2020高考人教版文科数学总复习讲义:函数课时1含答案

合集下载

2020版高考文科数学大一轮复习人教A版文档:2.2 函数的单调性与最值 Word版含答案.docx

2020版高考文科数学大一轮复习人教A版文档:2.2 函数的单调性与最值 Word版含答案.docx

§2.2函数的单调性与最值1.函数的单调性(1)单调函数的定义(2)单调区间的定义如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.2.函数的最值知识拓展函数单调性的常用结论(1)对∀x 1,x 2∈D (x1≠x 2),f (x 1)-f (x 2)x 1-x 2>0⇔f (x )在D 上是增函数,f (x 1)-f (x 2)x 1-x 2<0⇔f (x )在D 上是减函数.(2)对勾函数y =x +ax (a >0)的增区间为(-∞,-a ]和[a ,+∞),减区间为[-a ,0)和(0,a ].(3)在区间D 上,两个增函数的和仍是增函数,两个减函数的和仍是减函数. (4)函数f (g (x ))的单调性与函数y =f (u )和u =g (x )的单调性的关系是“同增异减”.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若定义在R 上的函数f (x ),有f (-1)<f (3),则函数f (x )在R 上为增函数.( × ) (2)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( × ) (3)函数y =1x 的单调递减区间是(-∞,0)∪(0,+∞).( × )(4)闭区间上的单调函数,其最值一定在区间端点取到.( √ ) 题组二 教材改编2.[P39B 组T1]函数f (x )=x 2-2x 的单调递增区间是____________. 答案 [1,+∞)(或(1,+∞))3.[P31例4]函数y =2x -1在[2,3]上的最大值是______.答案 24.[P44A 组T9]若函数f (x )=x 2-2mx +1在[2,+∞)上是增函数,则实数m 的取值范围是________. 答案 (-∞,2]解析 由题意知,[2,+∞)⊆[m ,+∞),∴m ≤2.题组三 易错自纠5.函数y =212log (4)x -的单调递减区间为________.答案 (2,+∞)6.若函数f (x )=|2x +a |的单调增区间是[3,+∞),则a 的值为________. 答案 -6解析 由图象(图略)易知函数f (x )=|2x +a |的单调增区间是⎣⎡⎭⎫-a2,+∞, 令-a2=3,得a =-6.7.函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.答案 2解析 当x ≥1时,函数f (x )=1x 为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x<1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2. 故函数f (x )的最大值为2.题型一 确定函数的单调性(区间)命题点1 给出具体解析式的函数的单调性典例 (1)函数y =212log (231)x x -+的单调递减区间为( )A .(1,+∞) B.⎝⎛⎦⎤-∞,34 C.⎝⎛⎭⎫12,+∞ D.⎣⎡⎭⎫34,+∞ 答案 A解析 由2x 2-3x +1>0,得函数的定义域为⎝⎛⎭⎫-∞,12∪(1,+∞). 令t =2x 2-3x +1,则y =12log t ,∵t =2x 2-3x +1=2⎝⎛⎭⎫x -342-18,∴t =2x 2-3x +1的单调递增区间为(1,+∞). 又y =12log t 在(1,+∞)上是减函数,∴函数y =212log (231)x x -+的单调递减区间为(1,+∞).(2)函数y =-x 2+2|x |+3的单调递减区间是__________________. 答案 [-1,0],[1,+∞)解析 由题意知,当x ≥0时,y =-x 2+2x +3=-(x -1)2+4;当x <0时,y =-x 2-2x +3=-(x +1)2+4, 二次函数的图象如图.由图象可知,函数y =-x 2+2|x |+3的单调递减区间为[-1,0],[1,+∞). 命题点2 解析式含参数的函数的单调性典例 判断并证明函数f (x )=ax 2+1x (其中1<a <3)在[1,2]上的单调性.解 函数f (x )=ax 2+1x (1<a <3)在[1,2]上单调递增.证明:设1≤x 1<x 2≤2,则 f (x 2)-f (x 1)=ax 22+1x 2-ax 21-1x 1 =(x 2-x 1)⎣⎡⎦⎤a (x 1+x 2)-1x 1x 2, 由1≤x 1<x 2≤2,得x 2-x 1>0,2<x 1+x 2<4, 1<x 1x 2<4,-1<-1x 1x 2<-14.又因为1<a <3,所以2<a (x 1+x 2)<12, 得a (x 1+x 2)-1x 1x 2>0,从而f (x 2)-f (x 1)>0,即f (x 2)>f (x 1), 故当a ∈(1,3)时,f (x )在[1,2]上单调递增. 引申探究如何用导数法求解本例?解 因为f ′(x )=2ax -1x 2=2ax 3-1x 2,因为1≤x ≤2,∴1≤x 3≤8,又1<a <3,所以2ax 3-1>0,所以f ′(x )>0,所以函数f (x )=ax 2+1x(其中1<a <3)在[1,2]上是增函数.思维升华 确定函数单调性的方法:(1)定义法和导数法,证明函数单调性只能用定义法和导数法;(2)复合函数法,复合函数单调性的规律是“同增异减”;(3)图象法,图象不连续的单调区间不能用“∪”连接.跟踪训练 (1)(2017·郑州模拟)函数y =22311()3x x -+的单调递增区间为( )A .(1,+∞) B.⎝⎛⎦⎤-∞,34 C.⎝⎛⎭⎫12,+∞ D.⎣⎡⎭⎫34,+∞答案 B解析 易知函数y =⎝⎛⎭⎫13t 为减函数,t =2x 2-3x +1的单调递减区间为⎝⎛⎦⎤-∞,34. ∴函数y =22311()3xx -+的单调递增区间是⎝⎛⎦⎤-∞,34. (2)函数y =-(x -3)|x |的单调递增区间是________. 答案 ⎣⎡⎦⎤0,32 解析 y =-(x -3)|x |=⎩⎪⎨⎪⎧-x 2+3x ,x >0,x 2-3x ,x ≤0. 作出该函数的图象,观察图象知单调递增区间为⎣⎡⎦⎤0,32.题型二 函数的最值1.函数f (x )=⎝⎛⎭⎫13x-log 2(x +2)在区间[-1,1]上的最大值为________. 答案 3解析 由于y =⎝⎛⎭⎫13x 在R 上单调递减,y =log 2(x +2)在[-1,1]上单调递增,所以f (x )在[-1,1]上单调递减,故f (x )在[-1,1]上的最大值为f (-1)=3.2.已知函数f (x )=⎩⎪⎨⎪⎧x 2,x ≤1,x +6x -6,x >1,则f (x )的最小值是________.答案 26-6解析 当x ≤1时,f (x )min =0,当x >1时,f (x )min =26-6,当且仅当x =6时取到最小值,又26-6<0,所以f (x )min =26-6.3.已知函数f (x )=1a -1x (a >0,x >0),若f (x )在⎣⎡⎦⎤12,2上的值域为⎣⎡⎦⎤12,2,则a =________. 答案 25解析 由反比例函数的性质知函数f (x )=1a -1x (a >0,x >0)在⎣⎡⎦⎤12,2上单调递增, 所以⎩⎪⎨⎪⎧f ⎝⎛⎭⎫12=12,f (2)=2, 即⎩⎨⎧1a -2=12,1a -12=2,解得a =25.思维升华 求函数最值的五种常用方法及其思路(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值.(3)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值.(4)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值. (5)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值.题型三 函数单调性的应用命题点1 比较大小典例 已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( ) A .c >a >b B .c >b >a C .a >c >b D .b >a >c 答案 D解析 根据已知可得函数f (x )的图象关于直线x =1对称,且在(1,+∞)上是减函数,因为a =f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52,且2<52<3,所以b >a >c . 命题点2 解函数不等式典例 已知函数f (x )为(0,+∞)上的增函数,若f (a 2-a )>f (a +3),则实数a 的取值范围为____________.答案 (-3,-1)∪(3,+∞) 解析 由已知可得⎩⎪⎨⎪⎧a 2-a >0,a +3>0,a 2-a >a +3,解得-3<a <-1或a >3,所以实数a 的取值范围为(-3,-1)∪(3,+∞). 命题点3 求参数范围典例 (1)(2018·郑州模拟)函数y =x -5x -a -2在(-1,+∞)上单调递增,则a 的取值范围是( )A .a =-3B .a <3C .a ≤-3D .a ≥-3(2)已知f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a ,x <1,log ax ,x ≥1是(-∞,+∞)上的减函数,则a 的取值范围是( )A .(0,1) B.⎝⎛⎭⎫0,13 C.⎣⎡⎭⎫17,13 D.⎣⎡⎭⎫17,1答案 (1)C (2)C解析 (1)y =x -a -2+a -3x -a -2=1+a -3x -a -2,由题意知⎩⎪⎨⎪⎧a -3<0,a +2≤-1,得a ≤-3.∴a 的取值范围是a ≤-3.(2)由f (x )是减函数,得⎩⎪⎨⎪⎧3a -1<0,0<a <1.(3a -1)×1+4a ≥log a 1,∴17≤a <13, ∴a 的取值范围是⎣⎡⎭⎫17,13.思维升华 函数单调性应用问题的常见类型及解题策略 (1)比较大小.(2)解不等式.利用函数的单调性将“f ”符号脱掉,转化为具体的不等式求解,应注意函数的定义域.(3)利用单调性求参数.①依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较; ②需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的; ③分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.跟踪训练 (1)如果函数f (x )=⎩⎪⎨⎪⎧(2-a )x +1,x <1,a x ,x ≥1满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是________. 答案 ⎣⎡⎭⎫32,2解析 对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0.所以y =f (x )在(-∞,+∞)上是增函数. 所以⎩⎪⎨⎪⎧2-a >0,a >1,(2-a )×1+1≤a ,解得32≤a <2.故实数a 的取值范围是⎣⎡⎭⎫32,2.(2)(2017·珠海模拟)定义在R 上的奇函数y =f (x )在(0,+∞)上单调递增,且f ⎝⎛⎭⎫12=0,则不等式f (19log x )>0的解集为________________.答案 ⎩⎨⎧x ⎪⎪⎭⎬⎫0<x <13或1<x <3 解析 由题意知,f ⎝⎛⎭⎫-12=-f ⎝⎛⎭⎫12=0, f (x )在(-∞,0)上也单调递增.∴f (19log x )>f ⎝⎛⎭⎫12或f (19log x )>f ⎝⎛⎭⎫-12, ∴19log x >12或-12<19log x <0,解得0<x <13或1<x <3.∴原不等式的解集为⎩⎨⎧x ⎪⎪⎭⎬⎫0<x <13或1<x <3.1.函数y =x 2-6x +10在区间(2,4)上是( )A .递减函数B .递增函数C .先递减再递增D .先递增再递减答案 C解析 作出函数y =x 2-6x +10的图象(图略),根据图象可知函数在(2,4)上是先递减再递增的. 2.(2017·河南中原名校第一次质检)函数y =212log (6)x x -++的单调递增区间为( )A.⎝⎛⎭⎫12,3B.⎝⎛⎭⎫-2,12 C.⎝⎛⎭⎫12,+∞ D.⎝⎛⎭⎫-∞,12 答案 A解析 由-x 2+x +6>0,得-2<x <3,故函数的定义域为(-2,3),令t =-x 2+x +6,则y =12log t ,易知其为减函数,由复合函数的单调性法则可知本题等价于求函数t =-x 2+x +6在(-2,3)上的单调递减区间.利用二次函数的性质可得t =-x 2+x +6在定义域(-2,3)上的单调递减区间为⎝⎛⎭⎫12,3,故选A.3.下列函数中,在区间(-1,1)上为减函数的是( ) A .y =11-xB .y =cos xC .y =ln(x +1)D .y =2-x答案 D解析 y =11-x与y =ln(x +1)在区间(-1,1)上为增函数;y =cos x 在区间(-1,1)上不是单调函数;y =2-x =⎝⎛⎭⎫12x 在(-1,1)上为减函数. 4.已知函数y =log 2(ax -1)在(1,2)上是增函数,则实数a 的取值范围是( ) A .(0,1] B .[1,2] C .[1,+∞) D .[2,+∞)答案 C解析 要使y =log 2(ax -1)在(1,2)上是增函数,则a >0且a -1≥0,即a ≥1.5.(2017·天津)已知奇函数f (x )在R 上是增函数.若a =-f ⎝⎛⎭⎫log 215,b =f ()log 24.1,c =f (20.8),则a ,b ,c 的大小关系为( ) A .a <b <c B .b <a <c C .c <b <a D .c <a <b答案 C解析 ∵f (x )在R 上是奇函数, ∴a =-f ⎝⎛⎭⎫log 215=f ⎝⎛⎭⎫-log 215=f (log 25). 又f (x )在R 上是增函数,且log 25>log 24.1>log 24=2>20.8, ∴f (log 25)>f (log 24.1)>f (20.8),∴a >b >c . 故选C.6.设f (x )=⎩⎪⎨⎪⎧(x -a )2,x ≤0,x +1x +a ,x >0.若f (0)是f (x )的最小值,则a 的取值范围为( )A .[-1,2]B .[-1,0]C .[1,2]D .[0,2]答案 D解析 ∵当x ≤0时,f (x )=(x -a )2,f (0)是f (x )的最小值,∴a ≥0.当x >0时,f (x )=x +1x +a ≥2+a ,当且仅当x =1时取“=”.要满足f (0)是f (x )的最小值, 需2+a ≥f (0)=a 2,即a 2-a -2≤0,解得-1≤a ≤2, ∴a 的取值范围是0≤a ≤2.故选D.7.已知函数f (x )=x 2-2x -3,则该函数的单调递增区间为________. 答案 [3,+∞)解析 设t =x 2-2x -3,由t ≥0,即x 2-2x -3≥0, 解得x ≤-1或x ≥3.所以函数的定义域为(-∞,-1]∪[3,+∞). 因为函数t =x 2-2x -3的图象的对称轴为x =1,所以函数t 在(-∞,-1]上单调递减,在[3,+∞)上单调递增.所以函数f (x )的单调递增区间为[3,+∞).8.设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的单调递减区间是________.答案 [0,1) 解析 由题意知 g (x )=⎩⎪⎨⎪⎧x 2,x >1,0,x =1,-x 2,x <1,函数g (x )的图象如图所示,其单调递减区间为[0,1).9.设函数f (x )=ax +1x +2a在区间(-2,+∞)上是增函数,那么a 的取值范围是______________. 答案 [1,+∞)解析 f (x )=ax +2a 2-2a 2+1x +2a =a -2a 2-1x +2a, ∵函数f (x )在区间(-2,+∞)上是增函数,∴⎩⎪⎨⎪⎧ 2a 2-1>0,-2a ≤-2,即⎩⎪⎨⎪⎧2a 2-1>0,a ≥1,即a ≥1. 10.已知函数f (x )=⎩⎪⎨⎪⎧x 2+12a -2,x ≤1,a x -a ,x >1,若f (x )在(0,+∞)上单调递增,则实数a 的取值范围为________.答案 (1,2]解析 由题意,得12+12a -2≤0,则a ≤2,又y =a x -a (x >1)是增函数,故a >1,所以a 的取值范围为1<a ≤2.11.已知函数f (x )=-2x +1,x ∈[0,2],求函数的最大值和最小值. 解 设x 1,x 2是区间[0,2]上的任意两个实数,且x 1<x 2,且f (x 1)-f (x 2)=-2x 1+1-⎝⎛⎭⎫-2x 2+1 =-2(x 2+1-x 1-1)(x 1+1)(x 2+1)=-2(x 2-x 1)(x 1+1)(x 2+1). 由0≤x 1<x 2≤2,得x 2-x 1>0,(x 1+1)(x 2+1)>0,所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),故f (x )在区间[0,2]上是增函数.因此,函数f (x )=-2x +1在区间[0,2]的左端点取得最小值,右端点取得最大值,即最小值是f (0)=-2,最大值是f (2)=-23. 12.函数f (x )=4x 2-4ax +a 2-2a +2在区间[0,2]上有最小值3,求a 的值.解 f (x )=4⎝⎛⎭⎫x -a 22-2a +2,①当a 2≤0,即a ≤0时,函数f (x )在[0,2]上是增函数. ∴f (x )min =f (0)=a 2-2a +2.由a 2-2a +2=3,得a =1±2.∵a ≤0,∴a =1- 2.②当0<a 2<2,即0<a <4时, f (x )min =f ⎝⎛⎭⎫a 2=-2a +2.由-2a +2=3,得a =-12∉(0,4),舍去. ③当a 2≥2,即a ≥4时,函数f (x )在[0,2]上是减函数, f (x )min =f (2)=a 2-10a +18.由a 2-10a +18=3,得a =5±10.∵a ≥4,∴a =5+10.综上所述,a =1-2或a =5+10.13.已知函数f (x )=x |2x -a |(a >0)在区间[2,4]上单调递减,则实数a 的值是________. 答案 8解析 f (x )=x |2x -a |=⎩⎨⎧ x (2x -a ),x >a 2,-x (2x -a ),x ≤a 2(a >0),作出函数图象(图略)可得该函数的单调递减区间是⎣⎡⎦⎤a 4,a 2,所以⎩⎨⎧ a 4≤2,a 2≥4,解得a =8.14.已知f (x )=⎩⎪⎨⎪⎧x 2-4x +3,x ≤0,-x 2-2x +3,x >0,不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立,则实数a 的取值范围是____________.答案 (-∞,-2)解析 二次函数y 1=x 2-4x +3的对称轴是x =2,∴该函数在(-∞,0]上单调递减,∴x 2-4x +3≥3,同样可知函数y 2=-x 2-2x +3在(0,+∞)上单调递减,∴-x 2-2x +3<3,∴f (x )在R 上单调递减,∴由f (x +a )>f (2a -x )得到x +a <2a -x ,即2x <a ,∴2x <a 在[a ,a +1]上恒成立,∴2(a +1)<a ,∴a <-2,∴实数a 的取值范围是(-∞,-2).15.函数f (x )的定义域为D ,若对于任意x 1,x 2∈D ,当x 1<x 2时,都有f (x 1)≤f (x 2),则称函数f (x )在D 上为非减函数,设函数f (x )在[0,1]上为非减函数,且满足以下三个条件:①f (0)=0;②f ⎝⎛⎭⎫x 3=12f (x );③f (1-x )=1-f (x ).则f ⎝⎛⎭⎫13+f ⎝⎛⎭⎫18=________. 答案 34解析 由①③,令x =0,可得f (1)=1.由②,令x =1,可得f ⎝⎛⎭⎫13=12f (1)=12. 令x =13,可得f ⎝⎛⎭⎫19=12f ⎝⎛⎭⎫13=14. 由③结合f ⎝⎛⎭⎫13=12,可知f ⎝⎛⎭⎫23=12, 令x =23,可得f ⎝⎛⎭⎫29=12f ⎝⎛⎭⎫23=14, 因为19<18<29且函数f (x )在[0,1]上为非减函数, 所以f ⎝⎛⎭⎫18=14,所以f ⎝⎛⎭⎫13+f ⎝⎛⎭⎫18=34.16.已知函数f (x )=x 2+2x +a x,x ∈[1,+∞). (1)当a =12时,求函数f (x )的最小值; (2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.解 (1)当a =12时,f (x )=x +12x+2, 任取1≤x 1<x 2,则f (x 1)-f (x 2)=(x 1-x 2)+⎝⎛⎭⎫12x 1-12x 2 =(x 1-x 2)(2x 1x 2-1)2x 1x 2, ∵1≤x 1<x 2,∴x 1x 2>1,∴2x 1x 2-1>0.又x 1-x 2<0,∴f (x 1)<f (x 2),∴f (x )在[1,+∞)上是增函数,∴f (x )在[1,+∞)上的最小值为f (1)=72. (2)在区间[1,+∞)上,f (x )=x 2+2x +a x>0恒成立, 则⎩⎪⎨⎪⎧ x 2+2x +a >0,x ≥1,即⎩⎪⎨⎪⎧a >-(x 2+2x ),x ≥1,等价于a 大于函数φ(x )=-(x 2+2x )在[1,+∞)上的最大值.φ(x )=-(x +1)2+1在[1,+∞)上单调递减, ∴当x =1时,φ(x )取得最大值φ(1)=-3.∴a >-3,故实数a 的取值范围是(-3,+∞).。

