职业学校高职模拟考试数学试卷

合集下载

2023年职业学院单招数学模拟试题(附答案解析)

2023年职业学院单招数学模拟试题(附答案解析)

2023年职业学院单招数学模拟试题(附答案解析)(时间:120分钟满分:150分)一、选择题:(本大题共12小题,每小题5分,共60分。

)1.已知抛物线,则它的焦点坐标是()A.B.c.(1,0)D.(0,1)2.若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式为,值域为{-1,-9}的“同族函数”共有().A.11个B.9个C.13个D.10个3.下表是某班数学单元测试的成绩单:全部同学的学号组成集合A,其相应的数学分数组成集合B,集合A中的每个学号与其分数相对应.下列说法:①这种对应是从集合A到集合B的映射;②从集合A到集合B的对应是函数;③数学成绩按学号的顺序排列:135,128,135,…,108,94,97组成一个数列,以上说法正确的是()A.①②B.①③C.②③D.①②③4.已知x=a+a-2(a>2),,则x ,y 之间的大小关系是()A.X>yB.x<yC.x=yD.不确定5.已知A 是三角形的内角,且sinA+cosA=1/2,则cos2A 等于()6.已知二面角的大小为60°,b 和c 是两条异面直线,则在下列四个条件中,能使b 和c 所成的角为60°的是()7.下列命题中正确的是()A .若a ∥α,βα⊥,则β⊥aB .若βα⊥,γβ⊥,则γα⊥C .若a α⊥,βα⊥,则a ∥βD .若α∥β,a α⊂,则a ∥β8.下图是某企业2000年至2003年四年来关于生产销售的一张统计图表(注:利润=销售额-生产成本).对这四年有以下几种说法:(1)该企业的利润逐年提高;(2)2000年-2001年该企业销售额增长率最快;(3)2001年-2002年该企业生产成本增长率最快;(4)2002年-2003年该企业利润增长幅度比2000年-2001年利润增长幅度大其中说法正确的是()A.(1)(2)(3)B.(1)(3)(4)C.(1)(2)(4)D.(2)(3)(4)9.已知O 为坐标原点,点(2,2)A ,M 满足2AM OM=,则点M 的轨迹方程为()A .22334480x y x y +++-=B .22334480x y x y +---=C .224440x y x y +++-=D .224440x y x y +---=10.抛物线y=上点A 处的切线与直线3r-y+1=0的夹角为45°,则点A 的坐标为()A.(-1,1)B.C.(1,1)D.(-1,1)或11.设函数冈的图象如右图所示,则导函数的图像可能为 A. B. C. D.12.有限数列,为其前n 项和,定义为A 的“凯森和”;如有2004项的数列的“凯森和”为2005;则有2005项的数列的“凯森和”为()A.2003B.2005C.2004D.2006二、填空题:(本大题共4小题,每小题4分,共16分.)13.圆上到直线x-y-4=0距离最近的点的坐标是____。

高职高考数学试卷模拟卷

高职高考数学试卷模拟卷

一、选择题(每题5分,共20分)1. 下列各数中,有理数是()。

A. √9B. √-16C. πD. 2√22. 如果 |a| = 3,那么 a 的值为()。

A. ±3B. ±4C. ±2D. ±13. 已知二次函数y = ax² + bx + c(a ≠ 0),如果它的图像开口向上,且顶点坐标为(1,-2),那么 a 的取值范围是()。

A. a > 0B. a < 0C. a ≥ 0D. a ≤ 04. 在等差数列 {an} 中,如果 a1 = 3,d = 2,那么第10项 an 的值为()。

A. 19B. 20C. 21D. 225. 若函数 f(x) = 2x + 1 在区间 [1, 3] 上单调递增,那么函数 g(x) = f(x) - 3 在区间 [1, 3] 上的单调性是()。

A. 单调递减B. 单调递增C. 先增后减D. 先减后增二、填空题(每题5分,共20分)6. 已知等差数列 {an} 的前n项和为 Sn,如果 S5 = 50,a1 = 2,那么 d =________。

7. 函数y = x² - 4x + 4 的图像与x轴的交点坐标为 ________。

8. 在直角坐标系中,点 A(2,3)关于 y 轴的对称点坐标为 ________。

9. 二项式定理 (a + b)ⁿ的展开式中,a³b⁷的系数为 ________。

10. 等比数列 {an} 的公比 q = 1/2,如果 a1 = 16,那么第5项 an 的值为________。

三、解答题(每题10分,共20分)11. 解下列方程组:\[\begin{cases}2x + 3y = 8 \\4x - y = 2\end{cases}\]12. 已知函数 f(x) = -3x² + 12x - 4,求函数 f(x) 的最大值。

四、应用题(15分)13. 一批货物由甲、乙两辆卡车运输,甲车每小时运输20吨,乙车每小时运输30吨。

杭州市高职考试数学模拟卷(最新)

杭州市高职考试数学模拟卷(最新)

浙江省高等职业技术教育招生考试数 学 模 拟 试 卷一、单项选择题(本大题共18小题,每小题2分,共36分)在每小题列出的四个1.如图,,,M P S 是全U 的子集,则阴影部分所表示的集合是( )A.()MP S B.()M P S C.()U M P C S D.()U M P C S2.不等式组2142x a x a ⎧->⎨-<⎩有解,则实数a 的取值范围是( ) A.(1,3)- B.(,1)(3,)-∞-+∞ C.(3,1)- D.(,3)(1,)-∞-+∞3.条件“tan()0αβ-=”是“tan tan 0αβ-=”的( )A.充分不必要条件B.必要不充分已经C.既不充分又不必要条件D. 充分必要条件4.已知2211(),()f x x f x x x -=+则函数的表达式为( ) A.223x x -+ B.221x x -+ C.22x + D.221(1)(1)x x -+- 5对任意,,,a b c R +∈,则下列等式正确的是( )A.()b c b c a a +=B.bb c c a a a-= C.lg (lg lg )lg b b a a =- D .lg lg lg()a b a b ⋅=+6.若等比数列{}n a 的前n 项和为3,nn S k k =+=则( ) A.0 B.2π C.32π D.65π 7.数列1,2,5,4,9,6,13,8,……,则此数列的第21项为( )A.34B.36C.41D.458.停车场可将12辆车停放在一排,当有8辆车已停放后,恰有4个空位连在一起,这种情况发生的概率为( ) A.8127C B.8128C C.8129C D. 81210C 9.如果从南、北两个方向分别有5条、3条路可以通往上顶,那么某人从一面上山由另一面下山,共有( )种走法.A.53+B.35⨯C.35D.5310.若角β的终边经过点(2,0)P -,则β是( )A .第二象限角 B. 第三象限角 C. 第四象限角 D. 非象限角11.如果4cos(),5πα+=-则下列等式成立的是( ) A.3sin 5α=- B.3tan 4α=C.34sin()25πα-=- D.4cos(2)5πα-= 12.若cos()cos(),244ππθθθ-+==则cos ( )13.9(2)x y -展开式中,第5项的二项式系数为( )A.59CB.59C -C.49CD.49C -14. 若,αβ是两个不重合的平面,在下列条件中可判断两平面平行的条件是( )A.,αβγ都垂直于平面B.αβ内不共线的三点到的距离相等 C.,,l m l m αββ是平面内的直线,且 D. ,,,,l m l m l m ααβα⊥是两条异面直线,且15.若0,0,0AC BC Ax By C <<++=则直线不经过( )A.第一象限B.第二象限C.第三象限D. 第四象限16.过点(1,),(,6)A m B m -的直线与直线210x y -+=垂直,则m 的值为( ) A.6- B.8-C. 9-D.017.与圆224630x y x y +-+-=的圆心相同,且圆经过点(1,1)-的圆的方程为( )A.22(2)(3)25x y -++=B.22(2)(3)5x y -++=C.22(2)(3)25x y ++-=D.22(2)(3)5x y ++-=18.已知抛物线的顶点为原点,对称轴为 x 轴,焦点在直线34120x y --=上,则抛物线的方程式( )A.216y x =- B. 216y x = C.212y x =- D. 212y x =二、填空题(本大题共8小题,每小题3分,共24分)19.用符号表示结论:“三个数,,x y z 不全为零”20.比较大小:0.10.7 0.20.6.21.函数()21f x x =+的图像具有的对称特征是22.在直角坐标系中,单位圆上两点111222(,),(,),P x y P x y O 为原点,12cos POP ∠则 21cos()POX POX =∠-∠= 23.长方体1111ABCD A BC D -中,棱11113,4,AA AB B C A BCD ==则直线与平面 的距离 .24.已知413,(0,),cos ,tan ,tan()259παβαβαβ∈==-=则 25.焦点在x 轴上的椭圆2211log 892P x y e +==的离心率,则p= 26.数列9,99,999,9999,……的一个通项公式是n a = .三、解答题(本大题共8小题,共60分)解答应写出文字说明及演算步骤.27. (本题满分6分) 由1,2,3,4四个数字组成的没有重复数字的四位数中,求共有多少个比1234大的四位数.28. (本题满分7分)在首项为1a 的等差数列{},,.n n m m n a a m a n S +==中,已知求29. (本题满分7分) 设2212,14x F F y -=是双曲线的两焦点,点P 是双曲线上一点,121290,.F PF PF ︒∠=且F 求面积S30. (本题满分7分)若A ABC ∠是的最大内角,函数sin cos y A A =-的值域.31.(本题满分8分) 已知(1,2),(,1),22a b x a b a b ==+-当与平行时,求:(1)x 的值;(2)a b +.32. (本题满分8分) 求值: (1)79sin()6π- (2)24cos cos cos ;777πππ⋅⋅33. (本题满分8分)求过圆22:82120C x y x y +--+=内一点(3,0)Q 的最长弦和最短弦所在的直线方程.34. (本题满分9分)如图,用一棱长为a 的正方体,制作一以各面中心为顶点的正八面体.求:(1) 此正八面体的表面积S ;(2) 此正八面体的体积V .。

