Cathode material for Li-ion battery applications (US Patent 007585593)
210979052_固相合成法制备钴酸锂正极材料的关键技术介绍
2022年 12月下 世界有色金属165固相合成法制备钴酸锂正极材料的关键技术介绍甄薇薇(有色金属技术经济研究院有限责任公司,北京 100080)摘 要:钴酸锂是一种重要的锂离子电池正极材料,钴酸锂具有工作电压高、能量密度及压实密度大、循环寿命较长、无记忆效应等优势,已得到广泛应用。
钴酸锂正极材料在3.00V~4.25V电压范围内进行充放电工作时较为稳定,当电压高于 4.25 V时,锂离子电池的循环性能会出现快速的衰减,导致电池容量衰减、副反应加剧等问题。
因此,钴酸锂正极材料的制备方法尤其重要,目前产业化制备钴酸锂正极材料的方法为固相合成法。
本文从固相合成法的关键技术点出发,总结了固相合成法制备钴酸锂正极材料的原料、工艺参数、改性技术。
关键词:钴酸锂;固相合成;工艺;掺杂;包覆;掺杂-包覆中图分类号:TG146.2+63 文献标识码:A 文章编号:1002-5065(2022)24-0165-3Introduction of key technologies for preparing lithium cobalate cathode materials by solid state synthesisZHEN Wei-wei(Nonferrous Metals Technology and Economy Research Institute Co., Ltd, Beijing 100080)Abstract: Lithium cobalt oxide is an important cathode material for lithium ion batteries. Lithium cobalt oxide has the advantages of high working voltage, high energy density and compaction density, long cycle life, and no memory effect, it has been widely used. The lithium cobalt oxide cathode material is more stable when charging and discharging in the voltage range of 3.00V~4.25V, when the voltage is higher than 4.25V, the cycle performance of the lithium ion battery will rapidly decay, resulting in a decrease in battery capacity and aggravation of side reactions and other issues. Therefore, the preparation method of lithium cobalt oxide cathode material is particularly important, and the current industrial method for preparing lithium cobalt oxide cathode material is solid-phase synthesis. This article starts from the key technical points of the solid-phase synthesis method, summarizes the raw materials, process parameters, and modification technologies of the solid-phase synthesis method for preparing lithium cobalt oxide cathode materials.Keywords: lithium cobalt oxide, solid-phase synthesis, process, doping, coating, doping-coating收稿日期:2022-10作者简介:甄薇薇,女,生于1991年,蒙古族,内蒙古通辽人,硕士研究生,工程师,专业:材料工程。
锂离子电池高镍三元正极材料LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)研究进展
(1. School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China; 2. College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China)
钴酸锂 一般
一般
尚可
较高 热稳定性好
NCM811 最高
一般
一般
最高 易热分解
而富镍层状的镍钴锰酸锂(LiNixCoyMn1-x-yO2(简 称NCM,0 <x,y <1)三元材料虽然也存在缺陷,比如 稳定性较差、安全性能不高等,但因其其他方面性能 相对均衡,兼具有能量密度高、功率密度高、环境友 好等特点被建议作为具有前途的正极材料应用到下 一代锂离子电池中[20-24]。在三元材料中,只有镍和钴 具有电化学活性,锰的存在只是为了稳定晶体结构,
Key words: lithium-ion battery; high nickel ternary cathode material; LiNi0.8Co0.1Mn0 O .1 2 (NCM811); modification technology; conductive additive
由于全球气候变暖备受人们广泛关注,开发可 持续能源是急需的[1-5],在未来可持续再生能源将会
1.2 NCM811的合成方法 三元NCM811正极材料合成的关键技术在于其
锂离子电池正极材料LiFePO_4的结构和电化学反应机理
锂离子电池正极材料LiFePO 4的结构和电化学反应机理王连亮1,2 马培华1 李法强1 诸葛芹1(1中国科学院青海盐湖研究所 西宁 810008; 2中国科学院研究生院 北京 100039)青海省重点科技攻关项目(20062G 2168)资助2007204212收稿,2007208202接受摘 要 十年来的研究并没有对LiFePO 4的电化学反应机理形成准确一致的认识。
复合阴离子(PO 4)3-的应用使铁基化合物成为一种非常理想的锂离子电池正极备选材料。
然而,LiFePO 4的晶体结构却限制了其电导性与锂离子扩散性能,从而使材料的电化学性能下降。
本文主要考虑充放电机理、相态转变、离子掺杂、锂离子扩散、电导、电解液、充放电动力学等因素的影响,从理论与实验角度综述了关于LiFePO 4的电化学反应机理的研究进展。
关键词 LiFePO 4 机理 影响因素 正极材料 锂离子电池The Structure and E lectrochemical Mechanism of LiFePO 4as C athodeof Lithium Ion B atteryWang Lianliang1,2,Ma Peihua 1,Li Faqiang 1,Zhu G eqin 1(1Qinghai Institute of Salt Lakes ,Chinese Academy of Science ,X ining 810008;2G raduate School of Chinese Academy of Science ,Beijing 100039)Abstract The electrochemical mechanism of LiFePO 4as cathode material for lithium ion batteries during charging anddischarging is still under debate after ten years of research.The use of polyanion ,(PO 4)3-,makes it possible for iron 2based compound to be one of the potential promising cathode material for lithium ion batteries.H owever ,the interior structure of LiFePO 4determines the diffusion of electrons and lithium ions ,and therefore deteriorate its electrochemical performance.From theoretical part and the aspect of practices of experiment ,inner reactions during the processes of charging Πdischarging ,phases transition ,ion 2doping ,diffusion of lithium ions ,conductivity ,interactions between cathode material and electrolytes and the electrochemical kinetic of LiFePO 4based lithium ion batteries are described in this paper.K ey w ords LiFePO 4,Mechanism ,Factors ,Cathode material ,Lithium ion battery自从1997年Padhi 等开创性的提出锂离子电池正极材料LiFePO 4以来,LiFePO 4已经成为可充电锂离子电池正极材料的研究热点之一。
过渡金属氧化物在锂离子电池中的应用
过渡金属氧化物在锂离子电池中的应用向银域;陈婵;肖天赐;李俊升【摘要】The development of high performance anode material is critical for the application of lithium ion battery.The characteristics and recent studies progress of the novel anode materials based on transition metal oxides were summarized.The preparation and performance of carbon coating transition metal oxides were reviewed.The development of the carbon coating transition metal oxide materials was prospected.%发展高性能负极材料对于推进锂离子电池进一步应用至关重要.介绍了新型过渡金属氧化物锂离子电池负极材料的主要特点及近期研究进展,综述了碳包裹过渡金属氧化物的合成制备方法及性能,并对该类负极材料的发展进行了展望.【期刊名称】《电源技术》【年(卷),期】2017(041)012【总页数】3页(P1782-1784)【关键词】锂离子电池;负极材料;过渡金属氧化物;碳包裹【作者】向银域;陈婵;肖天赐;李俊升【作者单位】武汉理工大学化学化工与生命科学学院,湖北武汉430070;武汉理工大学化学化工与生命科学学院,湖北武汉430070;武汉理工大学化学化工与生命科学学院,湖北武汉430070;武汉理工大学化学化工与生命科学学院,湖北武汉430070【正文语种】中文【中图分类】TM912目前商业化锂离子电池的负极材料为石墨类材料,其理论比容量仅为372 mAh/g,且在大电流充放电时易发生析锂现象,这一性能瓶颈极大地制约了锂离子电池的进一步发展和应用。
关于磷酸铁锂的英文文献(含中文翻译)