2020高考文科数学(人教版)一轮复习讲义:第1讲 集合的概念和运算及答案

2020高考文科数学(人教版)一轮复习讲义:第1讲 集合的概念和运算及答案

1.集合的概念了解集合的含义、体会元素与集合的属于关系,能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.理解集合之间包含与相等的含义,能识别给定集合的子集,了解全集与空集的含义.2.集合的基本运算理解两个集合的交集与并集的含义,会求两个简单集合的交集与并集,理解在给定集合中一个子集的补集的含义,会求给定子集的补集,能使用韦恩图表达集合间的基本关系及运算.3.命题及其关系理解命题的概念.了解“若p,则q”形式的命题及其否命题、逆命题与逆否命题,会分析四种命题的相互关系.理解必要条件、充分条件与充要条件的含义.4.简单的逻辑联结词了解“或”“且”“非”的含义.5.全称量词与存在量词理解全称量词与存在量词的意义,能正确地对含有一个量词的命题进行否定.1.2014~2018年全国卷Ⅰ的考查情况年份2014 2015 2016 2017 2018考查内容第1题集合的交集运算第1题交集运算、元素的个数第1题集合的交集运算第1题集合的运算(交集、并集)第1题集合的运算(交集)分值5分5分5分5分5分2.2014~2018年全国卷Ⅱ的考查情况年份201420152016 2017 2018考查内容第1题集合的运算(交集)第1题集合的运算(并集)第24题第(2)问证明不等式的充要性第1题集合的运算(交集)第1题集合的运算(并集)第2题集合的运算(交集)分值5分5分10分5分5分5分2014年至2018年全国卷Ⅰ和卷Ⅱ直接考查本单元内容的试题共11道,2015年全国卷Ⅱ考查了2道题占15分(其中24题主要是考查不等式的证明),其他各年考查本单元的试题都为1道,占5分.高考对集合这一考点的考查主要以选择题出现,涉及的知识包括集合的概念,集合与集合的关系及集合的运算,重点是集合的运算.一般都是作为全卷第1小题,且都是基础题,难度不大,属于高考中的“送分题”.常用逻辑用语包含命题与量词,基本逻辑联结词以及充分条件、必要条件、充要条件与命题的四种形式,其中量词是新课标新增内容,2013年高考通过一道小题考查了全称命题、特称命题及复合命题真假的判定.充要条件这一内容,在全国卷高考中直接考查的试题不多,只有2015年全国卷Ⅱ在选考内容中,结合不等式的证明进行了考查.本单元是高中数学的基本内容之一,集合论是现代数学的基础,集合语言简洁、准确,是数学中不可缺少的基本语言.常用逻辑用语是数学语言的重要组成部分,是描述、判断、推理的工具,它可以帮助我们准确地表达数学内容、正确地理解数学概念、合理论证数学结论.对集合这一内容的复习,要重视对集合概念的认识与理解,特别要重视对描述法表示集合的理解,掌握集合与集合之间的关系、集合的运算,要求具备数形结合的思想,会借助V enn图、数轴等工具解决集合之间的关系及集合的运算等问题.高考直接考查常用逻辑用语的试题虽然不多,但常用逻辑用语常和函数、不等式及立体几何中直线、平面的位置关系等知识结合,因此复习时仍要非常重视.在复习时,要以小题、基础题为主,要求掌握p∧q,p∨q,﹁p命题真假的判断,全称命题与特称命题真假的判断及否定,四种命题及其关系,充分条件和必要条件的判断等,同时要注意与其他知识的联系.本单元问题的解答蕴涵了丰富的数学思想方法,如数形结合思想、等价转化思想、分类讨论思想和函数与方程的思想等,在复习中应注意总结领会.第1讲集合的概念与运算1.了解集合的含义、体会元素与集合的属于关系,了解空集、全集的意义.2.理解集合之间的包含与相等关系,能识别给定集合的子集.3.理解交集、并集、补集的概念,会求两个简单集合的交集与并集,会求给定子集的补集.知识梳理1.集合的含义与表示(1)一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集).集合中的元素具有确定性、互异性和无序性三个特征.(2)如果a是集合A的元素,就说a属于集合A,记作a∈A,如果a不是集合A 的元素,就说a不属于集合A,记作a∉A.(3)常见数集的记法集合符号自然数集N正整数集N*或N+整数集Z有理数集Q实数集R(4)常用的集合表示法有:列举法、描述法和图示法.2.集合间的基本关系(1)如果集合A中任何一个元素都是集合B的元素,则称集合A是集合B的子集,记作:A⊆B(或B⊇A).(2)如果集合A⊆B,但存在x∈B,且x∉A,则称集合A是集合B的真子集,记作:A B(或B A).(3)若A⊆B且B⊆A,则集合A与集合B中的元素是一样的,则称集合A与集合B相等.3.集合的基本运算(1)交集:由所有属于集合A且属于集合B的元素组成的集合,叫做A与B的交集,记作A∩B,即A∩B={x|x∈A,且x∈B}.(2)并集:由所有属于集合A或属于集合B的元素组成的集合,叫做A与B的并集,记作A∪B,即A∪B={x|x∈A,或x∈B}.(3)补集:集合A是集合U的子集,由U中所有不属于A的元素组成的集合,叫做U 中子集A的补集,记作∁U A,即∁U A={x|x∈U,且x∉A}.1.空集是任何集合的子集,空集是任何非空集合的真子集.2.若有限集A中有n个元素,则A的子集有2n个,非空子集有2n-1个,真子集有2n-1个.3.A⊆B⇔A∩B=A⇔A∪B=B.热身练习1.已知集合A={x|x<2},a=3,则下列关系正确的是(D)A.a⊆A B.a∉AC.{a}∈A D.{a}⊆A由于3<2,所以a∈A,即{a}⊆A. 2.(2018·达州模拟)已知集合A={1,2,3},B={2,3},则(D)A.A∩B=∅B.∁A B=BC.A B D.B AA={1,2,3},B={2,3},所以B⊆A,1∈A但1∉B,所以B A.3.(2017·天津卷)设集合A={1,2,6},B={2,4},C={1,2,3,4},则(A∪B)∩C=(B)A.{2}B.{1,2,4}C.{1,2,4,6}D.{1,2,3,4,6}=(-1,0),C正确;A∪(∁B)=(-1,+∞),D错误.因为A∪B={1,2,6}∪{2,4}={1,2,4,6},所以(A∪B)∩C={1,2,4,6}∩{1,2,3,4}={1,2,4}.4.(2018·石家庄二模)设集合A={x|-1<x≤2},B={x|x<0},则下列结论正确的是(C) A.A∪B={x|x<0}B.(∁R A)∩B={x|x<-1}C.A∩B={x|-1<x<0}D.A∪(∁RB)={x|x≥0}因为A={x|-1<x≤2}=(-1,2],B={x|x<0}=(-∞,0),所以A∪B=(-∞,2],A错误;(∁RA)∩B=(-∞,-1],B错误;A∩BR5.(2018·湖南长郡中学联考)集合{y∈N|y=-x2+6,x∈N}的真子集的个数是(C)A.3B.4C.7D.8由{y∈N|y=-x2+6,x∈N}知,y≥0,所以-x2+6≥0,又x∈N,所以x=0,1,2.所以集合为{2,5,6},其真子集的个数为23-1=7.(2)设 a ,b ∈R ,集合⎨a ,a ,1⎬={a 2,a +b,0},则 a 2019+b 2019=__________.n集合的基本概念(1)(经典真题)已知集合 A ={x|x =3n +2,∈N },B ={6,8,10,12,14},则集合 A ∩B 中元素的个数为A .5B .4C .3D .2⎧ b ⎫ ⎩⎭(2)考虑集合{a , ,1}中哪一个元素为 0 入手,利用集合中的元素的确定性和互异性进行(1)求解本题,关键是理解集合 A 的意义,将集合 A 进行化简,可以采用特殊化的方法.A ={x|x =3n +2,n ∈N }={2,5,8,11,14,…},所以 A 与 B 的共同元素只有 8,14 两个,故选 D.ba分析.若 a =0,则b无意义,所以 a ≠0,a所以b =0,从而 b =0,所以{a ,b,1}={a,0,1}.a a由{a,0,1}={a 2,a,0},得 a 2=1,即 a =1 或 a =-1.又根据集合中元素的互异性 a =1 应舍去,所以 a =-1.故 a 2019+b 2019=(-1)2019=-1.(1)D(2)-1(1)用描述法表示集合,首先要搞清集合中代表元素的含义,再看元素的限制条件,分清是数集、点集还是其他类型的集合.(2)解决含有参数的集合问题时,要注意集合中元素的特征,并注意用互异性进行检验.(3)分类讨论的思想方法常用于解决集合问题.1.(1)若集合 A ={x ∈R |ax 2+ax +1=0}中只有一个元素,则 a 等于(A) A .4 B .2C .0D .0 或 2(2)已知集合 A ={m +2,2m 2+m },若 3∈A ,则 m 的值为 -3.2(1)当 a =0 时,方程化为 1=0,无解,集合 A 为空集,不符合题意;当 a ≠0 时,由 Δ=a 2-4a =0,解得 a =4.(2)因为 3∈A ,所以 m +2=3 或 2m 2+m =3,若 m +2=3,解得 m =1,此时 A ={3,3}与集合中元素的互异性矛盾,所以 m =1,不符合题意;若2m 2+m =3,解得 m =1(舍去)或 m =-3. 故所求 m 的值为-3.2检验知 m =-3满足题意.22集合间的基本关系已知集合 A ={x|x 2-3x -10≤0},若集合B ={x|p +1≤x ≤2p -1},且 B A ,则实数 p 的取值范围为________.欲求实数p的取值范围,只需找出关于p 的不等式,可由已知条件,结合数轴找到.由x2-3x-10≤0,解得-2≤x≤5,所以A={x|-2≤x≤5}.B A,则有①当B≠时,利用数轴可知:⎧⎪p+1≤2p-1,⎨-2≤p+1,解得2≤p≤3.⎪⎩2p-1≤5,②当B=时,有p+1>2p-1,即p<2.综合①②得实数p的取值范围是(-∞,3].(-∞,3]解决有关集合的包含关系的问题时,要注意:(1)所给集合若能化简,则先化简;(2)充分利用数轴、韦恩图等辅助解题;(3)注意空集的特殊性,一般地,若B⊆A,则应分B=∅与B≠∅两种情况进行讨论.2.已知集合A={x|x2-3x-10≤0},若集合B={x|p-6≤x≤2p-1},且A∩B=A,则实数p的取值范围为[3,4].由例2知,A={x|-2≤x≤5}.A∩B=A,所以A B,画出示意图(如下图),⎧⎪2p-1>p-6,所以⎨p-6≤-2,⎪⎩2p-1≥5,⎧p>-5,解得⎨p≤4,⎩p≥3.所以3≤p≤4.故p的取值范围为[3,4].A .A ∩B =⎨x|x <2⎬ B .A ∩B =∅ C .A ∪B =⎨x|x <2⎬ D .A ∪B =R集合的基本运算(1)(2017· 全国卷Ⅰ)已知集合 A ={x|x<2},B ={x|3-2x>0},则()⎧ 3⎫ ⎩⎭⎧ 3⎫ ⎩⎭(2)(2018· 宝鸡二模)已知全集 U ={1,2,3,4,5,6},集合 M ={2,3,5},N ={4,5},则集合{1,6}可以表示为( )A .M ∩NB .M ∪NC. ∁U (M ∪N ) D .∁U (M ∩N )因为B={x|3-2x>0}=⎧⎨x|x<⎫⎬,A={x|x<2},所以A∩B=⎧⎨x|x<⎫⎬,A∪B={x|x<2}.所以(M∪N)={1,6},故选C.(1)首先化简集合A,B,再利用数轴得到A∩B和A∪B.3⎩2⎭3⎩2⎭(2)画出韦恩图,如图,U(1)A(2)C进行集合的运算时,要注意:①明确集合中元素的意义;②注意将所给集合化简,使之明确化;③注意数形结合,利用韦恩图、数轴等辅助解题.- 21 -/23(2)(2018· 广州一模)设集合 A ={x| <0},B ={x|x ≤-3},则集合{x|x ≥1}=(D)3.(1)(2018·天津卷)设集合 A ={1,2,3,4},B ={-1,0,2,3},C ={x ∈R|-1≤x<2},则(A ∪B)∩C =(C)A .{-1,1}B .{0,1}C .{-1,0,1}D .{2,3,4}x +3x -1A .A ∩B B .A ∪BC .(∁R A)∪(∁R B)D .(∁R A)∩(∁R B)(1)因为 A ={1,2,3,4},B ={-1,0,2,3},所以 A ∪B ={-1,0,1,2,3,4}.又 C ={x ∈R|-1≤x<2},所以(A ∪B)∩C ={-1,0,1},故选 C.- 22 - / 23所以∁ A ={x|x ≥1,或 x ≤-3},∁ B ={x|x >-3}.易知(∁ A)∩(∁ B)={x|x ≥1},故选 D.x +3(2)因为 A ={x| <0}={x|-3<x<1},B ={x|x ≤-3},x -1 R R R R1.研究集合的有关问题,首先要理解集合的概念,其次要注意集合中元素的三个特征:确定性、无序性和互异性,尤其要注意集合中元素的互异性,当集合中的元素含有参数时, 要根据互异性进行检验.2.处理集合问题时,首先要理解用描述法表示的集合的意义,关键是抓住集合的代表元 素.首先看“{ | }”的左边元素的代表形式,然后看右边元素满足的性质,这是认清集合元 素的关键.例如,{y|y =f(x)}是数集,表示函数 y =f(x)的值域;{x|y =f(x)}是数集,表示函数 y =f(x)的定义域;{(x ,y)|y =f(x)}是点集,表示函数 y =f(x)图象上的点构成的集合.3.注意空集∅的特殊性,在解题时,若未能指明集合非空时,要考虑空集的可能性,如 A B ,则有 A =∅或 A ≠∅两种可能,解题时常常遗漏对空集的讨论,这一点应引起重视.4.研究集合的关系,处理集合的交、并、补的运算问题,常用韦恩图、数轴等几何工具 辅助解题.一般地,对离散的数集、抽象的集合间的关系及运算,可借助韦恩图,而对连续 的集合间的运算及关系,可借助数轴的直观性,进行合理转化.解题时,首先要把集合进行 化简,使之明确化,尽可能地借助数轴、韦恩图等工具,将抽象的代数问题具体化、形象化、 直观化,这实质是数形结合思想在集合中的具体应用.5.处理含参数的集合的包含关系及集合的运算时,端点值的取舍也是一个难点和重点, 其解决办法是对端点值进行单独考虑.- 23 - / 23。

