Nonunique tangent maps at isolated singularities of harmonic maps
unramified数学
unramified数学
在数学中,unramified是一个用于描述代数数论和代数几何领域的术语。
在代数数论中,unramified扩张指的是域的扩张,其中原始域中的元素在扩张域中保持不变。
换句话说,这种扩张不会引入新的分歧点。
在代数几何中,unramified也指的是类似的性质,用于描述概形之间的映射。
在代数数论中,unramified扩张是指在扩张域中不存在分歧的情况。
分歧点是指在扩张中某些元素的性质发生改变的点。
因此,unramified扩张可以看作是相对简单的扩张,因为它们不引入新的复杂性。
在代数几何中,unramified映射类似地描述了概形之间的关系,指的是在映射下不会出现奇异点或多重点。
unramified的概念在数论和几何中都有重要的应用。
在代数数论中,研究unramified扩张可以帮助我们理解数域的结构,而在代数几何中,unramified映射可以帮助我们理解概形之间的关系。
因此,unramified的概念在数学理论和实际问题中都扮演着重要的角色。
总之,unramified在数学中是一个重要的概念,它涉及代数数
论和代数几何中的关键性质,对于理解数论和几何结构都具有重要意义。
希望这个回答能够从多个角度全面地解释了unramified在数学中的含义和应用。
LTE_3GPP_36.213-860(中文版)
3GPP
Release 8
3
3GPP TS 36.213 V8.6.0 (2009-03)
Contents
Foreword ...................................................................................................................................................... 5 1 2 3
Internet
Copyright Notification No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.
© 2009, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC). All rights reserved. UMTS™ is a Trade Mark of ETSI registered for the benefit of its members 3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners LTE™ is a Trade Mark of ETSI currently being registered for the benefit of i ts Members and of the 3GPP Organizational Partners GSM® and the GSM logo are registered and owned by the GSM Association
Autodesk Nastran 2022 用户手册说明书
MPA, MPI (design/logo), MPX (design/logo), MPX, Mudbox, Navisworks, ObjectARX, ObjectDBX, Opticore, Pixlr, Pixlr-o-matic, Productstream,
Publisher 360, RasterDWG, RealDWG, ReCap, ReCap 360, Remote, Revit LT, Revit, RiverCAD, Robot, Scaleform, Showcase, Showcase 360,
TrueConvert, DWG TrueView, DWGX, DXF, Ecotect, Ember, ESTmep, Evolver, FABmep, Face Robot, FBX, Fempro, Fire, Flame, Flare, Flint,
ForceEffect, FormIt, Freewheel, Fusion 360, Glue, Green Building Studio, Heidi, Homestyler, HumanIK, i-drop, ImageModeler, Incinerator, Inferno,
Autodesk Nastran 2022
Reference Manual
Nastran Solver Reference Manual
等距特征映射
等距特征映射
等距特征映射(Isometric Feature Mapping)是一种用于数据降维的方法,它可以将高维数据映射到低维空间中,同时保持数据之间的距离不变。
这种方法在机器学习和数据分析领域中得到了广泛的应用。
在传统的降维方法中,如主成分分析(PCA)和线性判别分析(LDA),数据的降维是通过线性变换来实现的。
这种方法虽然可以有效地减少数据的维度,但是它无法保持数据之间的距离不变。
因此,在某些情况下,这种方法可能会导致数据的失真和信息的丢失。
等距特征映射通过非线性变换来实现数据的降维,它可以将高维数据映射到低维空间中,同时保持数据之间的距离不变。
这种方法的核心思想是将数据映射到一个流形空间中,然后在流形空间中进行降维操作。
流形空间是指具有局部欧几里得性质的空间,它可以用一个低维的欧几里得空间来近似表示。
等距特征映射的优点在于它可以保持数据之间的距离不变,从而避免了数据的失真和信息的丢失。
此外,它还可以有效地处理非线性关系和高维数据。
这种方法在图像处理、语音识别、自然语言处理等领域中得到了广泛的应用。
等距特征映射是一种非常有用的数据降维方法,它可以有效地处理高维数据,并保持数据之间的距离不变。
在实际应用中,我们可以
根据具体的问题选择合适的降维方法,以达到最好的效果。
利用非抽样Contourlet变换的抗旋转攻击水印算法
(. p r et P yi ad l t n I om tn n i ei ,hnl n e i,hnl ,ha r760 , h a 1 Deat no hs s n Ee r i n ra o E gn r gSagu U i rt Sag oSani200C i ; m f c co c f i e n o v sy u n 2Shoo C m u r c ne n T ho g ,ia n e i, in 10 1C i ) .col o p t Si cad e nl yXd n ir (X ' 707 , n f e e c o i U v sv a ha
第7 第7 卷 期 21 0 2年 7 月
中国利 做
C IAS E C P P R HN CIN E A E
V 1 o7 o. N . 7
JJ 2 1 u. 02
利用非抽样 C nor t ot l 变换的抗旋转攻击水印算法 ue
赵 杰 ,杨滨峰 ,肖 斌 2
( 商洛学院物理与电子信息工程 系,陕西商洛 76o ;2 西安电子荆 大学计算机学院,西安 707 ) 1 . 200 . 赦 10 1
足不可见性条件下对旋转、加噪、剪切和JE P G压缩等常见处理有较强的鲁棒性。 关键词:数字水印;非抽 ̄Jn ul变换 自适应;角度校正 ot rt o e 中匿 予 类号:T 3 1 P9. 4 猷示 }志码:A 譬 号:29 — 7321) — 53 6 荤《 05 28(02 7 02 — 0
t l iaetec nmdcin b t e ecp bly a dr b s s.h tr r d piey e e d c odn eh ma o ei n t o l it ewen i m h o mp re t it n u mes tewaemak i a a t l mb d e ac r igt t u n i i o S v d oh
张小三在食堂的饭桌上写了“咂”吗...
面向巡视探测任务的复杂地形信息感知与场景重建
摘要:针对复杂地形环境下巡视探测中避障问题,提出了一种基于点云的地形信息感知与场景 建模方法。首先对获取的点云数据进行稀疏采样和滤波降噪 ;然后结合移动机器人越障能力 极限与改进的随机采样一致性算法,拟合其自适应基准面作为可通行区域;其后使用基于密度 的聚类算法感知地形特征信息,并采用凸包算法提取地形特征轮廓;最后结合自适应基准平面 进行快速三维场景重建,为地面观测提供直观快速的巡视器周围三维环境模型。通过对复杂 地形环境进行模拟实验,结果表明:该方法可以有效获取复杂地形信息,并可大幅度提高场景 重建的效率。 关键词:地形信息感知;随机采样一致性算法;基于密度的聚类算法;凸包算法;快速三维 重建 中图分类号:TP242.6+2;V557. 3 文献标识码:A 文章编号:1674-5825(2021)03-0339-11
第 27 卷 第 3 期 2021 年 6 月
载人航天 Manned Spaceflight
Vol.27 No.3 Jun. 2021
面向巡视探测任务的复杂地形信息感知与场景重建
赵 迪1,2,胡梦雅1,李世其2,纪合超2,何 宁3
(].湖北工业大学,武汉430068; 2.华中科技大学,武汉430074; 3.中国航天员科研训练中心,北京100094)
C++出错提示英汉对照表
Ambiguous operators need parentheses -----------不明确的运算需要用括号括起Ambiguous symbol ''xxx'' ----------------不明确的符号Argument list syntax error ----------------参数表语法错误Array bounds missing ------------------丢失数组界限符Array size toolarge -----------------数组尺寸太大Bad character in paramenters ------------------参数中有不适当的字符Bad file name format in include directive --------------------包含命令中文件名格式不正确Bad ifdef directive synatax ------------------------------编译预处理ifdef有语法错Bad undef directive syntax ---------------------------编译预处理undef有语法错Bit field too large ----------------位字段太长Call of non-function -----------------调用未定义的函数Call to function with no prototype ---------------调用函数时没有函数的说明Cannot modify a const object ---------------不允许修改常量对象Case outside of switch ----------------漏掉了case 语句Case syntax error ------------------ Case 语法错误Code has no effect -----------------代码不可述不可能执行到Compound statement missing{ --------------------分程序漏掉"{"Conflicting type modifiers ------------------不明确的类型说明符Constant expression required ----------------要求常量表达式Constant out of range in comparison -----------------在比较中常量超出范围Conversion may lose significant digits -----------------转换时会丢失意义的数字Conversion of near pointer not allowed -----------------不允许转换近指针Could not find file ''xxx'' -----------------------找不到XXX 文件Declaration missing ; ----------------说明缺少";" Declaration syntax error -----------------说明中出现语法错误Default outside of switch ------------------ Default 出现在switch语句之外Define directive needs an identifier ------------------定义编译预处理需要标识符Division by zero ------------------用零作除数Do statement must have while ------------------ Do-while语句中缺少while部分Enum syntax error ---------------------枚举类型语法错误Enumeration constant syntax error -----------------枚举常数语法错误Error directive :xxx ------------------------错误的编译预处理命令Error writing output file ---------------------写输出文件错误Expression syntax error -----------------------表达式语法错误Extra parameter in call ------------------------调用时出现多余错误File name too long ----------------文件名太长Function call missing -----------------函数调用缺少右括号Fuction definition out of place ------------------函数定义位置错误Fuction should return a value ------------------函数必需返回一个值Goto statement missing label ------------------ Goto语句没有标号Hexadecimal or octal constant too large ------------------16进制或8进制常数太大Illegal character ''x'' ------------------非法字符x Illegal initialization ------------------非法的初始化Illegal octal digit ------------------非法的8进制数字houjiumingIllegal pointer subtraction ------------------非法的指针相减Illegal structure operation ------------------非法的结构体操作Illegal use of floating point -----------------非法的浮点运算Illegal use of pointer --------------------指针使用非法Improper use of a typedefsymbol ----------------类型定义符号使用不恰当In-line assembly not allowed -----------------不允许使用行间汇编Incompatible storage class -----------------存储类别不相容Incompatible type conversion --------------------不相容的类型转换Incorrect number format -----------------------错误的数据格式Incorrect use of default --------------------- Default使用不当Invalid indirection ---------------------无效的间接运算Invalid pointer addition ------------------指针相加无效Irreducible expression tree -----------------------无法执行的表达式运算Lvalue required ---------------------------需要逻辑值0或非0值Macro argument syntax error -------------------宏参数语法错误Macro expansion too long ----------------------宏的扩展以后太长Mismatched number of parameters in definition---------------------定义中参数个数不匹配Misplaced break ---------------------此处不应出现break语句Misplaced continue ------------------------此处不应出现continue语句Misplaced decimal point --------------------此处不应出现小数点Misplaced elif directive --------------------不应编译预处理elifMisplaced else ----------------------此处不应出现else Misplaced else directive ------------------此处不应出现编译预处理elseMisplaced endif directive -------------------此处不应出现编译预处理endifMust be addressable ----------------------必须是可以编址的Must take address of memory location ------------------必须存储定位的地址No declaration for function ''xxx'' -------------------没有函数xxx的说明No stack ---------------缺少堆栈No type information ------------------没有类型信息Non-portable pointer assignment --------------------不可移动的指针(地址常数)赋值Non-portable pointer comparison --------------------不可移动的指针(地址常数)比较Non-portable pointer conversion ----------------------不可移动的指针(地址常数)转换Not a valid expression format type ---------------------不合法的表达式格式Not an allowed type ---------------------不允许使用的类型Numeric constant too large -------------------数值常太大Out of memory -------------------内存不够用Parameter ''xxx'' is never used ------------------能数xxx没有用到Pointer required on left side of -> -----------------------符号->的左边必须是指针Possible use of ''xxx'' before definition -------------------在定义之前就使用了xxx(警告)Possibly incorrect assignment ----------------赋值可能不正确Redeclaration of ''xxx'' -------------------重复定义了xxx Redefinition of ''xxx'' is not identical ------------------- xxx的两次定义不一致Register allocation failure ------------------寄存器定址失败Repeat count needs an lvalue ------------------重复计数需要逻辑值Size of structure or array not known ------------------结构体或数给大小不确定Statement missing ; ------------------语句后缺少";" Structure or union syntax error --------------结构体或联合体语法错误Structure size too large ----------------结构体尺寸太大Sub scripting missing ] ----------------下标缺少右方括号Superfluous & with function or array ------------------函数或数组中有多余的"&"Suspicious pointer conversion ---------------------可疑的指针转换Symbol limit exceeded ---------------符号超限Too few parameters in call -----------------函数调用时的实参少于函数的参数不Too many default cases ------------------- Default太多(switch 语句中一个)Too many error or warning messages --------------------错误或警告信息太多Too many type in declaration -----------------说明中类型太多Too much auto memory in function -----------------函数用到的局部存储太多Too much global data defined in file ------------------文件中全局数据太多Two consecutive dots -----------------两个连续的句点Type mismatch in parameter xxx ----------------参数xxx类型不匹配Type mismatch in redeclaration of ''xxx'' ---------------- xxx 重定义的类型不匹配Unable to create output file ''xxx'' ----------------无法建立输出文件xxxUnable to open include file ''xxx'' ---------------无法打开被包含的文件xxxUnable to open input file ''xxx'' ----------------无法打开输入文件xxxUndefined label ''xxx'' -------------------没有定义的标号xxx Undefined structure ''xxx'' -----------------没有定义的结构xxxUndefined symbol ''xxx'' -----------------没有定义的符号xxx Unexpected end of file in comment started on line xxx----------从xxx行开始的注解尚未结束文件不能结束Unexpected end of file in conditional started on line xxx ----从xxx 开始的条件语句尚未结束文件不能结束Unknown assemble instruction ----------------未知的汇编结构Unknown option ---------------未知的操作Unknown preprocessor directive: ''xxx'' -----------------不认识的预处理命令xxxUnreachable code ------------------无路可达的代码Unterminated string or character constant -----------------字符串缺少引号User break ----------------用户强行中断了程序Void functions may not return a value ----------------- Void类型的函数不应有返回值Wrong number of arguments -----------------调用函数的参数数目错''xxx'' not an argument ----------------- xxx不是参数''xxx'' not part of structure -------------------- xxx不是结构体的一部分xxx statement missing ( -------------------- xxx语句缺少左括号xxx statement missing ) ------------------ xxx语句缺少右括号xxx statement missing ; -------------------- xxx缺少分号xxx'' declared but never used -------------------说明了xxx 但没有使用xxx'' is assigned a value which is never used----------------------给xxx赋了值但未用过Zero length structure ------------------结构体的长度为零。
