山东省枣庄第八中学2015届高三上学期期中考试数学(文)试题 Word版含答案

合集下载

河北省邯郸市第二十五中学2022-2023学年八年级上学期期中考试数学试卷(含解析)

河北省邯郸市第二十五中学2022-2023学年八年级上学期期中考试数学试卷(含解析)

邯郸市第二十五中学2022-2023学年第一学期期中考试八年级数学一、选择题(1—10题每题3分,11—16题每题2分,共42分)1.下列图形具有稳定性的是()A. B. C. D.【答案】A解析:A .具有稳定性,符合题意;B .不具有稳定性,故不符合题意;C .不具有稳定性,故不符合题意;D .不具有稳定性,故不符合题意,故选:A .2.下列倡导节约的图案中,是轴对称图形的是()A. B. C. D.【答案】C解析:解:A 、不是轴对称图形,故此选项错误;B 、不是轴对称图形,故此选项错误;C 、是轴对称图形,故此选项正确;D 、不是轴对称图形,故此选项错误.故选C .3.平面直角坐标系中,点()3,4A -关于y 轴的对称点是1A ,点1A 的坐标是()A.()4,3-- B.()3,4- C.()3,4-- D.()3,4【答案】D解析:解:点()3,4A -关于y 轴的对称点的坐标为:()3,4.故选:D .4.如图,点C 在AD 上,,40CA CB A =∠=︒,则BCD ∠等于()A.40︒B.70︒C.80︒D.110︒【答案】C解析:解:CA CB = ,40A ∠=︒,40A B ∴∠=∠=︒,404080BCD A B ∴∠=∠+∠=︒+︒=︒,故选:C .5.如图,△ABE ≌△ACD ,BC =10,DE =4,则DC 的长是()A.8B.7C.6D.5【答案】B解析:解:∵△ABE ≌△ACD ,∴BE =CD ,∴BE +CD =BC +DE =14,∴2CD =14,∴CD =7,故选:B .6.用三角板作△ABC 的边BC 上的高,下列三角板的摆放位置正确的是()A. B.C. D.【答案】A解析:解:B ,C ,D 都不是△ABC 的边BC 上的高,A 选项是△ABC 的边BC 上的高,故选:A .7.如图所示的六边形花环是用六个全等的直角三角形拼成的,则∠ABC 等于()A.30°B.35°C.45°D.60°【答案】A 解析:解:如图,∵六边形花环是用六个全等的直角三角形拼成的,∴六边形花环为正六边形,∴∠ABD=×°6(6-2)180=120°,而∠CBD=∠BAC=90°,∴∠ABC=120°-90°=30°.故选:A .8.如图,已知ABC 的周长是20,OB 和OC 分别平分ABC ∠和ACB ∠,OD BC ⊥,垂足为点D ,3OD =,则ABC 的面积是()A.20B.30C.40D.60【答案】B 解析:连接AO ,过点O 分别作OE AB ⊥于点E ,OF AC ⊥于点F ,∵ABC AOB BOC AOC S S S S =++△△△△,111222AB OE BC OD AC OF =++,∵BO 、CO 为角平分线,∴3OE OD OF ===,∴()113203022ABC S OD AB BC AC =++==.故选:B .9.如图,一艘海轮位于灯塔P 的南偏东70°方向的M 处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P 的北偏东40°的N 处,则N 处与灯塔P 的距离为A.40海里B.60海里C.70海里D.80海里【答案】D解析:∵根据方向角的意义和平行的性质,∠M =70°,∠N =40°,∴根据三角形内角和定理得∠MPN =70°.∴∠M =∠MPN =70°.∴NP =NM =80(海里).故选D .10.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值为何?A.5B.6C.7D.10【答案】C 解析:依题意可得,当其中一个夹角为180°即四条木条构成三角形时,任意两螺丝的距离之和取到最大值,为夹角为180°的两条木条的长度之和.因为三角形两边之和大于第三边,若长度为2和6的两条木条的夹角调整成180°时,此时三边长为3,4,8,不符合;若长度为2和3的两条木条的夹角调整成180°时,此时三边长为4,5,6,符合,此时任意两螺丝的距离之和的最大值为6;若长度为3和4的两条木条的夹角调整成180°时,此时三边长为2,6,7,符合,此时任意两螺丝的距离之和的最大值为7;若长度为4和6的两条木条的夹角调整成180°时,此时三边长为2,3,10,不符合.综上可得,任意两螺丝的距离之和的最大值为7,故选C11.如图,在四边形ABCD 中,90A ∠=︒,2AD =,连接BD ,BD CD ⊥,ADB C ∠=∠.若P 是BC 边上一动点,则DP 长的值不可能是()A.1.5B.2C.2.5D.3【答案】A 解析:解:如图,过点D 作DH BC ⊥交BC 于点H ,BD CD ⊥ ,90BDC ∴∠=︒,又180C BDC DBC ∠+∠+∠=︒ ,180ADB A ABD ∠+∠+∠=︒,ADB C ∠=∠,90A ∠=︒,ABD CBD ∴∠=∠,BD ∴是ABC ∠的角平分线,又AD AB ⊥ DH BC ⊥,,AD DH =∴,又2AD = ,2DH ∴=,又∵点D 是直线BC 上一点,∴当点P 在BC 上运动时,点P 运动到与点H 重合时DP 最短,其长度为DH 的长,即DP 的长最小值为2,1.52< ,DP ∴的长不可能是1.5,故选:A .12.已知,在△ABC 中,AB AC =,如图,(1)分别以B ,C 为圆心,BC 长为半径作弧,两弧交于点D ;(2)作射线AD ,连接BD ,CD .根据以上作图过程及所作图形,下列结论中错误..的是()A.BAD CAD∠=∠ B.△BCD 是等边三角形C.AD 垂直平分BCD.ABDC S AD BC= 【答案】D解析:解:∵BD BC CD ==∴△BCD 是等边三角形故选项B 正确;∵AB AC =,,BD CD AD AD==∴ABD ACD≅△△∴BAD CAD∠=∠故选项A 正确;∵BAD CAD ∠=∠,AB AC=∴据三线合一得出AD 垂直平分BC故选项C 正确;∵四边形ABCD 的面积等于ABD △的面积与ACD 的面积之和∴12ABCD S AD BC =⋅故选项D 错误.故选:D .13.如图,在正方形网格中有M ,N 两点,在直线l 上求一点P ,使PM PN +最短,则点P 应选在()A.A 点B.B 点C.C 点D.D 点【答案】C 解析:解:如图,点M '是点M 关于直线l 的对称点,连接M N ',则M N '与直线l 的交点,即为点P ,此时PM PN +最短,M N ' 与直线l 交于点C ,∴点P 应选C 点.故选:C .14.如图,在ABC 中,30,90A C ∠=︒∠=︒,AB 的垂直平分线交AC 于D 点,交AB 于E 点,则下列结论错误的是()A.DE DC= B.AD DB = C.AD BC = D.BC AE=【答案】C 解析:解:∵ 30, 90A C ∠=︒∠=︒,∴60ABC ∠=︒,∵DE 垂直平分AB ,∴AD BD =,AE BE =,故B 选项正确,不符合题意;C 选项错误,符合题意;∴30ABD A ∠=∠=︒,∴30CBD ∠=︒,∴CBD ABD ∠=∠,∵90,C DE AB ∠=︒⊥,∴DE DC =,故A 选项正确,不符合题意;∵ 30, 90A C ∠=︒∠=︒,∴12BC AB =,∴BC AE =,故D 选项正确,不符合题意;故选:C15.如图,D 为ABC 内一点,CD 平分ACB ∠,BE CD ⊥,垂足为D ,交AC 于点E ,A ABE ∠=∠.若5AC =,3BC =,则BD 的长为()A.2.5B.1.5C.2D.1【答案】D 解析:解:∵CD 平分ACB ∠,BE CD ⊥,∴ECD BCD ∠=∠,90BDC EDC ∠=∠=︒,在BCD △与ECD 中,90ECD BCD CD CD BDC EDC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,()ASA BCD ECD ∴≌ ,BC CE ∴=,BEC ∴ 是等腰三角形,∴12BD BE =,又A ABE ∠=∠ ,ABE ∴ 是等腰三角形,AE BE ∴=,()111222BD BE AE AC CE ∴===-,∵5AC =,3BC =,()15312BD ∴=⨯-=.故选:D .16.如图,已知等边三角形ABC ,2AB =,点D 在AB 上,点F 在AC 的延长线上,,BD CF DE BC =⊥于E ,FG BC ⊥于G ,DF 交BC 于点P ,则下列结论:①BE CG =;②EDP GFP ≌;③60EDP ∠=︒;④1EP =.其中一定正确的是()A.①③B.②④C.①②③D.①②④【答案】D 解析:解:ABC 是等边三角形,AB BC AC ∴==,60A B ACB ∠=∠=∠=︒.ACB GCF ∠=∠ ,DE BC ⊥ ,FG BC ⊥,90DEB FGC DEP ∴∠=∠=∠=︒.在DEB 和FGC △中,DEB FGC B GCF BD CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)DEB FGC ∴△≌△BE CG ∴=,DE FG =,故①正确;在DEP 和FGP 中,DEP FGP DPE FPG DE FG ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)DEP FGP ∴△≌△,故②正确;PE PG ∴=,EDP ∠不一定等于60︒,当PD AB ⊥时,60EDP ∠=︒,故③错误;PG PC CG =+ ,PE PC BE ∴=+.2PE PC BE ++= ,1PE ∴=.故④正确.正确的有①②④,故选:D .二、填空题(17,18题每题3分,19题每空2分,共10分)17.如图,ABC 中,D ,E 分别是BC ,AD 的中点,ABC 的面积是20,则阴影部分的面积是______.【答案】5解析:解:ABC 中,D 、E 分别是BC ,AD 的中点,AD ∴是ABC 的中线,CE 是ADC △的中线,2ABC ADC S S ∴= ,2ADC AEC S S = ,4ABC AEC S S ∴= ,ABC 的面积是20,AEC ∴ 的面积为5,即阴影部分的面积是5.故答案为:5.18.如图,已知8AO =,P 是射线ON 上一动点(即Р点可在射线ON 上运动),60AON ∠=︒,则OP =_______时,AOP 为直角三角形.【答案】4或16##16或4解析:解:当90APO ∠=︒时,9030OAP AOP ∠︒∠=︒=-,142OP OA ∴==,当90OAP ∠=︒时,9030OPA AOP ∠=︒-∠=︒,216OP OA ∴==,故答案为:4或16.19.如图,已知()()3,0,0,1A B -,连接AB ,过B 点作AB 的垂线段BC ,使BA BC =,连接AC ,C 点坐标为__________;Р点从A 点出发沿x 轴向左平移,连接BP ,作等腰直角BPQ V ,连接CQ ,当C 、P 、Q 三点共线时Р点的坐标为___________.【答案】①.(1,4)-②.(1,0)解析:解:如图,过C 作CH y ⊥轴于H ,则90BCH CBH ∠+∠=︒,∵()()3,0,0,1A B -,∴3OA =,1OB =,AB BC ⊥ ,90ABC ∴∠=︒,90ABO CBH ∴∠+∠=︒,ABO BCH ∴∠=∠,在ABO 和BCH V 中,ABO BCH AOB BHC AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)ABO BCH ∴≌△△,3BH OA ∴==,1CH OB ==,4OH OB BH ∴=+=,C ∴点坐标为(1,4)-;BPQ △是等腰直角三角形,90PBQ ABC ∴∠=∠=︒,PBQ ABQ ABC ABQ ∴∠-∠=∠-∠,即PBA QBC ∠=∠,在PBA △和QBC △中,BP BQ PBA QBC BA BC =⎧⎪∠=∠⎨⎪=⎩,(SAS)PBA QBC ∴△≌△,135BPA BQC ∴∠=∠=︒,BPQ △是等腰直角三角形,45BQP ∴∠=︒,当C 、P ,Q 三点共线时,135BQC ∠=︒,18013545OPB ∴∠=︒-︒=︒,1OP OB ∴==,P ∴点坐标为(1,0),故答案为:(1,4)-,(1,0).三、解答题(共68分)20.求出下列图形中x 的值.【答案】(1)70x =;(2)60x =解析:解:(1)∵40180x x ++=,解得70x =;(2)∵()7010x x x +=++,解得60x =.21.如图,在平面直角坐标系中,A(﹣3,2),B(﹣4,﹣3),C(﹣1,﹣1).(1)在图中作出ABC 关于y 轴对称的111A B C △;(2)写出点111,,A B C 的坐标(直接写答案);(3)在y 轴上画出点P ,使PB+PC 最小.【答案】(1)图见解析;(2)111(3,2),(4,3),(1,1)A B C --;(3)图见解析.解析:(1)先根据轴对称的性质分别描出点111,,A B C ,再顺次连接即可得到111A B C △,如图所示:(2)点坐标关于y 轴对称的变化规律:横坐标变为相反数,纵坐标不变3,24,3(),(),()1,1A B C ----- 1113,24,(),(),(3)1,1A B C ∴--;(3)由轴对称的性质得:1PB PB =则1PB PC PB PC+=+由两点之间线段最短得:当1,,C P B 三点共线时,1PB PC +取得最小值,最小值为1CB 如图,连接1CB ,与y 轴的交点P 即为所求.22.如图,点B ,E ,C ,F 在一条直线上,AB =DE ,AC =DF ,BF =CE .试说明:AB ∥DE .【答案】见解析解析:证明:BF CE = ,BF CF CE CF ∴+=+,即BC EF =,在ABC ∆和DEF ∆中,AB DE AC DF BC EF =⎧⎪=⎨⎪=⎩,()ABC DEF SSS ≅∆∆∴,B E ∴∠=∠,//AB DE ∴.23.如图,ABC 和ADE V 中,AB AD =,B D ∠=∠,BC DE =.边AD 与边BC 交于点P (不与点B ,C 重合),点B ,E 在AD异侧.(1)若30B ∠=︒,70APC ∠=︒,求CAE ∠的度数;(2)当30B ∠=︒,AB AC ⊥,6AB =时,设AP x =,请用含x 的式子表示PD ,并写出PD 的最大值【答案】(1)40︒(2)6PD x =-;当3x =时,PD 有最大值,即3PD =【小问1详解】解:在ABC 与ADE V 中,AB AD B D BC DE =⎧⎪∠=∠⎨⎪=⎩,()SAS ABC ADE ∴≌△△,BAC DAE ∴∠=∠,BAC DAC DAE DAC ∴∠-∠=∠-∠,BAD CAE ∴∠=∠,30B ∠=︒ ,70APC ∠=︒,703040CAE BAD APC B ∴∠=∠=∠-∠=︒-︒=︒;【小问2详解】解:AB AC ⊥ ,90BAC ∴∠=︒,6AB = ,AP x =,()SAS ABC ADE ≌,6AB AD ∴==,∴当AD BC ⊥时,x 最小,PD 最大,6PD x =-,30B ∠=︒ ,AD BC ⊥,90APB ∴∠=︒,132AP AB ∴==,3AP x ∴==时,PD 有最大值,即633PD AD AP =-=-=.24.如图:已知等边ABC 中,D 是AC 的中点,E 是BC 延长线上的一点,且CE CD =.(1)求E ∠的度数.(2)求证:DBE 是等腰三角形.【答案】(1)30︒(2)见解析【小问1详解】解: ABC 是等边三角形,60ACB ABC ∠=∠=︒∴,又CE CD = ,E CDE ∴∠=∠,又ACB E CDE ∠=∠+∠ ,1302E ACB ∴∠=∠=︒;【小问2详解】证明: 等边ABC 中,D 是AC 的中点,11603022DBC ABC ∴∠=∠=⨯︒=︒由(1)知30E ∠=︒,30DBC E ∴∠=∠=︒,DB DE ∴=,即DBE 是等腰三角形.25.如果一个多边形的各边都相等且各角也都相等,那么这样的多边形叫做正多边形,如正三角形就是等边三角形,正四边形就是正方形,如下图,就是一组正多边形,(1)观察上面每个正多边形中的∠α,填写下表:正多边形边数3456……n ∠α的度数______°_____°______°______°……_____°(2)根据规律,计算正八边形中的∠α的度数.(3)是否存在正n 边形使得∠α=21°?若存在,请求出n 的值,若不存在,请说明理由.【答案】(1)60,45,36,30°,180n;(2)22.5;(3)不存在.解析:(1)观察上面每个正多边形中的∠α,填写下表:正多边形边数3456…n ∠α的度数60°45°36°30°…(1808)°(2)根据规律,计算正八边形中的∠α=(1808)°=22.5°;(3)不存在,理由如下:设存在正n 边形使得∠α=21°,得∠α=21°=(180n)°.解得n=847,n 是正整数,n=847(不符合题意要舍去),不存在正n 边形使得∠α=21°.26.如图,已知:在ABC 中,4AC BC ==,120ACB ∠=︒,将一块足够大的直角三角尺()90,30PMN M MPN ∠=︒∠=︒按如图放置,顶点Р在线段AB 上滑动(且不与A 、B 重合),三角尺的直角边PM 始终经过点C ,并且与CB 的夹角PCB α∠=,斜边PN 交AC 于点D .(1)当α=______°,PN BC ∥,此时APD ∠=______°(2)点Р在滑动时,当AP 长为多少时,ADP △与BPC △全等,为什么?(3)点Р在滑动时,PCD 的形状可以是等腰三角形吗?若可以,直接写出夹角α的大小;若不可以,请说明理由.【答案】(1)30,30(2)4AP =时,ADP △与BPC △全等,理由见解析(3)45α∠=︒或90︒时,PCD 的形状可以是等腰三角形【小问1详解】若PN BC ∥,则MPN α∠=∠,30MPN ∠=︒,∴30MPN α∠=∠=︒,120ACB ∠=︒ ,AC BC =,30A B ∴∠=∠=︒,30α∠=︒,303060APC B α∴∠=∠+∠=︒+︒=︒,30MPN ∠=︒,603030APD APC MPN ∠=∠-∠=︒-︒=︒,故答案为:30,30;【小问2详解】当4AP =时,ADP BPC ≌ ,理由如下:120ACB ∠=︒ ,AC BC =,30A B ∴∠=∠=︒,APC ∠ 是BPC △的一个外角,30APC B αα∴∠=∠+∠=︒+∠,30APC DPC APD APD ∠=∠+∠=︒+∠ ,APD α∴∠=∠,4AP BC == ,在ADP △和BPC △中,A B AP BC APD BCP ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ASA ADP BPC ∴≌ ;【小问3详解】PCD QV 是等腰三角形,120PCD α∠=-°,30CPD ∠=︒,①当PC PD =时,()118030752PCD PDC ∴∠=∠=︒-︒=︒,即12075α-=°°,45α∴∠=︒;②当PD CD =时,PCD 是等腰三角形,30PCD CPD ∴∠=∠=︒,即12030α-=°°,90α∴=︒;③当PC CD =时,PCD 是等腰三角形,30CDP CPD ∴∠=∠=︒,180230120PCD ∴∠=︒-⨯︒=︒,即120120α-=°°,0α∴=︒,此时点P 与点B 重合,点D 和A 重合,∵点P 不与A ,B 重合,0α∴=︒,舍去,综合所述:当PCD 是等腰三角形时,45α=︒或90︒.20。

山东省青岛第五十八中学2024-2025学年高三上学期期中考试数学试题(含答案)

山东省青岛第五十八中学2024-2025学年高三上学期期中考试数学试题(含答案)

2022级高三调研测试4(期中)数学试题 2024.10注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置。

2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需要改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合,,则A .{1,2,3} B .{0,1,2}C .{1,2,5}D .{0,1,2,5}2.已知,则|z |=A .2B .1CD3.已知,.若,则A .B . CD4.已知等比数列的前n 项和为,且,则“”是“的公比为2”的A .必要不充分条件 B .充分不必要条件C .充要条件D .既不充分也不必要条件5,则此正四棱锥的体积为A.B .C .D .6.已知函数则f (x )图象上关于原点对称的点有A.1对B .2对C .3对D .4对7.已知函数,函数f (x )的图象各点的横坐标缩小为原来的6|,1P x y y x ⎧⎫=∈=∈⎨⎬+⎩⎭N N {}|15Q x x =-<≤P Q = i22iz =-||a = ||1b =()2a b a +⊥ cos ,a b ={}n a n S 31S ma =7m ={}n a ()21,0,2|2|,0,xx f x x x x ⎧⎛⎫⎪ ⎪=⎨⎝⎭⎪-+<⎩≥()2211cos sin cos 222222x x x x f x =-12(纵坐标不变),再向左平移个单位长度,得到函数的图象.若方程在上有两个不同的解,,则的值为A .B .C .D .π8.若关于x 不等式恒成立,则当时,的最小值为A .B .C .eD .1二.多项选择题(本大题共3小题,每小题6分,共18分。