2020年高考文科数学专题二 函数 含习题答案

2020年高考文科数学专题二  函数 含习题答案

2020年高考文科数学专题二函数含习题答案函数是中学数学中的重点内容,是描述变量之间依赖关系的重要数学模型.本章内容有两条主线:一是对函数性质作一般性的研究,二是研究几种具体的基本初等函数——一次函数、二次函数、指数函数、对数函数、幂函数.研究函数的问题主要围绕以下几个方面:函数的概念,函数的图象与性质,函数的有关应用等.§2-1 函数【知识要点】要了解映射的概念,映射是学习、研究函数的基础,对函数概念、函数性质的深刻理解在很多情况下要借助映射这一概念.1、设A,B是两个非空集合,如果按照某种对应法则f,对A中的任意一个元素x,在B中有一个且仅有一个元素y与x对应,则称f是集合A到集合B的映射.记作f:A→B,其中x叫原象,y叫象.2、设集合A是一个非空的数集,对A中的任意数x,按照确定的法则f,都有唯一确定的数y与它对应,则这种映射叫做集合A上的一个函数.记作y=f(x),x∈A.其中x叫做自变量,自变量取值的范围(数集A)叫做这个函数的定义域.所有函数值构成的集合{y|y=f(x),x∈A}叫做这个函数的值域.函数的值域由定义域与对应法则完全确定.3、函数是一种特殊的映射.其定义域和值域都是非空的数集,值域中的每一个元素都有原象.构成函数的三要素:定义域,值域和对应法则.其中定义域和对应法则是核心.【复习要求】1.了解映射的意义,对于给出对应关系的映射会求映射中指定元素的象与原象.2.能根据函数三要素判断两个函数是否为同一函数.3.掌握函数的三种表示法(列表法、图象法和解析法),理解函数符号f(x)(对应法则),能依据一定的条件求出函数的对应法则.4.理解定义域在三要素的地位,并会求定义域.【例题分析】例1 设集合A和B都是自然数集合N.映射f:A→B把集合A中的元素x映射到集合B中的元素2x+x,则在映射f作用下,2的象是______;20的原象是______.【分析】由已知,在映射f 作用下x 的象为2x +x . 所以,2的象是22+2=6;设象20的原象为x ,则x 的象为20,即2x +x =20.由于x ∈N ,2x +x 随着x 的增大而增大,又可以发现24+4=20,所以20的原象是4.例2 设函数⎩⎨⎧>++-≤-=,0,22,0,1)(2x x x x x x f 则f (1)=______;若f (0)+f (a )=-2,则a的所有可能值为______.【分析】从映射的角度看,函数就是映射,函数解析式就是映射的法则. 所以f (1)=3.又f (0)=-1,所以f (a )=-1, 当a ≤0时,由a -1=-1得a =0;当a >0时,由-a 2+2a +2=-1,即a 2-2a -3=0得a =3或a =-1(舍). 综上,a =0或a =3.例3 下列四组函数中,表示同一函数的是( ) (A)22)(,t y x y ==(B)2|,|t y x y ==(C)1,112+=--=x y x x y (D)x x y x y 2,==【分析】(A)(C)(D)中两个函数的定义域均不同,所以不是同一函数.(B)中两个函数的定义域相同,化简后为y =|x |及y =|t |,法则也相同,所以选(B).【评析】判断两个函数是否为同一函数,就是要看两个函数的定义域与法则是否完全相同.一般有两个步骤:(1)在不对解析式进行变形的情况下求定义域,看定义域是否一致.(2)对解析式进行合理变形的情况下,看法则是否一致.例4 求下列函数的定义域 (1);11--=x y(2);3212-+=x x y(3);)1()3lg(0-+-=x xx y(4);2|2|12---=x x y解:(1)由|x -1|-1≥0,得|x -1|≥1,所以x -1≥1或x -1≤-1,所以x ≥2或x ≤0.所以,所求函数的定义域为{x |x ≥2或x ≤0}. (2)由x 2+2x -3>0得,x >1或x <-3. 所以,所求函数的定义域为{x |x >1或x <-3}.(3)由⎪⎩⎪⎨⎧=/-=/>-,01,0,03x x x 得x <3,且x ≠0,x ≠1, 所以,所求函数的定义域为{x |x <3,且x ≠0,x ≠1}(4)由⎩⎨⎧=/=/≤≤-⎩⎨⎧=/-≥-⎩⎨⎧≠--≥-,4,0,112|2|01,02|2|0122x x x x x x x 且即,,得,所以-1≤x ≤1,且x ≠0.所以,所求函数定义域为{x |-1≤x ≤1,且x ≠0}.例5 已知函数f (x )的定义域为(0,1),求函数f (x +1)及f (x 2)的定义域.【分析】此题的题设条件中未给出函数f (x )的解析式,这就要求我们根据函数三要素之间的相互制约关系明确两件事情:①定义域是指x 的取值范围;②受对应法则f 制约的量的取值范围在“已知”和“求”当中是一致的.那么由f (x )的定义域是(0,1)可知法则f 制约的量的取值范围是(0,1),而在函数f (x +1)中,受f 直接制约的是x +1,而定义域是指x 的范围,因此通过解不等式0<x +1<1得-1<x <0,即f (x +1)的定义域是(-1,0).同理可得f (x 2)的定义域为{x |-1<x <1,且x ≠0}.例6 如图,用长为l 的铁丝弯成下部为矩形,上部为半圆形的框架,若矩形的底边长为2x ,求此框架围成的面积y 与x 的函数关系式,并指出定义域.解:根据题意,AB =2x .⋅--==2π2,πxx l AD x 所以,.)2π2(π212π2222lx x x x x l x y ++-=+--=⋅⋅根据问题的实际意义.AD >0,x >0.解.π20,02π2,0+<<⎪⎩⎪⎨⎧>-->l x xx l x 得所以,所求函数定义域为⋅+<<}π20|{lx x 【评析】求函数定义域问题一般有以下三种类型问题.(1)给出函数解析式求定义域(如例4),这类问题就是求使解析式有意义的自变量的取值范围.正确的解不等式或不等式组在解决这类问题中是重要的.中学数学中常见的对变量有限制的运算法则有:①分式中分母不为零;②偶次方根下被开方数非负;③零次幂的底数要求不为零;④对数中的真数大于零,底数大于零且不等于1;⑤y =tan x ,则2ππ+≠k x ,k ∈Z . (2)不给出f (x )的解析式而求定义域(如例5).其解决办法见例5的分析.(3)在实际问题中求函数的定义域(如例6).在这类问题中除了考虑解析式对自变量的限制,还应考虑实际问题对自变量的限制.另外,在处理函数问题时要有一种随时关注定义域的意识,这是极其重要的.比如在研究函数单调性、奇偶性、最值等问题时,首先要考虑的就是函数的定义域.例7 (1)已知21)1(x xxf -=,求f (x )的解析式; (2)已知221)1(xx x x f +=+,求f (3)的值;(3)如果f (x )为二次函数,f (0)=2,并且当x =1时,f (x )取得最小值-1,求f (x )的解析式; (4)*已知函数y =f (x )与函数y =g (x )=2x 的图象关于直线x =1对称,求f (x )的解析式. 【分析】(1)求函数f (x )的解析式,从映射的角度看就是求对应法则,于是,我们一般有下面两种方法解决(1)这样的问题.方法一.⋅-=-=1)1(111)1(2xxx xxf 通过这样“凑型”的方法,我们可以明确看到法则f是“原象对应于原象除以原象的平方减1”.所以,⋅-=1)(2x xx f 方法二.设t x =1,则tx 1=.则1111)(22-=-=t t t t t f ,所以⋅-=1)(2x x x f 这样,通过“换元”的方法也可以明确看到法则是什么. (2)用“凑型”的方法,.7)3(,2)(.2)1(1)1(2222=-=-+=+=+f x x f xx x x x x f 所以 (3)因为f (x )为二次函数,并且当x =1时,f (x )取得最小值-1,所以,可设f(x)=a(x-1)2-1,又f(0)=2,所以a(0-1)2-1=2,所以a=3.f(x)=3(x-1)2-1=3x2-6x+2.(4)这个问题相当于已知f(x)的图象满足一定的条件,进而求函数f(x)的解析式.所以,可以类比解析几何中求轨迹方程的方法求f(x)的解析式.设f(x)的图象上任意一点坐标为P(x,y),则P关于x=1对称点的坐标为Q(2-x,y),由已知,点Q在函数y=g(x)的图象上,所以,点Q的坐标(2-x,y)满足y=g(x)的解析式,即y=g(2-x)=22-x,所以,f(x)=22-x.【评析】由于已知条件的不同,求函数的解析式的常见方法有象(1)(2)所用到的“凑形”及“换元”的方法;有象(3)所用到的待定系数法;也有象(4)所用到的解析法.值得注意的是(4)中所用的解析法.在求函数解析式或者求轨迹方程时都可以用这种方法,是一种通法.同时也表明函数和它的图象与曲线和它的方程之间有必然的联系.例8 已知二次函数f(x)的对称轴为x=1,且图象在y轴上的截距为-3,被x轴截得的线段长为4,求f(x)的解析式.解:解法一设f(x)=ax2+bx+c,由f(x)的对称轴为x=1,可得b=-2a;由图象在y轴上的截距为-3,可得c=-3;由图象被x轴截得的线段长为4,可得x=-1,x=3均为方程ax2+bx+c=0的根.所以f(-1)=0,即a-b+c=0,所以a=1.f(x)=x2-2x-3.解法二因为图象被x轴截得的线段长为4,可得x=-1,x=3均为方程f(x)=0的根.所以,设f(x)=a(x+1)(x-3),又f(x)图象在y轴上的截距为-3,即函数图象过(0,-3)点.即-3a=-3,a=1.所以f(x)=x2-2x-3.【评析】二次函数是非常常见的一种函数模型,在高中数学中地位很重.二次函数的解析式有三种形式:一般式y=ax2+bx+c;顶点式y =a (x -h )2+k ,其中(h ,k )为顶点坐标;双根式y =a (x -x 1)(x -x 2),其中x 1,x 2为函数图象与x 轴交点的横坐标,即二次函数所对应的一元二次方程的两个根.例9 某地区上年度电价为0.8元/kW·h ,年用电量为a kW·h .本年度计划将电价降到0.55元/kW·h 至0.75元/kW·h 之间,而用户期望电价为0.40元/kW·h .经测算,下调电价后新增的用电量与实际电价和用户期望电价的差成反比(比例系数为k ).该地区电力的成本价为0.30元/kW·h .(1)写出本年度电价下调后,电力部门的收益y 与实际电价x 的函数关系式;(2)设k =0.2a ,当电价最低定为多少时,仍可保证电力部门的收益比上年至少增长20%?解:(1)依题意,当实际电价为x 元/kW·h 时,用电量将增加至,4.0a x k+-故电力部门的收益为)75.055.0)(3.0)(4.0(≤≤-+-=x x a x ky .(2)易知,上年度的收益为(0.8-0.3)a ,依题意,%),201)(3.08.0()3.0)(4.02.0(+-≥-+-a x a x a且0.55≤x ≤0.75,解得0.60≤x ≤0.75.所以,当电价最低定为0.60元/kW·h 时,仍可保证电力部门的收益比上年至少增长20%.练习2-1一、选择题 1.已知函数xx f -=11)(的定义域为M ,g (x )=ln(1+x )的定义域为N ,则M ∩N =( ) (A){x |x >1}(B){x |x <1}(C){x |-1<x <1} (D)∅2.图中的图象所表示的函数的解析式为( )(A))20(|1|23≤≤-=x x y (B))20(|1|2323≤≤--=x x y(C))20(|1|23≤≤--=x x y (D)y =1-|x -1|(0≤x ≤2)3.已知f (x -1)=x 2+2x ,则=)1(xf ( )(A)x x 212+(B)112-x(C)22143x x x ++(D)212xx + 4.已知⎪⎩⎪⎨⎧≥<<--≤+=2,3,21,,1,3)(2x x x x x x x f 若f (x )=3,则x 的值是( )(A)0 (B)0或23 (C)3± (D)3二、填空题5.给定映射f :(x ,y )→(x +2y ,x -2y ),在映射f 下(0,1)的象是______;(3,1)的原象是______. 6.函数2||3)(--=x xx f 的定义域是______. 7.已知函数f (x ),g (x )分别由下表给出则f [g (1)]的值为______;满足f [g (x )]>g [f (x )]的x 的值是______.8.已知函数y =f (x )与函数y =g (x )=2x 的图象关于点(0,1)对称,则f (x )的解析式为______. 三、解答题9.已知f (x )=2x+x -1,⎩⎨⎧<-≥=),0(1),0()(2x x x x x g 求g (-1),g [f (1)]的值.10.在如图所示的直角坐标系中,一运动物体经过点A (0,9),其轨迹方程为y =ax 2+c (a <0),D =(6,7)为x 轴上的给定区间.为使物体落在区间D 内,求a 的取值范围.11.如图,直角边长为2cm的等腰Rt△ABC,以2cm/s的速度沿直线l向右运动,求该三角形与矩形CDEF重合部分面积y(cm2)与时间t的函数关系(设0≤t≤3),并求出y的最大值.§2-2 函数的性质【知识要点】函数的性质包括函数的定义域、值域及值的某些特征、单调性、奇偶性、周期性与对称性等等.本章着重研究后四个方面的性质.本节的重点在于理解与函数性质有关的概念,掌握有关判断、证明的基本方法以及简单的应用.数形结合是本节常用的思想方法.1.设函数y=f(x)的定义域为D,如果对于D内的任意一个x,都有-x∈D,且f(-x)=-f(x),则这个函数叫做奇函数.设函数y=g(x)的定义域为D,如果对于D内任意一个x,都有-x∈D,且g(-x)=g(x),则这个函数叫做偶函数.由奇函数定义可知,对于奇函数y=f(x),点P(x,f(x))与点P (-x,-f(x))都在其图象上.又点P 与点P '关于原点对称,我们可以得到:奇函数的图象是以坐标原点为对称中心的中心对称图形;通过同样的分析可以得到,偶函数的图象是以y 轴为对称轴的轴对称图形.2.一般地,设函数y =f (x )的定义域为A ,区间M ⊆A .如果取区间M 中的任意两个值x 1,x 2,改变量∆x =x 2-x 1>0,则当∆y =f (x 2)-f (x 1)>0时,就称函数y =f (x )在区间M 上是增函数; 当∆y =f (x 2)-f (x 1)<0时,就称函数y =f (x )在区间M 上是减函数.如果一个函数在某个区间M 上是增函数或是减函数,就说这个函数在这个区间M 上具有单调性,区间M 称为单调区间.在单调区间上,增函数的图象是上升的,减函数的图象是下降的.3.一般的,对于函数f (x ),如果存在一个不为零的常数T ,使得当x 取定义域中的每一个值时,f (x +T )=f (x )都成立,那么就把函数y =f (x )叫做周期函数,不为零的常数T 叫做这个函数的周期.4.一般的,对于函数f (x ),如果存在一个不为零的常数a ,使得当x 取定义域中的每一个值时,f (a +x )=f (a -x )都成立,则函数y =f (x )的图象关于直线x =a 对称. 【复习要求】1.理解函数的单调性、最大值、最小值及其几何意义;会用定义证明函数的单调性,会利用函数的单调性处理有关的不等式问题;2.了解函数奇偶性的含义.能判断简单函数的奇偶性. 3.了解函数周期性的含义.4.了解函数单调性、奇偶性和周期性之间的联系,并能解决相关的简单问题. 【例题分析】例1 判断下列函数的奇偶性. (1);1)(-=x xx f(2);11)(+=xx f (3)f (x )=x 3-3x ;(4);11lgxxy -+= (5)⋅+-=1212xx y 解:(1)解01≥-x x,得到函数的定义域为{x |x >1或x ≤0},定义域区间关于原点不对称,所以此函数为非奇非偶函数.(2)函数的定义域为{x |x ≠0},但是,由于f (1)=2,f (-1)=0,即f (1)≠f (-1),且f (1)≠-f (-1),所以此函数为非奇非偶函数.(3)函数的定义域为R ,又f (-x )=(-x )3-3(-x )=-x 3+3x =-f (x ), 所以此函数为奇函数. (4)解011>-+xx,得-1<x <1, 又),(11lg 11lg )(1)(1lg)(x f xxx x x x x f -=-+-=+-=---+=-所以此函数为奇函数.(5)函数的定义域为R ,又)(21211212)(x f x f xxxx -=+-=+-=---, 所以此函数为奇函数.【评析】由函数奇偶性的定义,可以得到下面几个结论:①一个函数是奇(或偶)函数的必要不充分条件是定义域关于原点对称; ②f (x )是奇函数,并且f (x )在x =0时有定义,则必有f (0)=0; ③既是奇函数又是偶函数的函数,其解析式一定为f (x )=0. 判定函数奇偶性按照其定义可以分为两个步骤: ①判断函数的定义域是否关于原点对称; ②考察f (-x )与f (x )的关系.由此,若以奇偶性为标准可以把函数分为奇函数,偶函数,既奇又偶函数和非奇非偶函数四类.例2 设函数f (x )在R 上有定义,给出下列函数:①y =-|f (x )|;②y =xf (x 2);③y =-f (-x );④y =f (x )-f (-x ). 其中必为奇函数的有______.(填写所有正确答案的序号)【分析】①令F (x )=-|f (x )|,则F (-x )=-|f (-x )|,由于f (x )与f (-x )关系不明确,所以此函数的奇偶性无法确定.②令F (x )=xf (x 2),则F (-x )=-xf [(-x )2]=-xf (x 2)=-F (x ),所以F (x )为奇函数. ③令F (x )=-f (-x ),则F (-x )=-f [-(-x )]=-f (x ),由于f (x )与f (-x )关系不明确,所以此函数的奇偶性无法确定.④令F (x )=f (x )-f (-x ),则F (-x )=f (-x )-f [-(-x )]=f (-x )-f (x )=-F (x ),所以F (x )为奇函数.所以,②④为奇函数.例3 设函数f (x )在R 上有定义,f (x )的值不恒为零,对于任意的x ,y ∈R ,恒有f (x +y )=f (x )+f (y ),则函数f (x )的奇偶性为______.解:令x =y =0,则f (0)=f (0)+f (0),所以f (0)=0,再令y =-x ,则f (0)=f (x )+f (-x ),所以f (-x )=-f (x ),又f (x )的值不恒为零, 故f (x )是奇函数而非偶函数.【评析】关于函数方程“f (x +y )=f (x )+f (y )”的使用一般有以下两个思路:令x ,y 为某些特殊的值,如本题解法中,令x =y =0得到了f (0)=0.当然,如果令x =y =1则可以得到f (2)=2f (1),等等.令x ,y 具有某种特殊的关系,如本题解法中,令y =-x .得到f (2x )=2f (x ),在某些情况下也可令y =x1,y =x ,等等. 总之,函数方程的使用比较灵活,要根据具体情况作适当处理.在不是很熟悉的时候,要有试一试的勇气.例4 已知二次函数f (x )=x 2+bx +c 满足f (1+x )=f (1-x ),求b 的值,并比较f (-1)与f (4)的大小.解:因为f (1+x )=f (1-x ),所以x =1为二次函数图象的对称轴, 所以12=-b,b =-2. 根据对称性,f (-1)=f (3),又函数在[1,+∞)上单调递增, 所以f (3)<f (4),即f (-1)<f (4).例5 已知f (x )为奇函数,当x ≥0时,f (x )=x 2-2x , (1)求f (-1)的值;(2)当x <0时,求f (x )的解析式.解:(1)因为f (x )为奇函数,所以f (-1)=-f (1)=-(12-2×1)=1.(2)方法一:当x <0时,-x >0.所以,f (x )=-f (-x )=-[(-x )2-2(-x )]=-x 2-2x . 方法二:设(x ,y )是f (x )在x <0时图象上一点,则(-x ,-y )一定在f (x )在x >0时的图象上.所以,-y =(-x )2-2(-x ),所以y =-x 2-2x .例6 用函数单调性定义证明,函数y =ax 2+bx +c (a >0)在区间),2(+∞-ab上为增函数.证明:设),2(21+∞-∈abx x 、,且x 1<x 2 f (x 2)-f (x 1)=(ax 22+bx 2+c )-(ax 12+bx 1+c )=a (x 22-x 12)+b (x 2-x 1) =a (x 2+x 1)(x 2-x 1)+b (x 2-x 1)=(x 2-x 1)[a (x 1+x 2)+b ] 因为x 1<x 2,所以x 2-x 1>0,又因为),2(21+∞-∈abx x 、, 所以0)(,2121>++->+b x x a ab x x ,所以f (x 2)-f (x 1)>0, 函数y =ax 2+bx +c (a >0)在区间),2(+∞-ab上为增函数. 例7 已知函数f (x )是定义域为R 的单调增函数. (1)比较f (a 2+2)与f (2a )的大小;(2)若f (a 2)>f (a +6),求实数a 的取值范围.解:(1)因为a 2+2-2a =(a -1)2+1>0,所以a 2+2>2a , 由已知,f (x )是单调增函数,所以f (a 2+2)>f (2a ).(2)因为f (x )是单调增函数,且f (a 2)>f (a +6),所以a 2>a +6, 解得a >3或a <-2.【评析】回顾单调增函数的定义,在x 1,x 2为区间任意两个值的前提下,有三个重要的问题:∆x =x 2-x 1的符号;∆y =f (x 2)-f (x 1)的符号;函数y =f (x )在区间上是增还是减.由定义可知:对于任取的x 1,x 2,若x 2>x 1,且f (x 2)>f (x 1),则函数y =f (x )在区间上是增函数;不仅如此,若x 2>x 1,且函数y =f (x )在区间上是增函数,则f (x 2)>f (x 1); 若f (x 2)>f (x 1),且函数y =f (x )在区间上是增函数,则x 2>x 1;于是,我们可以清晰地看到,函数的单调性与不等式有着天然的联系.请结合例5例6体会这一点.函数的单调性是极为重要的函数性质,其与其他问题的联系、自身的应用都很广泛,在复习中要予以充分注意.例8 设f (x )是定义域为(-∞,0)∪(0,+∞)的奇函数,且它在区间(-∞,0)上是减函数. (1)试比较f (-2)与-f (3)的大小;(2)若mn <0,且m +n <0,求证:f (m )+f (n )>0. 解:(1)因为f (x )是奇函数,所以-f (3)=f (-3),又f (x )在区间(-∞,0)上是减函数,所以f (-3)>f (-2),即-f (3)>f (-2). (2)因为mn <0,所以m ,n 异号,不妨设m >0,n <0, 因为m +n <0,所以n <-m ,因为n ,-m ∈(-∞,0),n <-m ,f (x )在区间(-∞,0)上是减函数, 所以f (n )>f (-m ),因为f (x )是奇函数,所以f (-m )=-f (m ), 所以f (n )>-f (m ),即f (m )+f (n )>0.例9 函数f (x )是周期为2的周期函数,且f (x )=x 2,x ∈[-1,1]. (1)求f (7.5)的值;(2)求f (x )在区间[2n -1,2n +1]上的解析式.解:(1)因为函数f (x )是周期为2的周期函数,所以f (x +2k )=f (x ),k ∈Z . 所以f (7.5)=f (-0.5+8)=f (-0.5)=41. (2)设x ∈[2n -1,2n +1],则x -2n ∈[-1,1]. 所以f (x )=f (x -2n )=(x -2n )2,x ∈[2n -1,2n +1].练习2-2一、选择题1.下列函数中,在(1,+∞)上为增函数的是( ) (A)y =x 2-4x(B)y =|x |(C)xy 1(D)y =x 2+2x2.下列判断正确的是( )(A)定义在R 上的函数f (x ),若f (-1)=f (1),且f (-2)=f (2),则f (x )是偶函数 (B)定义在R 上的函数f (x )满足f (2)>f (1),则f (x )在R 上不是减函数(C)定义在R 上的函数f (x )在区间(-∞,0]上是减函数,在区间(0,+∞)上也是减函数,则f (x )在R 上是减函数(D)不存在既是奇函数又是偶函数的函数3.已知函数f (x )是R 上的奇函数,并且是周期为3的周期函数,又知f (1)=2.则f (2)=( ) (A)-2(B)2(C)1(D)-14.设f (x )是R 上的任意函数,则下列叙述正确的是( ) (A)f (x )f (-x )是奇函数(B)f (x )|f (-x )|是奇函数 (C)f (x )-f (-x )是偶函数(D)f (x )+f (-x )是偶函数二、填空题5.若函数f (x )=4x 2-mx +5在区间[-2,+∞)是增函数,则m 的取值范围是______;f (1)的取值范围是______.6.已知函数f (x )是定义在(-∞,+∞)上的偶函数.当x ∈(-∞,0)时,f (x )=x -x 4,则当x ∈(0,+∞)时,f (x )=______.7.设函数xa x x x f ))(1()(++=为奇函数,则实数a =______.8.已知函数f (x )=x 2-cos x ,对于]2π,2π[-上的任意x 1,x 2,有如下条件:①x 1>x 2; ②;2221x x > ③|x 1|>x 2. 其中能使f (x 1)>f (x 2)恒成立的条件序号是______ 三、解答题9.已知函数f (x )是单调减函数. (1)若a >0,比较)3(aa f +与f (3)的大小; (2)若f (|a -1|)>f (3),求实数a 的取值范围.10.已知函数).,0()(2R ∈=/+=a x xa x x f (1)判断函数f (x )的奇偶性;(2)当a =1时,证明函数f (x )在区间[2,+∞)上是增函数.11.定义在(0,+∞)上的函数f (x )满足①f (2)=1;②f (xy )=f (x )+f (y ),其中x ,y 为任意正实数,③任意正实数x ,y 满足x ≠y 时,(x -y )[f (x )-f (y )]>0恒成立. (1)求f (1),f (4)的值; (2)试判断函数f (x )的单调性;(3)如果f (x )+f (x -3)≤2,试求x 的取值范围.§2-3 基本初等函数(Ⅰ)本节复习的基本初等函数包括:一次函数、二次函数、指数函数、对数函数和幂函数,三角函数在三角部分复习.函数的图象上直观地反映着函数的性质,学习函数的“捷径”是熟知函数的图象.熟知函数图象包括三个方面:作图,读图,用图.掌握初等函数一般包括以下一些内容:首先是函数的定义,之后是函数的图象和性质.函数的性质一般包括定义域,值域,图象特征,单调性,奇偶性,周期性,零点、最值以及值的变化特点等,研究和记忆函数性质的时候应全面考虑.函数的定义(通常情况下是解析式)决定着函数的性质,我们可以通过解析式研究函数的性质,也可以通过解析式画出函数的图象,进而直观的发现函数的性质. 【知识要点】1.一次函数:y =kx +b (k ≠0) (1)定义域为R ,值域为R ; (2)图象如图所示,为一条直线;(3)k >0时,函数为增函数,k <0时,函数为减函数;(4)当且仅当b =0时一次函数是奇函数.一次函数不可能是偶函数. (5)函数y =kx +b 的零点为⋅-kb2.二次函数:y =ax 2+bx +c (a ≠0)通过配方,函数的解析式可以变形为⋅-++=a b ac ab x a y 44)2(22 (1)定义域为R :当a >0时,值域为),44[2+∞-ab ac ;当a <0时,值域为]44,(2ab ac --∞;(2)图象为抛物线,抛物线的对称轴为abx 2-=,顶点坐标为)44,2(2a b ac a b --.当a >0时,抛物线开口向上;当a <0时,抛物线开口向下.(3)当a >0时,]2,(a b --∞是减区间,),2[+∞-a b是增区间; 当a <0时,]2,(a b --∞是增区间,),2[+∞-ab是减区间.(4)当且仅当b =0时,二次函数是偶函数;二次函数不可能是奇函数.(5)当判别式∆=b 2-4ac >0时,函数有两个变号零点aacb b 242-±-;当判别式∆=b 2-4ac =0时,函数有一个不变号零点ab 2-; 当判别式∆=b 2-4ac <0时,函数没有零点. 3.指数函数y =a x (a >0且a ≠1) (1)定义域为R ;值域为(0,+∞).(2)a >1时,指数函数为增函数;0<a <1时,指数函数为减函数; (3)函数图象如图所示.不具有奇偶性、周期性,也没有零点.4.对数函数y =log a x (a >0且a ≠1),对数函数y =log a x 与指数函数y =a x 互为反函数. (1)定义域为(0,+∞);值域为R .(2)a >1时,对数函数为增函数;0<a <1时,对数函数为减函数;(3)函数图象如图所示.不具有奇偶性、周期性,(4)函数的零点为1.5.幂函数y=xα(α∈R)幂函数随着α的取值不同,它们的定义域、性质和图象也不尽相同,但它们有一些共同的性质:(1)所有的幂函数在(0,+∞)都有定义,并且图象都通过点(1,1);(2)如果α>0,则幂函数的图象通过原点,并且在区间[0,+∞)上是增函数;(3)如果α<0,则幂函数在区间(0,+∞)上是减函数,在第一象限内,当x从右边趋向于原点时,图象在y轴右方无限地接近y轴,当x趋于+∞时,图象在x轴上方无限地接近x轴.要注意:因为所有的幂函数在(0,+∞)都有定义,并且当x∈(0,+∞)时,xα>0,所以所有的幂函数y=xα(α∈R)在第一象限都有图象.根据幂函数的共同性质,可以比较容易的画出一个幂函数在第一象限的图象,再根据幂函数的定义域和奇偶性,我们可以得到这个幂函数在其他象限的图象,这样就能够得到这个幂函数的大致图象.6.指数与对数(1)如果存在实数x,使得x n=a(a∈R,n>1,n∈N+),则x叫做a的n次方根.负数没有偶次方根.),1()(+∈>=N n n a a n n ;⎩⎨⎧=为偶数时当为奇数时当n a n a a n n |,|,)( (2)分数指数幂,)0(1>=a a a n n;,0()(>==a a a a n m m n nm n ,m ∈N *,且nm为既约分数). *N ,,0(1∈>=-m n a aa nm nm ,且nm为既约分数). (3)幂的运算性质a m a n =a m +n ,(a m )n =a mn ,(ab )n =a n b n ,a 0=1(a ≠0).(4)一般地,对于指数式a b =N ,我们把“b 叫做以a 为底N 的对数”记为log a N , 即b =log a N (a >0,且a ≠1). (5)对数恒等式:Na alog =N .(6)对数的性质:零和负数没有对数(对数的真数必须大于零!); 底的对数是1,1的对数是0. (7)对数的运算法则及换底公式:N M NMN M MN a a a a a a log log log ;log log )(log -=+=; M M a a log log αα=;bNN a a b log log log =.(其中a >0且a ≠1,b >0且b ≠1,M >0,N >0).【复习要求】1.掌握基本初等函数的概念,图象和性质,能运用这些知识解决有关的问题;其中幂函数主要掌握y =x ,y =x 2,y =x 3,21,1x y xy ==这五个具体的幂函数的图象与性质.2.准确、熟练的掌握指数、对数运算;3.整体把握函数的图象和性质,解决与函数有关的综合问题.【例题分析】例1 化简下列各式: (1)31522732-⨯;(2)031π2)27102(412-+-;(3)21)972()71()027.0(231+----;(4)log 2[log 3(log 464)];(5)4015018lg 5lg 2lg g g --+.解:(1)⋅=⨯=⨯=⨯---3432)3()2(2732123135253152 (2)⋅=-+=-+=-+--41243232)2764()49(π2)27102()412(3121315.0(3)443549310)925(49)103()972()71()027.0(21313321231-=+-=+-=+-----(4)log 2[log 3(log 464)]=log 2[log 3(log 443)]=log 2[log 33]=log 21=0.(5) .145lg 45lg4050lg 852lg40150lg 8lg 5lg 2lg ==⨯=--+g 【评析】指数、对数运算是两种重要的运算,在运算过程中公式、法则的准确、灵活使用是关键.例2 已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值为8,试确定f (x )的解析式.解:解法一设f (x )=ax 2+bx +c (a ≠0),依题意⎪⎩⎪⎨⎧==-=⎪⎪⎩⎪⎪⎨⎧=--=+--=++,7,4,4,,8441,1242c b a ab ac c b a c b a 解之得解之得所以所求二次函数为f (x )=-4x 2+4x +7. 解法二f (x )=a (x -h )2+k (a ≠0),为f (2)=-1,f (-1)=-1,所以抛物线的对称轴为212)1(2=-+=x , 又f (x )的最大值为8,所以8)21()(2+-=x a x f .因为(-1,-1)点在抛物线上,所以8)211(12+--=-a ,解得a =-4. 所以所求二次函数为7448)21(4)(22++-=+--=x x x x f .例3 (1)如果二次函数f (x )=x 2+(a +2)x +5在区间(2,+∞)上是增函数,则a 的取值范围是______.(2)二次函数y =ax 2-4x +a -3的最大值恒为负,则a 的取值范围是______. (3)函数f (x )=x 2+bx +c 对于任意t ∈R 均有f (2+t )=f (2-t ),则f (1),f (2),f (4)的大小关系是_______.解:(1)由于此抛物线开口向上,且在(2,+∞)上是增函数, 画简图可知此抛物线对称轴22+-=a x 或与直线x =2重合,或位于直线x =2的左侧, 于是有222≤+-a ,解之得6-≥a . (2)分析二次函数图象可知,二次函数最大值恒为负的充要条件是“二次项系数a <0,且判别式∆<0”,即⎩⎨⎧<--<0)3(416,0a a a ,解得a ∈(-∞,-1).(3)因为对于任意t ∈R 均有f (2+t )=f (2-t ),所以抛物线对称轴为x =2,又抛物线开口向上,做出函数图象简图可得f (2)<f (1)<f (4).例4 已知函数f (x )=mx 2+(m -3)x +1的图象与x 轴的交点至少有一个在原点的右侧,求实数m 的范围.解:当m =0时,f (x )=-3x +1,其图象与x 轴的交点为)0,31(,符合题意; 当m <0时,注意到f (0)=1,又抛物线开口向下,所以抛物线与x 轴的两个交点必在原点两侧.所以m <0符合题意;当m >0时,注意到f (0)=1,又抛物线开口向上,所以抛物线与x 轴的两个交点必在原点同侧(如果存在),所以若满足题意,则⎩⎨⎧>-=-≥--=∆,0232,04)3(2mm a b m m 解得0<m ≤1.综上,m ∈(-∞,1].【评析】在高中阶段,凡“二次”皆重点,二次函数,一元二次方程,一元二次不等式,二次曲线都应着重去理解、掌握.例2、3、4 三个题目充分体现了数形结合思想及运动变化思想的运用.这两种数学思想在函数问题的解决中被普遍使用.例5 (1)当a≠0时,函数y=ax+b与y=b ax的图象只可能是( )(2)函数y=log a x,y=log b x,y=log c x,y=log d x的图象分别是图中的①、②、③、④,则a,b,c,d的大小关系是______.【分析】(1)在选项(A)中,由y=ax+b图象可知a<0,b>1,所以b a<b0=1(根据以为底的指数函数的性质),所以y=b ax=(b a)x应为减函数.在选项(B)中,由y=ax+b图象可知a>0,b>1,所以b a>b0=1,所以y=b ax=(b a)x应为增函数.在选项(C)中,由y=ax+b图象可知a>0,0<b<1,所以b a<b0=1,所以y=b ax=(b a)x应为减函数.与图形提供的信息相符.在选项(D)中,由y=ax+b图象可知a<0,0<b<1,所以b a>b0=1,所以y=b ax=(b a)x应为增函数.综上,选C.(2)如图,作直线y=1与函数y=log a x,y=log b x,y=log c x,y=log d x的图象依次交于A,B,C,D四点,则A,B,C,D四点的横坐标分别为a,b,c,d,显然,c<d<a<b.【评析】在本题的解决过程中,对函数图象的深入分析起到了至关重要的作用. 这里,对基本初等函数图象的熟悉是前提,对图象的形态的进一步研究与关注是解决深层问题要重点学习的,例4中“注意到f (0)=1”,例5中“作直线y =1”就是具体的表现,没有“熟悉”和“深入的研究”是不可能“注意到”的,也作不出“直线y =1”.例6 已知幂函数)()(22123Z ∈=-+k xx f k k .(1)若f (x )为偶函数,且在(0,+∞)上是增函数,求f (x )的解析式; (2)若f (x )在(0,+∞)上是减函数,求k 的取值范围. 解:(1)因为f (x )在(0,+∞)上是增函数,所以021232>-+k k ,解得-1<k <3, 因为k ∈Z ,所以k =0,1,2,又因为f (x )为偶函数,所以k =1,f (x )=x 2. (2)因为f (x )在(0,+∞)上是减函数,所以021232<-+k k , 解得k <-1,或k >3(k ∈Z ). 例7 比较下列各小题中各数的大小 (1)21log ,0,6.0log 6.02;(2)lg2与lg(x 2-x +3);(3)0.50.2与0.20.5; (4)332与;(5)21log ,32,)21(3131;(6)a m +a -m 与a n +a -n (a >0,a ≠1,m >n >0)【分析】(1)函数y =log 2x 在区间(0,+∞)上是增函数,所以log 20.6<log 21=0, 函数y =log 0.6x 在区间(0,+∞)上是减函数,所以01log 21log 6.06.0=> 所以216.0log 06.0log 2<<. (2)由于2411)21(322>+-=+-x x x ,所以lg2<lg(x 2-x +3). (3)利用幂函数和指数函数单调性.0.50.2>0.20.2>0.20.5.(4)因为9)3(,8)2(636==.根据不等式的性质有.323<(5)因为;32)21(,)728()21(,27821313131>>>即所以 比较32与log 32,只需比较3233log 与log 32,因为y =log 3x 是增函数,所以只需比较323与2的大小, 因为3332289)3(=>=,所以2332>,所以2log 323>, 综上,.2log 32)21(331>>(6))1)((1)(--=+-+++--n m n m nm n n m m a a a aa a a a ,当a >1时,因为m >n >0,a m >a n ,a m +n >1,所以a m +a-m>a n +a -n ;当0<a <1时,因为m >n >0,a m <a n ,a m +n <1,所以a m +a -m >a n +a -n . 综上,a m +a -m >a n +a -n .例8 已知a >2,b >2,比较a +b ,ab 的大小. 【分析】方法一(作商比较法)b a ab b a 11+=+,又a >2,b >2,所以211,211<<b a ,所以1<+abba ,所以a +b <ab . 方法二(作差比较法))]2()2([21)]2()2[(21)222(21a b b a ab b ab a ab b a ab b a -+-=-+-=-+=-+, 因为a >2,b >2,所以2-a <0,2-b <0,所以a +b -ab <0,即a +b <ab . 方法三(构造函数)令y =f (a )=a +b -ab =(1-b )a +b ,将y 看作是关于a 的一次函数, 因为1-b <0,所以此函数为减函数,又a ∈(2,+∞),y 最大<f (2)=(1-b )×2+b =2-b <0,所以a +b -ab <0,即a +b <ab . 【评析】两个数比较大小的基本思路:如果直接比较,可以考虑用比较法(包括“作差比较法”与“作商比较法”,如例8的方法一与方法二),或者利用函数的单调性来比较(如例7(1)(2)(3),例8的方法三).如果用间接的方法可以尝试对要比较的两数进行适当的变形,转化成对另两个数的比较,也可以考虑借助中间量来比较(如例7(4)(5)(6)).。

