解排列组合问题和常用策略共53页
排列组合问题的类型及解题策略【优质】
排列组合应用题的类型及解题策略四川省双流县中学 周汝东排列组合问题,通常都是出现在选择题或填空题中,或结合概率统计综合出题,它联系实际,生动有趣,但题型多样,思路灵活,不易掌握。
实践证明,解决问题的有效方法是:题型与解法归类、识别模式、熟练运用。
一.处理排列组合应用题的一般步骤为:①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。
二.处理排列组合应用题的规律(1)两种思路:直接法,间接法。
(2)两种途径:元素分析法,位置分析法。
解决问题的入手点是:特殊元素优先考虑;特殊位置优先考虑。
特殊优先法:对于存在特殊元素或者特殊位置的排列组合问题,我们可以从这些特殊的东西入手,先解决特殊元素或特殊位置,再去解决其它元素或位置,这种解法叫做特殊优先法。
例1.(06上海春)电视台连续播放6个广告,其中含4个不同的商业广告和2个不同的公益广告,要求首尾必须播放公益广告,则共有 种不同的播放方式(结果用数值表示).解:分二步:首尾必须播放公益广告的有A 22种;中间4个为不同的商业广告有A 44种,从而应当填 A 22·A 44=48. 从而应填48.(3)对排列组合的混合题,一般先选再排,即先组合再排列。
弄清要“完成什么样的事件”是前提。
三.基本题型及方法:1.相邻问题(1)、全相邻问题,捆邦法例2、6名同学排成一排,其中甲,乙两人必须排在一起的不同排法有( C )种。
A )720B )360C )240D )120说明:从上述解法可以看出,所谓“捆邦法”,就是在解决对于某几个元素要求相邻问题时,可以整体考虑将相邻元素视作一个“大”元素。
(2)、全不相邻问题,插空法例3、要排一张有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目不得相邻,问有多少不同的排法,解:先将6个歌唱节目排好,其中不同的排法有6!,这6个节目的空隙及两端共有七个位置中再排4个舞蹈节目有47A 种排法,由乘法原理可知,任何两个舞蹈节目不得相邻的排法为4676A A 种 例4(06重庆卷)高三(一)班学要安排毕业晚会的4各音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是(A )1800 (B )3600 (C )4320 (D )5040解:不同排法的种数为5256A A =3600,故选B说明:从解题过程可以看出,不相邻问题是指要求某些元素不能相邻,由其它元素将它隔开,此类问题可以先将其它元素排好,再将特殊元素插入,故叫插空法。
高中数学排列组合问题的常见解题方法和策略(完整版)
高中数学排列组合问题的常见解题方法和策略江西省永丰中学陈保进排列组合问题是高中数学的一个难点,它和实际问题联系紧密,题型多样,解题思路灵活多变,学生不容易掌握。
下面介绍一些常见的排列组合问题的解题方法和策略。
1.相邻问题捆绑法:将相邻的几个元素捆绑成一组,当作一个大元素参与排列例1:A ,B ,C ,D ,E 五人站成一排,如果A ,B 必须相邻,则不同的排法种数为_____解析:把A ,B 捆绑,视为一个整体,整体内部排序,有22A 种情况,再将整体和另外三人排序,有44A 种情况,所以答案为22A ×44A =48注意:小集团问题也可以用捆绑法变式1:7人排成一排,甲、乙两人中间恰好有3人,则不同的排法有_____种解析:把甲、乙及中间3人看作一个整体,答案为720333522=⨯⨯A A A 2.不相邻问题插空法:不相邻问题,可先把其他元素全排列,再把需要不相邻的元素插入到其他元素的空位或两端例2:七人并排站成一行,如果甲乙丙两两不相邻,那么不同的排法种数是_____解析:先将其它4人全排列,共44A 种情况,再将甲乙丙插入到其他4人的空位或两端,共35A 种情况,所以答案为44A ×35A =14403.定序问题用除法:若要求某几个元素必须保持一定的顺序,可用除法例3:A ,B ,C ,D ,E 五人站成一列,如果A 必须在B 前面,则不同的排法种数有_____解析:先将5人全排列,共55A 种情况,考虑A ,B 的顺序有22A 种,符合题意的只有一种,所以答案为602255=A A 4.特殊元素优先考虑例4:8名男生排成一排,其中甲不站最左边,乙不站最右边,有种排法解析:①甲在最右边时,其他的可全排,有77A 种不同排法②甲不在最右边时,可从余下6个位置中任选一个,有16A 种,再排乙,有16A 种排法,其余人全排列,共有77A +16A ×16A ×66A =30960种不同排法5.