在每小题给出的四个选项中,有多项符合题目要求。

2016届高三上学期第一次月考数学(文)试题Word版含答案

2016届高三上学期第一次月考数学(文)试题Word版含答案

2016届高三上学期第一次月考数学(文)试题Word版含答案2016届高三上学期第一次月考数学文试卷考试时间120分钟,满分150分一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M ={x |x ≥0,x ∈R },N ={x |x 2<1,x ∈R },则M ∩N 等于( ) A .[0,1] B .[0,1) C .(0,1]D .(0,1)2.已知集合A ={1,2},B ={1,a ,b },则“a =2”是“A ?B ”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.已知命题p :所有有理数都是实数;命题q :正数的对数都是负数,则下列命题中为真命题的是( ) A .﹁p 或q B .p 且q C .﹁p 且﹁qD .﹁p 或﹁q4.设函数f (x )=x 2+1,x ≤1,2x ,x >1,则f (f (3))等于( )A.15B .3C.23D.1395.函数f (x )=log 12(x 2-4)的单调递增区间是( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)6.已知函数f (x )为奇函数,且当x >0时,f (x )=x 2+1x ,则f (-1)等于( )A .-2B .0C .1D .27. 如果函数f (x )=x 2-ax -3在区间(-∞,4]上单调递减,则实数a 满足的条件是( ) A .a ≥8 B .a ≤8 C .a ≥4D .a ≥-48. 函数f (x )=a x -2+1(a >0且a ≠1)的图像必经过点( ) A .(0,1) B .(1,1) C .(2,0)D .(2,2)9. 函数f (x )=lg(|x |-1)的大致图像是( )10. 函数f (x )=2x +3x 的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)11. 设f (x )=x ln x ,若f ′(x 0)=2,则x 0的值为( ) A .e 2B .eC.ln22D .ln212. 函数f (x )的定义域是R ,f (0)=2,对任意x ∈R ,f (x )+f ′(x )>1,则不等式e x ·f (x )>e x +1的解集为( ).A .{x |x >0}B .{x |x <0}C .{x |x <-1或x >1}D .{x |x <-1或0<1}<="" p="">二、填空题:本大题共4小题,每题5分.13. 已知函数y =f (x )及其导函数y =f ′(x )的图像如图所示,则曲线y =f (x )在点P 处的切线方程是__________.14. 若函数f (x )=x 2+ax +b 的两个零点是-2和3,则不等式af (-2x )>0的解集是________. 15. 函数y =12x 2-ln x 的单调递减区间为________.16. 若方程4-x 2=k (x -2)+3有两个不等的实根,则k 的取值范围是________.三、解答题:解答应写出文字说明、证明过程或演算步骤17.(10分) 化简:(1)3131421413223b a b a ab b a -(a >0,b >0);(2)(-278)23-+(0.002)12--10(5-2)-1+(2-3)0.18.(12分)已知函数f (x )=1a -1(a >0,x >0),(1)求证(用单调性的定义证明):f (x )在(0,+∞)上是增函数; (2)若f (x )在[12,2]上的值域是[12,2],求a 的值.19.(12分)已知定义在R 上的奇函数f (x )有最小正周期2,且当x ∈(0,1)时,f (x )=2x4x +1.(1)求f (1)和f (-1)的值; (2)求f (x )在[-1,1]上的解析式.20.(12分)已知函数f (x )=x 2+2ax +3,x ∈[-4,6]. (1)当a =-2时,求f (x )的最值;(2)求实数a 的取值范围,使y =f (x )在区间[-4,6]上是单调函数;(3)当a =1时,求f (|x |)的单调区间. 21.(12分)已知函数f (x )=x 3+x -16. (1)求曲线y =f (x )在点(2,-6)处的切线的方程;(2)直线l 为曲线y =f (x )的切线,且经过原点,求直线l 的方程及切点坐标; 22.(12分)已知函数f (x )=x 3-3ax -1,a ≠0. (1)求f (x )的单调区间;(2)若f (x )在x =-1处取得极值,直线y =m 与y =f (x )的图像有三个不同的交点,求m 的取值范围.2016届高三上学期第一次月考数学答题卡一、选择题(共12小题,每小题5分,共60分,每小题有一个正确答案)13、 14、15、 16、三、解答题17.(10分) 化简:(1)131421413223b a b a ab b a -(a >0,b >0);(2)(-278)23-+(0.002)12--10(5-2)-1+(2-3)0.18.(10分)已知函数f (x )=1a -1x(a >0,x >0),(1)求证(用单调性的定义证明):f (x )在(0,+∞)上是增函数; (2)若f (x )在[12,2]上的值域是[12,2],求a 的值.19.(12分)已知定义在R 上的奇函数f (x )有最小正周期2,且当x ∈(0,1)时,f (x )=2x4x +1.(1)求f (1)和f (-1)的值; (2)求f (x )在[-1,1]上的解析式.20.(12分)已知函数f(x)=x3+x-16.(1)求曲线y=f(x)在点(2,-6)处的切线的方程;(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标;21.(13分)已知函数f(x)=x2+2ax+3,x∈[-4,6].(1)当a=-2时,求f(x)的最值;(2)求实数a的取值范围,使y=f(x)在区间[-4,6]上是单调函数;(3)当a=1时,求f(|x|)的单调区间.22.(13分)已知函数f(x)=x3-3ax-1,a≠0.(1)求f(x)的单调区间;(2)若f(x)在x=-1处取得极值,直线y=m与y=f(x)的图像有三个不同的交点,求m的取值范围.2016届高三上学期第一次月考数学文试卷参考答案1.B2.A3.D4.D5.D6.A7.A8.D9.B10.B11.B12.A13. x -y -2=0 14. {x |-32<1}<="" p="">15. (0,1] 16. (512,34]17. 解 (1)原式=121311113233211212633311233().a b a b abab ab a b+-++----==(2)原式=(-278)23-+(1500)12--105-2+1=(-827)23+50012-10(5+2)+1=49+105-105-20+1=-1679. 18. (1)证明设x 2>x 1>0,则x 2-x 1>0,x 1x 2>0,∵f (x 2)-f (x 1)=(1a -1x 2)-(1a -1x 1)=1x 1-1x 2=x 2-x 1x 1x 2>0,∴f (x 2)>f (x 1),∴f (x )在(0,+∞)上是增函数. (2)解∵f (x )在[12,2]上的值域是[12,2],又f (x )在[12,2]上单调递增,∴f (12)=12,f (2)=2.易得a =25.19. 解(1)∵f (x )是周期为2的奇函数,∴f (1)=f (1-2)=f (-1)=-f (1),∴f (1)=0,f (-1)=0. (2)由题意知,f (0)=0. 当x ∈(-1,0)时,-x ∈(0,1).由f (x )是奇函数,∴f (x )=-f (-x )=-2-x4-x +1=-2x4x +1,综上,在[-1, 1]上,f (x )=2x4x +1,x ∈(0,1),-2x 4x+1,x ∈(-1,0),0,x ∈{-1,0,1}.20.解 (1)当a =-2时,f (x )=x 2-4x +3=(x -2)2-1,∵x ∈[-4,6],∴f (x )在[-4,2]上单调递减,在[2,6]上单调递增,∴f (x )的最小值是f (2)=-1,又f (-4)=35,f (6)=15,故f (x )的最大值是35. (2)∵函数f (x )的图像开口向上,对称轴是x =-a ,∴要使f (x )在[-4,6]上是单调函数,应有-a ≤-4或-a ≥6,即a ≤-6或a ≥4. (3)当a =1时,f (x )=x 2+2x +3,∴f (|x |)=x 2+2|x |+3,此时定义域为x ∈[-6,6],且f (x )=?x 2+2x +3,x ∈(0,6],x 2-2x +3,x ∈[-6,0],∴f (|x |)的单调递增区间是(0, 6],单调递减区间是[-6,0].21.解 (1)可判定点(2,-6)在曲线y =f (x )上.∵f ′(x )=(x 3+x -16)′=3x 2+1.∴f ′(x )在点(2,-6)处的切线的斜率为k =f ′(2)=13. ∴切线的方程为y =13(x -2)+(-6),即y =13x -32.(2)法一设切点为(x 0,y 0),则直线l 的斜率为f ′(x 0)=3x 20+1,∴直线l 的方程为y =(3x 20+1)(x -x 0)+x 30+x 0-16,又∵直线l 过点(0,0),∴0=(3x 20+1)(-x 0)+x 30+x 0-16,整理得,x 30=-8,∴x 0=-2,∴y 0=(-2)3+(-2)-16=-26,k =3×(-2)2+1=13. ∴直线l 的方程为y =13x ,切点坐标为(-2,-26.) 法二设直线l 的方程为y =kx ,切点为(x 0,y 0),则k=y0-0x0-0=x30+x0-16x0又∵k=f′(x0)=3x20+1,∴x30+x0-16x0=3x2+1,解之得x0=-2,∴y0=(-2) 3+(-2)-16=-26,k=3×(-2)2+1=13.∴直线l的方程为y=13x,切点坐标为(-2,-26).22.解(1)f′(x)=3x2-3a=3(x2-a),当a<0时,对x∈R,有f′(x)>0,∴当a<0时,f(x)的单调增区间为(-∞,+∞).当a>0时,由f′(x)>0,解得x<-a或x>a.由f′(x)<0,解得-a<x<a,< p="">∴当a>0时,f(x)的单调增区间为(-∞,-a),(a,+∞),单调减区间为(-a,a).(2)∵f(x)在x=-1处取得极值,∴f′(-1)=3×(-1)2-3a=0,∴a=1.∴f(x)=x3-3x-1,f′(x)=3x2-3,由f′(x)=0,解得x1=-1,x2=1.由(1)中f(x)的单调性可知,f(x)在x=-1处取得极大值f(-1)=1,在x=1处取得极小值f(1)=-3.∵直线y=m与函数y=f(x)的图像有三个不同的交点,结合如图所示f(x)的图像可知:实数m的取值范围是(-3,1).</x<a,<>。

山东省枣庄第八中学2015届高三9月阶段性测试数学(文)(附答案)

山东省枣庄第八中学2015届高三9月阶段性测试数学(文)(附答案)

山东省枣庄第八中学2015届高三9月阶段性测试数学(文)试题一、选择题:本题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合2{|23},{|1,},M x x N y y x x =-<<==+∈R 则集合M N = ( ) A .(-2,+∞)B .(-2,3)C .[)1,3D .R2.设0.30.212455(),(),log ,544a b c ===则c b a ,,的大小关系是 ( )A .c a b >>B .c b a >>C .a b c>>D .bc a >>3.已知弧度数为2的圆心角所对的弦长也是2,则圆心角所对的弧长是( ) A .2B .2sin1C .2sin1D .sin 24.函数3()2x f x x =+的零点所在区间为 ( )A .(0,1)B .(-1,0)C .(1,2)D .(-2,-l)5.已知2tan =θ,则3πsin()cos(π)2πsin()sin(π)2θθθθ++-=---( ) A .-2B .2C .0D .236.若x x ax x f +-=2331)( 在()1,0上有唯一极值点,则a 的取值范围是( ) A .1≥aB .10≤<aC .1<aD .1>a7.函数sin 24y x π⎛⎫=+⎪⎝⎭的一个增区间是( ) A.,44ππ⎡⎤-⎢⎥⎣⎦ B.3,88ππ⎡⎤-⎢⎥⎣⎦ C.,02π⎡⎤-⎢⎥⎣⎦ D.3,88ππ⎡⎤-⎢⎥⎣⎦8.()()()()()2122,log 312x x f x f f x x ⎧⎛⎫≥⎪ ⎪=⎝⎭⎨⎪+<⎩则等于( )A.6B.5C.15D.169.如图所示为函数()()ϕω+=x x f sin 2)20,0(πϕω≤≤>的部分图像,其中A ,B两点之间的距离为5,那么(1)f -= ( )A .-1 B.CD .110.设定义在R 上的函数()f x 是最小正周期为2π的偶函数,'()()f x f x 是的导函数,当[]0,πx ∈时,0()1f x <<;当(0,π)x ∈且π2x ≠时,π()'()02x f x -<.则方程()cos f x x =在[]2π,2π-上的根的个数为 ( )A . 2B .5C .8D .4第Ⅱ卷(非选择题,共100分)注意事项: 1.将第Ⅱ卷答案用0.5mm 的黑色签字笔答在答题纸的相应位置上.2.答卷将密封线内的项目填写清楚.二、填空题:本大题共5小题,每小题5分,共25分.请把答案填在答题卡的相应的横线上.11.式子()02123112972)71(027.0--⎪⎭⎫⎝⎛+---的值为 .12. 已知21:02p x x >--,则p ⌝对应的x 的集合为 .13. 若51cos sin =+αα,且()πα,0∈,则=αtan . 14.过曲线32y x x =+-上一点P 的切线平行于直线41y x =-,则切点的坐标为_____________.15.关于下列命题①函数tan y x =在第一象限是增函数; ②函数cos 24y x π⎛⎫=-⎪⎝⎭是偶函数; ③函数4sin 23y x π⎛⎫=-⎪⎝⎭的一个对称中心是,06π⎛⎫⎪⎝⎭; ④函数sin 4y x π⎛⎫=+⎪⎝⎭在闭区间,22ππ⎡⎤-⎢⎥⎣⎦上是增函数; 写出所有正确的命题的题号:________.三、解答题:本大题共6小题,共75分16.(本小题满分12分)设命题p :函数2()lg()16af x ax x =-+的定义域为R ;命题q :39x x a -<对一切的实数x 恒成立,如果命题“p 且q ”为假命题,求实数a 的取值范围.17.(本小题满分12分)已知定义域为R 的函数141)(++=xa x f 是奇函数. (I ) 求a 的值;(II ) 判断)(x f 的单调性并证明;18.(本小题满分12分)已知βα,为锐角,53sin =α,()54cos -=+βα,求βα+2的值.19.(本小题满分12分)时下,网校教学越来越受到广大学生的喜爱,它已经成为学生们课外学习的一种趋势,假设某网校的套题每日的销售量y (单位:千套)与销售价格x (单位:元/套)满足的关系式()2462m y x x =+--,其中26x <<,m 为常数.已知销售价格为4元/套时,每日可售出套题21千套. (1)求m 的值;(2)假设网校的员工工资,办公等所有开销折合为每套题2元(只考虑销售出的套数),试确定销售价格x 的值,使网校每日销售套题所获得的利润最大.(保留1位小数)20.(本小题满分12分)若π()sin(2)6f x x ω=-的图像关于直线π3x =对称,其中15(,)22ω∈-.(Ⅰ)求()f x 的解析式; (Ⅱ)已知⎥⎦⎤⎢⎣⎡-∈ππ,2x ,求()f x 的增区间; (Ⅲ)将()y f x =的图像向左平移π3个单位,再将得到的图像的横坐标变为原来的2倍(纵坐标不变)后得到的()y g x =的图像;若函数π() (,3π)2y g x x =∈的图像与y a =的图像有三个交点,求a 的取值范围.21.(本小题满分14分) 已知()ln ,f x ax x a =-∈R .(Ⅰ)当2a =时,求曲线()f x 在点(1,(1))f 处的切线方程; (Ⅱ)若()f x 在1x =处有极值,求()f x 的单调递增区间;(Ⅲ)是否存在实数a ,使()f x 在区间(]0,e 的最小值是3,若存在,求出a 的值;若不存在,说明理由.参考答案∵“p 且q ”为假命题 ∴p,q 至少有一假 解法一:(1)若p 真q 假,则2a >且1,4a a ≤∈∅(2)若p 假q 真,则2a ≤且11,244a a ><≤(3)若p 假q 假,则2a ≤且11,44a a ≤≤∴2a ≤.………………………………………………………12分解法二:若“p 且q ”为真命题,p,q 都真,即 ⎪⎩⎪⎨⎧>>412a a ,解得2>a .故“p 且q ”为假命题, 2a ≤. ………………………………12分17.解:(1)函数)(x f 的定义域为R ,因为)(x f 是奇函数,所以0)()(=-+x f x f ,即0124141412141141=+=++++=+++++-a a a a xxx x x ,故21-=a .(另解:由)(x f 是R 上的奇函数,所以0)0(=f ,21-=a .再由)41(24141121)(x xx x f +-=++-=, 通过验证0)()(=-+x f x f 来确定21-=a 的合理性)-------------6分 (2)解法一:由(1)知,14121)(++-=xx f 设R x x ∈21,,且21x x <.)14)(14(44......)()(211221++-==-x x x x x f x f , 由21x x <,知044112>-x x ,()()21x f x f >∴.故)(x f 在R 上为减函数, ------------12分 解法二:导数法,由()()2'144ln 4+-=xx x f,知()0'<x f ,所以()x f 在R 上为减函数.19.解:因为4x =时,21y =,代入关系式()2462m y x x =+--,得16212m +=,…2分 解得10m =. …………………4分 (2)由(1)可知,套题每日的销售量()210462y x x =+--, ……………………6分 所以每日销售套题所获得的利润()()()()()223210()24610462456240278262f x x x x x x x x x x ⎡⎤=-+-=+--=-+-<<⎢⎥-⎣⎦从而()()()()2'121122404310626f x x x x x x =-+=--<<. ……………………8分令()'0f x =,得103x =,且在102,3⎛⎫ ⎪⎝⎭上,0)('>x f ,函数)(x f 单调递增;在10,63⎛⎫ ⎪⎝⎭上,0)('<x f ,函数)(x f 单调递减, ……………………10分所以103x =是函数)(x f 在()2,6内的极大值点,也是最大值点,……………………11分 所以当103.33x =≈时,函数)(x f 取得最大值. 故当销售价格为3.3元/套时,网校每日销售套题所获得的利润最大. ……………12分20. 解:(Ⅰ)∵()f x 的图像关于直线π3x =对称, ∴πππ2,362k k ωπ-=+∈Z ,解得312k ω=+,∵15(,),22ω∈-∴1351222k -<+<,∴11(),k k -<<∈Z ∴0,1k ω==∴π()sin(2)6f x x =-………………………………………………………5分(Ⅱ)由πππππk x k 226222+≤-≤+-,得Z k k x k ∈+≤≤+-,36ππππ……………………………………7分又ππ≤≤-x 2,所以函数π()sin(2)6f x x =-⎥⎦⎤⎢⎣⎡-∈ππ,2x 的增区间为⎥⎦⎤⎢⎣⎡-3,6ππ和⎥⎦⎤⎢⎣⎡ππ,65.…………………9分 (Ⅲ)将π()sin(2)6f x x =-和图像向左平移π3个单位后,得到ππ()sin[2()]36f x x =+-πsin(2)cos22x x =+=,再将得到的图像的横坐标变为原来的2倍(纵坐标不变)后,得到()cos y g x x ==…………………………………………………………12分由图像知,函数π()cos ,(,3π)2y g x x x ==∈的图像与y a =的图像有三个交点a 的取值范围是0≤a .……………………………………13分21.解:(Ⅰ)由已知得()f x 的定义域为(0,)+∞,因为()ln f x ax x =-,所以1'()f x a x =-当2a =时,()2ln f x x x =-,所以(1)2f =, 因为1'()2f x x =-,所以1'(1)211f =-=………………………………2分 所以曲线()f x 在点(1,(1))f 处的切线方程为2'(1)(1),10y f x x y -=--+=即.…………………………………………4分(Ⅱ)因为()1f x x =在处有极值,所以'(1)0f =,由(Ⅰ)知'(1)1,f a =-所以1a =经检验,1()1a f x x ==时在处有极值. ……………………………………………………6分 所以1()ln ,'()10,f x x x f x x=-=->令解得10x x ><或; 因为()f x 的定义哉为(0,)+∞,所以'()0f x >的解集为(1,)+∞,即()f x 的单调递增区间为(1,)+∞.…………………………………………8分 (Ⅲ)假设存在实数a ,使()ln ((0,e] )f x ax x x =-∈有最小值3, ①当0a ≤时,因为(0,e],'()0x f x ∈<所以, 所以()f x 在(0,e]上单调递减, min ()(e)e 13f x f a ==-=,解得4ea =(舍去)…………………………10分 ②当110e ()(0,)f x a a <<时,在上单调递减,在1(,e]a上单调递增, 2min 1()()1ln 3,e f x f a a a ==+==解得,满足条件. …………………12分③当1e ,(0,e],'()0xf x a≥∈<时因为所以, 所以 ()(0,e]f x 在上单调递减,min ()()13f x f e ae ==-=, 解得4ea =,舍去. 综上,存在实数2e a =,使得当(0,],()x e f x ∈时有最小值3. ……………14分。