高中数学新人教版必修一知识讲解及练习附答案知识讲解_《函数》全章复习与巩固_ 基础

高中数学新人教版必修一知识讲解及练习附答案知识讲解_《函数》全章复习与巩固_ 基础

高中数学新人教版必修一知识讲解及练习附答案《函数》全章复习与巩固编稿:审稿:【学习目标】1.会用集合与对应的语言刻画函数;会求一些简单函数的定义域和值域,初步掌握换元法的简单运用.2.能正确认识和使用函数的三种表示法:解析法,列表法和图象法.了解每种方法的优点.在实际情境中,会根据不同的需要选择恰当的方法表示函数;3.求简单分段函数的解析式;了解分段函数及其简单应用;4.理解函数的单调性、最大(小)值及其几何意义;结合具体函数了解奇偶性的含义;5.理解函数零点的意义,能判断二次函数零点的存在性,会求简单函数的零点,了解函数的零点与方程根的关系;6.能运用函数的图象理解和研究函数的性质.【知识网络】【要点梳理】要点一:关于函数的概念1.两个函数相等的条件用集合与对应的语言刻画函数,与初中的“用变量的观点描述函数”实质上是一致的.函数有三要素——定义域、值域、对应关系,它们是不可分割的一个整体.当且仅当两个函数的三要素完全相同时,这两个函数相等.2.函数的常用表示方法函数的常用表示方法有:图象法、列表法、解析法.注意领会在实际情境中根据不同的需要选择恰当的方法表示函数.3.映射设A、B是两个非空集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x(原f x(象)与之对应,那么就称对应f:A→B为从集合A到集象),在集合B中都有唯一确定的元素()合B的一个映射.由映射定义知,函数是一种特殊的映射,即函数是两个非空的数集间的映射.4.函数的定义域函数的定义域是自变量x 的取值范围,但要注意,在实际问题中,定义域要受到实际意义的制约.其题型主要有以下几种类型:(1)已知()f x 得函数表达式,求定义域; (2)已知()f x 的定义域,求[]()f x ϕ的定义域,其实质是由()x ϕ的取值范围,求出x 的取值范围;(3)已知[]()fx ϕ的定义域,求()f x 的定义域,其实质是由x 的取值范围,求()x ϕ的取值范围.5.函数的值域由函数的定义知,自变量x 在对应法则f 下取值的集合叫做函数的值域. 函数值域的求法:(1)与二次函数有关的函数,可用配方法(注意定义域);(2)形如y ax b =+t =,转化成二次函数再求值域(注意0t ≥);(3)形如(0)ax by c cx d+=≠+的函数可借助反比例函数求其值域,若用变量分离法求值域,这种函数的值域为|a y y c ⎧⎫≠⎨⎬⎩⎭; (4)形如22ax bx cy mx nx p++=++(,a m 中至少有一个不为零)的函数求值域,可用判别式求值域. 6.函数的解析式函数的解析式是函数的一种表示方法,求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是求出函数的定义域.求函数解析式的主要方法:已知函数解析式的类型时,可用待定系数法;已知复合函数[]()f g x 的表达式时,可用换元法,此时要注意“元”的取值范围;若已知抽象函数表达式,则常用解方程组、消参的方法求出()f x .要点二:函数的单调性(1)如果对于定义域I 内某个区间D 上的任意两个自变量x 1,x 2,当x 1<x 2时,都有12()()f x f x <,那么就说函数()f x 在区间D 上是增函数.(2)如果对于定义域I 内某个区间D 上的任意两个自变量x 1,x 2,当x 1<x 2时,都有12()()f x f x >,那么就说函数()f x 在区间D 上是减函数.(3)若函数()f x 在某个区间上总是递增(或递减)的,则该区间是函数的一个单调增(或减)区间.若函数()f x 在整个定义域上总是递增(或递减)的,则称该函数为单调增(或减)函数. 与函数单调性有关的问题主要有:由函数单调性定义判断或证明某一个函数在一个区间的单调性;通过图象或运用复合函数的单调性原理求函数的单调区间;应用函数的单调性证明不等式、比较数的大小、判断某些超越方程根的个数等.要点三:函数的奇偶性(1)若一个函数具有奇偶性,则它的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,那么它就失去了是奇函数或是偶函数的条件,即这个函数既不是奇函数也不是偶函数.(2)若奇函数()y f x =的定义域内有零,则由奇函数定义知(0)(0)f f -=-,即(0)(0)f f =-,所以(0)0f =.(3)奇、偶性图象的特点如果一个函数是奇函数,则这个函数的图象是以坐标原点为对称中心的中心对称图形;反之,如果一个函数的图象是以坐标原点为对称中心的中心对称图形,则这个函数是奇函数.如果一个函数是偶函数,则它的图象是以y 轴为对称轴的对称图形;反之,如果一个函数的图象是y 轴为对称轴的轴对称图形,则这个函数是偶函数.要点四:图象的作法与平移(1)根据函数表达式列表、描点、连光滑曲线; (2)利用熟知函数图象的平移、翻转、伸缩变换; (3)利用函数的奇偶性,图象的对称性描绘函数图象. 要点五:一次函数和二次函数 1.一次函数(0)y kx b k =+≠,其中y k x∆=∆. 2.二次函数二次函数2(0)y ax bx c a =++≠,通过配方可以得到2(),y a x h k a =-+决定了二次函数图象的开口大小及方向.顶点坐标为(),h k ,对称轴方程为x h =.对于二次函数2224()()24b ac b f x ax bx c a x a a-=++=++. 当0a >时,()f x 的图象开口向上;顶点坐标为24,24b ac b aa ⎛⎫-- ⎪⎝⎭;对称轴为2bx a =-;()f x 在,2b a ⎛⎤-∞- ⎥⎝⎦上是单调递减的,在,2b a ⎡⎫-+∞⎪⎢⎣⎭上是单调递增的;当2b x a =-时,函数取得最小值244ac b a-. 当0a <时,()f x 的图象开口向下;顶点坐标为24,24b ac b aa ⎛⎫-- ⎪⎝⎭;对称轴为2bx a =-;()f x 在,2b a ⎛⎤-∞- ⎥⎝⎦上是单调递增的,在,2b a ⎡⎫-+∞⎪⎢⎣⎭上是单调递减的;当2b x a =-时,函数取得最大值244ac b a-. 要点六:函数的应用举例(实际问题的解法)(1)审题:弄清题意、分清条件和结论、理顺数量关系;(2)建模:将文字语言转化成数学语言,利用相应的数学知识模型; (3)求模:求解数学模型,得到数学结论;(4)还原:将用数学方法得到的结论,还原为实际问题的意义. 求解函数应用问题的思路和方法,我们可以用示意图表示为:要点七:函数与方程(1)对于函数()()y f x x D =∈,我们把使()0f x =得实数x 叫做函数()()y f x x D =∈的零点. (2)确定函数()y f x =的零点,就是求方程()0f x =的实数根.(3)一般地,如果函数()y f x =在区间[],a b 上的图象是连续不间断的一条曲线,并且()()0f a f b ⋅<,那么函数()y f x =在区间(),a b 内有零点,即存在()0,x a b ∈,使得0()0f x =,这个0x 也就是方程()0f x =的根.(4)一般地,对于不能用公式法求根的方法()0f x =来说,我们可以将它与函数()y f x =联系起来,并利用函数的性质找出零点或零点所在的区间,从而求出方程的根,或者用二分法求出方程的近似解.判断函数在某区间有零点的依据:对于一些比较简单的方程,我们可以通过公式等方法进行解决,对于不能用公式解决的方程,我们可以把这些方程()0f x =与函数()y f x =联系起来,并利用函数的图象和性质找零点,从而求出方程的根.对于如何判断函数在某区间内是否是零点的问题,最关键的是要把握两条:其一,函数的图象在某区间是否是连续不间断的一条曲线;其二,该函数是否满足在上述区间的两个端点处,函数值之积小于0.(5)在实数范围内,二次函数2(0)y ax bx c a =++≠的零点与二次方程20(0)ax bx c a ++=≠的根之间有密切关系.①0∆>,方程20(0)ax bx c a ++=≠有两个实根,其对应二次函数有两个零点; ②0∆=,方程20(0)ax bx c a ++=≠有一个二重根,其对应二次函数有一个二重零点; ③0∆<,方程20(0)ax bx c a ++=≠无根,其对应二次函数无零点. 【典型例题】类型一:映射例1.设集合{(,)|,}A B x y x y ==∈∈R R ,f 是A 到B 的映射,并满足:(,)(,)f x y xy x y →--. (1)求B 中元素(3,-4)在A 中的原象; (2)试探索B 中有哪些元素在A 中存在原象;(3)求B 中元素(a ,b )在A 中有且只有一个原象时,a ,b 所满足的关系式.【思路点拨】本例是一道与方程综合的题目,关键是将题目转化为我们所熟悉的映射的知识. 【解析】(1)设(x ,y )是(3,-4)在A 中的原象, 于是34xy x y -=⎧⎨-=-⎩,解得13x y =-⎧⎨=⎩或31x y =-⎧⎨=⎩,∴(―3,4)在A 中的原象是(―1,3)或(―3,1). (2)设任意(a ,b )∈B 在A 中有原象(x ,y ), 应满足 xy a x y b -=⎧⎨-=⎩①②由②可得y=x ―b ,代入①得x 2―bx+a=0. ③ 当且仅当Δ=b 2―4a ≥0时,方程③有实根.∴只有当B 中元素满足b 2-4a ≥0时,才在A 中有原象.(3)由以上(2)的解题过程知,只有当B 中元素满足b 2=4a 时,它在A 中有且只有一个原象. 【总结升华】高考对映射考查较少,考查时只涉及映射的概念,因此我们必须准确地把握映射的概念,并灵活地运用它解决有关问题.举一反三:【变式1】 已知a ,b 为两个不相等的实数,集合2{4,1}M a a =--,2{41,2}N b b =-+-,:f x x →表示把M 中的元素x 映射到集合N 中仍为x ,则a+b 等于( )A .1B .2C .3D .4 【答案】 D【解析】 由已知可得M=N ,故222242420411420a a a a b b b b ⎧⎧-=--+=⎪⎪⇒⎨⎨-+=--+=⎪⎪⎩⎩,a 、b 是方程x 2-4x+2=0的两根,故a+b=4.类型二:函数的概念及性质【高清课堂:集合与函数性质综合377492 例2】例2.设定义在R 上的函数y = f (x )是偶函数,且f (x )在(-∞,0)为增函数.若对于120x x <<,且120x x +>,则有 ( )A .12(||)(||)f x f x <B .21()()f x f x ->-C .12()()f x f x <-D .12()()f x f x -> 【答案】D【解析】因为120x x <<,且120x x +>,所以21||||x x >,画出y = f (x )的图象,数形结合知,只有选项D 正确.【总结升华】对函数性质的综合考查是高考命题热点问题.这类问题往往涉及函数单调性、奇偶性、函数图象的对称性,以及题目中给出的函数性质.解决这类问题的关键在于“各个击破”,也就是涉及哪个性质,就利用该性质来分析解决问题.举一反三:【变式1】下列函数中,既是奇函数又是增函数的为( ) A .1y x =+ B .2y x =-C .1y x=D .||y x x =【答案】D【解析】奇函数有1y x=和||y x x =,又是增函数的只有选项D 正确. 【变式2】 定义在R 上的偶函数f (x),对任意x 1,x 2∈[0,+∞)(x 1≠x 2),有2121()()0f x f x x x -<-,则( )A .(3)(2)(1)f f f <-<B .(1)(2)(3)f f f <-<C .(2)(1)(3)f f f -<<D .(3)(1)(2)f f f <<- 【答案】A【解析】由题知,()f x 为偶函数,故(2)(2)f f =-,又知x ∈[0,+∞)时,()f x 为减函数,且3>2>1,∴(3)(2)(1)f f f <<,即(3)(2)(1)f f f <-<.故选A .例3.设偶函数()f x 满足3()8(0)f x x x =-≥,则{|(2)0}x f x ->=( ) A .{x|x <-2或x >4} B .{x|x <0或x >4} C .{x|x <0或x >6} D .{x|x <-2或x >2} 【答案】 B【解析】 当x <0时,-x >0,∴33()()88f x x x -=--=--, 又()f x 是偶函数,∴3()()8f x f x x =-=--,∴338, 0()8, 0x x f x x x ⎧-≥⎪=⎨--<⎪⎩,∴33(2)8, 0(2)(2)8, 0x x f x x x ⎧--≥⎪-=⎨---<⎪⎩,30(2)80x x ≥⎧⎨-->⎩或30(2)80x x <⎧⎨--->⎩. 解得x >4或x <0,故选B .例4.设函数()0)f x a =<的定义域为D ,若所有点(,())s f t (,)s t D ∈构成一个正方形区域,则a 的值为( )A .-2B .-4C .-8D .不能确定 【答案】 B【解析】 依题意,设关于x 的不等式ax 2+bx+c ≥0(a <0)的解集是[x 1,x 2](x 1<x 2),且12()()0f x f x ==,22140)x x b ac a-=->-,()f x =的最大值是=s ∈[x 1,x 2]的取值一定时,()f t 取遍⎡⎢⎢⎣中的每一个组,相应的图形是一条线段;当s 取遍[x 1,x 2]中的每一个值时,所形成的图形是一个正方形区域(即相当于将前面所得到的线段在坐标平面内平移所得),因此有0a =>-,a -=a <0,因此a=-4,选B 项.举一反三:【变式1】若函数()y f x =的定义域是[0,2],则函数(2)()1f xg x x =-的定义域是( ) A .[0,1] B .[0,1) C .[0,1)∪(1,4] D .(0,1) 【答案】 B【解析】 要使()g x 有意义,则02210x x ≤≤⎧⎨-≠⎩,解得0≤x <1,故定义域为[0,1),选B .例5.已知函数y =M ,最小值为m ,则mM的值为( )A .14 B .12C .22D .32【答案】 C【解析】 函数的定义域为[-3,1].又22242(1)(3)4223424(1)y x x x x x =+-+=+--+=+-+. 而204(1)2x ≤-+≤,∴4≤y 2≤8.又y >0,∴222y ≤≤.∴22M =,m=2.∴22m M =.故选C 项. 举一反三:【变式1】函数221x y x =+(x ∈R )的值域是________.【答案】[0,1) 【解析】(1)注意到x 2≥0,故可以先解出x 2,再利用函数的有界性求出函数值域.由221x y x =+,得21y x y=-,∴01y y ≥-,解之得0≤y <1.故填[0,1).例6.设函数()|24|1f x x =-+. (1)画出函数()y f x =的图象;(2)若不等式()f x ax ≤的解集非空,求a 的取值范围.【解析】 (1)由于25, 2()23, 3x x f x x x -+<⎧=⎨-≥⎩,则函数()y f x =的图象如图所示.(2)由函数()y f x =与函数y=ax 的图象可知,当且仅当12a ≥或a <―2时,函数()y f x =与函数y=ax 的图象有交点.故不等式()f x ax ≤的解集非空时,a 的取值范围为1(,2)[,)2-∞-+∞.举一反三:【变式1】 直线y=1与曲线y=x 2-|x|+a 有四个交点,则a 的取值范围是________. 【答案】 514a <<【解析】 如图,作出y=x 2-|x|+a 的图象,若要使y=1与其有四个交点,则需满足114a a -<<,解得514a <<.类型三:函数的零点问题例7.若函数()y f x =在区间(-2,2)上的图象是连续的,且方程()0f x =在(-2,2)上仅有一个实根0,则(1)(1)f f -⋅的值( )A .大于0B .小于0C .等于0D .无法确定 【答案】D【解析】根据连续函数零点的性质,若(1)(1)0f f -⋅<,则()f x 在(-1,1)内必有零点,即方程()0f x =在(-1,1)内有根;反之,若方程()0f x =在(-2,2)内有实根,不一定有(1)(1)0f f -⋅<,也有可能(1)(1)0f f -⋅>.【总结升华】若(1)(1)0f f -⋅<,则()f x 在(-1,1)内必有零点,但当()f x 在(-1,1)内有零点时,却不一定总有(1)(1)0f f -⋅<.举一反三:【变式1】若函数2()f x x ax b =++的零点是2和4-,则a = ,b = . 【答案】2,8a b ==-【变式2】若函数()0f x ax b =+=有一个零点是2,那么函数2()g x bx ax =-的零点是 . 【答案】10,2-类型四:函数性质的综合应用 例8. 已知函数2()af x x x=+(x ≠0,常数a ∈R ). (1)讨论函数()f x 的奇偶性,并说明理由;(2)若函数()f x 在x ∈[2,+∞)上为增函数,求a 的取值范围.【思路点拨】(1)对a 进行分类讨论,然后利用奇函数的定义去证明即可.(2)由题意知,任取2≤x 1<x 2,则有12()()0f x f x -<恒成立,即可得a 的取值范围.【解析】 (1)当a=0时,2()f x x =,对任意x ∈(-∞,0)∪(0,+∞),22()()()f x x x f x -=-==,∴()f x 为偶函数.当a ≠0时,2()af x x x=+(a ≠0,x ≠0), 取x=±1,得(1)(1)20f f -+=≠, ∴(1)(1)f f -≠-,(1)(1)f f -≠,∴函数(1)(1)f f -≠既不是奇函数,也不是偶函数. (2)解法一:设2≤x 1<x 2,2212121212121212()()[()]x x a a f x f x x x x x x x a x x x x --=+--=⋅+-,要使函数()f x 在x ∈[2,+∞)上为增函数,必须12()()0f x f x -<恒成立.∵x 1-x 2<0,x 1 x 2>4,即a <x 1 x 2 (x 1+ x 2)恒成立.又∵x 1+ x 2>4,∴x 1x2(x 1+ x 2)>16. ∴a 的取值范围是(-∞,16].解法二:当a=0时,2()f x x =,显然在[2,+∞)上为增函数. 当a <0时,反比例函数ax在[2,+∞)上为增函数, ∴2()af x x x=+在[2,+∞)上为增函数. 当a >0时,同解法一.【总结升华】 函数的奇偶性与单调性是函数的重要性质,因而也是高考命题的热点.应运用研究函数的奇偶性与单调性的基本方法,来分析解决问题.举一反三:【高清课堂:集合与函数性质综合377492 例5】 【变式1】已知函数1()f x kx x=-,且f (1)=1. (1)求实数k 的值及函数的定义域;(2)判断函数在(0,+∞)上的单调性,并用定义加以证明. 【解析】(1)(1)1,11,2f k k =∴-=∴=,1()2f x x x∴=-,定义域为:()(),00,-∞+∞.(2)在(0,+∞)上任取1212,,x x x x <且,则12121211()()22f x f x x x x x -=--+=12121()(2)x x x x -+1212121,0,20x x x x x x <∴-<+> 12()()f x f x ∴<所以函数1(2)2f x x=-在()0,+∞上单调递增. 类型五:函数的实际应用例9.某桶装水经营部每天的房租、人员工资等固定资本为200元,每桶水的进价是5元.销售单价与日均销售量的关系如下表:请根据以上数据作出分析,这个经营部怎样定价能获得最大利润? 【答案】11.5 1490【思路点拨】 由题目可获取以下主要信息:(1)已知固定成本200元/天,水进价5元/桶;(2)用表格体现出了售价与日销售量的关系;(3)解决利润最大问题.解决本题可先分析表格,从中找到单价每增加1元,则日销售量就减少40桶,然后设出有关未知量,建立函数模型,进而解决问题. 【解析】 设每桶水在原来的基础上上涨x 元,利润为y 元,由表格中的数据可以得到:价格每上涨1元,日销售量就减少40桶,所以涨价x 元后,日销售的桶数为:480-40(x -1)=520-40x >0,所以0<x <13,则利润:213(52040)2004014902y x x x ⎛⎫=--=--+ ⎪⎝⎭.(0<x <13)故当x =6.5时,利润最大,即当水的价格为11.5元时,利润最大值为1490元.【总结升华】列表法是给出函数关系的一个重要形式,通过“利润=收入-支出”这一实际意义建立变量之间的关系.运用二次函数模型,常解决一些最大(小)值问题,对生产生活等问题进行优化.举一反三:【变式1】某公司每年需购买某种元件8000个用于组装生产,每年分n 次等量进货,每进一次货(不分进货量大小)费用500元,为了持续生产,需有每次进货的一半库存备用,每件每年库存费2元,问分几次进货可使得每年购买和贮存总费用最低?【思路点拨】本题的关键是根据题意列出函数关系式,然后利用配方法求函数的最大值. 【答案】4【解析】设每年购买和贮存元件总费用为y 元,其中购买成本费为固定投入,设为c 元,则 8000150022y n c n =+⨯⨯+ 800016500500()n c n c n n=++=++ 24000c =++,=,即n=4时,y取得最小值且y min=4000+c.所以分4次进货可使得每年购买和贮存元件总费用最低.【总结升华】题中用了配方法求最值,技巧性高,另外本题还可利用函数16y xx=+在(0,+∞)上的单调性求最值.。

2020高考人教版文科数学总复习讲义:立体几何课时1含答案

2020高考人教版文科数学总复习讲义:立体几何课时1含答案

空间几何体的结构及三视图、直观图■复习目标■1. 了解柱、锥、台、球的定义、性质及它们之间的关系.2 •掌握柱、锥、台、球的结构特征.3•能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等及其简易组合)的三视图, 能识别上述三视图所表示的立体模型,会用斜二测法画出它们的直观图.. ____________________________________________®知识梳理1.柱、锥、台、球的结构特征(1) 正视图是光线自物体的前面向后面正投影所得的投影图•俯视图是光线自物体的上面向下面正投影所得的投影图.侧视图是光线自物体的左面向右面正投影所得的投影图.(2) 三视图的排列规则:先画正视图,俯视图画在正视图的下方,长度与正视图相等,侧视图则安排在正视图的正右方,高度与正视图相同•3. 直观图空间几何体的直观图常用斜二测法来画,基本步骤是:(1) 画几何体的底面①在已知图形中取互相垂直的x轴和y轴,两轴交于点0,画直观图时,把它们画成对应的x'轴与y'轴,两轴相交于0 '点,且使/ x' O' y'= 45°或135° .②已知图形中平行于x轴或y轴的线段,在直观图中,分别画成平行于x'轴或y'轴的线段.③在已知图形中平行于x轴的线段,在直观图中保持原长度不变,平行于y轴的线段,长度为原来的一半•(2) 画几何体的高在已知图形中过0点作z轴垂直于xOy平面,在直观图中对应的z'轴也垂直x' O' y' 平面,已知图形中平行于z轴的线段在直观图中仍平行于z'轴且长度相等•(3) 成图根据实际图形,顺次连接线段的端点,并整理(去掉辅助线,将被遮挡部分改为虚线),就得到了几何体的直观图.1 •根据三视图确定直观图的常用结论(1) 三视图为三个三角形,对应三棱锥;(2) 三视图为两个三角形,一个四边形,对应四棱锥;(3) 三视图为两个三角形,一个带圆心的圆,对应圆锥;(4) 三视图为一个三角形,两个四边形,对应三棱柱;⑸三视图为两个四边形,一个圆,对应圆柱.2 •用斜二测画法画出的水平放置的平面图形的直观图的面积是原图形面积的热身练习1. 下列四个命题:① 有两个面互相平行,其余各面都是四边形的几何体叫棱柱; ② 各个面都是三角形的几何体是三棱锥;③ 用一个平面去截棱锥,棱锥的底面与截面之间的部分是棱台;④ 两个面互相平行且相似,其余各面都是梯形的多面体是棱台. 其中正确的命题有(A )A . 0个B . 1个C . 2个D . 3个馆谅①假,如棱台有两个面互相平行,其余各面是四边形; 由图1至图3可知②、③、④都是错误的.2. 下列说法正确的是(C )A .以直角三角形的一边为轴旋转所得到的旋转体是圆锥B .以直角梯形的一腰为轴旋转所得的旋转体是圆台C .以半圆的直径为轴旋转一周所得到的旋转体是球D .圆锥的侧面展开图为扇形,这个扇形所在圆的半径等于圆锥底面圆的半径噩3 A 是错误的,以直角三角形的直角边..为轴旋转所得到的旋转体才是圆锥; B 是错误的.以直角梯形的垂直于底的腰 为轴旋转所得的旋转体是圆台;C 是正确;D 是错误的,C._2 "4.(D)圆锥的侧面展开图为扇形,这个扇形所在圆的半径等于圆锥的母线长.故选3.A .①②B .①③C .①④D .②④CD 圆锥和正四棱锥的正视图和侧视图都是等腰三角形.4. (2018全国卷川)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼.图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是(A )由题意可知带卯眼的木构件的直观图如图所示,. 咼频考点 ______________________________-:空间几何体的结构特征鈕11(经典真题)若空间中n 个不同的点两两距离都相等,则正整数n 的取值A .至多等于3B .至多等于4C .等于 5D .大于5殛 根据n 的取值构造相应的几何图形或几何体求解.n = 2时,可以;n = 3时,为正三角形,可以;n = 4时,为正四面体,可以; n = 5时,为四棱锥,侧面为正三角形,底面为菱形且对角线长与边长不可能相等.B本题考查了空间想象能力和推理论证能力,试题有较大的难度•根据题目特点善 于构造几何图形和空间几何体是解决这类问题的关键.变式採究1•在正方体上任意选择4个顶点,它们可能是如下各种几何形体的 4个顶点,这些几何体是 ①③④⑤•(写出所有正确结论的编号)由直观图可知其俯视图应选 A.5.如果一个水平放置的平面图形的斜二测直观图是一个底角为 的等腰梯形,那么这个平面图形的面积是(C )A. 1 + 于 B . 1+ .245 °腰和上底长均为1,所以其面积 S =-2^ X 2 = 2+2.C . 2 + ,2D £+¥① 矩形;② 不是矩形的平行四边形;③ 有三个面为等腰直角三角形,有一个面为等边三角形的四面体; ④ 每个面都是等边三角形的四面体; ⑤ 每个面都是直角三角形的四面体.A .①④③B .①②③C .⑤④③D .①④⑥薛3由四面体ABCD 四个顶点是长方体的四个顶点, 可得四面体ABCD 的正视图为①, 侧视图为②,俯视图为③•故四面体ABCD 的三视图分别为①②③.B❺® (1)解决三视图问题,要从以下几个方面加以把握:①搞清正视、侧视、俯视的方向,同一物体由于正视、侧视的方向不同或放置的位置不 同,所画的三视图可能不同.作出正方体ABCD — A ' B ' C ' D '.① 显然可能;②不可能; ③取一个顶点处的三条棱,连接各棱端点构成的四面体; ④取正方体中对面上的两条异面直线对角线的四个端点构成的四面体, —B ' BC 时各面均为直角三角形.如图,四面体 ABCD 的四个顶点是长方体的四个顶点女口 B ' — ACD ';⑤取 D(长方体是虚拟图形,起辅助 作用),则四面体 ABCD 的三视图分别是(①②③④⑤⑥代表图形)(空间几何体的三视图C② 遵循“长对正、高平齐、宽相等 ”的原则.③ 注意几何体中与投影面垂直或平行的线段在三视图中的特点. ④ 要注意实线、虚线的画法,可视轮廓线画成实线,不可视的画成虚线.(2)画三视图时,要注意所给几何体与熟知的几何体的联系,如将几何体放置在正方体(或长方体)中或补形成正方体等,有利用发现线、面与投影面的位置关系,从而准确作出相应 的三视图.变式採究2. (1)在如图所示的空间直角坐标系 O — xyz 中,一个四面体的顶点坐标分别是 (0,0,2),(2,2,0), (1,2,1), (2,2,2).给出编号为①、②、③、④的四个图,贝U幼该四面体的正视图和俯视图分别为(D)2'设A(0,0,2), B(2,2,0), C(1,2,1), D(2,2,2),贝U ABCD 即为满足条件的四面体,得出正视 图和俯视图分别为④和②•(2)由图可知其侧视图为三角形, 根据三视图的“高平齐”得侧视图的高为.3,又由“宽相等”可知侧视图的宽度和俯视图的宽度相等,得侧视图的底为1X sin 60 =~23.所以侧视图的面积为S = |x 訂 3=3.A .①和②B .③和①C .④和③ D .④和②(2)已知三棱锥的底面是边长为1的正三角形,其正视图与俯视图如图所示,则其侧视图的面积为 (C)A 亞 A. 4 B. { 3 C.3D . 1堪3 (1)在空间直角坐标系中构建棱长为2的正方体,兰厂 由三视图得到空间几何体的直观图A . 3 .2B . 2 3 C. 2 ,2 D . 2如图所示,A . 10B . 12C . 14D . 16FT/0 X(2017北京卷)某四棱锥的三视图如图所示, 则该四棱锥的最长棱的长度为解析可知SD 为该四棱锥的最长棱. 由三视图可知正方体的棱长为 故SD =22+ 22 + 22= 2 3.B将三视图还原为直观图时, 菩案 2,若能将其放置到 “正方体”或“长方体”中去研究, 不仅能较易得到直观图,同时还能发现各元素之间的数量关系与位置关系, 便于问题的解 决.变式探究3. (2017全国卷I )某多面体的三视图如图所示,其中正视图和左视图都由正方形和等 2,俯视图为等腰直角三角形.该多面体的各个面中有 这些梯形的面积之和为 (B ) 腰直角三角形组成,正方形的边长为 若干个是梯形,正(主灌图 侧佐)视图cia将三视图还原为直观图,如图:可知该多面体是由直三棱柱和三棱锥组合而成的,且直三棱柱的底面是直角边长为2的等腰直角三角形,侧棱长为 2.三棱锥的底面是直角边长为2的等腰直角三角形,高为2.因此该多面体各个面中有2个梯形,且这两个梯形全等,梯形的上底长为2,下底长为4,高为2.1故这些梯形的面积之和为2 X 2 x (2 + 4)X 2 = 12.■I课时小结1 •与柱、锥、台、球有关的概念题,要结合其定义和结构特征,作出准确的判断,若说明命题是假命题,只需要举出一个反例即可.2 •画三视图要注意“长对正、高平齐、宽相等”.3•三视图和直观图是空间几何体的不同的表现形式,空间几何体的三视图可以使我们很好地把握空间几何体的性质. 由空间几何体可以画出它的三视图,同样由三视图可以想象出空间几何体的形状,两者之间可以相互转化.。