Preparation and characterization of carbon-coated LiFePO 4cathode materials for lithium-ion batteries with resorcinol –formaldehyde polymer as carbon precursorYachao Lan,Xiaodong Wang ⁎,Jingwei Zhang,Jiwei Zhang,Zhishen Wu,Zhijun Zhang ⁎Key Laboratory for Special Functional Materials,Henan University,Kaifeng 475004,Chinaa b s t r a c ta r t i c l e i n f o Article history:Received 8February 2011Received in revised form 26May 2011Accepted 3June 2011Available online 12June 2011Keywords:Lithium iron phosphateResorcinol –formaldehyde polymer Lithium-ion batteryLiFePO 4/C composites were synthesized by two methods using home-made amorphous nano-FePO 4as the iron precursor and soluble starch,sucrose,citric acid,and resorcinol –formaldehyde (RF)polymer as four carbon precursors,respectively.The crystalline structures,morphologies,compositions,electrochemical performances of the prepared powders were investigated with XRD,TEM,Raman,and cyclic voltammogram method.The results showed that employing soluble starch and sucrose as the carbon precursors resulted in a de ficient carbon coating on the surface of LiFePO 4particle,but employing citric acid and RF polymer as the carbon precursors realized a uniform carbon coating on the surface of LiFePO 4particle,and the corresponding thicknesses of the uniform carbon films are 2.5nm and 4.5nm,respectively.When RF polymer was used as the carbon precursor,the material showed the highest initial discharge capacity (138.4mAh g −1at 0.2C at room temperature)and the best rate performance among the four materials.©2011Elsevier B.V.All rights reserved.1.IntroductionLiFePO 4is an attractive cathode material for lithium-ion batteries because of its high theoretical capacity of 170mAh g −1,environ-mental benign,and high thermal stability.However,its poor electric conductivity of less than 10−13S cm −1limits its battery performance [1],such as the dramatic decrease in power at a high current density,which is the main drawback to commercial use.To overcome the low electric conductivity of LiFePO 4,many effective approaches have been introduced,including metal substitution [2–5],metal powder com-pounding [6],and conductive carbon coating [7–15].Among them,the preparation of LiFePO 4/carbon composite (LiFePO 4/C)is one of the attractive ways to improve the electric conductivity of the final product by forming a good conduction path.Furthermore,carbon can be also used as a reductant,which can reduce Fe 3+ions to Fe 2+ions.It should be noted that many studies involving the synthesis of nano-sized LiFePO 4employ Fe 2+salts as precursors [3,16–20],such as FeC 2O 4·2H 2O and (CH 3COO)2Fe,which are expensive.Therefore,it is necessary to use cheap materials and a convenient method.Here,we report the synthesis,characterization and electrochemical test of LiFePO 4/C composites prepared by two methods using home-made amorphous nano-FePO 4as the iron precursor and various organics as carbon precursors.The two methods using FePO 4as starting material are cheap and environmentally benign for the production of LiFePO 4material.Particularly,we present a novel method to synthesize a uniformcarbon film coated LiFePO 4cathode materials.This method involved an in situ reaction of resorcinol and formaldehyde on the surface of amorphous FePO 4.At room temperature,electrochemical tests showed that this material exhibited an initial discharge capacity of 138.4mAh g −1at 0.2C and a good cycling property at 0.5and 1.0C rate,respectively.2.Experimental2.1.Preparation of amorphous nano-FePO 4Amorphous nano-FePO 4was prepared by spontaneous precipita-tion from aqueous solutions.An equimolar solution of H 3PO 4was added to a solution of Fe(NO 3)3·9H 2O at 60°C under stirring and given amounts of PEG-400as surfactant.Then ammonia water (NH 3·H 2O)was slowly added to the mixed solution under vigorous stirring and a milk-white precipitate formed immediately.The pH of the solution was kept at 2.0.The precipitate was filtered and washed several times with distilled water.After drying in vacuum oven at 120°C for 12h,yellowish-white amorphous FePO 4was obtained.2.2.Preparation of LiFePO 4/CTwo methods were used to prepare the LiFePO 4/C composites in this study.2.2.1.Method oneA rheological phase method [21]was employed to synthesize LiFePO 4/C composite.Stoichiometric amount of amorphous FePO 4,LiOH·H 2O were used as the starting materials.The carbon precursorsPowder Technology 212(2011)327–331⁎Corresponding authors.Tel./fax:+863783881358.E-mail address:donguser@ (X.Wang).0032-5910/$–see front matter ©2011Elsevier B.V.All rights reserved.doi:10.1016/j.powtec.2011.06.005Contents lists available at ScienceDirectPowder Technologyj o u r n a l h o me p a g e :w w w.e l sev i e r.c o m /l oc a t e /pow t e care soluble starch(50.0g/1mol LiOH·H2O),sucrose(35.0g/1mol LiOH·H2O),citric acid monohydrate(21.0g/1mol LiOH·H2O),respec-tively.These carbon precursors were respectively solved in an appropri-ate amount of distilled water under stirring and heating.Then the amorphous FePO4and LiOH·H2O were added under vigorous stirring. Subsequently,the mixtures were respectively dried in an oven at120°C for6h,heated at350°C for1h in argonflow,treated at750°C for12h in argonflow,and ground.Finally,the LiFePO4/C composites were obtained and were denoted as sample A,sample B and sample C,respectively. 2.2.2.Method twoIn a typical synthesis,0.10g of CTAB was solved in30ml of distilled water solution under continuous stirring.Subsequently,1.52g FePO4·3H2O,0.055g resorcinol(R)and0.10ml formaldehyde(F)were successively added.When the temperature of water bath was up to85°C,LiOH·H2O was added.The mixture was kept stirred up in the dark for2h,dried in an oven at120°C for6h,heated at 350°C for1h in argonflow,treated at750°C for12h in argonflow, andfinally ground to obtain the LiFePO4/C composites(denoted as sample D).These four samples and their corresponding parameters are listed in Table1.The carbon contents of the samples were calculated by the loss on ignition of the four LiFePO4/C composites in air.2.3.CharacterizationThermogravimetric(TG)and differential thermal analysis(DTA) analyses were conducted with an EXSTAR6000thermal analysis system at a heating rate of10°C min−1.The powder X-ray diffraction (XRD,X'Pert Pro MPD,Philips)using Cu Ka radiation was employed to identify the crystalline phase of the prepared materials.Raman spectrum was recorded on a Renishaw RM-1000Microscopic Raman spectrometer with457.5nm excitation requiring a10mW power at room temperature.Low-magnification and high-magnification TEM images were taken on a JEM-2010transmission electron microscope (using an accelerating voltage of200kV).Electrodes were fabricated from a mixture of prepared carbon-coated LiFePO4powders(80wt.