山东省枣庄第八中学2015届高三上学期期中考试数学(理)试题(有答案)AqUUPK

山东省枣庄第八中学2015届高三上学期期中考试数学(理)试题(有答案)AqUUPK

2014-2015学年度山东省薛城区八中高三第一学期期中考试数学试题(理)第Ⅰ卷 选择题(共50分)一、选择题(每小题5分,共50分)1.设U ={1,2,3,4,5},A ={1,2,3},B ={2,3,4},则下列结论中正确的是( )A .A ⊆B B .A ∩B ={2}C .A ∪B ={1,2,3,4,5}D .A ∩(B C U )={1}2.一元二次方程022=++a x x 有一个正根和一个负根的充分不必要条件是 A .0<a B .0>a C . 1-<a D .1>a 3.命题“∈∃x R ,0123=+-x x ”的否定是A .,x R ∃∈0123≠+-x xB .不存在,x R ∈0123≠+-x xC .,x R ∀∈ 0123=+-x xD .,x R ∀∈ 0123≠+-x x4.已知324log 0.3log 3.4log 3.615,5,,5a b c ⎛⎫=== ⎪⎝⎭则A .a b c >>B .b a c >>C .a c b >>D .c a b >> 5.若幂函数)(x f 的图象经过点)21,41(A ,则该函数在A 点处的切线方程为A .0144=++y xB .0144=+-y xC .02=-y xD .02=+y x6.设函数⎩⎨⎧>-≤=-1,log 11,2)(21x x x x f x ,则满足2)(≤x f 的x 的取值范围是A .1[-,2]B .[0,2]C .[1,+∞)D .[0,+∞)7.函数2sin 2xy x =-的图象大致是8.函数2()lg(31)1f x x x=++-的定义域是A .1(,)3-+∞B .1(,1)3-C .11(,)33-D .1(,)3-∞-9.已知(31)4,1()log ,1aa x a x f x x x -+<⎧=⎨≥⎩ 是(,)-∞+∞上的减函数,那么 a 的取值范围是A .(0,1)B .(0,13) C .⎪⎭⎫⎢⎣⎡31,71D .]1,17⎡⎢⎣10.定义域为R 的函数()f x 满足(2)2()f x f x +=,当[0,2]x ∈时,2()2f x x x =-,若[4,2]x ∈--时,13()()8f x t t≥-恒成立,则实数t 的取值范围是A .(](],10,3-∞-UB .((,30,3⎤⎤-∞-⎦⎦UC .[)[)1,03,-+∞UD .))3,03,⎡⎡-+∞⎣⎣U第Ⅱ卷 非选择题(共100分)二、填空题(每小题5分,共25分) 11.已知函数42log ,01(),((4))(log )62,0xx x f x f f f x ->⎧=-+=⎨≤⎩则_______12.设()f x 是周期为2的奇函数,当0≤x≤1时,()f x =2(1)x x -,则17()4f -=_______ 13.已知实数x y ,满足2203x y x y y +⎧⎪-⎨⎪⎩≥,≤,≤≤,则2z x y =-的最大值是_______14.函数2ln 2(0)()21(0)x x x x f x x x ⎧-+>=⎨+≤⎩的零点个数是_______15.2()(0),()f x ax bx c a f x x =++≠=已知且方程无实数根,下列命题: ①方程[()]f f x x =也一定没有实数根;②若0a >,则不等式[()]f f x x >对一切实数x 都成立; ③若0a <,则必存在实数0x ,使00[()]f f x x >;④若0,[()]a b c f f x x x ++=<则不等式对一切实数都成立。

湖北省部分高中2025届高三上学期11月(期中)联考语文试题(含答案)

湖北省部分高中2025届高三上学期11月(期中)联考语文试题(含答案)

湖北省部分高中2025届高三上学期11月(期中)联考语文试题本试卷共8页,23题。

全卷满分150分。

考试用时150分钟。

祝考试顺利注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

写在试卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。

写在试卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将答题卡上交。

一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,19分)阅读下面的文字,完成1~5题。

材料一:近些年,人工智能的算法不断完善,版本迭代更替加速,特别是它与大数据系统的对接,使得基于智能创作平台生成的“虚拟作者”大量涌现,诗文本的数量与质量迎来双线飙升。

尤其是,机器人“小冰”“小封”先后推出诗集《阳光失了玻璃窗》《万物都相爱》,加上近期新一代人工智能工具在词句分析能力方面的进化,让人领略到工具理性与自动化技术结合产生的威力。

机器人写诗现象在触发人们的惊叹之余,也开始令更多人反思文学媒介化、产业化生产所导致的问题,其聚讼的焦点便是:机器写的诗是否具备诗的自足性,仿诗、类诗属于“诗”还是“非诗”?人工智能具有永生性,它的不断通过学习趋于完美的特质,恰恰使其离“仿人类主体”的目标愈发偏远。

因为真实的写作者都不是完美的个体,他们的生命是有限的,无从被“编辑”或“优化”,故而才会痴迷于对死亡、孤独这类话题的不懈追求。

人类诗歌的一个核心母题,便是呈现人自身的精神“不完美”,比如恐惧、忧伤、愁怨,等等。

缺乏情感意识的人工智能拟造出的孤独书写、死亡意识、痛感叙事,是把人类基于体验获得的生命感性与思想灵性,固化为基于数据和概率的技术理性,因此很多作品缺乏精神感染力和审美共通感,也无法抵达非理性想象力、潜意识、直觉等需要经历命运磨砺才能顿悟的“真实”。

山东省枣庄第八中学2015届高三上学期期中考试数学(文)试题

山东省枣庄第八中学2015届高三上学期期中考试数学(文)试题

山东省枣庄第八中学2015届高三上学期期中考试数学试题(文)时间:120分钟 分数:150一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的表格内(每小题5分,共50分). 1.若集合{}}{2,0A x x x B x x x ===->,则AB =A .[0,1]B .(,0)-∞C .(1,)+∞D .(,1)-∞-2.,,,,5.0log ,3,5.035.03c b a c b a 则若===的大小关系是( )A .c a b >>B .a c b >>C .c b a >>D .a b c >>3.已知数列}2{nn +,欲使它的前n 项的乘积大于36,则n 的最小值为 A .7B .8C .9D .104.函数()x x x f ln +=的零点所在的大致区间为A .(0,1)B .(1,2)C .(1,e )D .(2,e )5.若⎩⎨⎧>+-≤+=)1(3)1(1)(x x x x x f ,则)]25([f f 的值为A .21-B .23C .25D .296.若R a ∈,则“a a >2”是“1>a ”的A .充分不必要条件B .必要不充分条件C .既不充分也不必要条件D .充要条件7.下列说法中正确的是①()0x x f =与()1=x g 是同一个函数;②()x f y =与()1+=x f y 有可能是同一个函数;③ ()x f y =与()t f y =是同一个函数;④定义域和值域相同的函数是同一个函数. A .①② B .②③ C .②④ D .①③8.已知函数()x f 是定义在R 上的偶函数,则下列结论一定成立的是A .R x ∈∀,()()x f x f ->B .R x ∈∃0,()()00x f x f ->C .R x ∈∀,()()0≥-x f x fD .R x ∈∃0,()()000<-x f x f 9.已知函数()22x f x =-,则函数()y f x =的图象可能是10.下列命题中正确的是A .若命题P 为真命题,命题q 为假命题,则命题“q p ∧”为真命题B .命题“若p 则q”的否命题是“若q 则p”C .命题“R x ∈∀,02>x”的否定是“R x ∈∀0,020≤x ”D .函数22x x y -=的定义域是{}20≤≤x x二、填空题:请把答案填在题中横线上(每小题5分,共25分).11.函数52)(2+-=x x x f 的定义域是(]2,1-∈x ,值域是 .12.函数3222--=x xy 的单调递减区间是 .13.已知()x x f 5.0log =,且(1)(21)f a f a -<-,则a 的取值范围是 . 14.若点(1,3)和(-4,-2)在直线02=++m y x 的两侧,则m 的取值范围是 . 15.已知函数()12-x f 的定义域是[]2,3-,则函数()1+x f 的定义域是 . 三、解答题:请写出详细过程(6小题,共75分)16.(本小题12分)设集合}32,3,2{2-+=a a U ,}2|,12{|-=a A ,}5{=A C U ,求实数a 的值.17.(本小题12分)已知函数()x x x x f ln 2212--=. ①求函数()x f 在点⎪⎭⎫⎝⎛-21,1处的切线方程. ②求函数()x f 的极值.18.(本小题12分)某工厂生产一种产品的固定成本是20000元,每生产一件产品需要另外投入100元,市场销售部进行调查后得知,市场对这种产品的年需求量为1000件,且销售收入函数21()10002g t t t =-+,其中t 是产品售出的数量,且01000t ≤≤.(利润=销售收入—成本).①若x 为年产量,y 表示利润,求()y f x =的解析式. ②当年产量为多少时,工厂的利润最大,最大值为多少?19.(本小题13分)已知定义在R 上的函数()x f 对所有的实数n m ,都有()()()n f m f n m f +=+,且当0>x 时,()0<x f 成立,()42-=f .①求()0f ,()1f ,()3f 的值. ②证明函数()x f 在R 上单调递减. ③解不等式()()622-<+x f x f .20.(本小题13分)已知不等式0222<-+-m x mx . ①若对于所有的实数x 不等式恒成立,求m 的取值范围.②设不等式对于满足2≤m 的一切m 的值都成立,求x 的取值范围. 21.(本小题13分)已知函数()()b x x a ax x f 6622323+++-=在2=x 处取得极值. ①求a 的值及()x f 的单调区间.②若[]4,1∈x 时,不等式()2b x f <恒成立,求b 的取值范围.数学试题(文)参考答案一、选择题二、填空题11.[)8,4 12.(]1,∞- 13.3221<<a 14.105<<-m 15.46≤≤-x 三、解答题16.解:由题得⎩⎨⎧=-=-+②①3125322a a a由①得2=a 或4-=a 由②得2=a 或1-=a 2=∴a 17.解:① ()xx x f 21--=' ()21-='=∴f k∴所求切线方程为232+-=x y ② ()()()xx x x x x x x x f 122212+-=--=--=' 且0>x 20<<∴x 时()0<'x f 2>x 时()0>'x f ∴函数()x f 在()2,0单调递减,在()+∞,2单调递增. 18.解:①当01000x ≤≤时,t x =,∴211000200001002y x x x =-+--21900200002x x =-+-当1000x >时,1000t = 22110001000200001002y x =-⨯+--480000100x =- ()2190020000(01000)2480000100(1000)x x x f x xx ⎧-+-≤≤⎪∴=⎨⎪->⎩②当01000x ≤≤时()221190020000(900)3850022f x x x x =-+-=--+ ∴当900x =时,()max 385000f x =当1000x >时,()480000100f x x =-为减函数,∴()480000100100f x <-⨯,即()380000f x <∴当年产量为900件时,工厂的利润最大,最大值为385000元.19.解:① 令0==n m 得()00=f令1==n m 得()21-=f ()()()6123-=+=∴f f f ② 由已知得()()()n f m f n m f =-+令21x x >,且R x x ∈21,()()()2121x x f x f x f -=-∴ 21x x >因()021<-∴x x f 即 ()()21x f x f <∴函数()x f 在R 单调递减.③ 不等式可化为())3(f 22<+∴x x f因为() x f 为R 上的减函数所以322>+x x ,解得1>x 或3-<x20.解: ① 当0=m 时,不等式为022<--x ,显然不恒成立. 0≠∴m ∴0<m 0<∆解得 21-<m② 法一:不等式可化为()2212+<+x x m 即 1222++<x x m 上式对2≤m 恒立 21222>++∴x x 解得 10<<x法二:不等式可化为()02212<--+x x m 令 ()()2212--+=x x m m f ()0<∴m f 对2≤m 恒立()02<∴f 即()022122<--+x x 解得 10<<x21.解:① 由已知()()62332++-='x a ax x f ()02='f 1=∴a ()()()213--='x x x f 由()0>'x f 得2>x 或1<x ()0<'x f 得21<<x故函数()x f 在()2,1单调递减,在()1,∞-和()+∞,2单调递增. ② 由①得函数()x f 在[]2,1单调递减,在[]4,2单调递增 ()b f 6251+=()b f 6164+=2616b b <+∴ 解得8>b 或2-<b。

山东省枣庄八中高三数学上学期第二次段考试卷理(含解析)

山东省枣庄八中高三数学上学期第二次段考试卷理(含解析)