non degenerate映射 数学
非退化映射在数学中是一个重要的概念,它在各个分支领域中都有着广泛的应用。
在本文中,我们将探讨非退化映射的定义、性质以及在不同数学领域中的应用。
一、非退化映射的定义1.1 集合上的非退化映射在集合论中,非退化映射是指一个映射,它的核(kernel)只包含零向量。
如果一个映射将任何非零向量映射为非零向量,那么这个映射就是非退化的。
1.2 矩阵上的非退化映射上线性代数中,我们将矩阵视为向量空间之间的映射。
一个矩阵是非退化的,意味着它是可逆的,即存在逆矩阵使得两者相乘为单位矩阵。
当一个矩阵是非退化的时,它将向量空间中的任何非零向量映射为非零向量。
二、非退化映射的性质2.1 非退化映射与满射、单射的关系非退化映射既不是满射也不是单射。
因为它既存在零向量的像,也可能存在多个不同的向量映射到同一个向量上。
2.2 非退化映射的行列式上线性代数中,一个矩阵是非退化的充分必要条件是它的行列式不为零。
这个性质被广泛应用于矩阵的求逆和方程组的解法中。
2.3 非退化映射的复合若映射f、g都是非退化的,那么它们的复合映射f∘g也是非退化的。
这个性质在研究多个映射复合时非常有用。
2.4 非退化映射的性质总结非退化映射具有核为空、行列式不为零、满射性和单射性不全的特点。
它在矩阵计算、线性代数中有着重要的地位,为数学的发展做出了重要贡献。
三、非退化映射在不同数学领域中的应用3.1 非退化映射在拓扑学中的应用在拓扑学中,非退化映射被用来研究流形、同伦等概念。
它为拓扑空间的结构和性质提供了重要的工具,帮助我们理解空间的连通性、紧致性等重要概念。
3.2 非退化映射在微分方程中的应用微分方程描述了自然现象的变化规律,而非退化映射在微分方程的解的存在唯一性问题上发挥了重要作用。
通过分析微分方程可逆的性质,研究解的唯一性和稳定性等问题,非退化映射为微分方程的研究提供了重要的工具。
3.3 非退化映射在代数学中的应用在代数学中,非退化映射被广泛应用于裙论、环论、域论等代数结构的研究中。
operation would result in non-manifold bodies
operation would result in non-manifold bodies在计算机图形学和几何建模领域,非流形体是指在三维空间中形状的一种特殊类型。
一个非流形体具有一个或多个不符合流形特性的区域。
流形是指一个无边界、表面光滑、内部无孔洞的物体,而非流形体则违反了这些性质。
非流形体在计算机图形学中经常出现,因为在建模和形状编辑过程中,一些操作可能会导致这种类型的物体。
下面是一些可能导致非流形体的操作:1. 重叠面:当一个物体的两个面共享相同的边或边集时,就会出现重叠面。
这可能是由于复制、移动或变形等操作导致的,会导致一个或多个非流形体形成。
2. 孔洞:一个非流形体可能有一个或多个孔洞,即在物体内部形成的空心区域。
这可能是由于布尔运算(如取交集、取并集)或其他形状编辑操作导致的。
3. 自交:自交是指一个物体的某个部分与其它部分相交。
这可能是由于旋转、拉伸、挤压等操作导致的,会导致非流形体的产生。
4. 嵌塞:嵌塞是指一个物体的某个部分被另一个物体或其自身部分所包围。
这可能是由于复制、移动、布尔运算等操作导致的。
5. 物体边界:非流形体的边界可能会有额外的不连续部分,即在其中一个顶点出现了一个无界的半边。
这种情况可以由于顶点的合并、分裂、删除等操作引起。
非流形体的存在可能会影响后续的计算和渲染过程。
例如,非流形体在进行体现场计算(CSG)和有限元分析时可能会导致错误的结果。
此外,在图形渲染过程中,非流形体可能会导致阴影、光照、纹理映射等效果的不准确或意外变化。
为了处理非流形体,通常需要进行修复操作,将其转换为流形体。
修复非流形体的方法有很多,一些常用的方法包括:1. 网格替代:通过重新生成一个流形网格替代非流形网格。
这可能涉及到重建表面或拓扑结构,以确保生成的网格符合流形特性。
2. 清理操作:通过一系列操作,例如顶点合并、边合并、面合并等,来清理非流形体中的不连续和重叠部分。
3. 网格修剪:通过删除非流形体中的不规则部分或孔洞,使其成为一个流形体。
Fusion 360 制图功能教程:绘制工程图纸说明书
Your AU Expert(s)
Andrew de Leon is a senior principal user experience designer at Autodesk, Inc., with 20 years’ experience in the manufacturing industry and 11 years in user experience design. He has experience with AutoCAD software, AutoCAD Mechanical software, Inventor software, and Fusion பைடு நூலகம்60 software. He’s passionate about manufacturing and design, and enjoys solving difficult problems.
非下采样Contourlet自适应的地震信号插值方法
第1 期
西
南
科
技
大
学
学
报
V0. 7 No 1 12 . Ma . 0 2 r2 1
21 02年 3月
J un lo o tw s Unv ri fS in e ad T c n lg o r a f uh et iest o ce c n e h ooy S y
2 基于非下采样 Cn u e 的地震插值 ot rt ol
完整的地震数据 m可 以分为已知数据 和缺失 数据两个部分 , 地震数据插值重构问题就是利用 已
知的地震数据来恢复缺失的部分。本文通过改进传 统的阈值方法 , 并结合非下采样平移不变性的特点 ,
利用阈值迭代方法来完成地震数据 的插值 。
t nf m( S T a rp sdi re t i poetesi i d t r o s ut ne et hs lo tm r s r N C )w s o oe odr o m r e m c aa e nt c o f c.T i a r a o p n v h s c r i f gi h
A: 厕
() 3
其 中 ,r o =MA / .7 噪声方差 的估计 值 , D D O 645为 MA
其中 风 () () , z 分别是低通、 高通分解滤波器 , G () G () 0 , 。z 是低通、 高通重建滤波器 。 通过这组滤 波器 , 图像被分解为低频子带和高频子带 , 要实现
不断增加 , 从而实现阈值 自 适应选取 。 2 2 非下 采样 C n ult 值 步骤 . ot r 插 o e
对于一般含噪声 的地震数据插值问题可以如下
描述 : 是完整 的地震 数据 : m
分形、幂律、无标度
分形、幂律、无标度【原创实用版】目录1.分形:概述与基本概念2.幂律:概述与基本概念3.无标度:概述与基本概念4.分形、幂律、无标度之间的关系5.应用领域及实际意义正文1.分形:概述与基本概念分形是一种特殊的几何图形,它具有在不同尺度上具有相似结构的特点。
简单来说,分形就是具有自相似性的形状。
分形的概念最早由法国数学家芒德勃罗(Mandelbrot)提出,其典型的例子包括海岸线、云团的形状以及生物细胞等。
分形的研究在数学、物理、地理、生物等领域具有广泛的应用。
2.幂律:概述与基本概念幂律,又称幂指数定律,是一种描述事物规模与数量之间关系的数学模型。
幂律具有形式简单、描述准确等特点,被广泛应用于社会科学、自然科学等领域。
幂律的基本形式为:y = kx^(-α),其中 x 表示事物的规模,y 表示事物的数量,k 和α为常数。
根据α值的不同,幂律可以分为三类:α>0,α=0,α<0。
3.无标度:概述与基本概念无标度网络是一种复杂的网络结构,它的特点是节点之间的连接不是均匀分布的,而是存在明显的幂律分布。
无标度网络的典型例子包括互联网、社交网络等。
无标度网络的研究对于理解网络的稳定性、鲁棒性以及传播现象等方面具有重要意义。
4.分形、幂律、无标度之间的关系分形、幂律和无标度三者之间存在密切的联系。
分形是描述事物形状的数学概念,幂律是描述事物规模与数量关系的数学模型,而无标度网络则是具有特定结构特征的网络。
在实际应用中,分形、幂律和无标度常常共同作用,相互影响。
例如,在无标度网络中,节点之间的连接遵循幂律分布,而网络的结构又具有分形的自相似性。
5.应用领域及实际意义分形、幂律和无标度在多个领域具有广泛的应用。
在物理学中,分形描述了物质的复杂结构,幂律则可以用来研究原子核的稳定性。
在生物学中,分形可以用来研究生物细胞的形态,幂律则可以用来描述生物种群的数量关系。
在社会科学领域,无标度网络被用来研究社会网络的结构和演化规律。
VW_01014 大众图纸图框及字体规范
Engineering DrawingsDrawing Frames and Text MacrosPrevious issuesVW 01014: 1971-05, 1984-03, 1992-08, 1998-04, 1998-10, 2000-09, 2001-03, 2002-06, 2003-11,2006-01, 2007-01, 2008-03, 2009-04, 2010-05, 2010-12, 2011-05, 2011-12ChangesThe following changes have been made compared with VW 01014: 2011-12:–Technical responsibility changes–Section 1 "Scope of application": the note concerning the application in section 6 has been re‐moved. It now appears as NOTE 3 in section 1–Section 2.3 "PDM drawing frame": English legal notice updated and table of existing PDM draw‐ing frame formats in KVS added.–Section 3.7 "Volkswagen AG Know-How Protection": text macro NO-A12 added ContentsPageScope .........................................................................................................................4Drawing frames ..........................................................................................................5Drawing frame for Design Engineering (series-production drawing), see Figure 1....................................................................................................................................5Type approval drawing frame, see Figure 2 ...............................................................6PDM drawing frame, see Figure 3 .............................................................................7Drawing frames for operating equipment ...................................................................8Basic drawing frame for operating equipment, see Figure 4 ......................................8Drawing frame for method plan, see Figure 5 ............................................................9Text macros .............................................................................................................10Basic title block .. (10)122.12.22.32.42.4.12.4.233.1Group StandardVW 01014Issue 2012-09Class. No.:02115Descriptors:drawing frames, text macro, standard frame, drawingVerify that you have the latest issue of the Standard before relying on it.This electronically generated Standard is authentic and valid without signature.The English translation is believed to be accurate. In case of discrepancies, the German version is alone authoritative and controlling.Page 1 of 43Confidential. All rights reserved. No part of this document may be provided to third parties or reproduced without the prior consent of the Standards Department of a Volkswagen Group member.This Standard is available to contracting parties solely via the B2B supplier platform .© Volkswagen AktiengesellschaftVWNORM-2011-08gTitle blocks for drawings with restrictions on use .....................................................11Title block for layout drawings (ENT) > A0 ...............................................................12Symbol for European projection method ..................................................................13Change block for formats > A0 .................................................................................13Tolerancing principle as per VW 01054 ...................................................................13Volkswagen Group know-how protection .................................................................13Drawing field ............................................................................................................14Lower left corner of drawing for formats > A0 ..........................................................14Left drawing edge for formats > A0 ..........................................................................14Explanation of parenthesized dimensions for formats > A0 (lower left corner ofdrawing field) ............................................................................................................14References for formats > A0 ....................................................................................15Migration from CATIA V4 to CATIA V5 ....................................................................15Parts marking ...........................................................................................................15Part number assignment drawn / symmetrically opposite ........................................15Note on utilization of scrap material .........................................................................16NO-F1 Drawings with multiple sheets ......................................................................16Repeating and unchanging notes, mostly on body components ..............................16Drawing only for the company stated .......................................................................16Note on parts which are subject to build sample approval (BMG) ...........................17Notes on testing as per Technical Supply Specifications (TL) .................................17Note on type approval ..............................................................................................17Note on undimensioned design models in the data record ......................................17Note on open-air weathering ....................................................................................17Note on model approval ...........................................................................................17Note on master model ..............................................................................................18Note on second original, font size 7 mm ..................................................................18Note on second original, font size 3,5 mm ...............................................................18Note on heavy-duty component ...............................................................................18Note on mandatory type approval ............................................................................19Note on avoidance of hazardous substances ..........................................................19Note on other relevant drawings ..............................................................................19Note on undimensioned bend and trim radii ............................................................19Note on simplified representation .............................................................................19Note on flawless