职高数学高三模拟试卷

职高数学高三模拟试卷

考试时间:120分钟满分:100分一、选择题(每题5分,共30分)1. 已知函数$f(x) = x^2 - 4x + 4$,则$f(2)$的值为:A. 0B. 2C. 4D. 82. 若$a > b$,则下列不等式中正确的是:A. $a^2 > b^2$B. $\frac{1}{a} > \frac{1}{b}$C. $a - b > 0$D. $a + b > 0$3. 已知等差数列$\{a_n\}$的前$n$项和为$S_n$,若$S_5 = 20$,$S_9 = 54$,则该数列的公差为:A. 1B. 2C. 3D. 44. 函数$y = \frac{1}{x}$的图像是:A. 一条直线B. 一条抛物线C. 一条双曲线D. 一条指数曲线5. 在直角坐标系中,点$A(2, 3)$关于直线$y = x$的对称点为:A. $B(-2, -3)$B. $B(-3, -2)$C. $B(3, 2)$D. $B(2, 3)$二、填空题(每题5分,共20分)6. 若$|x - 1| = 3$,则$x$的值为______。

7. 若$a = 3$,$b = 4$,则$(a + b)^2 - 2ab$的值为______。

8. 等差数列$\{a_n\}$的通项公式为$a_n = 2n + 1$,则该数列的第10项为______。

9. 函数$y = -x^2 + 4x - 3$的图像与$x$轴的交点坐标为______。

10. 若$\angle A = 45^\circ$,$\angle B = 90^\circ$,则$\angle C$的度数为______。

三、解答题(共50分)11. (10分)已知函数$f(x) = x^3 - 3x^2 + 4x + 2$,求:(1)$f(2)$的值;(2)函数$f(x)$的零点。

12. (15分)已知等差数列$\{a_n\}$的前$n$项和为$S_n$,若$S_5 = 20$,$S_9 = 54$,求:(1)该数列的首项和公差;(2)求该数列的前10项和。

职高数学高三模拟试卷答案

职高数学高三模拟试卷答案

一、选择题(每题5分,共50分)1. 下列各数中,无理数是()A. √2B. 0.1010010001...C. 3.14159D. -1/3答案:A2. 函数 y = -2x + 1 的图像是()A. 一次函数图像B. 二次函数图像C. 反比例函数图像D. 指数函数图像答案:A3. 已知 a、b 是实数,且 a + b = 0,则 a^2 + b^2 的值是()A. 1B. 0C. -1D. 无法确定答案:B4. 下列各对数式中,相等的是()A. log2(8) = 3B. log3(27) = 2C. log4(16) = 2D. log5(25) = 1答案:D5. 已知函数 y = 2x - 3,当 x = 2 时,y 的值为()A. 1B. 3C. 5D. 7答案:C6. 下列各数中,属于等差数列的是()A. 1, 3, 5, 7, 9B. 2, 4, 8, 16, 32C. 1, 2, 4, 8, 16D. 3, 6, 9, 12, 15答案:A7. 已知等比数列的前三项分别为 2, 6, 18,则该数列的公比是()A. 1B. 2C. 3D. 6答案:B8. 在直角坐标系中,点 P(2, 3) 关于直线 y = x 的对称点坐标是()A. (3, 2)B. (2, 3)C. (-3, -2)D. (-2, -3)答案:A9. 下列各函数中,奇函数是()A. y = x^2B. y = |x|C. y = x^3D. y = x^4答案:C10. 已知等差数列的前三项分别为 3, 7, 11,则该数列的通项公式是()A. an = 4n - 1B. an = 2n + 1C. an = 4n + 1D. an = 2n - 1答案:A二、填空题(每题5分,共25分)11. 函数 y = x^2 - 4x + 4 的最小值是 ________。

答案:012. 已知 a、b 是实数,且 |a| = |b|,则 a + b 的值是 ________。

中职生高考模拟数学试卷

中职生高考模拟数学试卷

一、选择题(每题5分,共50分)1. 下列各数中,有理数是()A. √16B. √-1C. √3D. √02. 已知 a > b,那么下列不等式中正确的是()A. a + 1 > b + 1B. a - 1 > b - 1C. a + 1 < b + 1D. a - 1 < b - 13. 下列函数中,是反比例函数的是()A. y = x^2B. y = 2x + 3C. y = kx(k ≠ 0)D. y = 3/x4. 已知三角形的三边长分别为3,4,5,则这个三角形的形状是()A. 直角三角形B. 锐角三角形C. 钝角三角形D. 等腰三角形5. 下列各式中,正确的是()A. 2^3 = 2^2 2B. 3^4 = 3^2 3C. 4^3 = 4^2 4D. 5^4 = 5^2 56. 在平面直角坐标系中,点A(-2,3)关于原点的对称点是()A.(-2,-3)B.(2,3)C.(2,-3)D.(-2,-3)7. 下列各组数中,成等差数列的是()A. 2,4,8,16B. 1,3,5,7C. 1,2,4,8D. 1,2,3,48. 若 a,b,c 是等差数列,且 a + b + c = 12,那么 a + c 的值是()A. 4B. 6C. 8D. 109. 下列函数中,奇函数是()A. y = x^2B. y = 2x + 1C. y = |x|D. y = x^310. 下列各式中,正确的是()A. sin(π/2) = 1B. cos(π/2) = 1C. tan(π/2) = 1D. cot(π/2) = 1二、填空题(每题5分,共50分)11. 若 a > b,那么 a - b 的符号是 _______。

