一道平面几何中考试题的拓展

合集下载

中考数学解题技巧如何利用平行四边形解决平面几何中的面积和角度问题

中考数学解题技巧如何利用平行四边形解决平面几何中的面积和角度问题

中考数学解题技巧如何利用平行四边形解决平面几何中的面积和角度问题在中考数学中,平行四边形是一个常见的图形,它不仅可以帮助我们解决面积的计算问题,还可以辅助求解角度相关的题目。

本文将介绍如何利用平行四边形解决平面几何中的面积和角度问题。

一、平行四边形的性质平行四边形是指具有两对对边分别平行的四边形。

那么,它具有哪些性质呢?1. 对边性质:平行四边形的对边是相等的,即相对的两条边长度相等。

2. 对角性质:平行四边形的对角线互相平分,并且对角线所分割的两个三角形面积相等。

3. 同位角性质:平行四边形的同位角相等。

二、基于平行四边形解决面积问题1. 面积的计算公式对于平行四边形来说,其面积可以通过底长和高的乘积来计算,即S = 底 ×高。

其中,底可以是任意一条边的长度,高是从这条底边垂直下来的线段的长度。

2. 利用平行四边形的对边性质既然平行四边形的对边是相等的,那么我们可以通过已知边长求解未知边长,从而计算平行四边形的面积。

例如,已知平行四边形ABCD中,AB = 8 cm,DC = 12 cm,通过对边性质可知AD = BC = 8 cm,BD = AC = 12 cm。

通过计算底和高的乘积,即可求解平行四边形的面积。

3. 利用平行四边形的同位角性质在一些复杂的图形题目中,我们可以将图形中的一部分转化为平行四边形,利用同位角性质求解未知角度,从而进一步解决面积问题。

例如,已知平行四边形ABCD中,角BAD = 40°,AC为对角线,交BD于点E,求角AEB的度数。

我们可以发现角AEB和角BAD为同位角,根据平行四边形的同位角性质,它们是相等的。

因此,角AEB = 40°。

进一步,我们可以利用角AEB的大小,确定三角形AEB的形状,从而计算出其面积。

三、基于平行四边形解决角度问题1. 利用平行四边形的对角性质在一些角度相关的问题中,平行四边形中的对角线可以帮助我们求解未知角度。

2019中考数学高频考点剖析专题23平面几何之圆的性质问题—解析卷

2019中考数学高频考点剖析专题23平面几何之圆的性质问题—解析卷

备考2019中考数学高频考点剖析专题二十三平面几何之圆的性质问题考点扫描☆聚焦中考圆的性质,是每年中考的必考内容之一,考查的知识点包括垂径定理、圆心角和圆周角等关系,总体来看,难度系数低,以选择填空为主。

也有少量的解析题。

解析题主要以关于圆的综合性问题为主。

结合2018年全国各地中考的实例,我们从三方面进行圆的基本性质问题的探讨:(1)垂径典例相关问题;(2)圆心角相关问题;(3)圆周角相关问题.考点剖析☆典型例题2018·湖北荆州·3分)如图,平面直角坐标系中,⊙P经过三点A(8,0),O(0,0),B (0,6),点D是⊙P上的一动点.当点D到弦OB的距离最大时,tan∠BOD的值是()A.2 B.3 C.4 D.5【解答】解:连接AB,过点P作PE⊥BO,并延长EP交⊙P于点D,此时点D到弦OB的距离最大,∵A(8,0),B(0,6),∴AO=8,BO=6,∵∠BOA=90°,∴AB==10,则⊙P的半径为5,∵PE⊥BO,∴BE=EO=3,∴PE==4,∴ED=9,∴tan∠BOD==3.故选:B.3分)《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?”如图所示,请根据所学知识计算:圆形木材的直径AC是()A.13寸B.20寸C.26寸D.28寸解:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解得r=13,∴⊙O的直径为26寸.故选C.2018·四川自贡·4分)如图,若△ABC内接于半径为R的⊙O,且∠A=60°,连接OB、OC,则边BC的长为()A. B. C. D.【分析】延长BO交圆于D,连接CD,则∠BCD=90°,∠D=∠A=60°;又BD=2R,根据锐角三角函数的定义得BC=R.【解答】解:延长BO交⊙O于D,连接CD,则∠BCD=90°,∠D=∠A=60°,∴∠CBD=30°,∵BD=2R,∴DC=R,∴BC=R,故选:D.【点评】此题综合运用了圆周角定理、直角三角形30°角的性质、勾股定理,注意:作直径构造直角三角形是解决本题的关键.2018•江苏扬州•3分)如图,已知⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,则AB= 2.【分析】根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB的度数,然后根据勾股定理即可求得AB的长.【解答】解:连接AD、AE、OA、OB,∵⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴AB=2,故答案为:2.【点评】本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.2018·天津·10分)已知是的直径,弦与相交,.(Ⅰ)如图①,若为的中点,求和的大小;(Ⅱ)如图②,过点作的切线,与的延长线交于点,若,求的大小.【答案】(1)52°,45°;(2)26°【解析】分析:(Ⅰ)运用直径所对的圆周角是直角以及圆周角的度数等于它所对弧的度数求解即可;(Ⅱ)运用圆周角定理求解即可.详解:(Ⅰ)∵是的直径,∴.∴.又∴,∴.由为的中点,得.∴.∴.(Ⅱ)如图,连接.∵切于点,∴,即.由,又,∴是的外角,∴.∴.又,得.∴.点睛:本题考查了圆周角定理,切线的性质以及等腰三角形的性质,正确的作出辅助线是解题的关键.考点过关☆专项突破类型一垂径定理相关问题1. (2018•张家界)如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=()A.8cm B.5cm C.3cm D.2cm【分析】根据垂径定理可得出CE的长度,在Rt△OCE中,利用勾股定理可得出OE的长度,再利用AE=AO+OE即可得出AE的长度.【解答】解:∵弦CD⊥AB于点E,CD=8cm,∴CE=CD=4cm.在Rt△OCE中,OC=5cm,CE=4cm,∴OE==3cm,∴AE=AO+OE=5+3=8cm.故选:A.2. (2018•通辽)已知⊙O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是()A.30° B.60°C.30°或150°D.60°或120°【分析】由图可知,OA=10,OD=5.根据特殊角的三角函数值求角度即可.【解答】解:由图可知,OA=10,OD=5,在Rt△OAD中,∵OA=10,OD=5,AD=,∴tan∠1=,∠1=60°,同理可得∠2=60°,∴∠AOB=∠1+∠2=60°+60°=120°,∴圆周角的度数是60°或120°.故选:D.3. (2018•安顺)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为()A.2cm B.4cm C.2cm或4cm D.2cm或4cm【分析】先根据题意画出图形,由于点C的位置不能确定,故应分两种情况进行讨论.【解答】解:连接AC,AO,∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm,∴AM=AB=×8=4cm,OD=OC=5cm,当C点位置如图1所示时,∵OA=5cm,AM=4cm,CD⊥AB,∴OM===3cm,∴CM=OC+OM=5+3=8cm,∴AC===4cm;当C点位置如图2所示时,同理可得OM=3cm,∵OC=5cm,∴MC=5﹣3=2cm,在Rt△AMC中,AC===2cm.故选:C.4. (2016海南4分)如图,AB是⊙O的直径,AC、BC是⊙O的弦,直径DE⊥AC于点P.若点D在优弧上,AB=8,BC=3,则DP= 5.5 .【考点】圆周角定理;垂径定理.【分析】解:由AB和DE是⊙O的直径,可推出OA=OB=OD=4,∠C=90°,又有DE⊥AC,得到OP∥BC,于是有△AOP∽△ABC,根据相似三角形的性质即可得到结论.【解答】解:∵AB和DE是⊙O的直径,∴OA=OB=OD=4,∠C=90°,又∵DE⊥AC,∴OP∥BC,∴△AOP∽△ABC,∴,即,∴OP=1.5.∴DP=OP+OP=5.5,故答案为:5.5.【点评】本题主要考查了圆周角定理,平行线的判定,相似三角形的判定和性质,熟练掌握圆周角定理是解决问题的关键.5. (2018•孝感)已知⊙O的半径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=16cm,CD=12cm,则弦AB和CD之间的距离是2或14 cm.【分析】分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可,小心别漏解.【解答】解:①当弦AB和CD在圆心同侧时,如图,∵AB=16cm,CD=12cm,∴AE=8cm,CF=6cm,∵OA=OC=10cm,∴EO=6cm,OF=8cm,∴EF=OF﹣OE=2cm;②当弦AB和CD在圆心异侧时,如图,∵AB=16cm,CD=12cm,∴AF=8cm,CE=6cm,∵OA=OC=10cm,∴OF=6cm,OE=8cm,∴EF=OF+OE=14cm.∴AB与CD之间的距离为14cm或2cm.故答案为:2或14.6. (2018•杭州)如图,AB是⊙O的直轻,点C是半径OA的中点,过点C作DE⊥AB,交⊙O于D,E 两点,过点D作直径DF,连结AF,则∠DFA= 30°.【分析】利用垂径定理和三角函数得出∠CDO=30°,进而得出∠DOA=60°,利用圆周角定理得出∠DFA=30°即可.【解答】解:∵点C是半径OA的中点,∴OC=OD,∵DE⊥AB,∴∠CDO=30°,∴∠DOA=60°,∴∠DFA=30°,故答案为:30°7. (2018•宜昌)如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE 至点F,使EF=AE,连接FB,FC.(1)求证:四边形ABFC是菱形;(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.【分析】(1)根据对角线相互平分的四边形是平行四边形,证明是平行四边形,再根据邻边相等的平行四边形是菱形即可证明;(2)设CD=x,连接BD.利用勾股定理构建方程即可解决问题;【解答】(1)证明:∵AB是直径,∴∠AEB=90°,∴AE⊥BC,∵AB=AC,∴BE=CE,∵AE=EF,∴四边形ABFC是平行四边形,∵AC=AB,∴四边形ABFC是菱形.(2)设CD=x.连接BD.∵AB是直径,∴∠ADB=∠BDC=90°,∴AB2﹣AD2=CB2﹣CD2,∴(7+x)2﹣72=42﹣x2,解得x=1或﹣8(舍弃)∴AC=8,BD==,∴S菱形ABFC=8.∴S半圆=•π•42=8π.类型二圆心角相关问题1. (2018•四川凉州•3分)如图,⊙O是△ABC的外接圆,已知∠ABO=50°,则∠ACB的大小为()A.40° B.30°C.45°D.50°【分析】首先根据等腰三角形的性质及三角形内角和定理求出∠AOB的度数,再利用圆周角与圆心角的关系求出∠ACB的度数.【解答】解:△AOB中,OA=OB,∠ABO=50°,∴∠AOB=180°﹣2∠ABO=80°,∴∠ACB=∠AOB=40°,故选:A.【点评】本题主要考查了圆周角定理的应用,涉及到的知识点还有:等腰三角形的性质以及三角形内角和定理.2.(2018·山东青岛·3分)如图,点A、B、C、D在⊙O上,∠AOC=140°,点B是的中点,则∠D的度数是()A.70° B.55° C.35.5° D.35°【分析】根据圆心角、弧、弦的关系定理得到∠AOB=∠AOC,再根据圆周角定理解答.【解答】解:连接OB,∵点B是的中点,∴∠AOB=∠AOC=70°,由圆周角定理得,∠D=∠AOB=35°,故选:D.【点评】本题考查的是圆心角、弧、弦的关系定理、圆周角定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.3.(2018·浙江衢州·3分)如图,点A,B,C在⊙O上,∠ACB=35°,则∠AOB的度数是()A.75°B.70°C.65°D.35°【考点】圆周角定理【分析】直接根据圆周角定理求解.【解答】解:∵∠ACB=35°,∴∠AOB=2∠ACB=70°.故选B.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.4. (2018·广东·3分)同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是50°.【分析】直接利用圆周角定理求解.【解答】解:弧AB所对的圆心角是100°,则弧AB所对的圆周角为50°.故答案为50°.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.类型三圆周角相关问题1.(2018•铜仁市)如图,已知圆心角∠AOB=110°,则圆周角∠ACB=()A.55° B.110°C.120°D.125°【分析】根据圆周角定理进行求解.一条弧所对的圆周角等于它所对的圆心角的一半.【解答】解:根据圆周角定理,得∠ACB=(360°﹣∠AOB)=×250°=125°.故选:D.2.(2018•南充)如图,BC是⊙O的直径,A是⊙O上的一点,∠OAC=32°,则∠B的度数是()A.58° B.60° C.64° D.68°【分析】根据半径相等,得出OC=OA,进而得出∠C=32°,利用直径和圆周角定理解答即可.【解答】解:∵OA=OC,∴∠C=∠OAC=32°,∵BC是直径,∴∠B=90°﹣32°=58°,故选:A.3.(2017广西河池)如图,⊙O的直径AB垂直于弦CD,∠CAB=36°,则∠BCD的大小是()A.18°B.36° C.54° D.72°【考点】M5:圆周角定理;M2:垂径定理.【分析】根据垂径定理推出=,推出∠CAB=∠BAD=36°,再由∠BCD=∠BAD即可解决问题.【解答】解:∵AB是直径,AB⊥CD,∴=,∴∠CAB=∠BAD=36°,∵∠BCD=∠BAD,∴∠BCD=36°,故选B.4. (2017山东泰安)如图,△ABC内接于⊙O,若∠A=α,则∠OBC等于()A.180°﹣2αB.2αC.90°+αD.90°﹣α【考点】M5:圆周角定理.【分析】首先连接OC,由圆周角定理,可求得∠BOC的度数,又由等腰三角形的性质,即可求得∠OBC 的度数.【解答】解:∵连接OC,∵△ABC内接于⊙O,∠A=α,∴∠BOC=2∠A=2α,∵OB=OC,∴∠OBC=∠OCB==90°﹣α.故选D.5. (2017•新疆)如图,⊙O的半径OD垂直于弦AB,垂足为点C,连接AO并延长交⊙O于点E,连接BE,CE.若AB=8,CD=2,则△BCE的面积为()A.12 B.15 C.16 D.18【考点】M5:圆周角定理;M2:垂径定理.【分析】先根据垂径定理求出AC的长,再设OA=r,则OC=r﹣2,在Rt△AOC中利用勾股定理求出r 的值,再求出BE的长,利用三角形的面积公式即可得出结论.【解答】解:∵⊙O的半径OD垂直于弦AB,垂足为点C,AB=8,∴AC=BC=AB=4.设OA=r,则OC=r﹣2,在Rt△AOC中,∵AC2+OC2=OA2,即42+(r﹣2)2=r2,解得r=5,∴AE=10,∴BE===6,∴△BCE的面积=BC•BE=×4×6=12.故选A.【点评】本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.6. (2018·湖北咸宁·3分)如图,已知⊙O的半径为5,弦AB,CD所对的圆心角分别是∠AOB,COD,若∠AOB与∠COD互补,弦CD=6,则弦AB的长为()A. 6B. 8C. 5D. 5【答案】B【解析】【分析】延长AO交⊙O于点E,连接BE,由∠AOB+∠BOE=∠AOB+∠COD知∠BOE=∠COD,据此可得BE=CD=6,在Rt△ABE中利用勾股定理求解可得.【详解】如图,延长AO交⊙O于点E,连接BE,则∠AOB+∠BOE=180°,又∵∠AOB+∠COD=180°,∴∠BOE=∠COD,∴BE=CD=6,∵AE为⊙O的直径,∴∠ABE=90°,∴AB==8,故选B.【点睛】本题考查了弧、弦、圆心角的关系,圆周角定理等,正确添加辅助线以及熟练应用相关的性质与定理是解题的关键.7. (2018·新疆生产建设兵团·5分)如图,△ABC是⊙O的内接正三角形,⊙O的半径为2,则图中阴影部的面积是.【分析】根据等边三角形性质及圆周角定理可得扇形对应的圆心角度数,再根据扇形面积公式计算即可.【解答】解:∵△ABC是等边三角形,∴∠C=60°,根据圆周角定理可得∠AOB=2∠C=120°,∴阴影部分的面积是=π,故答案为:【点评】本题主要考查扇形面积的计算和圆周角定理,根据等边三角形性质和圆周角定理求得圆心角度数是解题的关键.8. (2018·广西梧州·3分)如图,已知在⊙O中,半径OA=,弦AB=2,∠BAD=18°,OD与AB 交于点C,则∠ACO=81 度.【分析】根据勾股定理的逆定理可以判断△AOB的形状,由圆周角定理可以求得∠BOD的度数,再根据三角形的外角和不相邻的内角的关系,即可求得∠AOC的度数.【解答】解:∵OA=,OB=,AB=2,∴OA2+OB2=AB2,OA=OB,∴△AOB是等腰直角三角形,∠AOB=90°,∴∠OBA=45°,∵∠BAD=18°,∴∠BOD=36°,∴∠ACO=∠OBA+∠BOD=45°+36°=81°,故答案为:81.【点评】本题考查圆周角定理、勾股定理的逆定理、等腰三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.。

【中考冲刺】初三数学培优专题 25 平面几何的最值问题(含答案)(难)

【中考冲刺】初三数学培优专题 25 平面几何的最值问题(含答案)(难)

