2015年高考数学(课标通用)二轮复习专题训练:集合与函数(9)

合集下载

2015届高考数学(理)二轮专题配套练习:集合与常用逻辑用语(含答案)

2015届高考数学(理)二轮专题配套练习:集合与常用逻辑用语(含答案)

集合与常用逻辑用语1.集合的元素具有确定性、无序性和互异性,在解决有关集合的问题时,尤其要注意元素的互异性.[问题1]集合A={a,b,c}中的三个元素分别表示某一个三角形的三边长度,那么这个三角形一定不是() A.等腰三角形B.锐角三角形C.直角三角形D.钝角三角形2.描述法表示集合时,一定要理解好集合的含义——抓住集合的代表元素.如:{x|y=lg x}——函数的定义域;{y|y=lg x}——函数的值域;{(x,y)|y=lg x}——函数图象上的点集.[问题2]集合A={x|x+y=1},B={(x,y)|x-y=1},则A∩B=________.3.遇到A∩B=∅时,你是否注意到“极端”情况:A=∅或B=∅;同样在应用条件A∪B=B⇔A∩B=A⇔A⊆B 时,不要忽略A=∅的情况.[问题3]设集合A={x|x2-5x+6=0},集合B={x|mx-1=0},若A∩B=B,则实数m组成的集合是________.4.对于含有n个元素的有限集合M,其子集、真子集、非空子集、非空真子集的个数依次为2n,2n-1,2n-1,2n -2.[问题4]满足{1,2}M⊆{1,2,3,4,5}的集合M有________个.5.注重数形结合在集合问题中的应用,列举法常借助Venn图解题,描述法常借助数轴来运算,求解时要特别注意端点值.[问题5]已知全集I=R,集合A={x|y=1-x},集合B={x|0≤x≤2},则(∁I A)∪B等于()A.[1,+∞) B.(1,+∞) C.[0,+∞) D.(0,+∞)6.“否命题”是对原命题“若p,则q”既否定其条件,又否定其结论;而“命题p的否定”即:非p,只是否定命题p的结论.[问题6]已知实数a、b,若|a|+|b|=0,则a=b.该命题的否命题和命题的否定分别是________________.7.要弄清先后顺序:“A的充分不必要条件是B”是指B能推出A,且A不能推出B;而“A是B的充分不必要条件”则是指A能推出B,且B不能推出A.[问题7]设集合M={1,2},N={a2},则“a=1”是“N⊆M”的________条件.8.要注意全称命题的否定是特称命题(存在性命题),特称命题(存在性命题)的否定是全称命题.如对“a,b 都是偶数”的否定应该是“a,b不都是偶数”,而不应该是“a,b都是奇数”.求参数范围时,常与补集思想联合应用,即体现了正难则反思想.[问题8]若存在a∈[1,3],使得不等式ax2+(a-2)x-2>0成立,则实数x的取值范围是________________.易错点1忽视空集致误例1已知集合A={x|x2-3x-10≤0},B={x|m+1≤x≤2m-1},若A∪B=A.求实数m的取值范围.找准失分点B⊆A,B可以为非空集合,B也可以是空集.漏掉对B=∅的讨论,是本题的一个易失分点.易错点2对命题的否定不当致误例2已知M是不等式ax+10ax-25≤0的解集且5M,则a的取值范围是________.找准失分点5M,把x=5代入不等式,原不等式不成立,易错点3充要条件判断不准例3设U为全集,A,B是集合,则“存在集合C,使得A⊆C,B⊆∁U C”是“A∩B=∅”的________条件.找准失分点没有理解充分条件的概念,p⇒q只能得到p是q的充分条件,必要性还要检验q⇒p是否成立.1.(2014·北京)已知集合A={x|x2-2x=0},B={0,1,2},则A∩B等于()A.{0} B.{0,1} C.{0,2} D.{0,1,2}2.(2014·北京)设{a n}是公比为q的等比数列,则“q>1”是“{a n}为递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件3.命题“∃x∈R,x2-2x+1<0”的否定是()A.∃x∈R,x2-2x+1≥0 B.∃x∈R,x2-2x+1>0C.∀x∈R,x2-2x+1≥0 D.∀x∈R,x2-2x+1<04.已知p:关于x的函数y=x2-3ax+4在[1,+∞)上是增函数,q:y=(2a-1)x为减函数,若p且q为真命题,则a的取值范围是()A.a≤23B.0<a<12C.12<a≤23D.12<a<15.如果全集U=R,A={x|x2-2x>0},B={x|y=ln(x-1)},则图中的阴影部分表示的集合是()A.(-∞,0)∪(1,+∞) B.(-∞,0]∪(1,2) C.(-∞,0)∪(1,2) D.(-∞,0)∪(1,2]6.已知集合A={x|x<a},B={x|1<x<2},且A∪(∁R B)=R,则实数a的取值范围是()A.a≤1 B.a<1 C.a≥2 D.a>27.已知集合U=R,A=⎩⎨⎧⎭⎬⎫x|x2+y24=1,B={y|y=x+1,x∈A},则(∁U A)∩(∁U B)=____________.8.设P、Q为两个非空实数集合,定义集合P+Q={a+b|a∈P,b∈Q},若P={0,2,5},Q={1,2,6},则P+Q中的元素有________个.9.设U={(x,y)|x∈R,y∈R},A={(x,y)|2x-y+m>0},B={(x,y)|x+y-n≤0},那么点P(2,3)∈A∩(∁U B)的充要条件是________.10.已知条件p:x2+2x-3>0,条件q:x>a,且綈p是綈q的充分不必要条件,则a的取值范围为__________.1.A2.∅3.{0,12,13} 4.7 5.C6.否命题:已知实数a 、b ,若|a |+|b |≠0,则a ≠b ; 命题的否定:已知实数a 、b ,若|a |+|b |=0,则a ≠b 7.充分不必要 8.(-∞,-1)∪⎝⎛⎭⎫23,+∞1.m ≤3 2.(-∞,-2)∪[5,+∞) 3.充分不必要CDCCDC 7.(-∞,-1)∪(2,+∞) 8.8 9.m >-1,n <5 10.[1,+∞)。

集合和函数练习题集(附答案解析)

集合和函数练习题集(附答案解析)

集合与函数综合练习一、填空题:1.设函数x xx f =+-)11(,则)(x f 的表达式为 2.函数)(x f 在区间]3,2[-是增函数,则)5(+=x f y 的递增区间是 3. 函数f(x)=)24(log 122x x -+-的定义域为4.已知集合}023|{2=+-=x ax x A 至多有一个元素,则a 的取值范围 .5.函数||2x x y +-=,单调递减区间为6.构造一个满足下面三个条件的函数实例,①函数在)1,(--∞上递减;②函数具有奇偶性;③函数有最小值为0; .7.=+34-3031-]2-[54-0.064)()(___________ ____; 8.已知)(x f =x x +1,则111(1)(2)()(3)()(4)()234f f f f f f f ++++++= 。

9.已知函数()y f x =为奇函数,若(3)(2)1f f -=,(2)(3)f f ---=_______ 10.)(x f =21(0)2(0)x x x x ⎧+≤⎨->⎩,若)(x f =10,则x = .11.若f (x )是偶函数,其定义域为R 且在[0,+∞)上是减函数,则f (-43)与f (a 2-a +1)的大小关系是____.12.log 7[log 3(log 2x )]=0,则21-x等于= 13.函数y=log 21(x 2-5x+17)的值域为 。

14.函数y=lg(ax+1)的定义域为(-∞,1),则a= 。

二、解答题:15.已知集合A 的元素全为实数,且满足:若a A ∈,则11a A a+∈-。

(1)若3a =-,求出A 中其它所有元素;(2)0是不是集合A 中的元素?请你设计一个实数a A ∈,再求出A 中的所有元素?16.已知函数[]5,5,22)(2-∈++=x ax x x f .(1)求实数a 的范围,使)(x f y =在区间[]5,5-上是单调递增函数。

2015届高考数学(理)二轮专题配套练习:专题1_第1讲_集合与常用逻辑用语(含答案)

2015届高考数学(理)二轮专题配套练习:专题1_第1讲_集合与常用逻辑用语(含答案)