condition of surfaces .....................................................................19Note on material for form tool in grain area ..............................................................20Table for RPS ...........................................................................................................20Note on emission behavior .......................................................................................20Note on length dimensions to be measured up to relevant functional datum plane ..................................................................................................................................20Note on related tolerances for nominal dimension ranges up to relevant functional datum plane .............................................................................................................21Note on tolerances of surfaces as compared to the data record and defined RPS..................................................................................................................................21Note on tolerances of marked surfaces as compared to the data record anddefined RPS .............................................................................................................21Note on tolerances of marked and limited surfaces as compared to the datarecord and defined RPS ...........................................................................................21Note on tolerances of marked edges as compared to the data record and defined RPS ..........................................................................................................................21Note on alternative materials and surface protection types .....................................22Note on color and grain .. (22)3.23.33.43.53.63.744.14.24.34.44.54.64.74.84.94.104.114.124.134.144.154.164.174.184.194.204.214.224.234.244.254.264.274.284.294.304.314.324.334.344.354.364.374.38Page 2VW 01014: 2012-09Note on temperature resistance ...............................................................................22Note on color consistency ........................................................................................22Note on lightfastness ................................................................................................22Note on fixing, clamping and contact surface ..........................................................23Note on related finished part drawing ......................................................................23Note on material specifications, complete ................................................................23Note on material specifications, subdivided .............................................................24Note on optional welding technology .......................................................................24Note on flammability features ...................................................................................24Note on table containing gear tooth data .................................................................25Note on weight indication .........................................................................................25Note on amine emission of foam parts .....................................................................25Note on cleanliness requirements for engine components ......................................25Countersinks for internal threads .............................................................................26Testing of rolled bushings ........................................................................................26Table for limit dimensions ........................................................................................26Detail drawing for radius under screw head, mostly for standard part drawings (27)Test specification for disk wheels .............................................................................27Test specification for brake drums ...........................................................................28General tolerances for castings ...............................................................................28General tolerances for forgings ................................................................................29Coordinate dimensioning for tubes and bars ...........................................................30Bill of materials for layout drawings (ENT) ...............................................................30Distribution list for layout drawings (ENT) ................................................................31Text macros for operating equipment ......................................................................31Title block for individual part .....................................................................................31Note on pass direction, left .......................................................................................32Note on pass direction, right ....................................................................................32Title block for operating equipment label .................................................................32General tolerances for nominal dimensions without tolerance specification ............32Note on simplified drawing specifications on surface roughnesses .........................33Permissible deviations for nominal sizes without tolerance specification onweldments ................................................................................................................33Permissible deviations for nominal dimensions without tolerance specificationson flame-cut parts ....................................................................................................33Note on parts used ...................................................................................................34Note on rolled flame-cutting template plots ..............................................................34Note on "Add ½ kerf" ................................................................................................34Note on "designed" and "symmetrical opposite" ......................................................34Text macros for the "3D drawingless process" (3DZP – German abbreviation) ......35VW copyright ............................................................................................................35Note on restriction on use ........................................................................................35Note on type approval documentation and type approval number ...........................35Draft number ............................................................................................................36Note on engineering project number ........................................................................36Note on safety documentation .................................................................................36Recycling requirements as per VW 91102 ...............................................................36All dimensions apply to the finished part including surface protection .....................36Surface roughness as per VW 13705 and VDA 2005 ..............................................36Surface roughness as per VW 13705 and VDA 2005 (reference without symbol) (37)4.394.404.414.424.434.444.454.464.474.484.494.504.514.524.534.544.554.564.574.584.594.604.614.6255.15.25.35.45.55.65.75.85.95.105.115.1266.16.26.36.46.56.66.76.86.96.9.1Page 3VW 01014: 2012-09Surface roughness as per VW 13705 and VDA 2005 (reference with symbol) .......37Surface roughness as per VW 13705 and VDA 2005 (reference with symbol,collective specification 1) .........................................................................................38Surface roughness as per VW 13705 and VDA 2005 (reference with symbol,collective specification 2) .........................................................................................39Workpiece edges as per VW 01088 .........................................................................39Workpiece edges as per VW 01088 (reference without symbol) .............................40Workpiece edges as per VW 01088 (reference with symbol) ..................................40Workpiece edges as per VW 01088 (reference with symbol, collectivespecification 1) .........................................................................................................41Workpiece edges as per VW 01088 (reference with symbol, collectivespecification 2) .........................................................................................................42Applicable documents ..............................................................................................426.9.26.9.36.9.46.106.10.16.10.26.10.36.10.47ScopeThis standard applies to the computer-aided graphical representation and presentation of drawing templates, standard frames and text macros for drawings within the Volkswagen Group.NOTE 1 The standardized text macros are subject to drawing standard regulations and are centrally managed by the "Virtual Systems and Standardization" department.NOTE 2 All drawing frames and text macros shown here are available in the appropriate standard system environment of the CAD systems CATIA and Creo Elements/Pro (formerly PRO/E). The PDM drawing frames are also available as IsoDraw and Excel templates in the KVS, and also as Catia V5templates.NOTE 3 The text macros shown in section 6 are for the drawingless process only. The creator and the user of the data must agree whether their process chain allows for the use of documents as per the 3DZP method, and whether this is permissible.1Page 4VW 01014: 2012-09Drawing framesDrawing frame for Design Engineering (series-production drawing), see Figure 1Figure 1 – Drawing frame for Design Engineering (series-production drawing)2 2.1Page 5VW 01014: 2012-09Type approval drawing frame, see Figure 2Figure 2 – Type approval drawing frame2.2 Page 6VW 01014: 2012-09PDM drawing frame, see Figure 3Figure 3 – PDM drawing frame2.3 Page 7VW 01014: 2012-09Drawing frames for operating equipmentBasic drawing frame for operating equipment, see Figure 4Figure 4 – Basic drawing frame for operating equipment2.4 2.4.1Page 8VW 01014: 2012-09Drawing frame for method plan, see Figure 5Figure 5 – Drawing frame for method plan2.4.2 Page 9VW 01014: 2012-09Text macrosBasic title blockFigure 6 – Code no: NO-A1Basic title block for formats > A03 3.1Page 10VW 01014: 2012-09Title blocks for drawings with restrictions on useFigure 7 – Code no: NO-A7 A3The title block may only be used if supplier original drawings are used as modified finished part drawings.Notes