平面几何的最值问题阅读与思考几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值. 求几何最值问题的基本方法有:1.特殊位置与极端位置法:先考虑特殊位置或极端位置,确定最值的具体数据,再进行一般情形下的推证.2.几何定理(公理)法:应用几何中的不等量性质、定理.3.数形结合法等:揭示问题中变动元素的代数关系,构造一元二次方程、二次函数等.例题与求解【例1】在Rt △ABC 中,CB =3,CA =4,M 为斜边AB 上一动点.过点M 作MD ⊥AC 于点D ,过M 作ME ⊥CB 于点E ,则线段DE 的最小值为 .(四川省竞赛试题)解题思路:四边形CDME 为矩形,连结CM ,则DE = CM ,将问题转化为求CM 的最小值.【例2】如图,在矩形ABCD 中,AB =20cm ,BC =10cm .若在AC ,AB 上各取一点M ,N ,使BM +MN 的值最小,求这个最小值.(北京市竞赛试题)ADMN解题思路:作点B 关于AC 的对称点B ′,连结B ′M ,B ′A ,则BM = B ′M ,从而BM +MN = B ′M +MN .要使BM +MN 的值最小,只需使B ′M 十MN 的值最小,当B ′,M ,N 三点共线且B ′N ⊥AB 时,B ′M +MN 的值最小.【例3】如图,已知□ABCD ,AB =a ,BC =b (b a ),P 为AB 边上的一动点,直线DP 交CB 的延长线于Q .求AP +BQ 的最小值. (永州市竞赛试题)PDA BQ解题思路:设AP =x ,把AP ,BQ 分别用x 的代数式表示,运用不等式以ab b a 222≥+或a +b ≥2ab(当且仅当a =b 时取等号)来求最小值. 【例4】阅读下列材料:问题 如图1,一圆柱的底面半径为5dm ,高AB 为5dm ,BC 是底面直径,求一只蚂蚁从A 点出发沿圆柱表面爬行到C 点的最短路线. 小明设计了两条路线:图2图1摊平沿AB 剪开ACBBA路线1:侧面展开图中的线段AC .如图2所示.设路线l 的长度为l 1,则l 12 =AC 2=AB 2 +BC 2 =25+(5π) 2=25+25π2. 路线2:高线AB 十底面直径BC .如图1所示.设路线l 的长度为l 2,则l 22 = (BC +AB )2=(5+10)2 =225.∵l 12 – l 22 = 25+25π2-225=25π2-200=25(π2-8),∴l 12 >l 22 ,∴ l 1>l 2 . 所以,应选择路线2.条路线才能使蚂蚁从点A 出发沿圆柱表面爬行到C 点的路线最短. (衢州市中考试题)解题思路:本题考查平面展开一最短路径问题.比较两个数的大小,有时比较两个数的平方比较简便.比较两个数的平方,通常让这两个数的平方相减.【例5】如图,已知边长为4的正方形钢板,有一个角锈蚀,其中AF =2,BF =1.为了合理利用这块钢板,将在五边形EABCD 内截取一个矩形块MDNP ,使点P 在AB 上,且要求面积最大,求钢板的最大利用率. (中学生数学智能通讯赛试题)NME DAB解题思路:设DN =x ,PN =y ,则S =xy .建立矩形MDNP 的面积S 与x 的函数关系式,利用二次函数性质求S 的最大值,进而求钢板的最大利用率.【例6】如图,在四边形ABCD 中,AD =DC =1,∠DAB =∠DCB =90°,BC ,AD 的延长线交于P ,求AB ·S △P AB 的最小值. (中学生数学智能通讯赛试题)1ABD解题思路:设PD =x (x >1),根据勾股定理求出PC ,证Rt △PCD ∽Rt △P AB ,得到PCPACD AB ,求出AB ,根据三角形的面积公式求出y =AB ·S △P AB ,整理后得到y ≥4,即可求出答案.能力训练A 级1.如图,将两张长为8、宽为2的矩形纸条交叉,使重叠部分是一个菱形.容易知道当两张纸条垂直时,菱形的周长有最小值,那么菱形周长的最大值是 . (烟台市中考试题)2.D 是半径为5cm 的⊙O 内一点,且OD =3cm ,则过点O 的所有弦中,最短的弦AB = cm . (广州市中考试题)3.如图,有一个长方体,它的长BC =4,宽AB =3,高BB 1=5.一只小虫由A 处出发,沿长方体表面爬行到C 1,这时小虫爬行的最短路径的长度是 . (“希望杯”邀请赛试题)DD 1第1题图 第3题图 第4题图 第5题图4.如图,在△ABC 中,AB =10,AC =8,BC =6,经过点C 且与边AB 相切的动圆与CB ,CA 分别相交于点E ,F ,则线段EF 长度的最小值是( ) (兰州市中考试题)A .42B .4. 75C .5D .4. 85.如图,圆锥的母线长OA =6,底面圆的半径为2.一小虫在圆锥底面的点A 处绕圆锥侧面一周又回到点A ,则小虫所走的最短距离为( ) (河北省竞赛试题) A .12B .4πC .62D .636.如图,已知∠MON = 40°,P 是∠MON 内的一定点,点A ,B 分别在射线OM ,ON 上移动,当△P AB 周长最小时,∠APB 的值为( ) (武汉市竞赛试题) A .80° B .100° C .120° D .140° 7.如图, ⌒AD 是以等边三角形ABC 一边AB 为半径的四分之一圆周,P 为AD 上任意一点.若AC =5,则四边形ACBP 周长的最大值是( ) (福州市中考试题) A .15B .20C .15+52D .15+55NM NMAOPBDCBCA DBA PE第6题图 第7题图 第8题图 8.如图,在正方形ABCD 中,AB =2,E 是AD 边上一点(点E 与点A ,D 不重合),BE 的垂直平分线交AB 于M ,交DC 与N .(1) 设AE =x ,四边形ADNM 的面积为S ,写出S 关于x 的函数关系式.(2) 当AE 为何值时,四边形ADNM 的面积最大?最大值是多少? (山东省中考试题)9.如图,六边形ABCDEF 内接于半径为r 的⊙O ,其中AD 为直径,且AB =CD =DE =F A . (1) 当∠BAD =75°时,求⌒BC 的长; (2) 求证:BC ∥AD ∥FE ;(3) 设AB =x ,求六边形ABCDEF 的周长l 关于x 的函数关系式,并指出x 为何值时,l 取得最大值.10.如图,已知矩形ABCD 的边长AB =2,BC =3,点P 是AD 边上的一动点(P 异于A 、D ).Q 是BC边上任意一点.连结AQ,DQ,过P作PE∥DQ交于AQ于E,作PF//AQ交DQ于F.(1) 求证:△APE∽△ADQ;(2) 设AP的长为x,试求△PEF的面积S△PEF关于x的函数关系式,并求当P在何处时,S△PEF取得最大值?最大值为多少?(3) 当Q在何处时,△ADQ的周长最小?(须给出确定Q在何处的过程或方法,不必证明)(无锡市中考试题)B Q11.在等腰△ABC中,AB=AC=5,BC=6.动点M,N分别在两腰AB,AC上(M不与A,B重合,N不与A,C重合),且MN∥BC.将△AMN沿MN所在的直线折叠,使点A的对应点为P.(1)当MN为何值时,点P恰好落在BC上?(2)设MN=x,△MNP与等腰△ABC重叠部分的面积为y,试写出y与x的函数关系式,当x为何值时,y的值最大,最大值是多少?(宁夏省中考试题)B CAB级1.已知凸四边形ABCD中,AB+AC+CD= 16,且S四边彤ABCD=32,那么当AC= ,BD= 时,四边形ABCD面积最大,最大值是.(“华杯赛”试题)2.如图,已知△ABC的内切圆半径为r,∠A=60°,BC=23,则r的取值范围是.(江苏省竞赛试题)DBAB CAA第2题图第3题图第4题图第5题图3.如图⊙O的半径为2,⊙O内的一点P到圆心的距离为1,过点P的弦与劣弧⌒AB组成一个弓形,则此弓形面积的最小值为.4.如图,△ABC的面积为1,点D,G,E和F分别在边AB,AC,BC上,BD<DA,DG∥BC,DE ∥AC ,GF ∥AB ,则梯形DEFG 面积的最大可能值为 .(上海市竞赛试题)5.已知边长为a 的正三角形ABC ,两顶点A ,B 分别在平面直角坐标系的x 轴,y 轴的正半轴上滑动,点C 在第一象限,连结OC ,则OC 的最大值是 .(潍坊市中考试题)6.已知直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,BC =DC =5,点P 在BC 上移动,则当P A + PD 取最小值时,△APD 中边AP 上的高为( ) (鄂州市中考试题)A .17172B .17174C .17178D .3QADBCA BDCPP第6题图 第7题图 第8题图7.如图,正方形ABCD 的边长为4cm ,点P 是BC 边上不与点B ,C 重合的任意一点,连结AP ,过点P 作PQ ⊥AP 交DC 于点Q .设BP 的长为x cm ,CQ 的长为y cm . (1) 求点P 在BC 上运动的过程中y 的最大值;(2) 当y =41cm 时,求x 的值. (河南省中考试题)8.如图,y 轴正半轴上有两点A (0,a ),B (0,b ),其中a >b >0.在x 轴上取一点C ,使∠ACB 最大,求C 点坐标. (河北省竞赛试题)9.如图,正方形ABCD 的边长为1,点M ,N 分别在BC ,CD 上,使得△CM N 的周长为2.求: (1) ∠MAN 的大小;(2) △MAN 的面积的最小值. (“宇振杯”上海市竞赛试题)10,如图,四边形ABCD 中,AD = CD ,∠DAB =∠ACB =90°,过点D 作DE ⊥AC 于F ,DE 与AB相交于点E .(1) 求证:AB ·AF =CB ·CD ; (2)已知AB =15cm ,BC =9cm ,P 是射线DE 上的动点,设DP =x cm(x >0),四边形BCDP 的面积为y cm 2. ①求y 关于x 的函数关系式;②当x 为何值时,△PBC 的周长最小?求出此时y 的值.(南通市中考试题)MNExCB第6题图 第7题图 第8题图 第9题图11.如图,已知直线l :k kx y 42-+=(k 为实数).(1) 求证:不论k 为任何实数,直线l 都过定点M ,并求点M 的坐标;(2) 若直线l 与x 轴、y 轴的正半轴交于A ,B 两点,求△AOB 面积的最小值.(太原市竞赛试题)12.如图,在Rt △ABC 中,∠C =90°,BC =2,AC =x ,点F 在边AB 上,点G ,H 在边BC 上,四边形EFGH 是一个边长为y 的正方形,且AE =AC . (1) 求y 关于x 的函数解析式;(2) 当x 为何值时,y 取得最大值?求出y 的最大值.(上海市竞赛试题)平面几何的最值问题例1125提示:当CM ⊥AB 时,CM 值最小,CM =125AC BC AB ⋅= 例2 如图,B ′M +MN 的最小值为点B ′到AB 的距离B ′F ,BE =45AB BCAC⋅=cm ,BB ′=85cm ,AE =()2222204585AB BE --=.在△ABB ′中,由12BB ′•AE =12AB •B ′F ,得B ′F =16cm .故BM +MN 的最小值为16cm . 例3 由△APD ∽△BPQ ,得AP AD BP BQ =,即BQ =()b a x AD BP AP x-⋅=,∴AP +BQ =x +ab b x -.∵x +ab x ≥2ab x ab x ⋅=仅当x =abx即x ab ,上式等号成立.故当AP ab ,AP +BQ 最小,其最小值为ab-b .例4 ⑴22125l π=+,22l =49,l 1<l 2,故要选择路线l 较短. ⑵()2221l h r π=+,()2222l h r =+,()2221244l l r r h π⎡⎤-=--⎣⎦.当r =244h π-时,2212l l =,当r >244h π-时,2212l l >,当r <244hπ-时,2212l l <. 例5 设DN =x ,PN =y ,则S =xy ,由△APQ ∽△ABF ,得()41242y x -=--即x =10-2y ,代入S =xy 得S =xy =y (10-2y ),即S =-2252522y ⎛⎫-+ ⎪⎝⎭,因3≤y ≤4,而y =52不在自变量y 的取值范围内,所以y =52不是极值点,当y =3时,S (3)=12,当y =4时,S (4)=8,故S max =12.此时,钢板的最大利用率21214212-⨯⨯=80%. 例6 设PD =x (x >1),则PC 21x -,由R t △PCD ∽△P AB ,得AB =21CD PA PC x ⋅=-y =AB •S △P AB ,则y =12AB ×P A ×AB =()()2121x x +-,求y 的最小值,有下列不同思路:①配方:y =21212242121x x x x --++=+--1221x x -=-x =3时,y 有最小值4.②运用基本不等式:y =122221x x -++≥- 321221x x -⋅-+2=4,∴当12x -=21x -,即当x =3时,y 有最小值4. ③借用判别式,去分母,得x 2+2(1-y )x +1+2y =0,由△=4(1-y )2-4(1+2y )=4y (y -4)≥0,得y ≥4,∴y 的最小值为4. A 级1. 17 提示:当两张纸条的对角重合时,菱形周长最大.2. 83.74 4. D 5. D 6. B7. C 提示:当点P 与点D 重合时,四边形ACBP 的周长最大.8. (1)连结ME ,过N 作NF ⊥AB 于F ,可证明Rt △EB A ≌Rt △MNF ,得MF =AE =x. ∵ME 2=AE 2+AM 2,故MB 2=x 2+AM 2,即(2-AM )2=x 2+AM 2,AM =1-14x 2,∴S =2AM DN +×AD =2AM AF+×2=AM +AM +MF =2 AM +AE =2(1-14x 2)+x =-12x 2+x +2.(2)S =-12(x 2-2 x +1)+52=-12(x -1)2+52. 故当AE =x =1时,四边形ADNM 的面积最大,此时最大值为52. 9. (1)BC 长为23rπ. (2)提示:连结BD . (3)过点B 作BM ⊥AD 于M ,由(2)知四边形ABCD为等腰梯形,从而BC =AD -2 AM =2r -2 AM . 由△BAM ∽△DAB ,得AM =2AB AD =22x r ,∴BC =2r-2x r . 同理,EF =2 r -2x r . l =4 x +2(2 r -2x r )=-xr(x -r )2+6 r (0<x 2 r ). . 当x =r时,l 取得最大值6 r .10. (1)∵∠APE =∠ADQ ,∠AEP =∠AQD ,∴△APE ∽△ADQ . (2)由△APE ∽△ADQ ,△PDF ∽△ADQ ,S △PEF =12S □PEQF ,得S △PEF =-13x 2+x =-13(x -32)2+34. 故当x =32时,即P 是AD 的中点时,S △PEF 取得最大值,(3)作A 关于直线BC 的对称点A′,连结DA′交BC 于Q ,则这个Q 点就是使△ADQ 周长最小的点,此时Q 是BC 的中点.11. (1)点P 恰好在BC 上时,由对称性知MN 是△ABC 的中位线,∴当MN =12BC =3时,点P 在BC 上. (2)由已知得△ABC 底边上的高h =225-3=4. ①当0<x ≤3时,如图1,连结AP 并延长交BC 于点D ,AD 与MN 交于点O .由△AMN ∽△ABC ,得AO =23x ,y =S △PMN =S △AMN =12·x ·23x =13x 2即y =13x 2. 当=3时,y 的值最大,最大值是3. ②当3<x <6时,如图2,设△PMN 与BC 相交于点E ,F ,AP 与BC 相交于D . 由①中知AO =23x ,∴AP =43x ,∴PD =AP -AD =43x -4,∵△PEF ∽△ABC . ,∴PEFABC S S ∆∆=(PD AD )2=(4434x -)2,即PEF ABC S S ∆∆=2-3)9x (. ∵S △ABC =12,∴S △PEF =43(x -3)2. ∴y =S △AMN -S △PEF =13x 2-43(x -3)2=-x 2+8x -12=-(x -4)2+4. 故当x =4时,y 的最大值为4. 综上,当x =4时,y 的值最大,最大值为4. B 级1. 8 2 32 提示:当∠CAB =∠ACD =90°时,四边形ABCD 的面积达到最大值.2. 0<r ≤1 提示:设BC =a ,CA =b ,AB =c ,b +c =3(r +1),又12bc sin60°=S △ABC =12(a +b +c )r ,即12bc ·32=12[33r +1)]r ,. bc =4r (r +2). b ,c 为方程x 2-3r +1)x +4r (r +2)=0的两个根,由△≥0,得(r +1)≤22. 因r >0,r +1>0,故r +1≤2,即0<r ≤1. 3.249π3提示:过P 作垂直于OP 的弦AB ,此时弓形面积最小. 4.13 提示:设AD AB =x ,则BD BA =1-x =CG CA ,ADGABCS S ∆∆=x 2,BDE ABC S S ∆∆=(1-x )2=CFG ABC S S ∆∆,S 梯形DEFG=1―x 2―2(1-x )2=-3(x -23)2+13.5. 312+a 提示:当OA =OB 时,OC 的长最大.6. C7. (1)由Rt △ABP ∽Rt △PCQ ,得BP CQ =AB CP ,即x y =44x -,y =-14(x -2)2+1(0<x <4). 当x =2时, y 最大值=1cm. (2)由14=-14(x -2)2+1,得x =(2+3)cm 或(2-3)cm. 8. 当过A ,B 两点的圆与x 轴正半轴相切时,切点C 为所求. 作O′D ⊥A B 于D . ,O′D 2= O′B 2-BD 2=2()2a b +-2()2a b -=ab ,O′D =ab 故点C 坐标为(ab ,0).9. (1)如图,延长CB 到L ,使BL =DN ,则Rt △ABL ≌Rt △ADN ,得AL =AN ,∠1=∠2,又∵N =2―CN ―CM =DN +BM =BL +BM =ML ,且AM =AM ,∠NAL =∠DAB =90°. ∴△AMN ≌△AML ,故∠MAN =∠MAL=902=45°. (2)设CM =x ,CN =y ,MN =z ,则2222222,2,x y z x y z x y z x y z ++==--⎧⎧⇔⎨⎨+=+=⎩⎩,于是,(2―y ―z )2+y 2=z 2. 整理得2y 2+(2z -4)y +(4-4z )=0. ∵y >0,故△=4(z -2)2-32(1-z )≥0,即(z +2+22)(z +2-22)≥0. 又∵z >0,故z ≥22-2,当且仅当x =y =2-2时等号成立. 由于S △AMN =S △AML =12·ML ·AB =12 MN ×1=2z ,因此,△AMN 的面积的最小值为2-1.10. (1)提示:证明△ADF ∽△BAC . (2)①AB =15,BC =9,∠ACB =90°,∴AC 22AB BC -=2215912-=,∴CF =AF =6,∴()()19632702y x x x =+⨯=+>.②∵BC =9(定值),∴△PBC 的周长最小,就是PB +PC 最小,由(1)知,点C 关于直线DE 的对称点是点A ,所以PB +PC =PB +P A ,故只要求PB +P A 最小.显然当P 、A 、B 三点共线时PB +P A 最小,此时DP =DE ,PB +P A =AB .由(1),角∠ADF =∠F AE ,∠DF A =∠ACB =90°,得△DAF ∽△ABC .EF ∥BC ,得AE =BE =12AB =152,EF =92.∴ AF ∶BC =AD ∶AB ,即6∶9=AD ∶15,∴AD =10.Rt △ADF 中,AD =10,AF =6,∴DF =8.∴DE =DF +FE =8+92=252. ∴当x =252时,△PBC 的周长最小,此时y =1292. 11.(1)令k =1,得y =x +2;令k =2,得y =2x +6,联立解得x =4,y =2,故定点(4,2). (2)取x =0,得OB =2-4k (k <0),取y =0,得OA =()420k k k-<.于是△ABO 的面积()()114224022k S OA OB k k k-==-<,化简得()28820k S k +-+=.由()28640S ∆=--≥得2160S S -≥,故S ≥16.将S =16代入上述方程,得k =12-.故当k =12-,S 值最小. 12.(1)如图,延长EF 交AC 于点D ,DF ∥BC ,Rt △ADF ∽Rt △ACB ,AE =AC =x ,()2222DE x x y xy y =--=-22xy y y x y x -+-=,2x -2y -xy =22x xy y -,两边平方整理得(x 2+2x +2)y 2-(x 3+2x 2+4x )y +2x 2=0.解得2222x y x x =++(y =x 舍去) . (2)由(1)22122222y x x ==+++≤ .当且仅当2x x =,即2x =,上式等号成立.故当2x =,y 去最大21.。