山东省枣庄八中2015届高三上学期第二次段考数学试卷(理科)一、选择题(每小题5分,共50分;每题只有一个正确选项)1.(5分)“x<0”是“ln(x+1)<0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.(5分)实数a=0.2,b=log0.2,c=的大小关系正确的是()A.a<c<b B.a<b<c C.b<a<c D.b<c<a3.(5分)两圆(x﹣2)2+(y﹣1)2=4与(x+1)2+(y﹣2)2=9的公切线有()条.A.1 B.2 C.3 D.44.(5分)一元二次方程x2+2x+a=0有一个正根和一个负根的充分不必要条件是()A.a<0 B.a>0 C.a<﹣1 D.a>15.(5分)已知函数f(x)是奇函数,当x>0时,f(x)=a x(a>0,a≠1),且f(log0.54)=﹣3,则a的值为()A.B.3 C.9 D.6.(5分)函数y=的图象大致是()A.B.C.D.7.(5分)如果f′(x)是二次函数,且f′(x)的图象开口向上,顶点坐标为,那么曲线y=f(x)上任一点的切线的倾斜角α的取值范围是()A.B.C.D.8.(5分)若方程|x2+4x|=m有实数根,则所有实数根的和可能是()A.﹣2、﹣4、﹣6 B.﹣4、﹣5、﹣6 C.﹣3、﹣4、﹣5 D.﹣4、﹣6、﹣8 9.(5分)当0<x≤时,4x<log a x,则a的取值范围是()A.(0,)B.(,1)C.(1,)D.(,2)10.(5分)定义域为R的偶函数f(x)满足对∀x∈R,有f(x+2)=f(x)﹣f(1),且当x∈[2,3]时,f(x)=﹣2x2+12x﹣18,若函数y=f(x)﹣log a(|x|+1)在(0,+∞)上至少有三个零点,则a的取值范围是()A.B.C.D.二、填空题(本大题共5小题,每小题5分,共25分,把答案填在答卷纸的相应位置上)11.(5分)若函数f(x)=,则f(﹣3)的值为.12.(5分)函数的定义域为.13.(5分)函数f(x)=﹣x3+15x2+33x+6的单调减区间为.14.(5分)已知函数f(x)是(﹣∞,+∞)上的奇函数,且f(x)=f(2﹣x),当x∈[﹣1,0]时,f(x)=1﹣,则f+f=.15.(5分)已知f(x)=,且函数y=f(x)﹣1恰有3个不同的零点,则实数a的取值范围是.三、解答题(本大题6小题,其中第16-19题每题12分,第20题13分,第21题14分,解答应写出文字说明、证明过程或演算步骤,并把解答写在答卷纸的相应位置上)16.(12分)命题p:实数m<﹣2满足C=(2m+1,m﹣1)(其中a>0),命题q:实数m满足m(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.17.(12分)已知函数f(x)=ax2+bx+1(a,b为实数,a≠0,x∈R).(1)若函数f(x)的图象过点(﹣2,1),且方程f(x)=0有且只有一个根,求f(x)的表达式;(2)在(1)的条件下,当x∈[﹣1,2]时,g(x)=f(x)﹣kx是单调函数,求实数k的取值范围.18.(12分)已知:2x≤256且log2x≥,(1)求x的取值范围;(2)求函数f(x)=log 2()•log()的最大值和最小值.19.(12分)已知定义域为R的函数f(x)=是奇函数.(1)求a的值;(2)判断函数f(x)的单调性,并求其值域;(3)解关于t的不等式f(t2﹣2t)+f(2t2﹣1)<0.20.(13分)两县城A和B相距20km,现计划在两县城外以AB为直径的半圆弧上选择一点C 建造垃圾处理厂,其对城市的影响度与所选地点到城市的距离有关,对城A和城B的总影响度为城A与城B的影响度之和,记C点到城A的距离为xkm,建在C处的垃圾处理厂对城A和城B的总影响度为y,统计调查表明:垃圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k,当垃圾处理厂建在的中点时,对城A和城B的总影响度为0.065.(1)将y表示成x的函数;(2)讨论(1)中函数的单调性,并判断弧上是否存在一点,使建在此处的垃圾处理厂对城A和城B的总影响度最小?若存在,求出该点到城A的距离;若不存在,说明理由.21.(14分)已知函数f(x)=lnx﹣x+ln,g(x)=﹣﹣f(x).(1)求f(x)的单调区间;(2)设函数h(x)=x2﹣mx+4,若存在x1∈(0,1],对任意的x2∈[1,2],总有g(x1)≥h (x2)成立,求实数m的取值范围.山东省枣庄八中2015届高三上学期第二次段考数学试卷(理科)参考答案与试题解析一、选择题(每小题5分,共50分;每题只有一个正确选项)1.(5分)“x<0”是“ln(x+1)<0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件考点:充要条件.专题:计算题;简易逻辑.分析:根据不等式的性质,利用充分条件和必要条件的定义进行判断即可得到结论.解答:解:∵x<0,∴x+1<1,当x+1>0时,ln(x+1)<0;∵ln(x+1)<0,∴0<x+1<1,∴﹣1<x<0,∴x<0,∴“x<0”是ln(x+1)<0的必要不充分条件.故选:B.点评:本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键,比较基础.2.(5分)实数a=0.2,b=log0.2,c=的大小关系正确的是()A.a<c<b B.a<b<c C.b<a<c D.b<c<a考点:对数函数的图像与性质;指数函数的图像与性质;不等关系与不等式.专题:函数的性质及应用.分析:根据指数函数,对数函数和幂函数的性质分别判断a,b,c的大小,即可判断.解答:解:根据指数函数和对数函数的性质,知log0.2<0,0<0.2<1,,即0<a<1,b<0,c>1,∴b<a<c.故选:C.点评:本题主要考查函数数值的大小比较,利用指数函数,对数函数和幂函数的性质是解决本题的关键.3.(5分)两圆(x﹣2)2+(y﹣1)2=4与(x+1)2+(y﹣2)2=9的公切线有()条.A.1 B.2 C.3 D.4考点:两圆的公切线条数及方程的确定.专题:直线与圆.分析:判断两个圆的位置关系,即可判断公切线的条数.解答:解:两圆(x﹣2)2+(y﹣1)2=4与(x+1)2+(y﹣2)2=9的圆心距为:=.两个圆的半径和为:5,半径差为:1,∵,∴两个圆相交.公切线只有2条.故选:B.点评:本题考查圆的公切线的条数,判断两个圆的位置关系是解题的关键.4.(5分)一元二次方程x2+2x+a=0有一个正根和一个负根的充分不必要条件是()A.a<0 B.a>0 C.a<﹣1 D.a>1考点: 一元二次方程的根的分布与系数的关系;必要条件、充分条件与充要条件的判断. 专题: 函数的性质及应用.分析: 根据一元二次方程根与系数之间的关系求出命题的等价条件,根据充分条件和必要条件的定义即可得到结论..解答: 解:若一元二次方程x 2+2x+a=0有一个正根和一个负根, 则,即,解得a <0,即一元二次方程x 2+2x+a=0有一个正根和一个负根的充要条件是a <0, 则a <0的充分不必要条件可以是a <﹣1, 故选:C点评: 本题主要考查一元二次方程根与判别式△之间的关系和应用,求出命题的等价条件是解决本题的关键..5.(5分)已知函数f (x )是奇函数,当x >0时,f (x )=a x(a >0,a≠1),且f (log 0.54)=﹣3,则a 的值为()A .B . 3C . 9D .考点: 函数解析式的求解及常用方法;奇函数. 专题: 函数的性质及应用.分析: 根据对数的运算性质及奇函数的特点,可得f (2)=3,结合当x >0时,f (x )=a x,构造关于a 的方程,解方程可得答案. 解答: 解:∵log 0.54=﹣2, ∴f(log 0.54)=f (﹣2)=﹣3, 又∵函数f (x )是奇函数, ∴f(2)=3,即a 2=3,由a >0,a≠1得: a=, 故选:A点评: 本题考查的知识点是函数奇偶性的性质,函数的解析式,其中由已知分析出f (2)=3,是解答的关键.6.(5分)函数y=的图象大致是()A .B .C .D .考点: 利用导数研究函数的单调性;对数函数的图像与性质.专题:图表型.分析:函数为奇函数,首先作出函数y=在区间[0,+∞)上的图象,由于函数图象关于原点对称,得出图象.解答:解:由于=,∴函数y=是奇函数,其图象关于原点对称.又y′=,由y′=0得x=当0<x<时,y′>0,当x>时,y′<0,∴原函数在(0,)上是增函数,在(,+∞)上是减函数,首先作出函数y=在区间(0,+∞)上的图象,由于此函数为奇函数,所以在(﹣∞,0)上的图象与函数在[0,+∝)上的图象关于原点对称.故选C.点评:本题考查对数函数的图象,要求学生能熟练运用对数函数的有关性质.7.(5分)如果f′(x)是二次函数,且f′(x)的图象开口向上,顶点坐标为,那么曲线y=f(x)上任一点的切线的倾斜角α的取值范围是()A.B.C.D.考点:导数的几何意义;直线的倾斜角.专题:计算题.分析:由二次函数的图象可知最小值为,再根据导数的几何意义可知k=tanα≥,结合正切函数的图象求出角α的范围.解答:解:根据题意得f′(x)≥则曲线y=f(x)上任一点的切线的斜率k=tanα≥结合正切函数的图象由图可得α∈故选B.点评:本题考查了导数的几何意义,以及利用正切函数的图象求倾斜角,同时考查了数形结合法的应用,本题属于中档题.8.(5分)若方程|x2+4x|=m有实数根,则所有实数根的和可能是()A.﹣2、﹣4、﹣6 B.﹣4、﹣5、﹣6 C.﹣3、﹣4、﹣5 D.﹣4、﹣6、﹣8考点:函数的零点与方程根的关系.专题:函数的性质及应用.分析:函数y=|x2+4x|由函数y=x2+4x的图象纵向对折变换所得,画出函数图象可得函数y=|x2+4x|的图象关于直线x=﹣2对称,则方程|x2+4x|=m的实根也关于直线x=﹣2对称,对m 的取值分类讨论,最后综合讨论结果,可得答案.解答:解:函数y=|x2+4x|由函数y=x2+4x的图象纵向对折变换所得:如下图所示:由图可得:函数y=|x2+4x|的图象关于直线x=﹣2对称,则方程|x2+4x|=m的实根也关于直线x=﹣2对称,当m<0时,方程|x2+4x|=m无实根,当m=0或m>4时,方程|x2+4x|=m有两个实根,它们的和为﹣4,当0<m<4时,方程|x2+4x|=m有四个实根,它们的和为﹣8,当m=4时,方程|x2+4x|=m有三个实根,它们的和为﹣6,故选:D点评:本题考查的知识点是函数的零点与方程根的关系,数形结合是处理此类问题常用的方法.9.(5分)当0<x≤时,4x<log a x,则a的取值范围是()A.(0,)B.(,1)C.(1,)D.(,2)考点:对数函数图象与性质的综合应用.专题:计算题;压轴题.分析:由指数函数和对数函数的图象和性质,将已知不等式转化为不等式恒成立问题加以解决即可解答:解:∵0<x≤时,1<4x≤2要使4x<log a x,由对数函数的性质可得0<a<1,数形结合可知只需2<log a x,∴即对0<x≤时恒成立∴解得<a<1故选 B点评:本题主要考查了指数函数和对数函数的图象和性质,不等式恒成立问题的一般解法,属基础题10.(5分)定义域为R的偶函数f(x)满足对∀x∈R,有f(x+2)=f(x)﹣f(1),且当x∈[2,3]时,f(x)=﹣2x2+12x﹣18,若函数y=f(x)﹣log a(|x|+1)在(0,+∞)上至少有三个零点,则a的取值范围是()A.B.C.D.考点:根的存在性及根的个数判断.专题:计算题;压轴题.分析:根据定义域为R的偶函数f(x)满足对∀x∈R,有f(x+2)=f(x)﹣f(1),可以令x=﹣1,求出f(1),再求出函数f(x)的周期为2,当x∈[2,3]时,f(x)=﹣2x2+12x ﹣18,画出图形,根据函数y=f(x)﹣log a(|x|+1)在(0,+∞)上至少有三个零点,利用数形结合的方法进行求解;解答:解:因为 f(x+2)=f(x)﹣f(1),且f(x)是定义域为R的偶函数令x=﹣1 所以 f(﹣1+2)=f(﹣1)﹣f(1),f(﹣1)=f(1)即 f(1)=0 则有,f(x+2)=f(x)f(x)是周期为2的偶函数,当x∈[2,3]时,f(x)=﹣2x2+12x﹣18=﹣2(x﹣3)2图象为开口向下,顶点为(3,0)的抛物线∵函数y=f(x)﹣log a(|x|+1)在(0,+∞)上至少有三个零点,∵f(x)≤0,∴g(x)≤0,可得a<1,要使函数y=f(x)﹣log a(|x|+1)在(0,+∞)上至少有三个零点,令g(x)=log a(|x|+1),如图要求g(2)>f(2),可得就必须有 log a(2+1)>f(2)=﹣2,∴可得log a3>﹣2,∴3<,解得﹣<a<又a>0,∴0<a<,故选A;点评:此题主要考查函数周期性及其应用,解题的过程中用到了数形结合的方法,这也是2015届高考常考的热点问题,此题是一道中档题;二、填空题(本大题共5小题,每小题5分,共25分,把答案填在答卷纸的相应位置上)11.(5分)若函数f(x)=,则f(﹣3)的值为.考点:函数的值.专题:计算题;函数的性质及应用.分析:﹣3的值在x<2这段上,代入这段的解析式得f(﹣1),再将﹣1继续代入两次,得f(3),将3代入x≥2段的解析式,求出函数值.解答:解:根据题意得:f(﹣3)=f(﹣3+2)=f(﹣1)=f(﹣1+2)=f(1)=f(3)f(3)=2﹣3=.故答案为:点评:本题考查求分段函数的函数值:据自变量所属范围,分段代入求.12.(5分)函数的定义域为(,1].考点:对数函数的定义域.专题:计算题.分析:函数的定义域为,由此能求出结果.解答:解:函数的定义域为,解得,故答案为:(,1].点评:本题考查函数的定义域,解题时要认真审题,仔细解答,注意对数函数的图象和性质的应用.13.(5分)函数f(x)=﹣x3+15x2+33x+6的单调减区间为(﹣∞,﹣1)和(11,+∞).考点:利用导数研究函数的单调性.专题:计算题;导数的综合应用;不等式的解法及应用.分析:要求函数的单调减区间可先求出f′(x),并令其小于零得到关于x的不等式求出解集即可.解答:解:f′(x)=﹣3x2+30x+33=﹣3(x2﹣10x﹣11)=﹣3(x+1)(x﹣11)<0,解得x>11或x<﹣1,故减区间为(﹣∞,﹣1)和(11,+∞).故答案为:(﹣∞,﹣1)和(11,+∞).点评:此题考查学生利用导数研究函数的单调性的能力,同时考查解不等式的运算能力,属于基础题.14.(5分)已知函数f(x)是(﹣∞,+∞)上的奇函数,且f(x)=f(2﹣x),当x∈[﹣1,0]时,f(x)=1﹣,则f+f=﹣1.考点:函数奇偶性的性质.专题:函数的性质及应用.分析:利用函数f(x)是(﹣∞,+∞)上的奇函数,且f(x)=f(2﹣x),可得f(x+4)=f(x).即函数f(x)是周期T=4的函数.再利用函数的奇偶性及其已知条件即可得出.解答:解:∵当x∈[﹣1,0]时,f(x)=1﹣,∴f(0)=0,f(﹣1)=1﹣2=﹣1.∵函数f(x)是(﹣∞,+∞)上的奇函数,且f(x)=f(2﹣x),∴f(x+2)=f(2﹣x﹣2)=f(﹣x)=﹣f(x),∴f(x+4)=﹣f(x+2)=f(x).∴函数f(x)是周期T=4的函数.∴f+f=f(2)+f(3)=f(0)+f(﹣1)=0+(﹣1)=﹣1.故答案为:﹣1.点评:本题考查了函数的奇偶性、周期性,考查了推理能力与计算能力,属于中档题.15.(5分)已知f(x)=,且函数y=f(x)﹣1恰有3个不同的零点,则实数a的取值范围是(0,1).考点:根的存在性及根的个数判断;函数的图象;分段函数的应用.专题:函数的性质及应用.分析:函数的零点的问题也是函数的图象的交点问题,分别画出函数的图象,由图象可知a 的范围.解答:解:∵函数数y=f(x)﹣1恰有3个不同的零点,∴f(x)=1有三个解,即y=f(x)与y=1有三个交点,分别画出函数y=f(x)与y=1的图象,当x≥0时,f(x)=e|x﹣1|与y=1只有一个交点,则当x<0时,函数f(x)=a﹣x2﹣2x,与y=1的图象有必有两个交点,有图象可知a的范围为(0,1),故答案为:(0,1)点评:本题主要考查了函数零点的问题,关键采用数形结合的思想,属于中档题.三、解答题(本大题6小题,其中第16-19题每题12分,第20题13分,第21题14分,解答应写出文字说明、证明过程或演算步骤,并把解答写在答卷纸的相应位置上)16.(12分)命题p:实数m<﹣2满足C=(2m+1,m﹣1)(其中a>0),命题q:实数m满足m(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.考点:必要条件、充分条件与充要条件的判断;复合命题的真假.专题:简易逻辑.分析:(1)若a=1,分别求出p,q成立的等价条件,利用且p∧q为真,求实数x的取值范围;(2)利用¬p是¬q的充分不必要条件,即q是p的充分不必要条件,求实数a的取值范围.解答:解:由:C=(2m+1,m﹣1)(其中a>0),解得a<x<3a,记A=(a,3a)由m,得,即 2<x≤3,记 B=(2,3](1)若a=1,且p∧q为真,则A=(1,3),B=(2,3],又p∧q为真,则,∴2<x<3,因此实数x的取值范围是(2,3).(2)∵¬p是¬q的充分不必要条件,∴p是q的必要不充分条件,即B⊊A,则只需,解得1<a≤2,故实数a的取值范围是(1,2]点评:本题主要考查复合命题与简单命题之间的关系,利用逆否命题的等价性将¬p是¬q 的充分不必要条件,转化为q是p的充分不必要条件是解决本题的关键,17.(12分)已知函数f(x)=ax2+bx+1(a,b为实数,a≠0,x∈R).(1)若函数f(x)的图象过点(﹣2,1),且方程f(x)=0有且只有一个根,求f(x)的表达式;(2)在(1)的条件下,当x∈[﹣1,2]时,g(x)=f(x)﹣kx是单调函数,求实数k的取值范围.考点:二次函数的性质.专题:函数的性质及应用.分析:(1)因为f(﹣2)=1,得b=2a.由方程f(x)=0有且只有一个根,即△=b2﹣4a=0,得a=1,b=2,故可求得f(x)=(x+1)2.(2)先根据已知求得g(x)=,故可由二次函数的图象和性质求得实数k的取值范围.解答:解:(1)因为f(﹣2)=1,即4a﹣2b+1=1,所以b=2a.因为方程f(x)=0有且只有一个根,即△=b2﹣4a=0.所以4a2﹣4a=0.即a=1,b=2.所以f(x)=(x+1)2.(2)因为g(x)=f(x)﹣kx=x2+2x+1﹣kx=x2﹣(k﹣2)x+1=.所以当或时,即k≥6或k≤0时,g(x)是单调函数.点评:本题主要考察了二次函数的性质,属于基础题.18.(12分)已知:2x≤256且log2x≥,(1)求x的取值范围;(2)求函数f(x)=log 2()•log()的最大值和最小值.考点:其他不等式的解法;函数的值域.专题:计算题;函数的性质及应用.分析:(1)利用指数与对数不等式求出x的范围,求出交集即可.(2)通过x的范围求出log2x的范围,化简函数表达式,通过二次函数的最值求出函数的最值即可.解答:解:(1)由2x≤256得x≤8,log2x得x≥,∴.(2)由(1)得,f(x)=log2•log=(log2x﹣log22)(lo)∴f(x)=(log2x﹣1)(log2x﹣2)=(log2x﹣)2﹣,当log2x=,f(x)min=﹣.当log2x=3,f(x)max=2.点评:本题考查指数与对数不等式的解法,函数的最值的求法,考查转化思想,计算能力.19.(12分)已知定义域为R的函数f(x)=是奇函数.(1)求a的值;(2)判断函数f(x)的单调性,并求其值域;(3)解关于t的不等式f(t2﹣2t)+f(2t2﹣1)<0.考点:函数奇偶性的性质;函数单调性的判断与证明.专题:计算题;函数的性质及应用;不等式的解法及应用.分析:(1)用特值法求出a=2,并验证;(2)化简,观察可知f(x)在(﹣∞,+∞)上为减函数,从而求函数的值域,(3)由奇偶性化f(t2﹣2t)+f(2t2﹣1)<0为f(t2﹣2t)<f(﹣2t2+1),从而利用函数的单调性解答.解答:解:(1)因为f(x)是奇函数,,解得a=2.经检验,当a=2时,函数f(x)是奇函数.(2)由(1)知.由上式易知f(x)在(﹣∞,+∞)上为减函数.由于函数f(x)的定义域为R,所以2x>0,2x+1>1,因此,所以,即函数f(x)的值域为.(3)因f(x)是奇函数,从而f(t2﹣2t)+f(2t2﹣1)<0可化为f(t2﹣2t)<﹣f(2t2﹣1)=f(﹣2t2+1).因f(x)是减函数,由上式推得t2﹣2t>﹣2t2+1,即3t2﹣2t﹣1>0,解不等式可得.点评:本题考查了函数的奇偶性的应用及函数的单调性的判断与应用,同时考查了函数的值域的求法,属于中档题.20.(13分)两县城A和B相距20km,现计划在两县城外以AB为直径的半圆弧上选择一点C 建造垃圾处理厂,其对城市的影响度与所选地点到城市的距离有关,对城A和城B的总影响度为城A与城B的影响度之和,记C点到城A的距离为xkm,建在C处的垃圾处理厂对城A和城B的总影响度为y,统计调查表明:垃圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k,当垃圾处理厂建在的中点时,对城A和城B的总影响度为0.065.(1)将y表示成x的函数;(2)讨论(1)中函数的单调性,并判断弧上是否存在一点,使建在此处的垃圾处理厂对城A和城B的总影响度最小?若存在,求出该点到城A的距离;若不存在,说明理由.考点:利用导数求闭区间上函数的最值;函数解析式的求解及常用方法.专题:计算题;应用题;压轴题;分类讨论.分析:(1)先利用AC⊥BC,求出BC2=400﹣x2,再利用圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k,得到y和x之间的函数关系,最后利用垃圾处理厂建在的中点时,对城A和城B的总影响度为0.065求出k即可求出结果.(2)先求出导函数以及导数为0的根,进而求出其单调区间,找到函数的最小值即可.解答:解(1)由题意知AC⊥BC,BC2=400﹣x2,其中当时,y=0.065,所以k=9所以y表示成x的函数为(2),,令y'=0得18x4=8(400﹣x2)2,所以x2=160,即,当时,18x4<8(400﹣x2)2,即y'<0所以函数为单调减函数,当时,18x4>8(400﹣x2)2,即y'>0所以函数为单调增函数.所以当时,即当C点到城A的距离为时,函数有最小值.(注:该题可用基本不等式求最小值.)点评:本题主要考查函数在实际生活中的应用问题.涉及到函数解析式的求法以及利用导数研究函数的最值问题,属于中档题目,关键点在于把文字转化为数学符号.21.(14分)已知函数f(x)=lnx﹣x+ln,g(x)=﹣﹣f(x).(1)求f(x)的单调区间;(2)设函数h(x)=x2﹣mx+4,若存在x1∈(0,1],对任意的x2∈[1,2],总有g(x1)≥h (x2)成立,求实数m的取值范围.考点:利用导数研究函数的单调性;利用导数求闭区间上函数的最值.专题:计算题;导数的综合应用.分析:(1)求出导数,令导数大于0,的增区间,令导数小于0,得减区间,注意定义域;(2)求出g(x)的导数,判断函数g(x)在(0,1]上单调递增,得到最大值,再由条件得到g(x)在(0,1]上的最大值不小于h(x)在[1,2]上的最大值,列出不等式组,解出即可得到.解答:解:(1)由于函数f(x)=lnx﹣x+ln,故导数f.∴当0<x<2时,f′(x)>0;当x>2时,f′(x)<0.∴f(x)的单调增区间为(0,2),单调减区间为(2,+∞);(2)g(x)=﹣﹣lnx+﹣ln,则g′(x)=2﹣+=,而2x2﹣x+2=2(x﹣)2+>0,故在(0,1]上g′(x)>0,即函数g(x)在(0,1]上单调递增,∴g(x)max=g(1)=ln2﹣1,而“存在x1∈(0,1],对任意的x2∈[1,2],总有g(x1)≥h(x2)成立”等价于“g(x)在(0,1]上的最大值不小于h(x)在[1,2]上的最大值”,而h(x)在[1,2]上的最大值为h(1),h(2)中的最大者,记为max{h(1),h(2)}所以,即有,则即有m≥6﹣ln2.故实数m的取值范围为[6﹣ln2,+∞).点评:本题考查导数的运用:求单调区间和最值,考查不等式的恒成立问题转化为求最值问题,考查运算能力,属于中档题和易错题.。

山东省百师联考2024-2025学年高三上学期期中考试数学试题(含解析)

山东省百师联考2024-2025学年高三上学期期中考试数学试题(含解析)