特殊位置优先考虑例5:从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者都不能从事翻译工作,则不同的选派方案共有种解析:翻译工作是特殊位置,先选择一人参加翻译工作,14C 种情况,再从其他5人中选择5人参加导游、导购、保洁工作,有35A 种情况,答案为14C ×35A =2406.分组、分配问题:先分组后分配,如果是整体平均分组或部分平均分组,最后计算组数时要除以n n A (n 为均分的组数),避免重复计数例6:将6本不同的书分给甲、乙、丙3名学生,其中一人得1本,一人得2本,一人得3本,则有________种不同的分法解析:第一步把书按数量1,2,3分成三组,不是平均分组,有332516C C C 种情况,第二步将分好的3组分到3名学生,有33A 种方法,故共有3606033=⨯A 种情况A BC DE变式1:将6本不同的书分给甲、乙、丙3名学生,其中有两人各得1本,一人得4本,则有________种不同的分法解析:第一步把书按数量1,1,4分成三组,为部分平均分组,有1522441516=A C C C 种情况,第二步将分好的3组分到3名学生,有33A 种方法,故有901533=⨯A 种情况变式2:将6本不同的书分给甲、乙、丙3名学生,每人得2本,则有_______种不同的分法解析:第一步把书按数量2,2,2分成三组,为整体平均分组,有1533222426=A C C C 种情况,第二步将分好的3组分到3名学生,有33A 种方法,故有901533=⨯A 种情况变式3:某学校派出5名优秀教师去边远地区的三所中学进行教学交流,每所中学至少派一名教师,则不同的分配方法有_____种解析:①按照人数2,2,1分成3组;②按照人数3,1,1分成3组答案为15033221112353322112325=⨯+⨯A A C C C A A C C C 7.正难则反,考虑反面:例7:从10名大学毕业生中选3个人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为解析:493739=-C C 此法适用于至多、至少、有、没有这类问题8.分类法(含多个限制条件的排列组合问题、多元问题)例8:甲、乙、丙、丁四位同学高考之后计划去A ,B ,C 三个不同社区进行帮扶活动,每人只能去一个社区,每个社区至少一人.其中甲必须去A 社区,乙不去B 社区,则不同的安排方法种数为解析:分2种情况,①乙去A 社区,再将丙丁二人安排到B ,C 社区,有22A 种情况,②乙不去A 社区,则乙必须去C 社区,若丙丁都去B 社区,有1种情况,若丙丁中有1人去B 社区,则先在丙丁中选出1人,安排到B 社区,剩下1人安排到A 或C 社区,有2×2=4种情况,所以答案为2+1+4=7变式1:由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有个解析:元素多,取出的情况多种,个位数字可能是0、1、2、3和4共5种情况,分别有55A 、113433A A A 、113333A A A 、113233A A A 和1333A A 个数,合计为300个变式2:在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种解析:只需考虑三张奖券的归属情况,①有三人各得一张奖券,情况数为34A ;②一人获两张奖券一人获一张奖券,情况数为362423=A C ,故答案为609.可重复的排列求幂法例9:把6名实习生分配到7个车间实习,每个车间人数不限,共有种不同方法解析:每名实习生有7种分配方法,答案为7×7×7×7×7×7×7=76种不同的分法10.多排问题单排法例10:6个不同的元素排成前后两排,每排3个元素,那么不同的排法种数是解析:先排前排,36A 种情况,再排后排,33A 种情况,答案为720663336==⨯A A A如果没有条件限制,把元素排成几排和排成一排情况一样多变式1:8个人排成前后两排,每排4人,其中甲乙要排在前排,丙要排在后排,有种排法解析:先排甲乙和丙,还剩5个位置,让5个人做全排列,答案为5760551424=⨯⨯A A A 11.相同元素的分配问题隔板法(名额分配问题也可用隔板法)例11:将7个相同的小球放入四个不同的盒子,每个盒子都不空,放法有种解析:可以在7个小球的6个空位中插入3块木板,每一种插法对应一种放法,故放法有3620C =种变式1:把20个相同的球全放入编号分别为1,2,3的三个盒子中,要求每个盒子中的球数不少于其编号数,则有种放法解析:先向1,2,3号三个盒子中分别放入0,1,2个球后还余下17个球,然后再把这17个球分成3份,每份至少一球,运用隔板法,共有216120C =种放法12.