专题一集合与常用逻辑用语、不等式第1讲 集合与常用逻辑用语考情解读 1.集合是高考必考知识点,经常以不等式解集、函数的定义域、值域为背景考查集合的运算,近几年有时也会出现一些集合的新定义问题.2.高考中考查命题的真假判断或命题的否定,考查充要条件的判断.1.集合的概念、关系(1)集合中元素的特性:确定性、互异性、无序性,求解含参数的集合问题时要根据互异性进行检验. (2)集合与集合之间的关系:A ⊆B ,B ⊆C ⇒A ⊆C ,空集是任何集合的子集,含有n 个元素的集合的子集数为2n ,真子集数为2n -1,非空真子集数为2n -2. 2.集合的基本运算(1)交集:A ∩B ={x |x ∈A ,且x ∈B }. (2)并集:A ∪B ={x |x ∈A ,或x ∈B }.(3)补集:∁U A ={x |x ∈U ,且x ∉A }.重要结论:A ∩B =A ⇔A ⊆B ;A ∪B =A ⇔B ⊆A . 3.四种命题及其关系四种命题中原命题与逆否命题同真同假,逆命题与否命题同真同假,遇到复杂问题正面解决困难的,采用转化为反面情况处理. 4.充分条件与必要条件若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件;若p ⇔q ,则p ,q 互为充要条件. 5.简单的逻辑联结词(1)命题p ∨q ,只要p ,q 有一真,即为真;命题p ∧q ,只有p ,q 均为真,才为真;綈p 和p 为真假对立的命题.(2)命题p ∨q 的否定是(綈p )∧(綈q );命题p ∧q 的否定是(綈p )∨(綈q ). 6.全称量词与存在量词“∀x ∈M ,p (x )”的否定为“∃x 0∈M ,綈p (x 0)”;“∃x 0∈M ,p (x 0)”的否定为“∀x ∈M ,綈p (x )”.热点一 集合的关系及运算例1 (1)(2014·四川)已知集合A ={x |x 2-x -2≤0},集合B 为整数集,则A ∩B 等于( ) A .{-1,0,1,2} B .{-2,-1,0,1} C .{0,1} D .{-1,0}(2)(2013·广东)设整数n ≥4,集合X ={1,2,3,…,n },令集合S ={(x ,y ,z )|x ,y ,z ∈X ,且三条件x <y <z ,y <z <x ,z <x <y 恰有一个成立}.若(x ,y ,z )和(z ,w ,x )都在S 中,则下列选项正确的是( ) A .(y ,z ,w )∈S ,(x ,y ,w )∉S B .(y ,z ,w )∈S ,(x ,y ,w )∈S C .(y ,z ,w )∉S ,(x ,y ,w )∈S D .(y ,z ,w )∉S ,(x ,y ,w )∉S 思维启迪 明确集合的意义,理解集合中元素的性质特征.思维升华 (1)对于集合问题,抓住元素的特征是求解的关键,要注意集合中元素的三个特征的应用,要注意检验结果.(2)对集合的新定义问题,要紧扣新定义集合的性质探究集合中元素的特征,将问题转化为熟悉的知识进行求解,也可利用特殊值法进行验证.(1)已知集合M ={1,2,3},N ={x ∈Z |1<x <4},则( )A .M ⊆NB .N =MC .M ∩N ={2,3}D .M ∪N =(1,4)(2)(2013·山东)已知集合A ={0,1,2},则集合B ={x -y |x ∈A ,y ∈A }中元素的个数是( ) A .1 B .3 C .5 D .9 热点二 四种命题与充要条件例2 (1)(2014·天津)设a ,b ∈R ,则“a >b ”是“a |a |>b |b |”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 (2)(2014·江西)下列叙述中正确的是( )A .若a ,b ,c ∈R ,则“ax 2+bx +c ≥0”的充分条件是“b 2-4ac ≤0”B .若a ,b ,c ∈R ,则“ab 2≥cb 2”的充要条件是“a >c ”C .命题“对任意x ∈R ,有x 2≥0”的否定是“存在x ∈R ,有x 2≥0”D .l 是一条直线,α,β是两个不同的平面,若l ⊥α,l ⊥β,则α∥β思维启迪 要明确四种命题的真假关系;充要条件的判断,要准确理解充分条件、必要条件的含义. 思维升华 (1)四种命题中,原命题与逆否命题等价,逆命题与否命题等价;(2)充要条件的判断常用“以小推大”的技巧,即小范围推得大范围,判断一个命题为假可以借助反例.(1)命题“若a ,b 都是偶数,则a +b 是偶数”的逆否命题是________.(2)“log 3M >log 3N ”是“M >N 成立”的________条件.(从“充要”、“充分不必要”、“必要不充分”中选择一个正确的填写) 热点三 逻辑联结词、量词例3 (1)已知命题p :∃x ∈R ,x -2>lg x ,命题q :∀x ∈R ,sin x <x ,则( )A .命题p ∨q 是假命题B .命题p ∧q 是真命题C .命题p ∧(綈q )是真命题D .命题p ∨(綈q )是假命题(2)(2013·四川)设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A,2x ∈B ,则( )A .綈p :∀x ∈A,2x ∈B B .綈p :∀x ∉A,2x ∉BC .綈p :∃x ∉A,2x ∈BD .綈p :∃x ∈A,2x ∉B 思维启迪 (1)先判断命题p 、q 的真假,再利用真值表判断含逻辑联结词命题的真假;(2)含量词的命题的否定既要否定量词,还要否定判断词.思维升华 (1)命题的否定和否命题是两个不同的概念:命题的否定只否定命题的结论,真假与原命题相对立;(2)判断命题的真假要先明确命题的构成.由命题的真假求某个参数的取值范围,还可以考虑从集合的角度来思考,将问题转化为集合间的运算.(1)已知命题p :在△ABC 中,“C >B ”是“sin C >sin B ”的充分不必要条件;命题q :“a >b ”是“ac 2>bc 2”的充分不必要条件,则下列选项中正确的是( ) A .p 真q 假 B .p 假q 真 C .“p ∧q ”为假 D .“p ∧q ”为真(2)已知命题p :“∀x ∈[1,2],x 2-a ≥0”,命题q :“∃x 0∈R ,20x +2ax 0+2-a =0”.若命题“(綈p )∧q ”是真命题,则实数a 的取值范围是( )A .a ≤-2或a =1B .a ≤2或1≤a ≤2C .a >1D .-2≤a ≤11.解答有关集合问题,首先正确理解集合的意义,准确地化简集合是关键;其次关注元素的互异性,空集是任何集合的子集等问题,关于不等式的解集、抽象集合问题,要借助数轴和Venn 图加以解决.2.判断充要条件的方法,一是结合充要条件的定义;二是根据充要条件与集合之间的对应关系,把命题对应的元素用集合表示出来,根据集合之间的包含关系进行判断,在以否定形式给出的充要条件判断中可以使用命题的等价转化方法.3.含有逻辑联结词的命题的真假是由其中的基本命题决定的,这类试题首先把其中的基本命题的真假判断准确,再根据逻辑联结词的含义进行判断.4.一个命题的真假与它的否命题的真假没有必然的联系,但一个命题与这个命题的否定是互相对立的、一真一假的.真题感悟1.(2014·浙江)设全集U ={x ∈N |x ≥2},集合A ={x ∈N |x 2≥5},则∁U A 等于( ) A .∅ B .{2} C .{5} D .{2,5}2.(2014·重庆)已知命题p :对任意x ∈R ,总有2x >0;q :“x >1”是“x >2”的充分不必要条件.则下列命题为真命题的是( ) A .p ∧q B .綈p ∧綈q C .綈p ∧q D .p ∧綈q 押题精练1.已知集合A ={x |y =lg(x -x 2)},B ={x |x 2-cx <0,c >0},若A ⊆B ,则实数c 的取值范围是( ) A .(0,1] B .[1,+∞) C .(0,1) D .(1,+∞)2.若命题p :函数y =x 2-2x 的单调递增区间是[1,+∞),命题q :函数y =x -1x 的单调递增区间是[1,+∞),则( )A .p ∧q 是真命题B .p ∨q 是假命题C .綈p 是真命题D .綈q 是真命题3.函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,-2x +a ,x ≤0有且只有一个零点的充分不必要条件是( )A .a <0B .0<a <12 C.12<a <1 D .a ≤0或a>1(推荐时间:40分钟)一、选择题1.(2014·陕西)设集合M ={x |x ≥0,x ∈R },N ={x |x 2<1,x ∈R },则M ∩N 等于( ) A .[0,1] B .[0,1) C .(0,1] D .(0,1)2.已知集合A ={1,2,3,4,5},B ={5,6,7},C ={(x ,y )|x ∈A ,y ∈A ,x +y ∈B },则C 中所含元素的个数为( ) A .5 B .6 C .12 D .133.设全集U 为整数集,集合A ={x ∈N |y =7x -x 2-6},B ={x ∈Z |-1<x ≤3},则图中阴影部分表示的集合的真子集的个数为()A .3B .4C .7D .8 4.“(m -1)(a -1)>0”是“log a m >0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.已知命题p :∃x ∈(0,π2),使得cos x ≤x ,则该命题的否定是( )A .∃x ∈(0,π2),使得cos x >xB .∀x ∈(0,π2),使得cos x ≥xC .∀x ∈(0,π2),使得cos x >xD .∀x ∈(0,π2),使得cos x ≤x6.在△ABC 中,“A =60°”是“cos A =12”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件7.(2013·湖北)已知全集为R ,集合A =⎩⎨⎧⎭⎬⎫x |(12)x ≤1,B ={}x |x 2-6x +8≤0,则A ∩∁R B 等于( )A .{x |x ≤0}B .{x |0≤x <2或x >4}C .{x |2≤x ≤4}D .{x |0<x ≤2或x ≥4}8.已知集合A ={(x ,y )|x +y -1=0,x ,y ∈R },B ={(x ,y )|y =x 2+1,x ,y ∈R },则集合A ∩B 的元素个数是( )A .0B .1C .2D .39.设命题p :函数y =sin 2x 的最小正周期为π2;命题q :函数y =cos x 的图象关于直线x =π2对称.则下列判断正确的是( )A .p 为真B .綈q 为假C .p ∧q 为假D .p ∨q 为真10.已知p :∃x ∈R ,mx 2+2≤0,q :∀x ∈R ,x 2-2mx +1>0,若p ∨q 为假命题,则实数m 的取值范围是( )A .[1,+∞)B .(-∞,-1]C .(-∞,-2]D .[-1,1] 二、填空题11.已知集合P ={x |x (x -1)≥0},Q ={x |y =ln(x -1)},则P ∩Q =__________.12.已知集合A ={x |x >2或x <-1},B ={x |a ≤x ≤b },若A ∪B =R ,A ∩B ={x |2<x ≤4},则ba =________.13.由命题“∃x ∈R ,x 2+2x +m ≤0”是假命题,求得实数m 的取值范围是(a ,+∞),则实数a 的值是________. 14.给出下列四个命题:①命题“若α=β,则cos α=cos β”的逆否命题;②“∃x 0∈R ,使得20x -x 0>0”的否定是:“∀x ∈R ,均有x 2-x <0”;③命题“x 2=4”是“x =-2”的充分不必要条件;④p :a ∈{a ,b ,c },q :{a }⊆{a ,b ,c },p 且q 为真命题. 其中真命题的序号是________.(填写所有真命题的序号)15.已知集合M 为点集,记性质P 为“对∀(x ,y )∈M ,k ∈(0,1),均有(kx ,ky )∈M ”.给出下列集合:①{(x ,y )|x 2≥y },②{(x ,y )|2x 2+y 2<1},③{(x ,y )|x 2+y 2+x +2y =0},④{(x ,y )|x 3+y 3-x 2y =0},其中具有性质P 的点集序号是________.例1 (1)A (2)B 变式训练 (1)C (2)C例2 (1)C (2)D 变式训练2 (1)若a +b 不是偶数,则a ,b 不都是偶数 (2)充分不必要 例3(1)C (2)D 变式训练3 (1)C (2)C BD BDA BDCBC CBCCA11.(1,+∞) 12.-4 13.1 14.①④ 15.②④。