中考数学分类解析平面几何的综合

中考数学分类解析平面几何的综合

平面几何的综合一、选择题1. (2012湖北鄂州3分)如图,四边形OABC 为菱形,点A 、B 在以O 为圆心的弧上,若OA=2,∠1=∠2,则扇形ODE 的面积为【 】A.π34B.π35C.π2D.π3【答案】A 。

【考点】菱形的性质,等边三角形的判定和性质,扇形面积的计算。

【分析】如图,连接OB .∵OA=OB=OC=AB=BC,∴∠AOB+∠BOC=120°。

又∵∠1=∠2,∴∠DOE=120°。

又∵OA=2,∴扇形ODE 的面积为21202 43603ππ⋅⋅=。

故选A 。

2. (2012湖南岳阳3分)如图,AB 为半圆O 的直径,AD 、BC 分别切⊙O 于A 、B 两点,CD 切⊙O 于点E ,AD 与CD 相交于D ,BC 与CD 相交于C ,连接OD 、OC ,对于下列结论:①OD 2=DE•CD; ②AD+BC=CD;③OD=OC;④S 梯形ABCD =CD•OA;⑤∠DOC=90°,其中正确的是【 】A .①②⑤ B.②③④ C.③④⑤ D.①④⑤ 【答案】A 。

【考点】切线的性质,切线长定理,相似三角形的判定与性质。

1052629【分析】如图,连接OE ,∵AD 与圆O 相切,DC 与圆O 相切,BC 与圆O 相切, ∴∠DAO=∠DEO=∠OBC=90°, ∴DA=DE,CE=CB ,AD∥BC。

∴CD=DE+EC=AD+BC。

结论②正确。

在Rt△ADO 和Rt△EDO 中,OD=OD ,DA=DE ,∴Rt△ADO≌Rt△EDO(HL ) ∴∠AOD=∠EOD。

同理Rt△CEO≌Rt△CBO,∴∠EOC=∠BOC。

又∠AOD+∠DOE+∠EOC+∠COB=180°,∴2(∠DOE+∠EOC)=180°,即∠DOC=90°。

结论⑤正确。

∴∠DOC=∠DEO=90°。

又∠EDO=∠ODC,∴△EDO∽△O DC 。

【中考冲刺】初三数学培优专题 24 平面几何的定值问题(含答案)(难)

【中考冲刺】初三数学培优专题 24 平面几何的定值问题(含答案)(难)

平面几何的定值问题【阅读与思考】所谓定值问题,是指按照一定条件构成的几何图形,当某些几何元素按一定的规律在确定的范围内变化时,与它有关的元素的量保持不变(或几何元素间的某些几何性质或位置关系不变).几何定值问题的基本特点是:题设条件中都包含着变动元素和固定元素,变动元素是指可变化运动的元素,固定元素也就是“不变量”,有的是明显的,有的是隐含的,在运动变化中始终没有发生变化的元素,也就是我们要探求的定值. 解答定值问题的一般步骤是: 1. 探求定值; 2. 给出证明.【例题与求解】【例1】 如图,已知P 为正方形ABCD 的外接圆的劣弧AD⌒上任意一点. 求证:PA PC PB为定值. 解题思路:线段的和差倍分考虑截长补短,利用圆的基本性质,证明三角形全等.P AB CD【例2】 如图,AB 为⊙O 的一固定直径,它把⊙O 分成上、下两个半圆,自上半圆上一点C 作弦CD ⊥AB ,∠OCD 的平分线交⊙O 于点P ,当点C 在上半圆(不包括A ,B 两点)上移动时,点P ( ) A . 到CD 的距离保持不变 B . 位置不变C . 等分DB⌒ D . 随C 点的移动而移动 (济南市中考试题)解题思路:添出圆中相关辅助线,运用圆的基本性质,用排除法得出结论.A【例3】 如图,定长的弦ST 在一个以AB 为直径的半圆上滑动,M 是ST 的中点,P 是S 对AB 作垂线的垂足. 求证:不管ST 滑到什么位置,∠SPM 是一定角.(加拿大数学奥林匹克试题)解题思路:不管ST 滑到什么位置,∠SOT 的度数是定值. 从探寻∠SPM 与∠SOT 的关系入手.B【例4】 如图,扇形OAB 的半径OA =3,圆心角∠AOB =90°. 点C 是AB⌒上异于A ,B 的动点,过点C 作CD ⊥OA 于点D ,作CE ⊥OB 于点E . 连接DE ,点G ,H 在线段DE 上,且DG =GH =HE .(1)求证:四边形OGCH 是平行四边形;(2)当点C 在AB ⌒上运动时,在CD ,CG ,DG 中,是否存在长度不变的线段?若存在,请求出该线段的长度;(3)求证:CD 2+3CH 2是定值. (广州市中考试题)解题思路:延长OG 交CD 于N ,利用题中的三等分点、平行四边形和三角形中位线的性质,实现把线段ON 转化成线段CH 的倍分关系,再以Rt △OND 为基础,通过勾股定理,使问题得以解决.BOACE HGD 【例5】 如图1,在平面直角坐标系xOy 中,点M 在x 轴的正半轴上,⊙M 交x 轴于A ,B 两点,交y 轴于C ,D 两点,且C 为弧AE 的中点,AE 交y 轴于G 点. 若点A 的坐标为(-2,0),AE =8. (1)求点C 的坐标;(2)连接MG ,BC ,求证:MG ∥BC ;(3)如图2,过点D 作⊙M 的切线,交x 轴于点P . 动点F 在⊙M 的圆周上运动时,PFOF的比值是否发生变化?若不变,求出比值;若变化,说明变化规律. (深圳市中考试题)解题思路:对于(3)从动点F 达到的特殊位置时入手探求定值.【例6】 如图,已知等边△ABC 内接于半径为1的圆O ,P 是⊙O 上的任意一点. 求证:P A 2+PB 2+PC 2为定值.解题思路:当点P 与C 点重合时,P A 2+PB 2+PC 2=2BC 2为定值,就一般情形证明.A【能力训练】A 级1. 如图,点A ,B 是双曲线xy 3=上的两点,分别经过A ,B 两点向x 轴,y 轴作垂线段. 若S 阴影=1,则=+21S S _______.(牡丹江市中考试题)AABCDEF(第3题图) (第4题图)2. 从等边三角形内一点向三边作垂线段,已知这三条垂线段的长分别为1,3,5,则这个等边三角形的面积是__________.(全国初中数学联赛试题)3. 如图,OA ,OB 是⊙O 任意两条半径,过B 作BE ⊥OA 于E ,又作OP ⊥AB 于P ,则定值OP 2+EP 2为_________.4. 如图,在菱形ABCD 中,∠ABC =120°,F 是DC 的中点,AF 的延长线交BC 的延长线于点E ,则直线BF 与直线DE 所夹的锐角的度数为( )A . 30°B . 40°C . 50°D . 60°(武汉市竞赛试题)5. 如图,在⊙O 中,P 是直径AB 上一动点,在AB 同侧作A A '⊥AB ,AB B B ⊥',且A A '=AP ,B B '=BP . 连接B A '',当点P 从点A 移动到点B 时,B A ''的中点的位置( )A .在平分AB 的某直线上移动 B . 在垂直AB 的某直线上移动C . 在弧AMB 上移动D . 保持固定不移动AB'B(第5题图) (第6题图)6. 如图,A ,B 是函数xky图象上的两点,点C ,D ,E ,F 分别在坐标轴上,且分别与点A ,B ,O 构成正方形和长方形. 若正方形OCAD 的面积为6,则长方形OEBF 的面积是( ) A . 3 B . 6 C . 9 D . 12(海南省竞赛试题))7. (1)经过⊙O 内或⊙O 外一点P 作两条直线交⊙O 于A ,B 和C ,D 四点,得到如图①~⑥所表示的六种不同情况. 在六种不同情况下,P A ,PB ,PC ,PD 四条线段之间在数量上满足的关系式可以用同一个式子表示出来. 请你首先写出这个式子,然后只就如图②所示的圆内两条弦相交的一般情况给出它的证明.⑥⑤④③②①)P (B )PB(2)已知⊙O 的半径为一定值r ,若点P 是不在⊙O 上的一个定点,请你过点P 任作一直线交⊙O 于不重合的两点E ,F . PE ·PF 的值是否为定值?为什么?由此你发现了什么结论?请你把这一结论用文字叙述出来.(济南市中考试题)8. 在平面直角坐标系中,边长为2的正方形OABC 的两顶点A ,C 分别在y 轴,x 轴的正半轴上,点O 在原点,现将正方形OABC 绕O 点顺时针旋转,当A 点第一次落在直线x y =上时停止旋转. 旋转过程中,AB 边交直线x y =于点M ,BC 边交x 轴于点N .(1)求OA 在旋转过程中所扫过的面积;(2)旋转过程中,当MN 与AC 平行时,求正方形OABC 旋转度数;(3)设△MBN 的周长为P ,在正方形OABC 旋转的过程中,P 值是否有变化?请证明你的结论.(济宁市中考试题)9. 如图,AB 是半圆的直径,AC ⊥AB ,AC =AB . 在半圆上任取一点D ,作DE ⊥CD ,交直线AB 于点E ,BF ⊥AB ,交线段AD 的延长线于点F .(1)设弧AD 是x °的弧,若要点E 在线段BA 的延长线上,则x 的取值范围是_______.(2)不论点D 取在半圆的什么位置,图中除AB =AC 外,还有两条线段一定相等. 指出这两条相等的线段,并予证明.(江苏省竞赛试题)(第9题图) (第10题图) (第11题图)10. 如图,内接于⊙O 的四边形ABCD 的对角线AC 与BD 垂直相交于点K ,设⊙O的半径为R . 求证:(1)2222DK CK BK AK +++是定值;(2)2222DA CD BC AB +++是定值.PD CB A A11. 如图,设P 是正方形ABCD 外接圆劣弧弧AB 上的一点,求证:DPCP BPAP ++的值为定值.(克罗地亚数学奥林匹克试题)B 级1.等腰△ABC 的底边BC 为定长2,H 为△ABC 的垂心. 当顶点A 在保持△ABC 为等腰三角形的情况下 改变位置时,面积S △ABC ·S △HBC 的值保持不变,则S △ABC ·S △HBC =________.2. 已知A ,B ,C ,D ,E 是反比例函数xy 16=(x >0)图象上五个整数点(横、纵坐标均为整数),分别过这些点向横轴或纵轴作垂线段,以垂线段所在的正方形边长为半径作四分之一圆周的两条弧,组成如图所示的五个橄榄形(阴影部分),则这五个橄榄形的面积总和是__________(用含π的代数式表示).(福州市中考试题) 折叠,使点A ,B 落在六边形ABCDEF 的内部,记∠C +∠D +∠E +∠F =α,则下列结论一定正确的是( )A . ∠1+∠2=900°-2αB . ∠1+∠2=1080°-2αC . ∠1+∠2=720°-αD . ∠1+∠2=360°-21α (武汉市竞赛试题)(第3题图) (第4题图)4. 如图,正△ABO 的高等于⊙O 的半径,⊙O 在AB 上滚动,切点为T ,⊙O 交AO ,BO 于M ,N ,则12GF ED CHBAA . 在0°到30°变化B . 在30°到60°变化C . 保持30°不变D . 保持60°不变5. 如图,AB 是⊙O 的直径,且AB =10,弦MN 的长为8. 若MN 的两端在圆上滑动时,始终与AB 相交,记点A ,B 到MN 的距离分别为h 1,h 2,则∣h 1-h 2∣等于( )A . 5B . 6C . 7D . 8(黄石市中考试题)(第5题图)6. 如图,已知△ABC 为直角三角形,∠ACB =90°,AC =BC ,点A ,C 在x 轴上,点B 坐标为(3,m )(m >0),线段AB 与y 轴相交于点D ,以P (1,0)为顶点的抛物线过点B ,D . (1)求点A 的坐标(用m 表示) (2)求抛物线的解析式;(3)设点Q 为抛物线上点P 至点B 之间的一动点,连接PQ 并延长交BC 于点E ,连接BQ 并延长交AC 于点F . 试证明:FC (AC +EC )为定值.(株洲市中考试题)7. 如图,已知等边△ABC 内接于圆,在劣弧AB 上取异于A ,B 的点M . 设直线AC 与BM 相交于K ,直线CB 与AM 相交于点N . 证明线段AK 和BN 的乘积与M 点的选择无关.(湖北省选拔赛试题)(第7题图) (第8题图)B NKMB AC HCBA距离变小,这时乘积S △ABC ·S △HBC 的值变小、变大,还是不变?证明你的结论.(全国初中数学联赛试题)9. 如图,在平面直角坐标系xOy 中,抛物线10941812--=x x y 与x 轴的交点为点A ,与y 轴的交点为点B . 过点B 作x 轴的平行线BC ,交抛物线于点C ,连接AC . 现有两动点P ,Q 分别从O ,C 两点同时出发,点P 以每秒4个单位的速度沿OA 向终点A 移动,点Q 以每秒1个单位的速度沿CB 向点B 移动. 点P 停止运动时,点Q 也同时停止运动. 线段OC ,PQ 相交于点D ,过点D 作DE ∥OA ,交CA 于E ,射线QE 交x 轴于点F . 设动点P ,Q 移动的时间为t (单位:秒). (1)求A ,B ,C 三点的坐标和抛物线的顶点坐标;(2)当t 为何值时,四边形PQCA 为平行四边形?请写出计算过程; (3)当290<<t 时,△PQF 的面积是否总是定值?若是,求出此值;若不是,请说明理由; (4)当t 为何值时,△PQF 为等腰三角形,请写出解答过程. (黄冈市中考试题)(第9题图) (第10题图)10. 已知抛物线C 1:12121+-=x x y ,点F (1,1). (1)求抛物线C 1的顶点坐标;(2)若抛物线C 1与y 轴的交点为A ,连接AF ,并延长交抛物线C 1于点B ,求证:211=+BFAF . (3)抛物线C 1上任意一点P (x P ,y P )(0<x P <1),连接PF ,并延长交抛物线C 1于点 Q (x Q ,y Q ),试判断211=+QFPF 是否成立?请说明理由.11. 已知A ,B 是平面上的两个顶点,C 是位于AB 一侧的一个动点,分别以AC ,BC 为边在△ABC 外作正方形ACDE 和正方形BCFG . 求证:不论C 在直线AB 同一侧的任何位置,EG 的中点P 的位置不变.(四川省竞赛试题)平面几何的定值问题例 1 延长PC 至E ,使CE =AP ,连结BE ,则△BCE ≌△BAP ,及△PBE 为等腰直角三角形,故2PA PC CE PC PEPB PB PB++=== 例2 B 提示:连结AC ,BC ,可以证明P 为APB 的中点. 例3 ∵SP ⊥OP ,OM ⊥ST ,∴S ,M ,O ,P 四点共圆,于是∠SPM =∠SOM =12∠SOT 为定角. 例4 (1)连结OC 交DE 于M ,则OM =CM , EM =DM ,而DG = HE ,则HM =GM 故四边形OGCH 是平行四边形. (2)DG 不变.DE =OC =OA =3 . DG =13DE =13×3=1. (3)设CD =x ,延长OG 交CD 于N ,则CN=DN =12 x ,229CE x =- , 2214DN x = . ∴22394ON x =-,而ON =32CH ,∴22143CH x =-.故CD 2+3CH 2=x 2+3(4-13x 2)=x 2+12-x 2为定值. 例5 ⑴C (0,4) ⑵先求得AM=CM =5,连接MC 交AE 于N ,由△AO G ∽△ANM ,得OG AO MN AN =,O G =32,38OG OM OC OB ==,又∠BOC =∠G OM ,∴△G OM ∽△COB ,∠G MO =∠CBO ,得M G ∥BC .⑶连结DM ,则DM ⊥PD ,DO ⊥PM ,DO 2=OM •OP ,OP=163.动点F 在⊙M 的圆周上运动时,从特殊位置探求OF PF的值.当F 与点A 重合时,2316523OF AO PF AP ===-;当点F 与点B 重合时,8316583OF OB PF PB ===+;当点F 不与点A ,B 重合时,连接OF 、PF 、MF ,∴DM 2=MO •MP ,∴FM 2=MO •MP ,即FM MPOM FM=,又∠OMP =∠FMP ,∴△MFO ∽△MPF ,35OF MO PF MF ==,故OF PF 的比值不变,比值为35. 例6 ∠BPC =120°,在△BPC 中,由余弦定理得BC 2=PB 2+PC 2-2PB •PC =BC 2,又由上托勒密定理得BC •PA +PC •AB ,而AB =BC =AC ,∴PA =PB +PC ,从而PA 2+PB 2+PC 2=(PB +PC )2+PB 2+PC 2=2 (PB 2+PC 2+PB •PC )=2BC 2=2×23=6.故PA 2+PB 2+PC 2为定值.A 级 1.4 提示:∵S 1+S 阴= S 2+S 阴=xy =3,∴S 1+S 2=2xy -2S 阴=6-2=4.2.273提示:1+3+5=9是等边三角形的高. 3.r 2 提示:先考查OB 与OA 垂直的情形.4.D 提示:延长BF 交DE 于点M ,连接BD ,则△BCD 为等边三角形,BF 平分∠CBD .∵F 为CD 中点,且AD ∥CE ,∴△ADF 与△ECF 关于点F 中心对称.∴CE =AD =CD ,∴∠CEM=30°,∠DMF=60°,5.D 提示:A ′B′的中点均在⊙O 的上半圆的中点处. 6.B 提示:S 正方形OCAD =OD •OC =A A x y k ==6,∴S OEBF =OE •OF =xB •y B k ==6. 7.⑴略⑵当点P 在⊙O 内时,过P 作直径CD ,则PE •PF =PD •PC =r 2-OP 2为定值;当点P 在⊙O 外时,PE •PF 为定值22OP r -.结论:过不在圆上的一个定点任作一条直线与圆相交,则这点到直线与圆相交点的两条线段长的积为定值. 8.⑴2π⑵22. 5° ⑶P 值无变化.理由如下:如图,延长BA 交y 轴于E 点,可证明△OAE ≌△OCN ,得OE =ON ,AE =CN ,又∠MOE =∠MON =45°,OM =ON ,∴△OME ≌△OMN ,得MN =ME =AM +AE =AM +CN .∴P =MN +BN +BM =AM +CM +CN +BN +BM =AB +AC =4.9.⑴0<x <90 ⑵BE =BF 提示:连接BD ,可证明△BDF ∽△ADB ,△BDE ∽△ADC . 10.⑴作OP ⊥BD 于P ,OQ ⊥AC 于Q ,连接AO ,则AO 2=()()221122BK DK CK AK ⎡⎤⎡⎤-++⎢⎥⎢⎥⎣⎦⎣⎦,又AK •CK =BK •DK ,得AK 2+BK 2+CK 2+DK 2=4R 2为定值. ⑵作直径DE ,连接AE ,BE ,CE ,AB 2+CD 2=4R 2,AD 2+BC 2=4R 2,故AB 2+BC 2+CD 2+DA 2=8K 2为定值. 11.设正方形的边长为a ,根据托勒密定理,对于四边形APBC 和四边形APBD ,有CP •a =AP •a +BP 2a ,DP •a =BP •a +AP 2a ,两式相加并整理得(CP +DP )a =(AP +BP )(a 2a ),从而21AP BPCP DP++为定值.B 级1.1 提示:不妨设∠A 为锐角,AD ,BE ,CF 为△ABC 的三条高,H 为垂心,由AB =AC 知∠HBD =∠HCD =∠HAE ,∠HDC =∠CDA =90°,故R t △CHD ∽R t △ACD .∴AD DC DC HD =,即AD •HD =DC 2=14BC 2=1.∴S △ABC •S △HBC =2111224BC AD BC HD BC ⎛⎫⎛⎫⋅⋅⋅= ⎪ ⎪⎝⎭⎝⎭=1.当∠A ≥90°时,结论成立.2.13π-26 提示:∵A ,B ,C ,DE 是反比例函数y =16x(x >0)图象上五个整数点,由图象可知,这些点的横坐标分别为1,2,4,8,16.∴五个正方形的边长分别为1,3,4,2,1.∴这五人橄榄形的面积总和是2221111112211122222444424242πππ⎡⎤⎛⎫⎛⎫⎛⎫⨯-⨯⨯+⨯-⨯⨯+⨯-⨯⨯ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=5π-10+8π-16=13π-26. 3.B 提示:如图,设FA 的延长线与CB 的延长线交于点P ,G A ′的延长线与HB ′的延长线交于点P ′.由对称性可知∠1=2∠APP ′,∠2=2∠BPP ′.∴∠1+∠2=2∠APB .∵∠APB =540°-α,∴∠1+∠2=1080°-2α. 4.D 5.B 提示:如图,设AB 与MN 交于点C ,过点O 作OD ⊥MN 于D ,连接FO 并延长交EB 于G .由垂径定理,得OD 2254-=3.由△AFO ≌△B G O ,得AF =B G ,即h 1=B G .由AF ⊥MN ,BE ⊥MN ,得△FOD ∽△F G E .∴12OD FO GE FG ==.∴E G =2OD=6,∴12h h AF BE -=-=E G =6. 6.⑴A (3-m ,0) ⑵y =x 2-2x +1⑶过点Q 作QM ⊥AC 于M ,过点Q 作QN ⊥BC 于N ,设Q 点的坐标为(x ,x 2-2x +1),则QM =CN =(x -1)2,MC =QN=3-x .∵QM ∥CE ,∴PQM ∽△PEC .∴QM PM EC PC =,即()2112x x EC --=,得EC =2(x -1).∵QN ∥CF ,∴△BQN ∽△BFC .∴QN BN FC BC =,即()24134x x FC ---=,得FC =41x +.又AC =4,∴FC (AC +EC )= ()44211x x +-⎡⎤⎣⎦+=8为定值. 7.提示:易证△ABK ∽△BNA ,故AK •BN =AB 2为定值,即AK 与BN 的乘积与M 点的选择无关. 8.提示:S △ABC •S △HBC =116BC 4,由于BC 是不变的,所以当点A 至BC 的距离变小时,乘积S △ABC •S △HBC 保持不变. 9.⑴A (18,0),B (0,-10),顶点坐标为(4,-989) ⑵若四边形PQCA 为平行四边形,由于QC ∥PA ,故只要QC =PA 即可,而PA =18-4t ,CQ =t ,故18-4t =t ,得t =185. ⑶设点P 运动t s ,则OP =4t ,CQ =t ,0<t <4. 5.说明P 在线段OA 上,且不与点O ,A 重合.由于QC ∥OP 知△QDC ∽△PDO ,故144QD QC t DP OP t ===.同理QC ∥AF ,故14QC CE AF EA ==,即14t AF =,∴AF =4t =OP .∴PF =PA +AF =PA +OP =18.又点Q 到直线PF 的距离d =10,∴S △PQF =12•PF •d =12×18×10=90.于是S △PQF 的面积总为定值90. ⑷由前面知道,P (4t ,0),F (18+4t ,0),Q (8-t ,-10),0≤t ≤4. 5.构造直角三角形后易得PQ 2=(4t -8+t )2+102=,FQ 2=(18+4t -8+t )2+102=(5t +10)2+100.①若FP =FQ ,即182=(5t +10)2+100,故25(t +2)2=224,(t +2)2=24425.∵2≤t +2≤6. 5,∴t +224441425=.∴t = 4142. ②若QP =QF ,即(5t -8)2+100=(5t +10)2+100,即(5t -8)2=(5t +10)2,无0≤t ≤4. 5的t 满足. ③若PQ =PF ,即(5t -8)2+100=182,∴(5t -8)2=22422415,又0≤5t ≤22. 5,∴-8≤5t -8≤14. 5,14. 52=22984124⎛⎫= ⎪⎝⎭<224.故没有t (0≤t ≤4. 5)满足此方程.综上所述,当t =4142时,△PQ R 为等腰三角形. 10.⑴C 1的顶点坐标为(1,12). ⑵略 ⑶作PM ⊥AB 于M ,作QN ⊥AB 交AB 延长线于N ,∴PM =1-y P ,FM =1-x P .在R t △PMF 中,PF 2=(1-y P )2+(1-x P )2=1-2y P +y P 2+1-2x P +x P 2,又∵点P 在抛物线上,∴y P =12x P 2-x P +1,∴PF 2=1-x P 2+2x P -2+y P 2+1-2x P +x P 2=y P 2,∴PF =y P ,同理,QF =y Q ,易证△PMF ∽△QNF ,则PM QN PF QF =,∴11Q P y y PF QF --=,即11PF QF PF QF --=,∴11PF QF+=2. 11.先从特殊情况出发.当△ABC 是等腰直角三角形时,点P 与点C 重合,此时点P 的位置在AB 的中垂线上,且到AB 的距离为12AB ,如图①所示.下面就一般情况来证明上面的结论(结论②所示).过C ,E ,G 分别作直线AB的垂线CH,EM,G N,垂足分别是H,M,N.容易证明△AEM≌△ACH,△B G N≌△BCH.从而有AM=CH=BN,EM=AH,G N=BH.这样,线段AB的中点O也是线段MN的中点,连接OP,则OP是梯形EMN G的中位线,从而OP⊥AB,OP=12(EM+G N)=12(AH+BH)=12AB.∴无论点C在AB同一侧的位置如何,E G中点P的位置不变.。