选排问题先取后排例12:10名同学合影,站成了前排3人,后排7人,现摄影师要从后排7人中抽2人站前排,其他人的相对顺序不变,则不同调整方法的种数为解析:首先从后排的7人中抽2人,有27C 方法;再将这2人安排在前排,第一人有4种放法,第二人有5种放法,答案为2745420C ⨯⨯=变式1:摄像师要对已坐定一排照像的6位小朋友的座位顺序进行调整,要求其中恰有3人座位不调整,则不同的调整方案的种数为______解析:从6人中任选3人有36C 种情况,将这3人位置全部进行调整,有1112112C C C ⨯⨯=种情况,答案为36240C ⨯=13.部分合条件问题排除法例13:以正方体的顶点为顶点的四面体共有个解析:正方体8个顶点从中每次取四点,理论上可构成48C 个四面体,但6个表面和6个对角面的四个顶点共面都不能构成四面体,所以答案为481258C -=变式1:四面体的顶点和各棱中点共10点,在其中取4个不共面的点,不同的取法共有种A、150种B、147种C、144种D、141种解析:从10个点中任取4个的组合数为410210C =,其中4点共面的分三类:①4点在同一侧面或底面的共4组,即46460C ⨯=种②每条棱上的三点和它的对棱的中点共面,这样的共6种③所有棱的6个中点中,4点构成平行四边形共面的有3种答案为210-(60+6+3)=14114.构造模型,等价转化例14:马路上有编号为1,2,3…9九只路灯,现要关掉其中的三盏,但不能关掉相邻的二盏或三盏,也不能关掉两端的两盏,求满足条件的关灯方案有多少种?解析:此问题相当于一个排对模型,在6盏亮灯的5个空隙中插入3盏不亮的灯种方法。
排列组合常见题型及解题策略
排列组合常见题型及解题策略一..相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.【例1】,,,,A B C D E五人并排站成一排,如果,A B必须相邻且B在A的右边,那么不同的排法种数有【解析】:把,A B视为一人,且B固定在A的右边,则本题相当于4人的全排列,4424A=种【例2】3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是()A. 360B. 188C. 216D. 96【解析】:间接法6位同学站成一排,3位女生中有且只有两位女生相邻的排法有,2222 3242C A A A=432种,其中男生甲站两端的有1222223232A C A A A=144,符合条件的排法故共有288二.相离问题插空法:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.【例1】七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是【解析】:除甲乙外,其余5个排列数为55A种,再用甲乙去插6个空位有26A种,不同的排法种数是52 563600A A=种【例2】高三(一)班学要安排毕业晚会的4各音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是【解析】:不同排法的种数为5256A A=3600【例3】停车场划出一排12个停车位置,今有8辆车需要停放.要求空车位置连在一起,不同的停车方法有多少种?【解析】:先排好8辆车有A 88种方法,要求空车位置连在一起,则在每2辆之间及其两端的9个空档中任选一个,将空车位置插入有C 19种方法,所以共有C19A88种方法.注:题中*表示元素,○表示空.三.元素分析法(位置分析法):某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。
【例1】2010年广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有()A. 36种B. 12种C. 18种D. 48种【解析】:方法一:从后两项工作出发,采取位置分析法。
解排列组合问题的常用策略
解排列组合问题的常用策略解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事;2.怎样做才能完成所要做的事,即采取分类还是分步,或是分类与分步同时进行,确定分多少类及多少步;3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一、特殊元素和特殊位置优先策略1.由0,1,2,3,4,5可以组成多少个没有重复数字的5位奇数.2.将7种不同的花种在排成一列的7个花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二、相邻元素捆绑策略3.若 7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法.