%),carbon black(12wt.%),and polyvinylidenefluoride in N-methylpyrrolidinon(8wt.%).The slurry was spread onto Al foil and dried in vacuum at120°C for12h.The carbon-coated LiFePO4loading was2mg cm−2in the experimental cells.The cells were assembled in an argon-atmosphere-filled glove box.The electrolyte was1M LiPF6in a mixture of ethylene carbonate (EC)and dimethyl carbonate(DMC)(1:1volume).The cells were galvanostatically charged and discharged at a voltage range of2.5–4.2V with LAND battery testing system at room temperature.Cyclic voltammograms were run on an IM6impedance and electrochemicalmeasurement system(Zahner,Germany)at a scan rate of0.1mV s−1 between2.5and4.0V.3.Results and discussionThe TEM images of the amorphous nano-FePO4were shown in Fig.1.The morphology of the as-prepared FePO4is an irregular particle with an average diameter of30nm.Most of the particles connected to each other because of their high surface energy which results from their small sizes.Fig.2a shows the TG/DTA curves of the FePO4·3H2O powder with a heating rate of10°C/min from room temperature to850°C in air.On the DTA curve near150°C,there is a very strong endothermic peak, associating with the sharp weight loss on the TG curve,which is related to the quick dehydration of FePO4·3H2O.During150–550°C, 26.3%weight loss on the TG curve indicates the slow elimination of residual H2O in FePO4·3H2O,exactly corresponding to the loss of crystalline water of FePO4·3H2O.And one exothermic peak is displayed at a higher temperature of590°C,which is not accompa-nied by appreciable weight loss in the TG curve,indicating the transformation of the amorphous FePO4to hexagonal FePO4crystal. The XRD patterns of FePO4·3H2O before and after calcination have been investigated in Fig.2b.As illustrated in pattern A,it can be seen that there is no evidence of diffraction peaks before calcination, indicating the synthesized FePO4·3H2O is just amorphous.While for the calcinated FePO4·3H2O at600°C for6h in air,it exhibits strong and narrow peaks revealing a well-crystallized material in pattern B. All of the diffraction peaks of the prepared FePO4are indexed to a single-phase hexagonal structure with a P3121space group and without any impurities,which is in good agreement with the standard card(JCPDS card no:72–2124).Table1Carbon precursors and residual carbon content of samples A,B,C and D.Samples A B C DCarbon precursor Starch Sucrose Citric acid RF polymer Final carbon content(wt.%) 5.48.5 4.35.1Fig.1.TEM images of the prepared amorphous nano-FePO4.n et al./Powder Technology212(2011)327–331The XRD diffraction patterns of LiFePO 4/C powders prepared with different carbon precursors were shown in Fig.3.All peaks can be indexed as a single phase with an ordered olivine structure indexed to the orthorhombic space group,Pnmb (JCPDS card no.83–2092).The obtained lattice parameters are sample A:a=10.2956Å,b=6.0367Å,and c =4.7001Å,sample B:a =10.1992Å,b =6.0483Å,andc=4.6971Å,sample C:a=10.2472Å,b=6.0208Å,and c=4.6882Åand sample D:a=10.3372Å,b=5.9993Å,and c=4.6932Å,respec-tively.There is no evidence of diffraction peaks for carbon,though some amorphous masses and films attached to the LiFePO 4particles were observed from TEM images (see Fig.4).This indicates the carbon contents are very low.Morphologies of these LiFePO 4/C composites were shown in Fig.4.It is obvious that the samples show different carbon distribution on LiFePO 4particle surface.From Fig.4a,c,e and g,we observed that the samples were composed of agglomerated particles whose sizes range from 50to 300nm.From Fig.4b and d,there is not enough carbon coating to spread throughout the substrate particles.In contrast to sample A and sample B,there are uniform carbon thin films on the grain surfaces of sample C and sample D,and the thickness of the carbon films are about 2.5nm (Fig.4f)and 4.5nm (Fig.4h),respectively.The reason may lie in that different carbon precursors have different adsorbabilities on the surface of FePO 4·3H 2O particles,resulting in different carbon distribution on the surface of LiFePO 4particle after the post treatment.Soluble starch and sucrose possess plentiful hydroxyl groups,by which soluble starch and sucrose molecules could probably weakly adsorb on the surface of FePO 4·3-H 2O particles in the hydrogen bonding.In the post treatment process,part of soluble starch and sucrose molecules desorbed from the surface of FePO 4·3H 2O particles,resulting in the de ficient carbon coating.But citric acid possesses carboxyl groups,which may be partially esteri fied by hydroxyl groups on the FePO 4·3H 2O particles,forming a tight connection.This results in more complete carbon coating after the post treatment.For sample D,we suppose that,in the present synthetic system,the surfactant CTAB may con fine the resorcinol –formaldehyde (RF)polymer molecules and FePO 4·3H 2O particles in plenty of tiny spaces,so the RF polymer molecules were tightly attached to FePO 4·3H 2O particles.After the post treatment,the RF polymer was transformed into the carbon film which tightly stuck on the surface of LiFePO 4particle.In addition,from the HRTEM image of sample D (shown in Fig.4h),the d-spacing of 0.294nm corresponds to the (211)plane of LiFePO 4.As an important aid investigating the structure of the carbon,the Raman measurement was adopted,and the results were shown in Fig.5.Every Raman spectrum consists of a small band at 940cm −1,which corresponds to the symmetric PO 4stretching vibration in LiFePO 4.The intense broad bands at 1350and 1590cm −1can be attributed to the characteristic Raman spectra of carbon.The bands at 1590cm −1mainly correspond to graphitized structured carbon of G band,while that at 1350cm −1corresponds to disordered structured carbon of D band [22,23].The graphitized carbon contains sp 2hybrid bonding,which is positively correlated with the electronic conduc-tivity of carbon,and the disordered carbon