2020高考人教版文科数学总复习讲义:导数及其应用课时1含答案

2020高考人教版文科数学总复习讲义:导数及其应用课时1含答案

导数的概念及运算1.了解导数概念的实际背景.2.通过函数图象直观理解导数的几何意义,会求曲线的切线方程.3.能根据导数的定义,求一些简单函数的导数.4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.知识梳理1.导数的概念(1)平均变化率: 函数y =f (x )从x 0到x 0+Δx 的平均变化率Δy Δx = f (x 0+Δx )-f (x 0)Δx. (2)函数y =f (x )在x =x 0处的导数函数y =f (x )在x =x 0处的瞬时变化率 li m Δx →0 Δy Δx通常称为f (x )在x =x 0处的导数,并记作f ′(x 0),即 f ′(x 0)=li m Δx →0 f (x 0+Δx )-f (x 0)Δx. (3)函数f (x )的导函数如果函数y =f (x )在开区间(a ,b )内每一点都是可导的,就说f (x )在开区间(a ,b )内可导,其导数也是开区间(a ,b )内的函数,称作f (x )的导函数,记作 y ′或f ′(x ) .2. 导数的几何意义函数y =f (x )在点x 0处的导数f ′(x 0)的几何意义是曲线y =f (x )在点(x 0,f (x 0))处的 切线的斜率 .曲线在点P (x 0,f (x 0))处的切线方程是 y -f (x 0)=f ′(x 0)(x -x 0) .3.导数的运算(1)基本初等函数的导数公式①C ′= 0 (C 为常数);②(x n )′= nx n -1 (n ∈Q );③(sin x )′= cos x ;④(cos x )′= -sin x ;⑤(a x )′= a x ln a (a >0且a ≠1);⑥(e x )′= e x ;⑦(log a x )′= 1x ln a(a >0且a ≠1); ⑧(ln x )′= 1x. (2)导数的运算法则①和差的导数[f (x )±g (x )]′= f ′(x )±g ′(x ) .②积的导数[f (x )·g (x )]′= f ′(x )g (x )+f (x )g ′(x ) .③商的导数[f (x )g (x )]′= f ′(x )g (x )-f (x )g ′(x )g 2(x ) (g (x )≠0).热身练习1.若f (x )=2x 2图象上一点(1,2)及附近一点(1+Δx,2+Δy ),则ΔyΔx 等于(C)A .3+2ΔxB .4+ΔxC .4+2ΔxD .3+ΔxΔy =f (x +Δx )-f (x )=2(1+Δx )2-2=2[2Δx +(Δx )2],所以ΔyΔx =4+2Δx .2.设函数f (x )可导,则lim Δx →0 f (1+Δx )-f (1)2Δx 等于(C)A .f ′(1)B .2f ′(1)C.12f ′(1) D .f ′(2)因为f (x )可导,所以lim Δx →0 f (1+Δx )-f (1)2Δx =12lim Δx →0 f (1+Δx )-f (1)Δx =12f ′(1).3.下列求导运算中正确的是(B)A .(x +1x )′=1+1x 2 B .(lg x )′=1x ln 10C .(ln x )′=xD .(x 2cos x )′=-2x sin x(x +1x )′=1-1x 2,故A 错;(ln x )′=1x ,故C 错;(x 2cos x )′=2x cos x -x 2sin x ,D 错.4.(2018·全国卷Ⅱ)曲线y =2ln x 在点(1,0)处的切线方程为 2x -y -2=0 .因为y ′=2x ,y ′| x =1=2,所以切线方程为y -0=2(x -1),即y =2x -2.5.(1)(2016·天津卷)已知函数f (x )=(2x +1)e x ,f ′(x )为f (x )的导函数,则f ′(0)的值为3 . (2)y =x x +1,则y ′x =2= 19 .(1)因为f ′(x )=2e x +(2x +1)e x =(2x +3)e x ,所以f ′(0)=3e 0=3.(2)因为y ′=(xx +1)′=x ′(x +1)-x (x +1)′(x +1)2=1(x +1)2,所以y ′x =2=1(2+1)2=19.导数的概念利用导数的定义求函数f (x )=1x +2的导数.因为Δy =1x +Δx +2-1x +2=-Δx (x +Δx +2)(x +2), 所以Δy Δx =-1(x +Δx +2)(x +2), 所以f ′(x )=li m Δx →0 Δy Δx =li m Δx →0[-1(x +Δx +2)(x +2)] =-1(x +2)(x +2)=-1(x +2)2.利用定义求导数的基本步骤:①求函数的增量:Δy =f (x +Δx )-f (x );②求平均变化率:Δy Δx =f (x +Δx )-f (x )Δx; ③取极限得导数:f ′(x )=li m Δx →0 f (x +Δx )-f (x )Δx .1.设函数f (x )在x 0处可导,则li m Δx →0f (x 0-Δx )-f (x 0)Δx 等于(B) A .f ′(x 0) B .-f ′(x 0)C .f (x 0)D .-f (x 0)li m Δx →0 f (x 0-Δx )-f (x 0)Δx=-li m Δx →0 f [x 0+(-Δx )]-f (x 0)(-Δx )=-f ′(x 0).导数的运算求下列函数的导数:(1)y =x 2sin x; (2)y =1+sin x 1-cos x .(1)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x .(2)y ′=(1+sin x )′(1-cos x )-(1+sin x )(1-cos x )′(1-cos x )2=cos x (1-cos x )-(1+sin x )sin x (1-cos x )2 =cos x -sin x -1(1-cos x )2.利用导数公式和运算法则求导数,是求导数的基本方法(称为公式法).用公式法求导数的关键是:认清函数式的结构特点,准确运用常用的导数公式.2.(1)(2018·天津卷)已知函数f (x )=e x ln x ,f ′(x )为f (x )的导函数,则f ′(1)的值为 e .(2)设y =1+cos x sin x ,则y ′π2= -1 .(1)因为f (x )=e x ln x ,所以f ′(x )=e xln x +e x x ,所以f ′(1)=e. (2)因为y ′=(1+cos x )′sin x -(1+cos x )(sin x )′sin 2x=-sin 2x -(1+cos x )cos x sin 2x =-1-cos x sin 2x, 所以y ′π2=-1.求切线方程(1)(2017·全国卷Ⅰ)曲线y =x 2+1x在点(1,2)处的切线方程为____________________. (2)若曲线y =x ln x 存在斜率为2的切线,则该切线方程为________________.因为y ′=2x -1x 2,所以y ′|x =1=1, 即曲线在点(1,2)处的切线的斜率k =1,所以切线方程为y -2=x -1,即x -y +1=0.(2)因为y ′=ln x +1,设切点为P (x 0,y 0),则y ′x =x 0=ln x 0+1=2,所以x 0=e ,此时y 0=x 0ln x 0=eln e =e ,所以切点为(e ,e).故所求切线方程为y -e =2(x -e),即2x -y -e =0.(1)x -y +1=0 (2)2x -y -e =0(1)求切线方程有如下三种类型:①已知切点(x 0,y 0),求切线方程;②已知切线的斜率k ,求切线方程;③求过(x 1,y 1)的切线方程.其中①是基本类型,类型②和类型③都可转化为类型①进行处理.(2)三种类型的求解方法:类型①,利用y -f (x 0)=f ′(x 0)(x -x 0)直接求出切线方程.类型②,设出切点(x 0,y 0),再由k =f ′(x 0),再由(x 0,y 0)既在切线上,又在曲线上求解; 类型③,先设出切点(x 0,y 0),利用k =f ′(x 0)及已知点(x 1,y 1)在切线上求解.3.(2018·广州市模拟)已知直线y =kx -2与曲线y =x ln x 相切,则实数k 的值为(D)A .ln 2B .1C .1-ln 2D .1+ln 2本题实质上是求曲线过点(0,-2)的切线问题,因为(0,-2)不是切点,可先设出切点,写出切线方程,再利用切线过(0,-2)得到所求切线方程.设切点为(x 0,x 0ln x 0),因为y ′=ln x +1,所以k =ln x 0+1,所以切线方程为y -x 0ln x 0=(ln x 0+1)(x -x 0),因为切线过点(0,-2),所以-2-x0ln x0=-x0ln x0-x0,所以x0=2,所以k=ln 2+1.1.函数y=f(x)的导数实质上是“增量(改变量)之比的极限”,即f′(x)=li mΔx→0ΔyΔx=li mΔx→0f(x+Δx)-f(x)Δx.2.关于函数的导数,要熟练掌握基本导数公式和求导的运算法则,一般要遵循先化简再求导的基本原则.3.导数f′(x0)的几何意义是曲线y=f(x)在点M(x0,f(x0))处切线的斜率,其切线方程为y-f(x0)=f′(x0)(x-x0).若设点(x0,y0)是切线l与曲线C的切点,则有如下结论:①f′(x0)是切线l的斜率;②点(x0,y0)在切线l上;③点(x0,y0)在曲线C上.。

2020高考文科数学(人教A版)总复习课件:函数与导数的综合压轴大题

2020高考文科数学(人教A版)总复习课件:函数与导数的综合压轴大题

高考大题专项 函数与导数的综合压轴大题

突突破破11
突破2
-7-
题型一
题型二
题型三
题型四
题型五
突破1 利用导数求极值、最值、参数范围
题型一 讨论函数极值点的个数
例1设函数f(x)=ln(x+1)+a(x2-x),其中a∈R.讨论函数f(x)极值点的个
数,并说明理由. 解 定义域为(-1,+∞),f'(x)=������+11+a(2x-1)=������+11(2ax2+ax+1-a),由������+11>0,令 g(x)=2ax2+ax+1-a(x>-1), 当 a=0 时,g(x)=1,则 f'(x)>0 在(-1,+∞)上恒成立, 则 f(x)在(-1,+∞)上单调递增,即当 a=0 时,函数无极值点; 当 a>0 时,由 Δ=a(9a-8)≤0,得 0<a≤89,
高考大题专项一 函数与导数的综合压轴大题
考情分析
高考大题专项 一
知识理
函数与导数的综合压轴大题
突破1
突破2
从近五年的高考试题来看,对导数在函数中应用的考查常常是一 大一小两个题目,其中解答题的命题特点是:以二次或三次函数、 对数函数、指数函数及分式函数为命题载体,以切线问题、单调性 问题、极值最值问题、恒成立问题、存在性问题、函数零点问题 为设置条件,与参数的范围、不等式的证明,方程根的分布综合成 题,重点考查应用分类讨论思想、函数与方程思想、数形结合思想 及化归与转换思想来分析问题、解决问题的能力.
高考大题专项 一
函数与导数的综合压轴大题

2020高考人教版文科数学总复习讲义:函数课时3含答案

2020高考人教版文科数学总复习讲义:函数课时3含答案

函数的单调性1.理解函数的单调性及其几何意义.2.会运用函数图象理解和研究函数的性质.3.能够熟练地应用定义判断与证明函数在某区间上的单调性.知识梳理1.函数的单调性的定义给定区间D上的函数f(x),若对于任意的x1,x2∈D,当x1<x2时,都有f(x1)<f(x2),则f(x)为区间D上的增函数.对于任意的x1,x2∈D,当x1<x2时,都有f(x1)>f(x2),则f(x)为区间D上的减函数.2.函数的单调区间的定义如果函数y=f(x)在某个区间D上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.如果函数是增函数,则称区间D为增区间,如果函数是减函数,则称区间D为减区间.3.单调函数的图象特征增函数的图象是上升的(如图1),减函数的图象是下降的(如图2).121.单调性定义的等价形式:设x1,x2∈[a,b],且x1≠x2,那么(x1-x2)[f(x1)-f(x2)]f(x1)-f(x2)x1-x2f(x)在[a,b]上是增函数;(x1-x2)[f(x1)-f(x2)]f(x1)-f(x2)x1-x2f(x)在[a,b]上是减函数.2.判断单调性的常用结论(1)若f(x),g(x)均为增(减)函数,则f(x)+g(x)为增(减)函数.(2)若f(x)为增(减)函数,则-f(x)为减(增)函数.(3)y=f[g(x)]是定义在M上的函数,若f(x)与g(x)的单调性相同,则其复合函数f[g(x)]为增函数;若f(x),g(x)的单调性相反,则其复合函数f[g(x)]为减函数.(4)已知函数y=f(x),给定区间D,若对D内任意的x,f′(x)>0,则函数在区间D上单调 递增 ;若对D 内任意的x ,f ′(x )<0,则函数在区间D 上单调 递减 .热身练习1.下列函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)<f (x 2)”的是(D)A .f (x )=1xB .f (x )=(x -1)2C .f (x )=-e xD .f (x )=ln(x +1)根据单调性的定义,满足条件的函数f (x )在(0,+∞)上为增函数,分别作出选项A ,B ,C ,D 的图象(如下图),根据图象特征进行判断.由图象可知,应选D. 2.(2016·北京卷)下列函数中,在区间(-1,1)上为减函数的是(D) A .y =11-x B .y =cos xC .y =ln(x +1)D .y =2-x选项A 中,y =11-x 在(-∞,1)和(1,+∞)上为增函数,故y =11-x在(-1,1)上为增函数;选项B 中,y =cos x 在(-1,1)上先增后减;选项C 中,y =ln(x +1)在(-1,+∞)上为增函数,故y =ln(x +1)在(-1,1)上为增函数;选项D 中,y =2-x =(12)x 在R 上为减函数,故y =2-x 在(-1,1)上为减函数.3.已知函数f (x )=x 2-2ax -3在区间[1,2]上具有单调性,则实数a 的取值范围为(D) A .[1,2] B .(1,2)C .(-∞,1)∪(2,+∞)D .(-∞,1]∪[2,+∞)因为二次函数的单调性以对称轴为分界线,故顶点的横坐标不能落在区间(1,2)内,所以a ≥2或a ≤1.4.函数f (x )=a x +log a (x +1)在[0,1]上的最大值与最小值之和为a ,则a 的值为(B)A.14B.12C .2D .4因为y =a x 与y =log a (x +1)的单调性相同,所以f (x )=a x +log a (x +1)是单调函数,其最大值和最小值分别在端点处取得,所以最值之和为f (0)+f (1)=a 0+log a 1+a +log a 2=a . 所以log a 2+1=0,所以a =12.5.(2018·杭州期中)函数f (x )=log 12(4-x 2)的单调递增区间为 [0,2) .函数的定义域是(-2,2). u =4-x 2的递减区间为[0,2),又因为12<1,根据复合函数的单调性可知,函数f (x )的递增区间为[0,2).单调性的判定与证明证明函数f (x )=x +ax(a >0)在(0,a )上是减函数.因为没有要求一定要用定义进行证明,因此,除定义证明外,还可考虑用导数进行证明.(方法一)设0<x 1<x 2<a ,则 f (x 1)-f (x 2)=(x 1+a x 1)-(x 2+ax 2)=(x 1-x 2)+(a x 1-ax 2)=(x 1-x 2)(x 1x 2-ax 1x 2).因为0<x 1<x 2<a ,所以x 1-x 2<0,0<x 1x 2<a , 所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 所以函数f (x )=x +ax在(0,a )上是减函数.(方法二)因为0<x <a ,所以f ′(x )=1-a x 2=x 2-ax2<0,所以f (x )在(0,a )上是减函数.(1)单调性的判定与证明的常用方法:①定义法:基本步骤为:一设,二作差,三比较,四下结论.②导数法:若f (x )在某个区间内可导,当f ′(x )>0时,f (x )为增函数;当f ′(x )<0时,f (x )为减函数.(2)函数y =x +ax(a >0)是一种常用函数,俗称“双勾函数”,其图象如下图所示.由图象,你能写出它的单调区间吗?能得出它的哪些性质?1. 证明函数f (x )=x +ax(a >0)在(a ,+∞)上是增函数.(方法一)设a <x 1<x 2,则 f (x 1)-f (x 2)=(x 1+a x 1)-(x 2+ax 2)=(x 1-x 2)+(a x 1-ax 2)=(x 1-x 2)(x 1x 2-ax 1x 2).因为a <x 1<x 2,所以x 1-x 2<0,x 1x 2>a , 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),所以函数f (x )=x +ax在(a ,+∞)上是增函数.(方法二)因为x >a ,所以f ′(x )=1-a x 2=x 2-ax2>0,所以f (x )在(a ,+∞)上是增函数.复合函数的单调性(2017·全国卷Ⅱ)函数f (x )=ln(x 2-2x -8) 的单调递增区间是( ) A .(-∞,-2) B .(-∞,1) C .(1,+∞) D .(4,+∞)由x 2-2x -8>0,得x >4或x <-2. 设t =x 2-2x -8,则y =ln t 为增函数.要求函数f (x )的单调递增区间,即求函数t =x 2-2x -8在定义域内的单调递增区间. 因为函数t =x 2-2x -8的单调递增区间为(4,+∞), 所以函数f (x )的单调递增区间为(4,+∞).D复合函数y =f [g (x )]的单调性可按下列步骤判断: ①将复合函数分解成两个简单的函数,y =f (u )与u =g (x ); ②确定函数的定义域;③分别确定分解成的两个函数的单调性; ④其单调性规律:复合函数的单调性可概括为一句话:“同增异减”.2.(2018·马山县期中)函数y =log 12(x 2-3x +2)的单调递增区间为 (-∞,1) ,单调递减区间为 (2,+∞) .令u =x 2-3x +2=(x -32)2-14在[32,+∞)上递增,在(-∞,32)上递减,又因为x 2-3x +2>0,所以x >2或x <1.故u =x 2-3x +2在(2,+∞)上递增,在(-∞,1)上递减. 又因为y =log 12u 为减函数,所以函数y =log 12(x 2-3x +2)在(2,+∞)上递减,在(-∞,1)上递增.函数单调性的应用(1)已知f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,设a =f (-12),b =f (2),c =f (3),则a ,b ,c 的大小关系为( )A .c >a >bB .c >b >aC .a >c >bD .b >a >c (2)(2018·昭通月考)已知函数f (x )是定义域(-3,3)上的增函数,如果f (3-m )<f (m 2-3),则实数m 的取值范围是( )A .(2,6)B .(-6,6)C .(-6,-2)D .(-6,-2)∪(2,6)(1)由条件知f (x )的图象关于x =1对称,且f (x )在(1,+∞)上是减函数, 因为a =f (-12)=f (52),且2<52<3,所以b >a >c .(2)依题意⎩⎪⎨⎪⎧-3<3-m <3,-3<m 2-3<3,3-m <m 2-3,解得2<m < 6.(1)D (2)A(1)单调性是函数的重要性质,它的应用非常广泛,主要表现在两个方面:①根据自变量的大小关系得到函数值的大小关系,如比较大小、求函数的最值等; ②根据函数值的大小关系得到自变量的大小关系,如解有关函数不等式等. (2)解函数不等式的一般步骤:第一步,(定性)确定函数f (x )在给定区间上的单调性; 第二步,(转化)将函数不等式转化为f (M )<f (N )的形式;第三步,(去f )运用函数的单调性“去掉”函数的抽象符号,转化为一般的不等式或不等式组;第四步,(求解)解不等式或不等式组确定解集.3.(1)已知f (x )=log 2x +11-x ,若x 1∈(1,2),x 2∈(2,+∞),则(B)A .f (x 1)<0,f (x 2)<0B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0(2)已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,ln (x +1),x >0.若f (2-x 2)>f (x ),则实数x 的取值范围是(D)A .(-∞,-1)∪(2,+∞)B .(-∞,-2)∪(1,+∞)C .(-1,2)D .(-2,1)(1)因为函数f (x )=log 2x +11-x在(1,+∞)上为增函数,且f (2)=0,所以当x 1∈(1,2)时,f (x 1)<f (2)=0,当x 2∈(2,+∞)时,f (x 2)>f (2)=0, 即f (x 1)<0,f (x 2)>0.(2)因为当x =0时,两个表达式对应的函数值都为0, 所以函数图象是一条连续不断的曲线.因为当x ≤0时,f (x )=x 3为增函数,当x >0时,f (x )=ln(x +1)也是增函数, 且当x 1<0,x 2>0时,f (x 1)<f (x 2), 所以f (x )是定义在R 上的增函数.因此不等式f (2-x 2)>f (x )等价于2-x 2>x , 即x 2+x -2<0,解得-2<x <1,故选D.1.对于单调性的定义的理解,要注意以下四点:(1)单调性是与“区间”紧密相关的概念.一个函数在不同的区间上可以有不同的单调区间.(2)单调性是函数在某一区间上的“整体”性质.因此,定义中的x 1,x 2具有任意性,不能用特殊值代替.(3)由于定义都是充要性命题,因此由f (x )是增(减)函数,且f (x 1)<f (x 2x 1<x 2(或x 1>x 2),这说明单调性使得自变量间的不等关系和函数值之间的不等关系可以“互逆互推”,即有x 1<x 2f (x 1)<f (x 2)(或f (x 1)>f (x 2)).(4)若函数在两个不同的区间上单调性相同,则这两个区间要分开写,而不能写成并集.如f (x )=1x 在(-∞,0)和(0,+∞)都是减函数,单调区间不能写成(-∞,0)∪(0,+∞),事实上,f (x )=1x在(-∞,0)∪(0,+∞)上不是减函数.2.证明函数的单调性,一般从定义入手,也可以从导数入手;判断函数的单调性或者求函数的单调区间一般可以:①从定义入手;②从导数入手;③从图象入手;④从熟悉的函数入手;⑤从复合函数的单调性规律入手.。