2024—2025学年高三期中考试数学试题1.答卷前,考生务必将自己的姓名、考场号、座位号、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.考试时间为120分钟,满分150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合,,则( )A. B. C. D.2.“是“”的( )A.充要条件 B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件3.设向量,,,且,则( )A.3B.2C. D.4.已知某圆锥的轴截面为等边三角形,且圆锥侧面积为,则该圆锥的内切球体积为( )A. B.C.5.函数(,,)的部分图象如图所示,图象上的所有点向左平移个单位长度得到函数的图象.若对任意的都有,则图中的值为( )A. B. C. D.{}1,2,3,4,5,6A ={}2B xx A =∈∈NA B =ð{}1,3,6{}3,4,6{}1,2,3{}4,5,6sin θ=π3θ=()2,2a = ()2,6b =- ()4,2c = ()a b c λ-⊥λ=2-3-6π4π4π3()()sin f x A x ωϕ=+0A >0ω>π2ϕ<π12()g x x ∈R ()()0g x g x +-=a 1-6.已知函数若方程恰有2个不相等的实数解,则的取值范围是( )A. B. C. D.7.已知函数为偶函数,为奇函数,且当时,,则( )A.2B. C.1D.8.在平面直角坐标系内,方程对应的曲线为椭圆,则该椭圆的焦距为( )二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知方程的两个复数根为,,则下列说法正确的有( )A. B. C. D.10.设函数,则( )A.当时,的极大值大于0 B.当时,无极值点C.,使在上是减函数D.,曲线的对称中心的横坐标为定值11.已知曲线上的动点到点的距离与其到直线的距离相等,则A.曲线的轨迹方程为B.若,为曲线上的动点,则的最小值为5C.过点,恰有2条直线与曲线有且只有一个公共点D.圆与曲线交于,两点,与直线交于,两点,则,,,四点围成的四边形的周长为12三、填空题:本题共3小题,每小题5分,共15分.12.记为等差数列的前项和,若,,则______.13.曲线在点处的切线与抛物线相切,则______.()()24,0,ln 1,01,x x x f x x x ⎧+≤⎪=⎨-<<⎪⎩()0f x ax -=a (],0-∞[]1,0-[)1,4-[)0,+∞()2f x +()21f x +(]0,1x ∈()4log f x x =94f ⎛⎫= ⎪⎝⎭2-1-221x y xy +-=2240x x ++=1z 2z 122z z +=-212z z =124z z =12z =()321f x x x ax =-+-1a =-()f x 13a ≥()f x a ∃∈R ()f x R a ∀∈R ()y f x =C (),P x y ()1,0F 1x =-C 24y x=()4,2T M C MT MF +()1,0N -C 225x y +=C A B 1x =-E G A B E G n S {}n a n 347a a +=2535a a +=99S =2ln y x x =-()1,222y ax ax =-+a =14.已知双曲线:(,)与平行于轴的动直线交于,两点,点在点左侧,双曲线的左焦点为,且当时,,则双曲线的离心率是______;当直线运动时,延长至点使,连接交轴于点,则的值是______.(第一空2分,第二空3分)四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)在中,内角,,的对边分别是,,,且满足.(1)求角;(2)若,求周长的取值范围.16.(15分)已知函数.(1)若在上单调递减,求实数的取值范围;(2)若,证明:.17.(15分)如图,在四棱锥中,底面是菱形,,分别为,的中点,平面,且.(1)证明:平面;(2)若与平面所成的角是,求二面角的余弦值.18.(17分)如图,已知椭圆:()上的点到其左焦点的最大矩离和最小距离分别为和,斜率为的直线与椭圆相交于异于点的,两点.C 22221x y a b-=0a >0b >x A B ABC F AFAB ⊥AF AB =BF P AF FP =AP x Q FQFPABC △A B C a b c πsin cos 6a B b A ⎛⎫=- ⎪⎝⎭A 2a =ABC △()2ln 1f x x x ax =-+()f x ()0,+∞a 0a <()0f x >P ABCD -ABCD E F AB PD PA ⊥ABCD 2PA AB ==//AF PCE FC ABCD π6F AC D --C 22221x y a b+=0a b >>2+213-l C ()3,1P M N(1)求椭圆的方程;(2)若,求直线的方程;(3)当直线,均不与轴垂直时,设直线的斜率为,直线的斜率为,求证:为定值.19.(17分)若有穷数列(且)满足(),则称为数列.(1)判断下列数列是否为数列,并说明理由.①1,2,4,3;②4,2,8,1.(2)已知数列中各项互不相等,令(),求证:数列是等差数列的充分必要条件是数列是常数列.(3)已知数列是且个连续正整数1,2,…,的一个排列,若,求的所有取值.C MN =l PM PN x PM 1k PN 2k 12k k {}n a *n ∈N 3n ≥112i i i i a a a a +++-≤-1,2,,2i n =⋅⋅⋅-{}n a M M M {}n a 1m m m b a a +=-1,2,,1m n =⋅⋅⋅-{}n a {}m b M {}n a (*m m ∈N )3m ≥m 1112m kk k aa m -+=-=+∑m2024—2025学年高三期中考试数学参考答案及评分意见1. D 【解析】因为,,所以,.故选D.2. C 【解析】当,或,,推不出;当时,必有“是“”的必要不充分条件,故选C.3. A 【解析】因为,,,所以;因为,所以,解得.故选A.4. B 【解析】设圆锥的底面半径为,则,所以设圆锥的内切球半径为,又圆锥的轴截面为等边三角形,所以,则内切球的体积.故选B.5. A 【解析】由,得.的图象上的所有点向左平移个单位长度后得的图象,由题意知为奇函数,所以其图象关于原点对称,得函数的图象过点.设的最小正周期为,则,所以,故.又,,且,可得,所以,.故选A.6. C 【解析】当时,,由二次函数的性质可知在上单调递减,在上单调递增.令,则,所以.当时,,,在上单调递减.令,则.作出的大致图象,如图所示.方程恰有2个不{}1,2,3,4,5,6A ={}2B x x A =∈∈N {}1,2,3B ={}4,5,6A B =ðsin θ=π2π3k θ=+k ∈Z 2π2π3k θ=+k ∈Z π3θ=π3θ=sin θ=sin θ=π3θ=()2,2a = ()2,6b =- ()4,2c = ()22,26a b λλλ-=+-()a b c λ-⊥ ()()()814131240a b c λλλλ-⋅=++-=-=3λ=r π26πr r ⋅⋅=r =R 113R ==344ππ33V R ==()max 2f x =2A =()f x π12()g x ()g x ()f x π,012⎛⎫⎪⎝⎭()f x T 7ππ12122T -=2ππT ω==2ω=π2π12k ωϕ+=k ∈Z π2ϕ<π6ϕ=-()π2sin 26f x x ⎛⎫=-⎪⎝⎭()π02sin 16a f ⎛⎫==-=- ⎪⎝⎭0x ≤()24f x x x =+()f x (),2-∞-(]2,0-()24g x x x =+()24g x x '=+()04g '=01x <<()()ln 1f x x =-()101f x x =<-'()f x ()0,1()()ln 1h x x =-()01h '=-()y f x =()0f x ax -=相等的实数解,也就是的图象与直线恰有两个公共点.由图易知所求的取值范围是.故选C.7. C 【解析】因为函数为偶函数,所以,即函数的图象关于直线对称;因为函数为奇函数,所以,即函数的图象关于点中心对称.又当时,,所以.故选C.8. C 【解析】因为,将点的坐标代入方程,原方程保持不变,所以椭圆关于原点对称;将点和的坐标分别代入方程,原方程保持不变,所以椭圆关于直线和对称.设直线与椭圆交于,两点,则解得或所以;设直线与椭圆交于,两点,则解得或所以.由椭圆性质可知,,()f x y ax =a [)1,4-()2f x +()()22f x f x +=-+()f x 2x =()21f x +()()21210f x f x ++-+=()f x ()1,0(]0,1x ∈()4log f x x =4997711222log 1444444f f f ff ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯-==--=-=-=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭221x y xy +-=(),x y --(),y x (),y x --y x =y x =-y x =A B 22,1,y x x y xy =⎧⎨+-=⎩1,1,x y =⎧⎨=⎩1,1,x y =-⎧⎨=-⎩AB =y x =-C D 22,1,y x x y xy =-⎧⎨+-=⎩x y ⎧=⎪⎪⎨⎪=⎪⎩x y ⎧=⎪⎪⎨⎪=⎪⎩CD =2a AB ==2b CD ==所以,.故选C.9. ACD 【解析】方程的两个复数根为,,由一元二次方程根与系数的关系得,,A ,C 正确;B 选项,,若,,则,B 错误;D 选项,由B 选项知,或,均有,D 正确.故选ACD.10. BD 【解析】对于A ,当时,,求导得,令得或,由,得或,由,得,于是在,上单调递增,在上单调递减,在处取得极大值,极大值为,A 错误;对于B ,,当时,,即恒成立,函数在上单调递增,无极值点,B 正确;对于C ,要使在上是减函数,则恒成立,而不等式的解集不可能为,C 错误;对于D ,由,得曲线的对称中心的坐标为,D 正确.故选BD.11. ABD 【解析】对于A ,依题意,曲线是以为焦点,a =b =c ==2240x x ++=1z 2z 122z z +=-124z z =2240x x ++=1=-±11z =-+21z =-()22212113i 2z z =-+=-+=--≠11z =-+1-12z ==1a =-()321f x x x x =---()2321f x x x =--'()0f x '=13x =-1x =()0f x '>13x <-1x >()0f x '<113x -<<()f x 1,3⎛⎫-∞- ⎪⎝⎭()1,+∞1,13⎛⎫- ⎪⎝⎭()f x 13x =-11111032793f ⎛⎫-=--+-< ⎪⎝⎭()232f x x x a =-+'13a ≥4120a ∆=-≤()0f x '≥()f x R ()f x ()f x R ()2320f x x x a =-+≤'2320x x a -+≤R ()32322222258113333327f x f x x x a x x x ax a ⎛⎫⎛⎫⎛⎫⎛⎫-+=---+--+-+-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()y f x =129,3327a ⎛⎫- ⎪⎝⎭C ()1,0F直线为准线的抛物线,方程为,A 正确;对于B ,如图,过点作直线的垂线,交直线于,交抛物线于.令点到直线的距离为,则,当且仅当点与点重合时取等号,因此的最小值为,B 正确;对于C ,显然过点与曲线有且只有一个公共点的直线的斜率存在,设其方程为,由消去得,当时,直线与抛物线仅有一个公共点,当时,由,解得,显然直线,均与抛物线仅有一个公共点,因此过点与曲线有且只有一个公共点的直线有3条,C 错误;对于D ,直线交圆于点,,由得或从而,,所以四边形是矩形,其周长为,D 正确.故选ABD.12. 8 【解析】设等差数列的公差为,因为,,即解得则,所以.故答案为8.13. 1 【解析】设,则,则,所以曲线在点处的切线方程为,即.1x =-24y x =T 1x =-1x =-E A M 1x =-d ,MF d MT MF MT d TE =+=+≥M A MT MF +5TE =()1,0N -C ()1y k x =+()21,4,y k x y x ⎧=+⎨=⎩x 2440ky y k -+=0k =0y =0k ≠216160k ∆=-=1k =±1y x =+1y x =--()1,0N -C 1x =-225x y +=()1,2E -()1,2G --2224,5,y x x y ⎧=⎨+=⎩1,2,x y =⎧⎨=⎩1,2,x y =⎧⎨=-⎩()1,2A ()1,2B -ABGE ()22412⨯+={}n a d 347a a +=2535a a +=11257,475,a d a d +=⎧⎨+=⎩14,3,a d =-⎧⎨=⎩()91989899437222S a d ⨯⨯=+⨯=⨯-+⨯=989S =()2ln f x x x =-()12f x x'=-()11f '=2ln y x x =-()1,221y x -=-1y x =+由消去,得,由,得.故答案为1.【解析】当时,设,则,解得.又,所以,又,所以,两边同时除以,得,解得.如图,因为,所以,设,则,,,所以,又.15.解:(1)由及正弦定理得,故,所以.21,2,y x y ax ax =+⎧⎨=-+⎩y ()2110ax a x -++=()2140a a ∆=-+-=⎡⎤⎣⎦1a =1+-AF AB ⊥()0,A c y -220221y c a b -=4202b y a =AF AB =22b c a=222b c a =-222c a ac -=2a 2210e e --=1e =+1e =PQF PAB △∽△FQ AB ABFP BP AF BF==+(),A x y (),B x y -2AB x =AF =BF =FQFP=22a ac c=1ca =1a c ==πsin cos 6a B b A ⎛⎫=-⎪⎝⎭πsin sin sin cos 6A B B A ⎛⎫=- ⎪⎝⎭11sin sin sin sin cos sin sin 22A B B A A B A B A ⎫=+=+⎪⎪⎭1sin sin cos 2A B B A =因为,,所以,因为,所以.(2)由(1)可知,,由余弦定理,得,又,所以.由基本不等式得:,即,所以,当且仅当时,等号成立.又,即,又,所以,所以,即周长的取值范围是.16.(1)解:,,则.因为在上单调递减,所以在上恒成立,即在上恒成立.构造函数(),则,令,解得.当时,;当时,,所以在区间(0,1)上单调递增,在区间上单调递减,所以当时,取得极大值,也是最大值,即.所以,即的取值范围为.(2)证明:方法一:由题意得的定义域为,当时,要证,即证,等价于证明.()0,πB ∈sin 0B ≠1πsin sin 023A A A ⎛⎫=-= ⎪⎝⎭()0,πA ∈π3A =π3A =222b c a bc +-=2a =224b c bc +=+222b c bc +≥42bc bc +≥4bc ≤2b c ==()22223416b c b c bc bc +=++=+≤04b c <+≤2b c a +>=24b c <+≤46a b c <++≤ABC △(]4,6()2ln 1f x x x ax =-+0x >()ln 12f x x ax =+-'()f x ()0,+∞()ln 120f x x ax =+-≤'()0,+∞ln 12x a x+≥()0,+∞()ln 12x g x x+=0x >()()22122ln 1ln 42x x xx g x x x⋅-+'-==()0g x '=1x =()0,1x ∈()0g x '>()1,x ∈+∞()0g x '<()g x ()1,+∞1x =()g x ()()max 112g x g ==12a ≥a 1,2⎡⎫+∞⎪⎢⎣⎭()2ln 1f x x x ax =-+()0,+∞0a <()0f x >2ln 10x x ax -+>1ln 0x ax x-+>构造函数(),即证.因为,令,因为函数图象的对称轴为直线,所以在上单调递增,且,,所以存在,使得,所以当时,;当时,,,所以在上单调递减,在上单调递增,所以当时,取得极小值,也是最小值,即().又因为,得,所以().令,,则在上恒成立,所以在上单调递减,所以当时,,所以,即,所以.方法二:将看作以为变量的函数,其中,因为,所以关于单调递减.要证当时,,即证当时,,只需证当时,.令,则,令,解得.当变化时,,的变化情况如下表:-+()1ln h x x ax x=-+0x >()min 0h x >()222111ax x h x a x x x-'+-=--=()21T x ax x =-+-()T x 102x a=<()T x ()0,+∞()010T =-<()10T a =->()00,1x ∈()200010T x ax x =-+-=()00,x x ∈()()0,0T x h x <<'()0,x x ∈+∞()0T x >()0h x '>()h x ()00,x ()0,x +∞0x x =()h x ()()000min 01ln h x h x x ax x ==-+001x <<20010ax x -+-=0011ax x -=-()0002ln 1h x x x =+-001x <<()2ln 1p x x x =+-0x >()221220x p x x x x'-=-=<()0,1()p x ()0,1()0,1x ∈()()11p x p >=()00h x >()min 0h x >()0f x >()f x a ()2ln 1a x a x x ϕ=-⋅++()0,x ∈+∞20x -<()a ϕa 0a <()0f x >0a <()0a ϕ>0a =()0ln 10x x ϕ=+≥()ln 1m x x x =+()ln 1m x x =+'()0m x '=1ex =x ()m x '()m x x 10,e ⎛⎫ ⎪⎝⎭1e1,e ⎛⎫+∞ ⎪⎝⎭()m x '单调递减单调递增所以.综上,.,,即.17.(1)证明:如图,设的中点为,连接,,则且.又且,所以,,所以四边形为平行四边形,则.又因为平面平面,所以平面.(2)解:如图,取的中点,连接,取的中点,连接,,则且,又,所以.因为平面,所以平面,故与平面所成的角为,所以.所以在中,.又由菱形性质可得,所以,所以.所以,所以,,两两垂直.10分()m x ()min 1110e em x m ⎛⎫==-+> ⎪⎝⎭0a <()()()()100e f x a m x m ϕϕ⎛⎫=>=≥> ⎪⎝⎭()0f x >PC H FH EH //FH CD 12FH CD =//AE CD 12AE CD =//FH AE FH AE =AEHF //AF EH EH ⊂,PCE AF ⊄PCE //AF PCE BC G AG AD M FM CM //FM PA 12FM PA =2PA =1FM =PA ⊥ABCD FM ⊥ABCD FC ABCD FCM ∠π6FCM ∠=RtFCM △πtan 6FMCM ==AG CM =222AG BG AB +=AG BC ⊥AG AD ⊥AG AD AP以点为坐标原点,直线,,分别为,,轴,建立如图所示的空间直角坐标系.因为,所以,,,,,,所以,,.由平面得平面的一个法向量为.设平面的一个法向量为,则故取,所以为平面的一个法向量.设二面角的平面角为,由图可得为锐角,所以,所以二面角.18.(1)解:由椭圆:上的点到其左焦点的最大距离和最小距离分别为和,结合椭圆的几何性质,得解得则,故椭圆的方程为.(2)解:设直线的方程为,,.由消去,整理得.A AG AD AP x y z 2PA AB ==()0,0,0A )1,0B-)C()0,2,0D ()0,1,1F ()0,0,2P ()0,1,1AF = ()CF =()0,0,2AP = PA ⊥ABCD ACD ()0,0,1n =FAC (),,m x y z =,,m AF m CF ⎧⊥⎪⎨⊥⎪⎩ 0,0.m AF y z m CF z ⎧⋅=+=⎪⎨⋅=+=⎪⎩ x =3,3y z =-=)3,3m =- FAC F AC D --θθcos cos ,m n m n m nθ⋅=== F AC D --C 22221x y a b+=222,2.a c a c ⎧+=⎪⎨-=⎪⎩a c ⎧=⎪⎨=⎪⎩2b ==C 221124x y +=l 13y x m =-+()11,M x y ()22,N x y 221,31,124y x m x y ⎧=-+⎪⎪⎨⎪+=⎪⎩y 22469360x mx m -+-=由,得,则,.解得或.10分当时,直线的方程为,此时直线过点;当时,直线的方程为,满足题目条件.所以直线的方程为.(3)证明:因为直线,均不与轴垂直,所以直线:不经过点和,则且,由(2)可知,,为定值.19.(1)解:①因为,所以数列1,2,4,3不是数列;②因为,所以数列4,2,8,1是数列.(2)证明:必要性:若数列是等差数列,设其公差为,则,所以数列是常数列.充分性:若数列是常数列,()()22614440m m ∆=--->m <<1232mx x +=2129364m x x -=MN ===2m =2m =-2m =l 123y x =-+l ()3,1P 2m =-l 123y x =--l 123y x =--PM PN x l 13y x m =-+()3,1-()3,10m ≠2m ≠()()1212121212111111333333x m x m y y k k x x x x ⎛⎫⎛⎫-+--+- ⎪⎪--⎝⎭⎝⎭=⋅=----()()()()21212121211119339x x m x x m x x x x --++-=-++()()22222193613113619432936391833942m m m m m m m m m m -⋅--⋅+--===---⋅+2443->-M 422881-<-<-M {}n a d 1m m m b a a d +=-={}m b {}m b则(),即(),所以或.因为数列的各项互不相等,所以,所以数列是等差数列.综上可知,数列是等差数列的充分必要条件是数列是常数列.(3)解:当时,因为(),所以,不符合题意;当时,数列为3,2,4,1,此时,符合题意;当时,数列为2,3,4,5,1,此时,符合题意.下面证当时,不存在满足题意.令(),则,且,所以有以下三种可能:①②③当时,因为,由(2)知:,,…,是公差为1(或)的等差数列,当公差为1时,由得或,所以或,与已知矛盾.当公差为时,同理得出与已知矛盾.1m m b b +=1,2,,2m n =⋅⋅⋅-112m m m m a a a a +++-=-1,2,,2m n =⋅⋅⋅-112m m m m a a a a +++-=-()112m m m m a a a a +++-=--{}n a 112m m m m a a a a +++-=-{}n a {}n a {}n b 3m =12i i a a +-≤1,2i =12235a a a a -+-<4m =1223346a a a a a a -+-+-=5m =122334457a a a a a a a a -+-+-+-=6m ≥m 1k k k b a a +=-1,2,,1k m =⋅⋅⋅-1211m b b b -≤≤≤⋅⋅⋅≤112m kk bm -==+∑k b 1,1,2,,2,4,1;k k m b k m =⋅⋅⋅-⎧=⎨=-⎩1,1,2,,3,2,2,3,1;k k m b k m k m =⋅⋅⋅-⎧⎪==-⎨⎪=-⎩1,1,2,,4,2,3,2, 1.k k m b k m m m =⋅⋅⋅-⎧=⎨=---⎩1,1,2,,2,4,1k k m b k m =⋅⋅⋅-⎧=⎨=-⎩1221m b b b -==⋅⋅⋅==1a 2a 1m a -1-14m b -=14m m a a -=+14m m a a -=-1142m m a a a m m -=+=++>154m m m a a a --=-=1-所以当时,不存在满足题意.其他情况同理可得,不存在满足题意.综上可知,的所有取值为4或5.1,1,2,,2,4,1k k m b k m =⋅⋅⋅-⎧=⎨=-⎩m m m。

山东省枣庄市第八中学2025届高三上学期开学摸底考试语文试卷(含答案)

山东省枣庄市第八中学2025届高三上学期开学摸底考试语文试卷(含答案)

2025届高三开学摸底联考语文试题注意事项:1.答卷前,考生务必将自己的姓名、考场号、座位号、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

考试时间150分钟,满分150分一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,19分)阅读下面的文字,完成1~5题。

材料一:在一个具有高度干扰性和沉重信息负担的环境中,我们往往会感觉到备受影响而无法集中精神。

其实,令我们觉得注意力难以集中的一个可能的原因,与需求和能力之间的差异有关。

换句话说,我们所感知到的只是一个“相对的”注意力缺陷。

信息应激。

为了使我们的心智功能得到开发,我们有没有必要无条件地接收信息洪流呢?不,没这个必要。

我们必须时常提醒自己,我们在接受信息的尺度方面总是有极限的。

当要求超越了我们的能力时会发生什么,边开车边打电话所造成的事故就是最实在的警示。

另一个告诉我们在拥抱汹涌的信息洪流时应该有所保留的因素,就是它与应激之间的关联。

我们对于应激的了解在近些年得到了深化,无数的研究证明,高水平的应激激素会损害心脏、血管、免疫系统等我们身体几乎所有的部分,包括大脑。

对大脑而言,加剧的应激与工作记忆受损和长时记忆受损都有密切的联系。

科学家证明,应激,尤其是特定的几种类型,例如创伤后的应激,能够影响海马,这是一个对在长时记忆中储存信息非常重要的脑部结构。

但这只是对于长期的、高水平的应激而言,中度或暂时性的应激可能是有益处的,如对唤醒具有最佳效果。

应激激素与信息量之间也没有任何简单的联系。

在《为什么斑马不会得溃疡》一书中,萨波斯基综述了他与其他人在应激方面,以及与之有关的深层原因的研究。

应激水平与情境相关,并受到我们对自身所处状况的解读的影响。

“可控感”是一个很关键的概念。

山东省济南市山东省实验中学2024-2025学年高二上学期11月期中考试数学试题(含答案)