2015届高考数学(理)二轮练习:函数与导数(含答案)

2015届高考数学(理)二轮练习:函数与导数(含答案)

函数与导数1.求函数的定义域,关键是依据含自变量x 的代数式有意义来列出相应的不等式(组)求解,如开偶次方根、被开方数一定是非负数;对数式中的真数是正数;列不等式时,应列出所有的不等式,不应遗漏.对抽象函数,只要对应关系相同,括号里整体的取值范围就完全相同.[问题1] 函数y 的定义域是________.答案 ⎝⎛⎦⎤0,14 2.用换元法求解析式时,要注意新元的取值范围,即函数的定义域问题.[问题2] 已知f (cos x )=sin 2x ,则f (x )=________.答案 1-x 2(x ∈[-1,1])3.分段函数是在其定义域的不同子集上,分别用不同的式子来表示对应关系的函数,它是一个函数,而不是几个函数.[问题3] 已知函数f (x )=⎩⎪⎨⎪⎧e x ,x <0,ln x ,x >0,则f ⎣⎡⎦⎤f ⎝⎛⎭⎫1e =________. 答案 1e4.判断函数的奇偶性,要注意定义域必须关于原点对称,有时还要对函数式化简整理,但必须注意使定义域不受影响.[问题4] f (x )=lg (1-x 2)|x -2|-2是________函数(填“奇”“偶”或“非奇非偶”).答案 奇解析 由⎩⎪⎨⎪⎧1-x 2>0,|x -2|-2≠0得定义域为(-1,0)∪(0,1), f (x )=lg (1-x 2)-(x -2)-2=lg (1-x 2)-x. ∴f (-x )=-f (x ),f (x )为奇函数.5.弄清函数奇偶性的性质(1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同;偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.(2)若f (x )为偶函数,则f (-x )=f (x )=f (|x |).(3)若奇函数f (x )的定义域中含有0,则必有f (0)=0.故“f (0)=0”是“f (x )为奇函数”的既不充分也不必要条件.[问题5] 设f (x )=lg ⎝⎛⎭⎫21-x +a 是奇函数,且在x =0处有意义,则该函数为( ) A .(-∞,+∞)上的减函数B .(-∞,+∞)上的增函数C .(-1,1)上的减函数D .(-1,1)上的增函数答案 D解析 由题意可知f (0)=0,即lg(2+a )=0,解得a =-1,故f (x )=lg 1+x 1-x,函数f (x )的定义域是(-1,1), 在此定义域内f (x )=lg 1+x 1-x=lg(1+x )-lg(1-x ), 函数y 1=lg(1+x )是增函数,函数y 2=lg(1-x )是减函数,故f (x )=y 1-y 2是增函数.选D.6.求函数单调区间时,多个单调区间之间不能用符号“∪”和“或”连接,可用“及”连接,或用“,”隔开.单调区间必须是“区间”,而不能用集合或不等式代替.[问题6] 函数f (x )=1x的减区间为________. 答案 (-∞,0),(0,+∞)7.求函数最值(值域)常用的方法:(1)单调性法:适合于已知或能判断单调性的函数.(2)图象法:适合于已知或易作出图象的函数.(3)基本不等式法:特别适合于分式结构或两元的函数.(4)导数法:适合于可导函数.(5)换元法(特别注意新元的范围).(6)分离常数法:适合于一次分式.(7)有界函数法:适用于含有指数函数、对数函数或正、余弦函数的式子.无论用什么方法求最值,都要考查“等号”是否成立,特别是基本不等式法,并且要优先考虑定义域.[问题7] 函数y =2x2x +1(x ≥0)的值域为________.答案 ⎣⎡⎭⎫12,1解析 方法一 ∵x ≥0,∴2x ≥1,∴y 1-y≥1, 解得12≤y <1. ∴其值域为y ∈⎣⎡⎭⎫12,1.方法二 y =1-12x +1,∵x ≥0,∴0<12x +1≤12, ∴y ∈⎣⎡⎭⎫12,1.8.函数图象的几种常见变换(1)平移变换:左右平移——“左加右减”(注意是针对x 而言);上下平移——“上加下减”.(2)翻折变换:f (x )→|f (x )|;f (x )→f (|x |).(3)对称变换:①证明函数图象的对称性,即证图象上任意点关于对称中心(轴)的对称点仍在图象上;②函数y =f (x )与y =-f (-x )的图象关于原点成中心对称;③函数y =f (x )与y =f (-x )的图象关于直线x =0 (y 轴)对称;函数y =f (x )与函数y =-f (x )的图象关于直线y =0(x 轴)对称.[问题8] 函数y =|log 2|x -1||的递增区间是________.答案 [0,1),[2,+∞) 解析 ∵y =⎩⎪⎨⎪⎧|log 2(x -1)|(x >1),|log 2(1-x )|(x <1),作图可知正确答案为[0,1),[2,+∞).9.有关函数周期的几种情况必须熟记:(1)f (x )=f (x +a )(a >0),则f (x )的周期T =a ;(2)f (x +a )=1f (x )(f (x )≠0)或f (x +a )=-f (x ),则f (x )的周期T =2a . [问题9] 对于函数f (x )定义域内任意的x ,都有f (x +2)=-1f (x ),若当2<x <3时,f (x )=x ,则f (2 012.5)=________.答案 -2510.二次函数问题(1)处理二次函数的问题勿忘数形结合.二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向,二看对称轴与所给区间的相对位置关系.(2)二次函数解析式的三种形式:①一般式:f (x )=ax 2+bx +c (a ≠0);②顶点式:f (x )=a (x -h )2+k (a ≠0);③零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0).(3)一元二次方程实根分布:先观察二次系数,Δ与0的关系,对称轴与区间关系及有穷区间端点函数值符号,再根据上述特征画出草图.尤其注意若原题中没有指出是“二次”方程、函数或不等式,要考虑到二次项系数可能为零的情形.[问题10] 若关于x 的方程ax 2-x +1=0至少有一个正根,则a 的范围为________.答案 ⎝⎛⎦⎤-∞,14 11.(1)对数运算性质已知a >0且a ≠1,b >0且b ≠1,M >0,N >0.则log a (MN )=log a M +log a N ,log a M N=log a M -log a N , log a M n =n log a M ,对数换底公式:log a N =log b N log b a. 推论:log am N n =n m log a N ;log a b =1log b a. (2)指数函数与对数函数的图象与性质可从定义域、值域、单调性、函数值的变化情况考虑,特别注意底数的取值对有关性质的影响,另外,指数函数y =a x 的图象恒过定点(0,1),对数函数y =log a x 的图象恒过定点(1,0).[问题11] 函数y =log a |x |的增区间为_________________.答案 当a >1时,(0,+∞);当0<a <1时,(-∞,0)12.幂函数形如y =x α(α∈R )的函数为幂函数.(1)①若α=1,则y =x ,图象是直线.②当α=0时,y =x 0=1(x ≠0)图象是除点(0,1)外的直线.③当0<α<1时,图象过(0,0)与(1,1)两点,在第一象限内是上凸的.④当α>1时,在第一象限内,图象是下凸的.(2)增减性:①当α>0时,在区间(0,+∞)上,函数y =x α是增函数,②当α<0时,在区间(0,+∞)上,函数y =x α是减函数.[问题12] 函数f (x )=12x -⎝⎛⎭⎫12x 的零点个数为( )A .0B .1C .2D .3答案 B13.函数与方程(1)对于函数y =f (x ),使f (x )=0的实数x 叫做函数y =f (x )的零点.事实上,函数y =f (x )的零点就是方程f (x )=0的实数根.(2)如果函数y =f (x )在区间[a ,b ]上的图象是一条连续曲线,且有f (a )f (b )<0,那么函数y =f (x )在区间[a ,b ]内有零点,即存在c ∈(a ,b ),使得f (c )=0,此时这个c 就是方程f (x )=0的根.反之不成立.[问题13] 已知定义在R 上的函数f (x )=(x 2-3x +2)·g (x )+3x -4,其中函数y =g (x )的图象是一条连续曲线,则方程f (x )=0在下面哪个范围内必有实数根( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)答案 B解析 f (x )=(x -2)(x -1)g (x )+3x -4,∴f (1)=0+3×1-4=-1<0,f (2)=2×3-4=2>0.又函数y =g (x )的图象是一条连续曲线,∴函数f (x )在区间(1,2)内有零点.因此方程f (x )=0在(1,2)内必有实数根.14.求导数的方法①基本导数公式:c ′=0 (c 为常数);(x m )′=mx m -1 (m ∈Q );(sin x )′=cos x ;(cos x )′=-sin x ;(e x )′=e x ;(a x )′=a x ln a ;(ln x )′=1x ;(log a x )′=1x ln a(a >0且a ≠1). ②导数的四则运算:(u ±v )′=u ′±v ′;(u v )′=u ′v +u v ′;⎝⎛⎭⎫u v ′=u ′v -u v ′v 2(v ≠0). ③复合函数的导数:y x ′=y u ′·u x ′.如求f (ax +b )的导数,令u =ax +b ,则(f (ax +b ))′=f ′(u )·a .[问题14] f (x )=e x x,则f ′(x )=________. 答案 e x (x -1)x 215.利用导数判断函数的单调性:设函数y =f (x )在某个区间内可导,如果f ′(x )>0,那么f (x )在该区间内为增函数;如果f ′(x )<0,那么f (x )在该区间内为减函数;如果在某个区间内恒有f ′(x )=0,那么f (x )在该区间内为常函数.注意:如果已知f (x )为减函数求字母取值范围,那么不等式f ′(x )≤0恒成立,但要验证f ′(x )是否恒等于0.增函数亦如此.[问题15] 函数f (x )=ax 3-x 2+x -5在R 上是增函数,则a 的取值范围是________.答案 a ≥13解析 f (x )=ax 3-x 2+x -5的导数f ′(x )=3ax 2-2x +1.由f ′(x )≥0,得⎩⎪⎨⎪⎧ a >0,Δ=4-12a ≤0,解得a ≥13. a =13时,f ′(x )=(x -1)2≥0,且只有x =1时,f ′(x )=0, ∴a =13符合题意. 16.导数为零的点并不一定是极值点,例如:函数f (x )=x 3,有f ′(0)=0,但x =0不是极值点.[问题16] 函数f (x )=14x 4-13x 3的极值点是________. 答案 x =117.定积分运用微积分基本定理求定积分ʃb a f (x )d x 值的关键是用求导公式逆向求出f (x )的原函数,应熟练掌握以下几个公式:ʃb a x n d x =x n +1n +1|b a , ʃb a sin x d x =-cos x |b a ,ʃb a cos x d x =sin x |b a ,ʃb a 1xd x =ln x |b a (b >a >0), ʃb a a x d x =a x ln a |b a. [问题17] 计算定积分ʃ1-1(x 2+sin x )d x =________.答案 23解析 ʃ1-1(x 2+sin x )d x = ⎪⎪⎝⎛⎭⎫x 33-cos x 1-1=23.易错点1 函数概念不清致误例1 已知函数f (x 2-3)=lg x 2x 2-4,求f (x )的定义域. 错解 由x 2x 2-4>0,得x >2或x <-2. ∴函数f (x )的定义域为{x |x >2或x <-2}. 找准失分点 错把lg x 2x 2-4的定义域当成了f (x )的定义域. 正解 由f (x 2-3)=lg x 2x 2-4, 设x 2-3=t ,则x 2=t +3,因此f (t )=lg t +3t -1. ∵x 2x 2-4>0,即x 2>4,∴t +3>4,即t >1. ∴f (x )的定义域为{x |x >1}.易错点2 忽视函数的定义域致误例2 判断函数f (x )=(1+x ) 1-x 1+x的奇偶性. 错解 因为f (x )=(1+x ) 1-x 1+x= 1-x 1+x (1+x )2=1-x 2, 所以f (-x )=1-(-x )2=1-x 2=f (x ), 所以f (x )=(1+x ) 1-x 1+x是偶函数. 找准失分点 对函数奇偶性定义理解不够全面,事实上对定义域内任意一个x ,都有f (-x )=f (x ),或f (-x )=-f (x ).正解 f (x )=(1+x )1-x 1+x 有意义时必须满足1-x 1+x ≥0⇒-1<x ≤1,即函数的定义域是{x |-1<x ≤1},由于定义域不关于原点对称,所以该函数既不是奇函数也不是偶函数.易错点3 混淆“切点”致误例3 求过曲线y =x 3-2x 上的点(1,-1)的切线方程.错解 ∵y ′=3x 2-2,∴k =y ′|x =1=3×12-2=1,∴切线方程为y +1=x -1,即x -y -2=0. 找准失分点 错把(1,-1)当切点.正解 设P (x 0,y 0)为切点,则切线的斜率为y ′|0x x ==3x 20-2.∴切线方程为y -y 0=(3x 20-2)(x -x 0),即y -(x 30-2x 0)=(3x 20-2)(x -x 0).又知切线过点(1,-1),把它代入上述方程,得-1-(x 30-2x 0)=(3x 20-2)(1-x 0),整理,得(x 0-1)2(2x 0+1)=0,解得x 0=1,或x 0=-12. 故所求切线方程为y -(1-2)=(3-2)(x -1),或y -(-18+1)=(34-2)(x +12), 即x -y -2=0,或5x +4y -1=0.易错点4 极值的概念不清致误例4 已知f (x )=x 3+ax 2+bx +a 2在x =1处有极值为10,则a +b =________. 