.…(15分)点评:本题考查椭圆、抛物线的性质,考查直线与椭圆、抛物线的位置关系,考查等比数列的性质,考查韦达定理的运用,属于中档题.21.(12分)已知函数f(x)=ln(x+1)﹣x.(Ⅰ)求f(x)的最大值;(Ⅱ)设g(x)=f(x)﹣ax2(a≥0),l是曲线y=g(x)的一条切线,证明:曲线y=g(x)上的任意一点都不可能在直线l的上方;(Ⅲ)求证:(1+)(1+)(1+)…<e(其中e为自然对数的底数,n∈N*).考点:利用导数研究曲线上某点切线方程;利用导数求闭区间上函数的最值.专题:综合题;导数的综合应用.分析:(Ⅰ)确定函数的定义域,求出函数的单调性,即可求f(x)的最大值;(Ⅱ)设M(x0,y0)是曲线y=g(x)上的任意一点,则函数在M处的切线方程为y﹣g (x0)=g′(x0)(x﹣x0),构造h(x)=g(x)﹣,求出h(x)在x=x0处取得最大值h(x0),即h(x)≤0恒成立,从而得出结论;(Ⅲ)先证明当x>﹣1且x≠0时,有ln(x+1)<x,取对数,利用=2(﹣),结合裂项求和,即可得出结论.解答:解:(Ⅰ)f(x)的定义域为(﹣1,+∞),∵f(x)=ln(x+1)﹣x,∴f′(x)=﹣,∴﹣1<x<0,f′(x)>0,函数单调递增,x>0,f′(x)<0,函数单调递减,∴x=0时,f(x)取得最大值f(0)=0;(Ⅱ)证明:由(Ⅰ),g(x)=ln(x+1)﹣ax2﹣x,设M(x0,y0)是曲线y=g(x)上的任意一点,则函数在M处的切线方程为y﹣g(x0)=g′(x0)(x﹣x0),即y=(﹣2ax0﹣1)(x﹣x0)+g(x0)令h(x)=g(x)﹣,则h′(x)=﹣2ax﹣1﹣(﹣2ax0﹣1),∵h′(x0)=0,∴h′(x)在(﹣1,+∞)上是减函数,∴h(x)在(﹣1,x0)上是增函数,在(x0,+∞)上是减函数,∴h(x)在x=x0处取得最大值h(x0),即h(x)≤0恒成立,∴曲线y=g(x)上的任意一点都不可能在直线l的上方;(Ⅲ)证明:由(Ⅰ)知ln(x+1)≤x在(﹣1,+∞)是恒成立,当且仅当x=0时,等号成立,故当x>﹣1且x≠0时,有ln(x+1)<x,∵=2(﹣),∴ln{(1+)(1+)(1+)…}=ln(1+)+ln(1+)+ln(1+)+…+ln<++…+=2=2(﹣)=1﹣<1,∴(1+)(1+)(1+)…<e.点评:本题考查导数知识的综合运用,考查函数的最值,考查函数的单调性,考查学生分析解决问题的能力,难度大.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分.作答时请写清题号.【选修4-1:几何证明选讲】22.(10分)选修4﹣1几何证明选讲已知△ABC中AB=AC,D为△ABC外接圆劣弧,上的点(不与点A、C重合),延长BD至E,延长AD交BC的延长线于F.(I)求证.∠CDF=∠EDF(II)求证:AB•AC•DF=AD•FC•FB.考点:与圆有关的比例线段;圆周角定理.专题:综合题.分析:(I)根据A,B,C,D 四点共圆,可得∠ABC=∠CDF,AB=AC可得∠ABC=∠ACB,从而得解.(II)证明△BAD∽△FAB,可得AB2=AD•AF,因为AB=AC,所以AB•AC=AD•AF,再根据割线定理即可得到结论.解答:证明:(I)∵A,B,C,D 四点共圆,∴∠ABC=∠CDF又AB=AC∴∠ABC=∠ACB,且∠ADB=∠ACB,∴∠ADB=∠CDF,7分对顶角∠EDF=∠ADB,故∠EDF=∠CDF;(II)由(I)得∠ADB=∠ABF∵∠BAD=∠FAB∴△BAD∽△FAB∴∴AB2=AD•AF∵AB=AC∴AB•AC=AD•AF∴AB•AC•DF=AD•AF•DF根据割线定理DF•AF=FC•FB∴AB•AC•DF=AD•FC•FB点评:本题以圆为载体,考查圆的内接四边形的性质,考查等腰三角形的性质,考查三角形的相似,属于基础题.【选修4-4:坐标系与参数方程】23.在直角坐标系xOy中,直线l的参数方程为(t为参数,0≤α<π).以原点为极点,x轴的正半轴为极轴建立极坐标系.已知曲线C的极坐标方程为ρcos2θ=4sinθ.(1)求直线l与曲线C的平面直角坐标方程;(2)设直线l与曲线C交于不同的两点A、B,若|AB|=8,求α的值.考点:直线的参数方程;简单曲线的极坐标方程.专题:直线与圆.分析:(1)先利用消去参数t得到曲线C的直角坐标方程.再将原极坐标方程ρcos2θ=4sinθ两边同时乘以ρ,利用极坐标与直角坐标之间的关系即可得出其直角坐标方程;(2)将代入曲线C的标准方程:x2=4y得:t2cos2α﹣4tsinα﹣4=0,利用直线的参数方程中t的几何意义结合根与系数的关系建立关于α的方程即可求出求出α的值.解答:解:(1)消去参数t,得直线l的直角坐标方程为:sinαx﹣cosαy+cosα=0.曲线C的极坐标方程为ρcos2θ=4sinθ,即ρ2cos2θ=4ρsinθ,曲线C的标准方程:x2=4y.(2)将代入曲线C的标准方程:x2=4y得:t2cos2α﹣4tsinα﹣4=0,∴|AB|=|t1﹣t2|==8,∴cosα=.∴或.点评:本题考查点的极坐标和直角坐标的互化,以及利用平面几何知识解决最值问题.利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得.【选修4-5:不等式选讲】24.设函数f(x)=|x﹣1|+|x﹣a|(a∈R)(1)当a=4时,求不等式f(x)≥5的解集;(2)若f(x)≥4对x∈R恒成立,求a的取值范围.考点:带绝对值的函数;绝对值不等式.专题:计算题;压轴题;不等式的解法及应用.分析:(Ⅰ)不等式即|x﹣1|+|x﹣4|≥5,等价于,或,或,分别求出每个不等式组的解集,再取并集即得所求.(Ⅱ)因为f(x)=|x﹣1|+|x﹣a|≥|a﹣1|,由题意可得|a﹣1|≥4,与偶此解得a的值.解答:解:(Ⅰ)当a=4时,不等式f(x)≥5,即|x﹣1|+|x﹣4|≥5,等价于,,或,或.解得:x≤0或x≥5.故不等式f(x)≥5的解集为{x|x≤0,或x≥5 }.…(5分)(Ⅱ)因为f(x)=|x﹣1|+|x﹣a|≥|(x﹣1)﹣(x﹣a)|=|a﹣1|.(当x=1时等号成立)所以:f(x)min=|a﹣1|.…(8分)由题意得:|a﹣1|≥4,解得a≤﹣3,或a≥5.…(10分)点评:本题主要考查绝对值不等式的解法,函数的恒成立问题,属于中档题.。
吉林省长春市2015届高中毕业班第二次调研测试理综试题及答案
东北三省四市教研协作体等值诊断联合考试2015年长春市高中毕业班第二次调研测试理科综合测试本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共14页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生必须将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠、不要弄破、不准使用涂改液、刮纸刀。
第Ⅰ卷(选择题,共21小题,每小题6分,共126分)可能用到的相对原子质量:H—1 C—12 O—16 Ca—40 Fe—56 Ba—137一、选择题:本题共13小题,每小题6分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列有关细胞和化合物的叙述中,不.正确的是()A.质粒中含有核糖B.ATP的化学元素包括C、H、O、N、PC.RNA聚合酶具有识别作用D.细菌中含有核糖体、DNA和RNA2.下图表示细胞中部分生物膜之间结构和功能的联系,有关叙述正确的是()A.图中1是指细胞膜B.图中7是指内质网C.图中8处消耗ATP D.图中9处产生H2O3.下列有关成年男性正常细胞分裂的叙述,正确的是()A.有丝分裂与减数分裂相比,基因突变和基因重组的概率基本相同B.有丝分裂后期和减数第二次分裂后期的所有细胞中都能出现两条Y染色体C.减数第一次分裂后期与减数第二次分裂后期的细胞中都含有两个染色体组D.有丝分裂中期和减数第二次分裂前期细胞中的核DNA含量相同4.下列相关实验操作过程的描述中正确的是()A.观察有丝分裂:解离→染色→漂洗→制片→观察B.脂肪鉴定:切取花生子叶薄片→染色→去浮色→制片→观察C.蛋白质鉴定:将双缩脲试剂A液和B液混合→滴加到豆浆样液中→观察D.观察植物细胞失水:撕取洋葱鳞片叶的叶肉细胞→制片→观察→滴加蔗糖溶液→观察5.为了研究兴奋的传导和传递过程,研究人员取新鲜的神经—肌肉标本(实验期间用生理盐水湿润标本),设计了下面的实验装置图。
2015届高三质检二数学(理)试卷及答案剖析
石家庄市2015届高三复习教学质量检测(二)高三数学(理科)(时间120分钟,满分150分)第I 卷 (选择题,60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数iiz 42+=(i 为虚数单位)对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限2.如果0a b <<,那么下列不等式成立的是A .11a b-<- B .2ab b < C .2ab a -<- D .b a < 3.某校为了研究“学生的性别”和“对待某一活动的态度”是否有关,运用2×2列联表进行独立性检验,经计算069.7=k ,则认为“学生性别与支持活动有关系”的犯错误的概率不超过 A .0.1% B .1% C .99% D .99.9% 附:4.已知实数,x y 满足条件11y x xy x ≥⎧⎪+≥⎨⎪≥⎩,则2z x y =+的最小值为A .3B .2C .32D .05.运行如图所示的程序框图,如果输出的(2,2]t ∈-,则输入x 的范围是A .[-B .(-C .[D .( 6.已知等差数列{}n a 中,100720144,2014a S ==,则2015S =A .2015-B .2015C .4030-D .40307.一排有6个座位,三个同学随机就坐,任何两人不相邻的坐法种数为 A .120 B .36 C .24 D .728.若圆222)1()5(r y x =-+-上有且仅有两点到直线0234=++y x 的距离等于1,则r 的取值范围为A .[4,6]B .(4,6)C .[5,7]D .(5,7)10.某几何体的三视图如右图所示,则该几何体的表面积为 B .4+ C .2+ D .4+11.已知函数()f x 的定义域为2(43,32)a a --,且(23)y f x =-是偶函数. 又321()24x g x x ax =+++,存在0x 1(,),2k k k Z ∈+∈,使得00)(x x g =,则满足条件的k 的个数为A .3B .2C .4D .112.已知定义在R 上的函数()f x 满足:21)()()1(2+-=+x f x f x f ,数列{}n a 满足 *2),()(N n n f n f a n ∈-=,若其前n 项和为1635-,则n 的值为 A .16 B .17 C .18 D .19第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分. 13.双曲线2241x y -=的渐近线方程为_____. 14.已知212(1)4k dx ≤+≤⎰,则实数k 的取值范围是_____.16.三棱锥中有四条棱长为4,两条棱长为a ,则a 的取值范围为_____.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)在ABC ∆中,c b a ,,分别为内角C B A ,,的对边长,且222cos ()a bc A b c -=+.(Ⅰ)求A 的大小;(Ⅱ)若sin sin 1,2B C b +==,试求ABC ∆的面积. 18.(本小题满分12分)我国城市空气污染指数范围及相应的空气质量类别见下表:我们把某天的空气污染指数在0-100时称作A 类天,101--200时称作B 类天,大于200时称作C类天.右图是某市2014年全年监测数据中随机抽取的18天数据作为样本,其茎叶图如下:(百位为茎,十、个位为叶) (Ⅰ)从这18天中任取3天,求至少含2个A 类天的概率;(Ⅱ)从这18天中任取3天,记X 是达到A 类或B 类天的天数,求X 的分布列及数学期望. 19.(本小题满分12分)如图,在三棱柱111ABC A B C -中,1A A AB =,90ABC ∠=︒,侧面11A ABB ⊥底面ABC . (I )求证:1AB ⊥平面1A BC ;(II )若5AC =,3BC =,160A AB ∠=︒,求二面角11B AC C --的余弦值.20.(本小题满分12分)已知椭圆22122:1(0)4x y C b b b+=>,抛物线22:4()C x y b =-.过点(01)F b +,作x 轴的平行线,与抛物线2C 在第一象限的交点为G ,且该抛物线在点G 处的切线经过坐标原点O . (Ⅰ)求椭圆1C 的方程;(Ⅱ)设直线:l y kx =与椭圆1C 相交于两点C 、D 两点,其中点C 在第一象限,点A 为椭圆1C 的右顶点,求四边形ACFD 面积的最大值及此时l 的方程. 21.(本小题满分12分) 已知21()ln ,2f x x x mx x m R =--∈. (Ⅰ)当2m =-时,求函数()f x 的所有零点; (Ⅱ)若()f x 有两个极值点12,x x ,且12x x <,求证:212x x e >(e 为自然对数的底数). 请考生在22~24三题中任选一题做答,如果多做,则按所做的第一题记分. 22.几何证明选讲(本小题满分10分) 如图:已知PA 与圆O 相切于点A ,经过点O 的割线PBC 交圆O 于点B C 、,APC ∠的平分线分别交AB AC 、于点D E 、,.点G 是线段ED 的中点,AG 的延长线与CP 相交于点F .(Ⅰ)证明:AF ED ⊥; (Ⅱ)当F 恰为PC 的中点时,求PCPB的值. 23.坐标系与参数方程(本小题满分10分)在平面直角坐标系xOy 中,曲线1C 的参数方程为24(4x t y t⎧=⎨=⎩其中t 为参数).