2020版高考文科数学大一轮复习人教A版文档:2.7 函数的图象 Word版含答案.docx

2020版高考文科数学大一轮复习人教A版文档:2.7 函数的图象 Word版含答案.docx

§2.7 函数的图象1.描点法作图方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质即奇偶性、周期性、单调性、最值(甚至变化趋势);(4)描点连线,画出函数的图象. 2.图象变换 (1)平移变换(2)对称变换①y =f (x )――――→关于x 轴对称y =-f (x ); ②y =f (x )――――→关于y 轴对称y =f (-x ); ③y =f (x )―――――→关于原点对称y =-f (-x );④y =a x (a >0且a ≠1)―――――→关于y =x 对称y =log a x (a >0且a ≠1). (3)伸缩变换①y =f (x ) ―――――――――――――――――――――――→a >1,横坐标缩短为原来的1a倍,纵坐标不变0<a <1,横坐标伸长为原来的1a倍,纵坐标不变y =f (ax ). ②y =f (x )――――――――――――――――――――――――→a >1,纵坐标伸长为原来的a 倍,横坐标不变0<a <1,纵坐标缩短为原来的a 倍,横坐标不变y =af (x ).(4)翻折变换①y =f (x )―――――――――――――――→保留x 轴上方图象将x 轴下方图象翻折上去y =|f (x )|. ②y =f (x )――――――――――――――→保留y 轴右边图象,并作其关于y 轴对称的图象y =f (|x |). 知识拓展1.关于对称的三个重要结论(1)函数y =f (x )与y =f (2a -x )的图象关于直线x =a 对称. (2)函数y =f (x )与y =2b -f (2a -x )的图象关于点(a ,b )中心对称.(3)若函数y =f (x )的定义域内任意自变量x 满足:f (a +x )=f (a -x ),则函数y =f (x )的图象关于直线x =a 对称.2.函数图象平移变换八字方针(1)“左加右减”,要注意加减指的是自变量. (2)“上加下减”,要注意加减指的是函数值.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)当x ∈(0,+∞)时,函数y =|f (x )|与y =f (|x |)的图象相同.( × ) (2)函数y =af (x )与y =f (ax )(a >0且a ≠1)的图象相同.( × ) (3)函数y =f (x )与y =-f (x )的图象关于原点对称.( × )(4)若函数y =f (x )满足f (1+x )=f (1-x ),则函数f (x )的图象关于直线x =1对称.( √ ) 题组二 教材改编2.[P35例5(3)]函数f (x )=x +1x 的图象关于( )A .y 轴对称B .x 轴对称C .原点对称D .直线y =x 对称答案 C解析 函数f (x )的定义域为(-∞,0)∪(0,+∞)且f (-x )=-f (x ),即函数f (x )为奇函数,故选C.3.[P23T2]小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶,与以上事件吻合得最好的图象是( )答案 C解析 小明匀速运动时,所得图象为一条直线,且距离学校越来越近,故排除A.因交通堵塞停留了一段时间,与学校的距离不变,故排除D.后来为了赶时间加快速度行驶,故排除B.故选C.4.[P75A 组T10]如图,函数f (x )的图象为折线ACB ,则不等式f (x )≥log 2(x +1)的解集是__________.答案 (-1,1]解析 在同一坐标系内作出y =f (x )和y =log 2(x +1)的图象(如图).由图象知不等式的解集是(-1,1].题组三 易错自纠5.下列图象是函数y =⎩⎪⎨⎪⎧x 2,x <0,x -1,x ≥0的图象的是( )答案 C6.将函数y =f (-x )的图象向右平移1个单位长度得到函数__________的图象. 答案 f (-x +1)解析 图象向右平移1个单位长度,是将f (-x )中的x 变成x -1.7.设f (x )=|lg(x -1)|,若0<a <b 且f (a )=f (b ),则ab 的取值范围是________. 答案 (4,+∞)解析 画出函数f (x )=|lg(x -1)|的图象如图所示.由f (a )=f (b )可得-lg(a -1)=lg(b -1),解得ab =a +b >2ab (由于a <b ,故取不到等号),所以ab >4.题型一 作函数的图象作出下列函数的图象: (1)y =⎝⎛⎭⎫12|x |; (2)y =|log 2(x +1)|; (3)y =x 2-2|x |-1.解 (1)作出y =⎝⎛⎭⎫12x的图象,保留y =⎝⎛⎭⎫12x 的图象中x ≥0的部分,再作出y =⎝⎛⎭⎫12x 的图象中x >0部分关于y 轴的对称部分,即得y =⎝⎛⎭⎫12|x |的图象,如图①实线部分.(2)将函数y =log 2x 的图象向左平移1个单位,再将x 轴下方的部分沿x 轴翻折上去,即可得到函数y =|log 2(x +1)|的图象,如图②实线部分.(3)∵y =⎩⎪⎨⎪⎧x 2-2x -1,x ≥0,x 2+2x -1,x <0,且函数为偶函数,先用描点法作出[0,+∞)上的图象,再根据对称性作出(-∞,0)上的图象,如图③实线部分.思维升华 图象变换法作函数的图象(1)熟练掌握几种基本函数的图象,如二次函数、反比例函数、指数函数、对数函数、幂函数、形如y =x +1x的函数.(2)若函数图象可由某个基本函数的图象经过平移、翻折、对称和伸缩得到,可利用图象变换作出,但要注意变换顺序. 题型二 函数图象的辨识典例 (1)(2018届东莞外国语学校月考)已知函数f (x )对任意的x ∈R 有f (x )+f (-x )=0,且当x >0时,f (x )=ln(x +1),则函数f (x )的大致图象为( )答案 A解析 f (x )为奇函数,图象关于原点对称,将y =ln x (x >1)的图象向左平移1个单位得到y =ln(x +1)(x >0)的图象.(2)已知定义在区间[0,2]上的函数y =f (x )的图象如图所示,则y =-f (2-x )的图象为( )答案 B解析 方法一 由y =f (x )的图象知,f (x )=⎩⎪⎨⎪⎧x ,0≤x ≤1,1,1<x ≤2.当x ∈[0,2]时,2-x ∈[0,2],所以f (2-x )=⎩⎪⎨⎪⎧1,0≤x <1,2-x ,1≤x ≤2,故y =-f (2-x )=⎩⎪⎨⎪⎧-1,0≤x <1,x -2,1≤x ≤2.图象应为B.方法二 当x =0时,-f (2-x )=-f (2)=-1; 当x =1时,-f (2-x )=-f (1)=-1. 观察各选项,可知应选B.思维升华 函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置; (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的周期性,判断图象的循环往复; (5)从函数的特征点,排除不合要求的图象.跟踪训练 (1)(2018届全国名校联考)函数y =|x |a xx(a >1)的图象的大致形状是( )答案 C解析 y =⎩⎪⎨⎪⎧a x ,x >0,-a x ,x <0(a >1),对照图象选C.(2)(2017·安徽“江南十校”联考)函数y =log 2(|x |+1)的图象大致是( )答案 B解析 y =log 2(|x |+1)是偶函数,当x ≥0时,y =log 2(x +1)是增函数,其图象是由y =log 2x 的图象向左平移1个单位得到,且过点(0,0),(1,1),只有选项B 满足.题型三 函数图象的应用命题点1 研究函数的性质典例 (1)设函数y =2x -1x -2,关于该函数图象的命题如下:①一定存在两点,这两点的连线平行于x 轴; ②任意两点的连线都不平行于y 轴; ③关于直线y =x 对称; ④关于原点中心对称. 其中正确的是________. 答案 ②③解析 y =2x -1x -2=2(x -2)+3x -2=2+3x -2,图象如图所示,可知②③正确.(2)(2017·沈阳一模)已知函数f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则nm =________.答案 9解析 作出函数f (x )=|log 3x |的图象,观察可知0<m <1<n 且mn =1.若f (x )在[m 2,n ]上的最大值为2,从图象分析应有f (m 2)=2,∴log 3m 2=-2,∴m 2=19.从而m =13,n =3,故nm =9.命题点2 解不等式典例 函数f (x )是定义在[-4,4]上的偶函数,其在[0,4]上的图象如图所示,那么不等式f (x )cos x <0的解集为________________.答案 ⎝⎛⎭⎫-π2,-1∪⎝⎛⎭⎫1,π2 解析 当x ∈⎝⎛⎭⎫0,π2时,y =cos x >0. 当x ∈⎝⎛⎭⎫π2,4时,y =cos x <0. 结合y =f (x ),x ∈[0,4]上的图象知,当1<x <π2时,f (x )cos x <0.又函数y =f (x )cos x 为偶函数,所以在[-4,0]上,f (x )cos x <0的解集为⎝⎛⎭⎫-π2,-1, 所以f (x )cos x <0的解集为⎝⎛⎭⎫-π2,-1∪⎝⎛⎭⎫1,π2. 命题点3 求参数的取值范围典例 (1)已知函数f (x )=⎩⎪⎨⎪⎧12log x ,x >0,2x ,x ≤0,若关于x 的方程f (x )=k 有两个不等的实数根,则实数k 的取值范围是________.答案 (0,1]解析 作出函数y =f (x )与y =k 的图象,如图所示,由图可知k ∈(0,1].(2)设函数f (x )=|x +a |,g (x )=x -1,对于任意的x ∈R ,不等式f (x )≥g (x )恒成立,则实数a 的取值范围是__________. 答案 [-1,+∞)解析 如图作出函数f (x )=|x +a |与g (x )=x -1的图象,观察图象可知,当且仅当-a ≤1,即a ≥-1时,不等式f (x )≥g (x )恒成立,因此a 的取值范围是[-1,+∞).思维升华 (1)注意函数图象特征与性质的对应关系.(2)方程、不等式的求解可转化为函数图象的交点和上下关系问题.跟踪训练 (1)已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是__________. 答案 ⎝⎛⎭⎫12,1解析 先作出函数f (x )=|x -2|+1的图象,如图所示,当直线g (x )=kx 与直线AB 平行时斜率为1,当直线g (x )=kx 过A 点时斜率为12,故f (x )=g (x )有两个不相等的实根时,k 的取值范围为⎝⎛⎭⎫12,1.(2)已知函数y =f (x )的图象是圆x 2+y 2=2上的两段弧,如图所示,则不等式f (x )>f (-x )-2x 的解集是__________.答案 (-1,0)∪(1,2]解析 由图象可知,函数f (x )为奇函数,故原不等式可等价转化为f (x )>-x .在同一直角坐标系中分别画出y =f (x )与y =-x 的图象,由图象可知不等式的解集为 (-1,0)∪(1,2].高考中的函数图象及应用问题考点分析 高考中考查函数图象问题主要有函数图象的识别,函数图象的变换及函数图象的应用等,多以小题形式考查,难度不大,常利用特殊点法、排除法、数形结合法等解决.熟练掌握高中涉及的几种基本初等函数是解决前提. 一、函数的图象和解析式问题典例1 (1)(2017·太原二模)函数f (x )=ln|x -1||1-x |的图象大致为( )(2)已知函数f (x )的图象如图所示,则f (x )的解析式可以是( )A .f (x )=ln|x |xB .f (x )=e xxC .f (x )=1x 2-1D .f (x )=x -1x解析 (1)函数f (x )=ln|x -1||1-x |的定义域为(-∞,1)∪(1,+∞),且图象关于x =1对称,排除B ,C.取特殊值,当x =12时,f (x )=2ln 12<0,故选D.(2)由函数图象可知,函数f (x )为奇函数,应排除B ,C.若函数为f (x )=x -1x ,则x →+∞时,f (x )→+∞,排除D ,故选A. 答案 (1)D (2)A 二、函数图象的变换问题典例2 若函数y =f (x )的图象如图所示,则函数y =-f (x +1)的图象大致为( )解析 由y =f (x )的图象得到y =-f (x +1)的图象,需要先将y =f (x )的图象关于x 轴对称得到y =-f (x )的图象,然后再向左平移一个单位得到y =-f (x +1)的图象,根据上述步骤可知C 正确. 答案 C三、函数图象的应用典例3 (1)若函数f (x )=(2-m )x x 2+m的图象如图所示,则m 的取值范围为( )A .(-∞,-1)B .(-1,2)C .(0,2)D .(1,2)解析 根据图象可知,函数图象过原点,即f (0)=0,∴m ≠0.当x >0时,f (x )>0,∴2-m >0,即m <2, 函数f (x )在[-1,1]上是单调递增的, ∴f ′(x )>0在[-1,1]上恒成立, f ′(x )=(2-m )(x 2+m )-2x (2-m )x(x 2+m )2=(m -2)(x 2-m )(x 2+m )2>0,∵m -2<0,∴只需要x 2-m <0在[-1,1]上恒成立, ∴(x 2-m )max <0,∴m >1, 综上所述,1<m <2,故选D. 答案 D(2)已知函数f (x )=⎩⎪⎨⎪⎧sin πx ,0≤x ≤1,log 2 018x ,x >1,若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则a +b +c的取值范围是( ) A .(1,2 018) B .[1,2 018] C .(2,2 019)D .[2,2 019]解析 函数f (x )=⎩⎪⎨⎪⎧sin πx ,0≤x ≤1,log 2 018x ,x >1的图象如图所示,不妨令a <b <c ,由正弦曲线的对称性可知a +b =1,而1<c <2 018, 所以2<a +b +c <2 019,故选C. 答案 C1.(2018届珠海二中月考)函数y =2x -x 2的图象大致是( )答案 A解析 易知x →+∞时,y →+∞,排除C ;x →-∞时,y →-∞,排除D ;又当x =2和x =4时,y =0,故选A.2.已知函数f (x )=⎩⎪⎨⎪⎧3x,x ≤1,13log x ,x >1,则y =f (1-x )的图象是( )答案 C解析 方法一 画出y =f (x )的图象,再作其关于y 轴对称的图象,得到y =f (-x )的图象,再将所得图象向右平移1个单位,得到y =f (-(x -1))=f (-x +1)的图象.方法二 ∵y =f (1-x )过点(0,3),可排除A ;过点(1,1),可排除B ;又x =-12时,f (1-x )=f ⎝⎛⎭⎫32<0,可排除D.故选C.3.(2018届全国名校联考)函数f (x )=e 2x +1e x (e 是自然对数的底数)的图象( )A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .关于直线y =x 对称答案 B解析 ∵f (x )=e x +e -x ,∴f (x )为偶函数,图象关于y 轴对称.4.已知函数f (x )=2ln x ,g (x )=x 2-4x +5,则方程f (x )=g (x )的根的个数为( ) A .0 B .1 C .2 D .3 答案 C解析 在平面直角坐标系内作出f (x ),g (x )的图象如图所示,由已知g (x )=(x -2)2+1,得其顶点为(2,1),又f (2)=2ln 2∈(1,2),可知点(2,1)位于函数f (x )=2ln x 图象的下方,故函数f (x )=2ln x 的图象与函数g (x )=x 2-4x +5的图象有2个交点.5.函数f(x)的图象向右平移1个单位,所得图象与曲线y=e x关于y轴对称,则f(x)的解析式为()A.f(x)=e x+1B.f(x)=e x-1C.f(x)=e-x+1D.f(x)=e-x-1答案 D解析与y=e x的图象关于y轴对称的函数为y=e-x.依题意,f(x)的图象向右平移一个单位,得y=e-x的图象.∴f(x)的图象由y=e-x的图象向左平移一个单位得到.∴f(x)=e-(x+1)=e-x-1.6.对于函数f(x)=lg(|x-2|+1),给出如下三个命题:①f(x+2)是偶函数;②f(x)在区间(-∞,2)上是减函数,在区间(2,+∞)上是增函数;③f(x)没有最小值.其中正确的个数为() A.1 B.2 C.3 D.0答案 B解析作出f(x)的图象,可知f(x)在(-∞,2)上是减函数,在(2,+∞)上是增函数;由图象可知函数存在最小值0.所以①②正确.7.函数f(x)=|x|-cos x在(-∞,+∞)内有______个零点.答案 2解析在同一坐标系内画出两个函数y1=|x|和y2=cos x的图象如图所示.这两个函数的图象有且只有2个交点,即函数f(x)有2个零点.8.设函数y=f(x+1)是定义在(-∞,0)∪(0,+∞)上的偶函数,在区间(-∞,0)上是减函数,且图象过点(1,0),则不等式(x-1)f(x)≤0的解集为______________.答案{x|x≤0或1<x≤2}解析画出f(x)的大致图象如图所示.不等式(x -1)f (x )≤0可化为⎩⎪⎨⎪⎧ x >1,f (x )≤0或⎩⎪⎨⎪⎧x <1,f (x )≥0.由图可知符合条件的解集为{x |x ≤0或1<x ≤2}.9.(2017·银川调研)给定min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,b <a ,已知函数f (x )=min{x ,x 2-4x +4}+4,若动直线y =m 与函数y =f (x )的图象有3个交点,则实数m 的取值范围为__________. 答案 (4,5)解析 作出函数f (x )的图象,函数f (x )=min{x ,x 2-4x +4}+4的图象如图所示,由于直线y =m 与函数y =f (x )的图象有3个交点,数形结合可得m 的取值范围为(4,5).10.已知定义在R 上的函数f (x )=⎩⎪⎨⎪⎧lg|x |,x ≠0,1,x =0,关于x 的方程f (x )=c (c 为常数)恰有三个不同的实数根x 1,x 2,x 3,则x 1+x 2+x 3=________. 答案 0解析 方程f (x )=c 有三个不同的实数根等价于y =f (x )与y =c 的图象有三个交点,画出函数f (x )的图象(图略),易知c =1,且方程f (x )=c 的一根为0,令lg|x |=1,解得x =-10或10,故方程f (x )=c 的另两根为-10和10,所以x 1+x 2+x 3=0.11.函数y =ln|x -1|的图象与函数y =-2cos πx (-2≤x ≤4)的图象所有交点的横坐标之和为________. 答案 6解析 作出函数y =ln|x -1|的图象,又y =-2cos πx 的最小正周期为T =2,如图所示,两图象都关于直线x =1对称,且共有6个交点,由中点坐标公式可得所有交点的横坐标之和为6.12.已知f (x )=|x 2-4x +3|. (1)作出函数f (x )的图象;(2)求函数f (x )的单调区间,并指出其单调性;(3)求集合M ={m |使方程f (x )=m 有四个不相等的实根}. 解 (1)当x 2-4x +3≥0时,x ≤1或x ≥3,∴f (x )=⎩⎪⎨⎪⎧x 2-4x +3,x ≤1或x ≥3,-x 2+4x -3,1<x <3,∴f (x )的图象为:(2)由函数的图象可知f (x )的单调区间是(-∞,1],(2,3),(1,2],[3,+∞),其中(-∞,1],(2,3)是单调减区间;(1,2],[3,+∞)是单调增区间.(3)由f (x )的图象知,当0<m <1时,f (x )=m 有四个不相等的实根,所以M ={m |0<m <1}.13.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x -1,x ≥0,x 2-2x -1,x <0,则对任意x 1,x 2∈R ,若0<|x 1|<|x 2|,下列不等式成立的是( ) A .f (x 1)+f (x 2)<0 B .f (x 1)+f (x 2)>0 C .f (x 1)-f (x 2)>0 D .f (x 1)-f (x 2)<0答案 D解析 函数f (x )的图象如图实线部分所示,且f (-x )=f (x ),从而函数f (x )是偶函数且在[0,+∞)上是增函数, 又0<|x 1|<|x 2|,∴f (x 2)>f (x 1),即f (x 1)-f (x 2)<0.14.已知f (x )是以2为周期的偶函数,当x ∈[0,1]时,f (x )=x ,且在[-1,3]内,关于x 的方程f (x )=kx +k +1(k ∈R ,k ≠-1)有四个根,则k 的取值范围是__________.答案 ⎝⎛⎭⎫-13,0 解析 由题意作出f (x )在[-1,3]上的示意图如图所示,记y =k (x +1)+1,∴函数y =k (x +1)+1的图象过定点A (-1,1). 记B (2,0),由图象知,方程有四个根, 即函数f (x )与y =kx +k +1的图象有四个交点, 故k AB <k <0,k AB =0-12-(-1)=-13,∴-13<k <0.15.(2017·黄山二模)已知函数f (x )=⎩⎨⎧ln x ,x >0,--x ,x ≤0与g (x )=|x +a |+1的图象上存在关于y轴对称的点,则实数a 的取值范围是( ) A .R B .(-∞,-e] C .[e ,+∞) D .∅答案 C解析 设函数h (x )与函数f (x )的图象关于y 轴对称,则h (x )=f (-x )=⎩⎨⎧ln (-x ),x <0,-x ,x ≥0,作出h (x )与g (x )的函数图象如图所示.∵f (x )与g (x )的图象上存在关于y 轴对称的点, ∴函数h (x )与函数g (x )的图象有交点, ∴-a ≤-e ,即a ≥e.故选C.16.已知函数f (x )的图象与函数h (x )=x +1x +2的图象关于点A (0,1)对称.(1)求f (x )的解析式;(2)若g (x )=f (x )+ax,且g (x )在区间(0,2]上为减函数,求实数a 的取值范围.解 (1)设f (x )图象上任一点P (x ,y ),则点P 关于(0,1)点的对称点P ′(-x,2-y )在函数h (x )的图象上,即2-y =-x -1x +2,∴y =f (x )=x +1x(x ≠0).(2)g (x )=f (x )+ax =x +a +1x ,g ′(x )=1-a +1x 2.∵g (x )在(0,2]上为减函数,∴1-a +1x 2≤0在(0,2]上恒成立,即a +1≥x 2在(0,2]上恒成立,∴a +1≥4,即a ≥3,故实数a 的取值范围是[3,+∞).。

2020高考文科数学(人教版)一轮复习讲义:第4讲 函数及其表示 含答案

2020高考文科数学(人教版)一轮复习讲义:第4讲 函数及其表示 含答案

1.函数(1)了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念.(2)在实际情景中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数. (3)了解简单的分段函数,并能简单应用(函数分段不超过三段).(4)理解函数的单调性、最大(小)值及几何意义,了解函数的奇偶性的含义. (5)会运用基本初等函数的图象分析函数的性质. 2.指数函数(1)了解指数函数模型的实际背景.(2)理解有理数指数幂的含义,了解实数指数幂的意义,掌握幂的运算.(3)理解指数函数的概念及其单调性,掌握指数函数图象通过的特殊点,会画底数为2,3,10,12,13的指数函数的图象.(4)体会指数函数是一类重要的函数模型. 3.对数函数(1)理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数,了解对数在简化运算中的作用.(2)理解对数函数的概念及其单调性,掌握对数函数图象通过的特殊点,会画底数2,10,12的对数函数的图象.(3)体会对数函数是一类重要的函数模型.(4)了解指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数. 4.幂函数(1)了解幂函数的概念.(2)结合函数y =x ,y =x 2,y =x 3,y =1x ,y =x 12的图象,了解它们的变化规律.5.函数与方程结合二次函数图象,了解函数的零点与方程根的关系,判断一元二次方程根的存在性及根的个数. 6.函数模型及其应用(1)了解指数函数、对数函数以及幂函数的增长特征,结合具体实例体会直线上升、指数增长、对数增长等不同函数类型增长的含义.(2)了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.1.2014~2018年全国卷Ⅰ的考查情况2014年至2018年全国卷Ⅰ和卷Ⅱ的10套试题直接考查本部分内容的试题共21道,除2014年卷Ⅰ考查了3道,占15分,其他各套都考查了2道,占10分.(以导数为主的解答题结合了函数的知识,但没有统计在内)函数是每年高考的必考内容,常以客观题的形式出现,主要考查函数的概念,分段函数的求值、求参数范围;函数的奇偶性、单调性及其应用;指数、对数函数的性质及应用,函数的零点等内容.容易题、中等难度试题及较难试题都有出现.函数是高中数学中极为重要的内容,函数的观点和方法贯穿了高中数学的全过程,是中学数学与高等数学的结合点,是进一步学习高等数学的重要基础.在复习本部分知识时,要注意如下方面:1.加强函数概念的理解,会求一些简单函数的定义域,能够利用解析式求函数的值,要特别注意加强对分段函数的理解,加强函数与方程、分类讨论及数形结合等思想方法的应用意识.2.理解函数的单调性、奇偶性的定义,切实掌握判断函数的单调性、奇偶性的方法,强化函数性质的应用意识.熟练掌握利用函数性质解决求函数最值、求函数零点、求参数范围及解“函数”不等式等相关问题.3.在复习幂、指数、对数函数时,要坚持“定义(概念)→解析式→图象→性质”这条主线.要注意掌握指数、对数的基本运算.要求熟练掌握各种基本初等函数的图象及其图象变换,加强函数图象的应用意识.4.对函数的零点及方程根的复习,要理解函数的零点、方程的实根和函数与x轴交点的横坐标的等价性,掌握零点的存在性定理,能通过两函数图象的交点个数来判断方程零点的个数.函数是传统的学习内容,对这一部分的复习历来师生都十分重视,由于导数的引入,对函数的复习的要求就有所变化,因为导数是研究函数强有力的工具,有些问题在导数中研究变得更加轻松(如函数的单调性),根据全国卷高考对本单元的要求,在复习时,要适当控制难度.第4讲函数及其表示1.了解构成函数的要素,会求一些简单函数的定义域;了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用(函数分段不超过三段).知识梳理1.函数的概念(1)给定两个非空的数集A和B,如果按照某个对应关系f,对于A中任何一个数x,在B 中都有唯一确定的数y与之对应,那么称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A,此时的x叫做自变量,集合A叫做函数的定义域,集合C={f(x)|x∈A}叫做函数的值域且C B.(2)函数有三个要素:定义域、值域和对应关系.2.函数的表示列表法:用表格的形式表示两个变量之间函数关系的方法,称为列表法.图象法:用图象把两个变量间的函数关系表示出来的方法,称为图象法.解析法:一个函数的对应关系可以用自变量的解析式表示出来,这种方法称为解析法.3.分段函数分段函数的定义:在定义域的不同部分,有不同的对应法则的函数称为分段函数.4.映射的概念如果两个非空集合A与B之间存在着对应关系f,而且对于A中的每一个元素,B中总有唯一确定的元素y与之对应,就称这种对应是从集合A到集合B的映射.1.函数是一种特殊的映射,映射不一定是函数.从A到B的映射,A,B若不是数集,则这个映射便不是函数.2.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集.热身练习1.考察下列图象:其中能够作为函数图象的是A,B,C.抓住函数的定义进行判断.对每一个x,都有唯一确定的y与之对应才构成函数关系,表现在图象上为在定义域范围内与x轴垂直的直线与图象有且只有1个交点,由此可知,A,B,C都能作为函数图象,D 不能作为函数图象.2.(经典真题)已知函数f (x )=ax 3-2x 的图象过点(-1,4),则a = -2 .由f (x )=ax 3-2x 可得f (-1)=-a +2=4, 所以a =-2.3.下列函数中,f (x )与g (x )表示同一函数是(D) A .f (x )=(x -1)0,g (x )=1B .f (x )=x ,g (x )=x 2C .f (x )=x 2,g (x )=(x +1)2D .f (x )=|x |,g (x )=x 2A 的定义域不同,B 的值域不同,C 的对应法则不同,只有D 的定义域、值域、对应法则都相同.4.设f (x )=⎩⎨⎧1-x ,x ≥0,2x ,x <0,则f [f (-2)]=(C)A .-1 B.14C.12D.32因为-2<0,所以f (-2)=2-2=14>0,所以f (14)=1-14=1-12=12. 5.已知函数满足f (x -1)=x 2-3,则f (2)的值为(B) A .-2 B .6 C .1 D .0(方法一)令x -1=t ,则x =t +1, 所以f (t )=(t +1)2-3, 所以f (2)=(2+1)2-3=6.(方法二)f (x -1)=(x -1)2+2(x -1)-2,所以f (x )=x 2+2x -2,所以f (2)=22+2×2-2=6. (方法三)令x -1=2,则x =3,所以f (2)=32-3=6.求函数的定义域(1)函数f (x )=11-x +lg(1+x )的定义域是A .(-∞,-1)B .(1,+∞)C .(-1,1)∪(1,+∞)D .(-∞,+∞)(2)设函数f (x )=ln 1+x 1-x,则函数g (x )=f (x 2)+f (1x )的定义域为____________.(1)要使f (x )有意义,则⎩⎪⎨⎪⎧1-x ≠0,x +1>0,解得x >-1且x ≠1.故函数f (x )的定义域为(-1,1)∪(1,+∞).(2)要使f (x )=ln 1+x 1-x 有意义,则1+x1-x >0,所以-1<x <1.则函数g (x )=f (x 2)+f (1x)的定义域为⎩⎨⎧-1<x2<1,-1<1x <1,所以x ∈(-2,-1)∪(1,2).(1)C (2)(-2,-1)∪(1,2)求定义域的基本方法:①若函数是由一些基本初等函数通过四则运算而得到的,则它的定义域是各基本函数定义域的交集;②已知函数f (x )的定义域为D ,则f [g (x )]的定义域为满足g (x )∈D 的x 的取值范围.1.(1)函数f (x )=log 2(x 2+2x -3)的定义域是(D) A .[-3,1] B .(-3,1)C .(-∞,-3]∪[1,+∞)D .(-∞,-3)∪(1,+∞) (2)(2018·重庆模拟)已知函数f (x )的定义域为[-1,2],则函数y =f (x )+f (-x )的定义域是(A) A .[-1,1] B .[-2,2] C .[-1,2] D .(-2,1](1)要使函数有意义,只需x 2+2x -3>0, 即(x +3)(x -1)>0,解得x <-3或x >1.故函数的定义域为(-∞,-3)∪(1,+∞). (2)因为f (x )的定义域为[-1,2],要使函数y =f (x )+f (-x )有意义,则⎩⎪⎨⎪⎧-1≤x ≤2,-1≤-x ≤2,解得-1≤x ≤1.所以y =f (x )+f (-x )的定义域为[-1,1].求函数的解析式(1)(2016·浙江卷)设函数f (x )=x 3+3x 2+1,已知a ≠0,且f (x )-f (a )=(x -b )(x -a )2,x ∈R ,则实数a =________,b =________.(2)已知f (1x +1)=x 2+1x 2+3x,则f (x )=___________________________.(1)先利用函数解析式将f (x )-f (a )=(x -b )(x -a )2的左边表示出来,再化简右边,然后利用多项式相等的条件求解即可.因为f (x )=x 3+3x 2+1,则f (a )=a 3+3a 2+1,所以f (x )-f (a )=(x -b )(x -a )2=(x -b )(x 2-2ax +a 2) =x 3-(2a +b )x 2+(a 2+2ab )x -a 2b =x 3+3x 2-a 3-3a 2.由此可得⎩⎪⎨⎪⎧ 2a +b =-3,a 2+2ab =0,a 3+3a 2=a 2b .①②③因为a ≠0,所以由②得a =-2b ,代入①式得b =1,a =-2.(2)令t =1x +1,则x =1t -1(t ≠1),于是f (t )=(1t -1)2+1(1t -1)2+31t -1=1+(t -1)2+3(t -1)=t 2+t -1(t ≠1).所以f (x )=x 2+x -1(x ≠1).(1)-2 1 (2)x 2+x -1(x ≠1)求函数解析式的常用方法:(1)待定系数法:若已知函数类型(如一次函数、二次函数、反比例函数及其他所有形式已知的函数),可用待定系数法;(2)换元法:已知复合函数f [g (x )]的解析式,可用换元法,此时要注意新元的取值范围.2.(1)已知f (x +1)=x +2x ,则f (x +1)= x 2+2x (x ≥0) .(2)已知函数f (x )是一次函数,且f (8)=15,f (14),f (5),f (2)成等比数列,则f (x )= 2x -1 .(1)设u =x +1≥1,则x =(u -1)2,所以f (u )=(u -1)2+2(u -1)=u 2-1, 所以f (x )=x 2-1(x ≥1),所以f (x +1)=(x +1)2-1=x 2+2x (x ≥0). (2)设f (x )=ax +b (a ≠0),由f (8)=15,得8a +b =15,① 又f (14),f (5),f (2)成等比数列, 所以[f (5)]2=f (2)·f (14), 得(5a +b )2=(14a +b )(2a +b a 2+6ab =0. 因为a ≠0,所以a =-2b ,②由①②得a =2,b =-1,所以f (x )=2x -1.分段函数(2017·山东卷)设f (x )=⎩⎨⎧x ,0<x <1,2(x -1),x ≥1.若f (a )=f (a +1),则f (1a )=( )A .2B .4C .6D .8先由f (a )=f (a +1)求出a ,再求f (1a).求f (a )和f (a +1)时,将a ,a +1代入分段函数的哪一个表达式中?这就必须依据分段函数的定义域对a 进行分类讨论.若0<a <1,a +1>1,由f (a )=f (a +1)得a =2(a +1-1),所以a =14,所以f (1a )=f (4)=2×(4-1)=6.若a ≥1,a +1>1,由f (a )=f (a +1)得 2(a -1)=2(a +1-1),此方程无解. 综上,f (1a)=6.C(1)分段函数是一个函数,“分段求解”是解决分段函数的基本原则.(2)在求分段函数的值时,一定要注意自变量的值所在的区间,再代入相应的解析式,自变量的值不确定时,要分类讨论.3.(2018·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1, x >0,则满足f (x +1)<f (2x )的x 的取值范围是(D)A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)(方法一:利用分段函数分段求解)①当⎩⎪⎨⎪⎧ x +1≤0,2x ≤0,即x ≤-1时,f (x +1)<f (2x ),即为2-(x +1)<2-2x ,即-(x +1)<-2x ,解得x <1. 因此不等式的解集为(-∞,-1].②当⎩⎪⎨⎪⎧ x +1≤0,2x >0时,不等式组无解.③当⎩⎪⎨⎪⎧ x +1>0,2x ≤0,即-1<x ≤0时,f (x +1)<f (2x ),即1<2-2x,解得x <0.因此不等式的解集为(-1,0).④当⎩⎪⎨⎪⎧x +1>0,2x >0,即x >0时,f (x +1)=1,f (2x )=1,不合题意.综上,不等式f (x +1)<f (2x )的解集为(-∞,0). (方法二:借助函数图象求解)因为f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1, x >0,所以函数f (x )的图象如图所示.由图可知,当x +1≤0且2x ≤0时,函数f (x )为减函数, 故f (x +1)<f (2x )转化为x +1>2x .此时x ≤-1. 当2x <0且x +1>0时,f (2x )>1,f (x +1)=1, 满足f (x +1)<f (2x ).此时-1<x <0.综上,不等式f (x +1)<f (2x )的解集为(-∞,-1]∪(-1,0)=(-∞,0).1.函数的定义域是研究函数的基础依据,对函数性质的讨论,都必须在定义域上进行,求函数的定义域,主要掌握以下两种类型:(1)由解析式给出的函数,根据其定义域求出使函数有意义的自变量的取值范围.其主要依据是:①分式的分母不为0;②偶次方根的被开方数不小于0;③对数的真数大于0;④指数函数和对数函数的底数大于0且不等于1.(2)复合函数f[g(x)]的定义域:若f(x)的定义域为D,则满足g(x)∈D的x的集合是f[g(x)]的定义域.2.求函数的解析式主要掌握如下两种方法:(1)给出函数的特征,求函数的解析式,可用待定系数法,如函数是二次函数,可设函数为f(x)=ax2+bx+c(a≠0),其中a,b,c是待定系数,根据题设条件,列出方程组,解出a,b,c即可.(2)换元法求解析式,已知f[h(x)]=g(x),求f(x)的问题,往往可设h(x)=t,从中解出x,代入g(x)进行换元求解.但用换元法时,要注意新元的范围.3.分段函数问题要分段求解.如求分段函数f(x0)时,首先要判断x0属于定义域的哪个子集,然后代入相应的关系,当不能确定时,要注意分类讨论.。

2020高考文科数学复习-函数含答案

2020高考文科数学复习-函数含答案

一、选择题1.已知全集U=R ,集合2{|20}A x x x =->,则U A ð等于 ( )A . { x ∣0≤x ≤2}B { x ∣0<x<2}C .{ x ∣x<0或x>2}D { x ∣x ≤0或x ≤2}2.已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,则( ).A.(25)(11)(80)f f f -<<B. (80)(11)(25)f f f <<-C. (11)(80)(25)f f f <<-D. (25)(80)(11)f f f -<< 3.已知幂函数αx x f =)(的图象经过点)22,2(,则)4(f 的值等于( ) A .16 B .21 C .161D .2 4.函数2()log 21f x x x =+-的零点所在的区间为( )A.1(0,)2B.11(,)42C. 1(,1)2D. (1,2) 5.已知)(x f 是偶函数,)(x g 是奇函数,且11)()(-=+x x g x f ,则=)(x f ( ) A .112-xB .1222-x xC .122-xD .122-x x二、填空题6. 函数()y f x =是函数log 1a y a a x (0,且)=>≠的反函数,且(1)3f =,则()f x = 7.定义在R 上的函数f(x )满足f(x)= ⎩⎨⎧>---≤-0),2()1(0),4(log 2x x f x f x x ,则f (3)的值为8.若函数2lg(43)y mx x m =-+-的值域为R ,则实数m 的取值范围是 9.若a y a y a a x 2|1|,10=-=≠>与函数且的图象有两个交点,则a 的取值范围是 . 10.设()(),3R x x x x f ∈+=若20πθ≤≤时,()()01cos >-+m f m f θ恒成立,则实数m 的取值范围是 三、解答题11.设函数2()|2|(,f x x x a x R a =+-∈为实数). (1)若()f x 为偶函数,求实数a 的值; (2)设2a >,求函数()f x 的最小值.12.已知函数3223()39f x x ax a x a =--+. (1)设1a =,求函数()f x 的极值;(2)若114a ≥>,且当[]1,4x a ∈时,()5f x a '≤恒成立,试确定a 的取值范围.13.已知函数)0(ln )(22≥+-=a ax x a x x f . (1)当1a =时,求函数()f x 的单调区间;(2)若函数()f x 在区间()1,+∞上是减函数,求实数a 的取值范围.14. 已知函数()bx ax x x f --=233,其中b a ,为实数. (1) 若()x f 在1=x 处取得的极值为2,求b a ,的值;(2)若()x f 在区间[]2,1-上为减函数,且a b 9=,求a 的取值范围.15. 已知函数()f x 和()g x 的图象关于原点对称,且()22f x x x =+.(1)求函数()g x 的解析式;(2) 若()()()1h x g x f x λ=-+在[]1,1-上是增函数,求实数λ的取值范围.16. 已知二次函数2()f x ax bx c =++.(1)若(1)0f -=,试判断函数()f x 零点个数;(2)若对12,x x R ∀∈且12x x <,12()()f x f x ≠,试证明012(,)x x x ∃∈,使0121()[()()]2f x f x f x =+成立;17.定义在R上的函数()f x 满足()()4f x f x +=,当26x ≤≤时()()1,4312x mf x n f -⎛⎫=+= ⎪⎝⎭.(1)求,m n 的值;(2)比较()3log f m 与()3log f n 的大小。