山东省济南市山东省实验中学2024-2025学年高二上学期11月期中考试数学试题(含答案)

山东省实验中学2024~2025学年第一学期期中高二数学试题 2024.11(选择性必修—检测)说明:本试卷满分150分,分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷为第1页至第2页,第Ⅱ卷为第3页至第4页.试题答案请用2B 铅笔或0.5mm 签字笔填涂到答题卡规定位置上,书写在试题上的答案无效。

考试时间120分钟。

第Ⅰ卷(共58分)一、单选题(本题包括8小题,每小题5分,共40分。

每小题只有一个选项符合题意)1.已知空间向量,,,若,,共面,则实数( )A.1B.2C.3D.42.“”是“直线与直线平行”的( )A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件3.给出下列说法,其中不正确的是()A.若,则,与空间中其它任何向量都不能构成空间的一个基底向量B.若,则点是线段的中点C.若,则,,,四点共面D.若平面,的法向量分别为,,且,则3.若三条直线,,不能围成三角形,则实数的取值最多有( )A.2个B.3个C.4个D.5个4.实数,满足,则的最小值为( )A. B.7C. D.36.若直线与曲线有两个不同的交点,则实数的取值范围是( )A.()1,2,0a = ()0,1,1b =- ()2,3,c m = a b cm =1m =-()1:2310l mx m y +++=2:30l x my ++=a b ∥a b c2PM PA PB =+M AB 2OA OB OC OD =+-A B C D αβ()12,1,1n =- ()21,,1n t =-αβ⊥3t =1:43l x y +=2:0l x y +=3:2l x my -=m x y 2222x y x y +=-3x y -+3+:20l kx y --=:1C x =-k k >5k <≤k <<1k <≤7.在三棱锥中,为的重心,,,,,,若交平面于点,且,则的最小值为( )A.B.C.1D.8.已知椭圆的左、右焦点分别为,,点在上且位于第一象限,圆与线段的延长线,线段以及轴均相切,的内切圆为圆.若圆与圆外切,且圆与圆的面积之比为4,则的离心率为( )A.C.二.多选题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,部分选对的得部分分.)9.下列说法正确的是()A.若直线的倾斜角越大,则直线的斜率就越大B.圆与直线必有两个交点C.在轴、轴上的截距分别为,的直线方程为D.设,,若直线与线段有交点,则实数的取值范围是10.已知椭圆的离心率为,长轴长为6,,分别是椭圆的左、右焦点,是一个定点,是椭圆上的动点,则下列说法正确的是( )A.焦距为2B.椭圆的标准方程为P ABC -G ABC △PD PA λ= PE PB μ= 12PF PC =λ()0,1μ∈PG DEF M 12PM PG =λμ+122343()2222:10x y C a b a b+=>>1F 2F P C 1O 1F P 2PF x 12PF F △2O 1O 2O 1O 2O C 123522:4O x y +=10mx y m +--=x y a b 1x y a b+=()2,2A -()1,1B :10l ax y ++=AB a (]322⎡⎫-∞-+∞⎪⎢⎣⎭,,()2222:10x y E a b a b +=>>23F F '()1,1A P E E 22195x y +=C.D.的最大值为11.立体几何中有很多立体图形都体现了数学的对称美,其中半正多面体是由两种或两种以上的正多边形围成的多面体,半正多面体因其最早由阿基米德研究发现,故也被称作阿基米德体.如图,这是一个棱数24,棱长为的半正多面体,它所有顶点都在同一个正方体的表面上,可以看成是由一个正方体截去八个一样的四面体所得的,下列结论正确的有()A.平面B.,,,四点共面C.点到平面的距离为D.若为线段上的动点,则直线与直线所成角的余弦值范围为第Ⅱ卷(非选择题,共92分)三、填空题(本题共3小题,每小题5分,共15分,其中14题第一空2分,第二空3分.)12.已知直线的倾斜角,则直线的斜率的取值范围为______.13.如图,已知点,,从点射出的光线经直线反射后再射到直线上,最后经直线反射后又回到点,则光线所经过的路程是______.14.杭州第19届亚运会的主会场——杭州奥体中心体育场,又称“大莲花”(如图1所示).会场造型取意于杭州丝绸纹理与纺织体系,建筑体态源于钱塘江水的动态,其简笔画如图2所示.一同学初学简笔画,先AF '=PA PF +6AG ⊥BCDG A F C D B ACD E BC DE AF 12⎡⎢⎣l 2,43ππθ⎛⎫∈⎪⎝⎭l ()8,0A ()0,4B -()3,0P AB OB OB P画了一个椭圆与圆弧的线稿,如图3所示.若椭圆的方程为,下顶点为,为坐标原点,为圆上任意一点,满足,则点的坐标为______;若为椭圆上一动点,当取最大值时,点恰好有两个,则的取值范围为______.图1 图2 图3四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.(13分)已知两直线和的交点为.(1)直线过点且与直线平行,求直线的一般式方程;(2)圆过点且与相切于点,求圆的一般方程.16.(15分)已知椭圆,且过点.(1)求椭圆的方程;(2)若斜率为的直线与椭圆交于,两点,且点在第一象限,点,分别为椭圆的右顶点和上顶点,求四边形面积的最大值.17.(15分)在梯形中,,,,为的中点,线段与交于点(如图1).将沿折起到位置,使得(如图2).图1 图2(1)求证:平面平面;(2)线段上是否存在点,使得与平面的值;若不存在,请说明理由.E()222210x ya ba b+=>>10,2A⎛⎫-⎪⎝⎭O P C2PO PA=C Q QC Q a1:20l x y++=2:3210l x y-+=Pl P310x y++=lC()1,01l P C()2222:10x yC a ba b+=>>⎛⎝C12l C M N M A B CAMBN SABCD AB CD∥3BADπ∠=224AB AD CD===P AB AC DP O ACD△AC ACD'△D O OP'⊥D AC'⊥ABCPD'Q CQ BCD'PQPD'18.(17分)已知直线,半径为2的圆与相切,圆心在轴上且在直线的右上方.(1)求圆的方程;(2)直线与圆交于不同的,两点,且,求直线的斜率;(3)过点的直线与圆交于,两点(在轴上方),问在轴正半轴上是否存在定点,使得轴平分?若存在,请求出点的坐标:若不存在,请说明理由.19.(17分)已知点,是平面内不同的两点,若点满足(,且),则点的轨迹是以有序点对为“稳点”的-阿波罗尼斯圆.若点满足,则点的轨迹是以为“稳点”的-卡西尼卵形线.已知在平面直角坐标系中,,.(1)若以为“稳点”的-阿波罗尼斯圆的方程为,求,,的值;(2)在(1)的条件下,若点在以为“稳点”的5-卡西尼卵形线上,求(为原点)的取值范围;(3)卡西尼卵形线是中心对称图形,且只有1个对称中心,若,,求证:不存在实数,,使得以—阿波罗尼斯圆与—卡西尼卵形线都关于同一个点对称.:40l x ++=C l C x l C 2y kx =-C M N 120MCN ︒∠=2y kx =-()0,1M C A B A x y N y ANB ∠N A B P PAPBλ=0λ>1λ≠P (),A B λQ ()0QA QB μμ⋅=>Q (),A B μ()2,0A -()(),2B a b a ≠-(),A B λ221240x y x +-+=a b λQ (),A B OQ O 0b =λ=a μ(),A B μ山东省实验中学2024~2025学年第一学期期中高二数学试题参考答案 2024.11选择题1234567891011ABCBDDCCBDBCDABD填空题12..13.,.解答题15.【答案】(1)(2).【详解】(1)直线与直线平行,故设直线为,……1分联立方程组,解得.直线和的交点.……3分又直线过点,则,解得,即直线的方程为.……5分(2)设所求圆的标准方程为,的斜率为,故直线的斜率为1,由题意可得,……8分解得,……11分故所求圆的方程为.(()1,-∞-+∞ ,20,3⎛⎫-⎪⎝⎭a >340x y ++=221140333x y x y +++-=l 310x y ++=l 130x y C ++=203210x y x y ++=⎧⎨-+=⎩11x y =-⎧⎨=-⎩∴1:20l x y ++=2:3210l x y -+=()1,1P --l P 1130C --+=14C =l 340x y ++=()()222x a y b r -+-=1:20l x y ++=1-CP ()()()()2222221110111a b r a b r b a ⎧--+--=⎪⎪-+-=⎨⎪+⎪=+⎩216162518a b r ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩2211256618x y ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭化为一般式:.……13分16.【答案】(1)(2)【详解】(1)由椭圆,解得,……2分由椭圆过点,得,联立解得,,……4分所以椭圆的方程为.……5分(2)由题意可设,点在第一象限,,……6分设,,点,到直线的距离分别为,,由,消可得,,,……8分10分,,直线的一般式方程:,,,,……12分14分当时,有最大值为……15分17.【答案】(1)证明见解析(2)存在,【详解】(1)证明:在梯形中,,22114333x y x y+++-=2214xy+=2222:1x yCa b+==2a b= C⎛⎝221314a b+=2a=1b=C2214xy+=1:2l y x m=+M11m∴-<<()11,M x y()22,N x y A B l1d2d221412xyy x m⎧+=⎪⎪⎨⎪=+⎪⎩y222220x mx m++-=122x x m∴+=-21222x x m=-MN∴===()2,0A()0,1B l220x y m-+=1d∴=2d=12d d∴+=()121122AMN BMNS S S MN d d∴=+=⋅+==△△m=S13ABCD AB CD∥,,为的中点,,,,……1分是正三角形,四边形为菱形,,,……3分,,又,,平面,平面,……5分平面,平面平面.……6分(2)存在,,理由如下:……8分平面,,,,两两互相垂直,如图,以点为坐标原点,,,所在直线为,,轴建立空间直角坐标系.则,,,,,,设平面的一个法向量为,则,即,令,则,,,……11分设,,,, (12)分设与平面所成角为,则,即,,解得,224AB AD CD ===3BAD π∠=P AB CD PB ∴∥CD PB =BC DP =ADP ∴△DPBC AC BC ∴⊥AC DP ⊥AC D O ⊥' D O OP '⊥AC OP O = AC OP ⊂ABC D O ∴'⊥ABC D O ⊂' D AC '∴D AC '⊥ABC 13PQ PD '=D O ⊥' BAC OP AC ⊥OA ∴OP OD 'O OA OP OD 'x y z ()C ()2,0B ()0,0,1D '()0,1,0P )2,1BD ∴'=- )CD '=CBD '(),,n x y z =00n BD n CD ⎧⋅=⎪⎨⋅=⎪⎩'' 200y z z -+=+=⎪⎩1x =0y =z =(1,0,n ∴=()01PQ PD λλ'=≤≤)CP =()0,1,1PD =-'),CQ CP PQ CP PD λλλ∴=+=+=- CQ BCD 'θsin cos ,CQ n CQ n CQ n θ⋅====23720λλ-+=01λ≤≤ 13λ=线段上存在点,且,使得与平面……15分18.【答案】(1)(2)(3)【详解】(1)设圆心,则,……2分解得或(舍),故圆的方程为.……4分(2)由题意可知圆心到直线的距离为,……6分,解得.……8分(3)当直线的斜率存在时,设直线的方程为,,,,由得,……10分,……12分若轴平分,则,即,即,即,即,即,……14分当时,上式恒成立,即;……15分当直线的斜率不存在或斜率为0时,易知满足题意;综上,当点的坐标为时,轴平分.……17分19.【答案】(1),,(2)(3)证明见解析【详解】(1)因为以为“稳点”的—阿波罗尼斯圆的方程为,设是该圆上任意一点,则,……1分所以,……3分∴PD 'Q 13PQ PD '=CQ BCD '224x y +=k =()0,4N ()(),04C a a >-422a +=0a =8a =-C 224x y +=C 2y kx =-2sin 301︒=1=k =AB AB ()10y kx k =+≠()()0,0N t t >()11,A x y ()22,B x y 224,1x y y kx ⎧+=⎨=+⎩()221230k x kx ++-=12221k x x k -∴+=+12231x x k -=+y ANB ∠AN BN k k =-12120y t y t x x --+=1212110kx t kx tx x +-+-+=()()1212210kx x t x x +-+=()()22126011t k k k k -⨯--+=++40k kt -+=4t =()0,4N AB ()0,4N N ()0,4y ANB ∠2a =0b =λ=[]1,3(),A B λ221240x y x +-+=(),P x y 22124x y x +=-()()()()22222222222222244162212224PA x y x y x x x y ax by a b a x by a bx a y b PB+++++===+--++--+-+-+-因为为常数,所以,,且,……5分所以,,.……6分(2)解:由(1)知,,设,由,所以,……7分,整理得,即,所以,……9分,……10分由,得,即的取值范围是.……12分(3)证明:若,则以—阿波罗尼斯圆的方程为,整理得,该圆关于点对称.……15分由点,关于点对称及,可得—卡西尼卵形线关于点对称,令,解得,与矛盾,所以不存在实数,,使得以—阿波罗尼斯圆与—卡西尼卵形线都关于同一个点对称……17分22PA PB2λ2240a b -+=0b =2a ≠-2a =0b =λ==()2,0A -()2,0B (),Q x y 5QA QB ⋅=5=()222242516x y x ++=+2240y x =--≥42890x x --≤()()22190x x +-≤209x ≤≤OQ ==209x ≤≤13OQ ≤≤OQ []1,30b =(),A B ()()222222x y x a y ⎡⎤++=-+⎣⎦()22244240x y a x a +-++-=()22,0a +()2,0A -(),0B a 2,02a -⎛⎫⎪⎝⎭QA QB μ⋅=μ2,02a -⎛⎫⎪⎝⎭2222a a -+=2a =-2a ≠=-a μ(),A B μ。