以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系并取相同的单位长度,曲线2C 的极坐标方程为cos()42πρθ+=. (Ⅰ)把曲线1C 的方程化为普通方程,2C 的方程化为直角坐标方程;(Ⅱ)若曲线1C ,2C 相交于B A ,两点,AB 的中点为P ,过点P 做曲线2C 的垂线交曲线1C 于F E ,两点,求PE PF ⋅.24.不等式选讲(本小题满分10分) 已知1()33f x x x a a=++-.(Ⅰ)若1a =,求8)(≥x f 的解集;(Ⅱ)对任意()+∞∈,0a ,任意R x ∈,()m x f ≥恒成立,求实数m 的最大值.80907873635267934738386730121290683243210B 1C 1C2014-2015学年度高三数学质检二答案(理科)一、 选择题1-5 DABAD 6-10 CCBCB 11-12 AB 二、填空13. 20x y ±= 14. [1,3] 15 -1016. ()2262,0+注意:此题如果写成(也可以 三、解答题(解答题如果和标准答案不一样,可依据本标准酌情给分) 17.解:(Ⅰ)∵222cos ()a bc A b c -=+,又根据余弦定理A bc c b a cos 2222-+=,∴22222cos 2cos 2b c bc A bc A b bc c +--=++,…………………………2分 化简得4cos 2bc A bc -=,可得1cos 2A =-, ……………………………………………………………………4分 ∵0A π<<,∴23A π=.……………………………………………………………………5分(Ⅱ)∵1sin sin =+C B , ∴1)3sin(sin =-+B B π,∴1sin 3cos cos 3sin sin =-+B B B ππ, ∴1sin 3cos cos 3sin =+B B ππ,∴1)3sin(=+πB , ……………………………………………………………………8分又∵B 为三角形内角, 故6B C π==,所以2==c b , ……………………………………………………………………………10分 所以3sin 21==∆A bc S ABC . …………………………………………………………12分 18. 解:(Ⅰ) 从这18天中任取3天,取法种数有 318816C =,3天中至少有2个A 类天的取法种数213315346C C C += , ..... ....2分所以这3天至少有2个A 类天的概率为23408; .............................. ..4分 (Ⅱ)X 的一切可能的取值是3,2,1,0. ……………… 5分当X=3时,1027)3(31838===C C X P …………………… 6分当X=2时,10235)2(31811028===C C C X P …………………… 7分 当X=1时,341510245)1(31821018====C C C X P ……………… 8分 当X=0时,34510215)0(318310====C C X P …………… 9分数学期望为34102136102457021==++ . ……………12分 19.解:(Ⅰ)证明:在侧面A 1ABB 1中,因为A 1A=AB ,所以四边形A 1ABB 1为菱形,所以对角线AB 1⊥A 1B ,…………………………………2分 因为侧面A 1ABB 1⊥底面ABC ,∠ABC=900,所以CB ⊥侧面A 1ABB 1, 因为AB 1⊂平面A 1ABB 1内,所以CB ⊥AB 1,…………………………4分 又因为A 1B ∩BC=B ,所以AB 1⊥平面A 1BC . …………………………………6分(Ⅱ)在Rt △ABC 中, AC=5, BC=3, 所以AB=4,又菱形A 1ABB 1中,因为∠A 1AB=600,所以△A 1AB 为正三角形,如图,以菱形A 1ABB 1的对角线交点O 为坐标原点OA 1方向为x 轴,OA 方向为y 轴,过O 且与BC 平行的方向为z 轴建立如图空间直角坐标系,则1(2,0,0)A ,(2,0,0)B -,(2,0,3)C -,1(0,B -,1(0,C -,所以1(2,0)C C =-,113)C A =-,设(,,)n x y z =为平面11ACC的法向量,则11100n C C n C A ⎧=⎪⎨=⎪⎩,所以20230x x z ⎧-+=⎪⎨+-=⎪⎩,令3x =,得(3,3,4)n =为平面11ACC 的一个法向量,…………………………………9分又1(0,OB =-为平面1A BC 的一个法向量,111cos ,2723n OB n OB n OB <>===,……………………………11分所以二面角B —A 1C —C 1的余弦值为.…………………………………12分 法2:在平面BC A 1中过点O 作OH ⊥C A 1于H ,连接AH ,则C A 1⊥平面AOH ,所以∠AHO 即为二面角B —A 1C —A 的平面角,……………………………………………………8分在△BC A 1中5611=⋅=C A BC O A OH , 又Rt △AOH 中32=AO ,所以521422=+=OH AO AH , 所以1421cos =∠AHO ,………………………………………………………………11分 因为二面角B —A 1C —C 1与二面角B —A 1C —A 互补,所以二面角B —A 1C —C 1的余弦值为二面角B —A 1C —A 的余弦值的相反数,则二面角B —A 1C —C 1的余弦值为1421-.………………………………12分 20.解:(Ⅰ)由24()x y b =-得214y x b =+,当1y b =+得2x =±, ∴ G 点的坐标为(2,1)b +,则1'2y x =,2'|1x y ==,过点G 的切线方程为(1)2y b x -+=-即1y x b =+-,………………………2分 令0y =得10x b =-=,∴ 1b =。
【2015长春二模】吉林省长春市普通高中2015届高三质量监测(二)数学(理)试题 Word版含答案
长春市普通高中2015届高三质量监测(二)数 学(理 科)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、已知集合{}0x x P =≥,1Q 02x x x ⎧+⎫=≥⎨⎬-⎩⎭,则()RQ P=ð( )A .(),2-∞B .(],1-∞-C .()1,0-D .[]0,2 2、复数12ii--的共轭复数对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3、已知随机变量ξ服从正态分布()21,σN ,若()20.15ξP >=,则()01ξP ≤≤=( )A .0.85 B .0.70 C .0.35 D .0.15 4、已知:p 函数()f x x a =+在(),1-∞-上是单调函数,:q 函数()()log 1a g x x =+(0a >且1a ≠)在()1,-+∞上是增函数,则p ⌝成立是q 成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件5、若x ,y 满足约束条件5315153x y y x x y +≤⎧⎪≤+⎨⎪-≤⎩,则35x y +的取值范围是( )A .[]13,15-B .[]13,17-C .[]11,15-D .[]11,17- 6、一个几何体的三视图如图所示,则该几何体的体积为( ) A .163 B .203 C .152 D .1327、已知平面向量a ,b 满足3a =,2b =,3a b ⋅=-,则2a b +=( ) A .1BC .4+D .8、下面左图是某学习小组学生数学考试成绩的茎叶图,1号到16号同学的成绩依次为1A 、2A 、⋅⋅⋅⋅⋅⋅、16A ,右图是统计茎叶图中成绩在一定范围内的学生人数的算法流程图,那么该算法流程图输出的结果是( )A .6B .10C .91D .929、已知函数()1cos cos 22f x x x x =+,若将其图象向右平移ϕ(0ϕ>)个单位后所得的图象关于原点对称,则ϕ的最小值为( )A .6π B .56π C .12π D .512π10、设m ,R n ∈,若直线()()1120m x n y +++-=与圆()()22111x y -+-=相切,则m n +的取值范围是( )A .(),2222,⎡-∞-++∞⎣ B .(),22,⎡-∞-+∞⎣C .22⎡-+⎣D .(][),22,-∞-+∞11、若()F ,0c 是双曲线22221x y a b-=(0a b >>)的右焦点,过F 作该双曲线一条渐近线的垂线与两条渐近线交于A ,B 两点,O 为坐标原点,∆OAB 的面积为2127a ,则该双曲线的离心率e =( )A .53B .43C .54D .8512、设数列{}n a 的前n 项和为n S ,且121a a ==,(){}2n n nS n a ++为等差数列,则n a =( )A .12n n - B .1121n n -++ C .2121n n -- D .112n n ++ 二、填空题(本大题共4小题,每小题5分,共20分.)13、62x ⎛- ⎝的展开式中常数项为 .14、已知0a >且曲线y =x a =与0y =所围成的封闭区域的面积为2a ,则a = .15、正四面体CD AB 的外接球半径为2,过棱AB 作该球的截面,则截面面积的最小值为 .16、已知函数()f x 为偶函数且()()4f x f x =-,又()235,01222,12x x x x x f x x -⎧--+≤≤⎪=⎨⎪+<≤⎩,函数()12xg x a ⎛⎫=+ ⎪⎝⎭,若()()()F x f x g x =-恰好有4个零点,则a 的取值范围是 .三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17、(本小题满分12分)在C ∆AB 中,tan 2A =,tan 3B =. ()1求角C 的值;()2设AB =C A .18、(本小题满分12分)根据某电子商务平台的调查统计显示,参与调查的1000位上网购物者的年龄情况如下图显示.()1已知[)30,40、[)40,50、[)50,60三个年龄段的上网购物者人数成等差数列,求a ,b 的值;()2该电子商务平台将年龄在[)30,50之间的人群定义为高消费人群,其他的年龄段定义为潜在消费人群,为了鼓励潜在消费人群的消费,该平台决定发放代金券,高消费人群每人发放50元的代金券,潜在消费人群每人发放100元的代金券,现采用分层抽样的方式从参与调查的1000位上网购物者中抽取10人,并在这10人中随机抽取3人进行回访,求此三人获得代金券总和X 的分布列与数学期望.19、(本小题满分12分)如图,在四棱锥CD P -AB 中,PA ⊥平面CD AB ,D 2PA =AB =A =,四边形CD AB 满足D AB ⊥A ,C//D B A 且C 4B =,点M 为CP 中点,点E 为C B 边上的动点,且CλBE=E . ()1求证:平面D A M ⊥平面C PB ;()2是否存在实数λ,使得二面角D P -E -B 的余弦值为23?若存在,试求出实数λ的值;若不存在,说明理由.20、(本小题满分12分)在C ∆AB 中,顶点()1,0B -,()C 1,0,G 、I 分别是C ∆AB 的重心和内心,且G//C I B . ()1求顶点A 的轨迹M 的方程;()2过点C 的直线交曲线M 于P 、Q 两点,H 是直线4x =上一点,设直线C H 、PH 、Q H 的斜率分别为1k ,2k ,3k ,试比较12k 与23k k +的大小,并加以证明.21、(本小题满分12分)设函数()()()1ln 1f x ax x bx =-+-,其中a 和b 是实数,曲线()y f x =恒与x 轴相切于坐标原点.()1求常数b 的值;()2当01x ≤≤时,关于x 的不等式()0f x ≥恒成立,求实数a 的取值范围;()3求证:10000.41000.5100011001100001000e ⎛⎫⎛⎫<< ⎪⎪⎝⎭⎝⎭.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分. 22、(本小题满分10分)选修4-1:几何证明选讲如图,过点P 作圆O 的割线PBA 与切线PE ,E 为切点,连接AE ,BE ,∠APE 的平分线与AE ,BE 分别交于点C ,D ,其中30∠AEB =.()1求证:D DD CE PB P ⋅=B PA P ; ()2求C ∠P E 的大小.23、(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系x y O 中,曲线1C的参数方程为21x y ⎧=⎪⎨=-+⎪⎩(t 为参数),以原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为ρ=. ()1求曲线1C 的普通方程与曲线2C 的直角坐标方程;()2试判断曲线1C 与2C 是否存在两个交点,若存在,求出两交点间的距离;若不存在,说明理由. 24、(本小题满分10分)选修4-5:不等式选讲 设函数()212f x x x a a =++-+,R x ∈.()1当3a =时,求不等式()7f x >的解集;()2对任意R x ∈恒有()3f x ≥,求实数a 的取值范围.长春市普通高中2015届高三质量监测(二)数学(理科)参考答案及评分标准一、选择题(本大题包括12小题,每小题5分,共60分)1.D2.A3.C4.C5.D6.D7.B8.B9.C 10.A 11.C 12.A 简答与提示:1. 【命题意图】本题主要考查集合交集与补集的运算,属于基础题.【试题解析】D 由题意可知{|1Q x x =-≤或2}x >,则{|12}Q x x =-<≤R ð,所以{|02}P Q x x =≤≤R ð. 故选D.2. 【命题意图】本题考查复数的除法运算,以及复平面上的点与复数的关系,属于基础题.【试题解析】A131255i i i -=--,所以其共轭复数为3155i +. 故选A. 3. 【命题意图】本题考查正态分布的概念,属于基础题,要求学生对统计学原理有全面的认识.