mainly corresponds to sp 3hybrid bonding.As shown in Fig.5,the integrated intensity ratios of sp 2/sp 3of the LiFePO 4/C composites synthesized with different carbon precursors are 0.865(curve A),0.857(curve B),0.856(curve C)and 0.860(curve D),respectively.So the similar sp 2/sp 3ratios of the four samples give us few clues to explain the difference in their electrochemical performances.Fig.6shows the cycling performance curves of all the samples at different rates.As shown in Fig.6,the initial discharge capacities of sample A,sample B,sample C and sample D at room temperature at 0.2C rate are 110.4,118.8,137.7and 138.4mAh g −1,respectively.The capacity of sample D gradually increases in the initial cycles.This may be due to the incomplete dispersion of the electrolyte into the electrode material at the beginning.Moreover,the capacity of sample D is highest among the four samples at 0.5C and 1.0C,indicating that method two is better than method one.The lower capacities of sample A and sample B must be due to the incomplete carbon coating on the LiFePO 4particles.The higher capacity of sample D than that of sample C may be attributed to the thicker carbon film of sample D keeping the crystal structure of LiFePO 4morestable.Fig.2.(a)TG/DTA curves of the FePO 4·3H 2O.(b)XRD patterns of the FePO 4samples before (A)and after (B)calcination inair.Fig. 3.XRD patterns of LiFePO 4/C composites synthesized with different carbon precursors.329n et al./Powder Technology 212(2011)327–331In order to further understand the electrochemical properties of the four samples,the cyclic voltammogram (CV)curves were performed at a scan rate of 0.1mV s −1at room temperature (as shown in Fig.7).Each of the CV curves consists of an oxidation peak and a reduction peak,corresponding to the charge reaction and discharge reaction of the Fe 2+/Fe 3+redox couple.In the CV pro files of the LiFePO 4cathode material,the smaller voltage difference between the charge and discharge plateaus and the higher peak current means better electrode reaction kinetics,and consequently better rate performance.Sample A and sample B electrodes have broad peaks in CV curves.In contrast,sample C and sample D electrodes demonstrate sharp redox peaks,which indicate an improvement in the kinetics of the lithium intercalation/de-intercalation at the electrode/electrolyte interface.The voltage difference of sample D is smaller than that of sample C,so sample D demonstrates a better rate performance.4.ConclusionsLiFePO 4/C composites were synthesized by two methods using home-made amorphous nano-FePO 4as the iron precursor and various organics as carbon precursors.It was found that employing soluble starch and sucrose as the carbon precursors resulted in a de ficient carbon coating on the surface of LiFePO 4particle,but employing citric acid and RF polymer as the carbon precursors realized a uniform carbon coating on the surface of LiFePO 4particle.Particularly,when RF polymer was used as the carbon precursor,the carbon film is thicker,and the material showed the highest initial discharge capacity (138.4mAh g −1at 0.2C at room temperature)and the best rate performance among the four materials.The intensities of redox peak and the voltage differences in the CV curves of the four samples are consistent with their rateperformance.Fig.4.TEM images of synthesized LiFePO 4/C composite synthesized with different carbon precursors.(a)and (b)sample A,(c)and (d)sample B,(e)and (f)sample C,(g)and (h)sampleD.Fig. 5.Raman shift of LiFePO 4/C composites synthesized with different carbonprecursors.Fig.6.The cycling performance curves of the samples with different carbon precursors at various discharge rates.n et al./Powder Technology 212(2011)327–331References[1] A.K.Padhi,K.S.Nanjundaswamy,J.B.Goodenough,Phospho-olivines as positive-electrode materials for rechargeable lithium batteries,J.Electrochem.Soc.144(1997)1188–1194.[2]T.Nakamura,Y.Miwa,M.Tabuchi,Y.Yamada,Structural and surfacemodi fications of LiFePO 4olivine particles and their electrochemical properties,J.Electrochem.Soc.153(2006)A1108–A1114.[3]S.-Y.Chung,J.T.Bloking,Y.-M.Chiang,Electronically conductive phospho-olivinesas lithium storage electrodes,Nat.Mater.1(2002)123–128.[4]P.S.Herle,B.Ellis,N.Coombs,L.F.Nazar,Nano-network electronic conduction iniron and nickel olivine phosphates,Nat.Mater.3(2004)147–152.[5]G.X.Wang,S.Bewlay,S.A.Needham,H.K.Liu,R.S.Liu,V.A.Drozd,J.-F.Lee,J.M.Chend,Synthesis and characterization of LiFePO 4and LiTi 0.01Fe 0.99PO 4cathode materials,J.Electrochem.Soc.153(2006)A25–A31.[6] F.Croce,A.D'Epifanio,J.Hasson,A.Duptula,T.Olczac,B.Scrosati,A novel conceptfor the synthesis of an improved LiFePO 4lithium battery cathode,Electrochem.Solid-State Lett.5(2002)A47–A50.[7]H.Huang,S.C.Yin,L.F.Nazar,Approaching theoretical capacity of LiFePO 4at roomtemperature at high rates,Electrochem.Solid-State Lett.4(2001)A170–A172.[8]M.Herstedt,M.Stjerndahl,A.Nyten,T.Gustafsson,H.Rensmo,H.Siegbahn,N.Ravert,M.Armand,J.O.Thomas,K.Edstroem,Surface chemistry of carbon-treated LiFePO 4particles for Li-ion battery cathodes studied by PES,Electrochem.Solid-State Lett.6(2003)A202–A206.[9]M.M.Doeff,Y.Hu,F.McLarnon,R.Kostecki,Effect of surface carbon structure onthe electrochemical performance of LiFePO 4,Electrochem.Solid-State Lett.6(2003)A207–A209.[10]Y.Hu,M.M.Doeff,R.Kostecki,R.Finones,Electrochemical performance of sol –gelsynthesized LiFePO 4in lithium batteries,J.Electrochem.Soc.151(2004)A1279–A1285.[11]X.Z.Liao,Z.Ma,L.Wang,X.Zhang,Y.Jiang,Y.He,A novel synthesis route forLiFePO 4/C cathode materials for lithium-ion batteries,Electrochem.Solid-State Lett.7(2004)A522–A525.[12] C.H.Mi,X.B.Zhao,G.S.Cao,J.P.Tu,In situ synthesis and properties of carbon-coated LiFePO 4as Li-ion battery cathodes,J.Electrochem.Soc.152(2005)A483–A487.[13]R.Dominko,M.Bele,M.Gaberscek,M.Remskar,D.Hanzel,S.Pejovnik,J.Jamnik,Impact of the carbon coating thickness on the electrochemical performance of LiFePO 4/C composites,J.Electrochem.Soc.152(2005)A607-A607.