一道中考几何题的剖析延伸与拓展

一道中考几何题的剖析延伸与拓展

改为与两圆都相切或都相割 , 那又有什 么样 的结果 呢?

,所 以 , 胱
() 里 先 从 特 殊 情 况 人 手 去 发 现 问题 : 原 题 中AC 1这 当
, 即
与 两 圆相 外 切 时 ,P eA与 合 为一 点 时 , B 为两 圆 的 外 公 则 C 切线 , 设 为 公 切 线 , 图4 此 时有 如 ,
1 剖 析
试 就 会发 现 此 时 不 再 有 肌 上f ℃.
此 题 主要 考 查 了 圆 的弦 切 角 定理 、切 线 长 定 理 及 三
角形性质定 理的应用.

( ) B C C D 立 , 什 么 成 立 原 题 不 需 学 1 P = P 成 为
生 证 明 , 里 补 充 证 明如 下 l 这
论 及 解法 .
2 在 图l . 1 中若 取 J为 弧 A l I f B的 中 点 , 结 MP, 其 他 条 件 连 而 不 变 ,即 得 图3 ,我 们 很 快 会 发 现 』 = 』 I I
MR + Z = 肘 + C D 9 。, f C B C 4 :O 即 = 上只 .
笔 者认 为 这 是 一 个 极 有 代 表性 的 典 型题 , 能 较 好 地 它 考 查 学 生 对 圆 这 部 分 基 础 知 识 的 掌 握 状 况 , 有 较 大 的 伸 又 缩 空 问 , 要 仔 细 观 察 该 题 就 能 发 现 可 以把 它 变 式 为 其 他 只
题型.
,于 是
变式题1 如 图3 设 o0l o0相外 切于P , , 与 2 点 直线AC
割 o 0于A, l ,且 切 o0 于 C,又 是 弧 A 2 B的 中 点 .求 证

平面几何中考题分析

平面几何中考题分析

・ o 0 =3 3×√ ct 。 √ 3 3=9, 理 , C上A . D 同 D 0,. C=A ‘ ’ C
3 s0。 : 9 Cs0: ,直 的 程 i O: i . 线C 方 n。 D . 3 华 . 线 D 3= 0 , = ・ 。 ‘ O n .
. ‘ .

C BM = . . E= F= . , M fA , E= 15 B A 25’ P F . ’

’ O A = B' B = 丝 。 一O 一丝 A
・ ・ . .
, .

J = 2 £ 一 上 ‘ PF = 2 f . OF =OB ' 一 。・ ‘‘ ●. ‘ 一
的时间为 t . 秒

运 用 数 形 结 合 思 想
例 1 矩形纸片 A C B D中,B=5 A 4 将纸 片折 A ,D: , 叠, 使点 曰落在边 C 上的 曰 处 , D 折痕 为 A 在折 痕 A E E 上存在 一点 P到边 C D的距离 与到点 的距离 相等 , 则
此 相等 距 离 为— —一





-一 . .


。 一 ’÷: 5’. 一 , :,:+ ‘ ‘5 , :’B一 P ’ 5 。 — ’. 1P 曰 一 1 2 . ’ 。
. . .


, .

E B6 点的标(,手. F E 一 ‘P坐为争6 t -=手 . 一)
分析

如图 1 由题 意知 , B=E 设 E , E B , B=E B =
因 为 四边 形 A C 是矩 形 , E BD 作 F上A 交 A 于 F 交 D D ,

2020年中考数学一轮复习题型09几何类比、拓展、探究题(原卷版)

2020年中考数学一轮复习题型09几何类比、拓展、探究题(原卷版)