【试题解析】C (01)(12)0.5(2)0.35P P P ξξξ==->=≤≤≤≤. 故选C. 4. 【命题意图】本题借助不等式来考查命题逻辑,属于基础题.【试题解析】C 由p 成立,则1a ≤,由q 成立,则1a >,所以p ⌝成立时1a >是q 的充要条件.故选C.5. 【命题意图】本题主要考查线性规划,是书中的原题改编,要求学生有一定的运算能力.【试题解析】D由题意可知,35x y +在(2,1)--处取得最小值,在35(,)22处取得最大值,即35[11,17]x y +∈-.故选D.6. 【命题意图】本题通过正方体的三视图来考查组合体体积的求法,对学生运算求解能力有一定要求.【试题解析】D 该几何体可视为正方体截去两个三棱锥,所以其体积为41138362--=. 故选D.7. 【命题意图】本题考查向量模的运算.【试题解析】B |2|+==a b 故选B.8. 【命题意图】本题考查学生对茎叶图的认识,通过统计学知识考查程序流程图的认识,是一道综合题.【试题解析】B 由算法流程图可知,其统计的是数学成绩大于等于90的人数,所以由茎叶图知:数学成绩大于等于90的人数为10,因此输出结果为10. 故选B. 9. 【命题意图】本题主要考查三角函数的图像和性质,属于基础题.【试题解析】C由题意()sin(2)6f x x π=+,将其图像向右平移ϕ(0)ϕ>个单位后解析式为()sin[2()]6f x x πϕ=-+,则26k πϕπ-=,即212k ππϕ=+()k ∈N ,所以ϕ的最小值为12π. 故选C.10. 【命题意图】本题借助基本不等式考查点到直线的距离,属于中档题.【试题解析】A由直线与圆相切可知||m n +=1mn m n =++,由2()2m n mn +≤可知211()4m n m n ++≤+,解得(,2[222,)m n +∈-∞-++∞. 故选A.11. 【命题意图】本题主要考查双曲线的几何性质,结合着较大的运算量,属于难题.【试题解析】C 由题可知,过I 、III 象限的渐近线的倾斜角为θ,则tan b aθ=,222tan 2aba b θ=-,因此△OAB 的面积可以表示为3222112tan 227a b a a a a b θ⋅⋅==-,解得34b a =,则54e =. 故选C. 12. 【命题意图】本题是最近热点的复杂数列问题,属于难题.【试题解析】A 设(2)n n n b nS n a =++,有14b =,28b =,则4n b n =,即(2)4n n n b nS n a n =++=当2n ≥时,1122(1)(1)01n n n n S S a a nn ---++-+=- 所以12(1)11n n n n a a n n -++=-,即121n n a a n n -⋅=-,所以{}n a n 是以12为公比,1为首项的等比数列,所以11()2n n a n -=,12n n na -=. 故选A.二、填空题(本大题包括4小题,每小题5分,共20分) 13.60 14.49 15.83π 16.192,8⎛⎫ ⎪⎝⎭简答与提示:13. 【命题意图】本题主要考查二项式定理的有关知识,属于基础题.【试题解析】由题意可知常数项为2246(2)(60C x =. 14. 【命题意图】本题考查定积分的几何意义及微积分基本定理,属于基础题.【试题解析】由题意322023aa x ==⎰,所以49a =.15. 【命题意图】球的内接几何体问题是高考热点问题,本题通过求球的截面面积,对考生的空间想象能力及运算求解能力进行考查,具有一定难度.【试题解析】由题意,面积最小的截面是以AB 为直径,可求得AB =,进而截面面积的最小值为283ππ=.16. 【命题意图】本题主要考查数形结合以及函数的零点与交点的相关问题,需要学生对图像进行理解,对学生的能力提出很高要求,属于难题.【试题解析】由题意可知()f x 是周期为4的偶函数,对称轴为直线2x =. 若()F x 恰有4个零点,有(1)(1)(3)(3)g f g f >⎧⎨<⎩,解得19(2,)8a ∈.17. (本小题满分12分)【命题意图】本小题主要考查两角和的正切公式,以及同角三角函数的应用,并借助正弦定理考查边角关系的运算,对考生的化归与转化能力有较高要求.【试题解析】解:(1) +,tan tan()A B C C A B π+=∴=-+ (3分)tan 2,tan 3,tan 1,4A B C C π==∴=∴=(6分)(2)因为tan 3B =sin 3sin 3cos cos BB B B⇒=⇒=,而22sin cos 1B B +=,且B 为锐角,可求得sin B =. (9分)所以在△ABC中,由正弦定理得,sin sin AB AC B C =⨯=.(12分)18. (本小题满分12分)【命题意图】本小题主要考查统计与概率的相关知识、离散型随机变量的分布列以及数学期望的求法. 本题主要考查数据处理能力. 【试题解析】(1)由图可知0.035a =,0.025b =. (4分)(2) 利用分层抽样从样本中抽取10人,其中属于高消费人群的为6人,属于潜在消费人群的为4人. (6分) 从中取出三人,并计算三人所获得代金券的总和X , 则X 的所有可能取值为:150,200,250,300.363101(150)6C P X C ===, 21643101(200)2C C P X C ===,12643103(250)10C C P X C ===, 343101(300)30C P X C ===, (10分) 且1131150200250300210621030EX =⨯+⨯+⨯+⨯=.(12分)19. (本小题满分12分)【命题意图】本小题主要考查立体几何的相关知识,具体涉及到线面以及面面的垂直关系、二面角的求法及空间向量在立体几何中的应用. 本小题对考生的空间想象能力与运算求解能力有较高要求.【试题解析】解:(1) 取PB 中点N ,连结MN 、AN ,M 是PC 中点,1//,22MN BC MN BC ∴==, 又//BC AD ,//,MN AD MN AD ∴=,∴四边形ADMN 为平行四边形 ,AP AD AB AD ⊥⊥,AD ∴⊥平面PAB ,AD AN ∴⊥,AN MN ∴⊥ AP AB =,AN PB ∴⊥,AN ∴⊥平面PBC , AN ⊂平面ADM ,∴平面ADM ⊥平面PBC . (6分)(2) 存在符合条件的λ.以A 为原点,AB 方向为x 轴,AD 方向为y 轴,AP 方向为z 轴,建立空间直角坐标系A xyz -,设(2,,0)E t ,(0,0,2)P ,(0,2,0)D ,(2,0,0)B 从而(0,2,2)PD =-,(2,2,0)DE t =-,则平面PDE 的法向量为1(2,2,2)n t =-, 又平面DEB 即为xAy 平面,其法向量2(0,0,1)n =,则1212122cos ,3||||(2n n n n n n ⋅<>===⋅,解得3t =或1t =,进而3λ=或13λ=. (12分)20. (本小题满分12分)【命题意图】本小题主要考查直线与圆锥曲线的综合应用能力,具体涉及到轨迹方程的求法,椭圆方程的求法、直线与圆锥曲线的相关知识. 本小题对考生的化归与转化思想、运算求解能力都有很高要求.【试题解析】解:(1) 已知11(||||||)||||22ABC A S AB AC BC r BC y ∆=++⋅=⋅,且||2BC =,||3A y r =,其中r 为内切圆半径,化简得:||||4AB AC +=,顶点A 的轨迹是以B C 、为焦点,长轴长为4的椭圆(去掉长轴端点),其中2,1,a c b ===进而其方程为22143x y +=(0)y ≠.(5分)(2) 1232k k k =+,以下进行证明:当直线PQ 斜率存在时,设直线:(1)PQ y k x =-且11(,)P x y ,22(,)Q x y ,(4,)H m联立22143(1)x y y k x ⎧+=⎪⎨⎪=-⎩可得2122834k x x k +=+,212241234k x x k -=+. (8分)由题意:13mk =,1214y m k x -=-,2324y m k x -=-.11212312()(4)()(4)(4)(4)y m x y m x k k x x --+--+=-- 21212121212882(5)()2424224()1636363m k kx x m k x x mk m mk x x x x k ++-+++====-+++ 当直线PQ 斜率不存在时,33(1,),(1,)22P Q -,231332222333m m m k k k -++=+== 综上可得1232k k k =+. (12分)21. (本小题满分12分)【命题意图】本小题主要考查函数与导数的综合应用能力,具体涉及到用导数来描述原函数的单调性、极值以及函数零点的情况. 本小题对考生的逻辑推理能力与运算求解有较高要求.【试题解析】解:(1) 对()f x 求导得:1()ln(1)1axf x a x b x-'=-++-+,根据条件知(0)0f '=,所以101b b -=⇒=. (3分)(2) 由(1)得()(1)ln(1)f x ax x x =-+-,01x ≤≤1()ln(1)11axf x a x x-'=-++-+ 22(1)(1)21()1(1)(1)a a x ax ax a f x x x x -+--++''=-+=-+++. ① 当12a ≤-时,由于01x ≤≤,有221()()0(1)a a x a f x x ++''=-≥+,于是()f x '在[0,1]上单调递增,从而()(0)0f x f ''≥=,因此()f x 在[0,1]上单调递增,即()(0)0f x f ≥=而且仅有(0)0f =;②当0a ≥时,由于01x ≤≤,有221()0(1)ax a f x x ++''=-<+,于是()f x '在[0,1]上单调递减,从而()(0)0f x f ''≤=,因此()f x 在[0,1]上单调递减,即()(0)0f x f ≤=而且仅有(0)0f =;③当102a -<<时,令21min{1,}a m a+=-,当0x m ≤≤时,221()()0(1)a a x a f x x ++''=-≤+,于是()f x '在[0,]m 上单调递减,从而()(0)0f x f ''≤=,因此()f x 在[0,]m 上单调递减,即()(0)0f x f ≤=而且仅有(0)0f =.综上可知,所求实数a 的取值范围是1(,]2-∞-. (8分)(3) 对要证明的不等式等价变形如下:2110000100010000.41000.55210001100111()()(1)(1)100001000100001000e e ++<<⇔+<<+ 所以可以考虑证明:对于任意的正整数n ,不等式215211(1)(1)n n e n n+++<<+恒成立. 并且继续作如下等价变形2152112111(1)(1)()ln(1)1()ln(1)52n n e n n n n n n+++<<+⇔++<<++211(1)ln(1)0()5111(1)ln(1)0()2p n n n q n n n ⎧++-<⎪⎪⇔⎨⎪++->⎪⎩对于()p 相当于(2)中21(,0)52a =-∈-,12m =情形,有()f x 在1[0,]2上单调递减,即()(0)0f x f ≤=而且仅有(0)0f =.取1x n =,当2n ≥时,211(1)ln(1)05n n n++-<成立;当1n =时,277(1)ln 21ln 210.710555+-=-<⨯-<.从而对于任意正整数n 都有211(1)ln(1)05n n n++-<成立.对于()q 相当于(2)中12a =-情形,对于任意x ∈[0,1],恒有()0f x ≥而且仅有(0)0f =. 取1x n =,得:对于任意正整数n 都有111(1)ln(1)02n n n ++->成立. 因此对于任意正整数n ,不等式215211(1)(1)n n e n n +++<<+恒成立. 这样依据不等式215211(1)(1)n n e n n +++<<+,再令10000n =利用左边,令1000n = 利用右边,即可得到10000.41000.5100011001()()100001000e <<成立. (12分)22. (本小题满分10分)【命题意图】本小题主要考查平面几何的证明,具体涉及到弦切角定理以及三角形 相似等内容. 本小题重点考查考生对平面几何推理能力.【试题解析】解:(1) 由题意可知,EPC APC ∠=∠,PEB PAC ∠=∠,则△PED ∽△PAC ,则PE PD PA PC =,又PE ED PB BD =,则ED PB PD BD PA PC⋅=. (5分) (2) 由EPC APC ∠=∠,PEB PAC ∠=∠,可得CDE ECD ∠=∠,在△ECD 中,30CED ∠=,可知75PCE ∠=. (10分) 23. (本小题满分10分)【命题意图】本小题主要考查极坐标系与参数方程的相关知识,具体涉及到极坐标方程与平面直角坐标方程的互化、利用直线的参数方程的几何意义求解直线与曲线交点的距离等内容. 本小题考查考生的方程思想与数形结合思想,对运算求解能力有一定要求.【试题解析】解:(1) 对于曲线1C 有1x y +=,对于曲线2C 有2214x y +=.(5分) (2) 显然曲线1C :1x y +=为直线,则其参数方程可写为21x y ⎧=⎪⎪⎨⎪=-+⎪⎩(为参数)与曲线2C :2214x y +=联立,可知0∆>,所以1C 与2C 存在两个交点,由12t t +=,1285t t =,得21||d t t =-==. (10分) 24. (本小题满分10分)【命题意图】本小题主要考查不等式的相关知识,具体涉及绝对值不等式及不等式证明等内容. 本小题重点考查考生的化归与转化思想.【试题解析】解:(1)当3a =时,()174,2135,22341,2x x f x x x x ⎧-≤⎪⎪⎪=<<⎨⎪⎪-≥⎪⎩所以()7f x >的解集为{}02x x x <>或 (5分)(2)()2122121f x x a x a x a x a a a =-+-+≥-+-+=-+由()3f x ≥恒成立,有13a a -+≥,解得2a ≥所以a 的取值范围是[)2,+∞ (10分)。
吉林省实验中学2015届高考数学二模试卷理(含解析)