[14]K.Zaghib,J.Shim,A.Guer fi,P.Charest,K.A.Striebel,Effect of carbon source asadditives in LiFePO 4as positive electrode for lithium-ion batteries,Electrochem.Solid-State Lett.8(2005)A207–A210.[15]K.S.Park,J.T.Son,H.T.Chung,S.J.Kim,C.H.Lee,K.T.Kang,H.G.Kim,Surfacemodi fication by silver coating for improving electrochemical properties of LiFePO 4,Solid State Commun.129(2004)311–314.[16] A.Yamada,S.C.Chung,K.Hinokuma,Optimized LiFePO 4for lithium batterycathodes,J.Electrochem.Soc.148(2001)A224–A229.[17]N.Meethong,H.-Y.Shadow Huang,W.C.Carter,Y.-M.Chiang,Size-dependentlithium miscibility gap in nanoscale Li 1−x FePO 4,Electrochem.Solid-State Lett.10(2007)A134–A138.[18] C.Delacourt,P.Poizot,S.Levasseur,C.Masquelier,Size effects on carbon-freeLiFePO 4powders,Electrochem.Solid-State Lett.9(2006)A352–A355.[19] D.Choi,P.N.Kumta,Surfactant based sol –gel approach to nanostructured LiFePO 4for high rate Li-ion batteries,J.Power Sources 163(2007)1064–1069.[20]K.Zaghib,A.Mauger,F.Gendron,C.M.Julien,Surface effects on the physical andelectrochemical properties of thin LiFePO 4particles,Chem.Mater.20(2008)462–469.[21]Y.H.Huang,H.B.Ren,S.Y.Yin,Y.H.Wang,Z.H.Peng,Y.H.Zhou,Synthesis ofLiFePO 4/C composite with high-rate performance by starch sol assisted rheolog-ical phase method,J.Power Sources 195(2010)610–613.[22]M.M.Doeff,J.D.Wilcox,R.Kostecki,u,Optimization of carbon coatings onLiFePO 4,J.Power Sources 163(2006)180–184.[23]G.L.Yang,A.F.Jalbout,Y.Xu,H.Y.Yu,X.G.He,H.M.Xie,R.S.Wang,Effect ofpolyacenic semiconductors on the performance of olivine LiFePO 4,Electrochem.Solid-State Lett.11(2008)A125–A128.Fig.7.The CV pro files of the different samples at the scan rate of 0.1mV s −1.331n et al./Powder Technology 212(2011)327–331。
AAA-采用PITT与EIS技术测定锂离子电池正极材料LiFePO_4中锂离子扩散系数
第17卷第8期中国有色金属学报2007年8月V ol.17 No.8The Chinese Journal of Nonferrous Metals Aug. 2007文章编号:1004-0609(2007)08-1255-05采用PITT与EIS技术测定锂离子电池正极材料LiFePO4中锂离子扩散系数曲涛1, 2,田彦文3,翟玉春3(1. 中山大学物理科学与工程技术学院,广州 510275;2. 江门三捷电池实业有限公司博士后工作站,江门 529000;3. 东北大学材料与冶金学院,沈阳 110004)摘要:采用恒电位间歇滴定法(PITT)和电化学阻抗谱技术(EIS)测定锂离子电池正极材料LiFePO4中Li+扩散系数。
结果表明:随着嵌锂量的变化,锂离子的扩散系数(+LiD)先出现一个极大值,然后出现一个极小值,随后随嵌锂量的增加而增大;扩散系数在10−13 cm2/s~10−16 cm2/s数量级范围内变化;2种方法计算得到的扩散系数在数量级上相符合。
关键词:LiFePO4; 扩散系数; PITT; EIS中图分类号:TM 912.9文献标识码:AMeasurement of diffusion coefficient of lithium in LiFePO4 cathode material for Li-ion battery by PITT and EISQU Tao1, 2, TIAN Yan-wen3, ZHAI Yu-chun3(1.School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275, China;2. Postdoctoral Workstation, Jiangmen JJJ Battery Co. Ltd., Jiangmen 529000, China;3. School of Materials and Metallurgy, Northeastern University, Shenyang 110004, China)Abstract: The chemical diffusion coefficient of Li-ion in LiFePO4 cathode material was measured by potentiostatic intermittent titration technique (PITT) and electrochemical impedance spectrum (EIS). The results show that the diffusion coefficient ranges in 10−13−10−16 cm2/s. With the change of Li content the diffusion coefficient appears an extremely large value firstly, latter appears a minimum, then increases. The calculated values by PITT are in agreement with those by EIS.Key words: LiFePO4; diffusion coefficient; potentiostatic intermittent titration technique(PITT); electrochemical impedance spectrum(EIS)锂离子二次电池以其高能量密度、高放电电压、比容量大和自放电率低等优点迅速在便携式计算机、移动电话等小型电器领域取代了传统电池[1]。
高镍三元正极材料后处理降碱工艺
高镍三元正极材料后处理降碱工艺刘大亮;孙国平;刘亚飞;陈彦彬【摘要】以高镍含量镍钴锰氢氧化物、氢氧化锂为原料,采用高温固相法合成锂离子电池正极材料LiNi0.8Co0.1Mn0.1O2(NCM811).温度为750 ~850℃、n(Li)∶ n(Ni +Co +Mn)为1.02∶1.00 ~1.08∶1.00,合成的NCM811材料保持纯相,但材料中残留的碱性杂质仍然较多.通过引入磷酸二氢铵、纯水淋洗等手段,可较为简便地处理残留的碱性杂质.与未处理的相比,淋洗降碱后的样品在3.0~4.3 V充放电,0.5C、1.0C及2.0C倍率性能约有1%的降低,但0.1C首次充放电效率由89.1%上升到93.0%,1.0C放电比容量由179.2 mAh/g上升为181.8 mAh/g,循环100次,容量保持率由90.8%上升到94.1%.%LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode material for Li-ion battery was synthesized by using nickel-cobalt-manganese hydroxide and lithium hydroxide through solid-state sintering process.When the temperature was in 750-850 ℃ and n(Li) ∶ n(Ni + Co + Mn) was in 1.02∶1.00-1.08∶ 1.00,the synthesized NCM811 material remained pure phase,but the residual impurities in the material were still kept at a high level.The residual alkaline impurities could be easily treated through the introduction of ammonium di-hydrogen phosphate and pure water pared with the untreated samples,0.5 C,1.0 C and 2.0 C rate performance of the samples in 3.0-4.3 V were decreased about1%,while initial charge-discharge efficiency of 0.1 C was increased from 89.1% to 93.0%,specific discharge capacity of 1.0 C was increased from 179.2 mAh/g to 181.8 mAh/g.At the 100th cycle,the capacity retention rate was increased from 90.8% to 94.1%.【期刊名称】《电池》【年(卷),期】2018(048)001【总页数】4页(P41-44)【关键词】LiNi0.8Co0.1Mn0.1O2 (NCM811);碱性杂质;正极材料【作者】刘大亮;孙国平;刘亚飞;陈彦彬【作者单位】北京矿冶研究总院,北京100160;北京当升材料科技股份有限公司,北京100160;江苏当升材料科技有限公司,江苏南通226133;北京矿冶研究总院,北京100160;北京当升材料科技股份有限公司,北京100160;江苏当升材料科技有限公司,江苏南通226133;北京矿冶研究总院,北京100160;北京当升材料科技股份有限公司,北京100160;北京矿冶研究总院,北京100160;北京当升材料科技股份有限公司,北京100160【正文语种】中文【中图分类】TM912.9目前,锂离子电池用三元正极材料LiNi0.33Co0.33Mn0.33O2(NCM111)、LiNi0.5Co0.2Mn0.3O2(NCM523)和LiNi0.6Co0.2Mn0.2O2(NCM622)已投入量产应用。
锂离子电池背景介绍及研究进展.ppt
3. Cathode performance
Fig. 2. Plateau voltage and capacity (see Fig. 1) for LiFePO4 [123,153–162] and LiCoO2 [163–167] with a charging voltage of 4.2V and discharge current of 1C.
• (3) substituting Li or Ti by other metal cations, such as Cr3+,
V5+, Mn4+, Fe3+, Al3+, Co3+, Ta5+, Cu2+;
Nb
No investigation was reported on the electrochemical characteristics of Nb-doped Li4Ti5O12 as an anode material.
The decrease in capacity with increasing discharge current is
generally smaller for LiCoO2 than for Li(Ni,Mn,Co)O2.
Fig. 8. Discharge capacity of LiFePO4 as a function of discharge rate.
0.1C.
The capacity of Li(Ni1/3Mn1/3Co1/3)O2 increases more than that of LiCoO2, suggesting that the kinetics of charge transfer and/or mass transport are slower in Li(Ni1/3Mn1/3Co1/3)O2 than in LiCoO2.