错解 -7或0 找准失分点 x =1是f (x )的极值点⇒f ′(1)=0;忽视了“f ′(1)=0x =1是f (x )的极值点”的情况.正解 f ′(x )=3x 2+2ax +b ,由x =1时,函数取得极值10,得⎩⎪⎨⎪⎧ f ′(1)=3+2a +b =0, ①f (1)=1+a +b +a 2=10, ② 联立①②得⎩⎪⎨⎪⎧ a =4,b =-11,或⎩⎪⎨⎪⎧a =-3,b =3.当a =4,b =-11时,f ′(x )=3x 2+8x -11=(3x +11)(x -1)在x =1两侧的符号相反,符合题意.当a =-3,b =3时,f ′(x )=3(x -1)2在x =1两侧的符号相同,所以a =-3,b =3不符合题意,舍去.综上可知a =4,b =-11,∴a +b =-7.答案 -7易错点5 错误利用定积分求面积例5 求曲线y =sin x 与x 轴在区间[0,2π]上所围部分的面积S . 错解 分两部分,在[0,π]上有ʃπ0sin x d x =2,在[π,2π]上有ʃ2ππsin x d x =-2,因此所求面积S为2+(-2)=0. 找准失分点 面积应为各部分的绝对值的代数和,也就是第二部分的积分不是阴影部分的面积,而是面积的相反数.所以,不应该将两部分直接相加.正解 S =ʃπ0sin x d x +||ʃ2ππsin x d x =2+2=4.答案 41.(2014·北京)下列函数中,在区间(0,+∞)上为增函数的是( )A .y =x +1B .y =(x -1)2C .y =2-xD .y =log 0.5(x +1)答案 A解析 A 项,函数y =x +1在[-1,+∞)上为增函数,所以函数在(0,+∞)上为增函数,故正确;B 项,函数y =(x -1)2在(-∞,1)上为减函数,在[1,+∞)上为增函数,故错误;C项,函数y =2-x =(12)x 在R 上为减函数,故错误;D 项,函数y =log 0.5(x +1)在(-1,+∞)上为减函数,故错误.2.(2014·山东)函数f (x )=1(log 2x )2-1的定义域为( )A.⎝⎛⎭⎫0,12 B .(2,+∞) C.⎝⎛⎭⎫0,12∪(2,+∞) D.⎝⎛⎦⎤0,12∪[2,+∞) 答案 C 解析 由题意知⎩⎪⎨⎪⎧ x >0,(log 2x )2>1,解得x >2或0<x <12.故选C. 3.下列各式中错误的是( )A .0.83>0.73B .log 0.50.4>log 0.50.6C .0.75-0.1<0.750.1D .lg 1.6>lg 1.4 答案 C解析 构造相应函数,再利用函数的性质解决,对于A ,构造幂函数y =x 3,为增函数,故A 对;对于B 、D ,构造对数函数y =log 0.5x 为减函数,y =lg x 为增函数,B 、D 都正确;对于C ,构造指数函数y =0.75x ,为减函数,故C 错.4.函数f (x )=-1x+log 2x 的一个零点落在下列哪个区间( ) A .(0,1)B .(1,2)C .(2,3)D .(3,4)答案 B解析 根据函数的零点的存在性定理得f (1)f (2)<0.5.(2014·天津)函数f (x )=log 12(x 2-4)的单调递增区间是( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)答案 D解析 因为y =log 12t 在定义域上是减函数,所以求原函数的单调递增区间,即求函数t =x 2-4的单调递减区间,结合函数的定义域,可知所求区间为(-∞,-2).6.(2014·福建)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,cos x ,x ≤0,则下列结论正确的是( )A .f (x )是偶函数B .f (x )是增函数C .f (x )是周期函数D .f (x )的值域为[-1,+∞)答案 D解析 函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,cos x ,x ≤0的图象如图所示,由图象知只有D 正确.7.已知函数f (x )的定义域为R ,其导函数f ′(x )的图象如图所示,则对于任意x 1,x 2∈R (x 1≠x 2),下列结论正确的是( ) ①f (x )<0恒成立;②(x 1-x 2)·[f (x 1)-f (x 2)]<0; ③(x 1-x 2)·[f (x 1)-f (x 2)]>0; ④f (x 1+x 22)>f (x 1)+f (x 2)2;⑤f (x 1+x 22)<f (x 1)+f (x 2)2.A .①③B .①③④C .②④D .②⑤答案 D解析 由函数f (x )的导函数的图象可得,函数f (x )是减函数,且随着自变量的增大,导函数越来越大,即函数f (x )图象上的点向右运动时,该点的切线的斜率为负,且值越来越大,由此可作出函数f (x )的草图如图所示,由图示可得f (x 2)-f (x 1)x 2-x 1<0且f (x 1+x 22)<f (x 1)+f (x 2)2,由此可得结论中仅②⑤正确,故应选D.8.若函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数,且f (2)=0,则使得f (x )<0的x 的取值范围是________. 答案 (-2,2)解析 因为f (x )是偶函数,所以f (-x )=f (x )=f (|x |).因为f (x )<0,f (2)=0.所以f (|x |)<f (2). 又因为f (x )在(-∞,0]上是减函数, 所以f (x )在(0,+∞)上是增函数, 所以|x |<2,所以-2<x <2.9.已知函数f (x )=⎩⎪⎨⎪⎧log 2x (x >0),3x (x ≤0)且关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的取值范围是________. 答案 (1,+∞)解析 方程f (x )+x -a =0的实根也就是函数y =f (x )与y =a -x 的图象交点的横坐标,如图所示,作出两个函数图象,显然当a ≤1时,两个函数图象有两个交点,当a >1时,两个函数图象的交点只有一个.所以实数a 的取值范围是(1,+∞).10.(2014·江苏)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________. 答案 (-22,0)解析 作出二次函数f (x )的图象,对于任意x ∈[m ,m +1],都有f (x )<0,则有⎩⎪⎨⎪⎧f (m )<0,f (m +1)<0,即⎩⎪⎨⎪⎧m 2+m 2-1<0,(m +1)2+m (m +1)-1<0,解得-22<m <0.11.f (x )=x (x -c )2在x =2处有极大值,则常数c 的值为________. 答案 6解析 f (x )=x 3-2cx 2+c 2x ,f ′(x )=3x 2-4cx +c 2, f ′(2)=0⇒c =2或c =6.若c =2,f ′(x )=3x 2-8x +4, 令f ′(x )>0⇒x <23或x >2,f ′(x )<0⇒23<x <2,故函数在(-∞,23)及(2,+∞)上单调递增,在(23,2)上单调递减,∴x =2是极小值点,故c =2不合题意,同样验证可知c =6符合题意. 12.已知函数f (x )=ln(ax )(a ≠0,a ∈R ),g (x )=x -1x .(1)当a =1时,记φ(x )=f (x )-x +1x -1,求函数φ(x )的单调区间; (2)若f (x )≥g (x )(x ≥1)恒成立,求实数a 的取值范围.解 (1)当a =1时,φ(x )=f (x )-x +1x -1=ln x -x +1x -1,则φ′(x )=1x +2(x -1)2=x 2+1x (x -1)2.因为x >0且x ≠1,所以φ′(x )>0.故函数φ(x )的单调递增区间为(0,1)和(1,+∞). (2)因为ln(ax )≥x -1x对x ≥1恒成立,所以ln a +ln x ≥x -1x ,即ln a ≥1-1x-ln x 对x ≥1恒成立.令h (x )=1-1x -ln x ,则h ′(x )=1x 2-1x ,因为x ≥1,故h ′(x )≤0.所以h (x )在区间[1,+∞)上单调递减,由ln a ≥h (x )max =h (1)=0,解得a ≥1. 故实数a 的取值范围为[1,+∞).课时作业30 数系的扩充与复数的引入一、选择题1.若集合A ={i ,i 2,i 3,i 4}(i 是虚数单位),B ={1,-1},则A ∩B 等于( ) A .{-1} B .{1} C .{1,-1}D .∅解析:因为A ={i ,i 2,i 3,i 4}={i ,-1,-i ,1},B ={1,-1},所以A ∩B ={-1,1}.答案:C2.(2016·山东卷)若复数z =21-i,其中i 为虚数单位,则z =( )A .1+iB .1-iC .-1+iD .-1-i解析:易知z =1+i ,所以z =1-i ,选B. 答案:B3.(2016·新课标全国卷Ⅱ)设复数z 满足z +i =3-i ,则z =( ) A .-1+2i B .1-2i C .3+2iD .3-2i解析:易知z =3-2i ,所以z =3+2i. 答案:C4.若复数m (3+i)-(2+i)在复平面内对应的点位于第四象限,则实数m 的取值范围为( )A .m >1B .m >23C .m <23或m >1D.23<m <1 解析:m (3+i)-(2+i)=(3m -2)+(m -1)i由题意,得⎩⎪⎨⎪⎧3m -2>0,m -1<0,解得23<m <1.答案:D5.若复数z =a 2-1+(a +1)i(a ∈R )是纯虚数,则1z +a的虚部为( ) A .-25B .-25iC.25D.25i 解析:由题意得⎩⎪⎨⎪⎧a 2-1=0,a +1≠0,所以a =1,所以1z +a =11+2i=1-2i +-=15-25i ,根据虚部的概念,可得1z +a 的虚部为-25. 答案:A6.已知复数z =1+2i 1-i,则1+z +z 2+…+z 2 015=( ) A .1+i B .1-i C .iD .0解析:z =1+2i1-i =1++2=i ,∴1+z +z 2+…+z2 015=-z 2 0161-z=1-i 2 0161-i =1-i4×5041-i=0. 答案:D7.(2017·芜湖一模)已知i 是虚数单位,若z 1=a +32i ,z 2=a -32i ,若z 1z 2为纯虚数,则实数a =( )A.32B .-32C.32或-32D .0解析:z 1z 2=a +32i a -32i =⎝⎛⎭⎪⎫a +32i 2⎝⎛⎭⎪⎫a -32i ⎝ ⎛⎭⎪⎫a +32i=⎝ ⎛⎭⎪⎫a 2-34+3a i a 2+34是纯虚数,∴⎩⎪⎨⎪⎧a 2-34=0,3a ≠0,解得a =±32. 答案:C8.在复平面内,复数11+i ,11-i (i 为虚数单位)对应的点分别为A ,B ,若点C 为线段AB的中点,则点C 对应的复数为( )A.12 B .1 C.12i D .i解析:∵11+i =1-i -+=12-12i ,11-i =1+i -+=12+12i ,则A (12,-12),B (12,12),∴线段AB 的中点C (12,0),故点C 对应的复数为12,选A.答案:A 二、填空题9.复数z =(1+2i)(3-i),其中i 为虚数单位,则z 的实部是________.解析:复数z =(1+2i)(3-i)=5+5i ,其实部是5. 答案:510.(2016·天津卷)已知a ,b ∈R ,i 是虚数单位,若(1+i)(1-b i)=a ,则a b的值为________.解析:(1+i)(1-b i)=1+b +(1-b )i =a ,所以b =1,a =2,a b=2. 答案:2 11.已知a +2ii=b +i(a ,b ∈R ),其中i 为虚数单位,则a +b =________.解析:因为a +2ii=b +i ,所以2-a i =b +i.由复数相等的充要条件得b =2,a =-1,故a +b =1.答案:112.在复平面上,复数3-2对应的点到原点的距离为________.解析:解法1:由题意可知⎪⎪⎪⎪⎪⎪3-2=3|2-i|2=35. 解法2:3-2=34-4i +i 2=33-4i=+-+=9+12i 25=925+1225i ,⎪⎪⎪⎪⎪⎪3-2=⎪⎪⎪⎪⎪⎪925+1225i =⎝ ⎛⎭⎪⎫9252+⎝ ⎛⎭⎪⎫12252=35.答案:351.(2017·河北衡水一模)如图,在复平面内,复数z 1,z 2对应的向量分别是OA →,OB →,则|z 1+z 2|=( )A .2B .3C .2 2D .3 3解析:z 1=-2-i ,z 2=i ,z 1+z 2=-2,故选A. 答案:A2.设复数z =3+i(i 为虚数单位)在复平面中对应点A ,将OA 绕原点O 逆时针旋转90°得到OB ,则点B 在( )A .第一象限B .第二象限C .第三象限D .第四象限解析:因为复数z 对应点的坐标为A (3,1),所以点A 位于第一象限,所以逆时针旋转π2后对应的点B 在第二象限.答案:B3.已知i 为虚数单位,(z 1-2)(1+i)=1-i ,z 2=a +2i ,若z 1·z 2∈R ,则|z 2|=( )A .4B .20 C. 5D .2 5解析:z 1=2+1-i1+i=2+-2+-=2-i ,z 1·z 2=(2-i)(a +2i)=2a +2+(4-a )i ,若z 1·z 2∈R ,则a =4,|z 2|=25,选D.答案:D4.已知复数z 1=cos15°+sin15°i 和复数z 2=cos45°+sin45°i,则z 1·z 2=________.解析:z 1·z 2=(cos15°+sin15°i)(cos45°+sin45°i)=(cos15°cos45°-sin15°sin45°)+(sin15°cos45°+cos15°sin45°)i=cos60°+sin60°i=12+32i.答案:12+32i5.已知复数z =i +i 2+i 3+…+i2 0141+i ,则复数z 在复平面内对应的点为________. 解析:∵i 4n +1+i4n +2+i4n +3+i4n +4=i +i 2+i 3+i 4=0,而 2 013=4×503+1,2 014=4×503+2,∴z =i +i 2+i 3+…+i 2 0141+i=i +i 21+i =-1+i 1+i =-1+-+-=2i2=i , 对应的点为(0,1).答案:(0,1)。