吉林省实验中学2015届高考数学二模试卷(理科)一、选择题:本大题共12小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知全集为U=R,M={x|x2﹣x>0},N={x|<0},则有()A.M∪N=R B.M∩N=∅C.∁U N=M D.∁U N⊆N2.(5分)若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为()A.﹣4 B.C.4 D.3.(5分)“等式sin(α+γ)=sin2β成立”是“α,β,γ成等差数列”的()条件.A.充分而不必要B.必要而不充分C.充分必要D.既不充分又不必要(5分)已知函数f(x)=2sin(ωx+φ)对任意x都有,则4.等于()A.2或0 B.﹣2或2 C.0 D.﹣2或05.(5分)若当x∈R时,函数f(x)=a|x|始终满足0<|f(x)|≤1,则函数y=log a||的图象大致为()A.B.C.D.6.(5分)已知f(x)是周期为2的奇函数,当0<x<1时,f(x)=lgx设a=f(),b=f(),c=f(),则()A.a<b<c B.b<a<c C.c<b<a D.c<a<b7.(5分)一个几何体的三视图如图示,则这个几何体的体积为()A.a3B.C.D.8.(5分)已知,是平面内两个互相垂直的单位向量,若向量满足()•()=0,则||的最大值是()A.1 B.2 C.D.9.(5分)若f(x)=x2+2f(x)dx,则f(x)dx=()A.﹣1 B.﹣C.D.110.(5分)数列{a n}是正项等比数列,{b n}是等差数列,且a6=b7,则有()A.a3+a9≤b4+b10B.a3+a9≥b4+b10C.a3+a9≠b4+b10D.a3+a9与b4+b10大小不确定11.(5分)设f(x)=x3+bx2+cx,又m是一个常数.已知当m<0或m>4时,f(x)﹣m=0只有一个实根;当0<m<4时,f(x)﹣m=0有三个相异实根,现给出下列命题:(1)f(x)﹣4=0和f'(x)=0有一个相同的实根;(2)f(x)=0和f'(x)=0有一个相同的实根;(3)f(x)+3=0的任一实根大于f(x)﹣1=0的任一实根;(4)f(x)+5=0的任一实根小于f(x)﹣2=0的任一实根.其中错误命题的个数是()A.4 B.3 C.2 D.112.(5分)已知中心在原点的椭圆与双曲线有公共焦点,且左右焦点分别为F1F2,且两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形.若|PF1|=10,椭圆与双曲线的离心率分别为e1,e2,则e1•e2的取值范围是()A.(0,)B.C.D.二、填空题:本大题共4小题,每小题5分.13.(5分)顶点在原点,经过圆C:x2+y2﹣2x+2y=0的圆心且准线与x轴垂直的抛物线方程为.14.(5分)设x,y满足约束条件:;则z=x﹣2y的取值范围为.15.(5分)已知直线x+y=a与圆x2+y2=4交于A、B两点,O是坐标原点,向量、满足,则实数a的.16.(5分)已知函数f(x)=2ae x(a>0,e为自然对数的底数)的图象与直线x=0的交点为M,函数g(x)=ln(a>0)的图象与直线y=0的交点为N,|MN|恰好是点M到函数g(x)=ln (a>0)图象上的最小值,则实数a的值是.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)(普通班学生做)在△ABC中,tanA=,tanB=.(1)求角C的大小;(2)若△ABC最大边的边长为,求最小边的边长及△ABC的面积.18.(12分)已知数列{a n}的前n项和为S n,且满足a1=,a n=﹣2S n•S n﹣1(n≥2且n∈N*).(Ⅰ)求证:数列{}是等差数列;(Ⅱ)求S n和a n.19.(12分)如图,在直棱柱ABCD﹣A1B1C1D1中,AD∥BC,∠BAD=90°,AC⊥BD,BC=1,AD=AA1=3.(Ⅰ)证明:AC⊥B1D;(Ⅱ)求直线B1C1与平面ACD1所成的角的正弦值.20.(12分)已知中心在原点,焦点在x轴上的椭圆C的离心率为,且经过点M.(Ⅰ)求椭圆C的方程;(Ⅱ)是否存过点P(2,1)的直线l1与椭圆C相交于不同的两点A,B,满足?若存在,求出直线l1的方程;若不存在,请说明理由.21.(12分)已知函数.(Ⅰ)当a=1时,求曲线f(x)在x=1处的切线方程;(Ⅱ)设函数h(x)=f(x)﹣g(x),求函数h(x)的单调区间;(Ⅲ)若在[1,e](e=2.718…)上存在一点x0,使得f(x0)<g(x0)成立,求a的取值范围.请考生从第(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,作答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.选修4-1:几何证明选讲22.(10分)如图,AB是圆O的直径,C是半径OB的中点,D是OB延长线上一点,且BD=OB,直线MD与圆O相交于点M、T(不与A、B重合),DN与圆O相切于点N,连接MC,MB,OT.(Ⅰ)求证:DT•DM=DO•DC;(Ⅱ)若∠DOT=60°,试求∠BMC的大小.选修4-4:坐标系与参数方程23.已知直线l经过点,倾斜角,圆C的极坐标方程为(1)写出直线l的参数方程,并把圆C的方程化为直角坐标方程;(2)设l与圆C相交于两点A,B,求点P到A,B两点的距离之积.选修4-5:不等式选讲24.对于任意的实数a(a≠0)和b,不等式|a+b|+|a﹣b|≥M•|a|恒成立,记实数M的最大值是m.(1)求m的值;(2)解不等式|x﹣1|+|x﹣2|≤m.吉林省实验中学2015届高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
2015二模理数答案
长春市普通高中2015届高三质量监测(二)数学(理科)参考答案及评分标准一、选择题(本大题包括12小题,每小题5分,共60分)1. D2. A3. C4. C5. D6. D7. B8. B9. C 10.A 11. C 12. A 简答与提示:1. 【命题意图】本题主要考查集合交集与补集的运算,属于基础题.【试题解析】D 由题意可知{|1Q x x =-≤或2}x >,则{|12}Q x x =-<≤R ð,所以{|02}P Q x x =≤≤R ð. 故选D. 2. 【命题意图】本题考查复数的除法运算,以及复平面上的点与复数的关系,属于基础题.【试题解析】A131255i i i -=--,所以其共轭复数为3155i +. 故选A. 3. 【命题意图】本题考查正态分布的概念,属于基础题,要求学生对统计学原理有全面的认识.【试题解析】C (01)(12)0.5(2)P P P ξξξ==->=≤≤≤≤. 故选C. 4. 【命题意图】本题借助不等式来考查命题逻辑,属于基础题.【试题解析】C 由p 成立,则1a ≤,由q 成立,则1a >,所以p ⌝成立时1a >是q 的充要条件.故选C.5. 【命题意图】本题主要考查线性规划,是书中的原题改编,要求学生有一定的运算能力.【试题解析】D由题意可知,35x y +在(2,1)--处取得最小值,在35(,)22处取得最大值,即35[11,17]x y +∈-.故选D.6. 【命题意图】本题通过正方体的三视图来考查组合体体积的求法,对学生运算求解能力有一定要求.【试题解析】D 该几何体可视为正方体截去两个三棱锥,所以其体积为41138362--=. 故选D. 7. 【命题意图】本题考查向量模的运算.【试题解析】B |2|+==a b 故选B.8. 【命题意图】本题考查学生对茎叶图的认识,通过统计学知识考查程序流程图的认识,是一道综合题.【试题解析】B 由算法流程图可知,其统计的是数学成绩大于等于90的人数,所以由茎叶图知:数学成绩大于等于90的人数为10,因此输出结果为10. 故选B. 9. 【命题意图】本题主要考查三角函数的图像和性质,属于基础题.【试题解析】C由题意()sin(2)6f x x π=+,将其图像向右平移ϕ(0)ϕ>个单位后解析式为()sin[2()]6f x x πϕ=-+,则26k πϕπ-=,即212k ππϕ=+()k ∈N ,所以ϕ的最小值为12π. 故选C.10. 【命题意图】本题借助基本不等式考查点到直线的距离,属于中档题.【试题解析】A 由直线与圆相切可知||m n +=1mn m n =++,由2()2m n mn +≤可知211()4m n m n ++≤+,解得(,2[222,)m n +∈-∞-++∞. 故选A. 11. 【命题意图】本题主要考查双曲线的几何性质,结合着较大的运算量,属于难题.【试题解析】C 由题可知,过I 、III 象限的渐近线的倾斜角为θ,则tan b a θ=,222tan 2aba bθ=-,因此△OAB 的面积可以表示为3222112tan 227a b a a a a b θ⋅⋅==-,解得34b a =,则54e =. 故选C.12. 【命题意图】本题是最近热点的复杂数列问题,属于难题.【试题解析】A 设(2)n n n b nS n a =++,有14b =,28b =,则4n b n =, 即(2)4n n n b nS n a n =++=当2n ≥时,1122(1)(1)01n n n n S S a a nn ---++-+=- 所以12(1)11n n n n a a n n -++=-,即121n n a a n n -⋅=-,所以{}n a n是以12为公比,1为首项的等比数列,所以11()2n n a n -=,12n n na -=. 故选A.二、填空题(本大题包括4小题,每小题5分,共20分)13. 6014.4915.83π16. 19(2,)8简答与提示:13. 【命题意图】本题主要考查二项式定理的有关知识,属于基础题.【试题解析】由题意可知常数项为2246(2)(60C x =. 14. 【命题意图】本题考查定积分的几何意义及微积分基本定理,属于基础题.【试题解析】由题意322023a a x ==⎰,所以49a =. 15. 【命题意图】球的内接几何体问题是高考热点问题,本题通过求球的截面面积,对考生的空间想象能力及运算求解能力进行考查,具有一定难度.【试题解析】由题意,面积最小的截面是以AB为直径,可求得3AB =,进而截面面积的最小值为283ππ=. 16. 【命题意图】本题主要考查数形结合以及函数的零点与交点的相关问题,需要学生对图像进行理解,对学生的能力提出很高要求,属于难题.【试题解析】由题意可知()f x 是周期为4的偶函数,对称轴为直线2x =. 若()F x 恰有4个零点,有(1)(1)(3)(3)g f g f >⎧⎨<⎩,解得19(2,)8a ∈.三、解答题(本大题必做题5小题,三选一选1小题,共70分)17. (本小题满分12分)【命题意图】本小题主要考查两角和的正切公式,以及同角三角函数的应用,并借助正弦定理考查边角关系的运算,对考生的化归与转化能力有较高要求.【试题解析】解:(1) +,tan tan()A B C C A B π+=∴=-+ (3分)tan 2,tan 3,tan 1,4A B C C π==∴=∴= (6分)(2)因为tan 3B =sin 3sin 3cos cos BB B B⇒=⇒=,而22sin cos 1B B +=,且B 为锐角,可求得sin B =.(9分)所以在△ABC中,由正弦定理得,sin sin AB AC B C =⨯=. (12分)18. (本小题满分12分)【命题意图】本小题主要考查统计与概率的相关知识、离散型随机变量的分布列以及数学期望的求法. 本题主要考查数据处理能力.【试题解析】(1)由图可知0.035a =,0.025b =. (4分)(2) 利用分层抽样从样本中抽取10人,其中属于高消费人群的为6人,属于潜在消费人群的为4人. (6分) 从中取出三人,并计算三人所获得代金券的总和X , 则X 的所有可能取值为:150,200,250,300.363101(150)6C P X C ===, 21643101(200)2C C P X C ===,126433(250)10C C P X C ===,343101(300)30C P X C ===,(10分) 且1131150200250300210621030EX =⨯+⨯+⨯+⨯=.(12分)19. (本小题满分12分)【命题意图】本小题主要考查立体几何的相关知识,具体涉及到线面以及面面的垂直关系、二面角的求法及空间向量在立体几何中的应用. 本小题对考生的空间想象能力与运算求解能力有较高要求. 【试题解析】解:(1) 取PB 中点N ,连结MN 、AN ,M 是PC 中点,1//,22MN BC MN BC ∴==, 又//BC AD ,//,MN AD MN AD ∴=,∴四边形ADMN 为平行四边形 ,AP AD AB AD ⊥⊥,AD ∴⊥平面PAB ,AD AN ∴⊥,AN MN ∴⊥ AP AB =,AN PB ∴⊥,AN ∴⊥平面PBC ,AN ⊂平面ADM ,∴平面ADM ⊥平面PBC .(6分) (2) 存在符合条件的λ.以A 为原点,AB 方向为x 轴,AD 方向为y 轴,AP 方向为z 轴,建立空间直角坐标系A xyz -,设(2,,0)E t ,(0,0,2)P ,(0,2,0)D ,(2,0,0)B从而(0,2,2)PD =-,(2,2,0)DE t =-,则平面PDE 的法向量为1(2,2,2)n t =-, 又平面DEB 即为xAy 平面,其法向量2(0,0,1)n =,则1212122cos ,3||||(2n n n n n n ⋅<>===⋅,解得3t =或1t =,进而3λ=或13λ=.(12分)20. (本小题满分12分)【命题意图】本小题主要考查直线与圆锥曲线的综合应用能力,具体涉及到轨迹方程的求法,椭圆方程的求法、直线与圆锥曲线的相关知识. 本小题对考生的化归与转化思想、运算求解能力都有很高要求.