三、不相邻问题插空策略4.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?5.某班新年联欢会原定的5.个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为____.6.某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为____.7.若 7人排队,其中甲乙丙 3人顺序一定,共有多少不同的排法?8.若 10人身高各不相同,排成前后两排,每排 5人,要求从左至右身高逐渐增加,共有多少种排法?9.把 6名实习生分配到 7个车间实习,共有多少种不同的分法?10.某 8层大楼一楼电梯上来 8名乘客,他们到各自的楼层下电梯,下电梯的方法共有多少种?六、多排问题直排策略11.若 8人排成前后两排,每排 4人,其中甲乙在前排,丁在后排,共有多少排法?七、排列组合混合问题先选后排策略12.有 5个不同的小球,装入 4个不同的盒内,每盒至少装一个球,共有多少不同的装法?13.一个班有 6名战士,其中正副班长各 1人,现从中选 4人完成四种不同的任务,每人完成一种任务,且正副班长恰好1人参加,则不同的选法有____种.八、小集团问题先整体后局部策略14.用 1,2,3,4,5组成没有重复数字的五位数,其中恰有两个偶数夹在 1,5之间,这样的五位数有多少个?15.计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画,排成一行陈列,要求同一品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的种数为____.16.若 5名男生和 5名位女生站成一排照像,男生相邻,女生也相邻的排法有____种.九、元素相同问题隔板策略17.有10个运动员名额,要分给7个班,每班至少一个,有多少种分配方案?18.将 10个相同的球装 5个盒中,每盒至少一个,有多少装法?十、正难则反总体淘汰策略19.从 0,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和为不小于 10的偶数,不同的取法有多少种?20.某班有 8位班干部,从中任抽 5人,正、副班长、团支部书记至少有一人在内的抽法有多少种?21.从 4名男生和 3名女生中选出 4人参加某个座谈会,若这 4人中必须既有男生又有女生,则不同的选法共有____.十一、平均分组问题除法策略22.将 6本不同的书平均分成 3堆,每堆 2本共有多少种分法?23.将 13个球队分成 3组,一组 5个队,其它两组 4个队,有多少分法?24.某校高二年级共有六个班级,现从外地转入4名学生,要安排到该年级的两个班级且每班安排 2名,则不同的安排方案种数为____.十二、合理分类与分步策略25.在一次演唱会上共 10名演员,其中 8人能唱歌,5人会跳舞,现要演出一个 2人唱歌 2人伴舞的节目,有多少选派方法?26.若 3成人 2小孩乘船游玩,1号船最多乘 3人,2号船最多乘2人,3号船只能乘 1人,他们任选 2只船或3只船,但小孩不能单独乘一只船,这 3人共有多少种乘船方法?十三、构造模型策略27.马路上有编号为1,2,3,4,5,6,7,8,9的九只路灯,现要关掉其中的3盏,但不能关掉相邻的 2盏或 3盏,也不能关掉两端的路灯,求满足条件的关灯方法有多少种?28.某排共有10个座位,若4人就坐,每人左右两边都有空位,那么不同的坐法有多少种?十四、实际操作穷举策略29.设有编号1,2,3,4,5的五个球和编号1,2,3,4,5的五个盒子,现将5个球投入这五个盒子内,要求每个盒子放一个球,并且恰好有两个球的编号与盒子的编号相同,有多少投法.30.同一寝室4人,每人写一张贺年卡集中起来,然后每人各拿一张别人的贺年卡,则四张贺年卡不同的分配方式有多少种?十五、分解与合成策略31.数字 30030能被多少个不同的偶数整除?32.正方体的 8个顶点可连成多少对异面直线?十六、化归策略33.若 25人排成5×5方队,现从中选 3人,要求 3人不在同一行也不在同一列,不同的选法有多少种?。
排列组合常见问题的解题策略
复习巩固
1.分类计数原理 加法原理) 1.分类计数原理(加法原理) 分类计数原理( 完成一件事, 完成一件事,有n类办法,在第1类办法中有 类办法,在第1 种不同的方法,在第2类办法中有m m1种不同的方法,在第2类办法中有m2 种不 同的方法, 在第n类办法中有m 同的方法,…,在第n类办法中有mn种不同的 方法,那么完成这件事共有: 方法,那么完成这件事共有: 种不同的方法. 种不同的方法.