2015届高考数学二轮复习专题训练试题:集合与函数(1)

2015届高考数学二轮复习专题训练试题:集合与函数(1)

A.
B.
时, C. 1
,则 D. 3
则集合 最多会有 _ 且
11、已知 A.
1)
上的减函数,那么 a 的取值范围是(

B.
C .( 0,
D.
12、已知
是(
)上是增函数,那么实数 的取值范围是
A.(1,+ )
13、已知函数 A.-2
B.
C.
是奇函数,
是偶函数,且 B.0
= C.2
D.(1,3)
D.3
A .f (x) + f (- x)
B .f ( x)- f (- x)
C .f ( x)· f (-
x)
D.
23、若非空集合 S {1,2,3,4,5} ,且若 a∈S,则必有 6- a∈S,则所有满足上述条件的集合 S 共有(

A .6 个
B.7 个
C.8 个
D.9 个
24、已知
是 上最小正周期为 2 的周期函数, 且当
38、已知
小值. 39、设函数
,若 .( I ) 求
在区间
上的最大值为
, 最小值为
的函数表达式;( II ) 判断
的单调性 , 并求出
,令 的最
是定义在
上的减函数,并且满足

( 1)求
,
,
的值, (2)如果
,求 x 的取值范围。
40、已知
是奇函数
(Ⅰ)求 的值,并求该函数的定义域; 调性,并给出证明 .
21、已知函数 f(x) 是 R 上的单调增函数且为奇函数,数列 {a n} 是等差数列, a3>0,则 f(a 1)+f(a 3)+f(a 5 ) 的值