高镍三元正极材料锂离子电池45℃容量衰减
高鎳三元正极材料锂离子电池45 C 容量衰减刘伯峥,徐晓明,曾 涛,伍绍中(天津力神电池股份有限公司,天津300384 )摘要:以45 C 下循环(2.8~4.2 V 、1 C )523次,容量保持率为76. 05%的高镍三元正极材料软包装锂离子电池为研究对象,分析循环后厚度及内阻的变化,将容量衰减分为极化损失、活性Li +损失、结构相变损失和金属离子溶出损失等。
电池厚度 增长主要源于隔膜与负极间累积的副产物和电池形变;内阻增长主要源于交流内阻的增加。
活性Li +损失是容量衰减的主 因,约占容量衰减的11.22%;而极化损失、结构相变损失和金属离子溶出损失分别约占的5.25%、6.55%和0. 11%。
关键词:富镍正极;容量衰减;阻抗;相变;极化中图分类号:TM912. 9 文献标志码:A 文章编号:1001-1579(2020)05-0458-04Capacity fading of nickel-rich ternary cathode material Li-ion battery at 45 迟LIU Bo-zheng,XU Xiao-ming ,ZENG Tao ,WU Shao-zhong( Tianjin Lishen Battery Joint-Stock Co.,Ltd., Tianjin 300384,China )Abstract :The nickel-rich ternary cathode material pack Li-ion battery cycled 523 times at 45 C (2. 8-4. 2 V,1 C) with 76. 05%capacity retention was used as research object. The changes of thickness and internal resistance after cycling were analyzed, the capacity fading was divided into loss of polarization, loss of recycled Li + reduction, loss of phase transition of cathode and loss ofdissolution of transition metal ions. The increase of battery thickness mainly stemmed from the deformation of battery and by-productexisted in separator and anode. The growth of alternating current resistance( ACR) was the main reason for the increase of internalresistance. The reduction of recycled Li + was the main reason of capacity fading , which gave rise to 11. 22% ; polarization loss,phasetransition of cathode and dissolution of transition metal ions during cycle caused about 5. 25% ,6. 55% and 0. 11%, respectively.Key words : nickel-rich cathode; capacity fading; resistance; phase transition; polarization高能量密度电池是商用化电动汽车迫切追求的目标之 一。
Cathode materials for lithium batteries
专利名称:Cathode materials for lithium batteries 发明人:Oki, Naohiko c/o KABUSHIKI KAISHAHONDA,Noguchi, Minoru c/o KABUSHIKIKAISHA HONDA,Demachi, Atsuhi c/oKABUSHIKI KAISHA HONDA,Sato, Kenji c/oKABUSHIKI KAISHA HONDA,Araki, Kazuhiroc/o KABUSHIKI KAISHA HONDA申请号:EP94304052.7申请日:19940606公开号:EP0634803A1公开日:19950118专利内容由知识产权出版社提供摘要:A mixture of V₂O₅, CoO₂, P₂O₅, MO (wherein M represents an alkaline earth metal element) and at least one lithium compound selected from the group consisting of lithium-oxygen compounds, lithium halides and lithium oxygen acid salts is melted to form a melt, then the melt is put into water or pressed with metal plates to pulverize it, and heat treated if necessary, the resulting solid solution being used as a cathode material for a lithium battery, thereby obtaining the lithium battery preventing the capacity of a carbon anode from lowering and excellent in long-term cycle stability.申请人:HONDA GIKEN KOGYO KABUSHIKI KAISHA地址:1-1, Minami-Aoyama 2-chome Minato-ku Tokyo 107 JP国籍:JP代理机构:Calamita, Roberto更多信息请下载全文后查看。
锂离子电池中重要正极材料体系的磁共振研究进展
第8卷 第6期2019年11月储能科学与技术Energy Storage Science and Technology V ol.8 No.6Nov. 2019收稿日期:2019-08-22; 修改稿日期:2019-08-24。
基金项目:国家自然科学基金项目(21872055)。
第一作者:耿福山(1992—),男,博士研究生,研究方向为磁共振与锂电池失效分析与测试技术专刊锂离子电池中重要正极材料体系的磁共振研究进展耿福山,胡炳文(华东师范大学物理与电子科学学院 & 上海市磁共振重点实验室,上海 200062)摘 要:锂离子电池得到了快速发展,并改变了我们的生活。
锂离子电池正极材料的研究是提高电池性能的关键;而理解正极材料的性能与结构之间的关系、阐释正极材料的电化学反应机理(尤其是性能衰减与失效机理)有助于提高材料的能量密度和功率密度。
磁共振技术(含核磁共振和顺磁共振)在过去三十多年的研究中不断进步,逐渐成为研究正极材料构效关系的关键技术之一。
本文总结了几个重要的已经商业化的正极材料(LiCoO 2、NCA 、NMC 和LiFePO 4)的磁共振研究进展,展示了核磁共振、顺磁共振在正极材料构效关系研究中的重要作用;尤其值得一提的是原位技术的发展在电化学反应机理中逐渐显示出其重要性。
本文有助于了解磁共振技术在电池材料研究中的重要价值,并进一步推动磁共振技术的发展。
关键词:正极材料;核磁共振;顺磁共振doi :10.19799/ki.2095-4239.2019.0186中图分类号:O 641 文献标志码:A 文章编号:2095-4239(2019)06-1017-07Progress in magnetic resonance research of important cathode materials in lithium ion batteriesGENG Fushan , HU Bingwen(School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance, Shanghai 200062, China )Abstract: Lithium-ion batteries have grown rapidly and have changed our lives. The research on the cathode materials of lithium ion battery is the key to improve the performance of the battery. Therefore, understanding the relationship between the structure-performance relationship and explaining the electrochemical reaction mechanism (especially the performance degradation and failure mechanism) of the cathode materials can help to improve the energy density and power density of the materials. Magnetic Resonance techniques, including NMR (nuclear magnetic resonance) and EPR (electron paramagnetic resonance), has been continuously improved during the past three decades of material research, and has gradually become one of the key technologies for studying the structure-performance relationship of cathode materials. NMR could be used to study light elements commonly found in battery materials such as Li, Na, F, P, C, H and O, while EPR can be employed to study transition metals such as Co, Ni, Mn, Fe and V. This paper summarizes the progress of magnetic resonance research on several important commercial cathode materials (LiCoO 2, NCA, NMC and LiFePO 4), and demonstrates the important role of NMR and EPR in the study of structure-performance relationship of cathode materials. It is emphasized here that the development of in-situ technology has gradually shown its importance to investigate the electrochemical reaction mechanism. This article will help to understand the important value of magnetic resonance technology in battery 电池,E-mail :545205908@ ;联系人:胡炳文,研究员,从事磁共振与电池研究,E-mail :bwhu@ 。
添加石墨烯的磷酸铁锂锂离子电池的性能
amount on the performance of LiFePO4 cathode Li—ion battery was studied.W hen the amount of graphene was 20% ,the low temperature per for m ance of the battery was the best.Compared with the common batter y ,specific capacity of cathode active material at 0.50 C in2.50~3.65 V was increased from 111.07 mAh/g to 135.83 mAh/g.interna l resistance was decreased f rom 20.37 mft to 8.26 mn.The discharge voltage platform was 3.09 V.increased 0.15 V. The batter y could release 74.20% of the nominal capacity at low temperature 一20 ℃ .The addition of graphene would produce an higher irreversible capacity in batter y .it would also reduce the initia l charge—discharge efi ciency and cycle per formance.W ith the addition of 20% graphene,the initial charging ef iciency was 92.29% for 0.10 C.the capacity retention rate was only 65% after 50 cycles at 0.20 C.