题型09 几何类比、拓展、探究题一、解答题1.如图1,ABC ∆(12AC BC AC <<)绕点C 顺时针旋转得DEC ∆,射线AB 交射线DE 于点F . (1)AFD ∠与BCE ∠的关系是 ;(2)如图2,当旋转角为60°时,点D ,点B 与线段AC 的中点O 恰好在同一直线上,延长DO 至点G ,使OG OD =,连接GC .①AFD ∠与GCD ∠的关系是 ,请说明理由;②如图3,连接,AE BE ,若45ACB ∠=o ,4CE =,求线段AE 的长度.2.(问题)如图1,在Rt ABC V 中,90,ACB AC BC ∠=︒=,过点C 作直线l 平行于AB .90EDF ∠=︒,点D 在直线l 上移动,角的一边DE 始终经过点B ,另一边DF 与AC 交于点P ,研究DP 和DB 的数量关系.(探究发现)(1)如图2,某数学兴趣小组运用“从特殊到一般”的数学思想,发现当点D 移动到使点P 与点C 重合时,通过推理就可以得到DP DB =,请写出证明过程;(数学思考)(2)如图3,若点P 是AC 上的任意一点(不含端点A C 、),受(1)的启发,这个小组过点D 作DG CD ⊥交BC 于点G ,就可以证明DP DB =,请完成证明过程;(拓展引申)(3)如图4,在(1)的条件下,M 是AB 边上任意一点(不含端点A B 、),N 是射线BD 上一点,且AM BN =,连接MN 与BC 交于点Q ,这个数学兴趣小组经过多次取M 点反复进行实验,发现点M 在某一位置时BQ 的值最大.若4AC BC ==,请你直接写出BQ 的最大值.3.小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.(1)温故:如图 1,在△ABC中,AD⊥BC于点D,正方形PQMN的边QM在BC上,顶点P,N分别在AB,AC上,若BC=6 ,AD=4,求正方形PQMN的边长.(2)操作:能画出这类正方形吗?小波按数学家波利亚在《怎样解题》中的方法进行操作:如图 2,任意画△ABC,在AB上任取一点P′,画正方形P′Q′M′N′,使Q′,M′在BC边上,N′在△ABC内,连结B N′并延长交AC于点N,画NM⊥BC于点M,NP⊥NM交AB于点P,PQ⊥BC于点Q,得到四边形PQMN.小波把线段BN称为“波利亚线”.(3)推理:证明图2 中的四边形PQMN是正方形.(4)拓展:在(2)的条件下,于波利业线B N上截取NE=NM,连结EQ,EM(如图 3).当tan∠NBM=34时,猜想∠QEM的度数,并尝试证明.请帮助小波解决“温故”、“推理”、“拓展”中的问题.4.问题提出:如图,图①是一张由三个边长为1 的小正方形组成的“L”形纸片,图②是一张a×b的方格纸(a×b的方格纸指边长分别为a,b的矩形,被分成a×b个边长为 1 的小正方形,其中a≥2 ,b≥2,且a,b为正整数).把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有多少种不同的放置方法?问题探究:为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.探究一:把图①放置在2× 2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图③,对于2×2的方格纸,要用图①盖住其中的三个小正方形,显然有4 种不同的放置方法.探究二:把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图④,在3×2的方格纸中,共可以找到2 个位置不同的2 ×2方格,依据探究一的结论可知,把图①放置在3×2 的方格纸中,使它恰好盖住其中的三个小正方形,共有2 ×4=8种不同的放置方法.探究三:把图①放置在a ×2 的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑤,在a ×2 的方格纸中,共可以找到______个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a× 2 的方格纸中,使它恰好盖住其中的三个小正方形,共有______种不同的放置方法.探究四:把图①放置在a ×3 的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑥,在a ×3 的方格纸中,共可以找到______个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a ×3 的方格纸中,使它恰好盖住其中的三个小正方形,共有_____种不同的放置方法.……问题解决:把图①放置在a ×b的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?(仿照前面的探究方法,写出解答过程,不需画图.)问题拓展:如图,图⑦是一个由4 个棱长为1 的小立方体构成的几何体,图⑧是一个长、宽、高分别为a,b,c(a≥2 ,b≥2 ,c≥2 ,且a,b,c是正整数)的长方体,被分成了a×b×c个棱长为1 的小立方体.在图⑧的不同位置共可以找到______个图⑦这样的几何体.5.在ABC ∆中,90BAC ∠=︒,AB AC =,AD BC ⊥于点D ,(1)如图1,点M ,N 分别在AD ,AB 上,且90BMN ∠=︒,当30AMN ∠=︒,2AB =时,求线段AM 的长;(2)如图2,点E ,F 分别在AB ,AC 上,且90EDF ∠=︒,求证:BE AF =;(3)如图3,点M 在AD 的延长线上,点N 在AC 上,且90BMN ∠=︒,求证:AB AN +=;6.如图,正方形ABDE 和BCFG 的边AB ,BC 在同一条直线上,且2AB BC =,取EF 的中点M ,连接MD ,MG ,MB .(1)试证明DM MG ⊥,并求MBMG的值. (2)如图,将如图中的正方形变为菱形,设()2090EAB αα∠=<<︒,其它条件不变,问(1)中MBMG的值有变化吗?若有变化,求出该值(用含α的式子表示);若无变化,说明理由.7.定义:有一组邻边相等且对角互补的四边形叫做等补四边形. 理解:()1如图1,点A B C ,,在O e 上,ABC ∠的平分线交O e 于点D ,连接AD CD ,.求证:四边形ABCD 是等补四边形; 探究:()2如图2,在等补四边形ABCD 中AB AD ,=,连接AC AC ,是否平分?BCD ∠请说明理由. 运用:()3如图3,在等补四边形ABCD 中,AB AD =,其外角EAD ∠的平分线交CD 的延长线于点105F CD AF ,=,=,求DF 的长.8.已知V ABC 内接于O e ,BAC ∠的平分线交O e 于点D ,连接DB ,DC .(1)如图①,当120BAC ∠=o 时,请直接写出线段AB ,AC ,AD 之间满足的等量关系式: ; (2)如图②,当90BAC ∠=o 时,试探究线段AB ,AC ,AD 之间满足的等量关系,并证明你的结论; (3)如图③,若BC =5,BD =4,求ADAB AC+ 的值.9.如图,在ABC ∆中,AB BC =,AD BC ⊥于点D ,BE AC ⊥于点E ,AD 与BE 交于点F ,BH AB ⊥于点B ,点M 是BC 的中点,连接FM 并延长交BH 于点H .(1)如图①所示,若30ABC ∠=o ,求证:DF BH +=; (2)如图②所示,若45ABC ∠=o ,如图③所示,若60ABC ∠=o (点M 与点D 重合),猜想线段DF 、BH 与BD 之间又有怎样的数量关系?请直接写出你的猜想,不需证明.10.将在同一平面内如图放置的两块三角板绕公共顶点A旋转,连接BC,DE.探究S△ABC与S△ADC的比是否为定值.(1)两块三角板是完全相同的等腰直角三角板时,S△ABC:S△ADE是否为定值?如果是,求出此定值,如果不是,说明理由.(图①)(2)一块是等腰直角三角板,另一块是含有30°角的直角三角板时,S△ABC:S△ADE是否为定值?如果是,求出此定值,如果不是,说明理由.(图②)(3)两块三角板中,∠BAE+∠CAD=180°,AB=a,AE=b,AC=m,AD=n(a,b,m,n为常数),S△ABC:S△ADE是否为定值?如果是,用含a,b,m,n的式子表示此定值(直接写出结论,不写推理过程),如果不是,说明理由.(图③)11.如图1,对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD 中,AB AD =,CB CD =,问四边形ABCD 是垂美四边形吗?请说明理由;(2)性质探究:如图1,四边形ABCD 的对角线AC 、BD 交于点O ,AC BD ⊥.试证明:2222AB CD AD BC +=+;(3)解决问题:如图3,分别以Rt ACB V 的直角边AC 和斜边AB 为边向外作正方形ACFG 和正方形ABDE ,连结CE 、BG 、GE .已知4AC =,5AB =,求GE 的长.12.(1)数学理解:如图①,△ABC是等腰直角三角形,过斜边AB的中点D作正方形DECF,分别交BC,AC于点E,F,求AB,BE,AF之间的数量关系;(2)问题解决:如图②,在任意直角△ABC内,找一点D,过点D作正方形DECF,分别交BC,AC于点E,F,若AB=BE+AF,求∠ADB的度数;(3)联系拓广:如图③,在(2)的条件下,分别延长ED,FD,交AB于点M,N,求MN,AM,BN的数量关系.13.如图,正方形ABCD 的边长为2,E 为AB 的中点,P 是BA 延长线上的一点,连接PC 交AD 于点F ,AP FD =.(1)求AFAP的值; (2)如图1,连接EC ,在线段EC 上取一点M ,使EM EB =,连接MF ,求证:MF PF =; (3)如图2,过点E 作EN CD ⊥于点N ,在线段EN 上取一点Q ,使AQ AP =,连接BQ ,BN .将AQB ∆绕点A 旋转,使点Q 旋转后的对应点'Q 落在边AD 上.请判断点B 旋转后的对应点'B 是否落在线段BN 上,并说明理由.14.在ABC ∆中,90ABC ∠=︒,ABn BC=,M 是BC 上一点,连接AM (1)如图1,若1n =,N 是AB 延长线上一点,CN 与AM 垂直,求证:BM BN =(2)过点B 作BP AM ⊥,P 为垂足,连接CP 并延长交AB 于点Q . ①如图2,若1n =,求证:CP BMPQ BQ=②如图3,若M 是BC 的中点,直接写出tan BPQ ∠的值(用含n 的式子表示)15.⑴如图1,E 是正方形ABCD 边AB 上的一点,连接BD DE 、,将BDE ∠绕着点D 逆时针旋转90°,旋转后角的两边分别与射线BC 交于点F 和点G . ①线段DB 和DG 的数量关系是 ; ②写出线段BE BF 、和DB 之间的数量关系.⑵当四边形ABCD 为菱形,ADC 60∠=o ,点E 是菱形ABCD 边AB 所在直线上的一点,连接BD DE 、,将BDE ∠绕着点D 逆时针旋转120°,旋转后角的两边分别与射线BC 交于点F 和点G .①如图2,点E 在线段上时,请探究线段BE BF 、和BD 之间的数量关系,写出结论并给出证明; ②如图3,点E 在线段AB 的延长线上时,DE 交射线BC 于点M ;若 BE 1,AB 2==,直接写出线段GM 的长度.16.教材呈现:如图是华师版九年级上册数学教材第78页的部分内容.例2 如图,在ABC ∆中,,D E 分别是边,BC AB 的中点,,AD CE 相交于点G ,求证:13GE GD CE AD ==,证明:连结ED .请根据教材提示,结合图①,写出完整的证明过程.结论应用:在ABCD Y 中,对角线AC BD 、交于点O ,E 为边BC 的中点,AE 、BD 交于点F . (1)如图②,若ABCD Y 为正方形,且6AB =,则OF 的长为 . (2)如图③,连结DE 交AC 于点G ,若四边形OFEG 的面积为12,则ABCD Y 的面积为 .17.如图1,在矩形ABCD 中,BC =3,动点P 从B 出发,以每秒1个单位的速度,沿射线BC 方向移动,作PAB ∆关于直线PA 的对称'PAB ∆,设点P 的运动时间为()t s(1)若AB =①如图2,当点B ’落在AC 上时,显然△PCB ’是直角三角形,求此时t 的值②是否存在异于图2的时刻,使得△PCB ’是直角三角形?若存在,请直接写出所有符合题意的t 的值?若不存在,请说明理由(2)当P 点不与C 点重合时,若直线PB ’与直线CD 相交于点M ,且当t <3时存在某一时刻有结论∠P AM =45°成立,试探究:对于t >3的任意时刻,结论∠P AM =45°是否总是成立?请说明理由.18.在等腰三角形ABC ∆中,AB AC =,作CM AB ⊥交AB 于点M ,BN AC ⊥交AC 于点N . (1)在图1中,求证:BMC CNB ∆≅∆;(2)在图2中的线段CB 上取一动点P ,过P 作//PE AB 交CM 于点E ,作//PF AC 交BN 于点F ,求证:PE PF BM +=;(3)在图3中动点P 在线段CB 的延长线上,类似(2)过P 作//PE AB 交CM 的延长线于点E ,作//PF AC 交NB 的延长线于点F ,求证:···AM PF OM BN AM PE +=.19.问题情境:如图1,在正方形ABCD中,E为边BC上一点(不与点B、C重合),垂直于AE的一条直线MN分别交AB、AE、CD于点M、P、N.判断线段DN、MB、EC之间的数量关系,并说明理由.问题探究:在“问题情境”的基础上,(1)如图2,若垂足P恰好为AE的中点,连接BD,交MN于点Q,连接EQ,并延长交边AD于点F.求∠AEF的度数;(2)如图3,当垂足P在正方形ABCD的对角线BD上时,连接AN,将△APN沿着AN翻折,点P落在点P'处.若正方形ABCD的边长为4 ,AD的中点为S,求P'S的最小值.问题拓展:如图4,在边长为4的正方形ABCD中,点M、N分别为边AB、CD上的点,将正方形ABCD 沿着MN翻折,使得BC的对应边B'C'恰好经过点A,C'N交AD于点F.分别过点A、F作AG⊥MN,FH⊥MN,垂足分别为G、H.若AG=52,请直接写出FH的长.20.箭头四角形,模型规律:如图1,延长CO 交AB 于点D ,则1BOC B A C B ∠∠+∠∠+∠+∠==..因为凹四边形ABOC 形似箭头,其四角具有“BOC A B C ∠∠+∠+∠=”这个规律,所以我们把这个模型叫做“箭头四角形”.模型应用:(1)直接应用:①如图2,A B C D E F ∠+∠+∠+∠+∠+∠= .②如图3,ABE ACE ∠∠、的2等分线(即角平分线)BF CF 、交于点F ,已知12050BEC BAC ∠=∠=o o ,,则BFC ∠=③如图4,i i BO CO 、分别为ABO ACO ∠∠、的2019等分线12320172018i =⋯(,,,,,).它们的交点从上到下依次为1232018O O O O ⋯、、、、.已知BOC m BAC n ∠=∠=o o ,,则1000BO C ∠= 度 (2)拓展应用:如图5,在四边形ABCD 中,2BC CD BCD BAD =∠=∠,.O 是四边形ABCD 内一点,且OA OB OD ==.求证:四边形OBCD 是菱形.21.如图1,在Rt △ABC 中,∠B =90°,BC =2AB =8,点D ,E 分别是边BC ,AC 的中点,连接DE ,将△EDC 绕点C 按顺时针方向旋转,记旋转角为α. (1)问题发现 ① 当0α︒=时,AEBD= ;② 当时,AEBD= (2)拓展探究试判断:当0°≤α<360°时,AEDB的大小有无变化?请仅就图2的情况给出证明. (3)问题解决当△EDC 旋转至A 、D 、E 三点共线时,直接写出线段BD 的长.22.操作体验:如图,在矩形ABCD中,点E、F分别在边AD、BC上,将矩形ABCD沿直线EF折叠,使点D恰好与点B重合,点C落在点C′处.点P为直线EF上一动点(不与E、F重合),过点P分别作直线BE、BF的垂线,垂足分别为点M和N,以PM、PN为邻边构造平行四边形PMQN.(1)如图1,求证:BE=BF;(2)特例感知:如图2,若DE=5,CF=2,当点P在线段EF上运动时,求平行四边形PMQN的周长;(3)类比探究:若DE=a,CF=b.①如图3,当点P在线段EF的延长线上运动时,试用含a、b的式子表示QM与QN之间的数量关系,并证明;②如图4,当点P在线段FE的延长线上运动时,请直接用含a、b的式子表示QM与QN之间的数量关系.(不要求写证明过程)23.如图,平面内的两条直线l1、l2,点A、B在直线l2上,过点A、B两点分别作直线l1的垂线,垂足分别为A1、B1,我们把线段A1B1叫做线段AB在直线l2上的正投影,其长度可记作T(AB,CD)或T(AB,l2),特别地,线段AC在直线l2上的正投影就是线段A1C,请依据上述定义解决如下问题.(1)如图1,在锐角△ABC中,AB=5,T(AC,AB)=3,则T(BC,AB)= ;(2)如图2,在Rt△ABC中,∠ACB=90°,T(AC,AB)=4,T(BC,AB)=9,求△ABC的面积;(3)如图3,在钝角△ABC中,∠A=60°,点D在AB边上,∠ACD=90°,T(AD,AC)=2,T(BC,AB)=6,求T(BC,.CD)24.(1)(探究发现)如图1,EOF ∠的顶点O 在正方形ABCD 两条对角线的交点处,90EOF ︒∠=,将EOF ∠绕点O 旋转,旋转过程中,EOF ∠的两边分别与正方形ABCD 的边BC 和CD 交于点E 和点F (点F 与点C ,D 不重合).则,,CE CF BC 之间满足的数量关系是 . (2)(类比应用)如图2,若将(1)中的“正方形ABCD ”改为“120BCD ∠=o 的菱形ABCD ”,其他条件不变,当60EOF ∠=o 时,上述结论是否仍然成立?若成立,请给出证明;若不成立,请猜想结论并说明理由. (3)(拓展延伸)如图3,120BOD =o ∠,34OD =,4OB =,OA 平分BOD ∠,AB =且2OB OA >,点C 是OB 上一点,60CAD ∠=o ,求OC 的长.25.根据相似多边形的定义,我们把四个角分别相等,四条边成比例的两个凸四边形叫做相似四边形.相似四边形对应边的比叫做相似比.(1)某同学在探究相似四边形的判定时,得到如下三个命题,请判断它们是否正确(直接在横线上填写“真”或“假”).①条边成比例的两个凸四边形相似;( 命题) ②三个角分别相等的两个凸四边形相似;( 命题) ③两个大小不同的正方形相似.( 命题)(2)如图1,在四边形ABCD 和四边形A 1B 1C 1D 1中,∠ABC =∠A 1B 1C 1,∠BCD =∠B 1C 1D 1,111111AB BC CDA B B C C D ==,求证:四边形ABCD 与四边形A 1B 1C 1D 1相似.(3)如图2,四边形ABCD 中,AB ∥CD ,AC 与BD 相交于点O ,过点O 作EF ∥AB 分别交AD ,BC 于点E ,F .记四边形ABFE 的面积为S 1,四边形EFDE 的面积为S 2,若四边形ABFE 与四边形EFCD 相似,求21S S 的值.26.在△ABC 中,已知D 是BC 边的中点,G 是△ABC 的重心,过G 点的直线分别交AB 、AC 于点E 、F .(1)如图1,当EF ∥BC 时,求证:1BE CFAE AF+=; (2)如图2,当EF 和BC 不平行,且点E 、F 分别在线段AB 、AC 上时,(1)中的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.(3)如图3,当点E 在AB 的延长线上或点F 在AC 的延长线上时,(1)中的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.27.如图,在等腰Rt ABC V 中,90,ACB AB ∠==o 点D ,E 分别在边AB ,BC 上,将线段ED 绕点E 按逆时针方向旋转90º得到EF .(1)如图1,若AD BD =,点E 与点C 重合,AF 与DC 相交于点O .求证:2BD DO =. (2)已知点G 为AF 的中点.①如图2,若,2AD BD CE ==,求DG 的长.②若6AD BD =,是否存在点E ,使得DEG △是直角三角形?若存在,求CE 的长;若不存在,试说明理由.28.(1)方法选择如图①,四边形ABCD 是O e 的内接四边形,连接AC ,BD ,AB BC AC ==.求证:BD AD CD =+. 小颖认为可用截长法证明:在DB 上截取DM AD =,连接AM …小军认为可用补短法证明:延长CD 至点N ,使得DN AD =…请你选择一种方法证明.(2)类比探究(探究1)如图②,四边形ABCD 是O e 的内接四边形,连接AC ,BD ,BC 是O e 的直径,AB AC =.试用等式表示线段AD ,BD ,CD 之间的数量关系,并证明你的结论.(探究2)如图③,四边形ABCD 是O e 的内接四边形,连接AC ,BD .若BC 是O e 的直径,30ABC ∠=︒,则线段AD ,BD ,CD 之间的等量关系式是______.(3)拓展猜想如图④,四边形ABCD 是O e 的内接四边形,连接AC ,BD .若BC 是O e 的直径,::::BC AC AB a b c =,则线段AD ,BD ,CD 之间的等量关系式是______.29.(1)证明推断:如图(1),在正方形ABCD 中,点E ,Q 分别在边BC ,AB 上,DQ AE ⊥于点O ,点G ,F 分别在边CD ,AB 上,GF AE ⊥.①求证:DQ AE =; ②推断:GF AE的值为 ; (2)类比探究:如图(2),在矩形ABCD 中,BC k AB =(k 为常数).将矩形ABCD 沿GF 折叠,使点A 落在BC 边上的点E 处,得到四边形FEPG ,EP 交CD 于点H ,连接AE 交GF 于点O .试探究GF 与AE CP 之间的数量关系,并说明理由;(3)拓展应用:在(2)的条件下,连接CP ,当23k =时,若3tan 4CGP ∠=,GF =CP 的长.30.在ABC ∆,CA CB =,ACB α∠=.点P 是平面内不与点A ,C 重合的任意一点.连接AP ,将线段AP 绕点P 逆时针旋转α得到线段DP ,连接AD ,BD ,CP .(1)观察猜想如图1,当60α︒=时,BD CP 的值是 ,直线BD 与直线CP 相交所成的较小角的度数是 . (2)类比探究如图2,当90α︒=时,请写出BD CP 的值及直线BD 与直线CP 相交所成的小角的度数,并就图2的情形说明理由.(3)解决问题当90α︒=时,若点E ,F 分别是CA ,CB 的中点,点P 在直线EF 上,请直接写出点C ,P ,D 在同一直线上时AD CP的值.。