on the usage of these title blocks see VW 01058.3.2Title block for layout drawings (ENT) > A0Figure 8 – Code no: NO-A3ENT = Draft3.3Symbol for European projection methodFigure 9 – Code no: NO-A5Change block for formats > A0Figure 10 – Code no: NO-A6Tolerancing principle as per VW 01054Figure 11 – Code no: NO-A11Volkswagen Group know-how protectionFigure 12 – Code no: NO-A123.4 3.5 3.6 3.7Drawing fieldLower left corner of drawing for formats > A0Figure 13 – Code no: NO-B1Left drawing edge for formats > A0Figure 14 – Code no: NO-B3Explanation of parenthesized dimensions for formats > A0 (lower left corner of drawingfield)Figure 15 – Code no: NO-B644.1 4.2 4.3References for formats > A0Figure 16 – Code no: NO-B7Migration from CATIA V4 to CATIA V5Figure 17 – Code no: NO-B8Parts markingFigure 18 – Code no: NO-E2Part number assignment drawn / symmetrically oppositeFigure 19 – Code no: NO-E54.4 4.5 4.6 4.7Note on utilization of scrap materialFigure 20 – Code no.:NO-F1 Drawings with multiple sheetsFigure 21 – Code no: NO-F2Repeating and unchanging notes, mostly on body componentsFigure 22 – Code no: NO-F3Drawing only for the company statedFigure 23 – Code no: NO-F4 (do not use for new designs!)4.8 4.9 4.10 4.11Note on parts which are subject to build sample approval (BMG)Figure 24 – Code no: NO-F5Notes on testing as per Technical Supply Specifications (TL)Figure 25 – Code no: NO-F6Note on type approvalFigure 26 – Code no: NO-F7Note on undimensioned design models in the data recordFigure 27 – Code no: NO-F8Note on open-air weatheringFigure 28 – Code no: NO-F9Note on model approvalFigure 29 – Code no: NO-F104.12 4.13 4.14 4.15 4.16 4.17Note on master modelFigure 30 – Code no: NO-F11Note on second original, font size 7 mmFigure 31 – Code no: NO-F12Note on second original, font size 3,5 mmFigure 32 – Code no: NO-F13Note on heavy-duty componentFigure 33 – Code no: NO-F144.18 4.19 4.20 4.21Note on mandatory type approvalFigure 34 – Code no: NO-F15Note on avoidance of hazardous substancesFigure 35 – Code no: NO-F16Note on other relevant drawingsFigure 36 – Code no: NO-F17Note on undimensioned bend and trim radiiFigure 37 – Code no: NO-F18Note on simplified representationFigure 38 – Code no: NO-F19Note on flawless condition of surfacesFigure 39 – Code no: NO-F204.22 4.23 4.24 4.25 4.26 4.27Note on material for form tool in grain areaFigure 40 – Code no: NO-F22Table for RPSFigure 41 – Code no: NO-F23Note on emission behaviorFigure 42 – Code no: NO-F24Note on length dimensions to be measured up to relevant functional datum planeFigure 43 – Code no: NO-F254.28 4.29 4.30 4.31Note on related tolerances for nominal dimension ranges up to relevant functional datumplaneFigure 44 – Code no: NO-F26Note on tolerances of surfaces as compared to the data record and defined RPSFigure 45 – Code no: NO-F27Note on tolerances of marked surfaces as compared to the data record and defined RPSFigure 46 – Code no: NO-F28Note on tolerances of marked and limited surfaces as compared to the data record anddefined RPSFigure 47 – Code no: NO-F29Note on tolerances of marked edges as compared to the data record and defined RPSFigure 48 – Code no: NO-F304.32 4.33 4.34 4.35 4.36Note on alternative materials and surface protection typesFigure 49 – Code no: NO-F31Note on color and grainFigure 50 – Code no: NO-F32Note on temperature resistanceFigure 51 – Code no: NO-F33Note on color consistencyFigure 52 – Code no: NO-F35Note on lightfastnessFigure 53 – Code no: NO-F364.37 4.38 4.39 4.40 4.41Note on fixing, clamping and contact surfaceFigure 54 – Code no: NO-F37Note on related finished part drawingFigure 55 – Code no: NO-F38Note on material specifications, completeFigure 56 – Code no: NO-F394.42 4.43 4.44Note on material specifications, subdividedFigure 57 – Code no: NO-F40Note on optional welding technologyFigure 58 – Code no: NO-F41Note on flammability featuresFigure 59 – Code no: NO-F424.45 4.46 4.47Note on table containing gear tooth dataFigure 60 – Code no: NO-F43Note on weight indicationFigure 61 – Code no: NO-F44Note on amine emission of foam partsFigure 62 – Code no: NO-F45Note on cleanliness requirements for engine componentsFigure 63 – Code no: NO-F464.48 4.49 4.50 4.51Countersinks for internal threadsFigure 64 – Code no: NO-G0Testing of rolled bushingsFigure 65 – Code no: NO-G1Table for limit dimensionsFigure 66 – Code no: NO-G24.52 4.53 4.54Detail drawing for radius under screw head, mostly for standard part drawingsFigure 67 – Code no: NO-G4Test specification for disk wheelsFigure 68 – Code no: NO-G64.55 4.56Test specification for brake drumsFigure 69 – Code no: NO-G7General tolerances for castingsFigure 70 – Code no: NO-G84.57 4.58General tolerances for forgingsFigure 71 – Code no: NO-G94.59Coordinate dimensioning for tubes and barsFigure 72 – Code no: NO-G10Bill of materials for layout drawings (ENT)Figure 73 – Code no: NO-H14.60 4.61Distribution list for layout drawings (ENT)Figure 74 – Code no: NO-H2Text macros for operating equipmentTitle block for individual partFigure 75 – Code no: R001 individual part4.62 55.1Note on pass direction, leftFigure 76 – Code no: R002 pass direction, leftNote on pass direction, rightFigure 77 – Code no: R003 pass direction, rightTitle block for operating equipment labelFigure 78 – Code no: R004 operating equipment labelGeneral tolerances for nominal dimensions without tolerance specificationFigure 79 – Code no: R005 machining operation5.2 5.35.45.5Note on simplified drawing specifications on surface roughnessesFigure 80 – Code no: R006 surfacesPermissible deviations for nominal sizes without tolerance specification on weldmentsFigure 81 – Code no: R007 welded partsPermissible deviations for nominal dimensions without tolerance specifications on flame-cut partsFigure 82 – Code no: R008 flame-cut parts5.6 5.75.8Note on parts usedFigure 83 – Code no: R009 parts usedNote on rolled flame-cutting template plotsFigure 84 – Code no: R010 flame-cutting templateNote on "Add ½ kerf"Figure 85 – Code no: R011 kerfNote on "designed" and "symmetrical opposite"Figure 86 – Code no: R012 symmetrical opposite5.9 5.105.115.12Text macros for the "3D drawingless process" (3DZP – German abbreviation)The following text macros are not created in CAD systems, but only in the PDM system KVS.The design engineer must add the necessary parameters to the text macros.VW copyrightFigure 87 – Code no: NOZ-01Note on restriction on useLegend P01Company nameFigure 88 – Code no: NOZ-02Note on type approval documentation and type approval numberLegend P01Type approval doc. and type approval numberFigure 89 – Code no: NOZ-036 6.16.26.3Draft numberLegend P01Draft numberFigure 90 – Code no: NOZ-04Note on engineering project numberLegend P01Engineering project numberFigure 91 – Code no: NOZ-05Note on safety documentationLegend P01TLD number (technical guideline for documentation – German abbreviation)Figure 92 – Code no: NOZ-06Recycling requirements as per VW 91102Figure 93 – Code no: NOZ-07All dimensions apply to the finished part including surface protectionFigure 94 – Code no: NOZ-08Surface roughness as per VW 13705 and VDA 2005The design engineer must add the required parameters to the symbols shown here (e.g., Rz value).Two types of text macros (with and without graphical representation) have been defined. Variant NOZ-09 is a reference to Standard VW 13705, additional information possible, but restricted. Variants NOZ-09-01 a to f are reserved for the main surface roughness value. Due to system restrictions,identical symbols cannot be used more than once. For this reason, the symbols in section 6.9.3 and6.4 6.56.66.76.86.9section 6.9.4 must be used for cases of multiple use. If surface roughness values are added as a note, the text macros are placed beneath each other instead of beside each other. This deviating representation has been released for the 3DZP drawingless process.Surface roughness as per VW 13705 and VDA 2005 (reference without symbol)Figure 95 – Code no: NOZ-09Surface roughness as per VW 13705 and VDA 2005 (reference with symbol)Figure 96 – Code no: NOZ-09-01-aFigure 97 – Code no: NOZ-09-01-bFigure 98 – Code no.: NOZ-09-01-cLegend P01Machining allowance (numerical value in mm)P02Production processP03Surface parameter and numerical valueP04if applicable, additional requirement as per VDA 2005P05if applicable, additional requirement as per VDA 2005P06if applicable, second requirement on surface texture (surface parameter,numerical value)P07Specification of the surface groovesLegend P01Letter for simplified drawing specification. Method defined in section "simplified specifi‐cation" in VDA 2005Figure 99 – Code no: NOZ-09-01-d6.9.16.9.2Figure 100 – Code no: NOZ-09-01-e Figure 101 – Code no: NOZ-09-01-fSurface roughness as per VW 13705 and VDA 2005 (reference with symbol, collectivespecification 1)Figure 102 – Code no: NOZ-09-02-aFigure 103 – Code no: NOZ-09-02-bFigure 104 – Code no: NOZ-09-02-cLegend P01Machining allowance (numerical value in mm)P02Production processP03Surface parameter and numerical valueP04if applicable, additional requirement as per VDA 2005P05if applicable, additional requirement as per VDA 2005P06if applicable, second requirement onsurface texture (surface parameter,numerical value) P07Specifica‐tion of thesurface groovesCode no.:Legend P01Letter for simplified drawing specification. Method defined in section "simplified specifi‐cation" in VDA 2005Figure 105 – NOZ-09-02-dFigure 106 – Code no: NOZ-09-02-e Figure 107 – Code no: NOZ-09-02-f6.9.3。
数据通信原理实验指导书
实验一编码与译码一、实验学时:2学时二、实验类型:验证型三、实验仪器:安装Matlab软件的PC机一台四、实验目的:用MATLAB仿真技术实现信源编译码、过失操纵编译码,并计算误码率。
在那个实验中咱们将观看到二进制信息是如何进行编码的。
咱们将要紧了解:1.目前用于数字通信的基带码型2.过失操纵编译码五、实验内容:1.经常使用基带码型(1)利用MATLAB 函数wave_gen 来产生代表二进制序列的波形,函数wave_gen 的格式是:wave_gen(二进制码元,‘码型’,Rb)此处Rb 是二进制码元速度,单位为比特/秒(bps)。
产生如下的二进制序列:>> b = [1 0 1 0 1 1];利用Rb=1000bps 的单极性不归零码产生代表b的波形且显示波形x,填写图1-1:>> x = wave_gen(b,‘unipolar_nrz’,1000);>> waveplot(x)(2)用如下码型重复步骤(1)(提示:能够键入“help wave_gen”来获取帮忙),并做出相应的记录:a 双极性不归零码b 单极性归零码c 双极性归零码d 曼彻斯特码(manchester)x 10-3x 10-3图1-1 单极性不归零码图1-2双极性不归零码x 10-3x 10-32.过失操纵编译码(1) 利用MATLAB 函数encode 来对二进制序列进行过失操纵编码, 函数encode 的格式是:A .code = encode(msg,n,k,'linear/fmt',genmat)B .code = encode(msg,n,k,'cyclic/fmt',genpoly)C .code = encode(msg,n,k,'hamming/fmt',prim_poly)其中A .用于产生线性分组码,B .用于产生循环码,C .用于产生hamming 码,msg 为待编码二进制序列,n 为码字长度,k 为分组msg 长度,genmat 为生成矩阵,维数为k*n ,genpoly 为生成多项式,缺省情形下为cyclpoly(n,k)。
不精确一维搜索
不精确一维搜索
不精确一维搜索方法 Questions
Why不精确一维搜索方法?
不精确一维搜索方法
不精确一维搜索方法
不精确一维搜索方法 Remark
六十年代中期以前,线性搜索方法是精确线性搜索方 法的一统天下。自从Armijo(1966), Goldstein(1965) 提出了不精确线性搜索方法以后,不精确线性搜索由 于计算量小、效率高成了现在流行的线性搜索方法。
不精确一维搜索方法
Questions
不精确一维搜索方法
不精确一维搜索方法
(*) (**)
Questions
Questions
Questions
A-J 方法会出现什么问题?