【试题解析】解:(1) 已知11(||||||)||||22ABC A S AB AC BC r BC y ∆=++⋅=⋅,且||2BC =,||3A y r =,其中r 为内切圆半径,化简得:||||4AB AC +=,顶点A 的轨迹是以B C 、为焦点,长轴长为4的椭圆(去掉长轴端点),其中2,1,a c b ===进而其方程为22143x y +=(0)y ≠. (5分)(2) 1232k k k =+,以下进行证明:当直线PQ 斜率存在时,设直线:(1)PQ y k x =-且11(,)P x y ,22(,)Q x y ,(4,)H m联立22143(1)x y y k x ⎧+=⎪⎨⎪=-⎩可得2122834k x x k +=+,212241234k x x k -=+. (8分)由题意:13mk =,1214y m k x -=-,2324y m k x -=-.11212312()(4)()(4)(4)(4)y m x y m x k k x x --+--+=--21212121212882(5)()2424224()1636363m k kx x m k x x mk m mk x x x x k ++-+++====-+++当直线PQ 斜率不存在时,33(1,),(1,)22P Q -,231332222333m m m k k k -++=+== 综上可得1232k k k =+. (12分)21. (本小题满分12分) 【命题意图】本小题主要考查函数与导数的综合应用能力,具体涉及到用导数来描述原函数的单调性、极值以及函数零点的情况. 本小题对考生的逻辑推理能力与运算求解有较高要求.【试题解析】解:(1) 对()f x 求导得:1()ln(1)1axf x a x b x-'=-++-+,根据条件知(0)0f '=,所以101b b -=⇒=. (3分)(2) 由(1)得()(1)ln(1)f x ax x x =-+-,01x ≤≤1()ln(1)11axf x a x x-'=-++-+ 22(1)(1)21()1(1)(1)a a x ax ax a f x x x x -+--++''=-+=-+++.① 当12a ≤-时,由于01x ≤≤,有221()()0(1)a a x a f x x ++''=-≥+,于是()f x '在[0,1]上单调递增,从而()(0)0f x f ''≥=,因此()f x 在[0,1]上单调递增,即()(0)0f x f ≥=而且仅有(0)0f =;②当0a ≥时,由于01x ≤≤,有221()0(1)ax a f x x ++''=-<+,于是()f x '在[0,1]上单调递减,从而()(0)0f x f ''≤=,因此()f x 在[0,1]上单调递减,即()(0)0f x f ≤=而且仅有(0)0f =;③当102a -<<时,令21min{1,}a m a+=-,当0x m ≤≤时,221()()0(1)a a x a f x x ++''=-≤+,于是()f x '在[0,]m 上单调递减,从而()(0)0f x f ''≤=,因此()f x 在[0,]m 上单调递减, 即()(0)0f x f ≤=而且仅有(0)0f =.综上可知,所求实数a 的取值范围是1(,]2-∞-. (8分)(3) 对要证明的不等式等价变形如下:2110000100010000.41000.55210001100111()()(1)(1)100001000100001000e e ++<<⇔+<<+ 所以可以考虑证明:对于任意的正整数n ,不等式215211(1)(1)n n e n n+++<<+恒成立. 并且继续作如下等价变形2152112111(1)(1)()ln(1)1()ln(1)52n n e n n n n n n+++<<+⇔++<<++ 211(1)ln(1)0()5111(1)ln(1)0()2p n n n q n n n ⎧++-<⎪⎪⇔⎨⎪++->⎪⎩对于()p 相当于(2)中21(,0)52a =-∈-,12m =情形,有()f x 在1[0,]2上单调递减,即()(0)0f x f ≤=而且仅有(0)0f =.取1x n =,当2n ≥时,211(1)ln(1)05n n n++-<成立;当1n =时,277(1)ln 21ln 210.710555+-=-<⨯-<.从而对于任意正整数n 都有211(1)ln(1)05n n n ++-<成立.对于()q 相当于(2)中12a =-情形,对于任意x ∈[0,1],恒有()0f x ≥而且仅有(0)0f =. 取1x n=,得:对于任意正整数n 都有111(1)ln(1)02n n n++->成立.因此对于任意正整数n ,不等式215211(1)(1)n n e n n+++<<+恒成立. 这样依据不等式215211(1)(1)n n e n n+++<<+,再令10000n =利用左边,令1000n = 利用右边,即可得到10000.41000.5100011001()()100001000e <<成立. (12分) 22. (本小题满分10分)【命题意图】本小题主要考查平面几何的证明,具体涉及到弦切角定理以及三角形 相似等内容.本小题重点考查考生对平面几何推理能力.【试题解析】解:(1) 由题意可知,EPC APC ∠=∠,PEB PAC ∠=∠,则△PED ∽△PAC ,则PE PD PA PC =,又PE ED PB BD =,则ED PB PDBD PA PC⋅=. (5分) (2) 由EPC APC ∠=∠,PEB PAC ∠=∠,可得CDE ECD ∠=∠, 在△ECD 中,30CED ∠=,可知75PCE ∠=. (10分)23. (本小题满分10分)【命题意图】本小题主要考查极坐标系与参数方程的相关知识,具体涉及到极坐标方程与平面直角坐标方程的互化、利用直线的参数方程的几何意义求解直线与曲线交点的距离等内容. 本小题考查考生的方程思想与数形结合思想,对运算求解能力有一定要求.【试题解析】解:(1) 对于曲线1C 有1x y +=,对于曲线2C 有2214x y +=.(5分) (2) 显然曲线1C :1x y +=为直线,则其参数方程可写为21x y ⎧=⎪⎪⎨⎪=-⎪⎩(t 为参数)与曲线2C :2214x y +=联立,可知0∆>,所以1C 与2C 存在两个交点,由125t t +=,1285t t =,得21||5d t t =-==. (10分) 24. (本小题满分10分)【命题意图】本小题主要考查不等式的相关知识,具体涉及到绝对值不等式及 不等式证明等内容. 本小题重点考查考生的化归与转化思想.【试题解析】解:(1) 当3a =时,174,213()5,22341,2x x f x x x x ⎧-≤⎪⎪⎪=<<⎨⎪⎪-≥⎪⎩,所以()7f x >的解集为{|0x x <或2}x >.(5分)(2) ()|21||2||212||1|f x x a x a x a x a a a =-+-+≥-+-+=-+, 由()3f x ≥恒成立,有|1|3a a -+≥,解得2a ≥ 所以a 的取值范围是[)2,+∞.(10分)。
2015届高三阶段性诊断考试(二模)数学(理)试题 Word版含答案
高三阶段性诊断考试试题理 科 数 学一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足()11z i +=(其中i 为虚数单位),则z 的共轭复数是A. 12i +B. 12i -C. 12i -+D. 12i --2.设{}{}21,,2,xP y y x x R Q y y x R ==-+∈==∈,则A. P Q ⊆B. Q P ⊆C. R C P Q ⊆D. R Q C P ⊆3.设命题23:231,:12x p x q x --<≤-,则p 是q 的 A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.已知随机变量()()()2~0,.3=0.02333=N P P ξσξξ>-≤≤若,则A.0.477B.0.628C.0.954D.0.9775.已知不共线向量,,,a b a b a b a b a ---+r r r r r r r r r则与的夹角是A.12π B.6π C.4π D.3π 6.设函数()()()01xxf x a ka a a -=->≠-∞+∞且在,上既是奇函数又是减函数,则()()log a g x x k =+的图象是7.已知函数()sin cos f x a x b x =+(,a b 为常数,0a ≠)在4x π=处取得最小值,则函数()34g x f x π⎛⎫=-⎪⎝⎭是A.偶函数且它的图象关于点(),0π对称B.偶函数且它的图象关于点3,02π⎛⎫⎪⎝⎭对称 C.奇函数且它的图象关于点3,02π⎛⎫⎪⎝⎭对称 D. 奇函数且它的图象关于点(),0π8.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个等腰直角三角形,则该几何体外接球的体积为A.4B.2C.D. 3π9.若(),0,2a b ∈,则函数()3212413f x ax x bx =+++存在极值的概率为 A. 12ln 24+ B. 32ln 24- C. 1ln 22+ D. 1ln 22-10.设双曲线()222210,0x y a b a b-=>>的右焦点为F ,过点F 做与x 轴垂直的直线交两渐近线于A,B 两点,且与双曲线在第一象限的交点为P ,设O 为坐标原点,若()4,,25OP OA OB R λμλμλμ=+=∈uu u r uu r uu u r ,则双曲线的离心率e 是A.B.2C.52D.54二、填空题:本大题共5小题,每小题5分,共25分. 11.若x,y都是锐角,且1sin tan ,53x y x y ==+=则_________. 12.二项式5的展开式中常数项为___________.13.已知0,0a b >>,方程为22420x y x y +-+=的曲线关于直线10ax by --=对称,则2a bab+的最小值为________.14.已知抛物线24y x =上有一条长为6的动弦AB ,则AB 的中点到y 轴的最短距离是_____.15.已知数列{}n a 满足()()11,log 12,n n a a n n n N *==+≥∈.定义:使乘积12k a a a ⋅⋅⋅⋅为正整数的()k k N*∈叫做“易整数”.则在[]1,2015内所有“易整数”的和为________. 三、解答题:本大题共6小题,共75分.16. (本小题满分12分)已知向量()cos ,cos ,3sin cos ,2sin 6m x x n x xx π⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭,且满足()f x m n =⋅u r r.(I )求函数()f x 的单调递增区间;(II )在ABC ∆,角A,B,C 的对边分别是a,b,c ,满足2,22A a f ⎛⎫== ⎪⎝⎭,求ABC ∆面积的最大值.17. (本小题满分12分)如图1,在直角梯形ABCD 中,90,2,3,//A B AD AB BC EF AB ∠=∠====,且AE=1,M,N 分别是FC,CD 的中点.将梯形ABCD 沿EF折起,使得BC =连接AD,BC,AC 得到(图2)所示几何体. (I )证明:AF//平面BMN ; (II )求二面角B AC D --的余弦值.18. (本小题满分12分)已知函数()()()log 01,,2m n f x x m m a n =>≠且点在函数()f x 的图象上. (I )若()3n n n b a f a m =⋅=,当时,求数列{}n b 的前n 项和n S ; (II )设lg n nn n na a c m m =⋅,若数列{}n c 是单调递增数列,求实数m 的取值范围.19. (本小题满分12分) 某商场组织购物抽奖活动,现场准备了两个装有6个球的箱子,小球除颜色外完全相同,A 箱中放有3个红球、2个白球、1个黄球,B 箱中放有红球、白球和黄球各2个,顾客购物一次可分别从A 、B 两箱中任取(有放回)一球,当两球同色即中奖,若取出两个黄球得3分,取出两个白球得2分,取出两个红球得1分,当两球异色时未中奖得0分,商场根据顾客所得分数多少给予不同奖励. (I )求某顾客购物一次中奖的概率;(II )某顾客先后2次参与购物抽奖,其得分之和为ξ,求ξ的分布列及期望E ξ.20. (本小题满分13分)如图,12,F F 分别为椭圆()2222:10x y C a b a b+=>>的左、右焦点,椭圆C 上的点到1F 点距离的最大值为5,离心率为23,A,B 是椭圆C 上位于x 轴上方的两点,且直线1AF 与直线2BF 平行. (I )求椭圆C 的方程;(II )若122AF BF =uuu r uuu r,求直线1AF 的方程;(III )设21AF BF 与的交点为P , 求证:12PF PF +是定值.21. (本小题满分14分) 已知函数()()2,xxf x ae bex a b R -=--∈的导函数()f x '为偶函数,且曲线()y f x =在点()()0,0f 处的切线斜率0(其中e=2.71828…) (1)求a ,b 的值;(2)设()()()()24g x f x mf x g x =-,若有极值. (i )求m 的取值范围; (ii )试比较11m e em --与的大小并证明你的结论.。
吉林省长春市普通高中2015届高三质量监测(二)理科综合试题(扫描版)
长春市普通高中2015届高三质量监测(二)生物试题参考答案及评分标准2.【命题立意】以细胞生命历程的相关知识为载体,考查了理解能力。
【试题解析】癌细胞的形成是原癌基因和抑癌基因突变的结果。
【参考答案】C3.【命题立意】以教材中的实验为载体,考查了理解能力。
【试题解析】人的口腔上皮细胞没有细胞壁,不能发生质壁分离。
【参考答案】B4.【命题立意】以植物激素的功能为载体,考查了理解能力。
【试题解析】赤霉素能促进细胞伸长,从而引起植株增高。
【参考答案】B5.【命题立意】以细胞中染色体的相关知识为载体,考查了综合运用能力。
【试题解析】单体果蝇的雌雄个体交配,运用配子法分析可知,子代中1/4的个体正常,2/4的个体为单体,1/4的个体缺失两条Ⅳ染色体不能存活,所以存活个体中有2/3的个体为单体。
【参考答案】D6.【命题立意】以种群数量变化的相关知识为载体,考查了综合运用能力。