2015高考数学真题-集合

2015高考数学真题-集合

2015高考数学真题-集合1.安徽文设全集,,,则( )(A ) (B ) (C ) (D )【答案】B2、北京文若集合,,则( ) A . B .C .D .【答案】A3.福建文若集合,,则等于( ) A . B . C . D【答案】D4.广东理若集合,,则A .B .C .D .5.广东文若集合,,则( )A .B .C .D .【答案】C6.海南理已知集合,,则( ) A . B . C . D .【答案】A7.海南文已知集合,,则( )A .B .C .D .8.江苏已知集合,,则集合中元素的个数为_______.9. 山东文已知集合A={x|2<x<4},B={x|(x-1)(x-3)<0},则A B=( )(A )(1,3) (B )(1,4) (C )(2,3) (D )(2,4) {}123456U =,,,,,{}12A =,{}234B =,,()U A C B ={}1256,,,{}1{}2{}1234,,,{}52x x A =-<<{}33x x B =-<<AB ={}32x x -<<{}52x x -<<{}33x x -<<{}53x x -<<{}22M x x =-≤<{}0,1,2N =MN {}0{}1{}0,1,2{}0,1{|(4)(1)0}M x x x =++={|(4)(1)0}N x x x =--=M N =∅{}1,4--{}0{}1,4{}1,1M =-{}2,1,0N =-M N ={}0,1-{}0{}1{}1,1-21,01,2A =--{,,}{}(1)(20B x x x =-+<A B ={}1,0A =-{}0,1{}1,0,1-{}0,1,2{}|12A x x =-<<{}|03B x x =<<AB =()1,3-()1,0-()0,2()2,3{}3,2,1=A {}5,4,2=B B A ⋂【答案】C.10.陕西文理设集合,,则( )A .B .C .D .【答案】A11.四川理设集合,集合,则( )A.{x|-1<x<3}B.{x|-1<x<1}C.{x|1<x<2}D.{x|2<x<3}12、四川文设集合A ={x |-1<x <2},集合B ={x |1<x <3},则A ∪B =( )(A ){x |-1<x <3} (B ){x |-1<x <1} (C ){x |1<x <2} (D ){x |2<x <3}【答案】A13天津理已知全集 ,集合 ,集合 ,则集合(A ) (B ) (C ) (D )【答案】A14.天津文已知全集,集合,集合,则集合( ) (A) (B) (C) (D)【答案】B15、新课标1文已知集合,则集合中的元素个数为(A ) 5 (B )4 (C )3 (D )2【答案】D16.新课标2理已知集合,,则( ) A . B . C . D .【答案】A17新课标2文已知集合,,则( )A .B .C .D . 2{|}M x x x =={|lg 0}N x x =≤M N =[0,1](0,1][0,1)(,1]-∞{|(1)(2)0}A x x x =+-<{|13}B x x =<<A B ={}1,2,3,4,5,6,7,8U ={}2,3,5,6A ={}1,3,4,6,7B =U A B =ð{}2,5{}3,6{}2,5,6{}2,3,5,6,8{1,2,3,4,5,6}U ={2,3,5}A ={1,3,4,6}B =A U B=()ð{3}{2,5}{1,4,6}{2,3,5}{32,},{6,8,10,12,14}A x x n n N B ==+∈=A B 21,01,2A =--{,,}{}(1)(20B x x x =-+<A B ={}1,0A =-{}0,1{}1,0,1-{}0,1,2{}|12A x x =-<<{}|03B x x =<<AB =()1,3-()1,0-()0,2()2,318.浙江理已知集合,则 ( )A. B. C. D.【答案】C.19、浙江文已知集合,,则( )A .B .C .D .【答案】A20.重庆理已知集合A=,B=,则A 、A=B B 、A B=C 、A BD 、B A【答案】D 2{20},{12}P x x x Q x x =-≥=<≤()R P Q =ð[0,1)(0,2](1,2)[1,2]{}223x x x P =-≥{}Q 24x x =<<Q P =[)3,4(]2,3()1,2-(]1,3-{}1,2,3{}2,3⋂∅ØØ。

2015届高考数学总复习配套题型精练:常考题型强化练——函数(共29张PPT)

2015届高考数学总复习配套题型精练:常考题型强化练——函数(共29张PPT)

∴ab=2b∈(20,
2
1 2
]=(1,
2],故应选 A.
第八页,编辑于星期五:十点 十七分。
A组 专项基础训练
1
2
3
4
5
6
7
8
9
10
5.已知 f(x)是 R 上最小正周期为 2 的周期函数,且当 0≤x<2 时,
f(x)=x3-x,则函数 y=f(x)的图象在区间[0,6]上与 x 轴的交点
的个数为
得最小值 b,则函数 g(x)=1a|x+b|的图象为
()
解析
由基本不等式得
f(x)

x

1

9 x+1

5≥2 x+1×x+9 1-5=1,当且仅当 x+1=x+9 1,
即 x=2 时取得最小值 1,故 a=2,b=1,
第四页,编辑于星期五:十点 十七分。
A组 专项基础训练
1
2
3
4
5
6
7
8
9
10
B.-12,+∞
C.-12,0∪(0,+∞)
D.-12,2
9
10
(C )
解析
由已知得l2oxg+11>20x,+1≠0,
2
∴x>-12, 2x+1≠1,
即 x>-12且 x≠0,∴选 C.
第三页,编辑于星期五:十点 十七分。
A组 专项基础训练
1
2
3
4
5
6
7
8
9
10
2.已知函数 f(x)=x-4+x+9 1,x∈(0,4),当 x=a 时,f(x)取
A组 专项基础训练

安徽2015届高考数学二轮专项训练之集合与函数课时提升训练(9)Word版含答案

安徽2015届高考数学二轮专项训练之集合与函数课时提升训练(9)Word版含答案

集合与函数课时提升训练(9)3、设集合A={1,2},集合B={1,2,3},分别从集合A和B中随机取一个数,确定平面上一个点,记“点落在直线上为事件,若事件的概率最大,则的所有可能值为()A.3 B.4 C.2和5 D.3和44、对于非空集合A.B,定义运算A B={x | x∈A∪B,且x A∩B},已知两个开区间M=(a,b),N=(c,d),其中a.b.c.d满足a+b<c+d,ab=cd<0,则M N等于()A.(a,b)∪(c,d) B.(a,c)∪(b,d)C.(a,d)∪(b,c) D.(c,a)∪(d,b)8、设集合A=若A B,则实数a,b必满足()A B CD9、设集合,函数且则的取值范围是A.(] B.(] C.() D.[0,]10、对于非空集合,定义运算:,已知,其中满足,,则A. B. C. D.13、定义在R上的函数满足,当时,单调递增,如果的值()A.恒小于0 B.恒大于0 C.可能为0 D.可正可负15、设,,则满足条件的所有实数a的取值范围为()A.0<a<4 B.a=0 C.<4 D.0<a17、设集合,在上定义运算:,其中为被4除的余数,,则使关系式成立的有序数对的组数为()A. B. C.D.18、设函数内有定义,对于给定的正数,定义函数:取函数,在下列区间上单调递减的是()A. B. C. D.20、已知函数在R上是偶函数,对任意都有当且时,,给出如下命题:①②直线图象的一条对称轴③函数在[-9,-6]上为增函数④函数在[-9,9]上有四个零点其中所有正确命题的序号为()A.①② B.②④ C.①②③ D.①②④21、已知函数,那么对于任意的,函数y的最大值与最小值分别为()A. B. C.D. 3,123、定义域为D的函数f(x)同时满足条件①常数a,b满足a<b,区间[a,b]D,②使f (x)在[a,b]上的值域为[ka,kb](k∈N+),那么我们把f(x)叫做[a,b]上的“k级矩阵”函数,函数f(x)=x3是[a,b]上的“1级矩阵”函数,则满足条件的常数对(a,b)共有()A.1对 B.2对 C.3对 D.4对24、定义区间的长度均为n-m,其中m<n,已知关于x的不等式组的解集构成的各区间的长度和为5,则实数t的取值范围是()A. B. C. D.25、已知函数互不相等,则则的取值范围是() A.(1,10) B.(1,e) C.(e,e+1) D.(e,)26、已知,,(Ⅰ)求;(Ⅱ)若,试确定实数的取值范围27、已知函数f(x)=x2+4ax+2a+6.(1)若函数f(x)的值域为[0,+∞),求a的值;(2)若函数f(x)的函数值均为非负数,求g(a)=2-a|a+3|的值域.28、已知函数,则下列说法正确的是(写出所有正确命题的序号)①在上是减函数;②的最大值是2;③方程有2个实数根;④在R上恒成立.29、已知函数是偶函数,当时,,且当时,恒成立,则的最小值是31、已知是定义域为R的偶函数,且,。

数学集合与函数练习题

数学集合与函数练习题

数学集合与函数练习题数学集合与函数是数学中的基础概念,它们在各个数学分支中都有广泛的应用。

下面是一些集合与函数的练习题,可以帮助学生加深对这些概念的理解和应用能力。

练习题一:集合的基本操作1. 给定集合 A = {1, 2, 3, 4} 和 B = {3, 4, 5, 6},求A ∪ B (并集)。

2. 已知集合 C = {x | x 是小于10的正整数},求 C 的补集 C'。

3. 集合 D = {x | x 是偶数},求D ∩ B(交集)。

解答:1. A ∪ B = {1, 2, 3, 4, 5, 6}2. C' = {所有大于等于10的整数}3. D ∩ B = {4, 6}练习题二:函数的基本概念1. 定义函数 f(x) = x^2,求 f(3) 和 f(-3)。