Remark
精确一维搜索不精确一维搜索区间收缩法函数逼近法牛顿法切线法抛物插值法三次插值法加步探索法进退法成功失败法fibonacci法0618法二分法questionswhy不精确一维搜索方法
精确一维搜索
索的方法
加步探索法(进退法、成功失败法) Fibonacci法 0.618法 二分法 牛顿法 (切线法) 抛物插值法、三次插值法
分形、幂律、无标度
分形、幂律、无标度分形、幂律和无标度是数学和物理中一些重要的概念,它们在自然界、社会网络和金融市场等领域中都具有广泛的应用。
本文将对这三个概念进行介绍,并探讨它们之间的关系。
我们来讨论分形。
分形是一种特殊的几何图形,具有自相似性。
也就是说,无论分形的哪一部分放大多少倍,都能发现与原图形相似的结构。
分形图形常见的例子包括分形树、科赫曲线和曼德布洛特集。
分形不仅仅是一种美学上的表现形式,它还可以用来描述自然界中的许多现象,如云朵的形状、山脉的轮廓和植物的分支结构等。
分形的研究对于理解自然界中的复杂性和混沌现象有着重要的意义。
接下来,我们来介绍幂律。
幂律是一种数学函数关系,也称为冪法则。
幂律关系通常表现为一种双对数直线,即将自变量和因变量都取对数后,它们之间存在着线性关系。
幂律在物理学、生物学、经济学和社会学等领域中都有广泛的应用。
在物理学中,幂律可以用来描述分形结构的尺度不变性;在生物学中,幂律可以用来描述物种分布的多样性;在经济学中,幂律可以用来描述财富分布的不平等性;在社会学中,幂律可以用来描述社交网络中节点的连接强度等。
幂律的研究对于理解复杂系统的行为规律具有重要的意义。
我们来谈论无标度。
无标度是一种特殊的网络结构,它的节点度数服从幂律分布。
也就是说,在一个无标度网络中,只有少数节点的度数非常大,而大多数节点的度数相对较小。
这种结构使得无标度网络具有高度的鲁棒性和灵活性。
无标度网络在社交网络、互联网和生物网络等领域中都有广泛的应用。
在社交网络中,少数的超级节点具有很高的社交影响力;在互联网中,少数的核心节点承担着大部分的网络流量;在生物网络中,少数的关键节点连接了大部分的生物功能模块。
无标度网络的研究对于理解网络的演化和脆弱性具有重要的意义。
分形、幂律和无标度之间存在着一定的联系。
分形在某种程度上可以看作是一种自我相似性的幂律结构。
例如,分形曼德布洛特集在不同尺度上都具有相似的结构,而这种相似性正是通过幂律来描述的。
△(G)=8且不含三角形的平面图的完备染色
△(G)=8且不含三角形的平面图的完备染色完备染色是指将一个图中的所有节点染上不同的颜色,且相邻的节点染不同的颜色。
给定一个平面图G,其中不包含三角形,即在G中不存在三个节点之间彼此相邻的情况,要求对G进行完备染色。
首先,我们可以通过欧拉公式来确定G的节点数和边数之间的关系。
欧拉公式指出,对于任意一个平面图G,有以下公式成立:V - E + F = 2其中,V表示G的节点数,E表示G的边数,F表示G的面数(包括无限远处的面)。
这个公式的证明可以通过将平面图转化为二维网格图来完成。
根据不包含三角形的条件,我们可以得出一个结论:对于任意一个平面图G,如果G存在至少3个节点(即V≥3),那么G至少有4个面(即F≥4)。
这是因为,对于任意一个面f,只要它有一个边e与其它的面相邻,那么e就必须是f的一个三角形边,这就违反了G不包含三角形的条件。
因此,我们可以将G分为两种情况来分析:情况一:G中存在一个面f,使得f的边界上只有两个节点(即f是一个无限远处的面)。
在这种情况下,我们可以将G缩成一个更小的平面图G',其边界只包含f的两个节点。
这相当于将所有与f相邻的面都移除,同时将连接它们的边也都移除。
由于f一定是凸的,所以G'仍然不包含三角形。
我们可以对G'进行归纳处理,最后再通过重新加入已移除的边和面来还原G的颜色。
情况二:G中不存在只有两个节点的面,即所有的面都与至少三个节点相邻。
E' = E - d(f) - 1其中,d(f)表示f与其它面相邻的边数。
这是因为,当f和v被移除后,f上原有的d(f)个边都会消失,同时还会移除连接v和f的一条边。
现在,我们可以对G'进行归纳处理,最后再通过重新加入已移除的边和面来还原G的颜色。
需要注意的是,这种归纳处理可能会出现一种情况,即G'不再满足条件二,即存在一个面只与两个节点相邻。
此时,我们就需要利用情况一的方法进行处理。
△(G)=8且不含三角形的平面图的完备染色
△(G)=8且不含三角形的平面图的完备染色平面图是指能够画在平面上且相交只有顶点相同的图。
平面图的研究非常有意义,它不仅可以应用于计算机图形学和计算机网络等领域,还涉及数学领域的拓扑理论和图论等方面。
在平面图中,完备染色是一种特殊的颜色方案,在该方案下,每个节点都被染上一种颜色,相邻节点的颜色必须不同。
而要求其为不含三角形的平面图,即不能存在三个节点之间两两相连,形成一个三角形的结构。
本文主要讨论不含三角形的平面图的完备染色问题,即如何在给定条件下找到一个完备染色方案。
首先,我们需要证明一个定理:定理1:任何一个不含三角形的平面图的顶点数至多为4G-8,其中G是该平面图的面数。
证明:考虑该平面图中每个面至少包含3条边,且每条边至多同时属于2个面。
因此,平面图的边数E可以用每个面的边数累加得到,即E≤3G/2。
又因为每个顶点至少属于3条边,因此,平面图的顶点数V可以用每条边的顶点数累加得到,即V≤2E/3。
将这两个不等式代入欧拉公式E-V+F=2(其中F为平面图的面数),可得F≤2E/3-2V+2。
因为不含三角形,所以每个面至少有4条边,即2E≥4F,代入上式,可得F≤2V-4。
因此,V≤4G-8。
接下来,我们考虑如何给不含三角形的平面图完备染色。
方法一:我们可以利用经典的Kempe定理进行染色。
Kempe定理是一种特殊的染色方法,它是基于颜色类的概念,即将同一颜色的节点放在同一颜色类中,并通过重构颜色类来实现染色。
对于给定的平面图G,我们可以将每个面的边缘节点拥有的颜色记为集合C1,C2,C3,……,CG,即令Ci表示第i个面边缘节点的颜色集合。
此时,平面图的每个节点对应一个颜色类,其中节点i属于颜色类Ci。
接下来,我们在每个颜色类上选取一个节点作为“代表”,并组成一个集合S,即S={v1,v2,……,vn},其中vi为每个颜色类Ci中的任意一个节点。
如果两个颜色类Ci 与Cj存在公共节点,则它们被认为是相邻颜色类,即Ci和Cj是相邻的。
2020-2021学年高三数学一轮复习易错题05 三角函数与解三角形
易错点05 三角函数与解三角形—备战2021年高考数学一轮复习易错题【典例分析】例1 (2020年普通高等学校招生全国统一考试数学)下图是函数y = sin(ωx +φ)的部分图像,则sin(ωx +φ)= ( )A. πsin(3x +)B. πsin(2)3x - C. πcos(26x +)D.5πcos(2)6x -【答案】BC 【解析】 【分析】首先利用周期确定ω的值,然后确定ϕ的值即可确定函数的解析式,最后利用诱导公式可得正确结果.【详解】由函数图像可知:22362T πππ=-=,则222T ππωπ===,所以不选A, 当2536212x πππ+==时,1y =-∴()5322122k k Z ππϕπ⨯+=+∈, 解得:()223k k ϕππ=+∈Z,即函数的解析式为:2sin 22sin 2cos 2sin 236263y x k x x x ππππππ⎛⎫⎛⎫⎛⎫⎛⎫=++=++=+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.而5cos 2cos(2)66x x ππ⎛⎫+=-- ⎪⎝⎭ 故选:BC.【点睛】已知f (x )=Asin (ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)由ω=2Tπ即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x 0,则令ωx 0+φ=0(或ωx 0+φ=π),即可求出φ.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求. 例2 (2020年普通高等学校招生全国统一考试数学) 某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形,BC ⊥DG ,垂足为C ,tan ∠ODC =35,BH DG ∥,EF =12 cm ,DE=2 cm ,A 到直线DE 和EF 的距离均为7 cm ,圆孔半径为1 cm ,则图中阴影部分的面积为________cm 2.【答案】542π+【解析】 【分析】利用3tan 5ODC ∠=求出圆弧AB 所在圆的半径,结合扇形的面积公式求出扇形AOB 的面积,求出直角OAH △的面积,阴影部分的面积可通过两者的面积之和减去半个单位圆的面积求得.【详解】设==OB OA r ,由题意7AM AN ==,12EF =,所以5NF =, 因为5AP =,所以45AGP ︒∠=,因为//BH DG ,所以45AHO ︒∠=,因为AG 与圆弧AB 相切于A 点,所以OA AG ⊥, 即OAH △为等腰直角三角形;在直角OQD △中,52OQ r =-,72DQ r =-,因为3tan 5OQ ODC DQ ∠==,所以212522-=-,解得r =等腰直角OAH △的面积为1142S =⨯=;扇形AOB 的面积(2213324S ππ=⨯⨯=,所以阴影部分的面积为1215422S S ππ+-=+.故答案为:542π+.【点睛】本题主要考查三角函数在实际中应用,把阴影部分合理分割是求解的关键,以劳动实习为背景,体现了五育并举的育人方针.例3 (2020年普通高等学校招生全国统一考试数学)在①ac =②sin 3c A =,③=c 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在ABC ,它的内角,,A B C 的对边分别为,,a b c ,且sin 3sin AB ,6C π=,________?注:如果选择多个条件分别解答,按第一个解答计分. 【答案】详见解析 【解析】 【分析】解法一:由题意结合所给的条件,利用正弦定理角化边,得到a ,b 的比例关系,根据比例关系,设出长度长度,由余弦定理得到c 的长度,根据选择的条件进行分析判断和求解.解法二:利用诱导公式和两角和的三角函数公式求得tanA 的值,得到角,,A B C 的值,然后根据选择的条件进行分析判断和求解.【详解】解法一:由sin 3sin A B 可得:ab=不妨设(),0a b m m =>,则:2222222cos 32c a b ab C m m m m =+-=+-⨯=,即c m =. 选择条件①的解析:据此可得:2ac m =⨯==,1m ∴=,此时1c m ==. 选择条件②的解析:据此可得:222222231cos 222b c a m m m A bc m +-+-===-,则:sin 2A ==,此时:sin 32c A m =⨯=,则:c m ==选择条件③的解析:可得1c mb m==,c b =,与条件=c 矛盾,则问题中的三角形不存在.解法二:∵(),,6sinA C B A C ππ===-+,∴()6sinA A C A π⎛⎫=+=+⎪⎝⎭,()1?2sinA A C =+= ,∴sinA =,∴tanA =23A π=,∴6B C π==,若选①,ac =,∵a ==2=1;若选②,3csinA =,3=,c =;若选③,与条件=c 矛盾.【点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.【易错警示】易错点1 角的概念不清例1 若α、β为第三象限角,且βα>,则( )A .βαcos cos >B .βαcos cos <C .βαcos cos =D .以上都不对 【错解】A【错因】角的概念不清,误将象限角看成类似)23,(ππ区间角. 【正解】如取34,672πβππα=+=,可知A 不对.用排除法,可知应选D . 易错点2 忽视对角终边位置的讨论致误 例2 若α的终边所在直线经过点33(cos,sin )44P ππ,则sin α= .【错解】∵33(cos,sin )(4422P ππ=-,所以sin 2α==. 【错因】忽略了对角终边的位置进行讨论【正解】∵直线经过二、四象限,又点P 在单位圆上,若α的终边在第二象限,则3sin sin42πα==,若α的终边在第四象限,∴sin 2α=-,综上可知sin 2α=±. 易错点3 忽视函数的定义域对角范围的制约致错 例3 求函数xxy 2tan 1tan 2-=的最小正周期.【错解】x x x y 2tan tan 1tan 22=-=,2π=∴T ,即函数的最小正周期为2π. 【错因】忽视其定义域导致错误,2π不是x x y 2tan 1tan 2-=的周期,因为当0=x 时,x x y 2tan 1tan 2-=有意义,所以由周期函数定义知应有)0()20(f f =+π成立,然而)20(π+f 根本无意义,故2π不是其周期. 【正解】由于函数x x y 2tan 1tan 2-=的定义域为)(4,2Z k k x k x ∈+≠+≠ππππ,故作出函数x y 2tan =的图象,可以看出,所求函数周期应为π.易错点4 对“诱导公式中的奇变偶不变,符号看象限理解不对”致误例4 若316sin =⎪⎭⎫⎝⎛-απ,则⎪⎭⎫ ⎝⎛+απ232cos =( ) A .97-B .31-C .31D .97 【错解一】⎪⎭⎫⎝⎛+απ232cos cos[(2)]3ππα=--sin(2)2sin()cos()366πππααα=-=--12(339=⨯⨯±=±,无答案.【错解二】227cos 2cos[(2)]cos(2)12sin ()33369ππππαπααα⎛⎫+=--=-=--=⎪⎝⎭,故选D .【错因】三角函数的诱导公式可简记为:“奇变偶不变,符号看象限”.这里的“奇、偶”指的是π2的倍数的奇偶;“变与不变”指的是三角函数的名称变化;“符号看象限”的含义是:在该题中把整个角(2)3πα-看作锐角时,(2)3ππα--所在象限的相应余弦三角函数值的符号.【正解】227cos 2cos[(2)]cos(2)12sin ()33369ππππαπααα⎛⎫+=--=--=-+-=- ⎪⎝⎭,故选A .易错点5 忽略隐含条件例5 若01cos sin >-+x x ,求的取值范围.【错解】 移项得1cos sin >+x x ,两边平方得)(222,02sin Z k k x k x ∈+<<>πππ那么即)(2Z k k x k ∈+<<πππ【错因】忽略了满足不等式的在第一象限,上述解法引进了1cos sin -<+x x .【正解】1cos sin >+x x 即1)4sin(2>+πx ,由22)4sin(>+πx 得 )(432442Z k k x k ∈+<+<+πππππ ∴)(222Z k k x k ∈+<<πππ易错点6 因“忽视三角函数中内层函数的单调性”致错例6 )23sin(2x y -=π单调增区间为( )A .5[,]1212k k ππππ-+,()k Z ∈ B .]1211,125[ππππ++k k ,()k Z ∈C .]6,3[ππππ+-k k ,()k Z ∈D .2[,]63k k ππππ++,()k Z ∈ 【错解】由题意,222232k x k πππππ-+≤-≤+()k Z ∈,解得521212k x k ππππ--≤≤-,所以)23sin(2x y -=π单调增区间为5[,]1212k k ππππ-+,()k Z ∈,故选A . 【错因】内层函数为减函数,因此不能直接套用sin y x =的单调性来求.【正解】∵sin(2)sin(2)33y x x ππ=-=--,即求函数sin(2)3y x π=-的减区间. 故函数)23sin(2x y -=π的增区间为]1211,125[ππππ++k k ,()k Z ∈,故选B .易错点7 图象变换知识混乱例7 要得到函数sin 23y x π⎛⎫=-⎪⎝⎭的图象,只需将函数1sin2y x =的图象( ) A .先将每个值扩大到原来的4倍,y 值不变,再向右平移3π个单位. B .先将每个值缩小到原来的14倍,y 值不变,再向左平移3π个单位. C .先把每个值扩大到原来的4倍,y 值不变,再向左平移个6π单位. D .先把每个值缩小到原来的14倍,y 值不变,再向右平移6π个单位. 【错解】A 、C 、B 【错因】1sin2y x =变换成sin 2y x =误认为是扩大到原来的倍,这样就误选A 或C ;把sin 2y x =平移到sin 23y x π⎛⎫=- ⎪⎝⎭平移方向错了,平移的单位误认为是3π,误选B .【正解】由1sin2y x =变形为sin 23y x π⎛⎫=- ⎪⎝⎭常见有两种变换方式,一种先进行周期变换,即将1sin2y x =的图象上各点的纵坐标不变,横坐标变为原来的14倍得到函数sin 2y x =的图象,再将函数sin 2y x =的图象纵坐标不变,横坐标向右平移6π单位.即得函数sin 23y x π⎛⎫=- ⎪⎝⎭,故选D .易错点8 已知条件弱用例8 在不等边△ABC 中,a 为最大边,如果a b c 222<+,求A 的取值范围.【错解】∵a b c b c a 2222220<++->,∴,则cos A b c a bc=+->22220, 由于cosA 在(0°,180°)上为减函数且cos900=°,90A <∴°,又∵A 为△ABC 的内角, ∴0°<A <90°.【错因】审题不细,已知条件弱用,题设是为最大边,而错解中只把看做是三角形的普通一条边,造成解题错误.