【试题解析】c点种群增长速率大于0,所以种群年龄组成为增长型。
c点比a点种群数量大,所以种内斗争程度较高。
如果标记个体易于被捕食,公式N=(n/m)M中,m值就偏小,所以估计值N偏大。
【参考答案】C29.【命题立意】以光合作用的场所、影响光合作用的因素的相关知识为载体,考查了学生获取信息的能力及综合运用能力。
【试题解析】土壤含水量为19时,羊草14时的光合作用速率为35%低于16时的光合作用速率45.2%,所以羊草在14时的光反应速率较低。
两种植物相比较,大针茅在干旱的环境中光合速率下降没有羊草明显,所以大针茅更适应干旱环境。
【参考答案】(10分,除注明外,其余每空1分)(1)类囊体薄膜(基粒)纸层析(2)无关低降低(减小、下降)(2分)土壤含水量减少,植物缺水导致气孔关闭程度加剧,CO2吸收量减少(2分,答不完整给1分)大针茅(2分)31.【命题立意】以生态系统的相关知识为载体,考查了学生识图和综合运用能力。
【试题解析】(1)鱼粪便的能量不属于鱼的同化量。
2015年高考新课标卷2理科数学(含解析)
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合21,01,2A =--{,,},{}(1)(20B x x x =-+<,则A B =( )A .{}1,0A =-B .{}0,1C .{}1,0,1-D .{}0,1,2 【答案】A考点:集合的运算.2.若a 为实数且(2)(2)4ai a i i +-=-,则a =( ) A .1- B .0 C .1 D .2 【答案】B 【解析】试题分析:由已知得24(4)4a a i i +-=-,所以240,44a a =-=-,解得0a =,故选B . 考点:复数的运算.3.根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图。
以下结论不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现2004年 2005年 2006年 2007年 2008年 2009年 2010年 2011年 2012年 2013年C .2006年以来我国二氧化硫年排放量呈减少趋势D .2006年以来我国二氧化硫年排放量与年份正相关 【答案】D 【解析】试题分析:由柱形图得,从2006年以来,我国二氧化硫排放量呈下降趋势,故年排放量与年份负相关,故选D . 考点:正、负相关.4.等比数列{a n }满足a 1=3,135a a a ++ =21,则357a a a ++= ( )A .21B .42C .63D .84 【答案】B考点:等比数列通项公式和性质. 5.设函数211log (2),1,()2,1,x x x f x x -+-<⎧=⎨≥⎩,2(2)(log 12)f f -+=( )A .3B .6C .9D .12 【答案】C 【解析】试题分析:由已知得2(2)1log 43f -=+=,又2log 121>,所以22log 121log 62(log 12)226f -===,故2(2)(log 12)9f f -+=,故选C .考点:分段函数.6.一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( ) A .81 B .71 C .61 D .51【答案】D 【解析】试题分析:由三视图得,在正方体1111ABCD A B C D -中,截去四面体111A A B D -,如图所示,,设正方体棱长为a ,则11133111326A AB D V a a -=⨯=,故剩余几何体体积为3331566a a a -=,所以截去部分体积与剩余部分体积的比值为51,故选D .考点:三视图.CBADD 1C 1B 1A 17.过三点(1,3)A ,(4,2)B ,(1,7)C -的圆交y 轴于M ,N 两点,则||MN =( ) A .26 B .8 C .46 D .10 【答案】C【解析】由已知得321143AB k -==--,27341CB k +==--,所以1AB CB k k =-,所以AB CB ⊥,即ABC ∆为直角三角形,其外接圆圆心为(1,2)-,半径为5,所以外接圆方程为22(1)(2)25x y -++=,令0x =,得2y =±,所以MN =,故选C .考点:圆的方程.8.右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入,a b 分别为14,18,则输出的a =( )A .0B .2C .4D .14 【答案】B 【解析】 试题分析:程序在执行过程中,a ,b 的值依次为14a =,18b =;4b =;10a =;6a =;2a =;2b =,此时2a b ==程序结束,输出a 的值为2,故选B . 考点:程序框图.9.已知A,B 是球O 的球面上两点,∠AOB=90,C 为该球面上的动点,若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为( ) A .36π B.64π C.144π D.256π 【答案】C 【解析】试题分析:如图所示,当点C 位于垂直于面AOB 的直径端点时,三棱锥O ABC -的体积最大,设球O 的半径为R ,此时2311136326O ABC C AOB V V R R R --==⨯⨯==,故6R =,则球O 的表面积为24144S R ππ==,故选C . 考点:外接球表面积和椎体的体积.BOAC10.如图,长方形ABCD 的边2AB =,1BC =,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记BOP x ∠=.将动P 到A 、B 两点距离之和表示为x 的函数()f x ,则()y f x =的图像大致为( )【答案】B 【解析】考点:函数的图象和性质. 11.已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM 为等腰三角形,且顶角为120°,则E 的离心率为( )AB .2 CD【答案】D 【解析】DPCx试题分析:设双曲线方程为22221(0,0)x y a b a b-=>>,如图所示,AB BM =,0120ABM ∠=,过点M 作MN x ⊥轴,垂足为N ,在Rt BMN ∆中,BN a =,,故点M 的坐标为(2)M a ,代入双曲线方程得2222a b a c ==-,即222c a =,所以e =,故选D .考点:双曲线的标准方程和简单几何性质.12.设函数'()f x 是奇函数()()f x x R ∈的导函数,(1)0f -=,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是( )A .(,1)(0,1)-∞-B .(1,0)(1,)-+∞C .(,1)(1,0)-∞--D .(0,1)(1,)+∞【答案】A 【解析】试题分析:记函数()()f x g x x=,则''2()()()xf x f x g x x -=,因为当0x >时,'()()0xf x f x -<,故当0x >时,'()0g x <,所以()g x 在(0,)+∞单调递减;又因为函数()()f x x R ∈是奇函数,故函数()g x 是偶函数,所以()g x 在(,0)-∞单调递减,且(1)(1)0g g -==.当01x <<时,()0g x >,则()0f x >;当1x <-时,()0g x <,则()0f x >,综上所述,使得()0f x >成立的x 的取值范围是(,1)(0,1)-∞-,故选A .考点:导数的应用、函数的图象与性质.第II 卷(非选择题,共90分)本卷包括必考题和选考题两部分。
吉林省长春市普通高中2015届高三质量监测(二)理综试题(含解析)解析
长春市普通高中2015届高三质量监测(二)理科综合能力测试注意事项:1.本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,答题前,考生务必将自己的姓名、准考证号码填写答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
可能用到的原子量:H-1 C-12 O-16 Na-23 Cl-35.5 Cu-64第Ⅰ卷一、选择题:本题共13小题,每小题6分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列关于生物体内有机化合物的叙述,正确的是A.胆固醇可参与血液中脂质的运输B.葡萄糖可存在于叶绿体和线粒体中C.病毒的遗传信息都贮存在RNA中D.人体神经细胞内有淀粉酶和呼吸酶2.下列关于细胞生命历程的叙述,错误的是A.衰老的细胞水分减少且新陈代谢速率减慢B.被病原体感染细胞的清除是通过细胞凋亡完成的C.癌细胞的形成是原癌基因和抑癌基因选择性表达的结果D.蛙的红细胞在分裂过程中没有出现纺锤丝和染色体的变化3.下列关于实验材料的选择,错误的是A.利用花生子叶鉴定生物组织中的脂肪B.利用人的口腔上皮细胞观察质壁分离C.利用新鲜的藓类叶片观察叶绿体的形态D.利用酵母菌探究细胞呼吸的方式4.水稻患恶苗病后,会出现植株疯长的现象:比正常植株高50%以上,结实率降低。
引起此现象的物质是A.生长素B.赤霉素C.细胞分裂素D.乙烯5.二倍体动物缺失一条染色体称为单体。
果蝇只缺失一条Ⅳ号染色体可以存活,而且能够繁殖后代,若缺失两条Ⅳ号染色体,则不能成活。
下列有关叙述错误的是A.从变异类型来看,果蝇的单体属于染色体数目变异B.该种单体果蝇产生的配子中染色体数为3条或4条C.果蝇基因组计划测定的是5条染色体上DNA的碱基序列D.若该种单体果蝇的雌雄个体交配,其存活后代中单体的概率为1/26.右图表示某海域大黄鱼种群数量与种群增长速率的变化曲线。
吉林省长春市十一中2015届高三数学第二次阶段性测试 理
吉林省长春市十一中2015届高三数学第二次阶段性测试 理一、选择题〔本大题共12个小题,每一小题5分,共60分.在每一小题给出的四个选项中,只有一项为哪一项符合题目要求的.〕1.假设复数i a a z )1(12-+-=〔i 为虚数单位〕是纯虚数,如此实数=a 〔〕A.1±B. 1-C. 0D. 1 2.设)2,1(=a ,),2(k b =,假设a b a ⊥+)2(,如此实数k 的值为〔 〕 A. 2- B. 4- C. 6- D. 8-3.在等差数列{}n a 中, 1a ,2015a 为方程016102=+-x x 的两根,如此=++201410082a a a〔 〕 A .10B .15C .20D .404.如图,正三棱111C B A ABC -的正视图是边长为4的正方形,如此此正三棱柱的侧视图的面积为〔 〕 A .16 B .32 C .34D .385.在非直角ABC ∆中 “B A >〞是“B A tan tan >〞的〔 〕 A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件6. 在等比数列{}n a 中,假设21=a ,052=+a a ,{}n a 的n 项和为n S ,如此=+20162015S S 〔 〕A .4032B .2C .2-D .4030-7.在边长为1的等边ABC ∆中,E D ,分别在边BC 与AC 上,且DC BD =,EC AE =2 如此=⋅BE AD 〔 〕 A. 21-B. 31-C. 41-D. 61- 8.曲线1ln 342+-=x x y 的一条切线的斜率为21,如此切点的横坐标为〔 〕ABC1A 1B 1C主视图A. 3B. 2C. 1D.21 9.将函数)46sin(π+=x y 的图象上各点的横坐标伸长到原来的3倍〔纵坐标不变〕,再向右平移8π个单位,所得函数图像的一个对称中心是〔 〕 A.⎪⎭⎫⎝⎛0,16π B.⎪⎭⎫ ⎝⎛0,9π C.⎪⎭⎫ ⎝⎛0,4π D.⎪⎭⎫⎝⎛0,2π 10.双曲线)0,0(12222>>=-b a by a x 的一个焦点到一条渐近线的距离为c 35〔c 为双曲线的半焦距长〕,如此双曲线的离心率为〔 〕A .25B .253C .23D .53 11.函数)(22R ∈-=x x y x的图象大致为〔 〕12.函数⎩⎨⎧>≤+=0,log 0,1)(2x x x x x f ,假设方程a x f =)(有四个不同的解1x ,2x ,3x ,4x ,且4321x x x x <<<,如此4232131)(x x x x x ++的取值范围是〔 〕 A. ),1(+∞- B. (]1,1- C. )1,(-∞ D. [)1,1- 二、填空题〔此题共4小题,每一小题5分,共20分.〕13.向量)2,1(-=a ,)3,2(=b ,假设b a m +=λ与b a n -=的夹角为钝角,如此实数λ的取值范围是. 14.4)1(221≤+≤⎰dx kx ,如此实数k 的取值范围为.15.如下命题中,正确的答案是〔1〕曲线x y ln =在点)0,1(处的切线方程是1-=x y ;〔2〕函数x y 216-=的值域是[]4,0;〔3〕)cos 1,1(),cos 1,(sin θθθ-=+=b a ,其中)23,(ππθ∈,如此b a ⊥; 〔4〕O 是ABC ∆所在平面上一定点,动点P 满足:⎪⎪⎭⎫ ⎝⎛++=C AC C AB OA OP sin sin λ, ()+∞∈,0λ,如此直线AP 一定通过ABC ∆的内心;16.数列{}n a 中,21=a ,72=a ,2+n a 是1+n n a a 的个位数字,n S 是{}n a 的前n 项和,如此=-72427a S .三、解答题 〔本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.〕 17.〔本小题总分为10分〕 在ABC ∆中,内角CB A ,,所对的边分别为c b a ,,,假设C A C A B tan tan )tan (tan sin =+.〔1〕求证:c b a ,,成等比数列;〔2〕假设2,1==c a ,求ABC ∆的面积S .18.〔本小题总分为12分〕在平面直角坐标系中,点)cos ,21(2θP 在角α的终边上,点)1,(sin 2-θQ 在角β的终边上,且21-=⋅OQ OP . 