12. 若 x^2 - 5x + 6 = 0,则 x 的值为 _______。

13. 函数 y = 3x^2 - 2x + 1 的顶点坐标是 _______。

2024年5月浙江省高职考模拟试数学试卷

2024年5月浙江省高职考模拟试数学试卷

2024年5月浙江省高职考模拟试数学试卷姓名:______ 准考证号:______本试题卷共三大题,共4页,满分150分,考试时间120分钟.考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效.一、单项选择题(本大题共20小题,1~10小题每小题2分,11~20小题每小题3分,共50分.)(在每小题列出的四个备选答案中,只有一个是符合要求的,错涂、多涂或未涂均无分.)1. 已知集合, 0,1,3B ,则A B ( )A. 1B. 0,1C. 1,0,1D. 1,0,1,22. 直线x 的倾斜角为( )A. 30B. 45C. 60D. 903. 点 0,1A 关于点 10B ,的对称点C 的坐标为( ) A. 2,1 B. 12 C. 11,22 D. 0,24. 若a b ,则下列不等式正确的是( ) A. 11a b B. 22ac bc C. 22a b D. 22a b5. 已知直线l :220x y 与两坐标轴交于A ,B 两点,则AB ( )A. 1B.C. 2D. 56. 解集为 ,01, 的不等式(组)为( )A. 221x xB. 211xC. 01x xD. 1011x x7. 双曲线22184x y 的虚轴长为( )A. 2B.C. 4D.8. 如图所示,正六边形ABCDEF 的边长为1,O 为正六边形的中心,则OA CD ( )A. FOB. 0C. 1D. 29. 下列函数在 e,π上是减函数的是( )A. 1y xB. 3x yC. ln y xD. π,0e,0x y x 10. 中国载人月球探测工程已经具备全面开展工程实施的条件,未来计划从4名男航天员和2名女航天员中选择3人送入环月轨道,则其中有且仅有一名女航天员被选中的选法有( )A. 2种B. 4种C. 6种D. 12种11. 已知二次函数的图像如图所示,根据图中提供的信息,使得 3f x 成立的x 的取值范围为( )A. 0,2B. 0,2C. 1,3D. 1,3 12. 若2 ,4sin 5,则 cos ( ) A. 35B. 35C. 45D. 45 13. 函数 lg 3x f x x x的定义域为( ) A. 0,B. 0,3C. 0,33,D. 0,33, 14. “1n ”是“3C 3n ”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 15. 下列说法正确的是( )A. 过直线外一点有且只有一条直线与这条直线平行B 过直线外一点有且只有一个平面与这条直线平行C. 如果两条直线与同一个平面所成的角相等,则这两条直线一定平行D. 空间中与两条异面直线都垂直的直线只有一条16. 已知tan22 ,则2sin2cos22cos 1的值是( )A. 2B. 2C. 1D. 117. 两人玩“石头、剪刀、布”游戏,则两人同时出石头的概率是( ) A. 13 B. 16 C. 19 D.23 18. 在等比数列 n a 中,已知1a ,4045a 是方程210160x x 的两根,则2023a ( )A. 8B. 8C. 4D. 4 19. 已知直线260kx y 与直线 2110x k y k 平行,则k 等于( )A. 1B. 2C. 1 或2D. 0或120. 已知点 4,5A ,抛物线28x y 的焦点为F ,P 为抛物线上与直线AF 不共线的一点,则PAF △周长的最小值为( )A. 18B. 13C. 12D. 7二、填空题(本大题共7小题,每小题4分,共28分.)21. 已知函数 2log ,02,0x x x f x x ,则12f f ______. 22. 若1x ,则41x x 取得最小值时x 值为______. 23. 一个边长为2米的正方体容器中放入了一个与各面都相切的实心球,现在往正方体容器里注水,最多能注水______立方米.(π取3)24. 102x x______. 25. 已知圆C :2220x y y F 与x 轴相切,则圆C 标准方程为______.26. 已知(0,π),且cos 2,则 _____________. 27. 已知数列 n a 满足10a,1n a ,则其前2023项的和2023S ______. 三、解答题(本大题共8小题,共72分.解答需写出文字说明及演算步骤.)28. 计算:25π3sin 20236420231log 25C 8 . 29. 已知直线l 经过两点 0,4A , 2,6B .(1)求直线l 的方程;(2)若直线l 被圆心为 5,3的圆C 所截得的弦长为4,求圆C 的标准方程.的的30. 已知函数 πππcos 22sin cos 344f x x x x.求: (1)函数 f x 的最小正周期T 和值域;(2)函数的单调递增区间.31. 在四棱锥P ABCD 中,底面ABCD 是边长为2的正方形,PC PD 且PC PD ,二面角A CD P 为直二面角.(1)求四棱锥P ABCD 的体积;(2)求二面角P AB D 的正切值.32. 如图,梯形ABCD 中,//AD BC ,2AD ,8BC ,45B ,75C .(1)求CD 长;(2)求梯形ABCD 面积.33. 第十九届亚运会将于2023年9月23日在杭州举行,此次亚运会吉祥物的组合名为“江南忆”,它是一组承载深厚底蕴和充满时代活力的机器人.现指定某工厂专项生产该吉祥物,通过市场调查,生产x 万套收入W x 万元, 2120100,03244350,38x x W x x x x ,生产这种吉祥物的成本为 2020x 万元.根据市场调研,该吉祥物销路畅通,供不应求.(1)求利润 f x 的函数解析式;(2)当产量为多少万套时,该产品利润最大?最大利润是多少?34. 已知等差数列 n a 中,14a ,12324a a a ,求:(1)数列 n a 的前n 项和n S ;(2)若数列 n b 满足:11b a ,12n n nb b S ,求数列 n b 的通项公式. 35. 已知椭圆C : 222210x y a b a b ,四点 11,1P , 20,1P,31,2P,41,2P中恰有三点在椭圆C 上.(1)求椭圆的标准方程;(2)经过椭圆的左焦点且倾斜角为45 的直线l 与椭圆交于A ,B 两点,点Q 是椭圆上一动点,求ABQ 的最大面积.的的参考答案BDACB BCCBD DACAA CCDAC21.12##0.522. 3 23. 4 .24. 45 25. 2211x y 26. 5π6 27. 028. 计算:25π3sin 20236420231log 25C 8 .原式23113224211log 45221121221542122. 29. 已知直线l 经过两点 0,4A , 2,6B .(1)求直线l 的方程;(2)若直线l 被圆心为 5,3的圆C 所截得的弦长为4,求圆C 的标准方程.(1)直线经过两点 0,4A , 2,6B所以斜率64120k , 所以直线l 的方程为:4y x ,化为一般式方程为:40x y .(2)直线l 被圆心为 5,3的圆C 所截得的弦长为4,所以圆心 5,3到直线l的距离d,所以半径r , 所以圆C 的标准方程为: 225312x y .30. 已知函数 πππcos 22sin cos 344f x x x x.求:(1)函数 f x 的最小正周期T 和值域;(2)函数的单调递增区间.函数 πππcos 22sin cos 344f x x x xπππcos2cos sin2sin sin2334x x x1πcos2sin2sin 2222x x x1cos2sin2cos222x x x1sin2cos222x xπsin 26x故函数 f x 最小正周期2ππ2T ,值域为 1,1由(1)知 πsin 26f x x当πππ2π22π262k x k ,Z k 时,函数单调递增 解得ππππ63k x k ,Z k 时,函数单调递增 即函数的单调递增区间为πππ,πZ 63k k k.31. 在四棱锥P ABCD 中,底面ABCD 是边长为2的正方形,PC PD 且PC PD ,二面角A CD P 为直二面角.(1)求四棱锥P ABCD 的体积;(2)求二面角P AB D 的正切值.【小问1详解】设CD 的中点为M ,连接PM的在等腰直角PCD 中,CD 的中点为M ,∴PM CD ,∵二面角A CD P 为直二面角,PM 面PCD ,∴PM 平面ABCD ,即线段PM 为四棱锥P ABCD 的高,在等腰直角PCD 中,2CD ,∴1PM , ∴114221333P ABCD ABCD V S PM 正方形, 故四棱锥P ABCD 的体积为43. 【小问2详解】设AB 中点为N ,连接MN ,PN由于M ,N 为正方形ABCD 中点,显然AB MN ①,又∵PM 平面ABCD ,AB 平面ABCD ,∴AB PM ②,∴PM MN M ,,PM MN 面,∴AB 面PMN ,又∵PN 面PMN ,∴AB PN ,∴PNM 为二面角P AB D 的平面角,Rt PMN △中,1PM ,2MN , 故1tan 2PM PNM MN , 即二面角P AB D 的正切值为12.32. 如图,梯形ABCD 中,//AD BC ,2AD ,8BC ,45B ,75C .(1)求CD 的长;(2)求梯形ABCD 的面积.【小问1详解】如图,过点A 作//AE CD 交BC 于点E ,因为//AD BC ,所以AECD 为平行四边形,所以AE CD ,AD EC ,又2AD ,8BC ,45B ,75C则826BE BC AD ,75AEB C ,180457560BAE 由sin sin AE BE B BAE 得:6sin45sin60AE解得AE ,即CD 【小问2详解】因为75C ,6BE ,CD 2EC所以4sin sin 75sin(4530)sin 45cos30cos 45sin 30C, 所以ABE AECD ABCD S S S 梯形 1sin sin 2BE CD C EC CD C 16sin752sin75216224415 .33. 第十九届亚运会将于2023年9月23日在杭州举行,此次亚运会吉祥物的组合名为“江南忆”,它是一组承载深厚底蕴和充满时代活力的机器人.现指定某工厂专项生产该吉祥物,通过市场调查,生产x 万套收入W x 万元, 2120100,03244350,38x x W x x x x ,生产这种吉祥物的成本为 2020x 万元.根据市场调研,该吉祥物销路畅通,供不应求.(1)求利润 f x 的函数解析式;(2)当产量为多少万套时,该产品利润最大?最大利润是多少?【小问1详解】当03x 时,120100202010080f x x x x ,当38x 时,22443502020f x x x x2224330x x , 所以函数解析式为 210080,03224330,38x x f x x x x. 【小问2详解】①当03x 时, 10080f x x 单调递增当3x 时,函数有最大值为380(2)当38x 时,222243302(6)402f x x x x即当6x 时,函数有最大值为402∴402380∴当产量为6万套时,利润最大,最大为402万元.34. 已知等差数列 n a 中,14a ,12324a a a ,求: (1)数列 n a 的前n 项和n S ;(2)若数列 n b 满足:11b a ,12n n nb b S,求数列 n b 通项公式. 【小问1详解】在等差数列 n a 中,设公差为d ,∵12324a a a∴ 111224a a d a d∴4d , 的∴数列 n a 的通项公式为 4414n a n n , ∴ 12442222n n a a n n n S n n . 【小问2详解】∵114b a ,由12n n nb b S 知, 1221221n n b b n n n n, ∴21112b b , 32123b b , …111n n b b n n, 将上一组等式累加得:111112231n b b n n11111112231n n(裂项相消) 11n, ∴15114n n b n n.35. 已知椭圆C : 222210x y a b a b ,四点 11,1P , 20,1P ,31,2P ,41,2P中恰有三点在椭圆C 上.(1)求椭圆的标准方程;(2)经过椭圆的左焦点且倾斜角为45 的直线l 与椭圆交于A ,B 两点,点Q 是椭圆上一动点,求ABQ 的最大面积.【小问1详解】因为椭圆关于x 轴对称,关于y 轴对称,关于原点中心对称所以31,2P,41,2P必在椭圆上,则 11,1P 就不在椭圆上, 20,1P 在椭圆上. 故椭圆经过点 20,1P,31,2P,41,2P这三点,则有22222222011211a b a b ,解得2a ,1b , ∴椭圆的标准方程为2214x y . 【小问2详解】由(1)可知,c ,∴椭圆的左焦点为.∵tan415k ,∴直线l的方程为y x .设 11,A x y , 22,B x y ,则2214y x x y ,消去y得2580x ,∴12x x ,1285x x ,∴12855AB x设过点Q 且与直线l 平行的直线方程为y x m ,此直线与椭圆相切且这两条平行线间距离最大的时候面积最大时,ABQ 的面积最大. 即有2214y x m x y 消去y 得 2258410x mx m ,∵ 22Δ(8)45410m m ,∴m当m 时,12d ,当m 时,22d, ∵21d d ,∴22h d ,∴ABQ 的最大面积为182525 .。