【正解】由上面的解法,可得A <90°,又∵a 为最大边,∴A >60°, 因此得A 的取值范围是(60°,90°). 易错点9 三角变换不熟练例9 在△ABC 中,若a b AB 22=tan tan ,试判断△ABC 的形状.【错解】由正弦定理,得sin sin tan tan 22A B A B=,即sin sin sin cos cos sin sin sin 2200A B A ABB A B =>>·,∵,∴,即sin cos sin cos sin sin A A B B A B ==22.∴2A =2B,即A =B .故△ABC 是等腰三角形.【错因】由sin sin 22A B =,得2A =2B .这是三角变换中常见的错误,原因是不熟悉三角函数的性质,三角变换生疏.【正解】同上得sin sin 22A B =,∴2A =22k B π+,或222A k B k Z =+-∈ππ().∵000<<<<==A b k A B ππ,,∴,则或A B =-π2.故△ABC 为等腰三角形或直角三角形. 易错点10 解三角形时漏解例10 已知在△ABC 中,a =3,b =045,2=B ,求A ∠、C ∠和边c .【错解】由正弦定理BbA a sin sin =,得sinA =.23所以,︒=60A ,︒=︒︒︒=7560-45-180C ,所以,c =sin sin b C B =.【错因】上述解法中,用正弦定理求C 时,丢了一个解,实际上,由sinA =.23可得︒=60A 或︒=120A ,故︒=75A 或︒=15A .【正解】由正弦定理BbA a sin sin =,得sinA =.23因为,b a >,所以︒=60A 或︒=120A ,当︒=60A 时,︒=︒︒︒=7560-45-180C ,c =sin sin 2b C B =.当︒=120A 时,︒=︒︒︒=15120-45-180C ,c =sin sin b C B = 易错点11 不会应用正弦定理的变形公式例11 在△ABC 中,A =60°,b =1,S ABC △=3,求a b cA B C++++sin sin sin 的值.【错解】∵A =60°,b =1,S ABC △=3,又S ABC △=12bc A sin ,∴312=c sin 60°, 解得c =4.由余弦定理,得a b c bc A =+-=+-222116860cos cos °=13又由正弦定理,得sin sin C B ==6393239,. ∴a b cA B C++++=++++sin sin sin 1314323239639.【错因】公式不熟、方法不当,没有正确应用正弦定理.【正解】由已知可得c a ==413,.由正弦定理,得213602393R a A ===sin sin °. ∴a b c A B C R ++++==sin sin sin 22393.【变式练习】1.已知α为第三象限角,则2α是第 象限角,α2是第 象限角. 【解析】α 是第三象限角,即Z k k k ∈+<<+,2322ππαππ Z k k k ∈+<<+∴,4322ππαππ,Z k k k ∈+<<+,34224ππαππ 当为偶数时,2α为第二象限角;当为奇数时,2α为第四象限角; 而α2的终边落在第一、二象限或y 轴的非负半轴上. 2.函数y =sin x |sin x |+|cos x |cos x +tan x|tan x |的值域是( )A .{-1,1}B .{1,3}C .{1,-3}D .{-1,3}【解析】由条件知终边不能落在坐标轴上,故要分四种情况讨论:当的终边分别落在第一、二、三、四象限时,上述函数的值域为{-1,3}.故选D. 3.记cos(80)k -︒=,那么tan100︒=( )AB .CD .【解析】∵sin80°=,∴tan100°=-tan80°=-sin 80cos80︒︒=- sin 80cos(80)︒︒-=B . 4.已知()0,απ∈,7sin cos 13αα+=,求tan α的值. 【解析】据已知7sin cos 13αα+=(1),有1202sin cos 0169αα=-<,又由于()0,απ∈,故有sin 0,cos 0αα><,从而sin cos 0αα->即17sin cos 13αα-==(2),联立(1)、(2)可得125sin ,cos 1313αα==,可得12tan 5α=.5.若0x π≤≤,则函数sin cos 32y x x ππ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭的单调递增区间为 .【解析】x x x x x y sin sin 3cos cos 3sin 2cos 3sin ⎪⎭⎫⎝⎛+-=⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛+=ππππ2162sin 21-⎪⎭⎫ ⎝⎛--=πx ,所以由πππππk x k 2236222+≤-≤+,可得函数的的单调增区间z k k k ∈⎥⎦⎤⎢⎣⎡++,65,3ππππ,又因为π≤≤x 0,所以函数sin cos 32y x x ππ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭的单调递增区间为⎥⎦⎤⎢⎣⎡65,3ππ.6.要得到函数sin 2y x =的图象,只需将函数πcos(2)3y x =-的图象( )A .向右平移π6个单位长度 B .向左平移π6个单位长度 C .向右平移π12个单位长度 D .向左平移π12个单位长度 【解析】试题分析:函数⎪⎭⎫⎝⎛-==22cos 2sin πx x y ,将函数πcos(2)3y x =-的图象向右平移π12个单位长度得到⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-=3122cos ππx y x x 2sin 22cos =⎪⎭⎫ ⎝⎛-=π,故答案为C .7.在ABC ∆中,30,2B AB ︒===.求ABC ∆的面积.【解析】根据正弦定理知:sin sin AB ACC B=,2sin 30︒=,得sin C =,由于sin30AB AC AB ︒<<即满足条件的三角形有两个故60C ︒=或120︒.则30A ︒=或90︒故相应的三角形面积为12sin 302s ︒=⨯⨯=122⨯=. 8.在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则角C = .【解析】由正弦定理可得::7:8:13a b c =,所以可设7,8,9a k b k c k ===,由余弦定理()()()2222227891cos 22782k k k a b c C ab k k +-+-===-⨯⨯,所以23C π=.9.(2020·北京高考真题)在△ABC 中,a +b =11,再从条件①、条件②这两个条件中选择一个作为己知,求: (Ⅰ)a 的值:(Ⅱ)sinC 和△ABC 的面积.条件①:c =7,cosA =−17;条件②:cosA =18,cosB =916.注:如果选择条件①和条件②分别解答,按第一个解答计分.【答案】选择条件①(Ⅰ)8(Ⅱ)sinC =√32, S =6√3;选择条件②(Ⅰ)6(Ⅱ)sinC =√74, S =15√74.【解析】选择条件①(Ⅰ)∵c =7,cosA =−17, a +b =11∵a 2=b 2+c 2−2bccosA ∴a 2=(11−a)2+72−2(11−a)⋅7⋅(−17)∴a =8(Ⅱ)∵cosA =−17,A ∈(0,π)∴sinA =√1−cos 2A =4√37由正弦定理得:asinA =csinC ∴4√37=7sinC ∴sinC =√32S =12basinC =12(11−8)×8×√32=6√3选择条件②(Ⅰ)∵cosA =18,cosB =916,A,B ∈(0,π)∴sinA =√1−cos 2A =3√78,sinB =√1−cos 2B =5√716由正弦定理得:asinA =bsinB ∴3√78=5√716∴a =6(Ⅱ)sinC =sin(A +B)=sinAcosB +sinBcosA =3√78×916+5√716×18=√74S =12basinC =12(11−6)×6×√74=15√7410.某地有三家工厂,分别位于矩形ABCD 的顶点A ,B ,及CD 的中点P 处,已知20AB =km,10km BC =,为了处理三家工厂的污水,现要在矩形ABCD 的区域上(含边界),且A ,B 与等距离的一点O 处建造一个污水处理厂,并铺设排污管道AO ,BO ,OP ,设排污管道的总长为y km .(I)按下列要求写出函数关系式:①设(rad)BAO θ∠=,将y 表示成θ的函数关系式; ②设(km)OP x =,将y 表示成x 的函数关系式.(Ⅱ)请你选用(I)中的一个函数关系式,确定污水处理厂的位置,使三条排水管道总长度最短.【答案】(I )①2010sin 10(0)cos 4y θπθθ-=+<<②10)y x x =+<<(Ⅱ)选择函数模型①,P 位于线段AB 的中垂线上且距离AB 边km 3处. 【解析】(I )①由条件可知PQ 垂直平分AB ,(rad)BAO θ∠=,则10cos cos AQ OA BAO θ==∠故10cos OB θ=,又1010tan OP θ=-,所以 10101010tan cos cos y OA OB OP θθθ=++=++- 2010sin 10(0)cos 4θπθθ-=+<<.②(km)OP x =,则10OQ x =-,所以OA OB ===所以所求的函数关系式为10)y x x =+<<. (Ⅱ)选择函数模型①.22210cos (2010sin )(sin )10(2sin 1)cos cos y θθθθθθ-----=='. 令0y '=得1sin 2θ=,又04πθ<<,所以6πθ=. 当06πθ<<时,0y '<,y 是θ的减函数;64ππθ<<时,0y '>,y 是θ的增函数.所以当6πθ=时min 10y =.当P 位于线段AB 的中垂线上且距离AB 边km 3处. 【典例分析】1.【2020年高考全国Ⅰ卷理数】设函数π()cos()6f x x ω=+在[−π,π]的图像大致如下图,则f (x )的最小正周期为A .10π9 B .7π6 C .4π3D .3π2【答案】C【解析】由图可得:函数图象过点4,09π⎛⎫-⎪⎝⎭, 将它代入函数()f x 可得:4cos 096ωππ⎛⎫-⋅+= ⎪⎝⎭,又4,09π⎛⎫-⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点, 所以4962ωπππ-⋅+=-,解得32ω=.所以函数()f x 最小正周期为224332T ωπππ=== 故选C .【点睛】本题主要考查了三角函数的性质及转化能力,还考查了三角函数周期公式,属于中档题.2.【2020年高考全国Ⅰ卷理数】已知 π()0,α∈,且3cos28cos 5αα-=,则sin α= AB .23C .13D .9【答案】A【解析】3cos28cos 5αα-=,得26cos 8cos 80αα--=, 即23cos 4cos 40αα--=,解得2cos 3α=-或cos 2α=(舍去),又(0,),sin 3αα∈π∴==. 的故选:A .【点睛】本题考查三角恒等变换和同角间的三角函数关系求值,熟记公式是解题的关键,考查计算求解能力,属于基础题.3.【2020年高考全国Ⅱ卷理数】若α为第四象限角,则 A .cos2α>0 B .cos2α<0 C .sin2α>0D .sin2α<0【答案】D【解析】方法一:由α为第四象限角,可得3222,2k k k απ+π<<π+π∈Z , 所以34244,k k k απ+π<<π+π∈Z此时2α的终边落在第三、四象限及y 轴的非正半轴上,所以sin 20α<, 故选:D .方法二:当6απ=-时,cos 2cos 03απ⎛⎫=-> ⎪⎝⎭,选项B 错误; 当3απ=-时,2cos 2cos 03απ⎛⎫=-< ⎪⎝⎭,选项A 错误;由α在第四象限可得:sin 0,cos 0αα<>,则sin 22sin cos 0ααα=<,选项C 错误,选项D 正确; 故选:D .【点睛】本题主要考查三角函数的符号,二倍角公式,特殊角的三角函数值等知识,意在考查学生的转化能力和计算求解能力.4.【2020年高考全国III 卷理数】在△ABC 中,cos C =23,AC =4,BC =3,则cos B =A .19B .13C .12D .23【答案】A【解析】在ABC 中,2cos 3C =,4AC =,3BC =, 根据余弦定理:2222cos AB AC BC AC BC C =+-⋅⋅,2224322433AB =+-⨯⨯⨯,可得29AB = ,即3AB =,由22299161cos22339AB BC AC B AB BC +-+-===⋅⨯⨯,故1cos 9B =. 故选:A .5.【2020年高考全国Ⅲ卷理数】已知2tan θ–tan(θ+π4)=7,则tan θ= A .–2 B .–1C .1D .2【答案】D【解析】2tan tan 74πθθ⎛⎫-+= ⎪⎝⎭,tan 12tan 71tan θθθ+∴-=-,令tan ,1t t θ=≠,则1271tt t+-=-,整理得2440t t -+=,解得2t =,即tan 2θ=.故选:D .【点睛】本题主要考查了利用两角和的正切公式化简求值,属于中档题.6.【2020年高考北京】2020年3月14日是全球首个国际圆周率日(π Day).历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔·卡西的方法是:当正整数n 充分大时,计算单位圆的内接正6n 边形的周长和外切正6n 边形(各边均与圆相切的正6n 边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔·卡西的方法,π的近似值的表达式是A . 30303sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭ B . 30306sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭ C . 60603sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭D . 60606sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭【答案】A【解析】单位圆内接正6n 边形的每条边所对应的圆周角为360606n n︒︒=⨯,每条边长为302sinn︒, 所以,单位圆的内接正6n 边形的周长为3012sinn n︒, 单位圆的外切正6n 边形的每条边长为302tann ︒,其周长为3012tan n n︒, 303012sin12tan 303026sin tan 2n n n n n n n π︒︒+︒︒⎛⎫∴==+ ⎪⎝⎭,则30303sintan n n n π︒︒⎛⎫=+ ⎪⎝⎭. 故选:A .【点睛】本题考查圆周率π的近似值的计算,根据题意计算出单位圆内接正6n 边形和外切正6n 边形的周长是解答的关键,考查计算能力,属于中等题.7.【2020年新高考全国Ⅰ卷】下图是函数y = sin(ωx +φ)的部分图像,则sin(ωx +φ)=A .πsin(3x +)B .πsin(2)3x - C .πcos(26x +) D .5πcos(2)6x -【答案】BC【解析】由函数图像可知:22362T πππ=-=,则222T ππωπ===,所以不选A, 当2536212x πππ+==时,1y =-∴()5322122k k Z ππϕπ⨯+=+∈, 解得:()223k k ϕππ=+∈Z , 即函数的解析式为:2sin 22sin 2cos 2sin 236263y x k x x x ππππππ⎛⎫⎛⎫⎛⎫⎛⎫=++=++=+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.而5cos 2cos(2)66x x ππ⎛⎫+=-- ⎪⎝⎭ 故选:BC .【点睛】已知f (x )=Asin (ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)由ω=2Tπ即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x 0,则令ωx 0+φ=0(或ωx 0+φ=π),即可求出φ.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求. 8.【2020年高考全国Ⅰ卷理数】如图,在三棱锥P –ABC 的平面展开图中,AC =1,AB AD ==AB ⊥AC ,AB ⊥AD ,∠CAE =30°,则cos ∠FCB =______________.【答案】14-【解析】AB AC ⊥,AB =1AC =,由勾股定理得2BC ==,同理得BD =,BF BD ∴==在ACE △中,1AC =,AE AD ==,30CAE ∠=,由余弦定理得2222cos3013211CE AC AE AC AE =+-⋅=+-⨯=, 1CF CE ∴==,在BCF 中,2BC =,BF =1CF =,由余弦定理得2221461cos 22124CF BC BF FCB CF BC +-+-∠===-⋅⨯⨯.故答案为:14-. 