(完整版)高考文科数学函数专题讲解及高考真题精选(含答案)

(完整版)高考文科数学函数专题讲解及高考真题精选(含答案)

函 数【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <. (3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:利用常见函数的值域来求一次函数y=ax+b(a ≠0)的定义域为R ,值域为R ; 反比例函数)0(≠=k xky 的定义域为{x|x ≠0},值域为{y|y ≠0}; 二次函数)0()(2≠++=a c bx ax x f 的定义域为R ,当a>0时,值域为{ab ac y y 4)4(|2-≥};当a<0时,值域为{ab ac y y 4)4(|2-≤}②配方法:③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.转化成型如:)0(>+=k xkx y ,利用平均值不等式公式来求值域;⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象. (7)求函数解析式的题型有:1)已知函数类型,求函数的解析式:待定系数法;2)已知()f x 求[()]f g x 或已知[()]f g x 求()f x :换元法、配凑法;3)已知函数图像,求函数解析式;4)()f x 满足某个等式,这个等式除()f x 外还有其他未知量,需构造另个等式解方程组法;5)应用题求函数解析式常用方法有待定系数法等yxo〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法函数的 性 质定义图象判定方法函数的单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)xy f(x )1f(x )2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象上升为增) (4)利用复合函数 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)yx ox x 2f(x )f(x )211(1)利用定义 (2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象下降为减)(4)利用复合函数增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减. (2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、]a 上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.1 (4)证明函数单调性的一般方法:①定义法:设2121,x x A x x <∈且;作差)()(21x f x f -,判断正负号②用导数证明: 若)(x f 在某个区间A 内有导数,则()0f x ≥’,)x A ∈(⇔)(x f 在A 内为增函数;⇔∈≤)0)(A x x f ,(’)(x f 在A 内为减函数 (5)求单调区间的方法:定义法、导数法、图象法(6)复合函数[])(x g f y =在公共定义域上的单调性:①若f 与g 的单调性相同,则[])(x g f 为增函数;②若f 与g 的单调性相反,则[])(x g f 为减函数注意:先求定义域,单调区间是定义域的子集(7)一些有用的结论:①奇函数在其对称区间上的单调性相同;②偶函数在其对称区间上的单调性相反; ③在公共定义域内:增函数+)(x f 增函数)(x g 是增函数;减函数+)(x f 减函数)(x g 是减函数; 增函数-)(x f 减函数)(x g 是增函数;减函数-)(x f 增函数)(x g 是减函数④函数)0,0(>>+=b a x bax y 在,,b b a a ⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢ ⎪⎝⎦⎣⎭或上单调递增;在,00b b a a ⎡⎫⎛⎤-⎪ ⎢⎥⎪ ⎣⎭⎝⎦或,上是单调递减【1.3.2】奇偶性①定义及判定方法函数的 性 质定义图象判定方法 函数的奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于y 轴对称)②若奇函数()f x 的定义域包含0,则(0)0f =.()f x 为偶函数()(||)f x f x ⇔=③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反. ④在公共定义域内,奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶,奇⨯偶=奇判断函数的奇偶性有时可以用定义的等价形式:()()0f x f x ±-=,()1()f x f x =±- 函数周期性定义:若T 为非零常数,对于定义域内的任一x ,使)()(x f T x f =+恒成立,则f(x)叫做周期函数,T 叫做这个函数的一个周期〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩 01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象 ()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去①y=f(x) 轴x →y= -f(x); ②y=f(x) 轴y →y=f(-x);③y=f(x) ax =→直线y=f(2a -x); ④y=f(x) xy =→直线y=f -1(x);⑤y=f(x) 原点→y= -f(-x)(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章 基本初等函数(Ⅰ)〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次当n 是偶数时,正数a 的正的n负的n次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根.这里n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当n 为奇数时,a =;当n 为偶数时,(0)|| (0) a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,mna a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)rsr sa a aa r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r rab a b a b r R =>>∈【2.1.2】指数函数及其性质(4)指数函数〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)xa x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a aM M N N-= ③数乘:log log ()na a n M M n R =∈ ④log a N a N =⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a =>≠且【2.2.2】对数函数及其性质设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y fx -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()x fy -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质①原函数()y f x =与反函数1()y fx -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y fx -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x =是奇函数,若p 为奇数q 为偶数时,则q py x =是偶函数,若p 为偶数q 为奇数时,则qpy x =是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a--. ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a-+∞上递增,当2bx a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2ba -+∞上递减,当2bx a=-时,2max 4()4ac b f x a -=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x 轴有两个交点11221212(,0),(,0),||||||M x M x M M x x a =-=. (4)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=- ③判别式:∆ ④端点函数值符号.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上)①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a ->,则()m f q = ①若02b x a -≤,则()M f q = ②02bx a ->,则()M f p =(Ⅱ)当0a <时(开口向下)①若2bp a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2bq a ->,则()M f q =①若02bx a -≤,则()m f q = ②02bx a ->,则()m f =.>O -=f (p) f (q) ()2b f a -x>O -=f (p) f (q) ()2b f a -x >O -=f(p)f (q) ()2bf a -x>O -=f(p)f (q) ()2bf a -0x x >O -=f (p) f (q) ()2b f a -0x x <O -=f (p) f (q) ()2b f a -x <O -=f (p) f(q) ()2bf a -x <O -=f (p) f (q) ()2b f a -0xx <O -=f(p) f (q)()2bf a -x<O-=f(p) f (q)()2bfa -0x第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。

2020高考人教版文科数学总复习讲义:函数课时2含答案

2020高考人教版文科数学总复习讲义:函数课时2含答案

函数的值域与最值1.掌握求值域或最值的基本方法,会求一些简单函数的值域或最值.2.建立函数思想,能应用函数观点(如应用函数的值域、最值)解决数学问题.知识梳理1.函数的值域值域是 函数值 的取值范围,它是由 定义域和对应法则 所确定的,所以求值域时要注意 定义域 .1.基本函数的值域(1)一次函数y =kx +b (k ≠0)的值域为 R ; (2)二次函数y =ax 2+bx +c (a ≠0)的值域: 当a >0时,值域为 [4ac -b 24a ,+∞) ;当a <0时,值域为 (-∞,4ac -b 24a] ;(3)反比例函数y =kx(x ≠0)的值域为y ∈R ,且 y ≠0 ;(4)指数函数y =a x (a >0且a ≠1)的值域为 (0,+∞) ; (5)对数函数y =log a x (a >0且a ≠1,x >0)的值域为 R ;(6)正、余弦函数的值域为 [-1,1] ,正切函数的值域为 R .2.若f (x )>A 在区间D 上恒成立,则等价于在区间D 上,f (x )min >A ;若不等式f (x )<B 在区间D 上恒成立,则等价于在区间D 上,f (x )max <B .热身练习1.函数y =3x (-1≤x ≤3,且x ∈Z )的值域为(D) A .[-1,3] B .[-3,9]C .{-1,0,1,2,3}D .{-3,0,3,6,9} 由-1≤x ≤3,且x ∈Z ,得x ∈{-1,0,1,2,3}, 代入y =3x ,得值域为{-3,0,3,6,9}.2.已知函数f (x )的定义域为R ,M 为常数.若p :对∀x ∈R ,都有f (x )≥M ;q :M 是函数f (x )的最小值.则p 是q 的(B)A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件对∀x ∈R ,都有f (x )≥M ≠>M 是函数f (x )的最小值;M 是函数f (x )的最小值⇒对∀x ∈R ,都有f (x )≥M .所以p 是q 的必要不充分条件. 3.(2016·全国卷Ⅱ)下列函数中,其定义域和值域分别与函数y =10lg x 的定义域和值域相同的是(D)A .y =xB .y =lg xC .y =2xD .y =1x函数y =10lg x 的定义域与值域均为(0,+∞). 函数y =x 的定义域与值域均为(-∞,+∞).函数y =lg x 的定义域为(0,+∞),值域为(-∞,+∞). 函数y =2x 的定义域为(-∞,+∞),值域为(0,+∞).函数y =1x 的定义域与值域均为(0,+∞).故选D.4.函数y =2x -1x +1的值域是(C)A .RB .{y |y ≠-1,y ∈R }C .{y |y ≠2,y ∈R }D .{2}因为y =2x -1x +1=2(x +1)-3x +1=2-3x +1,又因为-3x +1≠0,所以2-3x +1≠2,即y ≠2.5.(2018·南阳月考)已知f (x )=x -1-x ,则(C)A .f (x )max =2,f (x )无最小值B .f (x )min =1,f (x )无最大值C .f (x )max =1,f (x )min =-1D .f (x )max =1,f (x )min =0f (x )=x -1-x 的定义域为[0,1], 易知y =x 与y =-1-x 在[0,1]上是增函数, 所以函数f (x )=x -1-x 在[0,1]上是增函数, 所以f (x )max =f (1)=1,f (x )min =f (0)=-1,故选C.求函数的值域或最值求下列函数的值域: (1)y =-x 2+2x ,x ∈[0,3];(2)y =2x +1x -3;(3)f (x )=2x +log 3x ,x ∈[1,3].(1)因为y =-(x -1)2+1,x ∈[0,3],结合函数图象可知,所求函数的值域为[-3,1].(2)因为y =2(x -3)+7x -3=2+7x -3,而7x -3≠0,所以所求函数的值域为{y ∈R |y ≠2}.(3)由于f (x )为增函数,所以f (1)≤f (x )≤f (3), 所以函数的值域为[2,9].求函数值域的常用方法:(1)配方法——转化为二次函数在闭区间上的最值,与二次型函数有关的函数常用此法. (2)分离常数法——分式型函数注意用此法. (3)利用函数的单调性; (4)利用基本不等式等.1.求下列函数的值域: (1)y =1-x 21+x 2;(2)y =x -1-2x .(1)y =1-x 21+x 2=2-(1+x 2)1+x 2=21+x 2-1, 因为1+x 2≥1,所以0<21+x 2≤2,所以-1<21+x 2-1≤1,即y ∈(-1,1]. (2)设1-2x =t (t ≥0),得x =1-t 22,所以y =1-t 22-t =-12(t +1)2+1≤12(t ≥0),所以y ∈(-∞,12].分段函数的值域或最值(经典真题)若函数f (x )=⎩⎪⎨⎪⎧-x +6,x ≤2,3+log ax ,x >2(a >0且a ≠1)的值域是[4,+∞),则实数a 的取值范围是____________.因为当x ≤2时,y =-x +6≥4.f (x )的值域为[4,+∞),所以当x >2,a >1时,3+log a x >3+log a 2≥4, 所以log a 2≥1,所以1<a ≤2;当0<a <1时,3+log a x <3+log a 2,不合题意. 故a ∈(1,2].(1,2](1)本题主要考查单调性的应用,分段函数的值域等基础知识,考查推理论证能力、运算求解能力及分类讨论能力.(2)分段函数的值域为函数f (x )在各个段上函数值域的并集.本题f (x )在x ≤2这段的值域为[4,+∞),要f (x )的值域为[4,+∞),只要f (x )在x >2这段的值域是[4,+∞)的子集就行了.2.(经典真题)已知函数f (x )=⎩⎪⎨⎪⎧x 2, x ≤1,x +6x -6, x >1,则f [f (-2)]= -12,f (x )的最小值是 26-6 .f [f (-2)]=f (4)=4+64-6=-12.当x ≤1时,f (x )min =0;当x >1时,f (x )=x +6x -6≥26-6,当且仅当x =6x ,即x =6时,等号成立.所以f (x )min =26-6<0.综上,f (x )的最小值是26-6.恒成立问题(2018·泉州期末)若不等式x 2+ax +1≥0对于一切x ∈(0,12]成立,则a 的最小值为( )A .0B .-2C .-52D .-3从题目条件的切入点不同可以有多种方法求解,主要有:配方法、分离变量法,下面用分离变量法进行求解.因为x ∈(0,12],所以a ≥-x 2-1x =-x -1x,因为y =x +1x 在(0,12]上单调递减,在x =12处取得最小值52,所以-(x +1x )≤-52.故a 的最小值为-52.C(1)恒成立问题常转化为最值问题.一般地,若f (x )>A 在区间D 上恒成立,则等价于在区间D 上,f (x )min >A ;若不等式f (x )<B 在区间D 上恒成立,则等价于在区间D 上,f (x )max <B .(2)含参数问题的处理常采用分离变量法,分离变量后,转化为函数的最值问题.3.已知ax 2+x ≤1对任意x ∈(0,1]恒成立,则实数a 的取值范围为 (-∞,0] .因为x >0,所以ax 2+x ≤1可化为a ≤1x 2-1x .要使a ≤1x 2-1x 对任意x ∈(0,1]恒成立,令f (x )=1x 2-1x ,x ∈(0,1],则只需要a ≤[f (x )]min .设t =1x ,因为x ∈(0,1],所以t ≥1,则1x 2-1x =t 2-t =(t -12)2-14, 所以当t =1时,(t 2-t )min =0, 即x =1时,f (x )min =0.所以a ≤0,即实数a 的取值范围为(-∞,0].1.函数值的集合叫做函数的值域,值域是由定义域和对应法则所确定的,因此,在研究函数的值域时,既要重视对应法则的作用,又要特别注意定义域对值域的制约作用.2.求值域的具体方法很多,如配方法、利用函数的单调性、不等式法等,但没有通用的方法和固定模式,要靠在学习过程中不断积累,抓住特点,掌握规律.要记住各种基本函数的值域,总结什么结构特点的函数用什么样的方法求值域,以及使用各种方法的注意事项,并在解决求值域问题时注意选择最优的解法.3.函数的值域常常化归为函数的最值问题,要重视函数单调性在确定函数最值过程中的作用.4.恒成立问题常转化为最值问题.一般地,若f (x )>A 在区间D 上恒成立,则等价于在区间D 上,f (x )min >A ;若不等式f (x )<B 在区间D 上恒成立,则等价于在区间D 上,f (x )max <B .。

2020高考文科数学(人教版)一轮复习讲义:第25讲 三角函数的图象与性质(一) 含答案

2020高考文科数学(人教版)一轮复习讲义:第25讲 三角函数的图象与性质(一) 含答案

第25讲 三角函数的图象与性质(一)1.熟悉基本三角函数的图象、定义域、值域、奇偶性、单调性、周期性及其最值. 2.会判断简单函数的奇偶性,会求简单函数的单调区间及其周期.知识梳理1.用五点法作正弦、余弦函数的简图(1)y =sin x 图象在[0,2π]上的五个关键点坐标为:(0,0), (π2,1) ,(π,0), (3π2,-1) ,(2π,0).(2)y =cos x 图象在[0,2π]上的五个关键点坐标为:(0,1),(π2,0), (π,-1) ,(3π2,0), (2π,1) .热身练习1.函数f (x )=1-sin x ,x ∈[0,2π]的大致图象是图中的(B)由五点法知图象应经过(0,1),(π2,0),(π,1),(3π2,2),(2π,1),可知应选B.2.函数y =11-cos x的定义域为(A)A .{x |x ≠2k π,k ∈Z }B .{x |x ≠(2k +1)π,k ∈Z }C .{x |x ≠2k π+π2,k ∈Z }D .{x |x ≠2k π+3π2,k ∈Z }由cos x ≠1,得x ≠2k π,k ∈Z ,故定义域为{x |x ≠2k π,k ∈Z }.3.当x ∈[-π2,π2]时,函数y =sin x +3cos x 的值域为(D)A .[-1,1]B .[-12,1]C .[-2,2]D .[-1,2]y =2sin(x +π3),-π6≤x +π3≤5π6,-12≤sin(x +π3)≤1,所以-1≤y ≤2.4.函数f (x )=sin(x +φ)-2sin φcos x 的最大值为 1 .f (x )=sin(x +φ)-2sin φcos x =sin x cos φ+cos x sin φ-2sin φcos x =sin x cos φ-cos x sin φ =sin(x -φ)≤1. 所以f (x )max =1.5.函数y =8cos x -2sin 2x 的最大值为 8 .y =-2(1-cos 2x )+8cos x =2cos 2x +8cos x -2, 令cos x =t ,-1≤t ≤1,y =2t 2+8t -2=2(t +2)2-10, 故t =1时,y max =8.三角函数的定义域函数y =2sin x -1的定义域为____________.由2sin x -1≥0,得sin x ≥12,即π6+2k π≤x ≤5π6+2k π(k ∈Z ). 故定义域为{x |π6+2k π≤x ≤5π6+2k π,k ∈Z }.{x |π6+2k π≤x ≤5π6+2k π,k ∈Z }(1)求三角函数的定义域,常转化为解三角不等式和三角方程,可借助三角函数的图象来求解.(2)解简单三角不等式的步骤:如sin x >a . 第一步,作出y =sin x 的图象;第二步,作直线y =a ,在三角函数的图象上找出一个周期内(不一定是[0,2π])在直线y =a 上方的图象;第三步,确定sin x =a 的x 值,写出解集.1.函数y =1tan x -1的定义域为 {x |x ≠k π+π4且x ≠k π+π2,k ∈Z } .由tan x -1≠0,得tan x ≠1. 所以x ≠k π+π4且x ≠k π+π2,k ∈Z ,故定义域为{x |x ≠k π+π4且x ≠k π+π2,k ∈Z }.三角函数的值域或最值求函数y =4-3sin 2x -4cos x 的值域,其中x ∈[-π3,2π3].y =4-3sin 2x -4cos x =4-3(1-cos 2x )-4cos x =3cos 2x -4cos x +1=3(cos x -23)2-13.因为x ∈[-π3,2π3],所以cos x ∈[-12,1].而23∈[-12,1],所以当cos x =23时,y min =-13. 当cos x =-12时,y max =3×(-12)2-4×(-12)+1=154.所以所求函数的值域为[-13,154].三角函数的值域或最值问题常考的主要有两种类型,一种是化为y =A sin(ωx +φ)或y =A cos(ωx +φ)或y =A tan(ωx +φ),另一种是化为关于sin x ,cos x 或tan x 的二次函数.第一种类型可利用三角函数的性质及不等式的性质求得,第二种类型可换元转化为二次函数,借助二次函数的性质求得.不管哪种类型,都要注意角的范围.2.(2017·北京卷)已知函数f (x )=3cos(2x -π3)-2sin x cos x .(1)求f (x )的最小正周期;(2)求证:当x ∈[-π4,π4]时,f (x )≥-12.(1)f (x )=32cos 2x +32sin 2x -sin 2x =12sin 2x +32cos 2x =sin(2x +π3), 所以f (x )的最小正周期T =2π2=π.(2)证明:因为-π4≤x ≤π4,所以-π6≤2x +π3≤5π6,所以sin(2x +π3)≥sin(-π6)=-12,所以当x ∈[-π4,π4]时,f (x )≥-12.三角函数的值域或最值的应用在△ABC 中,B =60°,AC =3,则AB +2BC 的最大值为____________.要求AB +2BC 的最值,首先要将其表达式求出来.在△ABC 中,∠B 和边AC 是确定的,AB ,BC 是变化的,但∠C 一定,则边AB ,BC 就确定了,可见,AB +2BC 随着∠C 的变化而变化,从而可建立AB +2BC 关于∠C 的函数关系.在△ABC 中,由正弦定理得AC sin B =2R =332=2, 所以AB +2BC =2sin C +4sin(2π3-C )=4sin C +23cos C=27sin(C +φ),C ∈(0,2π3),所以AB +2BC 的最大值为27.27利用三角函数的最值解决有关问题的一般步骤是: (1)建立目标函数;(2)求最值;(3)作答.其中关键是建立目标函数,而建立目标函数的关键是选取适当的角变量,建立目标函数后,再根据表达式的特点求其最值.3.如图,半径为1的扇形的圆心角为π3,一个矩形的一边AB 在扇形的一条半径上,另一边的两个端点C ,D 分别在弧和另一条半径上,求此矩形ABCD 的最大面积.连接OC ,设∠BOC =α,0<α<π3,设矩形ABCD 的面积为S ,则BC =sin α,在△OAD 中,AD AO =tan π3,所以OA =13sin α,所以AB =OB -OA =cos α-13sin α, 所以S =AB ·BC =(cos α-13sin α)sin α =cos αsin α-13sin 2α =12sin 2α-36(1-cos 2α) =12sin 2α+36cos 2α-36 =33sin(2α+π6)-36. 故α=π6时,S max =36.故矩形ABCD 的最大面积为36.1.求三角函数的定义域实际上转化为解三角不等式,常借助三角函数的图象来求解. 2.求三角函数的值域(最值)常用的几种类型如下:(1)形如y =a sin x +b cos x +k 的三角函数化为y =A sin(ωx +φ)+k 的形式,再求值域(最值); (2)形如y =a sin 2x +b sin x +k 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值); (3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).换元法是求三角函数最值的重要方法,通过换元可将三角函数的最值化归为代数函数的最值,这时要特别注意新元的范围.3.利用三角函数的最值解决有关问题时,关键是引入角α,建立目标函数,然后根据目标函数的特点进行求解.。