〔1〕求θ2cos 的值;〔2〕求)sin(βα+的值.19.〔本小题总分为12分〕函数xa x f =)(的图象过点)21,1(,且点),1(2na n n -)(*N n ∈在函数xa x f =)(的图象上. 〔1〕求数列{}n a 的通项公式;〔2〕令n n n a a b 211-=+,假设数列{}n b 的前n 项和为n S ,求证:5<n S . 20.〔本小题总分为12分〕在长方体1111D C B A ABCD -中,1=AD ,21==AB AA .点E 是线段AB 上的动点,点M 为C D 1的中点.〔1〕当E 点是AB 中点时,求证:直线ME ∥平面11A ADD ; 〔2〕假设二面角C E D A --1的余弦值为15154,求线段AE的长.21. 〔本小题总分为12分〕椭圆:)0(12222>>=+b a by a x 上任意一点到两焦点21,F F 距离之和为32,离心率为33,动点P 在直线3=x 上,过2F 作直线2PF 的垂线l ,设l 交椭圆于Q 点. 〔1〕求椭圆E 的标准方程;〔2〕证明:直线PQ 与直线OQ 的斜率之积是定值; 22. 〔本小题总分为12分〕设函数x x x f ln )2()(2+=,R a ax x x g ∈+=,2)(2〔1〕证明:)(x f 是),0(+∞上的增函数;〔2〕设)()()(x g x f x F -=,当[)+∞∈,1x 时,0)(≥x F 恒成立,求a 的取值范围.长春市十一高中2013-2014学年度高三上学期阶段性考试数 学 试 题 〔理〕参考答案一、选择题〔每题5分,共60分〕 二、填空题〔每题5分,共20分〕13. 9<λ且1-≠λ 14. ⎥⎦⎤⎢⎣⎡2,32A BECD 1A1B1C1DM (20题图)15. 〔1〕,〔3〕,〔4〕 16. 955 三、解答题 17. 【答案】解:〔1〕由C A C A B tan tan )tan (tan sin =+.得:CA CA C C A AB cos cos sin sin )cos sin cos sin (sin =+,----2分即:C A C A B sin sin )sin(sin =+,即:C A B sin sin sin 2=---------4分 由正弦定理:ac b =2,所以:c b a ,,成等比数列.------------5分〔2〕由〔1〕知:ac b =2,2,1==c a ,所以:2=b ,------------6分由余弦定理:432122412cos 222=⨯⨯-+=-+=ac b c a B ,所以:47sin =B -------------8分所以:47472121sin 21=⨯⨯⨯==B ac S --------10分18.【答案】解:〔1〕因为21-=⋅OQ OP ,所以21cos sin 2122-=-θθ,------------2分 即:21cos )cos 1(2122-=--θθ,所以32cos 2=θ,------------4分所以311cos 22cos 2=-=θθ.------------6分〔2〕因为32cos 2=θ,所以31sin 2=θ,所以)32,21(P ,)1,31(-Q ,又点)32,21(P 在角α的终边上,所以53cos ,54sin ==αα---------8分同理 1010cos ,10103sin =-=ββ---------10分 所以:1010)10103(53101054sin cos cos sin )sin(-=-⨯+⨯=+=+βαβαβα--------12分19. 【答案】解:〔1〕由条件知:21=a ,所以:x x f 21)(=,-----------2分 )(x f 过点),1(2n a n n -,所以:1221-=n n n a --------------4分 所以:122-=n n n a -------------5分〔2〕n n n n n n n b 21222)1(22+=-+=-----------7分 =n S n n n n 21)12(21)12(217215213132++-++⨯+⨯+⨯-=n S 21 +⨯+⨯322152131121)12(21)12(21)32(+-++-+-+n n n n n n -------------10分所以:52525<+-=nn n S -----------12分20.【答案】解:〔1〕证明:取1DD 的中点N ,连结ME AN MN ,,, -------1分MN ∥CD 21,AE ∥CD 21------3分∴ 四边形MNAE 为平行四边形,可知ME ∥AN --------4分⊂AN 平面11A ADD ,⊄ME 平面11A ADD∴ME ∥平面11A ADD -------6分〔2〕解:设AE m =,如图建立空间直角坐标系-----------7分1(1,0,0),(1,,0),(0,2,0),(0,0,2)A E m C D ,)0,2,1(),2,2,0(),0,,0(),2,0,1(1m EC C D m AE AD --=-==-=平面E AD 1的法向量为),,(1111z y x n =,由011=⋅AD n 与01=⋅AE n 得)1,0,2(1=n 平面EC D 1的法向量为),,(2z y x n =, 由012=⋅C D n 与02=⋅EC n 得)1,1,2(2m n -=--------10分15542)2(525cos 2=+--==m m n n θ,即 012916202=+-m m 解得:23=m 或1043=m 〔舍去〕 所以:23=AE -------------12分21. 【答案】解:〔1〕由条件得:⎪⎪⎩⎪⎪⎨⎧+====22233322c b a a c e a ,解得:2,1,3===b c a ,所以椭圆E :12322=+y x ---------------5分 〔2〕设),(),,3(110y x Q y PQ F PF 22⊥ ,所以:022=⋅Q F PF ,即:0)1(2101=+-y y x ------------7分又因为:12101211011133x x y y y x y y x y K K OQPQ --=--⋅=,且)31(22121x y -=,--------10分 代入化简得:32-=OQ PQ K K ---------12分22.解:假设证明)(x f 是),0(+∞上的增函数,只需证明0)(≥'x f 在),0(+∞恒成立, 即:02ln 2)(≥++='x x x x x f 0)12ln 2(2≥++⇔x x x 012ln 22≥++⇔xx -------4分 设),0(,12ln 2)(2+∞∈++=x xx x h ,3234242)(x x x x x h -=-=' 所以:)(x h 在)2,0(上递减,),2(+∞上递增,)(x h 最小值022ln )2(>+=h 故:0)(2ln 2)(>=++='x xh x xx x x f ,所以:)(x f 是),0(+∞上的增函数.------6分 〔2〕由02ln )2()()()(22≥--+=-=ax x x x x g x f x F 得:x x x x a 222ln )2(-+≤在[)+∞∈,1x 上恒成立,------------8分设x x x x x G 222ln )2()(-+=如此22)1)(ln 2()(xx x x G --=', 所以)(x g 在)2,1(递增,),2(e 递减,),(+∞e 递增------------9分 所以)(x G 的最小值为)(),1(e G G 中较小的,022)1()(>+-=-e eG e G , 所以:)1()(G e G >,即:)(x G 在[)+∞∈,1x 的最小值为2)1(-=G ,--------11分 只需2-≤a -------12分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长春市普通高中2015届高三质量监测(二)数 学(理 科)一、选择题1、已知集合{}0x x P =≥,1Q 02x xx ⎧+⎫=≥⎨⎬-⎩⎭,则()RQ P=ð( )A .(),2-∞B .(],1-∞-C .()1,0-D .[]0,2 2、复数12ii--的共轭复数对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3、已知随机变量ξ服从正态分布()21,σN ,若()20.15ξP >=,则()01ξP ≤≤=( )A .0.85B .0.70C .0.35D .0.15 4、已知:p 函数()f x x a =+在(),1-∞-上是单调函数,:q 函数()()log 1a g x x =+(0a >且1a ≠)在()1,-+∞上是增函数,则p ⌝成立是q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5、若x ,y 满足约束条件5315153x y y x x y +≤⎧⎪≤+⎨⎪-≤⎩,则35x y +的取值范围是( )A .[]13,15-B .[]13,17-C .[]11,15-D .[]11,17- 6、一个几何体的三视图如图所示,则该几何体的体积为( ) A .163 B .203C .152 D .1327、已知平面向量a ,b 满足3a =,2b =,3a b ⋅=-,则2a b +=( )A .1BC .4D .8、下面左图是某学习小组学生数学考试成绩的茎叶图,1号到16号同学的成绩依次为1A 、2A 、⋅⋅⋅⋅⋅⋅、16A ,右图是统计茎叶图中成绩在一定范围内的学生人数的算法流程图,那么该算法流程图输出的结果是( )A .6B .10C .91D .929、已知函数()1cos cos 22f x x x x =+,若将其图象向右平移ϕ(0ϕ>)个单位后所得的图象关于原点对称,则ϕ的最小值为( )A .6π B .56π C .12π D .512π10、设m ,R n ∈,若直线()()1120m x n y +++-=与圆()()22111x y -+-=相切,则m n+的取值范围是( )A .(),2222,⎡-∞-++∞⎣ B .(),22,⎡-∞-+∞⎣C .22⎡-+⎣D .(][),22,-∞-+∞11、若()F ,0c 是双曲线22221x y a b -=(0a b >>)的右焦点,过F 作该双曲线一条渐近线的垂线与两条渐近线交于A ,B 两点,O 为坐标原点,∆OAB 的面积为2127a ,则该双曲线的离心率e =( )A .53B .43C .54D .8512、设数列{}n a 的前n 项和为n S ,且121a a ==,(){}2n n nS n a ++为等差数列,则n a =A .12n n - B .1121n n -++ C .2121n n -- D .112n n ++二、13、62x⎛- ⎝的展开式中常数项为 .14、已知0a >且曲线y =、x a =与0y =所围成的封闭区域的面积为2a ,则a = . 15、正四面体CD AB 的外接球半径为2,过棱AB 作该球的截面,则截面面积的最小值为 .三、17在C ∆AB 中,tan 2A =,tan 3B =.()1求角C 的值;()2设AB =C A .18、根据某电子商务平台的调查统计显示,参与调查的1000位上网购物者的年龄情况如下图显示.()1已知[)30,40、[)40,50、[)50,60三个年龄段的上网购物者人数成等差数列,求a ,b 的值;()2该电子商务平台将年龄在[)30,50之间的人群定义为高消费人群,其他的年龄段定义为潜在消费人群,为了鼓励潜在消费人群的消费,该平台决定发放代金券,高消费人群每人发放50元的代金券,潜在消费人群每人发放100元的代金券,现采用分层抽样的方式从参与调查的1000位上网购物者中抽取10人,并在这10人中随机抽取3人进行回访,求此三人获得代金券总和X 的分布列与数学期望. 19、如图,在四棱锥CD P -AB 中,PA ⊥平面CD AB ,D 2PA =AB =A =,四边形CDAB 满足D AB ⊥A,C//D B A 且C 4B =,点M 为C P 中点,点E 为C B 边上的动点,且CλBE=E .()1求证:平面D A M ⊥平面C PB ;()2是否存在实数λ,使得二面角D P -E -B的余弦值为23?若存在,试求出实数λ的值;若不存在,说明理由.20、在C ∆AB 中,顶点()1,0B -,()C 1,0,G 、I 分别是C ∆AB 的重心和内心,且G//C I B .()1求顶点A 的轨迹M 的方程;21、设函数()()()1ln 1f x ax x bx =-+-,其中a 和b 是实数,曲线()y f x =恒与x 轴相切于坐标原点.()1求常数b 的值;()2当01x ≤≤时,关于x 的不等式()0f x ≥恒成立,求实数a 的取值范围;23、在直角坐标系x y O 中,曲线1C的参数方程为21x y ⎧=⎪⎨=-+⎪⎩t 为参数),以原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,曲线2C的极坐标方程为ρ=.()1求曲线1C 的普通方程与曲线2C 的直角坐标方程;()2试判断曲线1C 与2C 是否存在两个交点,若存在,求出两交点间的距离;若不存在,说明理由.长春市普通高中2015届高三质量监测(二)数学(理科)参考答案及评分标准一、选择题(本大题包括12小题,每小题5分,共60分)1.D2.A3.C4.C5.D6.D7.B8.B9.C 10.A 11.C 12.A 简答与提示:1. 【命题意图】本题主要考查集合交集与补集的运算,属于基础题.【试题解析】D 由题意可知{|1Q x x =-≤或2}x >,则{|12}Q x x =-<≤R ð,所以{|02}P Q x x =≤≤R ð. 故选D.2. 【命题意图】本题考查复数的除法运算,以及复平面上的点与复数的关系,属于基础题.【试题解析】A131255i i i -=--,所以其共轭复数为3155i +. 故选A. 3. 【命题意图】本题考查正态分布的概念,属于基础题,要求学生对统计学原理有全面的认识.