【点睛】本题考查利用余弦定理解三角形,考查计算能力,属于中等题. 9.【2020年高考全国III 卷理数】16.关于函数f (x )=1sin sin x x+有如下四个命题: ①f (x )的图像关于y 轴对称. ②f (x )的图像关于原点对称.③f (x )的图像关于直线x =2π对称. ④f (x )的最小值为2.其中所有真命题的序号是__________. 【答案】②③【解析】对于命题①,152622f π⎛⎫=+= ⎪⎝⎭,152622f π⎛⎫-=--=- ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{},x x k k Z π≠∈,定义域关于原点对称,()()()()111sin sin sin sin sin sin f x x x x f x x x x ⎛⎫-=-+=--=-+=- ⎪-⎝⎭,所以,函数()f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫-=-+=+⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭, 11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫+=++=+⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,则22f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象关于直线2x π=对称,命题③正确;对于命题④,当0x π-<<时,sin 0x <,则()1sin 02sin f x x x=+<<, 命题④错误. 故答案为:②③.【点睛】本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力,属于中等题.10.【2020年高考江苏】已知2sin ()4απ+=23,则sin 2α的值是 ▲ .【答案】13【解析】221sin ()(cos )(1sin 2)4222παααα+=+=+121(1sin 2)sin 2233αα∴+=∴= 故答案为:13【点睛】本题考查两角和正弦公式、二倍角正弦公式,考查基本分析求解能力,属基础题.11.【2020年高考北京】若函数()sin()cos f x x x ϕ=++的最大值为2,则常数ϕ的一个取值为________.【答案】2π(2,2k k Z ππ+∈均可)【解析】因为()()()cos sin sin 1cos f x x x x ϕϕθ=++=+,2=,解得sin 1ϕ=,故可取2ϕπ=. 故答案为:2π(2,2k k Z ππ+∈均可).【点睛】本题主要考查两角和的正弦公式,辅助角公式的应用,以及平方关系的应用,考查学生的数学运算能力,属于基础题.12.【2020年高考浙江】已知tan 2θ=,则cos2θ=_______,πtan()4θ-=_______.【答案】35;13【解析】2222222222cos sin 1tan 123cos 2cos sin cos sin 1tan 125θθθθθθθθθ---=-====-+++, tan 1211tan()41tan 123πθθθ---===++,故答案为:31,53- 【点睛】本题考查二倍角余弦公式以及弦化切、两角差正切公式,考查基本分析求解能力,属基础题.13.【2020年高考江苏】将函数πsin(32)4y x =﹢的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是 ▲ . 【答案】524x π=-【解析】3sin[2()]3sin(2)6412y x x πππ=-+=- 72()()122242k x k k Z x k Z πππππ-=+∈∴=+∈ 当1k =-时524x π=-. 故答案为:524x π=-【点睛】本题考查三角函数图象变换、正弦函数对称轴,考查基本分析求解能力,属基础题.14.【2020年新高考全国Ⅰ卷】某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形,BC ⊥DG ,垂足为C ,tan ∠ODC =35,BH DG ∥,EF =12cm,DE=2 cm,A 到直线DE 和EF 的距离均为7 cm,圆孔半径为1 cm,则图中阴影部分的面积为________cm 2.【答案】542π+【解析】设==OB OA r ,由题意7AM AN ==,12EF =,所以5NF =, 因为5AP =,所以45AGP ︒∠=,因为//BH DG ,所以45AHO ︒∠=,因为AG 与圆弧AB 相切于A 点,所以OA AG ⊥, 即OAH △为等腰直角三角形;在直角OQD △中,5OQ =,7DQ =,因为3tan 5OQ ODC DQ ∠==,所以212522-=-,解得r =等腰直角OAH △的面积为1142S =⨯=;扇形AOB 的面积(2213324S ππ=⨯⨯=,所以阴影部分的面积为1215422S S ππ+-=+. 故答案为:542π+.【点睛】本题主要考查三角函数在实际中应用,把阴影部分合理分割是求解的关键,以劳动实习为背景,体现了五育并举的育人方针.15.【2020年高考全国II 卷理数】ABC △中,sin 2A -sin 2B -sin 2C = sin B sin C .(1)求A ;(2)若BC =3,求ABC △周长的最大值.【解析】(1)由正弦定理和已知条件得222BC AC AB AC AB --=⋅,①由余弦定理得2222cos BC AC AB AC AB A =+-⋅,②由①,②得1cos 2A =-. 因为0πA <<,所以2π3A =.(2)由正弦定理及(1)得sin sin sin AC AB BCB C A===,从而AC B =,π)3cos AB A B B B =--=-.故π33cos 3)3BC AC AB B B B ++=++=++.又π03B <<,所以当π6B =时,ABC △周长取得最大值3+16.【2020年高考江苏】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,45a c B ===︒.(1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ∠=-,求tan DAC ∠的值.【解析】(1)在ABC △中,因为3,45a c B ===︒,由余弦定理2222cos b a c ac B =+-,得292235b =+-⨯︒=,所以b =在ABC △中,由正弦定理sin sin b cB C=,,所以sin C =(2)在ADC △中,因为4cos 5ADC ∠=-,所以ADC ∠为钝角,而180ADC C CAD ∠+∠+∠=︒,所以C ∠为锐角.故cos C =则sin 1tan cos 2C C C ==. 因为4cos 5ADC ∠=-,所以3sin 5ADC ∠==,sin 3tan cos 4ADC ADC ADC ∠∠==-∠.从而31tan()242tan tan(180)tan()===311tan tan 111()42ADC C ADC ADC C ADC C ADC C -+∠+∠∠=︒-∠-∠=-∠+∠---∠⨯∠--⨯.【点睛】本小题主要考查正弦定理、余弦定理解三角形,考查三角恒等变换,属于中档题. 17.【2020年高考天津】在ABC △中,角,,A B C 所对的边分别为,,a b c.已知5,a b c ===(Ⅰ)求角C 的大小;(Ⅱ)求sin A 的值;(Ⅲ)求πsin(2)4A +的值.【解析】(Ⅰ)在ABC △中,由余弦定理及5,a b c ===,有222cos 2a b c C ab +-==.又因为(0,π)C ∈,所以π4C =.(Ⅱ)在ABC △中,由正弦定理及π,4C a c ===,可得sin sin a C A c ==(Ⅲ)由a c <及sin A =可得cos A ==进而2125sin 22sin cos ,cos 22cos 11313A A A A A ===-=.所以,πππ125sin(2)sin 2cos cos 2sin 44413213226A A A +=+=⨯+⨯=. 【点晴】本题主要考查正、余弦定理解三角形,以及三角恒等变换在解三角形中的应用,考查学生的数学运算能力,是一道容易题.18.【2020年高考北京】在ABC 中,11a b +=,再从条件①、条件②这两个条件中选择一个作为己知,求:(Ⅰ)a 的值:(Ⅱ)sin C 和ABC 的面积.条件①:17,cos 7c A ==-; 条件②:19cos ,cos 816A B ==. 注:如果选择条件①和条件②分别解答,按第一个解答计分.【解析】选择条件①(Ⅰ)17,cos 7c A ==-,11a b += 22222212cos (11)72(11)7()7a b c bc A a a a =+-∴=-+--⋅⋅- 8a ∴=(Ⅱ)1cos (0,)sin 7A A A π=-∈∴==,由正弦定理得:7sin sin sin sin 2a c C A C C ==∴=11sin (118)8222S ba C ==-⨯⨯=选择条件②(Ⅰ)19cos ,cos ,(0,)816A B A B π==∈,sin 816A B ∴==== 由正弦定理得:6sin sin 816a b a A B === (Ⅱ)91sin sin()sin cos sin cos 8161684C A B A B B A =+=+=+=11sin (116)62244S ba C ==-⨯⨯= 【点睛】本题考查正弦定理、余弦定理,三角形面积公式,考查基本分析求解能力,属中档题.19.【2020年高考浙江】在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,C .已知2sin 0b A =.(Ⅰ)求角B 的大小;(Ⅱ)求cos A +cos B +cos C 的取值范围.【解析】(Ⅰ)由正弦定理得2sin sin B A A ,故sin B =由题意得π3B =. (Ⅱ)由πA BC ++=得2π3C A =-, 由ABC △是锐角三角形得ππ(,)62A ∈.由2π1cos cos()cos 32C A A A =-=-得11π13cos cos cos cos sin()]22622A B C A A A ++++=++∈.故cos cos cos A B C ++的取值范围是3]2. 【点睛】解三角形的基本策略:一是利用正弦定理实现“边化角”,二是利用余弦定理实现“角化边”;求最值也是一种常见类型,主要方法有两类,一是找到边之间的关系,利用基本不等式求最值,二是转化为关于某个角的函数,利用函数思想求最值.20.【2020年新高考全国Ⅰ卷】在①ac =②sin 3c A =,③c =这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在ABC △,它的内角,,A B C 的对边分别为,,a b c ,且sin A B =,6C π=,________? 注:如果选择多个条件分别解答,按第一个解答计分.【解析】方案一:选条件①.由6C π=和余弦定理得2222a b c ab +-=.由sin A B =及正弦定理得a =.222=由此可得b c =.由①ac =解得1a b c ===.因此,选条件①时问题中的三角形存在,此时1c =.方案二:选条件②.由6C π=和余弦定理得2222a b c ab +-=.由sin A B =及正弦定理得a =.222=由此可得b c =,6B C π==,23A π=.由②sin 3c A =,所以6c b a ===.因此,选条件②时问题中的三角形存在,此时c =方案三:选条件③.由6C π=和余弦定理得2222a b c ab +-=.由sin A B =及正弦定理得a =.222=由此可得b c =.由③c =,与b c =矛盾.因此,选条件③时问题中的三角形不存在.【点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a r X i v :m a t h /9201270v 1 [m a t h .D G ] 1 J a n 1992APPEARED IN BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 26,Number 1,Jan 1992,Pages 125-130NONUNIQUE TANGENT MAPS AT ISOLATEDSINGULARITIES OF HARMONIC MAPSBrian White Abstract.Shoen and Uhlenbeck showed that “tangent maps”can be defined at singular points of energy minimizing maps.Unfortunately these are not unique,even for generic boundary conditions.Examples are discussed which have isolated singularities with a continuum of distinct tangent maps.Let Ωbe a bounded domain in R m (or more generally a compact riemannian manifold with boundary)and let N be a compact riemannian manifold.By the Nash embedding theorem,N can be regarded as a submanifold of some euclidean space.The energy of a map f :Ω→N is defined to be E (f )= Ω|Df |2.(Here f is allowed to be any measurable map from Ωto R d such that f (x )∈N for almost every x and such that the distributional first derivative of f is square integrable.)The map f is said to be energy minimizing if its energy is less than or equal to the energy of each other map having the same boundary values.It is fairly easy to prove that if g :Ω→N has finite energy,then there is an energy minimizing map f :Ω→N with the same boundary values as g .In [SU],Schoen and Uhlenbeck proved that if f is energy minimizing,then f is smooth except on a set K ⊂Ωof Hausdorffdimension at most m −3.Suppose f is energy minimizing and that x ∈Ωis a singularity of f .Schoen and Uhlenbeck also proved that for every sequence r i of positive numbers converging to zero,a subsequence of the maps (1)y →f (x +r i y )converges weakly to a map f ∞:R m →Ωthat is constant on rays through theorigin.Such a map is called a tangent map to f at x .Intuitively,f ∞is the result of looking at f near x through a microscope with infinite magnification.The map f ∞is simpler than f because it is constant on rays,but one would like to think that it provides a good picture of f near x .Note that f ∞would not give a very good picture of f if there were more than one tangent map at x ;that is,if a different2BRIAN WHITEsubsequence of the maps(1)could converge to another limit map.Whether or not such pathological behavior is possible has been perhaps the most basic open question about singularities of energy minimizing maps.There have been some