中职数学 2024年浙江省高职理论考临海、温岭、玉环县高考数学模拟试卷

中职数学 2024年浙江省高职理论考临海、温岭、玉环县高考数学模拟试卷

2024年浙江省高职理论考临海、温岭、玉环县高考数学模拟试卷一、单项选择题(本大题共20小题,1~10小题每小题2分,11~20小题每小题2分,共50分)(在每小题列出的四个案中,只有一个是符合要求的,错涂、多涂或未涂均无分.)A .{2,0}B .{-2,4}C .{0,4}D .{-2,0,2,4}1.(2分)已知全集U ={-2,0,2,4},集合A ={2,0},则如图中阴影部分表示的集合为( )A .(-4,8)B .(2,8)C .(8,2)D .(2,2)2.(2分)点A (4,0)关于点B (0,4)的对称点的坐标为( )A .B .C .D .3.(2分)直线x -y =0的倾斜角是( )M 3π6π32π35π6A .充分条件B .必要条件C .充要条件D .既不充分又不必要条件4.(2分)设x ∈R ,则“x >2”是“x 3>8”的( )A .(x -1)(4-x )>0B .|x -1|<4C .D .≤05.(2分)函数y =f (x )的图像如图所示,下列不等式中,解集与f (x )<0相同的是( ){x <1x >4x -1x -46.(2分)函数y =•lgx 的定义域为( )M 1-xA .(0,1]B .(0,1)C .(1,+∞)D .(0,1)⋃(1,+∞)A .30°B .168°C .πD .47.(2分)已知sinαcos 168°>0,则α的值可能为( )A .6种B .12种C .24种D .48种8.(2分)有4名同学参加演讲比赛,甲第一位出场的排法有( )A .f (-4)=f (4)B .函数在[3,6]上的最大值为f (3)C .f (4)>f (5)D .函数在[-6,-3]上单调递减9.(2分)函数f (x )关于y 轴对称,且f (x )在[3,6]上是减函数,下列不正确的选项是( )A .(0,-1)B .(0,1)C .(1,0)D .(-1,0)10.(2分)已知圆x 2+y 2+Dx -3=0经过点A (-1,2),则圆的圆心坐标为( )A .B .-C .D .-11.(3分)已知tanα=,且tan (α+β)=1,则tanβ的值为( )3417173434A .7B .6C .5D .412.(3分)抛物线y 2=8x 上点M 到直线x =-1的距离为5,F 为焦点,则|MF |=( )13.(3分)已知函数y =x 2-1与x 轴交于A 、B 两点,点P 为圆(x -3)2+y 2=8上一动点,则△PAB 面积的最大值是(A .3B .2C .3D .4M 2M 2M 2A .平行B .相交C .异面且垂直D .异面但不垂直14.(3分)如图所示,正四棱锥P -ABCD 中,点E 为PB 中点,则AC 与DE 的位置关系为( )A .36B .37C .38D .3915.(3分)已知数列{a n }中,a 1=1,a 2=4,a 3=9,且{a n +1-a n }是等差数列,则a 6=( )A .B .C .D .16.(3分)为了弘扬“孝心文化”,台州市某职业学校开展为父母捶背活动,要求同学们在某周的周一至周五任选两天为父母背,则该校的甲同学连续两天为父母捶背的概率为( )710352512A .(-4,-2)B .(-4,0)C .(2,4)D .(4,2)17.(3分)已知点N (0,1),MP =(-1,1),MN =(3,2),则点P 的坐标为( )→→A .B .C .D .18.(3分)已知tan (θ+)=2,则co (θ+)=( )π6s 2π6453107101519.(3分)已知F 1、F 2是椭圆+=1(a >b >0)的两个焦点,过点F 2的直线与椭圆交于A ,B 两点.若|AF 1|:|ABF 1|=5:12:13,则该椭圆的离心率为( )x 2a 2y 2b2二、填空题(本大题共7小题,每小题4分,共28分)三、解答题(本大题共8小题,共72分)(解答需写出文字说明及演算步骤)A .B .C .D .M 52M 32M 53M 22A .36分钟B .37分钟C .41分钟D .46分钟20.(3分)某学校组织团员举行“江南长城文化节”宣传活动,从学校骑自行车出发,先上坡到达甲地后,宣传了5分钟,然后下坡到乙地又宣传了5分钟返回,上坡和下坡均按原来速度保持不变,行程情况如图所示.若返回时,在甲地仍要宣传5分钟,那么他们从乙地原路返回学校所用的时间是( )21.(4分)已知数列-1,-2,x ,y 前三项成等比,后三项成等差,则xy = .22.(4分)直线y =x +1与双曲线x 2-y 2=1的交点个数为.23.(4分)的展开式中,记二项式系数之和为m ,常数项的值为n ,则m +n =.(-)√x 1x624.(4分)已知α∈(0,π),2sinαcosα=cos 2α,则α= .M 325.(4分)将边长为2的正三角形绕着它一边上的高旋转一周,所得几何体的侧面积为 .26.(4分)折扇轻摇,清风徐来,炎炎夏日尽收眼底.如图所示,一把折扇完全展开后,得到的扇形OAB 的面积为900cm 2,当该折扇的周长最小时,OA 的长度为.27.(4分)某研究机构通过研究学生的“日能力值”来激励学生.假设甲和乙刚开始的“日能力值”相同,在往后的学习过程勤奋学习,乙疏于学习.通过研究发现,经过n 天之后,甲的“日能力值”是乙的T 倍,n 与T 有如下关系:n =.若“日能力值”是乙的20倍,则至少需要经过天.(参考数据:lg 102≈2.0086,lg 99≈1.9956,lg 2≈0.3010)lgT lg 102-lg 9928.(5分)计算:-lg 4-2lg 5+++2sin .()169-12M (1-)M 23C 2024202411π429.(5分)如图所示,已知△ABC 为等腰三角形,∠A =120°,AC =2,点E 为AB 延长线上一点,且B E =AB .(1)求CE 的长;(2)求∠BCE 的正弦值.30.(10分)已知圆C 的圆心坐标为(1,-2),且过点(2,-2).(1)求圆C 的标准方程;(2)过点P (5,0)作斜率为1的直线l 交圆C 于A 、B 两点,与点P 较近的点为B ,求线段PB 的长.M 331.(10分)如图所示,已知四棱锥P -ABCD ,底面ABCD 为菱形,AC ,BD 交于点O ,PD ⊥平面ABCD ,且PD =AD =2,∠ABC =120°.(1)求四棱锥P -ABCD 的体积;(2)求半平面PAC 与底面ABCD 所成二面角的余弦值.32.(10分)函数f (x )=Asin (ωx +φ)(ω>0,|φ|<)的部分图像如图所示,且|MN |=2.(1)求函数f (x )的解析式;(2)若点P 为图像上一点,且锐角△MNP 的面积为,求点P 的坐标.π2M 233.(10分)某公司生产一类电子芯片,且该芯片的年产量不超过35万件,每万件电子芯片的计划售价为16万元.已知生产电子芯片的固定成本为30万元/年,每生产x (万件)电子芯片需要投入的流动成本为y (万元)的部分数据如下:x (万件)34562025y (万元)184828036180311033根据市场调查分析,当0≤x ≤14时,流动成本y (万元)与年生产x (万件)之间满足函数模型y =ax 2+bx ;当14<x ≤35时动成本y (万元)与年生产x (万件)之间满足函数模型y =kx +-80.假设该公司每年生产的芯片都能售完.(1)求流动成本y (万元)关于年生产x (万件)的函数关系式;(2)写出年利润g (x )(万元)关于年产量x (万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)(3)为使公司获得的年利润最大,每年应生产多少万件该芯片?400x34.(10分)如图所示,已知双曲线C :-=1(a >0,b >0)的一个顶点为(1,0),离心率为2,直线l :y =x +2与双曲线C 交于A 、B 两点.(1)求双曲线的标准方程;(2)若在x 轴上存在点P ,使△PAB 是以P 为顶点的等腰三角形,求点P 的坐标;(3)在(2)的条件下,求△PAB 的面积.x 2a 2y 2b21235.(12分)已知数列{a n }满足=2(n ∈),a 1=1,a 2=2.(1)求a 3,a 4,a 5的值;(2)求{a n }的通项公式;(3)设=,求数列{b n }的前n 项和为S n .a n +2a n N *b n log 2a2na 2n -1。