锂电池正极材料和前驱体
锂电池正极材料和前驱体Lithium-ion batteries play a crucial role in powering many of our electronic devices, from smartphones to electric vehicles. One of the key components of these batteries is the positive electrode material, which is responsible for storing and releasing lithium ions during charge and discharge cycles. The development of high-performance positive electrode materials is essential for improving the energy density, power output, and lifespan of lithium-ion batteries.锂离子电池在许多电子设备中发挥着至关重要的作用,从智能手机到电动汽车。
其中一个关键组件是正极材料,它在充放电周期中负责储存和释放锂离子。
高性能正极材料的开发对于提高锂离子电池的能量密度、功率输出和寿命至关重要。
There are various types of positive electrode materials that have been investigated for lithium-ion batteries, including lithium cobalt oxide (LiCoO2), lithium iron phosphate (LiFePO4), and lithium nickel manganese cobalt oxide (LiNixMnyCozO2). Each material has its own unique set of characteristics, such as energy density, cycling stability,and cost. Researchers are continuously exploring new materials and formulations to improve the performance of lithium-ion batteries.有各种类型的正极材料被研究用于锂离子电池,包括氧化钴锂(LiCoO2)、磷酸铁锂(LiFePO4)和氧化镍锂锰钴(LiNixMnyCozO2)。
碳热还原—浸出法回收废旧锂电池中的镍、钴、锰
第30卷第3期2021年6月Vol.30,No.3June2021矿冶MINING AND METALLURGYdoi:10.3969/j.issn.1005-7854.2021.03.005碳热还原一浸出法回收废旧锂电池中的镰、钻、猛代云1邓朝勇1吴浩彳(1.稀美资源(广东)有限公司,广东清远513055;2.广东佳纳能源科技有限公司,广东清远513056)摘要:废旧锂离子电池正极材料含有大量的有价金属且市场拥有量大,目前的回收工艺具有流程长、酸消耗高、锂的直收率低等问题。
利用价格低廉的工业焦粉与三元正极材料混合加热可以实现粘结剂和正极材料的有效分离,同时将正极材料还原回收。
通过碳热还原将废旧锂离子电池正极材料中的锂转化为可溶性碳酸盐,首先利用水浸过程分离出锂,接下来采用硫酸浸出工艺对废旧锂离子电池正极材料中的镰、钻、猛三种元素进行浸出,研究了碳热还原条件和水浸条件对锂浸出的影响,最后将水浸渣进行硫酸浸出分离鎳、钻、猛。
结果表明,在碳热还原温度6509、还原时间100min.水浸温度259、水浸液固比(mL/g)12.搅拌速度100r/min.水浸时间120min时,锂的浸出率达到最大,为91.61%;在硫酸浓度2.0mol/L.搅拌转速为200r/min.液固比(mL/g)为9、浸出温度75匸、浸出时间90min时,可以获得一个较优的镰、钻、猛浸出率,此条件下的镰、钻、猛浸出率分别为95.83%、96.22%.9&02%。
碳热还原一水浸一硫酸浸出工艺是一种较为高效的回收三元废旧锂离子电池中有价金属的工艺。
关键词:废旧三元锂离子电池;正极材料;碳热还原;水浸;硫酸浸出中图分类号:X758文献标志码:A文章编号:1005-7854(2021)03-0024-07Recovery of Ni,Co and Mn from cathode materials of spent lithium ion batteries by carbothermal reduction and leaching methodDAI Yun1DENG Chao-yong1WU Hao2(1.Ximei Resources(Guangdong)Limited,Qingyuan513055,Guangdong,China;2.Guangdong Jiana Energy Technology Co.Ltd.,Qingyuan513056,Guangdong,China)Abstract:There is a large amount of spent cathode materials for lithium-ion batteries in the market and they contain a lot of valuable metals・The current recycling process has many problems,such as long process,high acid consumption and low direct yield of lithium・The effective separation of binder and cathode material can be achieved by mixing and heating the cheap industrial coke powder with ternary cathode material,and the cathode material can be recovered at the same time.Lithium in spent lithium-ion battery cathode materials was converted into soluble carbonate by carbothermal reduction.Firstly,lithium was separated by water leaching process,and then nickel,cobalt and manganese in spent lithium-ion battery cathode materials were leached by sulfuric acid leaching process・Finally,the leaching residue was leached with sulfuric acid to separate nickel?cobalt and manganese.The results show that when the carbothermal reduction temperature is650°C,the carbothermal reduction time is100min,the water leaching temperature is25°C,the liquid-solid ratio is12mL/g,the stirring speed is100r/min,and the water leaching time is120min,the leaching rate of lithium reaches the maximum,which is91・61%・When收稿日期:2021-03-17基金项目:广东省重点实验室专项(2020年粤财科教[2020]50号);清远市科技计划项目(清科函[2019]126号300)第一作者:代云,学士,高级工程师,主要从事湿法冶金与资源综合回收利用研究。
锂离子电池用正极材料_LW
Li0CoO2 Hexagonal
O3 → H1-3 → O1
reversible
LiCoO2 +3
Li0.5CoO2 +3.5
irreversible
Li0CoO2 +4
2019/7/17
LWN confidential
8
Ⅱ.正极材料 — 3.NCM
NCM情况
NCM优缺点
优点: -相对于LCO价格低。 -可以根据Ni/Mn/Co的比例调整容量。 -对比LCO倍率性能有优势。
缺点:
- 密度小。 - 电压平台低。 - 能量密度低。
Amorphous carbon Nm级粒子 → 二次颗粒团聚
2019/7/17
LWN confidential
14
Ⅱ.正极材料 — 7.材料对比总结
分类 LCO
NCM
Formaula LiCoO2 NCM111 NCM523
NCA
NCA80155
pH计
瑞士万通自动电位滴定 仪
卡尔费休水分仪
产品混入金属异物进行确认 粉体结构内杂质水平进行确认
ICP-AES
检测类型
批次别
批次别 批次别 批次别 批次别 月别 批次别 批次别
月别
批次别
批次别
2019/7/17
LWN confidential
17
谢谢!