2. 给定函数 g(x) = 2x + 5,判断 g(x) 是否为奇函数或偶函数。

3. 函数 h(x) = x + 1 / x,求 h(2)。

解答:1. f(3) = 9,f(-3) = 92. g(x) 不是奇函数也不是偶函数3. h(2) = 2 + 1/2 = 2.5练习题三:函数的图像和性质1. 画出函数 y = x^2 的图像,并标出顶点坐标。

2. 函数 f(x) = |x| 在 x = 0 处的导数是多少?3. 函数 y = sin(x) 在区间[0, 2π] 上的值域是什么?解答:1. y = x^2 的图像是一个开口向上的抛物线,顶点坐标为 (0, 0)。

2. f(x) = |x| 在 x = 0 处的导数不存在,因为该点是尖点。

3. y = sin(x) 在区间[0, 2π] 上的值域是 [-1, 1]。

练习题四:复合函数与反函数1. 给定函数 f(x) = 3x - 2 和 g(x) = x^2 + 1,求复合函数 (f ∘g)(x)。

2. 函数 h(x) = 2x + 3 的反函数是什么?3. 如果 f(x) = x^3 + 2x,求 f 的反函数 f^(-1)(x)。

【金版学案】2015届高考数学二轮复习(考点梳理+热点突破)第一讲 集合与常用逻辑用语检测试题

【金版学案】2015届高考数学二轮复习(考点梳理+热点突破)第一讲 集合与常用逻辑用语检测试题

第一讲集合与常用逻辑用语一、选择题1.(2014·福建卷)若集合P={x|2≤x<4},Q={x|x≥3},则P∩Q等于( )A.{x|3≤x<4} B.{x|3<x<4}C.{x|2≤x<3} D.{x|2≤x≤3}答案:A2.(2014·广州一模)已知非空集合M和N,规定M-N={x|x∈M且x N},那么M -(M-N)等于( )A.M∪N B.M∩NC.M D.N答案:B3.设函数f(x)=11-x的定义域为M ,函数g(x)=lg(1+x)的定义域为N,则( ) A.M∩N=(-1,1] B.M∩N=RC.∁RM=[1,+∞) D.∁RN=(-∞,-1)答案:C4.(2014·北京卷)设a、b是实数,则“a>b”是“a2>b2”的( )A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件答案:D5.(2014·安徽卷)命题“x∈R,|x|+x2≥0”的否定是( )A.x∈R,|x|+x2<0 B.x∈R,|x|+x2≤0C.x0∈R,|x|+x2<0 D.x∈R,|x|+x2≥0答案:C二、填空题6.下列命题中,________(填序号)为真命题.①“A ∩B =A”成立的必要条件是“A B ”; ②“若x 2+y 2=0,则x ,y 全为0”的否命题; ③“全等三角形是相似三角形”的逆命题; ④“圆内接四边形对角互补”的逆否命题.解析:①A∩B=A A B 但不能得出A B ,∴①不正确;②否命题为:“若x 2+y 2≠0,则x ,y 不全为0”,是真命题;③逆命题为:“若两个三角形是相似三角形,则这两个三角形全等”,是假命题;④原命题为真,而逆否命题与原命题是两个等价命题,所以逆否命题也为真命题.答案:②④7. (2014·汕头一模)若命题“x ∈R ,x 2+2x +m≥0”的否定为真命题,则实数m 的取值范围是________.答案:(-∞,1)三、解答题8.已知集合A ={x|x 2-3x -10≤0},B ={x|m +1≤x≤2m-1},若A∪B=A ,求实数m 的取值范围.解析:∵A∪B=A ,∴B A.∵A ={x|x 2-3x -10≤0}={x|-2≤x≤5}, ①若B =,则m +1>2m -1, 即m <2,∴m <2时,A ∪B =A. ②若B≠,如图所示,则m +1≤2m-1,即m≥2. 由BA 得⎩⎪⎨⎪⎧-2≤m+1,2m -1≤5,解得-3≤m≤3.又∵m≥2,∴2≤m ≤3.由①②知,当m≤3时,A ∪B =A.因此,实数m 的取值范围是(-∞,3]. 9.设p :方程x 2+mx +1=0有两个不等的负根,q :方程4x 2+4(m -2)x +1=0无实根.若“p∨q”为真,“p ∧q ”为假,求实数m 的取值范围.解析:若方程x 2+mx +1=0有两个不等的负根,则⎩⎪⎨⎪⎧Δ=m 2-4>0,x 1+x 2=-m <0,∴m >2,即p :m >2.x 1x 2=1>0.若方程4x 2+4(m -2)x +1=0无实根, 则Δ=16(m -2)2-16<0, 即1<m <3,∴q :1<m <3.∵p ∨q 为真,则p ,q 至少一个为真,又p∧q 为假,则p ,q 至少一个为假, ∴p ,q 一真一假,即p 真q 假或p 假q 真. ∴⎩⎪⎨⎪⎧m >2,m ≤1或m≥3或⎩⎪⎨⎪⎧m≤2,1<m <3. ∴m ≥3或1<m≤2.故实数m 的取值范围为(1,2]∪[3,+∞).10.已知A ={a +2,(a +1)2,a 2+3a +3},若1∈A,求实数a 的值.解析:①若1=a +2,则a =-1.∵a 2+3a +3=1=a +2, ∴a =-1不合题意.②若1=(a +1)2,则a =0或-2. 当a =0时,A ={2,1,3}.当a =-2时,a 2+3a +3=1=(a +1)2, ∴a =-2不合题意,a =0合适.③若1=a 2+3a +3,则a =-1或-2,由上面结论可知,此时没有a 符合题意. 综上所述,符合题意的a 的值是0.。

高三数学二轮复习专题一:集合、函数、导数

高三数学二轮复习专题一:集合、函数、导数

数学二轮复习专题一:集合、函数、导数-1.下列判断正确的是 A .22y x ≠y x ≠⇒或y x -≠----------------------------------( )B .命题“b a ,都是偶函数:则b a +是偶函数”的逆否命题是“若b a +不是偶函数:则b a ,都不是偶函数”C .若“P 或Q ”为假命题:则“非P 且非Q ”是真命题D .已知c b a ,,是实数:关于x 的不等式02≤++c bx ax 的解集是空集:必有0>a 且0≤∆2.设020:2>--x x p :021:2<--x x q :则p 是q 的----------------------------------------( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件3.已知{}32),(22=+=y x y x M :{}k mx y y x N +==),(:若对于所有R m ∈:均有φ≠N M :则k 的取值范围是---------------------------------------------------------------------------------( )A .⎥⎥⎦⎤⎢⎢⎣⎡-26,26B .)26,26(-C .)332,332(-D .⎥⎥⎦⎤⎢⎢⎣⎡-332,332 4.在平面直角坐标系中:横、纵坐标均为整数的点叫做格点:若函数)(x f y =的图象恰好经过k 个格点:则函数)(x f y =为k 阶格点函数.现有函数①2x y =:②1-=x e y :③x y sin =:④)6cos(π+=x y :其中为一阶格点函数的是-------------------------------------------------( )A .③④B .②③ C.②④ D.①②④5.已知函数12)(2++=x x x f :若存在实数t :当[]m x ,1∈时:x t x f ≤+)(恒成立:则实数m 的最大值为 A .2 B .3 C .4 D .5------------------------------------( )6.已知0321>>>x x x :则112)22(log x x a +=:222)22(log x x b +=:332)22(log x x c +=的大小关系为 A .c b a << B .c b a >> C .c a b << D .b a c << -------------( )7.已知)2(log )1(+=+n a n n :我们把使乘积n a a a 21为整数的数n 称为“劣数”:在区间)1006,0(内所有的劣数的个数为 A .7 B .8 C .9 D .10------------------------------( )8.函数)(x f 对于任意实数x 满足条件)(1)2(x f x f =+:若5)1(-=f :则))5((f f 9.若函数2)(+-=b x a x f 在[)+∞,0上为增函数:则实数b a ,的取值范围为10.设)6(log )(3+=x x f 的反函数为)(1x f -:若[][]276)(6)(11=+⋅+--n f m f :则=+)(n m f11.在密码学中:你直接看到的内容为明码:对明码进行某种处理后得到的内容为密码.有一种密码将英文的26个字母z b a ,, (不论大小写)依次对应26,,2,1 这26个自然数:如现给出一个变换公式⎪⎪⎩⎪⎪⎨⎧≤≤∈+≤≤∈+=),261,(226),261,(21**'为偶数为奇数x x N x x x x N x x x 可将英文的明码转换为密码.按上述规定:若将英文的明码译成密码是shxc :那么原来的明码是12.已知函数)(x f 满足:对任意R y x ∈,都有)(2)()(22y f x f y x f +=+且0)1(≠f :则)2007(f =13.二次函数),,()(2Z c b a c bx ax x f ∈++=的图象按向量)0,1(-=平移后关于y 轴对称:方程0)(=-x x f 的两根为βα,:且)2,0(∈α:)4,2(∈β:5=-αβ(1)求函数)(x f 的解析式:(2)设m x x x x g +--=63)(23:若存在常数k :使得函数)(x g :)(x f 在区间[]2,2-上的图象分别在直线k y =的上方和下方:试求实数m 的取值范围14.在R 上的减函数)(x f 满足:当且仅当),0(+∞⊆∈M x 时:函数值)(x f 的集合为[]2,0:且1)21(=f :又对M 中的任意21,x x 都有)()()(2121x f x f x x f +=⋅ (1)判断41和81是否都是M 中的元素:并说明理由: (2)若)(1x f -表示)(x f 在M 上的反函数:则)(1x f -是否具有这样的性质:)()()(21111x x f x f x f +=⋅---:并说明理由(3)判断不等式[])2,0(41)2()(121∈≤+⋅+--x x f x x f 是否有解:如有:求出解集:若没有:说明理由。

2015届高考数学(二轮复习)专题训练:集合与函数(7)

2015届高考数学(二轮复习)专题训练:集合与函数(7)