主,需先满足特殊位置的要求,再处理其它位置。 需先满足特殊位置的要求,再处理其它位置。 1 1 A3 由分步计数原理得 C 3 C4 4 =288 若有多个约束条件, 若有多个约束条件,往往是考虑一个约束条件的 同时还要兼顾其它条件
先排末位共有___ 先排末位共有 C 1 位置分析法和元素分析法是பைடு நூலகம்决排列组合问题最 然后排首位共有___ 然后排首位共有 C4 常用也是最基本的方法,若以元素分析为主, 常用也是最基本的方法,若以元素分析为主,需先 最后排其它位置共有___ 3 最后排其它位置共有 A 43 C若以位置分析为 1 安排特殊元素,再处理其它元素. 安排特殊元素,再处理其它元素. 1 A C
5 4 2
有8本互不相同的书,数学3本,外语2本, 本互不相同的书,数学3 外语2 其他书3 将它们排成一行放在书架上, 其他书3本,将它们排成一行放在书架上,其 中数学书放在一起,外语书放在一起, 中数学书放在一起,外语书放在一起,有多少 5 3 2 种放法? 种放法? A5 A3 A2 =1440
六.环排问题线排策略 5人围桌而坐 共有多少种坐法? 人围桌而坐, 例6. 5人围桌而坐,共有多少种坐法? 坐成一排的不同点在于, 解:围桌而坐与坐成一排的不同点在于,坐成 圆形没有首尾之分,所以固定一人A 圆形没有首尾之分,所以固定一人A并从 4 A4 此位置把圆形展成直线其余4人共有____ 此位置把圆形展成直线其余4人共有____ 种排法即(5-1)! 1)!
排列组合常见题型及解题策略(详解)
排列组合常见题型及解题策略一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复, 把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类 问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同报名方法(2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果(3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法【解析】:(1)43(2)34 (3)34【例2】 把6名实习生分配到7个车间实习共有多少种不同方法【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案,第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案.【例3】 8名同学争夺3项冠军,获得冠军的可能性有( )A 、38B 、83C 、38AD 、38C【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种不同的 结果。
所以选A 二.相邻问题捆绑法: 题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.【例1】,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有【解析】:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A 种【例2】(2009四川卷理)3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是( ) A. 360 B. 188 C. 216 D. 96【解析】: 间接法 6位同学站成一排,3位女生中有且只有两位女生相邻的排法有,22223242C A A A =432种, 其中男生甲站两端的有1222223232A C A A A =144,符合条件的排法故共有288三.相离问题插空法 :元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.【例1】七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是【解析】:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A 种【例2】 书架上某层有6本书,新买3本插进去,要保持原有6本书的顺序,有 种不同的插法(具体数字作答)【解析】: 111789A A A =504【例3】 高三(一)班学要安排毕业晚会的4各音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是【解析】:不同排法的种数为5256A A =3600【例4】 某工程队有6项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,有工程丁必须在工程丙完成后立即进行。
排列组合常见问题的策略
一般地,元素分成多排的排列问题, 可归结为一排考虑,再分段研究. 前排 后排
练习题
有两排座位,前排11个座位,后排 12个座位,现安排2人就座规定前排 中间的3个座位不能坐,并且这2人 不左右相邻,那么不同排法的种数 是______
练习题 10人身高各不相等,排成前后排,每排5人,要 求从左至右身高逐渐增加,共有多少排法?
1.某班元旦联欢会准备了5个节目,并且安排好了出场顺序, 临上场前又有2个新节目 加入,要求原有节目的顺序不变,有( )中安排方法
六.顶针问题(不配对问题)
• • • 1. 将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数, 则每个方格的标号与所填数字均不相同的填法有( ) 2. 编号为1、2、3、4、5的五个人分别去坐编号为1、2、3、4、5的五个座 位,其中有且只有两个的编号与座位号一致的坐法是( ) 3. 同室4人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺 年卡,则4张贺年卡不同的分配方式共有( )
例2:(2009四川卷理)3位男生和3位女生共6位同学站成一排,若男生甲不站两端, 3位女生中有且只有两位女生相邻,则不同排法的种数是( ) A. 360 B. 288 C. 216 D. 96 对应练习题 1. 2. 3. 4对孪生兄弟排成一排,每对孪生兄弟有1人的排法数是多少? 有8本互不相同的书,数学3本,外语2本,其他书3本,将它们排成一行 放在书架上,其中数学书放在一起,外语书放在一起,有多少种放法?