xEV
电压低但很平坦
◎
××
容量低 安全性很好
高功率特性优秀
电动工具 储能 xEV
电压高且平坦
●
●
能量密度低
高功率特性优秀
xEV,储能
◎ > ● > ○ > △ > × > ×× > ×××
Research on Advanced Materials for Li-ion Batteries
先进锂离子电池材料的研究摘要:为了满足移动电子产品和电动汽车的功率和能源需求,锂离子技术急需使用非传统材料来实现优化。
本文介绍了我们对于专用于阴极和阳极材料的最新研究进展,这些材料很有希望能够满足像费用、安全性、寿命、耐久度、功率密度以及能量密度这些决定性因素。
纳米无机化合物已经被广泛的调查了。
通过微孔(硬碳球)、合金(Si,SnSb)以及转化反应(Cr2O3,MnO)的研究,尺寸效应在锂的存储中逐步显露出来了。
纳米/微米下岩心外壳的组成、离散分布的复合材料和表面销连接结构都能证明它们的循环性能。
在LiCoO2和LiMn2O4表面上涂层被发现是一种很有效的能够增强它们的热稳定性和化学稳定性的方法,具体的实现方法正在讨论中。
在LiFePO4上进行的理论模拟和实验显示,在LiFePO4晶格中掺杂碱金属和硝酸盐这种办法是有可能增长它的电导率的,并且不会妨碍锂离子在内部管道中的传输。
1. 引言为了实现未来能源的可持续发展,新的能源技术很关键。
对于电动车辆和油电混合动力车发展而言,锂离子电池将会发展成一种关键性启动技术。
自从研究人员于二十世纪八十年代后期在索尼工业大学开发了第一个工用化锂离子电池后,人们为了提高电池材料付出了很多汗水。
使用纳米尺寸和纳米结构的材料给可充电锂离子电池的能量密度,特别是非常高的充放电速率和更好的循环提供了机会。
在纳米尺度上,对离子在储存和运输行为中的异常表现的综合研究可能会生成先进的能源储存设备。
特别是,到目前为止尖晶石锂锰氧化物和橄榄石LiFePO4是最有可能作为混合动力(HEV)和电动车辆(EV)电池的阴极材料来使用的。
对于我们以纳米尺寸或纳米结构的阳极材料和经过修改的阴极材料作为下一代锂离子电池的研究,本文提出了一个全面的回顾。
2. 阳极材料2.1. 硬碳球建立在插层概念基础上的可充电锂电池是在1972年由Armand首次提出的。
出于安全性的考虑,作为阳极材料使用的金属锂已经被合金、氧化物、硫化物和含碳材料替代了。
锂离子电池用正极材料---RD
LWN confidential
1
Ⅰ.锂离子电池
锂离子电池内的电化学反应
Electrochemical Reaction
Cathode LiCoO2 → Li1-xCoO2 + xLi+ + xe-
Anode Cn + xLi+ +xe- → CnLix
Overall LiCoO2 + Cn → Li1-xCoO2 + CnLix 工作电位:4.5 ~ 3.0V
备注 预计极限
2019/7/17
LWN confidential
9
Ⅱ.正极材料 — 2.LCO
HV LCO的结构及变化
2019/7/17
LWN confidential
10
Ⅱ.正极材料 — 2.LCO
LiCoO2 Hexagonal
Li0.5CoO2 Monoclinic
Li0CoO2 Hexagonal
19
Ⅱ.正极材料 — 7.材料对比总结
压实密度 g/cm3
4.0
电压 V
3.70
3.82
3.84
LCO优缺点
优点: -可以用多种原料和合成方法进行生产。
→ 可以针对电池性能进行合成方法调整。 -压实密度高,能量密度高。
缺点: -钴价波动大,价格昂贵。 -安全性能差。
2019/7/17
LWN confidential
8
Ⅱ.正极材料 — 2.LCO
2019/7/17
LWN confidential
12
Ⅱ.正极材料 — 3.NCM
NCM材料一般形态为一次颗粒团聚而成的球形颗粒。国内有厂家为了改善性能(高温,压实等)做成单晶颗粒, 但容量和倍率性能不利。
硕士学位论文-磷酸铁形貌特征对磷酸铁锂电化学性能的影响
xx大学全日制硕士专业学位论文磷酸铁形貌特征对磷酸铁锂电化学性能的影响磷酸铁形貌特征对磷酸铁锂电化学性能的影响摘要锂离子电池是第三代可充二次电池,因具有工作电压高、比容量较高、循环寿命长、对环境污染小等特点,近年来成为化学电源领域的研究热点,具有广阔的应用前景。
相对于Ni-Cd、Ni-MH及铅酸电池这类传统的二次电池来说,锂离子电池具有不可比拟的优点。
但目前锂离子电池还存在成本过高、安全性较差、功率密度低等不足,这些都限制了锂离子电池尤其是动力锂离子电池的广泛应用。
其中起着决定性作用的是正极材料,它不仅影响着锂离子电池的成本,而且还决定了电池的总体性能。
因此,对正极材料的研究是其中的关键。
传统的锂离子电池正极材料在价格、安全性、循环性能等方面存在着缺陷,例如钴酸锂安全性能差、价格昂贵且有毒,镍酸锂制备困难、安全性差,锰酸锂循环稳定性差、容量衰减快。
橄榄石型结构的磷酸铁锂(LiFePO4)以原料来源广泛、比容量高、价格低廉、对环境污染小、循环稳定性好、安全性高等优点,受到全球学术界和产业界的极大关注。
传统的高温固相法制备LiFePO4正极材料的铁源一般为二价铁,如草酸亚铁、乙酸亚铁等,但考虑到二价铁源成本较高,且合成过程中容易氧化,而且在工业生产中,用二价铁源合成LiFePO4时,会产生大量的CO2气体,不仅污染空气,还会对生产设备造成腐蚀,因此,近年来的研究逐渐转向成本低廉且不易氧化的三价铁源,如磷酸铁、氧化铁(Fe2O3)等。
近几年,以磷酸铁为原料的碳热还原法制备磷酸铁锂工艺得到了广泛的应用。
碳热还原法是用含三价铁的试剂作为铁源,将作为还原剂和导电剂的过量的碳源加入反应物与之充分混合,在高温下将三价铁还原为二价铁,制备得到产物。
磷酸铁路线的主要优点是工艺过程简单容易控制,可以通过对原材料的有效控制来有效提高产品的批次稳定性。
此法可应用于大规模生产中,是一种实用的技术路线。
在用磷酸铁为原料制备磷酸铁锂的过程中,磷酸铁的结构及形貌对磷酸铁锂产品的性能有很大的影响,不同的磷酸铁原料合成出的磷酸铁锂电化学性能相差非常大。
La掺杂对523型镍钴锰酸锂正极材料电化学性能的影响
La掺杂对523型镍钴锰酸锂正极材料电化学性能的影响王北平;薛同;邹忠利;马海明【摘要】文章研究了稀土元素La掺杂对镍钴锰酸锂LiNi0.5-xLaxCo0.2Mn0.3O2(x=0,0.05,0.08,0.12)的物相和电化学性能的影响.利用液相共沉淀法+固相煅烧工艺制备了目标产物,并综合利用XRD、恒电流充放电技术及交流阻抗技术对材料物理和电化学性能进行了表征.La掺杂量x=0.05样品的首次放电比容量为152.6 mAh/g,库伦效率为93.6%,在1C电流密度下,经过30次电化学循环后的容量保持率为95.9%;在5C充放电电流密度下,掺杂样品的放电比容量为115.3 mAh/g,达到0.2C下放电比容量的76.4%.La掺杂增加了三元材料沿c轴方向的晶格常数,为锂离子在晶格内部的脱嵌提供了更大的空间,提高了锂离子在晶体中的扩散速度,从而显著增强了材料高倍率充放电性能.【期刊名称】《可再生能源》【年(卷),期】2018(036)012【总页数】5页(P1849-1853)【关键词】锂离子电池;过渡金属氧化物;元素掺杂;电化学性能【作者】王北平;薛同;邹忠利;马海明【作者单位】北方民族大学材料科学与工程学院, 宁夏银川 750021;北方民族大学材料科学与工程学院, 宁夏银川 750021;北方民族大学材料科学与工程学院, 宁夏银川 750021;北方民族大学材料科学与工程学院, 宁夏银川 750021【正文语种】中文【中图分类】TK02;TM9120 引言锂离子电池正极材料三元过渡金属氧化物LiNi1-x-yCoxMnyO2(0<x<1,0<y <1)受到了越来越多的关注和研究[1]~[5]。
与 LiCoO2相比,三元过渡金属氧化物降低了材料成本,商业化应用领域逐步拓展。
但该类材料的高倍率充放电性能不如LiCoO2,限制了其在某些领域的应用。
为提高此类材料的结构稳定性和电化学性能,研究人员主要从两个方面进行改进,并取得了一定的成果。