一道课本习题的拓展探究及应用

一道课本习题的拓展探究及应用

中,[为AB边上任意一点, J ) 过点 A 、B分别作 CD的平行线, B 交 C、 A C的延长线于 E、 F
( 2. 如图 )
是数学课改的重要 目标之一. 课本习题的结论具 有 广阔的探 究、拓 展空间, 近几年 的中考、竞
求: = . 证去+

赛题, 根植于课本, 从课本 中寻找命题 生长点的 原题和拓展题屡见不鲜, 因此重视课本习题的拓
21年第 l期 00 l
数 学教 学
l一3 l1

道课 本 习题 的拓展探 究 及应 用
40 0 湖北省武汉洪山区教育科学研究培训中心 江思容 30 7

课本 中的习题是数学课堂教学的重要组成 部分, 它具有典型性和代表性, 在解题过程 中, 发
展学 生 思维 , 发 学 生智 力, 养 学 生 创新 精 神 开 培
两个并联 电阻 R 和 R 的总 电阻 R的倒数等于 1 2

r _ n r H
・ + 一: — +n r m ● l 一 ~ 1 l ’ . P 。q 竹 + 佗

这 两 个 并 联 电阻 的 倒 数 之 和.现 在 我 们可 以用

1 .1
l 一

例3 ( 武汉等六市初中数学竞赛题) 如图5 ,
故AA =、2, B = 、 6 /n B / . / / 2
- . 上
在梯形 B CD中A f Df BC. 过对角线的交点M 作EF A  ̄ D分别交 AB DC于点 、F. 求证: 上 一 。

j' ~上 _
, 6 CP ’
AD
BC
EF ’

1 ,1

以简驭繁,_初中数学几何模型教学的探索——以一道广州中考题复习教学设计为例

以简驭繁,_初中数学几何模型教学的探索——以一道广州中考题复习教学设计为例

数学学习与研究㊀2023 13以简驭繁初中数学几何模型教学的探索以简驭繁,初中数学几何模型教学的探索㊀㊀㊀ 以一道广州中考题复习教学设计为例Һ李嘉敏㊀(广州市荔湾区西关广雅实验学校,广东㊀广州㊀510160)㊀㊀ʌ摘要ɔ几何教学是初中数学教学的重点和难点,在几何教学中逐步归纳出来的几何模型是帮助学生解决几何难题的有效工具.从复杂的图形中抽离出简洁的几何模型,便能直观形象地得到图形性质,从而解决问题.文章中,笔者结合一道广州中考原题,针对其隐含的几何模型进行了分析和梳理,并提出几点反思意见,旨在为广大教育工作者提供教学参考.ʌ关键词ɔ几何模型教学;数学建模;核心素养数学教育的目标可分为显性目标与隐性目标两种,显性目标一般指具体的数学知识内容,‘义务教育数学课程标准(2022年版)“中的数学学科核心素养属于隐性目标.数学教学除了传授知识外,还要促使学生的理性思维得到良好发展.教师在教学中要引导学生在复杂的几何图形中抓住解题的关键要素,抓住问题的主要特征,忽略次要因素,找出清晰简洁的解题模型,化繁为简㊁以简驭繁.以下是笔者对一道广州中考原题隐含的几何模型的分析,以及利用该题进行专题复习的教学设计.一㊁对 共顶点㊁等线段 旋转模型的分析共顶点㊁等线段 旋转模型(也称 手拉手模型 )是指已知条件中出现两条线段有公共端点,且它们的长度相等,此时用图形变换的眼光去看,可以理解为其中一条线段绕着它们的公共端点旋转可以得到另一条线段.那么如果把其中的一条线段放在一个封闭图形(如三角形)中考虑,可看作把该线段所在封闭图形绕着线段的公共端点旋转得到另一个与之全等的封闭图形,通过旋转,既可改变线段之间相对的位置关系,也可得到新的图形性质.二㊁基于 共顶点㊁等线段 旋转模型的教学设计(一)题目呈现如图1所示,☉O为等边三角形ABC的外接圆,半径为2,点D在AB(上运动(不与点A,B重合),连接㊀图1DA,DB,DC.(1)求证:DC是øADB的平分线.(2)四边形ADBC的面积S是线段DC的长x的函数吗?如果是,求出函数解析式;如果不是,请说明理由.(3)若点M,N分别在线段CA,CB上运动(不含端点),经过探究发现,点D运动到每一个确定的位置,әDMN的周长有最小值t,随着点D的运动,t的值会发生变化,求所有t值中的最大值.(二)教学分析1.考题来源㊀图2考题的基本图形源于人教版九年级上册教材90页第14题,原题如下:如图2,A,P,B,C是☉O上的四个点,øAPC=øCPB=60ʎ,判断әABC的形状,并证明你的结论.对比分析可知,中考题的第(1)问把教材中题目的题设和结论调换了位置,把已知 角平分线 得出 等边三角形 ,改成了已知 等边三角形 求证 角平分线 ,考查层次并未明显加深.2.考点和学情分析本题考查了圆周角定理㊁等边三角形性质㊁圆内接四边形性质㊁旋转的应用㊁轴对称的应用㊁解直角三角形等知识,是一道对数学综合能力要求较高的题目.初三的学生已经系统完成了初中阶段所有新课学习,掌握了初中平面几何中常用的图形定义㊁性质和判定知识,也对常见模型有一定了解,但对几何模型的应用还不够灵活,遇到综合题时不能迅速地根据条件联想构建几何模型来解决问题.(三)教学过程1.问题展示,揭示课题课件展示本文 题目呈现 中的题目.设计意图:让学生关注中考考题动向,并认识到数学学习与研究㊀2023 13几何模型在解题中的作用.2.合作探究,解决问题问题1㊀(改编题)如图3所示,☉O为等边三角形ABC的外接圆,半径为2,点D在AB(上运动(不与点A,B重合),连接DA,DB,DC,则DC是øADB的平分线.探究DA,DB,DC三者之间的数量关系,并证明你的结论.图3思维流程图(如图4㊁图5):图4图5图6㊀图7㊀图8图9㊀图10解法分析:从题目条件分析,条件中给出等边三角形ABC,则有等边三角形的三条边相等,所以有 共顶点㊁等线段 条件出现,例如线段CB和线段CA就有公共端点C,且它们长度相等,可以认为线段CB能由线段CA绕点C逆时针旋转60ʎ得到,这给解题提供了相对明显的提示,通过构造旋转模型来转换目标线段DA与DB的相对位置,从而在新图形中得到更多的几何关系来解决问题.如解法1,将әADC绕点C逆时针旋转60ʎ,得到әBHC.由圆内接四边形ADBC可得øDAC与øDBC互补,再由旋转前后图形全等可得øHBC与øDBC互补,证得D,B,H三点共线,进而得出等边三角形DCH,最后通过线段间的等量代换得出结论.解法2 4的解题思路与解法1大致相同,但值得注意的是,解法3和解法4中图形旋转后点D的对应点在线段DC上,需要推理证明.从另一个角度分析,本题还有一个重要条件是 DC是øADB的平分线 ,可联想构造角平分线模型来解决.解法5中,易证得әDPCɸәDQC和RtәAPCɸRtәBQC,DA+DB=DP+DQ=2DP,再通过含30ʎ角的RtәDPC可得斜边DC=2DP=DA+DB.本题还可从结论入手分析.题目要求先猜想线段长度关系再求证结论,通过有目的性地测量可以猜想本题目标是求证 DA+DB=DC ,此外显然指向了截长补短模型,解法6的四种构造方法,均是解决线段和差关系的常用方法.设计意图:启发学生突破解题难点,合理猜想,构造几何模型形成解题思路,通过师生合作探究,让学生学会辨析条件与结论.与此同时,利用问题1为解决中考原题做好铺垫.3.回归考题,突破难点问题2㊀问题1中,四边形ADBC的面积S是线段DC的长x的函数吗?如果是,求出函数解析式;如果不是,请说明理由.数学学习与研究㊀2023 13思维流程图(见图11):图11解法分析:对比问题1和2,题目已知条件一样,只是待求证的结论发生了变化,求解内容层次更深.在解决问题1的基础上,若利用题目条件作为切入点,则可以通过构造 共顶点㊁等线段 的旋转模型得到图6 图10不同的辅助线添加方法.若利用线段CB与线段CA这对 共顶点㊁等线段 作为切入点,则可像解法1或解法2那样构造辅助线,此时四边形ADBC的面积可转化为等边三角形DHC或等边三角形DGC的面积,解等边三角形就可以得出边DC与面积的关系,即S=34x2,再结合 圆中最长弦是直径 这一知识点,可得S与x对应的函数关系式为S=34x2(23<xɤ4).若解题时选取的 共顶点㊁等线段 为AB和AC(或BA和BC),运用旋转模型构造辅助线后,虽然能得到DA+DB=DC,但是并不能实现一般四边形面积的转化,此时需用割补法把四边形ADBC的面积分割成两个三角形的面积.由于题目要求找出面积S与线段DC长x之间的函数关系,所以通常会利用DC把四边形ADBC分割成әADC和әBDC两部分,并以DC㊀图12为底构造两个三角形的高线,如图12,利用含30ʎ角的RtәDAL和RtәDBK可得,AL=32DA,BK=32DB,故S=12DC㊃32DA+12DC㊃32DB=34DC2.与问题1的分析角度类似,本题也可利用DC是角平分线作为解题切入点,构造角平分线模型(如图10),将四边形ADBC的面积转换成两个全等的含30ʎ角的直角三角形的面积和.设计意图:在问题1的基础上进一步引发思考,回归中考原题,引导学生从不同角度思考条件和结论,利用一题多解让学生明白题目背后隐藏的深层次问题和结论,培养学生从复杂图形中分离不同几何模型的能力,提升学生逻辑推理㊁数学建模㊁直观想象等核心素养.4.变式应用,突破自我结合上述问题解析过程中的几何模型,改变题目条件和结论,引导学生对比分析题目异同,帮助学生灵活应用.㊀图13问题3㊀如图13,点C为әABD的外接圆上的一动点(点C不在BAD(上,且不与点B,D重合),øACB=øABD=45ʎ,BD是该外接圆的直径.若әABC关于直线AB的对称图形为әABM,连接DM,试探究DM2,AM2,BM2三者之间满足的等量关系,并证明你的结论.思维流程图(见图14):图14数学学习与研究㊀202313图15㊀㊀㊀㊀图16设计意图:紧扣中考热点压轴题,从45ʎ和直径联想到等腰直角三角形,再联想到旋转模型,进行拓展训练,培养学生的审题能力,让其辨析题目中的条件和结论的特点,从而找出对应的几何模型,解决问题.5.模型总结,能力提高梳理本节课重点应用的模型以及涉及的模型(见表1):表1模型名称旋转模型角平分线模型特殊直角三角形模型图形关键条件共顶点㊁等线段角平分线特殊角30ʎ,45ʎ等作法以等线段为边找三角形,以等线段的夹角为旋转角,把三角形进行旋转得到新的三角形.过角平分线上的点作两边的垂线段.解直角三角形.作用构造全等三角形,构造等腰三角形.构造全等三角形.求得线段长和角的度数.三㊁初中几何模型教学反思(一)要注重基本几何图形的积累,运用几何模型化繁为简图形是最直观的了解知识点之间联系的中介,教师在教学过程中通过画草图㊁逐步分解,可以强化数学视觉意象之间的关联性.学生掌握几何模型越熟练,他们在解决几何问题时就越容易快速筛选关键信息.对于几何难题,教师在教学过程中可把抽离出的模型单独板书呈现,要注意从复杂图形中抽离出基础几何模型,逐个击破.(二)要关注几何模型内在数学逻辑,以简驭繁几何模型可在一定程度上帮助学生便捷地构造出关键图形来解决问题,但教师在教学过程中不能简单地套用模型,必须揭示几何模型中蕴含的图形关系,以及解决数学问题的思维过程.教师可利用几何模型串联起多道难题,实现一 解 多题,统整知识网络,以简驭繁.另外,教师还可以通过变式教学来加强知识之间的渗透和迁移,激发学生的发散性思维,培养学生的思维灵活度.(三)几何教学要开放探究,培养多角度几何模型思维在问题情境不变的条件下,几何模型的思维定式能帮助学生应用已掌握的方法迅速解决问题,但在情境发生变化时,这种定式反而会妨碍学生寻找新的方法解决问题.要想消除思维定式的负面影响,教师在教学中就要注重发散学生思维,放大学生的想象空间,利用不同几何模型对题目进行剖析,培养学生多角度的几何模型思维.(四)提高学生画图㊁用图的能力数形结合 是数学解题中重要的思想之一,图形可以给予人们丰富的信息,对于解题往往可以起到事半功倍的效果.引导学生用图形展示解题思路,能把解题过程中复杂而繁多的条件直观地表示成已知条件和待求解结论,还能加深学生对几何模型的认识,培养学生的直观想象能力.ʌ参考文献ɔ[1]原晓萍.视觉思维理论在高中数学教学中的应用研究[D].济南:山东师范大学,2012.[2]周伟萍.基于APOS理论的初中数学几何模型教学的题组设计 以长方形模型为例[J].中学数学,2021(06):17-18,21.[3]马小飞.基于几何模型的初中数学教学设计与反思 以一道中考题复习教学为例[J].中学数学研究(华南师范大学版),2020(16):31-34.[4]徐春凌.分析模型教学对于初中几何数学教学的意义[J].数理化解题研究,2021(02):25-26.[5]李强.初中几何证明教学要注重 三个关注 [J].数学通报,2021,60(03):29-32.。

中考几何拓展知识点总结

中考几何拓展知识点总结

中考几何拓展知识点总结一、平面几何1.1 直角三角形直角三角形是一个有趣的三角形类型,其中一个角是直角,即90度。

在几何中,直角三角形有许多有趣的性质和定理,如毕达哥拉斯定理和三角函数。

毕达哥拉斯定理是直角三角形中最为著名的定理之一,表达为:直角三角形的两条直角边的平方和等于斜边的平方。

即a² + b² = c²,其中 a 和 b 是直角边,c 是斜边。

这一定理在解决多种几何和物理问题时都极为有用。

另外,直角三角形还与三角函数有着紧密的联系。

正弦、余弦和正切三角函数均可用于描述直角三角形中角度与边长之间的关系,因此对于理解三角函数的性质和应用也是十分重要的。

1.2 多边形多边形是平面几何中的重要概念,它是指由若干条线段所组成的闭合图形。

在中考几何中,学生需要掌握各种多边形的性质和计算方法,包括正多边形、不规则多边形等。

正多边形是指所有边和角均相等的多边形,最常见的是正三角形、正方形和正五边形等。

在学习中,学生需要了解正多边形各边长和角度的关系、正多边形内角和外角之和的计算方法等。

不规则多边形则是指各边和角都不相等的多边形,学生需要学会如何计算不规则多边形的周长和面积,这对于实际问题求解有着重要的应用价值。

1.3 圆和圆的性质圆是平面上的一种特殊曲线,它由到圆心距离相等的所有点组成。

在中考几何中,学生需要了解圆的各种性质和相关计算方法。

首先,学生需要掌握圆的周长和面积的计算方法。

圆的周长也称为圆的周长,它的计算公式是:C = 2πr,其中 r 是圆的半径。

而圆的面积计算公式是:S = πr²。

这两个公式是学生需要牢记的重要知识点。

此外,学生还需要了解圆与直线的关系,如切线、弦、相交弦等。

这些知识点对于理解圆的性质和解题都有着重要意义。

1.4 三视图三视图是工程制图中的重要概念,也是几何学的一个分支。

它是指根据物体的实际形状绘制出物体的正视图、侧视图和俯视图,以便于工程师进行设计和制造。

平面几何:有关三角形五心的经典考题及证明-(中考提分助力)

