初中几何基础证明题初一

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一几何证明题

1.如图,AD ∥BC ,∠B=∠D ,求证:AB ∥CD 。

2.如图CD ⊥AB ,EF ⊥AB ,∠1=∠2,求证:∠AGD=∠ACB 。

3. 已知∠1=∠2,∠1=∠3,求证:CD ∥OB 。

4. 如图,已知∠1=∠2,∠C=∠CDO ,求证:CD ∥OP 。

B D

E

/

F C

A 2

G

3

B

D

C

A

B D

/

P

C A O 2

3B D

/P C O

2

5. 已知∠1=∠2,∠2=∠3,求证:CD∥EB。

6. 如图∠1=∠2,求证:∠3=∠4。

7. 已知∠A=∠E,FG∥DE,求证:∠CFG=∠B。

8.已知,如图,∠1=∠2,∠2+∠3=1800,求证:a∥b,c∥d。

B D

E

/

C

O

2

3

B

D /

C A

2

3

4

B

D

E F

C

A

G

21

3

a c d

b

9.如图,AC ∥DE ,DC ∥EF ,CD 平分∠BCA ,求证:EF 平分∠BED 。

10、已知,如图,∠1=450,∠2=1450,∠3=450,∠4=1350

,求证:l 1∥l 2,l 3∥l 5,l 2∥l 4。

11、如图,∠1=∠2,∠3=∠4,∠E=900

,求证:AB ∥CD 。

12、如图,∠A=2∠B ,∠D=2∠C ,求证:AB ∥CD 。

A

B C

D F

E 2

1

l l l 3

41

23

45l 21A B

C D

34

E

B

C D

O

A

13、如图,EF ∥GH ,AB 、AD 、CB 、CD 是∠EAC 、∠FAC 、∠GCA 、∠HCA 的平分线,求证:∠BAD=∠B=∠C=∠D 。

14、已知,如图,B 、E 、C 在同一直线上,∠A=∠DEC ,∠D=∠BEA ,∠A+∠D=900

,求证:AE ⊥DE ,AB ∥CD 。

15、如图,已知,BE 平分∠ABC ,∠CBF=∠CFB=650,∠EDF=500

,,求证:BC ∥AE 。

16、已知,∠D=900

,∠1=∠2,EF ⊥CD ,求证:∠3=∠B 。

17、如图,AB ∥CD ,∠1=∠2,∠B=∠3,AC ∥DE ,求证:AD ∥BC 。

B C

D F E

A G H

B C D E A B C D

E A

2

1

B C

D

F

3E A 2

1D 3

A

初一常用几何证明的定理总结

对顶角相等:

几何语言:∵∠1、∠2是对顶角

∴∠1=∠2(对顶角相等)

垂线:

几何语言:正用反用:

∵∠AOB=90°∵AB⊥CD

∴AB⊥CD(垂直的定义)∴∠AOB=90°(垂直的定义)证明线平行的方法:

1、平行公理

如果两条直线都与第三条直线平行,那么,这两条直线也平行。简述为:平行于同一直线的两直线平行。

几何语言叙述:

如图:∵AB∥EF,CD∥EF

∴AB∥CD(平行于同一直线的两直线平行。)

2、同位角相等,两直线平行。

几何语言叙述:

如图:∵直线AB、CD被直线EF所截

∠1=∠2

∴AB∥CD(同位角相等,两直线平行。)

3、内错角相等,两直线平行。

几何语言叙述:

如图:∵直线AB、CD被直线EF所截,∠1=∠2

∴AB∥CD(内错角相等,两直线平行。)

4、同旁内角互补,两直线平行。

几何语言叙述:

如图:∵直线AB、CD被直线EF所截,∠1+∠2=180O

∴AB∥CD(同旁内角互补,两直线平行。)

5、垂直于同一直线的两直线平行。

几何语言叙述:

如图:∵直线a⊥c,b⊥c

∴a∥b(垂直于同一直线的两直线平行。)

平行线的性质:

1、两直线平行,同位角相等。

几何语言叙述:∵AB∥CD

∴∠1=∠2(两直线平行,同位角相等。)

2、两直线平行,内错角相等。

几何语言叙述:

如图:∵AB∥CD

∴∠1=∠2(两直线平行,内错角相等。)

3、两直线平行,同旁内角互补。

几何语言叙述:

如图:∵AB∥CD

∴∠1+∠2=180O(两直线平行,同旁内角互补。)

证明角相等的其余常用方法:

1、余角的性质:

同角或等角的余角相等。

例:∵如图∠AOB+∠BOC=90°

∠BOC+∠COD=90°

∴∠AOB=∠COD(同角的余角相等)

2、补角的性质:

同角或等角的补角相等。

例:∵如图∠AOB+∠BOD=180°,∠AOC+∠COD=180°且∠BOD=∠AOC

∴∠AOB=∠COD(同角的补角相等)

三角形中三种重要线段:

相关文档
最新文档