2020版高考文科数学大一轮复习人教A版文档:2.1 函数及其表示 Word版含答案.docx

2020版高考文科数学大一轮复习人教A版文档:2.1 函数及其表示 Word版含答案.docx

§2.1函数及其表示1.函数与映射2.函数的有关概念 (1)函数的定义域、值域在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域. (2)函数的三要素:定义域、对应关系和值域. (3)函数的表示法表示函数的常用方法有解析法、图象法和列表法. 3.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数. 知识拓展简单函数定义域的类型(1)f (x )为分式型函数时,定义域为使分母不为零的实数集合; (2)f (x )为偶次根式型函数时,定义域为使被开方式非负的实数的集合;(3)f (x )为对数式时,函数的定义域是真数为正数、底数为正且不为1的实数集合; (4)若f (x )=x 0,则定义域为{x |x ≠0}; (5)指数函数的底数大于0且不等于1;(6)正切函数y =tan x 的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k π+π2,k ∈Z .题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)对于函数f :A →B ,其值域就是集合B .( × )(2)若两个函数的定义域与值域相同,则这两个函数相等.( × ) (3)函数f (x )的图象与直线x =1最多有一个交点.( √ )(4)若A =R ,B ={x |x >0},f :x →y =|x |,其对应是从A 到B 的映射.( × ) (5)分段函数是由两个或几个函数组成的.( × ) 题组二 教材改编 2.[P24T1(4)]函数f (x )=4-xx -1的定义域是________. 答案 (-∞,1)∪(1,4]3.[P25B 组T1]函数y =f (x )的图象如图所示,那么,f (x )的定义域是________;值域是________;其中只有唯一的x 值与之对应的y 值的范围是________.答案 [-3,0]∪[2,3] [1,5] [1,2)∪(4,5] 题组三 易错自纠4.已知函数f (x )=x |x |,若f (x 0)=4,则x 0的值为______. 答案 2解析 当x ≥0时,f (x )=x 2,f (x 0)=4, 即x 20=4,解得x 0=2.当x <0时,f (x )=-x 2,f (x 0)=4, 即-x 20=4,无解,所以x 0=2.5.设f (x )=⎩⎨⎧1-x ,x ≥0,2x ,x <0,则f (f (-2))=________.答案 12解析 因为-2<0,所以f (-2)=2-2=14>0,所以f (f (-2))=f ⎝⎛⎭⎫14=1-14=1-12=12. 6.已知函数f (x )=ax 3-2x 的图象过点(-1,4),则a =________. 答案 -2解析 由题意知点(-1,4)在函数f (x )=ax 3-2x 的图象上,所以4=-a +2,则a =-2.题型一 函数的概念1.若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )答案 B解析 A 中函数的定义域不是[-2,2],C 中图象不表示函数,D 中函数值域不是[0,2],故选B.2.有以下判断:①f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0表示同一函数;②f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数;③若f (x )=|x -1|-|x |,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=0. 其中正确判断的序号是________. 答案 ②解析 对于①,由于函数f (x )=|x |x 的定义域为{x |x ∈R 且x ≠0},而函数g (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0的定义域是R ,所以二者不是同一函数,故①不正确;对于②,f (x )与g (t )的定义域、值域和对应关系均相同,所以f (x )和g (t )表示同一函数,故②正确; 对于③,由于f ⎝⎛⎭⎫12=⎪⎪⎪⎪12-1-⎪⎪⎪⎪12=0,所以f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=f (0)=1,故③不正确. 综上可知,正确的判断是②.思维升华 函数的值域可由定义域和对应关系唯一确定;判断两个函数的对应关系是否相同,只要看对于函数定义域中的任意一个相同的自变量的值,按照这两个对应关系算出的函数值是否相同.题型二 函数的定义域问题命题点1 求函数的定义域 典例 (1)函数f (x )=3xx -1+ln(2x -x 2)的定义域为( ) A .(2,+∞) B .(1,2) C .(0,2) D .[1,2]答案 B解析 要使函数有意义,则⎩⎪⎨⎪⎧x -1>0,2x -x 2>0, 解得1<x <2. ∴函数f (x )=3xx -1+ln(2x -x 2)的定义域为(1,2). (2)若函数y =f (x )的定义域是[0,2 018],则函数g (x )=f (x +1)x -1的定义域是( ) A .[-1,2 017] B .[-1,1)∪(1,2 017] C .[0,2 018] D .[-1,1)∪(1,2 018]答案 B解析 使函数f (x +1)有意义,则0≤x +1≤2 018,解得-1≤x ≤2 017,故函数f (x +1)的定义域为[-1,2 017].所以函数g (x )有意义的条件是⎩⎪⎨⎪⎧-1≤x ≤2 017,x -1≠0, 解得-1≤x <1或1<x ≤2 017.故函数g (x )的定义域为[-1,1)∪(1,2 017]. 引申探究本例(2)中,若将“函数y =f (x )的定义域为[0,2 018]”,改为“函数f (x -1)的定义域为 [0,2 018],”则函数g (x )=f (x +1)x -1的定义域为________. 答案 [-2,1)∪(1,2 016]解析 由函数f (x -1)的定义域为[0,2 018]. 得函数y =f (x )的定义域为[-1,2 017],令⎩⎪⎨⎪⎧-1≤x +1≤2 017,x ≠1, 则-2≤x ≤2 016且x ≠1. 所以函数g (x )的定义域为[-2,1)∪(1,2 016]. 命题点2 已知函数的定义域求参数范围典例 (1)(2018·衡水联考)若函数y =mx -1mx 2+4mx +3的定义域为R ,则实数m 的取值范围是( )A.⎝⎛⎦⎤0,34B.⎝⎛⎭⎫0,34 C.⎣⎡⎦⎤0,34 D.⎣⎡⎭⎫0,34 (2)若函数f (x )=ax 2+abx +b 的定义域为{x |1≤x ≤2},则a +b 的值为________. 答案 (1)D (2)-92解析 (1)要使函数的定义域为R ,则mx 2+4mx +3≠0恒成立, ①当m =0时,显然满足条件;②当m ≠0时,Δ=(4m )2-4m ×3<0,得0<m <34,由①②得0≤m <34.(2)函数f (x )的定义域是不等式ax 2+abx +b ≥0的解集.不等式ax 2+abx +b ≥0的解集为{x |1≤x ≤2}, 所以⎩⎪⎨⎪⎧a <0,1+2=-b ,1×2=b a,解得⎩⎪⎨⎪⎧a =-32,b =-3,所以a +b =-32-3=-92.思维升华 (1)求给定函数的定义域往往转化为解不等式(组)的问题,可借助于数轴,注意端点值的取舍.(2)求抽象函数的定义域:①若y =f (x )的定义域为(a ,b ),则解不等式a <g (x )<b 即可求出y =f (g (x ))的定义域;②若y =f (g (x ))的定义域为(a ,b ),则求出g (x )在(a ,b )上的值域即得f (x )的定义域.(3)已知函数定义域求参数范围,可将问题转化成含参数的不等式,然后求解. 跟踪训练 (1)(2017·江西九江七校联考)函数y =9-x 2log 2(x +1)的定义域是( )A .(-1,3)B .(-1,3]C .(-1,0)∪(0,3)D .(-1,0)∪(0,3]答案 D解析 由题意得⎩⎪⎨⎪⎧9-x 2≥0,x +1>0,x +1≠1,解得-1<x ≤3且x ≠0,∴函数的定义域为(-1,0)∪(0,3].(2)已知函数y =f (x 2-1)的定义域为[-3,3],则函数y =f (x )的定义域为________. 答案 [-1,2]解析 ∵y =f (x 2-1)的定义域为[-3,3], ∴x ∈[-3,3],x 2-1∈[-1,2], ∴y =f (x )的定义域为[-1,2].(3)(2017·杭州模拟)若函数f (x )=mx 2+mx +1的定义域为一切实数,则实数m 的取值范围是________. 答案 [0,4]解析 当m =0时,f (x )的定义域为一切实数;当m ≠0时,由⎩⎪⎨⎪⎧m >0,Δ=m 2-4m ≤0,得0<m ≤4, 综上,m 的取值范围是[0,4]. 题型三 求函数解析式1.若f ⎝⎛⎭⎫1x =x1-x ,则当x ≠0,且x ≠1时,f (x )等于( ) A.1x B.1x -1 C.11-x D.1x-1 答案 B解析 f (x )=1x1-1x=1x -1(x ≠0且x ≠1).2.已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,则f (x )=________. 答案 12x 2-32x +2解析 设f (x )=ax 2+bx +c (a ≠0), 由f (0)=2,得c =2,f (x +1)-f (x )=a (x +1)2+b (x +1)+2-ax 2-bx -2=x -1,即2ax +a +b =x -1,∴⎩⎪⎨⎪⎧2a =1,a +b =-1,即⎩⎨⎧a =12,b =-32.∴f (x )=12x 2-32x +2.3.已知函数f (x )的定义域为(0,+∞),且f (x )=2f ⎝⎛⎭⎫1x ·x -1,则f (x )=________. 答案23x +13(x >0) 解析 在f (x )=2f ⎝⎛⎭⎫1x ·x -1中, 将x 换成1x ,则1x 换成x ,得f ⎝⎛⎭⎫1x =2f (x )·1x-1,由⎩⎨⎧f (x )=2f ⎝⎛⎭⎫1x ·x -1,f ⎝⎛⎭⎫1x =2f (x )·1x-1,解得f (x )=23x +13.思维升华 函数解析式的求法(1)待定系数法:若已知函数的类型,可用待定系数法;(2)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围; (3)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式;(4)消去法:已知f (x )与f ⎝⎛⎭⎫1x 或f (-x )之间的关系式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).题型四 分段函数命题点1 求分段函数的函数值典例 已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x +b ,x ≤0,且f (0)=2,f (-1)=3,则f (f (-3))等于( )A .-2B .2C .3D .-3 答案 B解析 由题意得f (0)=a 0+b =1+b =2,解得b =1; f (-1)=a -1+b =a -1+1=3,解得a =12.故f (-3)=⎝⎛⎭⎫12-3+1=9, 从而f (f (-3))=f (9)=log 39=2.命题点2 分段函数与方程、不等式问题典例 (1)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________. 答案 -34解析 当a >0时,1-a <1,1+a >1, 由f (1-a )=f (1+a ),可得2(1-a )+a =-(1+a )-2a ,解得a =-32,不合题意.当a <0时,1-a >1,1+a <1, 由f (1-a )=f (1+a ),可得 -(1-a )-2a =2(1+a )+a , 解得a =-34,符合题意.(2)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤0,-(x -1)2,x >0,则不等式f (x )≥-1的解集是________________.答案 {x |-4≤x ≤2}解析 当x ≤0时,由题意得x2+1≥-1,解之得-4≤x ≤0.当x >0时,由题意得-(x -1)2≥-1, 解之得0<x ≤2,综上f (x )≥-1的解集为{x |-4≤x ≤2}. 思维升华 (1)分段函数的求值问题的解题思路①求函数值:当出现f (f (a ))的形式时,应从内到外依次求值.②求自变量的值:先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验.(2)分段函数与方程、不等式问题的求解思路依据不同范围的不同段分类讨论求解,最后将讨论结果并起来.跟踪训练 设函数f (x )=⎩⎪⎨⎪⎧2x,x ≤0,|log 2x |,x >0,则使f (x )=12的x 的集合为__________.答案 ⎩⎨⎧⎭⎬⎫-1,2,22 解析 由题意知,若x ≤0,则2x =12,解得x =-1;若x >0,则|log 2x |=12,解得x =122或x =122-.故x 的集合为⎩⎨⎧⎭⎬⎫-1,2,22.分类讨论思想在函数中的应用典例 (1)设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x ,x ≥1,则满足f (f (a ))=2f (a )的a 的取值范围是( )A.⎣⎡⎦⎤23,1 B .[0,1] C.⎣⎡⎭⎫23,+∞D .[1, +∞)(2)(2017·全国Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________.思想方法指导 (1)求分段函数的函数值,首先要确定自变量的范围,通过分类讨论求解; (2)当给出函数值或函数值的取值范围求自变量的值或自变量的取值范围时,应根据每一段解析式分别求解,但要注意检验所求自变量的值或取值范围是否符合相应段的自变量的值或取值范围.解析 (1)令f (a )=t ,则f (t )=2t , 当t <1时,3t -1=2t ,令g (t )=3t -1-2t ,得g ′(t )>0, ∴g (t )<g (1)=0,∴3t -1=2t 无解. 当t ≥1时,2t =2t 成立,由f (a )≥1可知, 当a <1时,有3a -1≥1,∴a ≥23,∴23≤a <1;当a ≥1时,有2a ≥1,∴a ≥0,∴a ≥1. 综上,a ≥23,故选C.(2)当x >12时,f (x )+f ⎝⎛⎭⎫x -12=2x +122x ->2x >2>1; 当0<x ≤12时,f (x )+f ⎝⎛⎭⎫x -12=2x +⎝⎛⎭⎫x -12+1=2x +x +12>2x >1; 当x ≤0时,f (x )+f ⎝⎛⎭⎫x -12=x +1+⎝⎛⎭⎫x -12+1 =2x +32,∴由f (x )+f ⎝⎛⎭⎫x -12>1,得2x +32>1,即x >-14,即-14<x ≤0. 综上,x ∈⎝⎛⎭⎫-14,+∞.答案 (1)C (2)⎝⎛⎭⎫-14,+∞1.下列图象可以表示以M ={x |0≤x ≤1}为定义域,以N ={y |0≤y ≤1}为值域的函数的是( )答案 C解析 A 选项中的值域不对,B 选项中的定义域错误,D 选项不是函数的图象,由函数的定义可知选项C 正确.2.(2018·郑州调研)函数f (x )=ln xx -1+12x 的定义域为( )A .(0,+∞)B .(1,+∞)C .(0,1)D .(0,1)∪(1,+∞)答案 B解析 要使函数f (x )有意义,应满足⎩⎪⎨⎪⎧x x -1>0,x ≥0,解得x >1,故函数f (x )=ln xx -1+12x 的定义域为(1,+∞).3.(2016·全国Ⅱ)下列函数中,其定义域和值域分别与函数y =10lg x 的定义域和值域相同的是( )A .y =xB .y =lg xC .y =2xD .y =1x 答案 D解析 函数y =10lg x 的定义域为{x |x >0},值域为{y |y >0},所以与其定义域和值域分别相同的函数为y =1x,故选D.4.(2017·湖南衡阳八中一模)已知f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫13x ,x ≤0,log 3x ,x >0, 则f ⎝⎛⎭⎫f ⎝⎛⎭⎫19等于( ) A .-2 B .-3 C .9 D .-9 答案 C解析 ∵f ⎝⎛⎭⎫19=log 319=-2, ∴f ⎝⎛⎭⎫f ⎝⎛⎭⎫19=f (-2)=⎝⎛⎭⎫13-2=9. 5.已知f ⎝⎛⎭⎫1+x x =x 2+1x 2+1x ,则f (x )等于( ) A .(x +1)2(x ≠1) B .(x -1)2(x ≠1) C .x 2-x +1(x ≠1) D .x 2+x +1(x ≠1)答案 C解析 f ⎝⎛⎭⎫1+x x =x 2+1x 2+1x =⎝⎛⎭⎫x +1x 2-x +1x +1,令x +1x =t (t ≠1),则f (t )=t 2-t +1,即f (x )=x 2-x +1(x ≠1).6.如图,△AOD 是一直角边长为1的等腰直角三角形,平面图形OBD 是四分之一圆的扇形,点P 在线段AB 上,PQ ⊥AB ,且PQ 交AD 或交弧DB 于点Q ,设AP =x (0<x <2),图中阴影部分表示的平面图形APQ (或APQD )的面积为y ,则函数y =f (x )的大致图象是( )答案 A解析 观察可知阴影部分的面积y 的变化情况为:(1)当0<x ≤1时,y 随x 的增大而增大,而且增加的速度越来越快.(2)当1<x <2时,y 随x 的增大而增大,而且增加的速度越来越慢.分析四个答案中的图象,只有选项A 符合条件,故选A.7.设f (x )=⎩⎪⎨⎪⎧log 2(x 2+t ),x <0,3(t -1)x ,x ≥0,且f ⎝⎛⎭⎫12=6,则f (f (-2))的值为( ) A .27 B .243 C.127 D.1243答案 B解析 ∵f ⎝⎛⎭⎫12=3×12(1)t -=6,∴t =5, ∴f (x )=⎩⎪⎨⎪⎧log 2(x 2+5),x <0,3×4x,x ≥0,∴f (-2)=log 2[(-2)2+5]=log 29>0, f (f (-2))=f (log 29)=3×2log 94=3×2log 922=3×22log 92=3×81=243.故选B.8.已知f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,ln x ,x ≥1的值域为R ,那么a 的取值范围是( )A .(-∞,-1] B.⎝⎛⎭⎫-1,12 C.⎣⎡⎭⎫-1,12 D.⎝⎛⎭⎫0,12 答案 C解析 要使函数f (x )的值域为R ,需使⎩⎪⎨⎪⎧1-2a >0,ln 1≤1-2a +3a ,∴⎩⎪⎨⎪⎧a <12,a ≥-1,∴-1≤a <12.即a 的取值范围是⎣⎡⎭⎫-1,12. 9.已知f (x +1)=x +2x ,则f (x )=________. 答案 x 2-1(x ≥1)解析 令x +1=t ,则x =(t -1)2(t ≥1),代入原式得f (t )=(t -1)2+2(t -1)=t 2-1, 所以f (x )=x 2-1(x ≥1).10.已知函数f (x )的图象如图所示,则函数g (x )=()f x 的定义域是__________.解析 要使函数有意义,需f (x )>0,由f (x )的图象可知,当x ∈(2,8]时,f (x )>0.11.已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是____________. 答案 (-1,2-1)解析 由题意得⎩⎪⎨⎪⎧ 1-x 2>0,2x <0或⎩⎪⎨⎪⎧1-x 2>2x ,2x ≥0,解得-1<x <0或0≤x <2-1, ∴所求x 的取值范围为(-1,2-1).12.(2018届全国名校第一次联考)定义新运算“★”:当m ≥n 时,m ★n =m ;当m <n 时,m ★n =n 2.设函数f (x )=(2★x )x -(4★x ),x ∈[1,4],则函数f (x )的值域为____________. 答案 [-2,0]∪(4,60]解析 由题意知,f (x )=⎩⎪⎨⎪⎧2x -4,x ∈[1,2],x 3-4,x ∈(2,4],当x ∈[1,2]时,f (x )∈[-2,0]; 当x ∈(2,4]时,f (x )∈(4,60],故当x ∈[1,4]时,f (x )∈[-2,0]∪(4,60].13.设函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x <0,-x 2,x ≥0,若f (f (a ))≤3,则实数a 的取值范围是( )A .(-∞,-3]B .[-3,+∞)C .[-3,3]D .(-∞,3]答案 D解析 令f (a )=t ,则f (t )≤3等价于⎩⎪⎨⎪⎧ t <0,t 2+2t ≤3或⎩⎪⎨⎪⎧t ≥0,-t 2≤3,解得t ≥-3,则f (a )≥-3等价于⎩⎪⎨⎪⎧ a <0,a 2+2a ≥-3或⎩⎪⎨⎪⎧a ≥0,-a 2≥-3,解得a ≤3,则实数a 的取值范围是(-∞,3],故选D.14.已知函数f (x )满足对任意的x ∈R 都有f ⎝⎛⎭⎫12+x +f ⎝⎛⎭⎫12-x =2成立,则f ⎝⎛⎭⎫18+f ⎝⎛⎭⎫28+…+f ⎝⎛⎭⎫78=________.解析 由f ⎝⎛⎭⎫12+x +f ⎝⎛⎭⎫12-x =2,得f ⎝⎛⎭⎫18+f ⎝⎛⎭⎫78=2,f ⎝⎛⎭⎫28+f ⎝⎛⎭⎫68=2,f ⎝⎛⎭⎫38+f ⎝⎛⎭⎫58=2, 又f ⎝⎛⎭⎫48=12⎣⎡⎦⎤f ⎝⎛⎭⎫48+f ⎝⎛⎭⎫48=12×2=1, ∴f ⎝⎛⎭⎫18+f ⎝⎛⎭⎫28+…+f ⎝⎛⎭⎫78=2×3+1=7.15.已知定义在R 上的函数f (x )满足:对于任意的实数x ,y ,都有f (x -y )=f (x )+y (y -2x +1),且f (-1)=3,则函数f (x )的解析式为________. 答案 f (x )=x 2-x +1解析 令x =0,y =-x ,得f (x )=f (0)+x 2-x .把x =-1代入上式,得f (0)=f (-1)-2=1,从而有f (x )=x 2-x +1.16.已知函数f (x )=⎩⎪⎨⎪⎧x +2x -3,x ≥1,lg (x 2+1),x <1,则f (f (-3))=________,f (x )的最小值是________.答案 0 22-3解析 ∵f (-3)=lg [(-3)2+1]=lg 10=1, ∴f (f (-3))=f (1)=0,当x ≥1时,f (x )=x +2x -3≥22-3,当且仅当x =2时取等号,此时f (x )min =22-3<0;当x <1时,f (x )=lg(x 2+1)≥lg 1=0,当且仅当x =0时,取等号,此时f (x )min =0.∴f (x )的最小值为22-3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数及其表示1.了解构成函数的要素,会求一些简单函数的定义域;了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用(函数分段不超过三段).知识梳理1.函数的概念(1)给定两个非空的数集A和B,如果按照某个对应关系f,对于A中任何一个数x,在B中都有唯一确定的数y与之对应,那么称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A,此时的x叫做自变量,集合A叫做函数的定义域,集合C={f(x)|x∈A}叫做函数的值域且C B.(2)函数有三个要素:定义域、值域和对应关系.2.函数的表示列表法:用表格的形式表示两个变量之间函数关系的方法,称为列表法.图象法:用图象把两个变量间的函数关系表示出来的方法,称为图象法.解析法:一个函数的对应关系可以用自变量的解析式表示出来,这种方法称为解析法.3.分段函数分段函数的定义:在定义域的不同部分,有不同的对应法则的函数称为分段函数.4.映射的概念如果两个非空集合A与B之间存在着对应关系f,而且对于A中的每一个元素,B 中总有唯一确定的元素y与之对应,就称这种对应是从集合A到集合B的映射.1.函数是一种特殊的映射,映射不一定是函数.从A到B的映射,A,B若不是数集,则这个映射便不是函数.2.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集.热身练习1.考察下列图象:其中能够作为函数图象的是 A ,B ,C .抓住函数的定义进行判断.对每一个x ,都有唯一确定的y 与之对应才构成函数关系,表现在图象上为在定义域范围内与x 轴垂直的直线与图象有且只有1个交点,由此可知,A ,B ,C 都能作为函数图象,D 不能作为函数图象.2.(经典真题)已知函数f (x )=ax 3-2x 的图象过点(-1,4),则a = -2 .由f (x )=ax 3-2x 可得f (-1)=-a +2=4,所以a =-2.3.下列函数中,f (x )与g (x )表示同一函数是(D)A .f (x )=(x -1)0,g (x )=1B .f (x )=x ,g (x )=x 2C .f (x )=x 2,g (x )=(x +1)2D .f (x )=|x |,g (x )=x 2A 的定义域不同,B 的值域不同,C 的对应法则不同,只有D 的定义域、值域、对应法则都相同.4.设f (x )=⎩⎨⎧ 1-x ,x ≥0,2x ,x <0,则f [f (-2)]=(C) A .-1 B.14C.12D.32因为-2<0,所以f (-2)=2-2=14>0, 所以f (14)=1-14=1-12=12. 5.已知函数满足f (x -1)=x 2-3,则f (2)的值为(B)A .-2B .6C .1D .0(方法一)令x -1=t ,则x =t +1,所以f (t )=(t +1)2-3,所以f (2)=(2+1)2-3=6.(方法二)f (x -1)=(x -1)2+2(x -1)-2,所以f (x )=x 2+2x -2,所以f (2)=22+2×2-2=6.(方法三)令x -1=2,则x =3,所以f (2)=32-3=6.求函数的定义域(1)函数f (x )=11-x+lg(1+x )的定义域是 A .(-∞,-1) B .(1,+∞)C .(-1,1)∪(1,+∞)D .(-∞,+∞)(2)设函数f (x )=ln 1+x 1-x,则函数g (x )=f (x 2)+f (1x )的定义域为____________.(1)要使f (x )有意义,则⎩⎪⎨⎪⎧1-x ≠0,x +1>0, 解得x >-1且x ≠1.故函数f (x )的定义域为(-1,1)∪(1,+∞).(2)要使f (x )=ln 1+x 1-x 有意义,则1+x 1-x>0, 所以-1<x <1.则函数g (x )=f (x 2)+f (1x)的定义域为 ⎩⎨⎧ -1<x 2<1,-1<1x <1,所以x ∈(-2,-1)∪(1,2).(1)C (2)(-2,-1)∪(1,2)求定义域的基本方法:①若函数是由一些基本初等函数通过四则运算而得到的,则它的定义域是各基本函数定义域的交集;②已知函数f (x )的定义域为D ,则f [g (x )]的定义域为满足g (x )∈D 的x 的取值范围.1.(1)函数f (x )=log 2(x 2+2x -3)的定义域是(D)A .[-3,1]B .(-3,1)C .(-∞,-3]∪[1,+∞)D .(-∞,-3)∪(1,+∞)(2)(2018·重庆模拟)已知函数f (x )的定义域为[-1,2],则函数y =f (x )+f (-x )的定义域是(A)A .[-1,1]B .[-2,2]C .[-1,2]D .(-2,1](1)要使函数有意义,只需x 2+2x -3>0,即(x +3)(x -1)>0,解得x <-3或x >1.故函数的定义域为(-∞,-3)∪(1,+∞).(2)因为f (x )的定义域为[-1,2],要使函数y =f (x )+f (-x )有意义,则⎩⎪⎨⎪⎧-1≤x ≤2,-1≤-x ≤2,解得-1≤x ≤1.所以y =f (x )+f (-x )的定义域为[-1,1].求函数的解析式(1)(2016·浙江卷)设函数f (x )=x 3+3x 2+1,已知a ≠0,且f (x )-f (a )=(x -b )(x -a )2,x ∈R ,则实数a =________,b =________.(2)已知f (1x +1)=x 2+1x 2+3x,则f (x )=___________________________. (1)先利用函数解析式将f (x )-f (a )=(x -b )(x -a )2的左边表示出来,再化简右边,然后利用多项式相等的条件求解即可.因为f (x )=x 3+3x 2+1,则f (a )=a 3+3a 2+1,所以f (x )-f (a )=(x -b )(x -a )2=(x -b )(x 2-2ax +a 2)=x 3-(2a +b )x 2+(a 2+2ab )x -a 2b=x 3+3x 2-a 3-3a 2.由此可得⎩⎪⎨⎪⎧ 2a +b =-3,a 2+2ab =0,a 3+3a 2=a 2b . ①②③因为a ≠0,所以由②得a =-2b ,代入①式得b =1,a =-2.(2)令t =1x +1,则x =1t -1(t ≠1),于是 f (t )=(1t -1)2+1(1t -1)2+31t -1=1+(t -1)2+3(t -1) =t 2+t -1(t ≠1).所以f (x )=x 2+x -1(x ≠1).(1)-2 1 (2)x 2+x -1(x ≠1)求函数解析式的常用方法:(1)待定系数法:若已知函数类型(如一次函数、二次函数、反比例函数及其他所有形式已知的函数),可用待定系数法;(2)换元法:已知复合函数f [g (x )]的解析式,可用换元法,此时要注意新元的取值范围.2.(1)已知f (x +1)=x +2x ,则f (x +1)= x 2+2x (x ≥0) .(2)已知函数f (x )是一次函数,且f (8)=15,f (14),f (5),f (2)成等比数列,则f (x )= 2x -1 .(1)设u =x +1≥1,则x =(u -1)2,所以f (u )=(u -1)2+2(u -1)=u 2-1,所以f (x )=x 2-1(x ≥1),所以f (x +1)=(x +1)2-1=x 2+2x (x ≥0).(2)设f (x )=ax +b (a ≠0),由f (8)=15,得8a +b =15,①又f (14),f (5),f (2)成等比数列,所以[f (5)]2=f (2)·f (14),得(5a +b )2=(14a +b )(2a +ba 2+6ab =0.因为a ≠0,所以a =-2b ,②由①②得a =2,b =-1,所以f (x )=2x -1.分段函数(2017·山东卷)设f (x )=⎩⎨⎧ x ,0<x <1,2(x -1),x ≥1.若f (a )=f (a +1),则f (1a )=( ) A .2 B .4C .6D .8先由f (a )=f (a +1)求出a ,再求f (1a).求f (a )和f (a +1)时,将a ,a +1代入分段函数的哪一个表达式中?这就必须依据分段函数的定义域对a 进行分类讨论.若0<a <1,a +1>1,由f (a )=f (a +1)得a =2(a +1-1),所以a =14, 所以f (1a)=f (4)=2×(4-1)=6. 若a ≥1,a +1>1,由f (a )=f (a +1)得2(a -1)=2(a +1-1),此方程无解.综上,f (1a)=6.C(1)分段函数是一个函数,“分段求解”是解决分段函数的基本原则. (2)在求分段函数的值时,一定要注意自变量的值所在的区间,再代入相应的解析式,自变量的值不确定时,要分类讨论.3.(2018·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1, x >0,则满足f (x +1)<f (2x )的x 的取值范围是(D)A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)(方法一:利用分段函数分段求解)①当⎩⎪⎨⎪⎧x +1≤0,2x ≤0,即x ≤-1时,f (x +1)<f (2x ), 即为2-(x +1)<2-2x ,即-(x +1)<-2x ,解得x <1. 因此不等式的解集为(-∞,-1]. ②当⎩⎪⎨⎪⎧x +1≤0,2x >0时,不等式组无解. ③当⎩⎪⎨⎪⎧ x +1>0,2x ≤0,即-1<x ≤0时,f (x +1)<f (2x ), 即1<2-2x ,解得x <0.因此不等式的解集为(-1,0).④当⎩⎪⎨⎪⎧x +1>0,2x >0,即x >0时,f (x +1)=1,f (2x )=1,不合题意. 综上,不等式f (x +1)<f (2x )的解集为(-∞,0).(方法二:借助函数图象求解)因为f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1, x >0, 所以函数f (x )的图象如图所示.由图可知,当x +1≤0且2x ≤0时,函数f (x )为减函数,故f (x +1)<f (2x )转化为x +1>2x .此时x ≤-1.当2x <0且x +1>0时,f (2x )>1,f (x +1)=1,满足f (x +1)<f (2x ).此时-1<x <0.综上,不等式f (x +1)<f (2x )的解集为(-∞,-1]∪(-1,0)=(-∞,0).1.函数的定义域是研究函数的基础依据,对函数性质的讨论,都必须在定义域上进行,求函数的定义域,主要掌握以下两种类型:(1)由解析式给出的函数,根据其定义域求出使函数有意义的自变量的取值范围.其主要依据是:①分式的分母不为0;②偶次方根的被开方数不小于0;③对数的真数大于0;④指数函数和对数函数的底数大于0且不等于1.(2)复合函数f [g (x )]的定义域:若f (x )的定义域为D ,则满足g (x )∈D 的x 的集合是f [g (x )]的定义域.2.求函数的解析式主要掌握如下两种方法:(1)给出函数的特征,求函数的解析式,可用待定系数法,如函数是二次函数,可设函数为f (x )=ax 2+bx +c (a ≠0),其中a ,b ,c 是待定系数,根据题设条件,列出方程组,解出a ,b ,c 即可.(2)换元法求解析式,已知f [h (x )]=g (x ),求f (x )的问题,往往可设h (x )=t ,从中解出x ,代入g (x )进行换元求解.但用换元法时,要注意新元的范围.3.分段函数问题要分段求解.如求分段函数f (x 0)时,首先要判断x 0属于定义域的哪个子集,然后代入相应的关系,当不能确定时,要注意分类讨论.。

相关文档
最新文档