十一.染色问题
• • • • 涂色问题的常用方法有: (1)可根据共用了多少种颜色分类讨论; (2)根据相对区域是否同色分类讨论; (3)将空间问题平面化,转化成平面区域 涂色问题。
• 【例1】 将一个四棱锥的每个顶点染上一种 颜色,并使同一条棱的两端点异色,如果 只有5种颜色可供使用,那么不同的染色方 法的总数是_______.
排列组合问题的解题策略
排列组合问题的解题策略关键词: 排列组合,解题策略一、相临问题——捆绑法例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法?解:两个元素排在一起的问题可用“捆绑”法解决,先将甲乙二人看作一个元素与其他五人进行排列,并考虑甲乙二人的顺序,所以共有A 22*A 66种。
评注:一般地: 个人站成一排,其中某 个人相邻,可用“捆绑”法解决,共有 种排法。
二、不相临问题——选空插入法例2. 7名学生站成一排,甲乙互不相邻有多少不同排法?解:甲、乙二人不相邻的排法一般应用“插空”法,先把剩下的5人排列,5人之间有6个空,把甲乙在6个空中选2个插入,所以甲、乙二人不相邻的排法总数应为:2655A A ⋅ 种 .评注:若 个人站成一排,其中 个人不相邻,可用“插空”法解决,共有 种排法。
三、复杂问题——总体排除法在直接法考虑比较难,或分类不清或多种时,可考虑用“排除法”,解决几何问题必须注意几何图形本身对其构成元素的限制。
例3.(1996年全国高考题)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有多少个.解:从7个点中取3个点的取法有 种,但其中正六边形的对角线所含的中心和顶点三点共线不能组成三角形,有3条,所以满足条件的三角形共有32个.四、特殊元素——优先考虑法对于含有限定条件的排列组合应用题,可以考虑优先安排特殊位置,然后再考虑其他位置的安排。
例4. (1995年上海高考题) 1名老师和4名获奖学生排成一排照像留念,若老师不排在两端,则共有不同的排法 种.解:先考虑特殊元素(老师)的排法,因老师不排在两端,故可在中间三个位置上任选一个位置,有13A 种,而其余学生的排法有44A 种,所以共有1344A A ⋅=72种不同的排法. 例5.(2000年全国高考题)乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有 种.解:由于第一、三、五位置特殊,只能安排主力队员,有33A 种排法,而其余7名队员选出2名安排在第二、四位置,有27A 种排法,所以不同的出场安排共有 2733A A =252种.五、多元问题——分类讨论法对于元素多,选取情况多,可按要求进行分类讨论,最后总计。
解排列组合应用题常用策略
解排列组合应用题的常用策略排列组合问题是新课程理科高考的重点内容之一,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径。
下面以例题来介绍排列组合应用题的常用解题策略,供大家参考。
一、限制条件(特殊元素、位置)优先法如某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。
例1.(1)1名老师和4名获奖同学排成一排照相留念,若老师不站两端则有多少种不同的排法?解析:老师在中间三个位置上选一个有a13种,4名同学在其余4个位置上有a44种方法;所以共有a13a44=72种.(2)某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况:①若甲乙都不参加,则有派遣方案a48种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有a38方法,所以共有3a38;③若乙参加而甲不参加同理也有3a38种;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有a28种,共有7a28方法。
所以共有不同的派遣方法总数为a48+a38+3a38+7a28=4088种.二、相邻问题捆绑法题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列。
例2.a,b,c,d,e五人并排站成一排,如果a,b必须相邻且b 在a的右边,那么不同的排法种数有多少种?解析:把a,b视为一人,且b固定在a的右边,则本题相当于4人的全排列,a44=24种。
三、相离(不相邻)问题插空法元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端。
例3.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是多少种?解析:除甲乙外,其余5个排列数为a55种,再用甲乙去插6个空位有a26种,不同的排法种数是a55a26=3600种.四、定序问题缩倍法在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法。
高中数学解决排列组合问题常见策略