平面几何:有关三角形五心的经典考题及证明-(中考提分助力)

平面几何:有关三角形五心的经典试题三角形的外心、重心、垂心、内心及旁心,统称为三角形的五心. 一、外心.三角形外接圆的圆心,简称外心。

与外心关系密切的有圆心角定理和圆周角定理。

例1.过等腰△ABC 底边BC 上一点P 引PM ∥CA 交AB 于M ;引PN ∥BA 交AC 于N 。

作点P 关于MN 的对称点P ′.试证:P ′点在△ABC 外接圆上。

(杭州大学《中学数学竞赛习题》)分析:由已知可得MP ′=MP =MB ,NP ′=NP=NC ,故点M 是△P ′BP 的外心,点N 是△P ′PC 的外心.有∠BP ′P =21∠BMP =21∠BAC , ∠PP ′C =21∠PNC =21∠BAC .∴∠BP ′C =∠BP ′P +∠P ′PC =∠BAC 。

从而,P ′点与A ,B ,C 共圆、即P ′在△ABC 外接圆上. 由于P ′P 平分∠BP ′C ,显然还有 P ′B :P ′C =BP :PC .例2.在△ABC 的边AB ,BC ,CA 上分别取点P ,Q ,S .证明以△APS ,△BQP ,△CSQ 的外心为顶点的三角形与△ABC 相似。

(B ·波拉索洛夫《中学数学奥林匹克》)分析:设O 1,O 2,O 3是△APS ,△BQP ,△CSQ 的外心,作出六边形 O 1PO 2QO 3S 后再由外心性质可知 ∠PO 1S =2∠A , ∠QO 2P =2∠B , ∠SO 3Q =2∠C 。

∴∠PO 1S +∠QO 2P +∠SO 3Q =360°.从而又知∠O 1PO 2+∠O 2QO 3+∠O 3SO 1=360°将△O 2QO 3绕着O 3点旋转到△KSO 3,易判断△KSO 1≌△O 2PO 1,同时可得△O 1O 2O 3≌△O 1KO 3。

∴∠O 2O 1O 3=∠KO 1O 3=21∠O 2O 1K=21(∠O 2O 1S +∠SO 1K )=21(∠O 2O 1S +∠PO 1O 2)=21∠PO 1S =∠A ;同理有∠O 1O 2O 3=∠B .故△O 1O 2O 3∽△ABC .A B C P P MN 'A B C K P O O O ....S 123二、重心三角形三条中线的交点,叫做三角形的重心.掌握重心将每 条中线都分成定比2:1及中线长度公式,便于解题. 例3.AD ,BE ,CF 是△ABC 的三条中线,P 是任意一点.证明:在△PAD ,△PBE ,△PCF 中,其中一个面积等于另外两个面积的和. (第26届莫斯科数学奥林匹克)分析:设G 为△ABC 重心,直线PG 与AB,BC 相交.从A ,C ,D ,E ,F 分别 作该直线的垂线,垂足为A ′,C ′, D ′,E ′,F ′。

一道中考试题的解题思路分析

一道中考试题的解题思路分析



:B/
图 2


解 :( )由{ 1
: ,
f 一1= -2 + b. k
由 勾股 定 理 ,可 得 O E=、 ,B / E=
B=
解得
b= s
j . .

具体可通过以下两种途径.
( ) 明 AC=O 、O = D来 得 到 . 1证 C D B
思路 9 :如图 6 ,过点 曰作 AO延长
B是对应 /B M、/A M 的平分线.方 _A _ _B _ 线 的垂线 ,得垂足为点 ,由AO的斜率 O 法 比较 简 洁 ,但 需 要 学 生 能 添 加 辅 助 得到B E的斜率 ,从而 得到直线 B E的方 aA M C O 程 ,再 由解 方 程 组 得 到 两 条 直线 的交 点 E R B ,或 是 能 发 现 aAO 、 aB D t
中国数学 教育[ 1 年第5 41 20 0 期]
离是 1可 以通 过 直 角 a0 D 中 的 面 积 法 C
思路 8 :将 O C、/ O _B D用 三 角 函
B E=4 。 O 5 .由于是通过对 称或 旋转变
或 射 影 定理 等 方 法得 到 . )
数 表示 ( ,t A C 如 a _ n AO = 1, t /B D= 换 得 到 的 , 可 直 接 得 到 相 关 点 的 坐 标 和 a_ O n 思路 4 :通 过 两 点 间 距 离 证 明 A C= 线 段 长 度 ,证 明 过 程 比较 简 洁 . 1) ,再借助计算器求出两角和 ( 或是借 O C、O =B D D,从 而 得 到 两 个 等 腰 三 角 j ( ) 用 结论 中角度 转换 的三种 方 2利 形 ,再 由AO AB的 内角 和 为 10来 得 到 . 8。

初中数学平面几何题型的解题技巧研究———以“勾股定理”为例

初中数学平面几何题型的解题技巧研究———以“勾股定理”为例

㊀㊀解题技巧与方法㊀㊀150㊀初中数学平面几何题型的解题技巧研究初中数学平面几何题型的解题技巧研究㊀㊀㊀ 以 勾股定理 为例Һ吴霖杰㊀(泉州市第六中学,福建㊀泉州㊀362000)㊀㊀ʌ摘要ɔ勾股定理作为一个最基本的几何定理,为解答初中数学平面几何题型提供了思路,教师应在初中数学解题教学中,向学生传授勾股定理解题技巧,使学生学会巧妙解题,发散数学思维.文章简要介绍了勾股定理,紧接着分析了勾股定理在初中数学平面几何题型中的实际解题应用技巧,提出利用勾股定理解答周长问题㊁面积问题㊁最短路径问题㊁证明问题等.同时指出,教师应在夯基㊁精讲㊁常练基础上,指导学生利用勾股定理解答初中数学平面几何题型,培养学生的解题能力.ʌ关键词ɔ初中数学;平面几何;解题技巧勾股定理证明了平面直角三角形三边关系问题,即在任何一个平面直角三角形中,两条直角边的平方之和都一定等于斜边的平方.平面几何是初中数学的重点,也是难点.‘义务教育数学课程标准(2022年版)“在数与代数㊁图形与几何㊁统计与概率㊁综合与实践四个领域组织课程内容,平面几何属于图形与几何领域.在该领域,学生应进一步建立几何直观,提升推理能力,解决抽象问题.分析平面几何问题,其解题思路为:将一般图形转化为特殊图形,然后根据特殊图形的特殊规律进行求解.而直角三角形,是转化平面几何图形的最有效图形之一,通过在原图中添加辅助线,构造直角三角形,将平面几何问题转化为直角三角形相关问题,然后利用勾股定理展开计算,不仅有助于学生高效解决问题,而且能够提高学生的数形结合能力,培养其发散思维.教师可以具体的初中数学平面几何题型为例,传授学生勾股定理解题技巧.一㊁勾股定理在初中数学平面几何题型中的解题技巧(一)利用勾股定理解答三角形周长问题例1㊀已知在әABC中,AB=13,AC=15,BC边上的高AD为12,求әABC的周长.解㊀(1)若高AD在әABC的内部,则әABC如图1所示,BC=BD+CD.BD=132-122=5,CD=152-122=9,则BC=9+5=14,әABC的周长=13+15+14=42.(2)若高AD在әABC的外部,则әABC如图2所示,BC=CD-BD,BD=132-122=5,CD=152-122=9,BC=9-5=4,әABC的周长=13+15+4=32.综上,әABC的周长为42或32.图1㊀㊀㊀图2题型与解题技巧分析㊀此题型为初中数学平面几何基础题型.想要确定一个三角形的周长,需要先确定其三边长.但在一些三角形周长问题中,无法通过题目已知条件直接判断其三边长,对此,解题者可构造直角三角形,利用勾股定理降低解题难度.本题给出三角形其中两条边的长度以及另一条边对应的高,解题者可以根据已知条件构造直角三角形,借助勾股定理计算原三角形第三条边的长度,即BC的长.但是根据题目已知条件,无法确定高AD在әABC中的具体位置,应画图并进行分类讨论.当高AD在әABC内部时,先通过勾股定理分别计算出CD与BD的长,再通过求和得到BC的长.当高AD在әABC外部时,需要延长CB,故而在求出CD与BD的长后,需要通过求差得到BC的长.利用勾股定理解答三角形周长问题,关键便在于画图与分类讨论,充分考虑未知边长的每一种可能.㊀图3(二)利用勾股定理解答面积问题例2㊀已知在四边形ABCD中,øB=øD=90ʎ,øA=135ʎ,若AD=23,BC=6,求四边形ABCD的面积.解㊀结合题意可画出如图3所示的四边形ABCD.观察图形,其为不规则图形,无法直接应用已知面积计算公式.但延长DA与CB,可构造出两个等腰直角三角形.在RtәABE中,øABE=90ʎ,øEAB=45ʎ,øBEA=㊀㊀㊀解题技巧与方法151㊀㊀45ʎ,AB=BE.在RtәCDE中,øCDE=90ʎ,øC=øE=45ʎ,CD=DE.令AB=BE=x,则AE=2x,DE=2x+23=CD,CE=6+x.CE2=CD2+DE2,即(6+x)2=2(2x+23)2,解方程可得AB=BE=6-26,DE=CD=62-23,SRtәABE=12㊃AB㊃BE=30-126,SRtәCDE=12㊃DE㊃CD=42-126,S四边形ABCD=SRtәCDE-SRtәABE=(42-126)-(30-126)=12.题型与解题技巧分析㊀初中数学中,一些不规则图形面积问题无法结合已知公式展开计算,而是需要构造直角三角形,将不规则图形转换为两个或两个以上直角三角形,代入勾股定理,具体步骤为:(1)观察图形,分析其特点.(2)引入辅助线,构造直角三角形,确定相关线段长度.(3)借助直角三角形面积间接计算不规则图形面积.本题中,待求图形为不规则四边形,解题者可以延长线段CB,DA,使其延长线交于点E,构造两个直角三角形,确定相关线段长度.之后,通过计算әCDE与әABE的面积差,即可成功求出四边形ABCD的面积.利用勾股定理解答面积问题,关键在于引入辅助线,割补不规则图形,构造直角三角形.(三)利用勾股定理解答最短路径问题例3㊀如图4所示,在一个无盖圆柱形玻璃杯内壁B点有一滴蜂蜜,蜂蜜距玻璃杯底部5cm.玻璃杯整体高度为14cm,底面周长为32cm.若不计玻璃杯厚度,一只蚂蚁在玻璃杯外壁A处出发去吃蜂蜜,最短应爬行多远的距离?(蚂蚁与玻璃杯口的竖直距离为3cm).图4㊀㊀图5解㊀圆柱形玻璃杯的侧面展开图如图5所示,作A点关于线段GF的对称点E,连接BE,即可得到蚂蚁爬行的最短路径长为BE的长.过B作BCʅAE于C,求解BE的长需要将BE置于直角三角形BCE中,BE=CE2+BC2,BC=12ˑ32=16(cm),CE=14+3-5=12(cm),则BE=162+122=20(cm),即蚂蚁最短应爬行20cm的距离.题型与解题技巧分析㊀最短路径问题,是初中数学平面几何题型的特殊形式.解答此类问题,首先需要运用 化曲为直 思想,将题目给出的立体图形转化为平面图形,其次可以利用勾股定理,根据 起点 与 终点 构造直角三角形,分析最短路径.本题为圆柱体的最短路径问题,解题者首先应运用 化曲为直 思想,将圆柱形玻璃杯侧面展开.此时,题目被转化为将军饮马 问题,可以借助对称轴转化蚂蚁爬行路径,构造直角三角形.在此基础上代入已知条件,便可得出蚂蚁的最短爬行距离.利用勾股定理解答立体几何最短路径问题,要注意运用 化曲为直 思想,实现立体几何到平面几何的转化.(四)利用勾股定理解答证明问题㊀图6例4㊀如图6,四边形ABFC为不规则图形.连接BC,ABʅCB.取CF边上一点D,令CDʅAD,AD2=2AB2-CD2.求证:AB=BC.证明㊀观察AD2=2AB2-CD2,其与勾股定理联系紧密.ȵABʅCB,ʑAB2+BC2=AC2.ȵCDʅAD,ʑAD2+CD2=AC2,则AB2+BC2=AD2+CD2,AD2=AB2+BC2-CD2.又AD2=2AB2-CD2,ʑAB2+BC2-CD2=2AB2-CD2,ʑBC2=AB2,又在四边形ABFC中,AB与BC均为具有 正值长度 的线段,故AB=BC得证.题型与解题技巧分析㊀证明问题是初中数学平面几何题型的重要组成部分,包括证明图形线段长度关系㊁角度大小关系㊁直线位置关系等题型.即便题目所给条件较为复杂,解题者也可以从复杂信息中挖掘简单提示,如勾股定理.分析可通过勾股定理进行解答的初中数学平面几何证明问题,其分类如下:(1)题目所给条件未直接体现勾股定理,但证明对象与勾股定理相关.(2)题目所给条件与勾股定理联系紧密.对于前者,解题者应在证明过程中构造直角三角形,将已知条件逐渐转化至同一直角三角形中;对于后者,解题者应寻找或构造直角三角形,直接由勾股定理展开推理,得到边长关系.利用勾股定理解答证明问题时,解题者需要先结合所给条件判断题目特征,再根据题目特征灵活解题.(五)利用勾股定理解答折叠问题㊀图8例5㊀如图7所示,长方形ABCD的长和宽分别为8和6.已知P是宽AD上的一点,现沿着BP折叠әABP,使PE与CD相交于点O,BE与CD相交于点G.如果OD=OE,线段AP的长是多少?解㊀由题意易得,әABPɸәEBP,әODPɸәOEG,由此可得OP=OG,PD=GE,DG=OD+OG=OE+OP=EP.设AP=x,则EP=DG=x,㊀㊀解题技巧与方法㊀㊀152㊀PD=GE=6-x,CG=8-x,BG=2+x.又әBCG为直角三角形,代入勾股定理,得62+(8-x)2=(x+2)2,解得x=4.8,则线段AP的长是4.8.题型与解题技巧分析㊀折叠问题也是常见的初中数学平面几何题型之一,可分为根据折痕求角的度数㊁线段的长㊁重合部分的图形面积等题型.解答折叠问题,不仅需要运用轴对称㊁四边形等知识,而且需要引入勾股定理,具体思路为:(1)根据折痕运用轴对称的性质,确定对应点,分析对应线段位置与大小关系.(2)根据折叠前后的特殊点和线段,构造直角三角形.(3)立足直角三角形,利用勾股定理㊁三角函数计算待求问题.本题为 求线段的长 折叠问题,满足勾股定理解题特点.在长方形ABCD中,折叠前后的对应角与对应边相等.故而想求出线段AP的长度,不妨设未知数x,即AP=x.在此基础上,图中所有线段均可用未知数表示.用相关未知数结合勾股定理列出方程,求出x,便可得到线段AP的长.当然,在题目给出相对简单的条件时,也可以直接运用勾股定理, 跳过 列方程步骤.二㊁初中数学平面几何题型解题技巧的指导要点 以 勾股定理 为例一线教师以勾股定理为切入点研究初中数学平面几何题型的解题技巧,是为了认识初中数学平面几何题型的更多解答方法,更是为了提升教学水平,指导学生从多角度分析和解决初中数学平面几何问题,培养学生的问题解决能力.故而在以上研究基础上,教师应进一步分析初中数学平面几何题型解题技巧的指导要点,下面笔者以勾股定理为例进行阐述.(一)夯基利用勾股定理解答初中数学平面几何题型,要求学生具备扎实的勾股定理知识基础.教师应在此层面上,重视初中数学勾股定理教学,实现 夯基 目标.教师可以在实际教学期间,整合游戏化教学㊁情境教学㊁问题教学㊁任务型教学㊁层次化教学㊁翻转课堂等教学方法,循序渐进地指导学生探究勾股定理,从而使学生充分经历勾股定理的猜想㊁推理㊁认识㊁理解㊁实践㊁掌握过程,形成发散的勾股定理解题思维.比如,在讲解勾股定理时,教师可以借助 赵爽弦图 与 毕达哥拉斯树 创设情境,为学生搭建 数形并茂 的学习平台,指导学生先观察情境中的数学图形,再挖掘和讨论其所蕴含的数学思想.其间,教师应巧妙点拨学生 找规律 ,促使学生发现直角三角形三边的 平方 规律,奠定扎实的勾股定理认知基础.再如,在根据教材例题指导学生运用勾股定理时,教师可鼓励学生扮演 小老师 ,讲解不同题目的分析思路和解题步骤,深化学生思维,强化 夯基 效果.(二)精讲掌握勾股定理在不同初中数学平面几何题型中的解题技巧,要求学生准确区分初中数学平面几何题型与勾股定理的内在联系,建立结构化的思维系统.教师应在此层面上,对涉及勾股定理的初中数学平面几何题型进行精讲,全面启发学生思维.教师应完善初中数学平面几何习题训练,每呈现一个特殊题型,都必须为学生精讲解答过程.对此,教师可以结合课堂互动预案,精心设计动态课件.课上,教师先通过课件呈现题目,鼓励学生自由讨论㊁分享思路.紧接着,教师借助鼠标控制动态课件,依次出示解答步骤.出示题目解答步骤前后,教师都应给予学生充足的讨论时间,然后对学生讨论结果进行补充讲解,使学生准确把握解题技巧.全面讲解例题后,教师还可以设计对比归纳课件,将初中数学平面几何不同题型及其勾股定理解题技巧进行汇总,帮助学生加以区分.(三)常练纸上谈兵不如实际演练,面对初中数学平面几何题型,学生想要快速判断其特点㊁选择正确的勾股定理解题技巧,必须达到熟能生巧的状态.因此,教师应组织学生常练.教师应将 常练 与 题海战术 进行区分,为学生精选典型题目,避免为学生施加过大综合实践压力.对此,教师可以将中考数学真题视为习题资源库,关注历年中考真题,提炼其中的平面几何典型题目,创新设计勾股定理与平面几何测试题,进而对学生定期进行习题训练.在此基础上,教师还可以督促学生整理错题,建立错题集,以便随时查缺补漏,实现巩固练习.结㊀语总之,为提高学生解答初中数学平面几何题型的效率,教师有必要向学生传授勾股定理解题技巧.具体来讲,教师应明确勾股定理的本质及解题价值,总结初中数学中常见的平面几何题型及其勾股定理解题技巧,抓住 夯基 精讲 常练 三大要点对学生进行指导,促使学生创新解决问题,提高解题能力.ʌ参考文献ɔ[1]林劲松.浅析勾股定理的应用探究[J].读写算,2022(36):132-134.[2]赵霞.例析勾股定理常见的应用类型[J].中学数学,2022(20):82-83.[3]万广磊.探究神奇的勾股定理[J].初中生世界,2022(42):44-45.。