高职高考数学模拟试卷(一)课件

高职高考数学模拟试卷(一)课件

(2)当x∈N*时,f(1),f(2),f(3),f(4),…构成一数列,求其通项公式.
【解】 (2)f(1)=5,f(x)-f(x-1)=3, f(x)构成的数列为首项为5,公差为3的等差数列. 则f(x)=5+3(x-1)=3x+2(x∈N*).
24.(本小题满分14分) 两边靠墙的角落有一个区域,边界线正好是椭圆轨迹的部分,
【答案】A 【解析】由lg(x-2)≥0得x≥3,答案选A.
8.在等比数列{an}中,若a2=3,a4=27,则a5= ( )
A.-81
B.81
C.81或-81 D.3或-3
9.抛掷一颗骰子,落地后,面朝上的点数为偶数的概率等于( )
A.0.5
B.0.6
C.0.7
D.0.8
11.函数y=sin2x+cos 2x的最小值和最小正周期分别为 ( )
2.已知函数f(x+1)=2x-1,则f(2)= ( )
A.-1
B.1
C.2
D.3
【答案】B 【解析】 f(2)=f(1+1)=21-1=1.
3.“a+b=0”是“a·b=0”的 ( )
A.充分条件
B.必要条件
C.充要条件
D.既非充分又非必要条件
【答案】D 【解析】 a+b=0⇒a·b=0,a·b=0⇒a+b=0,故选D.
于(a,b),给出的下列四个结论:
①a=ln b ②b=ln a ③f(a)=b ④当x>a时,f(x)<ex
其中正确的结论共有
()
A.1个
B. 【解析】因为两个函数图像都经过点(a,b),所以f(a)=b,ea=b,
又y=ex在(a,+∞)上增函数,y=f(x)为减函数,所以f(x)<ex.

四川省中职单招考试模拟题数学试题及答案

四川省中职单招考试模拟题数学试题及答案

四川省中职单招考试模拟题数学试题及答案一、选择题(每题4分,共40分)1. 下列函数中,奇函数是()A. f(x) = x^3 - 2xB. f(x) = x^2 + 1C. f(x) = 2x - 1D. f(x) = |x|答案:A2. 若函数f(x) = 2x + 1在区间(0,+∞)上单调递增,那么函数g(x) = -2x + 1在区间(0,+∞)上()A. 单调递增B. 单调递减C. 先增后减D. 先减后增答案:B3. 下列各数中,无理数是()A. √9B. √16C. √3D. √1答案:C4. 已知a、b是方程x^2 - (a+2)x + b = 0的两根,则a + b的值为()A. 2B. 3C. 4D. 5答案:B5. 下列关于x的不等式中,有解的是()A. x^2 + 1 < 0B. x^2 + 2x + 1 < 0C. x^2 - 4x + 3 < 0D. x^2 + 2x - 3 < 0答案:D6. 已知等差数列的前三项分别为a-1, a+1, 2a+1,那么该等差数列的公差为()A. 2B. 1C. -1D. 0答案:A7. 若函数f(x) = 2x - 3在区间(-∞,0)上单调递减,那么函数g(x) = 3x + 2在区间(0,+∞)上()A. 单调递增B. 单调递减C. 先增后减D. 先减后增答案:A8. 已知函数f(x) = x^2 - 2x + c在x = 1处取得最小值,那么c的值为()A. 0B. 1C. -1D. -3答案:B9. 已知a > b,那么下列不等式中成立的是()A. a^2 > b^2B. a^3 > b^3C. a^4 > b^4D. a^5 > b^5答案:B10. 若a、b是方程x^2 - 3x + 2 = 0的两根,那么a^2 + b^2的值为()A. 5B. 7C. 9D. 11答案:D二、填空题(每题4分,共40分)11. 若函数f(x) = 2x - 3在区间(-∞,0)上单调递减,那么函数g(x) = 3x + 2在区间(0,+∞)上的单调性为______。

高职高考数学模拟试卷(四)课件

高职高考数学模拟试卷(四)课件

7.直线x-y+1=0与圆x2+y2=1的位置关系为
()
A.相切
B.相交但直线不过圆心
C.相交且直线过圆心
D.相离
8.在等差数列{an}中,若a3+a4+a5+a6+a7=20,则S9=
()
A.20
B.9
C.72
D.36
9.下列函数中,在区间(-∞,0)上是减函数的是
A.y=2x
B.y=log2x C.y=x-1
17.函数f(x)=(sin x-cos x)2-1的最小正周期为
.
18.从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一
个数的两倍的概率为
.
20.已知直线l过点(1,0)且垂直于x轴,若直线l被抛物线y2=2ax截得
的线段长为4,则此抛物线的焦点坐标为
.
【答案】 (1,0) 【解析】由条件可知,直线l与抛物线y2=2ax的交点坐标为(1,±2), 把点(1,2)代入抛物线的方程,得22=2a,解得a=2, 所以抛物线的方程为y2=4x,故焦点坐标为(1,0).
() D.y=x3
【答案】 C 【解析】 函数y=2x在区间(-∞,0)上是增函数; 函数y=log2x在区间(-∞,0)上无意义; 函数y=x-1在区间(-∞,0)上是减函数; 函数y=x3在区间(-∞,0)上是增函数. 或用图像法解.故选C.
11.设x∈R,则“x2>4”是“|x|>2”的 ( )
高职高考数学模拟试卷(四)
一、选择题(本大题共15小题,每小题5分,满分75分.在每小题给出的四个选
项中,只有一项是符合题目要求的.)
1.设全集U={1,3,5,7,9},集合A={3,7,9},则∁UA= ( )