山东省枣庄八中高三数学上学期第二次段考试卷 文(含解

山东省枣庄八中高三数学上学期第二次段考试卷 文(含解

山东省枣庄八中2015届高三上学期第二次段考数学试卷(文科)一、选择题(本题共有10个小题,每小题5分,共50分)1.(5分)已知全集U={1,3,5,7,9},A={1,5,7},则∁U A=()A.{1,3} B.{(3,9)} C.{3,9} D.{5,9}2.(5分)已知数列{a n}是等差数列,若a9+3a11<0,a10•a11<0,且数列{a n}的前n项和S n 有最大值,那么S n取得最小正值时n等于()A.20 B.17 C.19 D.213.(5分)已知向量,,若与共线,则m 的值为()A.B.2 C.D.﹣24.(5分)设f(x)=e x+x﹣4,则函数f(x)的零点位于区间()A.(﹣1,0)B.(0,1)C.(1,2)D.(2,3)5.(5分)设,,c=lnπ,则()A.a<b<c B.a<c<b C.c<a<b D.b<a<c6.(5分)已知等差数列{a n}的前13项之和为,则tan(a6+a7+a8)等于()A.B.C.﹣1 D.17.(5分)已知向量=(1,n),=(﹣1,n),若+与垂直,则||=()A.1 B.C.D.48.(5分)已知数列,欲使它的前n项的乘积大于36,则n的最小值为()A.7 B.8 C.9 D.109.(5分)若平面向量=(﹣1,2)与的夹角是180°,且||=3,则坐标为()A.(6,﹣3)B.(﹣6,3)C.(﹣3,6)D.(3,﹣6)10.(5分)设f(x)是定义在R上的周期为3的周期函数,如图表示该函数在区间(﹣2,1]上的图象,则f+f=()A.3 B.2 C.1 D.0二、填空题(本大题共5小题,每小题5分,共25分)11.(5分)函数f(x)=+lnx的导函数是f′(x),则f′(1)=.12.(5分)已知数列{a n}中,a1=1,a n a n﹣1=a n﹣1+(﹣1)n(n≥2,n∈N*),则的值是.13.(5分)已知△ABC的三个内角A、B、C成等差数列,且AB=1,BC=4,则边BC上的中线AD的长为.14.(5分)已知函数f(x)=,若f(4)>1,则实数a的取值范围是.15.(5分)以下四个命题:①在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA=acosB,则B=;②设,是两个非零向量且,则存在实数λ,使得;③方程sinx﹣x=0在实数范围内的解有且仅有一个;④a,b∈R且a3﹣3b>b3﹣3a,则a>b;其中正确的是.三、解答题:本大题共6小题,满分75分,解答应写出文字说明、证明过程或演算步骤16.(12分)已知向量=(sinx,﹣1),=(cosx,﹣),函数f(x)=()•﹣2.(1)求函数f(x)的最小正周期T;(2)已知a,b,c分别为△ABC内角A,B,C的对边,其中A为锐角,a=2,c=4,且f (A)=1,求A,b和△ABC的面积S.17.(12分)在等差数列{a n}中,S n为其前n项和(n∈N*),且a3=5,S3=9.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设,求数列{b n}的前n项和T n.18.(12分)设两个向量,,满足||=1,||=1,,满足向量=k+,=﹣k,若与的数量积用含有k的代数式f(k)表示.若||=||.(1)求f(k);(2)若与的夹角为60°,求k值;(3)若与的垂直,求实数k的值.19.(12分)在等比数列{a n}中,a n>0(n∈N*),公比q∈(0,1),且a1a5+2a3a5+a2a8=25,又a3和a5的等比中项为2.(1)求数列{a n}的通项公式;(2)设b n=log2a n,数列{b n}的前n项和为S n,求数列{S n}的通项公式;(3)当+++…+最大时,求n的值.20.(13分)已知等差数列{a n},a3=5,a1+a2=4.数列{b n}的前n项和为S n,且S n=1﹣b n.(1)求数列{a n}、{b n}的通项公式;(2)记c n=a n b n,求数列{c n}的前项和T n.21.(14分)已知二次函数f(x)的最小值为﹣4,且关于x的不等式f(x)≤0的解集为{x|﹣1≤x≤3,x∈R}.(1)求函数f(x)的解析式;(2)求函数g(x)=的零点个数.山东省枣庄八中2015届高三上学期第二次段考数学试卷(文科)参考答案与试题解析一、选择题(本题共有10个小题,每小题5分,共50分)1.(5分)已知全集U={1,3,5,7,9},A={1,5,7},则∁U A=()A.{1,3} B.{(3,9)} C.{3,9} D.{5,9}考点:补集及其运算.专题:集合.分析:根据题意和补集的运算求出∁U A.解答:解:因为全集U={1,3,5,7,9},A={1,5,7},所以∁U A={3,9},故选:C.点评:本题考查了补集及其运算,属于基础题.2.(5分)已知数列{a n}是等差数列,若a9+3a11<0,a10•a11<0,且数列{a n}的前n项和S n 有最大值,那么S n取得最小正值时n等于()A.20 B.17 C.19 D.21考点:等差数列的性质.专题:等差数列与等比数列.分析:由等差数列的性质和求和公式可得a10>0,a11<0,又可得S19=19a10>0,而S20=10(a10+a11)<0,进而可得S n取得最小正值时n等于19解答:解:∵a9+3a11<0,∴由等差数列的性质可得a9+3a11=a9+a11+2a11=a9+a11+a10+a12=2(a11+a10)<0,又a10•a11<0,∴a10和a11异号,又∵数列{a n}的前n项和S n有最大值,∴数列{a n}是递减的等差数列,∴a10>0,a11<0,∴S19===19a10>0∴S20==10(a1+a20)=10(a10+a11)<0∴S n取得最小正值时n等于19故选:C点评:本题考查等差数列的性质和求和公式,属基础题.3.(5分)已知向量,,若与共线,则m 的值为()A.B.2 C.D.﹣2考点:平行向量与共线向量;平面向量的坐标运算.分析:先由向量的坐标运算表示出与,再根据向量共线定理的坐标表示可得答案.解答:解:由题意可知=m(2,3)+4(﹣1,2)=(2m﹣4,3m+8)=(2,3)﹣2(﹣1,2)=(4,﹣1)∵与共线∴(2m﹣4)×(﹣1)=(3m+8)×4∴m=﹣2故选D.点评:本题主要考查向量的坐标运算和共线定理.属基础题.4.(5分)设f(x)=e x+x﹣4,则函数f(x)的零点位于区间()A.(﹣1,0)B.(0,1)C.(1,2)D.(2,3)考点:函数的零点与方程根的关系.专题:计算题.分析:根据连续函数f(x)满足 f(1)<0,f(2)>0,由此可得函数f(x)的零点所在的区间.解答:解:∵f(x)=e x+x﹣4,∴f(1)<0,f(2)>0,故函数f(x)的零点位于区间(1,2)内,故选C.点评:本题主要考查函数的零点的定义,判断函数的零点所在的区间的方法,属于基础题.5.(5分)设,,c=lnπ,则()A.a<b<c B.a<c<b C.c<a<b D.b<a<c考点:对数值大小的比较.专题:证明题.分析:利用对数函数和指数函数的单调性,与0比较,和lnπ与1进行比较,进而得到三者的大小关系.解答:解:∵<=0,=1,lnπ>lne=1,∴c>b>a,故选A.点评:本题考查了对数值大小的比较方法,一般找中间量“0”或“1”,以及转化为底数相同的对数(幂),再由对数(指数)函数的单调性进行判断,考查了转化思想.6.(5分)已知等差数列{a n}的前13项之和为,则tan(a6+a7+a8)等于()A.B.C.﹣1 D.1考点:等差数列的性质.专题:综合题.分析:根据等差数列的性质,由前13项之和为得到第七项的值,然后把所求的式子中的a6+a7+a8,利用等差数列的性质得到关于第七项的式子,把第七项的值代入到所求的式子中,利用诱导公式及特殊角的三角函数值即可求出值.解答:解:S13=(a1+a13)+(a2+a12)+…+a7=13a7=,解得a7=,而tan(a6+a7+a8)=tan3a7=tan=﹣tan=﹣1.故选C点评:此题要求学生掌握等差数列的性质,灵活运用诱导公式及特殊角的三角函数值化简求值,是一道综合题.7.(5分)已知向量=(1,n),=(﹣1,n),若+与垂直,则||=()A.1 B.C.D.4考点:平面向量数量积的运算.专题:平面向量及应用.分析:首先求出+的坐标,然后按照向量的数量积的坐标运算表示+与垂直,得到关于n的方程解之,然后求||的模.解答:解:∵向量=(1,n),=(﹣1,n),+与垂直∴+=(1,3n),∴(+)•=3n2﹣1=0,解得n=,∴||==;故选:C.点评:本题考查了向量的加减运算以及数量积的坐标运算.8.(5分)已知数列,欲使它的前n项的乘积大于36,则n的最小值为()A.7 B.8 C.9 D.10考点:数列的应用.分析:根据题设条件可知,数列的前n项的乘积=.由此能够导出n的最小值.解答:解:由题意可知,数列的前n项的乘积=.当时,n>7或n<﹣10(舍去).∵n∈N*,∴n的最小值为8.故选B.点评:本题考查数列的概念和性质,解题时要注意n的取值范围.9.(5分)若平面向量=(﹣1,2)与的夹角是180°,且||=3,则坐标为()A.(6,﹣3)B.(﹣6,3)C.(﹣3,6)D.(3,﹣6)考点:数量积表示两个向量的夹角;向量的模.专题:待定系数法.分析:设=(x,y),由两个向量的夹角公式得cos180°=﹣1=,利用两个向量的模、数量积公式,化简得x﹣2y=15,再根据=3,解方程组求出x,y的值,进而得到的坐标.解答:解:设=(x,y),由两个向量的夹角公式得cos180°=﹣1==,∴x﹣2y=15 ①,∵=3②,由①②联立方程组并解得x=3,y=﹣6,即=(3,﹣6),故选 D.点评:本题考查两个向量的夹角公式的应用,向量的模的定义,待定系数法求出的坐标.10.(5分)设f(x)是定义在R上的周期为3的周期函数,如图表示该函数在区间(﹣2,1]上的图象,则f+f=()A.3 B.2 C.1 D.0考点:函数的周期性.专题:函数的性质及应用.分析:利用函数的周期是3,将f,f转化为图象中对应的已知点的数值上即可求值.解答:解:因为f(x)是定义在R上的周期为3的周期函数,所以f=f(671×3)=f(0),f=f(671×3+1)=f(1),由图象可知f(0)=0,f(1)=1,所以f+f=1.故选C.点评:本题主要考查函数周期性的应用,以及利用函数图象确定函数值,考查函数性质的综合应用.二、填空题(本大题共5小题,每小题5分,共25分)11.(5分)函数f(x)=+lnx的导函数是f′(x),则f′(1)=.考点:导数的运算.专题:导数的概念及应用.分析:利用基本函数求导公式,求出导数,然后代入求值.解答:解:因为数f(x)=+lnx所以f′(x)=(+lnx)′=()′+(lnx)′=,所以f′(1)=;故答案为:.点评:本题考查了导数的求法;属于基础题.12.(5分)已知数列{a n}中,a1=1,a n a n﹣1=a n﹣1+(﹣1)n(n≥2,n∈N*),则的值是.考点:数列递推式.专题:计算题;等差数列与等比数列.分析:利用数列{a n}中,a1=1,a n a n﹣1=a n﹣1+(﹣1)n(n≥2,n∈N*),代入计算,即可求出的值.解答:解:∵数列{a n}中,a1=1,a n a n﹣1=a n﹣1+(﹣1)n(n≥2,n∈N)∴a2a1=a1+1,即a2=2a3a2=a2﹣1,即a3=a4a3=a3+1,即a4=3a5a4=a4﹣1,即a5=,故=,故答案为:.点评:本题考查数列递推式,考查学生的计算能力,正确计算是关键.13.(5分)已知△ABC的三个内角A、B、C成等差数列,且AB=1,BC=4,则边BC上的中线AD的长为.考点:解三角形.专题:计算题.分析:先根据三个内角A、B、C成等差数列和三角形内角和为π可求得B的值,进而利用AD为边BC上的中线求得BD,最后在△ABD中利用余弦定理求得AD.解答:解:∵△ABC的三个内角A、B、C成等差数列∴A+C=2B∵A+B+C=π∴∵AD为边BC上的中线∴BD=2,由余弦定理定理可得故答案为:点评:本题主要考查等差中项和余弦定理,涉及三角形的内角和定理,难度一般.14.(5分)已知函数f(x)=,若f(4)>1,则实数a的取值范围是.考点:分段函数的应用.专题:函数的性质及应用.分析:根据分段函数的表达式,解不等式即可得到结论.解答:解:由分段函数的表达式可知,f(4)=f()=f(﹣2)=﹣2(3a﹣1)+4a=2﹣2a,若f(4)>1,则2﹣2a>1,即2a<1,解得,故答案为:点评:本题主要考查不等式的求解,根据分段函数的表达式分别进行求解和化简是解决本题的关键.15.(5分)以下四个命题:①在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA=acosB,则B=;②设,是两个非零向量且,则存在实数λ,使得;③方程sinx﹣x=0在实数范围内的解有且仅有一个;④a,b∈R且a3﹣3b>b3﹣3a,则a>b;其中正确的是①②③④.考点:命题的真假判断与应用.专题:探究型.分析:分别根据条件判别各命题的真假即可.①利用正弦定理化简求角.②由得出向量的夹角,根据夹角判断是否共线.③构造函数y=sinx﹣x,利用导数判断函数是单调的即可.④利用作差法进行判断.解答:解:①在三角形中,根据正弦定理可知bsinA=acosB等价为sinAsinB=sinAcosB,所以sinB=cosB,即B=,所以正确.②由,得|cos<>|=1,所以,的夹角为0或π,所以,共线,所以存在实数λ,使得,所以正确.③设y=sinx﹣x,则y'=cosx﹣1≤0,所以函数y=sinx﹣x在定义域上单调递减.因为f(0)=0,所以方程sinx﹣x=0在实数范围内的解有且仅有一个,所以正确.④因为a3﹣b3+3a﹣3b=,所以若a3﹣3b>b3﹣3a,则必有a>b成立,所以正确.故答案为:①②③④.点评:本题主要考查各种命题的真假判断,涉及的知识点较多,综合性较强.三、解答题:本大题共6小题,满分75分,解答应写出文字说明、证明过程或演算步骤16.(12分)已知向量=(sinx,﹣1),=(cosx,﹣),函数f(x)=()•﹣2.(1)求函数f(x)的最小正周期T;(2)已知a,b,c分别为△ABC内角A,B,C的对边,其中A为锐角,a=2,c=4,且f (A)=1,求A,b和△ABC的面积S.考点:解三角形;平面向量数量积的运算;三角函数的周期性及其求法.专题:计算题.分析:(Ⅰ)利用向量数量积的坐标表示可得,结合辅助角公式可得f(x)=sin(2x﹣),利用周期公式可求;(Ⅱ)由结合可得,,由余弦定理可得,a2=b2+c2﹣2bccosA,从而有,即b2﹣4b+4=0,解方程可得b,代入三角形面积公式可求.解答:解:(Ⅰ)=(2分)===(4分)因为ω=2,所以(6分)(Ⅱ)因为,所以,(8分)则a2=b2+c2﹣2bccosA,所以,即b2﹣4b+4=0则b=2(10分)从而(12分)点评:本题主要考查了向量的数量积的坐标表示,辅助角公式的应用,三角函数的周期公式的应用,由三角函数值求角,及三角形的面积公式.综合的知识比较多,但试题的难度不大.17.(12分)在等差数列{a n}中,S n为其前n项和(n∈N*),且a3=5,S3=9.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设,求数列{b n}的前n项和T n.考点:数列的求和;等差数列的前n项和.专题:计算题.分析:(Ⅰ)依题意,解方程组可求得a1与d,从而可求等差数列{a n}的通项公式;(Ⅱ)利用裂项法可求得b n=(﹣),从而可求数列{b n}的前n项和T n.解答:解:(Ⅰ)由已知条件得…(2分)解得a1=1,d=2,…(4分)∴a n=2n﹣1.…(6分)(Ⅱ)由(Ⅰ)知,a n=2n﹣1,∴b n===(﹣),…(9分)∴T n=b1+b2+…+b n==(1﹣)=.…(12分)点评:本题考查等差数列的通项公式,着重考查裂项法求和,求得b n=(﹣)是关键,属于中档题.18.(12分)设两个向量,,满足||=1,||=1,,满足向量=k+,=﹣k,若与的数量积用含有k的代数式f(k)表示.若||=||.(1)求f(k);(2)若与的夹角为60°,求k值;(3)若与的垂直,求实数k的值.考点:平面向量数量积的运算.专题:平面向量及应用.分析:(1)由||=||得到,再用向量,表示展开计算;(2)由(1)得到关于k的方程解之;(3)利用向量垂直数量积为0,得到k的等式解之.解答:解:(1)因为||=||,所以,即(k+)2=3(﹣k)2,所以k22+2k+2=32﹣6k+3k22,因为||=1,||=1,所以k2+2k+1=3﹣6k+3k2,整理得8k=2k2+2,所以=f(k)=(k≠0);…(4分)(2)因为与的夹角为60°,所以=,即f(k)=,解得k=1;…(8分)(3)因为与的垂直,所以(k+)•(﹣k)=0,整理得(1﹣k2)=0,又=f(k)=≠0,所以1﹣k2=0.解得k=±1.…(12分)点评:本题考查了向量的模与向量的平方得关系以及向量数量积的运用,属于基础题.19.(12分)在等比数列{a n}中,a n>0(n∈N*),公比q∈(0,1),且a1a5+2a3a5+a2a8=25,又a3和a5的等比中项为2.(1)求数列{a n}的通项公式;(2)设b n=log2a n,数列{b n}的前n项和为S n,求数列{S n}的通项公式;(3)当+++…+最大时,求n的值.考点:数列与不等式的综合;数列的求和.专题:综合题;点列、递归数列与数学归纳法.分析:(1)根据等比数列的性质可知a1a5=a32,a2a8=a52化简a1a5+2a3a5+a2a8=25得到a3+a5=5,又因为a3与a5的等比中项为2,联立求得a3与a5的值,求出公比和首项即可得到数列的通项公式;(2)把a n代入到b n=log2a n中得到b n的通项公式,即可得到前n项和的通项s n;(3)把s n代入得到,确定其正负,即可求n的值.解答:解:(1)∵a1a5+2a3a5+a2a8=25,∴a32+2a3a5+a52=25又a n>0,∴a3+a5=5 …(1分)又a3与a5的等比中项为2,∴a3a5=4 …(2分)而q∈(0,1),∴a3>a5,∴a3=4,a5=1,∴q=,a1=16,∴a n=16×()n﹣1=25﹣n.(2)∵b n=log2a n=5﹣n,∴b n+1﹣b n=﹣1,b1=log2a1=log216=log224=4,∴{b n}是以b1=4为首项,﹣1为公差的等差数列,∴S n=.…(8分)(3)∵=,∴n≤8时,>0,n=9时,=0,n>9时,<0,∴n=8或9时,+++…+最大…(12分)点评:本题考查数列的通项公式的求法,考查前n项和的求法,解题时要认真审题,注意方法的合理运用.20.(13分)已知等差数列{a n},a3=5,a1+a2=4.数列{b n}的前n项和为S n,且S n=1﹣b n.(1)求数列{a n}、{b n}的通项公式;(2)记c n=a n b n,求数列{c n}的前项和T n.考点:数列的求和.专题:等差数列与等比数列.分析:(1)利用等差数列的通项公式可得a n;再利用当n=1时,有b1=S1,当n≥2时,有b n=S n﹣S n﹣1,及等比数列的通项公式即可得出b n.(2)利用“错位相减法”和等比数列的前n项和公式即可得出.解答:解:(1)设等差数列{a n}公差为d由a3=5,a1+a2=4,从而a1=1、d=2,∴a n=a1+(n﹣1)d=2n﹣1.又当n=1时,有b1=S1=1﹣ b1,∴b1=.当n≥2时,有b n=S n﹣S n﹣1=(b n﹣1﹣b n),∴(n≥2).∴数列{b n}是等比数列,且b1=,q=,∴b n=b1q n﹣1=.(2)由(1)知:,∴,∴,∴=,∴.点评:本题考查了“等差数列与等比数列的通项公式、错位相减法”和等比数列的前n项和公式,考查了推理能力与计算能力,属于难题.21.(14分)已知二次函数f(x)的最小值为﹣4,且关于x的不等式f(x)≤0的解集为{x|﹣1≤x≤3,x∈R}.(1)求函数f(x)的解析式;(2)求函数g(x)=的零点个数.考点:利用导数研究函数的单调性;二次函数的性质;函数的零点;导数的运算.专题:综合题;函数的性质及应用.分析:(1)根据f(x)是二次函数,且关于x的不等式f(x)≤0的解集为{x|﹣1≤x≤3,x∈R},设出函数解析式,利用函数f(x)的最小值为﹣4,可求函数f(x)的解析式;(2)求导数,确定函数的单调性,可得当0<x≤3时,g(x)≤g(1)=﹣4<0,g(e5)=﹣20﹣2>25﹣1﹣22=9>0,由此可得结论.解答:解:(1)∵f(x)是二次函数,且关于x的不等式f(x)≤0的解集为{x|﹣1≤x≤3,x∈R},∴f(x)=a(x+1)(x﹣3)=a(a>0)∴f(x)min=﹣4a=﹣4∴a=1故函数f(x)的解析式为f(x)=x2﹣2x﹣3(2)g(x)==﹣4lnx﹣2(x>0),∴g′(x)=x,g′(x),g(x)的取值变化情况如下:x (0,1) 1 (1,3) 3 (3,+∞)g′(x)+ 0 ﹣0 +g(x)单调增加极大值单调减少极小值单调增加当0<x≤3时,g(x)≤g(1)=﹣4<0;又g(e5)=﹣20﹣2>25﹣1﹣22=9>0故函数g(x)只有1个零点,且零点点评:本题主要考查二次函数与一元二次不等式的关系,函数零点的概念,导数运算法则、用导数研究函数图象的意识、考查数形结合思想,考查考生的计算推理能力及分析问题、解决问题的能力.。

山东省淄博市张店区2024—2025学年上学期八年级数学期中考试卷(含答案)

山东省淄博市张店区2024—2025学年上学期八年级数学期中考试卷(含答案)

2024—2025学年度第一学期期中学业水平检测初三数学试题一、选择题(本题共10小题,每小题4分,共40分.在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项填涂在答题纸的相应位置上)1.下列式子是分式的是( )A .B .C .D .2.下列从左到右的等式变形中,属于因式分解的是( )A .B .C .D .3.下面是2024年某市某周发布的该周每天的最高温度:19℃,16℃,22℃,24℃,26℃,24℃,23℃。

关于这组数据,下列说法正确的是( )A .众数是24B .中位数是24C .平均数是20D .极差是74.下列分式中,为最简分式的是( )A .B .C .D .5.甲、乙、丙、丁四人进行射击测试,每人测试10次,平均成绩均为9.2环,方差如表所示:选手甲乙丙丁方差0.560.600.500.45则在这四个选手中,成绩最稳定的是( )A .甲B .乙C .丙D .丁6.若实数x 满足,则的值为( )A .B .C .2024D .20257.甲、乙两个植树队参加植树造林活动,已知甲队每小时比乙队少种3棵树,甲队种60棵树与乙队种66棵树所用的时间相同。

若设甲队每小时种x 棵树,则根据题意可列方程为( )A .B .C .D .8.如图,爱思考的小颖看到课本《因式分解》一章中这样写道:形如的式子称为完全平方式小颖思考,如果一个多项式不是完全平方式,我们对其作如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,那么是否可以由此解决一些新的问题。

若借助小颖的思考,可以求得多项式的最大值,则该最大值为( )355x 25x 53x -()()2111x x x +-=-()ma mb m a b +=+222()2x y x xy y+=++()2ax bx c x ax b c++=++3235a a b 223a a a +222a a ++222a ab a b --2210x x +-=3232024x x x +++2027-2026-60663x x=+60663x x=-60663x x =+60663x x =-222a ab b ±+2285x x --+A .B .C .5D .139.小宇、小刚参加了100m 跑的5期集训,每期集训结束时进行测试,根据他们的集训时间、测试成绩绘制成如图所示的两个统计图。

山东省枣庄八中2015届高三上学期期末测试数学文试题 Word版含答案

山东省枣庄八中2015届高三上学期期末测试数学文试题 Word版含答案

山东省枣庄八中2015届高三第一学期期末测试数学文试题题一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若复数iia 2+的实部和虚部相等, 则实数a =A .1-B .1C .2-D .22.函数)(x f y =在[0,2]上单调递增,且函数)2(+x f 是偶函数,则下列结论成立的是A .f (1)<f (25)<f (27) B .f (27)<f (1)<f (25) C .f (27)<f (25)<f (1)D .f (25)<f (1)<f (27)3.四棱锥的三视图如图所示,则最长的一条侧棱的长度是( )A.29 B .5C .13D .224.已知实数4,m ,9构成一个等比数列,则圆锥曲线122=+y mx 的离心率为A .630 B .7C .630或7 D .65或7 5.设,1>m 在约束条件⎪⎩⎪⎨⎧≤+≤≥1y x m x y x y 下,目标函数my x z +=的最大值小于2,则m 的取值范围为A .()21,1+B .()+∞+,21C .()3,1D .()+∞,36.在ABC ∆中,角C B A ,,所对的边分别为a ,b ,c ,已知22,32==c a ,BA tan tan 1+b c2=.则=∠CA . 30B . 135C . 45或 135D . 457.若正四面体ABCD 的顶点C B A ,,分别在两两垂直的三条射线Ox ,Oy ,Oz 上,则在下列命题中,错误的为 A .OC OB OA ==; B .直线OB ∥平面ACD ;C .直线AD 与OB 所成的角是 45;D .二面角A OB D --为 458.对于平面α、β、γ和直线a 、b 、m 、n ,下列命题中真命题是 A .若αα⊂⊂⊥⊥n m n a m a ,,,,则α⊥a B .若//,a b b α⊂,则//a αC .若//,,,a b αβαγβγ==I I 则//a bD .若,,//,//a b a b ββαα⊂⊂,则//βα9.在等差数列{}n a 中,912162a a =+,则数列{}n a 的前11项和S 11等于A .132B .66C .48D .2410.若函数)102)(36sin(2)(<<-+=x x x f ππ的图像与x 轴交于点A ,过点A 的直线l 与函数的图像交于B ,C 两点,则(OB +OC )·OA =A .16B .16-C .32D .32-11.对于函数x e x f axln )(-=,(a 是实常数),下列结论正确的一个是 A .1=a 时, )(x f 有极大值,且极大值点)1,21(0∈x B .2=a 时, )(x f 有极小值,且极小值点)41,0(0∈x C .21=a 时, )(x f 有极小值,且极小值点)2,1(0∈xD .0<a 时, )(x f 有极大值,且极大值点)0,(0-∞∈x12.已知函数⎪⎩⎪⎨⎧∈---∈-=)1,0[,1)1(1)0,1[,)(x x f x x x f ,若方程0)(=+-k kx x f 有两个实数根,则k 的取值范围是A . 11,2⎛⎤-- ⎥⎝⎦B .1,02⎡⎫-⎪⎢⎣⎭C .[)1,-+∞D .1,2⎡⎫-+∞⎪⎢⎣⎭非选择题(共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.当点(x ,y )在直线32x y +=上移动时,3273x y z =++的最小值是 . 14.已知直线)0)(2(>+=k x k y 与抛物线C:x y 82=相交A 、B 两点,F 为C 的焦点。