平面几何综合题分析

平面几何综合题分析
8 0平 方 米 . 0
③对 于 探 索性 试题 , 假设 满足 条 件 的 先
方案 成立 , 出方程 . 列 方程 有 解 , 明 方案 可 说 行 , 方程无解 , 明不 存在 可实施 的设 计方 如 说
( ) 矩 形 的 边 1设 AB— z( ) AM — y 米 ,


5 =0的两个实数根 , S 求 一÷时的 r 值.
(0 1年 无锡 市 中考题 ) 20
证明

图2
否保 持不 变 , 证明你 的结论 . 并 (0 1年 苏州市 中考 题 ) 20
分析 () 2 中结论 没 有给 出 , 这无 疑给考
( ) 结 AE, 1连 AD, 要证 ,一B D
C 只 要 证 AD : E— BD : E, C AE, 即 证 也
△ ABD∽ △ CAE, 要 证 △ AC 只 E∽ △ BC A
生 带来一 定 的困难 , 此 类问题 , 对 中考 复习时
应 加 强 训 练 证明 () . 1略
即可. 题设 A E - B 即得证 明. 由 C =C C
解 得 】 2 2 . 一 , —4
。 AB 是 00 的 直 径 , A B一 9 . C 0,
当 =2时 , 原方程 为 z 一2 +1 , l —0 此 z 时 BD ・ E一1 Ir ; C ,’ —l 当 一4时 , 方程 . 原 为 z 一4 +7 , 方程无 实数根 , r _ x —0 此 . 一1
点 , A =C ・ B. 且 E C
( ) 证 : 一 1求
BD ・CE ;
B不 重 台 ) 过 点 c 作 , 半 圆 的切 线 c 交 P D 上A 垂 足为 E. B, 连结

构建数学模型 提升解题能力——一道中考试题的教学运用

构建数学模型 提升解题能力——一道中考试题的教学运用

① 用含 m的代数式表示线段 P F的 长 ,并 求 出 当 m 为何 值 时 ,四边 形 P D E F为平 行 四边 形 ?
问题 的 方 法 ,可 以 达 到 让 学 生 懂 一 点 ,晓 一 类 ,通 一 片 .因此 ,
我 们 需 要 精 心 的选 择 ,科 学 合 理 的设 计 ,追 求题 目价 值 的 最 大

所 以线 段 D 4 2 2 E… ,线段 = m + m+3 +3 = 一 2 一( )
m + 3 . m
有一定的代表性 ,从复杂 图形 中抽象 出类似 的简单 模型就可 以
很 快地 抓 住 问题 的实 质 ,从 而解 决 问题 .
因为 P fD F E,
所 以 当 P =E 时 ,四边 形 P D F D E F为 平 行 四边 形 .
形 面积公式 .我们发现求解 比较 困难.所以只能类 比情况 2 ,部
分 学 生 能 回忆 起 对 于 一 些 复 杂 的 图形 求 面 积 时 可 以用 拼 与 分 割
我 们 不 妨 沿 竖 直 方 向 平移 直线 AB ,在 直 线 A 抛 物 线 有 2个 的 方法 ,转 化 成 可 以直 接 计 算 的 图形 . B与 交 点 的情 况 下 ,这 两 个 交 点 的 纵 坐 标 始 终 保 持 相 等 ,而 它 们 的 问题 2 :这里 AB F可 以 怎样 转 化 . C 此 时学 生 的想 法很 多 ,让学 生 充分 回答 ,并 加 以点 评 和 肯定 .
等 ;情况 2 ,不可以直接套用面积计算公式的图形 ,如任意四边
 ̄P F的距 离 ,这样在 图 7中我 们 形 ,五边形等. 那么问题 I 应该属于情况 l ,但是直接利用三 角 距 离 ,而 2B F的高是点 B到 P

专题39 几何图形模型胡不归问题专项训练-2023年中考数学二轮复习核心考点拓展训练(原卷版)

专题39 几何图形模型胡不归问题专项训练-2023年中考数学二轮复习核心考点拓展训练(原卷版)

专题39 几何图形模型胡不归问题专项训练(原卷版)一.选择题1.(2022•南山区模拟)如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,则AB =2BC .请在这一结论的基础上继续思考:若AC =2,点D 是AB 的中点,P 为边CD 上一动点,则AP +12CP 的最小值为( )A .1B .2C .3D .22.(2022•平南县二模)如图,在等边△ABC 中,AB =6,点E 为AC 中点,D 是BE 上的一个动点,则CD +12BD 的最小值是( )A .3B .33C .6D .3+33.(2022春•覃塘区期中)如图,在菱形ABCD 中,∠ABC =60°,E 是边BC 的中点,P 是对角线BD 上的一个动点,连接AE ,AP ,若AP +12BP 的最小值恰好等于图中某条线段的长,则这条线段是( )A .AB B .AEC .BD D .BE4.(2022春•新罗区校级月考)如图,△ABC 中,AB =AC =10,BE ⊥AC 于点E ,BE =2AE ,D 是线段BE 上的一个动点,则CD +55BD 的最小值是( )A .25B .45C .55D .105.(2021•澄海区期末)如图,在平面直角坐标系中,二次函数y =x 2+3x ﹣4的图象与x 轴交于A 、C 两点,与y 轴交于点B ,若P 是x 轴上一动点,点Q (0,2)在y 轴上,连接PQ ,则PQ +22PC 的最小值是( )A .6B .2+322C .2+32D .326.(2022秋•任城区校级期末)如图,△ABC 中,AB =AC =15,tan A =2,BE ⊥AC 于点E ,D 是线段BE 上的一个动点,则CD +55BD 的最小值是( )A .35B .65C .53D .107.(2022•邗江区二模)如图,在平面直角坐标系中,抛物线y =―49x 2+83x 与x 轴的正半轴交于点A ,B 点为抛物线的顶点,C 点为该抛物线对称轴上一点,则3BC +5AC 的最小值为( )A .24B .25C .30D .368.(2021•锦州二模)如图所示,菱形ABCO 的边长为5,对角线OB 的长为45,P 为OB 上一动点,则AP +55OP 的最小值为( )A .4B .5C .25D .35二.填空题9.(2022春•广陵区期末)如图,在菱形ABCD 中,AB =AC =10,对角线AC 、BD 相交于点O ,点M 在线段AC 上,且AM =2,点P 为线段BD 上的一个动点,则MP +12PB 的最小值是 .10.(2022春•武汉期末)如图,▱ABCD 中∠A =60°,AB =6,AD =2,P 为边CD 上一点,则3PD +2PB 最小值为 .11.(2022春•江汉区月考)如图,△ABC 中,AB =AC =10,∠A =30°.BD 是△ABC 的边AC 上的高,点P 是BD 上动点,则32BP +CP 的最小值是 .12.(2022•江北区开学)如图,在平面直角坐标系中,一次函数y =33x ―3分别交x 轴、y 轴于A 、B 两点,若C 为x 轴上的一动点,则2BC +AC 的最小值为 .13.(2021秋•缙云县期末)如图,在直角坐标系中,点M 的坐标为(0,2),P 是直线y =3x 在第一象限内的一个动点.(1)∠MOP = .(2)当MP +12OP 的值最小时,点P 的坐标是 .14.(2022•马鞍山一模)如图,AC 垂直平分线段BD ,相交于点O ,且OB =OC ,∠BAD =120°.(1)∠ABC = .(2)E 为BD 边上的一个动点,BC =6,当AE +12BE 最小时BE = .15.(2021秋•福清市期末)如图,△ABC 为等边三角形,BD 平分∠ABC ,△ABC 的面积为3,点P 为BD上动点,连接AP ,则AP +12BP 的最小值为 .16.(2021秋•亭湖区期末)如图,在平面直角坐标系中,∠ACB =90°,∠A =30°,点A (﹣3,0),B (1,0).根据教材第65页“思考”栏目可以得到这样一个结论:在Rt △ABC 中,AB =2BC .请在这一结论的基础上继续思考:若点D 是AB 边上的动点,则CD +12AD 的最小值为 .17.(2021秋•宜兴市期末)如图①,在△ABC 中,∠ACB =90°,∠A =30°,点C 沿BE 折叠与AB 上的点D 重合.连接DE ,请你探究:BC AB = 12 ;请在这一结论的基础上继续思考:如图②,在△OPM中,∠OPM =90°,∠M =30°,若OM =2,点G 是OM 边上的动点,则PG +12MG 的最小值为 .18.(2021秋•汕尾期末)如图,在平面直角坐标系中,二次函数y =x 2﹣2x +c 的图象与x 轴交于A 、C 两点,与y 轴交于点B (0,﹣3),若P 是x 轴上一动点,点D (0,1)在y 轴上,连接PD ,则C 点的坐标是 ,2PD +PC 的最小值是 .19.(2021秋•南海区期末)如图,△ABC 中AB =AC ,A (0,8),C (6,0),D 为射线AO 上一点,一动点P 从A 出发,运动路径为A →D →C ,点P 在AD 上的运动速度是在CD 上的53倍,要使整个运动时间最少,则点D 的坐标应为 .20.(2022•无棣县一模)如图,在平面直角坐标系中,直线y =﹣x +4的图象分别与y 轴和x 轴交于点A 和点B .若定点P 的坐标为(0,63),点Q 是y 轴上任意一点,则12PQ +QB 的最小值为 .21.(2022春•梁溪区校级期中)如图,▱ABCD 中,∠DAB =30°,AB =8,BC =3,P 为边CD 上的一动点,则PB +12PD 的最小值等于 .22.(2022秋•江夏区校级期末)如图在△ABC中.∠B=45°.AB=4.点P为直线BC上一点.当BP+2AP 有最小值时,∠BAP的度数为 .23.(2022•东阳市开学)如图:二次函数y=―32x2+3x+92的图象与x轴交于A、B两点(点A在点B的左侧)与y轴交于点C,顶点为点D.(1)在抛物线的对称轴上找一点P,使BP﹣CP的值最大时,则点P的坐标为 ;(2)在抛物线的对称轴上找一点P,使PA+1010PD的值最小时,则点P的坐标为 .24.(2021秋•北碚区校级期末)如图,在菱形ABCD中,∠BAD=120°,CD=4,M,N分别是边AB,AD 的动点,满足AM=DN,连接CM、CN,E是边CM上的动点,F是CM上靠近C的四等分点,连接AE、BE、NF,当△CFN面积最小时,12BE+AE的最小值为 .25.(2022•郧西县模拟)如图,在△ABC中,∠A=90°,∠C=30°,AB=2,若D是BC边上的动点,则2AD+DC的最小值为 .26.(2022•贡井区模拟)如图,△ABC中,AB=AC=10,tan A=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD+55BD的最小值是 .27.(2022秋•电白区期末)如图,AB =AC ,A (0,15),C (1,0),D 为射线AO 上一点,一动点P 从A 出发,运动路径为A ﹣D ﹣C ,在AD 上的速度为4个单位/秒,在CD 上的速度为1个单位/秒,则整个运动时间最少时,D 的坐标为 .三.解答题(共3小题)28.(2021秋•梅江区校级期末)抛物线y =﹣x 2+bx +c 交x 轴于点A (3,0),交y 轴于点B (0,3).(1)求抛物线的解析式;(2)如图1,点P 是线段AB 上方抛物线上一动点,当△PAB 的面积最大值时,求出此时P 点的坐标;(3)点Q 是线段AO 上的动点,直接写出12AQ +BQ 的最小值为 .29.(2022春•九龙坡区校级月考)在△ABC 中,∠A =45°,点D 是边AB 上一动点,连接CD .(1)如图1,若∠ADC =30°,将线段CD 绕着D 逆时针旋转90°得到ED ,连接CE .若CE =12,求AD 的长;(2)如图2,过点C 作CF ⊥AB 于F ,当点D 在线段BF 上时,将线段CD 绕着D 逆时针旋转90°得到ED ,连接CE ,过点E 作EG ∥AC 交AB 于点G .求证:AG =2DF ;(3)如图3,若∠ABC =15°,AB =3+33,将线段CD 绕着D 逆时针旋转120°得到ED ,连接CE .请直接写出DE +12BD 的最小值.30.(2022秋•碑林区校级期末)问题提出(1)如图1,在等腰直角△ABC 中,∠BAC =90°,AB =AC ,P 为高AE 上的动点,过点P 作PH ⊥AC于H ,则PH AP的值为 ;问题探究(2)如图2,在平面直角坐标系中,直线y =―3x +23与x 轴、y 轴分别交于点 A 、B .若点P 是直线AB 上一个动点,过点P 作PH ⊥OB 于H ,求OP +PH 的最小值.问题解决(3)如图3,在平面直角坐标系中,长方形OABC 的OA 边在x 轴上,OC 在y 轴上,且B (6,8).点D 在OA 边上,且OD =2,点E 在AB 边上,将△ADE 沿DE 翻折,使得点A 恰好落在OC 边上的点A ′处,那么在折痕DE 上是否存在点P 使得22EP +A ′P 最小,若存在,请求最小值,若不存在,请说明理由.。

中考数学中的平面几何与垂直线性质解题思路总结

中考数学中的平面几何与垂直线性质解题思路总结

中考数学中的平面几何与垂直线性质解题思路总结平面几何是中考数学中的一个重要考点,而垂直线性质是平面几何中的一个基本概念。

掌握平面几何与垂直线性质的解题思路,对于解答中考数学题目具有重要意义。

本文将总结中考数学中的平面几何与垂直线性质解题思路,帮助考生更好地应对中考数学试题。

一、平面几何的基本概念与性质在开始讨论平面几何与垂直线性质的解题思路之前,有必要先了解平面几何的基本概念与性质。

平面几何主要包括点、线、面以及它们之间的关系。

常见的平面几何性质包括平行、垂直、相交等。

1. 点:平面几何中最基本的概念,用一个大写字母表示,如A、B、C等。

2. 线:由无数个点组成的一条路径,用小写字母表示,如a、b、c 等。

3. 面:由无数个点所组成的一个平面,用大写字母表示,如平面P、平面Q等。

4. 平行:两条直线在同一个平面内,且不重合,称为平行线。

5. 垂直:两条相交直线的内角均为90度,称为垂直线。

6. 相交:两条直线或线段在平面上相互交叉或交错。

通过熟悉这些基本概念与性质,能够更好地理解和应用平面几何与垂直线性质解题思路。

二、平面几何与垂直线性质解题思路解题时,我们经常会遇到平面几何与垂直线性质的相关问题。

下面将介绍一些解题思路,帮助考生更好地理解和掌握这些概念。

1. 利用平行线的性质:当两条直线平行时,它们与第三条直线之间的夹角相等。

因此,当题目中存在平行线时,可以利用这一性质推导出其他角度的关系。

示例题目:已知平行四边形ABCD中,AC与BD交于点O,且∠BCO=30°,求∠CBD的度数。

解题思路:由平行四边形的性质可得∠CBA=∠BDC。

又∠BCO=30°,所以∠CBO=∠BCO=30°。

而∠ABC+∠CBA+∠CBO=180°(平行四边形内角和等于180°),所以∠ABC+∠CBA+30°=180°。

解方程可得∠CBA=∠ABC=75°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档