2024年高职单独招生考试数学模拟试题及答案

2024年高职单独招生考试数学模拟试题及答案

2024年高职院校单独招生考试数学题库一、选择题1、若集合S={-2,0,2},则(A)A.2∈SB.-2∉S2、若集合S={a,b,c},则C.1∈S(A)A.a∈SB.b∉S3、若集合S={-2,0,2},则C.d∈S(A)A.-2∈SB.2∉S4、若集合S={-2,0,2},则C.1∈S(A)A.0∈SB.2∉SC.1∈S5、30︒=弧度(C)A.πB.3π C.π266、45︒=弧度(A)A.πB.4π C.π267、90︒=弧度(B)A.πB.3π C.π268、60︒=弧度(A)A.πB.3π C.π269、等差数列{a n}中,a1=1,a2=4,则A.7B.8C.9a3=(A)10、等差数列{a n}中,a1=2,a2=5A.7B.8C.9,则a3=(B)11、等差数列{a n}中,a1=-5,a2=-1,则A.3B.8C.9a3=(A)12、等差数列{a n}中,a1=1,a2=5A.7B.8C.9,则a3=(C)13、cosπ的值是(A)3A.1B.22 C.3 2214、sinπ的值是(C)3A.1B.22 C.3 2215、cosπ的值是(C)6A.1B.22 C.3 2216、sinπ的值是(B)4A.12B.22 C.3217、log216=(C)A.218、log39=B.3 C.4(A)A.219、log327=B.3 C.4(B)A.2B.3C.420、log381=(C)A.2B.3C.421、已知:sin α<0,tan α>0,则角α是(A )A.第三象限角B.第二象限角C.第四象限角22、已知:sin α>0,tan α<0,则角α是(B )A.第三象限角B.第二象限角C.第四象限角23、已知:tan α<0,cos α>0,则角α是(C )A.第三象限角B.第二象限角C.第四象限角24、已知:tan α<0,cos α<0,则角α是(B )A.第三象限角B.第二象限角C.第四象限角25、直线y =x -1的倾斜角为(A )A.π B.4πC.π3626、直线y =x +8的倾斜角为(A )A.π B.4πC.π3627、直线y =x +5的倾斜角为(A )A.π B.4πC.π3628、直线y =-x +5的倾斜角为(A )A.3π B.4πC.π3629、实数12与3的等比中项为(B )A.-6B.±6C .630、实数1与16的等比中项为(B )A.-4B.±4C .431、实数2与32的等比中项为(B )A.-8B.±8C .832、实数4与9的等比中项为(B )A.-6B.±6C.633、已知正方体的边长是1,则正方体的体积为(A )A.1B.8C.2734、已知正方体的边长是2,则正方体的体积为(B)A.1B.8C.2735、已知正方体的边长是4,则正方体的体积为(A)A.64B.8C.2736、已知正方体的边长是3,则正方体的体积为(C)A.1B.8C.2737、已知角A为第一象限角,cos A=4,则sin A=5(B)A.2B.53 C.4 5538、已知角A为第二象限角,sin A=3,则cos A=5(C)A.-25B.-35C.-4539、已知角A为第一象限角,sin A=3,则cos A=5(C)A.2B.53 C.4 5540、已知角A为第一象限角,sin A=4,则cos A=5(B)A.2B.53 C.4 5541、不等式x<2的解集是(A)A.{x-2<x<2}B.{x x<-2或x>2}C.{x x<2}42、不等式x>3的解集是(B)A.{x x<-3}B.{x x<-3或x>3}C.{x x>3}43、不等式x≥3的解集是(B)3-2x⎪A.{x x ≤-3} B.{x x ≤-3或x ≥3} C.{x x ≥3}44、不等式x >4的解集是(B )A.{x x <-4}B.{x x <-4或x >4}C.{x x >4}45、下列函数为奇函数的是(B)A.y =x4B.y =1x 3C.y =4x +546、下列函数为奇函数的是(B )A.y =1x 4B.y =x 3C.y =4x +547、下列函数为偶函数的是(A )A.y =3x 4B.y =7xC.y =2x +148、下列函数为偶函数的是(A )A.y =-x2 B.y =1xC.y =2x +149、设f (x )=1,则f (1)=(B )A.2B.1C.1250、设f (x )=8,则f ⎛1⎫=2(C )⎝⎭A.2 B.1 C.451、设f (x )=1则f (2)=(B )3A.2 B.1 C.1252、设f (x )=1则f (53A.2B.1C.)=(C )133+2x53、若角α终边上一点P(-12,5),则tanα的值为(B)A.-1213B.-512C.-51354、若角α终边上一点P(-5,-12),则cosα的值为(C)A.-1213B.5 C.-5121355、若角α终边上一点P(12,-5),则tanα的值为(B)A.-1213B.-512C.-51356、若角α终边上一点P(-5,-12),则sinα的值为(A)A.-1213B.512C.-51357、若函数y=A.[-1,+∞)1-x,则其定义域为B.[1,+∞)C.(-∞,1](C)58、若函数y=A.[-2,+∞)2-x,则其定义域为B.[2,+∞)C.(-∞,2](C)59、若函数y=A.[-1,+∞)x+1,则其定义域为B.[1,+∞)C.(-∞,1](A)60、若函数y=A.[-1,+∞)x-1,则其定义域为B.[1,+∞)C.(-∞,1](B)二、填空题1、{a,b}∩{a,c}={a}2、{2,3}∩{2,4}={2}3、{x,y}∩{y,z}={y}4、{-1,2}∩{1,2}={2}3565、数列-4,1,6,的前五项和为306、数列1,4,7,的前五项和为357、数列2,5,8,的前五项和为408、数列-1,2,5,的前五项和为259、函数y =sin ⎛4x +π⎫的最小正周期是π ⎪⎝⎭10、函数y =sin ⎛2x -π⎫的最小正周期是π⎪⎝⎭11、函数y =cos ⎛x +π⎫的最小正周期是2π⎪⎝⎭12、函数y =⎛1x -π⎫的最小正周期是4πcos ⎪⎝26⎭13、若log 2x =5,则x =3214、若log 4x =3,则x =6415、若log 5x =2,则x =2516、若log 3x =4,则x =8117、已知:cot α=3,则2cot α-4=1cot α+1218、已知:cot α=1,则52-5cot α15+10cot α=719、已知:tan α=2,则tan α+1=15-tan α20、已知:tan α=2,则tan α+1=36+tan α821、在0︒~360︒之间,与760︒角的终边相同的角是40∘22、在0︒~360︒之间,与770︒角的终边相同的角是50∘223、在0︒~360︒之间,与400︒角的终边相同的角是40∘24、在0︒~360︒之间,与390︒角的终边相同的角是30∘25、若复数z =-3+5i ,则复数的虚部为526、若复数z =12+3i ,则复数的实部为1227、若复数z 1=3+6i ,z 2=-3+2i ,则z 1-z 2=28、若复数z 1=7-2i ,z 2=-3+5i ,则z 1+z 2=6+4i 4+3i 29、若圆的标准方程为(x +1)2+(y -5)2=16,则圆的面积为16π30、若圆的标准方程为x 2+y 2=3,则圆的面积为3π31、若圆的标准方程为(x +1)2+y 2=16,则圆的面积为32、若圆的标准方程为x 2+y 2=25,则圆的面积为25π16π33、数列1,2,3,4,的第n 项为n 2345n +134、数列1,1,1,1,的第n 项为11⨯235112⨯313⨯414⨯5n1n (n +1)、数列,,,,的第项为14916n 236、数列12,3,5,7468,的第n 项为2n -12n37、函数y =x 2+4x -5的图像与y 轴的交点坐标是(0,-5)38、函数y =x 2+2x +2的图像与y 轴的交点坐标是(0,2)39、函数y =x 2+4x -5的图像与x 轴的交点坐标是(-5,0),(1,0)40、函数y =x 2-2x +3的图像与y 轴的交点坐标是(0,3)三、解答题1、已知:设全集为实数集R ,A ={x -3<x ≤5},B ={x x ≤3},C ={x x >-1}求:A∩B,A∪B,A∩B∩C解:A∩B={x-3<x≤3}A∪B={x x≤5}A∩B∩C={x-1<x≤3}2、已知:设全集为实数集R,A={x2<x<7},B={x x>3},C={x x≤4}求:A∩B,A∪B,A∩B∩C解:A∩B={x3<x<7}A∪B={x x>2}A∩B∩C={x3<x≤4}3、已知:设全集为实数集R,A={x-1≤x≤5},B={x x≥2},C={x x<3}求:A∩B,A∪B,A∩B∩C解:A∩B={x2≤x≤5}A∪B={x x≥-1}A∩B∩C={x2≤x<3}4、已知:设全集为实数集R,A={x-1<x<7},B={x x≥2},C={x x≤4}求:A∩B,A∪B,A∩B∩C解:A∩B={x2≤x<7}A∪B={x x>-1}A∩B∩C={x2≤x≤4}5、已知:等差数列-2,2,6,.求:(1)公差d;(2)通项公式a n;(3)第9项a9;(4)前9项的和s9解:(1)d=4(2)a n=a1+(n-1)d=4n-6n (3)把n =9代入(2)得a 9=30(4)s =9(a 1+a 9)=9(-2+30)=1269226、已知:等比数列1,1,1,1,248求:(1)公比q ;(2)通项公式a n ;(3)第9项a 9;(4)前6项的和S 6解:(1)q =12(2)a n =()2n -1或a =1n 2n -1(3)把n =9代入(2)得a 9=1256a (1-q 6)⎛1⎫6⎪263(4)s =1=⎝⎭=61-q 1-13227、已知:等差数列-3,2,7,.求:(1)公差d ;(2)通项公式a n ;(3)第8项a 8;(4)前8项的和S 8解:(1)d =5(2)a n =a 1+(n -1)d =5n -8(3)把n =8代入(2)得a 8=32(4)s =8(a 1+a 8)=8(-3+32)=1168228、已知:等比数列1,3,9,27,求:(1)公比q ;(2)通项公式a n ;(3)第9项a 9;(4)前6项的和S 6解:(1)q =3(2)a =3n -1(3)把n =9代入(2)得a 9=38=6561a (1-q 6)(4)s 6=1=1-q1-361-3=3641-1。