【试题解析】C (01)(12)0.5(2)0.35P P P ξξξ==->=≤≤≤≤. 故选C. 4. 【命题意图】本题借助不等式来考查命题逻辑,属于基础题.【试题解析】C 由p 成立,则1a ≤,由q 成立,则1a >,所以p ⌝成立时1a >是q 的充要条件.故选C.5. 【命题意图】本题主要考查线性规划,是书中的原题改编,要求学生有一定的运算能力.【试题解析】D由题意可知,35x y +在(2,1)--处取得最小值,在35(,)22处取得最大值,即35[11,17]x y +∈-.故选D.6. 【命题意图】本题通过正方体的三视图来考查组合体体积的求法,对学生运算求解能力有一定要求.【试题解析】D 该几何体可视为正方体截去两个三棱锥,所以其体积为41138362--=. 故选D.7. 【命题意图】本题考查向量模的运算.【试题解析】B |2|+==a b . 故选B.8. 【命题意图】本题考查学生对茎叶图的认识,通过统计学知识考查程序流程图的认识,是一道综合题.【试题解析】B 由算法流程图可知,其统计的是数学成绩大于等于90的人数,所以由茎叶图知:数学成绩大于等于90的人数为10,因此输出结果为10. 故选B. 9. 【命题意图】本题主要考查三角函数的图像和性质,属于基础题.【试题解析】C由题意()sin(2)6f x x π=+,将其图像向右平移ϕ(0)ϕ>个单位后解析式为()sin[2()]6f x x πϕ=-+,则26k πϕπ-=,即212k ππϕ=+()k ∈N ,所以ϕ的最小值为12π. 故选C.10. 【命题意图】本题借助基本不等式考查点到直线的距离,属于中档题.【试题解析】A 由直线与圆相切可知||m n +=,整理得1mn m n =++,由2()2m n mn +≤可知211()4m n m n ++≤+,解得(,2[222,)m n +∈-∞-++∞. 故选A.11. 【命题意图】本题主要考查双曲线的几何性质,结合着较大的运算量,属于难题.【试题解析】C 由题可知,过I 、III 象限的渐近线的倾斜角为θ,则tan b aθ=,222tan 2aba b θ=-,因此△OAB 的面积可以表示为3222112tan 227a b a a a a b θ⋅⋅==-,解得34b a =,则54e =. 故选C. 12. 【命题意图】本题是最近热点的复杂数列问题,属于难题.【试题解析】A 设(2)n n n b nS n a =++,有14b =,28b =,则4n b n =,即(2)4n n n b nS n a n =++=当2n ≥时,1122(1)(1)01n n n n S S a a nn ---++-+=- 所以12(1)11n n n n a a n n -++=-,即121n n a a n n -⋅=-,所以{}n a n 是以12为公比,1为首项的等比数列,所以11()2n n a n -=,12n n na -=. 故选A.二、填空题(本大题包括4小题,每小题5分,共20分) 13.60 14.49 15.83π 16.192,8⎛⎫ ⎪⎝⎭简答与提示:13. 【命题意图】本题主要考查二项式定理的有关知识,属于基础题.【试题解析】由题意可知常数项为2246(2)(60C x =. 14. 【命题意图】本题考查定积分的几何意义及微积分基本定理,属于基础题.【试题解析】由题意322023aa x ==⎰,所以49a =.15. 【命题意图】球的内接几何体问题是高考热点问题,本题通过求球的截面面积,对考生的空间想象能力及运算求解能力进行考查,具有一定难度.【试题解析】由题意,面积最小的截面是以AB 为直径,可求得AB =,进而截面面积的最小值为283ππ=. 16. 【命题意图】本题主要考查数形结合以及函数的零点与交点的相关问题,需要学生对图像进行理解,对学生的能力提出很高要求,属于难题.【试题解析】由题意可知()f x 是周期为4的偶函数,对称轴为直线2x =. 若()F x 恰有4个零点,有(1)(1)(3)(3)g f g f >⎧⎨<⎩,解得19(2,)8a ∈.17. (本小题满分12分)【命题意图】本小题主要考查两角和的正切公式,以及同角三角函数的应用,并借助正弦定理考查边角关系的运算,对考生的化归与转化能力有较高要求.【试题解析】解:(1) +,tan tan()A B C C A B π+=∴=-+ (3分)tan 2,tan 3,tan 1,4A B C C π==∴=∴=(6分)(2)因为tan 3B =sin 3sin 3cos cos BB B B⇒=⇒=,而22sin cos 1B B +=,且B 为锐角,可求得sin B =. (9分)所以在△ABC中,由正弦定理得,sin sin AB AC B C =⨯=.(12分)18. (本小题满分12分)【命题意图】本小题主要考查统计与概率的相关知识、离散型随机变量的分布列以及数学期望的求法. 本题主要考查数据处理能力. 【试题解析】(1)由图可知0.035a =,0.025b =. (4分)(2) 利用分层抽样从样本中抽取10人,其中属于高消费人群的为6人,属于潜在消费人群的为4人. (6分) 从中取出三人,并计算三人所获得代金券的总和X , 则X 的所有可能取值为:150,200,250,300.363101(150)6C P X C ===, 21643101(200)2C C P X C ===,12643103(250)10C C P X C ===, 343101(300)30C P X C ===,(10分) 且1131150200250300210621030EX =⨯+⨯+⨯+⨯=.(12分)19. (本小题满分12分)【命题意图】本小题主要考查立体几何的相关知识,具体涉及到线面以及面面的垂直关系、二面角的求法及空间向量在立体几何中的应用. 本小题对考生的空间想象能力与运算求解能力有较高要求.【试题解析】解:(1) 取PB 中点N ,连结MN 、AN ,M 是PC 中点,1//,22MN BC MN BC ∴==, 又//BC AD ,//,MN AD MN AD ∴=,∴四边形ADMN 为平行四边形 ,AP AD AB AD ⊥⊥,AD ∴⊥平面PAB ,AD AN ∴⊥,AN MN ∴⊥ AP AB =,AN PB ∴⊥,AN ∴⊥平面PBC ,AN ⊂平面ADM ,∴平面ADM ⊥平面PBC . (6分)(2) 存在符合条件的λ.以A 为原点,AB 方向为x 轴,AD 方向为y 轴,AP 方向为z 轴,建立空间直角坐标系A xyz -,设(2,,0)E t ,(0,0,2)P ,(0,2,0)D ,(2,0,0)B从而(0,2,2)PD =-,(2,2,0)DE t =-,则平面PDE 的法向量为1(2,2,2)n t =-, 又平面DEB 即为xAy 平面,其法向量2(0,0,1)n =,则1212122cos ,3||||(2n n n n n n ⋅<>===⋅,解得3t =或1t =,进而3λ=或13λ=. (12分)20. (本小题满分12分)【命题意图】本小题主要考查直线与圆锥曲线的综合应用能力,具体涉及到轨迹方程的求法,椭圆方程的求法、直线与圆锥曲线的相关知识. 本小题对考生的化归与转化思想、运算求解能力都有很高要求.【试题解析】解:(1) 已知11(||||||)||||22ABC A S AB AC BC r BC y ∆=++⋅=⋅,且||2BC =,||3A y r =,其中r 为内切圆半径,化简得:||||4AB AC +=,顶点A 的轨迹是以B C 、为焦点,长轴长为4的椭圆(去掉长轴端点),其中2,1,a c b ===进而其方程为22143x y +=(0)y ≠.(5分)(2) 1232k k k =+,以下进行证明:当直线PQ 斜率存在时,设直线:(1)PQ y k x =-且11(,)P x y ,22(,)Q x y ,(4,)H m联立22143(1)x y y k x ⎧+=⎪⎨⎪=-⎩可得2122834k x x k +=+,212241234k x x k -=+. (8分)由题意:13mk =,1214y m k x -=-,2324y m k x -=-.11212312()(4)()(4)(4)(4)y m x y m x k k x x --+--+=-- 21212121212882(5)()2424224()1636363m k kx x m k x x mk m mk x x x x k ++-+++====-+++ 当直线PQ 斜率不存在时,33(1,),(1,)22P Q -,231332222333m m m k k k -++=+== 综上可得1232k k k =+. (12分)21. (本小题满分12分)【命题意图】本小题主要考查函数与导数的综合应用能力,具体涉及到用导数来描述原函数的单调性、极值以及函数零点的情况. 本小题对考生的逻辑推理能力与运算求解有较高要求.【试题解析】解:(1) 对()f x 求导得:1()ln(1)1axf x a x b x-'=-++-+,根据条件知(0)0f '=,所以101b b -=⇒=.(3分) (2) 由(1)得()(1)ln(1)f x ax x x =-+-,01x ≤≤1()ln(1)11axf x a x x-'=-++-+22(1)(1)21()1(1)(1)a a x ax ax a f x x x x -+--++''=-+=-+++. ① 当12a ≤-时,由于01x ≤≤,有221()()0(1)a a x a f x x ++''=-≥+,于是()f x '在[0,1]上单调递增,从而()(0)0f x f ''≥=,因此()f x 在[0,1]上单调递增,即()(0)0f x f ≥=而且仅有(0)0f =;②当0a ≥时,由于01x ≤≤,有221()0(1)ax a f x x ++''=-<+,于是()f x '在[0,1]上单调递减,从而()(0)0f x f ''≤=,因此()f x 在[0,1]上单调递减,即()(0)0f x f ≤=而且仅有(0)0f =;③当102a -<<时,令21min{1,}a m a+=-,当0x m ≤≤时,221()()0(1)a a x a f x x ++''=-≤+,于是()f x '在[0,]m 上单调递减,从而()(0)0f x f ''≤=,因此()f x 在[0,]m 上单调递减,即()(0)0f x f ≤=而且仅有(0)0f =.综上可知,所求实数a 的取值范围是1(,]2-∞-. (8分)(3) 对要证明的不等式等价变形如下:2110000100010000.41000.55210001100111()()(1)(1)100001000100001000e e ++<<⇔+<<+ 所以可以考虑证明:对于任意的正整数n ,不等式215211(1)(1)n n e n n+++<<+恒成立. 并且继续作如下等价变形2152112111(1)(1)()ln(1)1()ln(1)52n n e n n n n n n+++<<+⇔++<<++211(1)ln(1)0()5111(1)ln(1)0()2p n n n q n n n ⎧++-<⎪⎪⇔⎨⎪++->⎪⎩对于()p 相当于(2)中21(,0)52a =-∈-,12m =情形,有()f x 在1[0,]2上单调递减,即()(0)0f x f ≤=而且仅有(0)0f =.取1x n =,当2n ≥时,211(1)ln(1)05n n n++-<成立; 当1n =时,277(1)ln 21ln 210.710555+-=-<⨯-<.从而对于任意正整数n 都有211(1)ln(1)05n n n ++-<成立.对于()q 相当于(2)中12a =-情形,对于任意x ∈[0,1],恒有()0f x ≥而且仅有(0)0f =.取1x n =,得:对于任意正整数n 都有111(1)ln(1)02n n n++->成立.因此对于任意正整数n ,不等式215211(1)(1)n n e n n+++<<+恒成立.这样依据不等式215211(1)(1)n n e n n +++<<+,再令10000n =利用左边,令1000n = 利用右边,即可得到10000.41000.5100011001()()100001000e <<成立. (12分)22. (本小题满分10分)【命题意图】本小题主要考查平面几何的证明,具体涉及到弦切角定理以及三角形 相似等内容. 本小题重点考查考生对平面几何推理能力.【试题解析】解:(1) 由题意可知,EPC APC ∠=∠,PEB PAC ∠=∠,则△PED ∽△PAC ,则PE PD PA PC =,又PE ED PB BD =,则ED PB PDBD PA PC⋅=. (5分) (2) 由EPC APC ∠=∠,PEB PAC ∠=∠,可得CDE ECD ∠=∠, 在△ECD 中,30CED ∠=,可知75PCE ∠=. (10分)23. (本小题满分10分)【命题意图】本小题主要考查极坐标系与参数方程的相关知识,具体涉及到极坐标方程与平面直角坐标方程的互化、利用直线的参数方程的几何意义求解直线与曲线交点的距离等内容. 本小题考查考生的方程思想与数形结合思想,对运算求解能力有一定要求.【试题解析】解:(1) 对于曲线1C 有1x y +=,对于曲线2C 有2214x y +=.(5分) (2) 显然曲线1C :1x y +=为直线,则其参数方程可写为21x y ⎧=⎪⎪⎨⎪=-⎪⎩与曲线2C :2214x y +=联立,可知0∆>,所以1C 与2C 存在两个交点,由12t t +=1285t t =,得21||d t t =-==. (10分)24. (本小题满分10分)第 11 页 共 11 页 【命题意图】本小题主要考查不等式的相关知识,具体涉及绝对值不等式及不等式证明等 内容. 本小题重点考查考生的化归与转化思想.【试题解析】解:(1)当3a =时,()174,2135,22341,2x x f x x x x ⎧-≤⎪⎪⎪=<<⎨⎪⎪-≥⎪⎩所以()7f x >的解集为{}02x x x <>或 (5分)(2)()2122121f x x a x a x a x a a a =-+-+≥-+-+=-+由()3f x ≥恒成立,有13a a -+≥,解得2a ≥所以a 的取值范围是[)2,+∞ (10分)。