positive results(ruling out pathological behavior).First, Leon Simon[S]showed that if N is analytic and if f∞has an isolated discontinuity, then f∞is unique(i.e.,it is the only tangent map at x).Second,Gulliver and White[GW]showed that if m=3and dim(N)=2(the lowest dimensions in which singularities are possible),then f∞is unique whether or not N is analytic.This paper is an announcement of thefirst example of nonuniqueness: Theorem 1.There exists a C∞5-manifold N and a nonempty open set U of smooth mapsφ:∂B4→N such that(1)eachφ∈U bounds one or more energy minimizing maps from B4to N,and(2)if f:B4→N is an energy minimizing map with f|∂B4∈U,then f hasan isolated singularity x and a continuum of tangent maps at x.Each of the tangent maps is regular except at0.The proof is too long to give here;see[W4].However,we can prove a simpler but nonetheless interesting result that has the sameflavor.Let f:Ω→N be afinite energy map that is smooth except at afinite set of discontinuities{p i:i=1,...,k}. We say that f is harmonic if it satisfies the Euler-Lagrange partial differential equations for the energy functional.Such an f is a critical point for energy,but it need not be a minimum.Nonetheless,the existence of tangent maps and the uniqueness results of Simon and Gulliver-White in fact hold for such harmonic maps.Thus it is interesting to note:Theorem2.There is a C∞4-manifold N and a harmonic map f:B3→N such that f has an isolated singularity at0and a continuum of distinct tangent maps at 0.Proof.Let N be the product S1×R×S2with the metricdx2+dy2+(2−V(x,y))dz2(V will be specified later).Note that this defines a complete metric on N provided V is everywhere less than2.Of course N is not compact,but the image of the harmonic map we construct will be contained in a compact subset of N,so we could easily modify N to make it compact.Note that the orthogonal map O(3)acts on B3and on N(on N byρ:(x,y,z)→(x,y,ρz)).We simplify the harmonic map equations by looking for solutions that are O(3)-equivariant.It is not hard to see that every equivariant map is of the form:(2)p→(v1(|p|),v2(|p|),±p/|p|)∈S1×R×S2.Here v:(0,1]→S1×R.It is convenient to introduce a change of variable.Let t=log r and u(t)=v(e t),so u:(−∞,0]→S1×R.Then the energy of the map (2)is 0(|˙u|2+(2−V(u)))e t dt.t=−∞NONUNIQUE TANGENT MAPS3 (If the domain were k-dimensional,then e t would be e(k−2)t.)The associated Euler-Lagrange equation is(3)¨u+˙u+∇V(u)=0.Thus equivariant harmonic maps are equivalent to solutions of the ordinary dif-ferential equation(3).This equation has a physical interpretation:it is the equation of motion of a unit mass moving in S1×R subject to a potential V and a viscous force.Thus the physical energy E(u,t)=1dt 1y2 sinx+12|˙u(t)|2+V(u(t))≤E(u,0)<0,so12π,12|˙u n(0)|2+V(u n(0))=0+V(12πn)<0.Thus by the lemma,there is afirst time t n>0at which u n(t n)∈S1×{−1,1}. If u n(t)were ever in S1×[0],then E(u n,t)≥V(u n(t))=0,which is impossible. Thus u n(t n)∈S1×[1]and u n(t)∈S1×(0,1)for t∈(0,t n).4BRIAN WHITENote that u n (0)→(12π,0)and ˙w(0)=0.By uniqueness of solutions to ODEs,w (t )≡(12π,0),so t n →∞since u n (t n )=(x n ,1).Now as in the proof of the lemma,there is a sequence n (i )such that the solutions v i (t )=u n (i )(t n (i )+t )converge smoothly to a solution v on (−∞,∞).Of coursev (0)∈S 1×[1],v (t )∈S 1×[0,1]fort <0,andE (v,t )≤0for all t.In fact E (v,t )must be strictly negative for every t .For since E (v,t )is a nonpositive and nonincreasing function of t ,if it were 0for some t =a ,then it would be 0for each t ≤a .But then by the lemma,v (t )≡p ∈S 1×[0]for all t ≤a .By unique continuation for ODE,v (t )≡p ∈S 1×[0]for all t .But v (0)∈S 1×[1].This proves that E (v,t )is strictly negative.Now I claim that v defines a harmonic map with a continuum of tangent maps at the origin.That is,I claim that v (t )has a continuum of subsequential limits as t →−∞.As in the proof of the lemma,every sequence of t ’s tending to −∞has a subse-quence τi such that the solutions w i (t )=v (t +τi )converge to a solution w (t ).Of courseE (w,t )=lim i →∞E (v,t +τi )=lim t →−∞E (v,t )≤0(where lim t →−∞E (v,t )exists because E (v,·)is monotonic).Thus E (w,·)is con-stant,so by the lemma w (t )≡p ,where p ∈S 1×[0].What we have shown is lim t →−∞v 2(t )=0,where v 2(t )is the second component of v (t )=(v 1(t ),v 2(t ))∈S 1×R .Now the set Z ={p ∈S 1×R :V (p )=0}consists of S 1×[0]together with a collection of curves that wind around the cylinder infinitely many times as they approach S 1×[0].Since V (v (t ))≤E (v,t )<0,v (t )is never in Z .Thus v (t )must also wind around the cylinder infinitely many times as t →−∞.This proves Theorem 2.(To make this last argument more formal,note from the definition of V that for each x ∈S 1and each ε>0,the set Z ∪([x ]×(−ε,ε))divides S 1×R into infinitely many connected components,the closure of each of which is disjoint from S 1×[0].Since v (t )approaches S 1×[0]as t →−∞,the particle must cross the set Z ∪([x ]×(−ε,ε)).Since it never crosses Z ,it must cross [x ]×(−ε,ε).As this holds for every x and ε,each (x,0)∈S 1×[0]is a subsequential limit of v (t ).)RemarksExactly the same construction provides examples of harmonic maps from B m to N =S 1×R ×S m −1(metrized as above)with a continuum of tangent maps at an isolated singularity.The only difference is that the viscosity (i.e.,the coefficient in front of ˙u in (3))is m −2instead of 1.NONUNIQUE TANGENT MAPS5In all those examples,the dimension of the target manifold is one more than the dimension of the domain.But we can also prove that there is a harmonic map f from B4to the4-manifold N of Theorem2such that f has a continuum of tangent maps at an isolated singularity.The proof is the same as the proof of Theorem2, except that we consider maps of the formf:p→(f1(|p|),f2(|p|),h(p/|p|)),where h:S3→S2is the Hopffibration.Open questions1.Must tangent maps be unique if the target manifold N is2-dimensional?The answer is“yes”if the domain is3-dimensional[GW].2.Must tangent maps be unique for generic metrics on the target manifold N?3.If T is a minimal variety in a riemannian manifold N,then at each singular point x∈T there are one or more tangent cones(i.e.,subsequential limits of images of T under dilations about x).Can there be more than one?See[AA;T1,2;W1–3], and Simon[S]for results in special cases.Simon[S]proved that if a tangent cone has multiplicity one and has an isolated singularity,then it is unique.Unlike his analogous result for harmonic maps,this does not require that the metric on N be analytic.The construction in this paper does not seem to have any analogue in the case of minimal varieties.References[AA]W.K.Allard and F.J.Almgren,Jr.,On the radial behavior of minimal surfaces and the uniqueness of their tangent cones,Ann.of Math.(2)113(1981),215–256.[GW]R.Gulliver and B.White,The rate of convergence of a harmonic map at a singular point, Math.Ann.283(1989),539–549.[SU]R.Schoen and K.Uhlenbeck,A regularity theory for harmonic mappings,J.Differential Geom.17(1982),307–335.[S]L.Simon,Asymptotics for a class of nonlinear evolution equations,with applications to geometric problems,Ann.of Math.(2)118(1983),525–571.[T1]J.E.Taylor,Regularity of the singular sets of two-dimensional area-minimizingflat chains modulo3in R3,Invent.Math.22(1973),119–159.[T2],Tangent cones to2-dimensional area-minimizing integral currents are unique, Duke Math.J.50(1983),143–160.[W3],Nonunique tangent maps at isolated singularities of energy-minimizing maps(in preparation).Mathematics Department,Stanford University,Stanford,California94305。