高中数学解决排列组合问题常见策略排列、组合问题是高中数学的重要知识之一,由于解这类问题时方法灵活,切入点多,且抽象性强,在做题过程中发生重复或遗漏现象不易被发现,所以成为学习的难点之一。
如果在解决排列、组合问题时,注意常见的解题策略,则会降低学习这部分知识的难度。
1. 合理选择主元例1.公共汽车上有3个座位,现在上来5名乘客,每人坐1个座位,有几种不同的坐法?例2.公共汽车上有5个座位,现在上来3名乘客,每人坐1个座位,有几种不同的坐法?分析:例1中将5名乘客看作5个元素,3个空位看作3个位置,则问题变为从5个不同的元素中任选3个元素放在3个位置上,共有种不同坐法。
例2中再把乘客看作元素问题就变得比较复杂,将5个空位看作元素,而将乘客看作位置,则例2变成了例1,所以在解决排列组合问题时,合理选择主元,就是选择合适解题方法的突破口。
2. 相邻问题捆绑法若元素(或位置)相邻,则将它们“捆绑”在一起,看作一个元素进行计算,然后再交换相邻元素(或位置)内部顺序算出总数。
例3. 5名女生3名男生站成一排照相,其中3名男生站在一起,共有多少种不同的站法?解:先把3名男生“捆绑”在一起当作一个元素,连同其余5名女生共6个元素,进行排列,再交换3名男生的位置3. 不相邻用插空法对于一些元素(或位置)不相邻的排列、组合问题,应先将其他元素(或位置)排好,再把不相邻的元素(或位置)在已排好的元素(或位置)间插空。
例4. 5名女生3名男生站成一排照相,其中3名男生互不相邻共有多少种站法?解:先将5名女生排好,将3名男生插在5名女生之间的6个空位中4. “至少”型组合问题用隔板法对于“至少”型组合问题,先转化为“至少一个”型组合问题,再用n 个隔板插在元素的空隙(不包括首尾)中,将元素分成n+1份。
例5. 4名学生分6本相同的书,每人至少1本,有多少种不同分法?解:将6本书分成4份,先把书排成一排,插入3个隔板,6本书中间有5个空隙5. 注意合理分类元素(或位置)的“地位”不相同时,不可直接用排列组合数公式,则要根据元素(或位置)的特殊性进行合理分类,求出各类排列组合数。
高二数学排列组合问题的常见题型与解题策略
排列组合问题的常见题型与解题策略解决排列组合问题要讲究策略,首先要认真审题,弄清楚是排列(有序)还是组合(无序),还是排列与组合混合问题。
其次,要抓住问题的本质特征,准确合理地利用两个基本原则进行“分类与分步”。
加法原理的特征是分类解决问题,分类必须满足两个条件:①类与类必须互斥(不相容),②总类必须完备(不遗漏);乘法原理的特征是分步解决问题,分步必须做到步与步互相独立,互不干扰并确保连续性。
分类与分步是解决排列组合问题的最基本的思想策略,在实际操作中往往是“步”与“类”交叉,有机结合,可以是类中有步,也可以是步中有类。
以上解题思路分析,可以用顺口溜概括为:审明题意,排(组)分清;合理分类,防漏防重;周密思考,用准加乘;直接间接,思路可循;先选后排,有条不紊;元素位置,特殊先行;一题多解,检验真伪。
(一).两个原则:(1)特殊元素(特殊位置)的“优先安排法”对于特殊元素的排列组合问题,一般先考虑特殊元素,再考虑其他元素的安排。
多数情况下,其特征是某一个或几个位置不能放置某一个或某几个特殊元素。
针对实际问题, 可采用“元素优先”或 “位置优先”。
例1-1 0、2、3、4、5这五个数字,组成没有重复数字的三位数,其中偶数共有几个?解法一:(元素优先)分两类:第一类,含0,0在个位有24A 种,0在十位有1123A A 种;第二类,不含0,有1223A A 种。
故共有( 24A +1123A A )+1223A A =30种。
注:在考虑每一类时,又要优先考虑个位。
解法二:(位置优先)分两类:第一类,0在个位有24A 种;第二类,0不在个位,先从两个偶数中选一个放个位,再选一个放百位,最后考虑十位,有种。
故共有(2)排列组合混合问题------先选后排例1-2: 有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.解: 第一步 从5个球中选出2个组成复合元共有 种方法.再把5个元素(包含一个复合元素)装入4个不同的盒内有 种方法 根据分步计数原理装球的方法共有 解决排列组合混合问题,先选后排是最基本的指导思想.此法与相邻元素捆绑策略相似吗?(二).合理分类与准确分步25C 44A 25C 44A解含有约束条件的排列组合问题,应按元素的性质(约束条件)进行分类,事情的发生的连续过程分步,做到分类标准明确,分布层次清楚,不重不漏.分类是高中数学中一种重要的思想方法例2-1 已知集合A={1,2,3,4,5,6,7,8,9},求含有5个元素,且其中至少有两个是偶数的子集的个数.解法1:233241454545105C C C C C C ++=解题思路是:从正面考虑分类,将含5个元素,且其中至少有两个是偶数的子集分为三类:233241⎧⎪⎨⎪⎩个偶数,个奇数个偶数,个奇数个偶数,个奇数 解法2:55419554105C C C C --=解题思路是:从反面考虑,全部子集个数为59C ,减去不符合条件的两类:541⎧⎨⎩全部个都是奇数个奇数,个偶数 直接法、间接法是两类很重要的思考方法和解题方法.错解:23472105C C =解题思路是:先由4个偶数选2个偶数,再由剩下的7个数(2个偶数,5个奇数)选3个数,组成含有5个元素的集合且满足至少有2例2-2:(与上面例2是完全相同的题目)由12人组成文娱小组,其中5人只会唱歌,5人只会跳舞,2人又会唱歌又会跳舞。