山东省枣庄第八中学高三上学期第二次段考——数学(文)

山东省枣庄第八中学高三上学期第二次段考——数学(文)

山东省枣庄第八中学2015届高三上学期第二次阶段性检测数学(文)试题满分:150分,时间:120分钟一、选择题(本题共有10个小题,每小题5分,共50分)1.已知全集,则A.B.C.D.2.已知数列是等差数列,若,,且数列的前项和有最大值,那么取得最小正值时等于A.20 B.17 C.19 D.213.已知向量,若与共线,则的值为A. B. C. D.4.设,则函数的零点位于区间A.(-1,0)B.(0,1)C.(1,2)D.(2,3)5.设,,,则A.B.C.D.则等于6.已知等差数列的前13项之和为,A.—1 B.C.D.17.已知向量,若与垂直,则A.B.C.D.48.已知数列,欲使它的前n项的乘积大于36,则n的最小值为A.7 B.8 C.9 D.109.若平面向量与b的夹角是,且︱︱,则b的坐标为A.B.C.D.10.设是定义在R上的周期为3的周期函数,如图表示该函数在区间上的图像,则+=A .3B .2C .1D .0二、填空题(本大题共5小题,每小题5分,共25分) 11.函数的导函数是,则 ;12.已知数列中,),2()1(,1*111N n n a a a a n n n n ∈≥-+==--,则的值是__ _.13.已知的三个内角成等差数列,且则边上的中线的长为 ;14.已知函数()()()()12314,0log 0a x a x f x f x x ⎧-+<⎪=⎛⎫⎨≥ ⎪⎪⎝⎭⎩ ,若,则实数的取值范围是__. 15.以下四个命题:①在△ABC 中,内角A,B,C 的对边分别为,且,则; ②设是两个非零向量且,则存在实数λ,使得; ③方程在实数范围内的解有且仅有一个; ④且,则;其中正确的命题序号为 。

三、解答题:本大题共6小题,满分75分,解答应写出文字说明、证明过程或演算步骤 16.(本小题满分12分)已知向量,,函数.(1)求函数的最小正周期与值域;(2)已知,,分别为内角,,的对边,其中为锐角, ,,且,求,和的面积. 17.(本小题满分12分)在等差数列{a n }中,为其前n 项和,且 (1)求数列{a n }的通项公式; (2)设,求数列的前项和. 18.(本小题满分12分)设两个向量,满足满足向量1212,a ke e b e ke =+=-,若与的数量积用含有k 的代数式表示.若.(1)求;(2)若与的夹角为600,求值; (3)若与的垂直,求实数的值. 19.(本小题满分12分)在等比数列中, 53512),1,0(),(,0a a a a q N n a n +∈∈>*且公比+又和 (1)求数列的通项公式(2)设{}n n n b a b 数列,log 2=的前n 项和为,求数列的通项公式.(3)当ns s s s n +⋅⋅⋅+++321321最大时,求n 的值.20.(本小题满分13分)已知等差数列{},.数列{}的前n 项和为,且. (1)求数列{}、{}的通项公式; (2)记,求数列的前项和.21.(本小题满分14分)已知二次函数的最小值为且关于的不等式的解集为, (1)求函数的解析式; (2)求函数的零点个数.2014-2015届山东省枣庄第八中学高三第一学期第二次阶段性检测数学(文)试题参考答案 一、选择题(每题5分,共50分) 1-5: CCDCA, 6-10: ACBBC 二、填空题(每题5分,共25分) 11., 12., 13., 14., 15.①②③④ 三、解答题(共75分) 16.(满分12分)解:(Ⅰ)2()()22f x a b a a a b =+⋅-=+⋅- 21sin 1cos 22x x x =+++- …2分1cos 21222x x -=+-12cos 22x x =- ………………4分 因为,所以值域为………………6分(Ⅱ)()sin(2)16f A A π=-=.因为5(0,),2(,)2666A A ππππ∈-∈-,所以, . ……8分由2222cos a b c bc A =+-,得211216242b b =+-⨯⨯,即. 解得………………10分 故11sin 24sin 602322S bc A ==⨯⨯⨯=………………12分 17.解: (1)由已知条件得…………………2分解得…………………………………………4分 ∴.…………………………………6分 (2)由(Ⅰ)知,,∴)121121(21)12)(12(111+--=+-==+n n n n a a b n n n ……………9分∴⎥⎦⎤⎢⎣⎡+--++-+-=+++=)121121()5131()311(2121n n b b b S n n 12)1211(21+=+-=n nn .…………………………12分 18.解:222222212121122122221212(1)()3(),2363182,()(0).4ke e e ke k e ke e e ke e k e k ke e k e e f k k k+=-++=-++=+∴==≠…4分(2)20121211160()242k e e e e f k k +===与的夹角为,则,,k=1;…………8分21212122212,()()0,0;1()0,0, 1.4a b ke e e ke k e e k e e f k k k k⊥+-==+==≠∴==±(3)若则(1-)1-…………12分19.解:(1)∵a 1a 5+2a 3a 5+a 2a 8 =25,∴a 32 +2a 3a 5 +a 52 =25又a n >0, ∴a 3+a 5=5 …………1分又a 3与a 5的等比中项为2, ∴a 3a 5=4 …………2分 而1,4,),1,0(5353==∴>∴∈a a a a q ………………3分n n n a --=⎪⎭⎫⎝⎛⨯=∴5122116 …………5分(2)1,5log 12-=-∴-==+n n n n b b n a b …………7分{}2)9(,1,41n n S b b n n -=∴-=∴为公差的等差数列为首项是以 ……9分 (3)312928,0;9,0;9,089,.123n n n n n S n n S S Sn n n n n nSS S S n n -=∴≤>==><∴=+++⋅⋅⋅+当时当时当时当或时最大…………12分20.解:(1) 设等差数列{}公差为d 由a 3=5,a 1+a 2=4,从而a 1=1、d =2 ……(4分)∴a n =a 1+(n -1)d =2n -1 ……(5分)又当n =1时,有b 1=S 1=1-12 b 1,∴b 1=23……(6分)当n≥2时,有b n =S n -S n-1=12(b n -1-b n )∴b n b n -1=13(n≥2) ……(8分)∴数列{b n }是等比数列,且b 1=23,q =13 ∴b n =b 1q n -1=23n ;……(10分)(2)由(1)知:,……(11分)∴1223135213333n n n n T c c c -=+++=++++∴231113213333n n n T +-=+++……(12分)∴23121222321333333n n n n n T +--=++++-……(2分) ∴……(13分)21.解:(1)是二次函数, 且关于的不等式的解集为,()2(1)(3)23f x a x x ax ax a ∴=+-=--, 且.……4分()20,(1)44a f x a x ⎡⎤>=--≥-⎣⎦,且,min ()44, 1.f x a a ∴=-=-= ················································ 6分故函数的解析式为 (2)2233()4ln 4ln 2(0)x x g x x x x x x x--=-=--->,2234(1)(3)()1x x g x x x x --'∴=+-=.………………8分 的取值变化情况如下:………………11分当时,; ····················································································· 12分又()55553e e 202212290eg =--->--=>. ····························· 13分 故函数只有1个零点,且零点 ·························································· 14分。

山东省淄博市高青县第一中学2025届高三上学期期中考试数学试题(含答案)

山东省淄博市高青县第一中学2025届高三上学期期中考试数学试题(含答案)

山东省淄博市高青县第一中学2025届高三上学期期中考试数学试题一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知全集U ={x|−2≤x ≤2},集合A ={x |−1≤x <2},则∁U A =( )A. (−2,−1)B. [−2,−1]C. (−2,−1)∪{2}D. [−2,−1)∪{2}2.若复数z 满足zi =1+i ,则z 的共轭复数是( )A. −1−iB. 1+iC. −1+iD. 1−i3.已知一个正四棱柱和某正四棱锥的底面边长相等,侧面积相等,且它们的高均为15,则此正四棱锥的体积为( )A. 605B. 6015C. 1205D. 180154.在△ABC 中,CD =2DB ,AE =ED ,则CE =( )A. 16AB−13ACB. 16AB−23ACC. 13AB−56ACD. 13AB−13AC5.已知{a n }为等差数列,S n 为其前n 项和.若a 1=2a 2,公差d ≠0,S m =0,则m 的值为( )A. 4B. 5C. 6D. 76.若cos(π4−α)=3 210,则sin 2α=( )A. 725B. 1625C. −1625D. −7257.“a <3”是“函数f(x)=log 2[(3−a)x−1]在区间(1,+∞)上单调递增”的( )A. 充分不必要条件 B. 充要条件C. 必要不充分条件D. 既不充分也不必要条件8.设a =ln 54,b =sin 14,c =0.2,则a ,b ,c 的大小关系为( )A. a >b >cB. b >a >cC. b >c >aD. c >b >a二、多选题:本题共3小题,共18分。

在每小题给出的选项中,有多项符合题目要求。

9.已知向量a =(3,m ),b =(0,1),则下列说法正确的是( )A. 若|a |=2,则a ⋅b =1B. 不存在实数m ,使得a //bC. 若向量a ⊥(a−4b ),则m =1或m =3D. 若向量a 在b 向量上的投影向量为−b ,则a ,b 的夹角为2π310.已知△ABC中,内角A,B,C的对边分别为a,b,c,D为CA延长线上一点,∠DAB的平分线交直线CB 于E,若a=7,b=3,c=2,则( )A. sin A:sin B:sin C=7:3:2B. A=π6C. △ABC的面积为33D. AE=4211.已知函数f(x)的定义域为R,f(x)+f(−x)=0,f(x+1)+f(3−x)=0,当0<x<2时,f(x)=x2−2x,则( )A. f(x)=f(x+8)B. f(x)的图象关于直线x=2对称C. 当4<x≤6时,f(x)=x2−10x+24D. 函数y=f(x)−lgx2有4个零点三、填空题:本题共3小题,每小题5分,共15分。

山东名校考试联盟2024-2025学年高三上学期期中检测语文试题(含答案)

山东名校考试联盟2024-2025学年高三上学期期中检测语文试题(含答案)

山东省实验中学2025届高三第二次诊断考试语文试题2024.11说明:本试卷满分150分。

试题答案请用2B铅笔和0.5mm签字笔填涂到答题卡规定位置上,书写在试题上的答案无效。

考试时间150分钟。

一、现代文阅读(35分)(一)现代文阅读I (本题共5小题,19分)阅读下面的文字,完成1-5小题。

南宋学者郑友贤在其《十家注孙子遗说并序》中指出:“武之为法也,包四种,笼百家,以奇正相生为变。

”《孙子兵法》全书从战略运筹、战争预测(《计篇》)起步,经战争准备(《作战篇》)、运用选择方略(《谋攻篇》)、发展实力(《形篇》)、创造有利作战态势(《势篇》)、灵活用兵、争夺先机、因敌变化而取胜(《虚实篇》《军争篇》《九变篇》),到解决具体的“处军相敌”(《行军篇》)、利用战术地形(《地形篇》)、掌握兵要地理(《九地篇》)、实施特殊战法(《火攻篇》)、搜集情报、以资决策(《用间篇》) 等具体的战术问题,始于“知彼知己”,又终于“知彼知己”,恰好规划了一个完整的程序,其篇次结构序列设计,侧重于按用兵制胜的要领与方法加以逻辑展开。

曾有人这么认为,“十三篇结构缜密,次序井然,固有不能增减一字,不能颠倒一篇者”,是一个完整有机的思想体系。

阅读《孙子兵法》,须坚持回归经典文本的整体性原则。

如许多人推崇《孙子兵法》讲谋略,甚至认为《孙子兵法》与将“瞒天过海”“趁火打劫”“顺手牵羊”之类阴谋诡计奉为圭果的《三十六计》是同类,这显然是一种偏颇的识见。

《孙子兵法》当然讲谋略,提倡“上兵伐谋”,但《孙子兵法》更注重实力建设,“巧妇难为无米之炊”, 要战胜对手,前提是做强、做大自己。

其后裔孙膑的“田忌赛马”故事,其实最能说明这层关系,以上驷对中驷、中驷对下驷、下驷对上驷,比赛的结果是三局两胜,赢了比赛。

这说明,谋略有用,当双方实力相近状况下,谋略能起到四两拨千斤的作用。

但如果三驷皆为下驷,那么,不管怎样运筹,比赛的结果很可能就是零比三。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014-2015学年度山东省薛城区八中高三第一学期期中考试
数学试题(文)
时间:120分钟 分数:150
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的表格内(每小题5分,共50分). 1.若集合{
}}
{
2
,0A x x x B x x x ===->,则A
B =
A .[0,1]
B .(,0)-∞
C .(1,)+∞
D .(,1)-∞-
2.,,,,5.0log ,3,5.035
.03
c b a c b a 则若===的大小关系是( )
A .c a b >>
B .a c b >>
C .c b a >>
D .a b c >>
3.已知数列}2
{
n
n +,欲使它的前n 项的乘积大于36,则n 的最小值为 A .7
B .8
C .9
D .10
4.函数()x x x f ln +=的零点所在的大致区间为
A .(0,1)
B .(1,2)
C .(1,e )
D .(2,e )
5.若⎩⎨
⎧>+-≤+=)
1(3)1(1)(x x x x x f ,则)]25
([f f 的值为
A .2
1
-
B .23
C .25
D .29
6.若R a ∈,则“a a >2
”是“1>a ”的
A .充分不必要条件
B .必要不充分条件
C .既不充分也不必要条件
D .充要条件
7.下列说法中正确的是
①()0
x x f =与()1=x g 是同一个函数;②()x f y =与()1+=x f y 有可能是同一个函
数;
③ ()x f y =与()t f y =是同一个函数;④定义域和值域相同的函数是同一个函数. A .①② B .②③ C .②④ D .①③
8.已知函数()x f 是定义在R 上的偶函数,则下列结论一定成立的是
A .R x ∈∀,()()x f x f ->
B .R x ∈∃0,()()00x f x f ->
C .R x ∈∀,()()0≥-x f x f
D .R x ∈∃0,()()000<-x f x f 9.已知函数()22x f x =-,则函数()y f x =的图象可能是
10.下列命题中正确的是
A .若命题P 为真命题,命题q 为假命题,则命题“q p ∧”为真命题
B .命题“若p 则q”的否命题是“若q 则p”
C .命题“R x ∈∀,02>x
”的否定是“R x ∈∀0,020
≤x ”
D .函数22x x y -=
的定义域是{}20≤≤x x
二、填空题:请把答案填在题中横线上(每小题5分,共25分).
11.函数52)(2
+-=x x x f 的定义域是(]2,1-∈x ,值域是 .
12.函数3
22
2--=x x
y 的单调递减区间是 .
13.已知()x x f 5.0log =,且(1)(21)f a f a -<-,则a 的取值范围是 . 14.若点(1,3)和(-4,-2)在直线02=++m y x 的两侧,则m 的取值范围是 . 15.已知函数()12-x f 的定义域是[]2,3-,则函数()1+x f 的定义域是 . 三、解答题:请写出详细过程(6小题,共75分)
16.(本小题12分)设集合}32,3,2{2
-+=a a U ,}2|,12{|-=a A ,}5{=A C U ,求实
数a 的值.
17.(本小题12分)已知函数()x x x x f ln 22
12
--=. ①求函数()x f 在点⎪⎭

⎝⎛-
21,1处的切线方程. ②求函数()x f 的极值.
18.(本小题12分)某工厂生产一种产品的固定成本是20000元,每生产一件产品需要另外投入100元,市场销售部进行调查后得知,市场对这种产品的年需求量为1000件,且销售收入函数2
1()10002
g t t t =-+,其中t 是产品售出的数量,且01000t ≤≤.(利润=销售收入—成本).
①若x 为年产量,y 表示利润,求()y f x =的解析式. ②当年产量为多少时,工厂的利润最大,最大值为多少?
19.(本小题13分)已知定义在R 上的函数()x f 对所有的实数n m ,都有
()()()n f m f n m f +=+,且当0>x 时,()0<x f 成立,()42-=f .
①求()0f ,()1f ,()3f 的值. ②证明函数()x f 在R 上单调递减. ③解不等式()
()622-<+x f x f .
20.(本小题13分)已知不等式0222
<-+-m x mx . ①若对于所有的实数x 不等式恒成立,求m 的取值范围.
②设不等式对于满足2≤m 的一切m 的值都成立,求x 的取值范围. 21.(本小题13分)已知函数()()b x x a ax x f 6622
3
23
+++-
=在2=x 处取得极值. ①求a 的值及()x f 的单调区间.
②若[]4,1∈x 时,不等式()2
b x f <恒成立,求b 的取值范围.
2014-2015学年度山东省薛城区八中高三第一学期期中考试
数学试题(文)参考答案
一、选择题
二、填空题
11.[)8,4 12.(]1,∞- 13.3
2
21<<a 14.105<<-m 15.46≤≤-x 三、解答题
16.解:由题得⎩
⎨⎧=-=-+②①
3125322a a a
由①得2=a 或4-=a 由②得2=a 或1-=a 2=∴a 17.解:① ()x
x x f 2
1-
-=' ()21-='=∴f k
∴所求切线方程为2
32+
-=x y ② ()()()x
x x x x x x x x f 122212+-=--=--=' 且0>x 20<<∴x 时()0<'x f 2>x 时()0>'x f ∴函数()x f 在()2,0单调递减,在()+∞,2单调递增. 18.解:①当01000x ≤≤时,t x =,
∴211000200001002y x x x =-+--21
900200002
x x =-+-
当1000x >时,1000t = 221
10001000200001002
y x =-
⨯+--48000
0100
x =- ()2
190020000(01000)
2480000100(1000)x x x f x x
x ⎧-+-≤≤⎪∴=⎨⎪->⎩
②当01000x ≤≤时()2211
90020000(900)3850022
f x x x x =-
+-=--+ ∴当900x =时,()max 385000f x =
当1000x >时,()480000100f x x =-为减函数,
∴()480000100100f x <-⨯,即()380000f x <
∴当年产量为900件时,工厂的利润最大,最大值为385000元.
19.解:① 令0==n m 得()00=f
令1==n m 得()21-=f ()()()6123-=+=∴f f f ② 由已知得()()()n f m f n m f =-+
令21x x >,且R x x ∈21,
()()()2121x x f x f x f -=-∴ 21x x >因
()021<-∴x x f 即 ()()21x f x f <
∴函数()x f 在R 单调递减.
③ 不等式可化为
())3(f 22<+∴x x f
因为() x f 为R 上的减函数
所以322
>+x x ,解得1>x 或3-<x
20.解: ① 当0=m 时,不等式为022<--x ,显然不恒成立. 0≠∴m ∴0<m 0<∆
解得 21-<m
② 法一:不等式可化为()
2212+<+x x m 即 1
2
22++<x x m 上式对2≤m 恒立 21
2
22
>++∴x x 解得 10<<x
法二:不等式可化为()
02212<--+x x m 令 ()()
2212--+=x x m m f ()0<∴m f 对2≤m 恒立
()02<∴f 即()
022122<--+x x 解得 10<<x
21.解:① 由已知()()62332++-='x a ax x f ()02='f 1=∴a ()()()213--='x x x f 由()0>'x f 得2>x 或1<x ()0<'x f 得21<<x
故函数()x f 在()2,1单调递减,在()1,∞-和()+∞,2单调递增. ② 由①得函数()x f 在[]2,1单调递减,在[]4,2单调递增 ()b f 62
5
1+=
()b f 6164+=
2
616b b <+∴ 解得8>b 或2-<b。

相关文档
最新文档