中职单招考试数学全真综合模拟试卷

中职单招考试数学全真综合模拟试卷

中职单招考试数学全真综合模拟试卷中职单招考试数学全真综合模拟试卷一、选择题下列各数中最小的数是 ( )A. -5B. -3C. 0D. 2直线3x - 2y + 5 = 0与2x - 3y + 4 = 0的位置关系是 ( )A. 平行B. 重合C. 垂直D. 斜交函数 f(x) = sin x - x 的零点个数为 ( )A. 0B. 1C. 2D. 3下列函数中,在区间 (0, +∞) 上是减函数的是 ( )A. y = x^2B. y = x^3C. y = 1/xD. y = x^3 + 1/x下列各组向量中,可以作为基底的是 ( )A. a = (-2,3), b = (4,6)B. a = (2,3), b = (3,2)C. a = (1,-2), b = (7,14)D. a = (-3,2), b = (6,-4)下列各组数中,能构成直角三角形的是 ( )A. (3,4,5)B. (5,12,13)C. (7,8,9)D. (4,5,6)若关于 x 的方程 x^2 + mx + 1 = 0 有两个不相等的实根,则 m 的取值范围是 ( )A. m > 2√2B. m < -2√2C. m > -2√2D. m < 2√2设直线 l 与曲线 y^2 = 4x 相切,且经过点 P(1,0),则直线 l 的方程为 ( )A. x - 4y + 3 = 0B. x + y - 1 = 0C. 8x + y - 8 = 0D. x - y - 1 = 0下列等式中,成立的是 ( )A. log_2(2√2) = log_2(√2)B. log_3(2 × 3^n) = log_3(2^n)C. log_a(mn) = log_a m + log_a nD. log_a(m/n) = log_a m - log_a n下列函数中,值域为 R 且为单调递增函数的是 ( )A. f(x) = x^3B. f(x) = log_2(x)C. f(x) = { x + 1 if x ≤ 0, x if x > 0 }D. f(x) = { ln(x + 1) if x ≤ -1, e^x if x > -1 }。

高职高考二模数学试卷

高职高考二模数学试卷

一、选择题(每题5分,共25分)1. 已知函数f(x) = 2x + 3,那么f(2)的值为:A. 7B. 8C. 9D. 102. 下列哪个数是正实数?A. -√2B. 0C. √-1D. √23. 在△ABC中,角A、B、C的对边分别为a、b、c,若a=3,b=4,c=5,则角A的度数为:A. 30°B. 45°C. 60°D. 90°4. 已知等差数列{an}的前n项和为Sn,若a1=2,公差d=3,则S10等于:A. 170B. 180C. 190D. 2005. 下列哪个不等式是正确的?A. x > 2 且 x < 5B. x < 2 或 x > 5C. x ≤ 2 且x ≥ 5D. x ≥ 2 或x ≤ 5二、填空题(每题5分,共25分)6. 若方程2x - 3 = 5的解为x = 4,则方程2x - 3 = 5x的解为x = ________。

7. 在直角坐标系中,点A(2,3)关于y轴的对称点为B,则点B的坐标为(_______,_______)。

8. 已知sinθ = 1/2,cosθ = √3/2,则tanθ的值为_______。

9. 若等比数列{an}的首项a1=3,公比q=2,则第4项an的值为_______。

10. 在△ABC中,若∠A=45°,∠B=60°,则∠C的度数为_______。

三、解答题(共50分)11. (10分)解下列方程组:\[\begin{cases}2x + 3y = 8 \\x - y = 1\end{cases}\]12. (10分)已知函数f(x) = x^2 - 4x + 4,求f(x)的最小值。

13. (10分)在△ABC中,a=6,b=8,c=10,求sinA、sinB、sinC的值。

14. (10分)已知数列{an}是等差数列,且a1=2,公差d=3,求第10项an的值。

职高高三数学模拟试卷答案

职高高三数学模拟试卷答案

一、选择题(每题5分,共50分)1. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 1答案:C2. 若a,b是方程x² - 3x + m = 0的两个实数根,则m的取值范围是()A. m > 3B. m ≤ 3C. m ≥ 3D. m < 3答案:B3. 函数f(x) = x² - 4x + 3的图像与x轴的交点坐标是()A. (1, 0), (3, 0)B. (0, 1), (3, 1)C. (1, 3), (3, 3)D. (0, 3), (3, 3)答案:A4. 在直角坐标系中,点A(2, 3),点B(-2, -3),则线段AB的中点坐标是()A. (0, 0)B. (1, 1)C. (2, 2)D. (-1, -1)答案:A5. 已知数列{an}的通项公式为an = 2n - 1,则数列的前10项和S10等于()A. 90B. 100C. 110D. 120答案:A6. 若等差数列{an}的第一项为a₁,公差为d,则第n项an的表达式是()A. an = a₁ + (n - 1)dB. an = a₁ - (n - 1)dC. an = a₁ + ndD. an = a₁ - nd答案:A7. 下列函数中,是偶函数的是()A. f(x) = x² - 3x + 2B. f(x) = x³ + 2x² - 3xC. f(x) = 2x + 3D. f(x) = x² + 2答案:D8. 若sinθ = 1/2,则cos(2θ)的值是()A. 3/4B. 1/4C. -1/4D. -3/4答案:B9. 在△ABC中,若∠A = 60°,∠B = 45°,则sinC的值是()A. √3/2B. 1/2C. √2/2D. √6/4答案:C10. 下列不等式中,恒成立的是()A. x² + 1 > 0B. x² - 1 > 0C. x² + 1 < 0D. x² - 1 < 0答案:A二、填空题(每题5分,共25分)11. 若函数f(x) = 3x² - 2x + 1在x = 1时取得极值,则该极值为______。

中职一模数学试题及答案

中职一模数学试题及答案

中职一模数学试题及答案一、选择题(本题共10分,每小题2分)1. 下列哪个选项是实数集的表示符号?A. ℤB. ℚC. ℝD. ℂ答案:C2. 函数f(x) = 2x^2 + 3x - 5的图像关于哪个点对称?A. (0, -5)B. (1, -2)C. (-3/4, -25/8)D. (-1/2, -7/2)答案:C3. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∪B。