排列组合常见题型及解题策略难
小学排列组合常见题型及解题策略一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?(2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果? (3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法? 【解析】:(1)43(2)34 (3)34【例2】 把6名实习生分配到7个车间实习共有多少种不同方法?【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案, 第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案.【例3】 8名同学争夺3项冠军,获得冠军的可能性有( )A 、38B 、83C 、38AD 、38C【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种 不同的结果。
所以选A二.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.【例1】,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有【解析】:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种 【例2】3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是( )A. 360B. 188C. 216D. 96【解析】: 间接法 6位同学站成一排,3位女生中有且只有两位女生相邻的排法有,22223242C A A A =432 种其中男生甲站两端的有1222223232A C A A A =144,符合条件的排法故共有288三.相离问题插空法 :元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.【例1】七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 【解析】:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种【例2】 书架上某层有6本书,新买3本插进去,要保持原有6本书的顺序,有 种不同的插法(具体数字作答)【解析】: 111789A A A =504【例3】 高三(一)班学要安排毕业晚会的4各音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是 【解析】:不同排法的种数为5256A A =3600【例4】 某工程队有6项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,有工程丁必须在工程丙完成后立即进行。
解排列组合问题十七种常用策略
小集团排列问小题集中团,先整体后局部,再结合其
它策略进行处1理5。24
3
1.计划展出10幅不同的画,其中1幅水彩画,4 幅油画,5幅国画, 排成一行陈列,要求同一 品种的必须连在一起,并且水彩画不在两
端,那么共有陈列方式的种数为__A_22_A_55 A_44_
2. 5男生和5女生站成一排照像,男生相邻,女
013 015 017 023 025 027 045 041 043
练习题 我们班里有43位同学,从中任抽5人,正、 副班长、团支部书记至少有一人在内的 抽法有多少种?
十二.平均分组问题除法策略
例12. 6本不同的书平均分成3堆,每堆2本共有多少分法?
C C C 2 2 2
解: 分三步取书得 6 4 2
一般地,元素分成多排的排列问题, 可归结前为排 一排考虑后,再排分段研究.
练习题
有两排座位,前排11个座位,后排 12个座位,现安排2人就座规定前排 中间的3个座位不能坐,并且这2人 不左右相邻,那么不同排法的种数 是___3_46__
八.排列组合混合问题先选后排策略
例8.有5个不同的小球,装入4个不同的盒内,每盒至 少装一个球,共有多少不同的装法.
种方法,但这里出现重复计数的现象,不
妨记6本书为ABCDEF若第一步取AB,第二步取CD,第三步取EF
该分法记为(AB,CD,EF),则
C C C 2 2 2 中还有 642
(AB,EF,CD),(CD,AB,EF),(CD,EF,AB)(EF,CD,AB),(EF,AB,CD)共
A 有 3 3
种取法
解:围桌而坐与坐成一排的不同点在于,坐成圆形没 有首尾之分,所以固定一人A并从此位置把圆形展成直