A. {1, 2, 3, 4}B. {1, 2, 3}C. {2, 3}D. {1, 4}答案:A4. 已知等差数列的首项a1 = 2,公差d = 3,求第5项的值。

A. 17B. 14C. 11D. 8答案:A5. 圆的半径为5,求圆的面积。

A. 25πB. 50πC. 75πD. 100π答案:B二、填空题(本题共10分,每小题2分)6. 若直线y = 2x + 3与x轴相交,则交点的坐标为______。

答案:(-3/2, 0)7. 一个三角形的内角和为______度。

答案:1808. 已知等比数列的首项a1 = 4,公比q = 2,求第4项的值。

答案:329. 一个圆的周长为44cm,求这个圆的直径。

答案:22cm10. 一个长方体的长、宽、高分别为2m、3m、4m,求其体积。

答案:24m³三、解答题(本题共80分)11. 解不等式2x - 5 < 3x + 1,并写出解集。

答案:首先将不等式化简为2x - 3x < 1 + 5,得到-x < 6,解得x > -6。

所以解集为x > -6。

12. 已知函数f(x) = x^3 - 3x^2 + 2x - 5,求其导数f'(x)。

答案:根据导数的定义,f'(x) = 3x^2 - 6x + 2。

13. 证明:对于任意实数x,x² - 1 ≥ 0。

答案:首先,我们可以将x² - 1分解为(x - 1)(x + 1)。

高职高考模拟数学试卷

高职高考模拟数学试卷

一、选择题(每题4分,共40分)1. 若函数f(x) = x^2 - 4x + 3的图像开口向上,则该函数的对称轴为:A. x = -1B. x = 1C. x = 2D. x = 32. 已知等差数列{an}中,a1 = 3,d = 2,则第10项an等于:A. 17B. 18C. 19D. 203. 若复数z = 2 + 3i的模为√13,则z的共轭复数为:A. 2 - 3iB. 3 + 2iC. -2 + 3iD. -3 + 2i4. 下列不等式中,正确的是:A. 2x + 3 > 5B. 3x - 2 < 4C. x^2 + 1 > 0D. x^2 - 1 < 05. 已知函数y = log2(x - 1),则该函数的定义域为:A. x > 1B. x ≥ 1C. x < 1D. x ≤ 16. 若等比数列{bn}中,b1 = 3,公比q = 2,则第4项bn等于:A. 12B. 24C. 48D. 967. 下列各式中,正确的是:A. (a + b)^2 = a^2 + 2ab + b^2B. (a - b)^2 = a^2 - 2ab + b^2C. (a + b)^2 = a^2 - 2ab + b^2D. (a - b)^2 = a^2 + 2ab - b^28. 已知函数y = sin(x + π/2),则该函数的周期为:A. πB. 2πC. 3πD. 4π9. 若等差数列{cn}中,c1 = 5,d = -2,则第n项cn等于:A. 5 - 2(n - 1)B. 5 + 2(n - 1)C. 5 - 2(n + 1)D. 5 + 2(n + 1)10. 下列函数中,单调递增的是:A. y = x^2B. y = 2xC. y = -xD. y = x^3二、填空题(每题5分,共50分)11. 已知函数f(x) = x^3 - 3x^2 + 4x - 6,则f(1)的值为______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中等职业学校高职模拟考试数学试卷
一、选择题(本大题共18小题,每小题2分,共36分)
1.若集合A=}{
3|1|<-x x ,B=}{01|<+-x x ,则B C A R =( )
A.(-2,∞+)
B.(1,4)
C.(-2,1]
D.(-2,1]
2. 设x 是实数,则“x>0”是“︱x ︱>0”的( )
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件 3.函数65)
1lg()(2+--=x x x x f 的定义域为( )
A.)()(∞+∞-,32,
B.()2,1
C. ),3()2,1(+∞
D.])[[∞+,32,1
4. 已知=-=-)1(,2)12(2f x x x f ( ) A.23 B.21
C.1
D.0
5.平面向量a (-2,6),b (x,3),若a ||b,则x=( )
A.-1
B.1
C.-2
D.0
6. 下列函数在),(∞+0内为减函数的是( )
A.12-=x y
B. 2x y -=
C.x y 2log =
D. 12-=x y
7. 已知关于不等式0322>++kx x 恒成立,则实数k 的取值范围为( ) A.3>k B.3-<k C.33<<-k D.3或3-<>k k
8. 在数列{an}中,若1412,18-==+n n a a a a ,则该数列前8项和等于 ( )
A.256
B.255
C.510
D.512
9. 平面α外一条直线l 上有两点到平面α的距离都相等,那么l 与α的位置关系为(

A.相交
B.平行
C.垂直
D.相交或平行
10.圆122=+y x 上的点到直线3x+4y+25=0的最短距离( )
A.1
B.4
C.5
D.6
11.过点(2,3)且垂直于x-y-2=0的直线方程是( )
A.x-y+1=0
B.x+y-5=0
C.x-y-1=0
D.x+y-1=0
12.tan α=31
,则ααα
cos sin 2cos 2sin +-a =( )
A.1
B.-1
C.21-
D.21 13.(x-1)7展开式中奇数项的系数和是( )
A.128
B.-128
C.64
D.-64
14.若双曲线的方程为,14416922=-y x 则焦点坐标为( )
A.)0,5(±
B.(0,5±)
C.(0,7±)
D.(0,7±
) 15. 函数y=322--x x (x ]2,5[-∈)的值域( )
A.]3,(--∞
B.[-3,+∞)
C.[-3,22]
D.[-4,32]
16. 如图,正方体ABCD-A 1B 1C 1D 1 中,两条异面直线AC 与BC 1所成角的大小为( )
A. 30
B.45
C.60
D.90
17若抛物线)0(22>=p px y 上一点M 的横坐标为1,M 到焦点距离为5,则p=( )
A.3
B.4
C.5
D.8
18.抛两颗均匀的骰子、得到点数和为5的概率( ) A. 336 B. 436 C. 536 D. 636
二、填空题(本大题共小题,每小题3分,共24分) 19.若a>3,则31-+
a a 的最小值是____________. 20.双曲线19
162
2=-y x 的渐近线方程为____________. 21.若圆锥的底面半径为2,高为2,则它的侧面积=___________________.
22. 点P(3,a)到直线L :3x-4y+a=0的距离为5,则a 的值为__________________.
23. 从榨菜、青菜、油菜、花菜4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中榨菜必须种植.不同的种植方法有 _______________ 种(用具体数字回答)
24. 在△ABC 中,若222c bc b a ++=,那么A=__________________.
25. 如果椭圆的焦点坐标F 1(-1,0),F 2(1,0),离心率为
3
2,过点F 1作直线交椭圆于A 、B 两点,那么△ABF 2的周长为____________________.
26.一个圆锥侧面展开图的弧长为6cm,圆心角为120︒,则圆锥的高为_______________.
三、解答题(本大题共8小题,共60分,解答应写出文字说明、演算步骤)
27.(本小题满分6分) 262log 0232397.3)
41(8C ++-+-
28. (本小题满分6分)数列}{n a 的前n 项和n n S n 22-=,求数列}{n a 的通项公式。

29. (本小题满分6分)求函数x x x f 2sin 2
1cos 3)(2+=
的最大值与最小正周期。

30. (本小题满分8分)直线012=--y x 被圆01222=--+y y x 所截得的弦长。

31. (本小题满分8分) 若n x x )(1
-的展开式中各项的二项式系数之和为256,求:
(1)n 的值;(2)求展开式中的常数项。

32. (本小题满分8分)已知F 1(-4,0)是椭圆的左焦点,离心率5
4
e ,P 是椭圆上一点,且∠F 1PF 2=60°(1)求椭圆标准方程;(2)求△PF 1F 2的面积。

33. (本小题满分8分)如果,P 是矩形ABCD 所在平面外一点,且P A ⊥平面AC,若PA=1,PB=2,PD=3,求:(1)PC 与平面AC 所成角;(2)四棱锥P-ABCD 的体积。

34. (本小题满分10分)灾后余姚各大汽车经销商纷纷促销各款汽车,以广汽丰田的凯美瑞汽车,每辆进价为16万元,市场调研表明:当销售价为20万元时,平均每周能售出8辆,而当销售价每降低0.5万元时,平均每周能多售出4辆.如果设每辆汽车降价x 万元,
(1)假设这种汽车平均每周的销售利润为y 万元,试写出y 与x 之间的函数关系式并写出x 的取值范围;
(2)当每辆汽车的定价为多少万元时,平均每周的销售利润最大?最大利润是多少?
(3)丰田公司受“召回门”的影响,每辆车实际最高仅能售到18万元,求平均每周销售的最大利润是多少?。

相关文档
最新文档