集合与函数(7) 7、设函数f(x)=ax3+bx2+cx+2的导函数为f′(x),如果f′(x)为偶函数,则一定有( ) A.a≠0,c=0 B.a=0,c≠0 C.b=0 D.b=0,c=0 .其中属于有界泛函的是( ) A.①② B.③④ C.①③ D.②④,,, ().A. P=MB. Q=R?C. R=M?D. Q=N 22、已知函数f(x)=a?2|x|+1(a≠0),定义函数给出下列命题: ①F(x)=|f(x)|;②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F (m)+F(n)<0成立, 其中所有正确命题的序号是( ) A.②B.①③ C.②③ D.①② A.B.C.D.若且为整数),当最小时,则称为的“最佳分解”,并规定(如12的分解有其中,为12的最佳分解,则)。

关于有下列判断:①②;③④。

其中,正确判断的序号是 . 29、已知f(x)=ax2+bx+3a+b是偶函数,且其定义域为[a-1,2a],则y=f(x)的值域为________. 30、已知二次函数f(x)=ax2+x有最小值,不等式f(x)<0的解集为A. 设集合B={x||x+4|2a-3恒成立,求a的取值范围。

7、解:函数f(x)=ax3+bx2+cx+2的导函数为f′(x)=3ax2+2bx+c,∵函数f′(x)=3ax2+2bx+c是定义在R上的偶函数,∴f'(x)=f'(﹣x),即3ax2+2bx+c=3ax2﹣2bx+c,∴2bx=0恒成立,b=0.故选C. 10、解:对于①,显然不存在M都有1≤M|x|成立,故①错;对于②,|f(x)|=|x2|≤M|x|,即|x|≤M,不存在这样的M对一切实数x均成立,故不是有界泛函;②错对于③,f(x)|=|2xsinx|≤M|x|,即|2sinx|≤M,当M≥2时,f(x)=3xsinx是有界泛函..③对对于④,||)|≤M|x|,即≤M,只需,④对综上所述,③④故选B18、D 22、解答:解:由题意得,F(x)=,而|f(x)|=,它和F(x)并不是同一个函数,故①错误;∵函数f(x)=a?2|x|+1是偶函数,当x>0时,﹣x<0,则F(﹣x)=﹣f(﹣x)=﹣f (x)=﹣F(x);当x<0时,﹣x>0,则F(﹣x)=f(﹣x)=f(x)=﹣F(x);故函数F(x)是奇函数,②正确;当a<0时,F(x)在(0,+∞)上是减函数,若mn<0,m+n>0,总有m>﹣n>0,∴F(m)<F(﹣n),即f(m)<﹣F(n),∴F(m)+F(n)<0成立,故③正确.故选C. 23、解答:解:函数f(x)=x﹣[x]的图象如下图所示: y=kx+k表示恒过A(﹣1,0)点斜率为k的直线若方程f(x)=kx+k有3个相异的实根.则函数f(x)=x﹣[x]与函数f(x)=kx+k的图象有且仅有3个交点由图可得:当y=kx+k过(2,1)点时,k=,当y=kx+k过(3,1)点时,k=,当y=kx+k过(﹣2,﹣1)点时,k=﹣1,当y=kx+k 过(﹣3,﹣1)点时,k=﹣,则实数k满足≤k<或﹣1<k≤﹣.故选B.28、②④? 29、 {y|1≤y≤}? ?30、? ?(0,-2]? 31、解:由f(x+1)=f(x﹣1),得f(x+2)=f(x),所以f(x)是以2为周期的周期函数,又f(x)为偶函数, 所以=f(log35)=f(log35﹣2)=f()=+==,故答案为:. 32、解:到原点的“折线距离”等于1的点的集合{(x,y)||x|+|y|=1},是一个正方形故①正确,②错误;到M(﹣1,0),N(1,0)两点的“折线距离”之和为4的点的集合是{(x,y)||x+1|+|y|+|x﹣1|+|y|=4},故集合是面积为6的六边形,则③正确;到M(﹣1,0),N(1,0)两点的“折线距离”差的绝对值为1的点的集合{(x,y)||x+1|+|y|﹣|x﹣1|﹣|y|=1}={(x,y)||x+1|﹣|x﹣1|=1},集合是两条平行线,故④正确;故答案为:①③④ 34、解:①∵集合A=(m+2,2m﹣1)?B=(4,5),∴,解得m∈[2,3];或m+2≥2m﹣1,解得m≤3,综上可知:m≤3,故不正确;②因为零向量与任何向量平行,故不正确;③当n为偶数时,原不等式可化为,∴a,即a<;当n为奇数时,原不等式可化为,即,∴a≥﹣2.综上可知:实数a的取值范围是,因此正确;④当a与b的奇偶性相同时,(a,b)可取(1,11),(2,10),(3,9),(4,8),(5,7),(6,6),(7,5),(8,4),(9,3),(10,2),(11,1)共11个; .当a与b的奇偶性不相同时,(a,b)可取(1,12),(12,1),(3,4),(4,3).综上可知:集合M={(a,b)|a⊕b=12,a∈N+,b∈N+}中元素的个数是15个,因此正确.故正确的答案为③④.故答案为③④. 35、解答:解:∵f(2+x)=f(2﹣x),∴f(4+x)=f(2+(2+x))=f(2﹣(2+x))=f(﹣x)又∵f(x)为偶数,即f(﹣x)=f(x)∴f(4+x)=f(x),得函数f(x)的最小正周期为4∴f(2013)=f(503×4+1)=f(1)而f(﹣1)=2﹣1=,可得f(1)=f(﹣1)=因此,a2013=f (2013)=f(1)=故答案为: 38、(1)g(x)的单调递增区间为.? (2) g(x)的单调递减区间为.。

高三数学第二轮复习 集合与函数

高三数学第二轮复习   集合与函数

集合、函数测试试卷一、填空题:1.设集合A={x |1<x <2},B={x |x <a } 满足A ≠⊂B ,则实数a 的取值范围是 .2.设a=0.32,b=20.5,2log 2=c ,试比较a 、b 、c 大小关系_________(用“<”连接) 3. 若一系列函数的解析式相同,值域相同但定义域不同,则称这些函数为“孪生函数”,那么函数解析式为122+=x y ,值域为{}19,5的“孪生函数”共有 个。

4. 函数()32224()log 143a x f x x x ax ax +-=+-+++的定义域为(-∞,+∞),则实数a 的范围是5.已知3log 2)3(2x f x = 则)2(1004f 的值等于6.设()f x 是R 上的奇函数,且当[)0,x ∈+∞时,3()(1)f x x x =+,则当(,0)x ∈-∞时,()f x =7.函数2()log ()a f x ax x =-在[2,4]上是增函数,则实数a 的取值范围是 . 8.已知函数y =f (x )是定义在R 上的奇函数,且对于任意x ∈R ,都有(3)()f x f x +=-,若f (1)=1,tan 2α=, 则(2005sin cos )f αα的值为 . 9.设偶函数()f x 对任意x R ∈,都有1(3)()f x f x +=-,且当[3,2]x ∈--时,()2f x x =,则(113.5)f = .10. 设)(x f 是以3为周期的周期函数,且0(∈x ,]3时x x f lg )(=,N 是)(x f y =图象上的动点,2(=MN ,)10,则以M 点的轨迹为图象的函数在1(,]4上的解析式为 11.已知定义在区间[0,1]上的函数()y f x =的图像如图所示,对于满足1201x x <<<的任意1x 、2x ,给出下列结论:① 2121()()f x f x x x ->-; ② 2112()()x f x x f x >; ③1212()()22f x f x x x f ++⎛⎫<⎪⎝⎭. 其中正确结论的序号是 .12.设1a >,若对于任意的[]2x a a ∈,,都有2y a a ⎡⎤∈⎣⎦,满足方程log log 3a a x y +=,这时a 的取值的集合为13. 已知函数2(3)1y mx m x =+-+的值域是[0,)+∞,则实数m 的取值范围是14 下列四个命题:(1)函数()f x 在0x ≥时是增函数,0x ≤也是增函数,所以()f x 在R 上是增函数;(2)若二次函数2()2f x ax bx =++没有零点,则280b a -<且0a >;(3) 223y x x =--的递增区间为[)1,+∞;(4) ()()22,f f -=若则定义在R 上的函数()f x 不是奇函数. 其中正确的命题是二、解答题:.15。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合与函数(10)
1、对于定义在区间D上的函数,若存在闭区间和常数,使得对任意,都有
,且对任意∈D,当时,恒成立,则称函数为区间D上的“平底型”函数.
(1)判断函数和是否为R上的“平底型”函数?并说明理由;
(2)设是(1)中的“平底型”函数,k为非零常数,若不等式对一切R恒成立,求实数的取值范围;
(3)若函数是区间上的“平底型”函数,求和的值.2、函数是定义在上的增函数,函数的图象关于点对称.若实数满足不等式的取值范围是
A. B. C. D.
3、已知函数,过点P(0,m)作曲线的切线,斜率恒大于零,则的取值范围为
7、已知集合,有下列命题
①若则;②若则;③若则
的图象关于原点对称;
④若则对于任意不等的实数,总有成立.其中所有正确命题的序号是
8、对于两个正整数,定义某种运算“”如下,当都为正偶数或正奇数时,;
当中一个为正偶数,另一个为正奇数时,,则在此定义下,集合
N N中元素的个数是 .
10、对于任意实数表示不超过的最大整数,例如:,。

那么
11、设是连续的偶函数,且当时是单调函数,则满足的所有之和为
12、已知函数满足,且是偶函数,当时,,若在区间内,函数有4个零点,则实数的取值范围是。

15、若,则定义为曲线的线.已知
,,则的线为.
16、在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点,如果函数的图象恰好通过
个整点,则称函数为阶整点函数.有下列函数:①;②
③④,
其中是一阶整点函数的是( )
A.①②③④
B.①③④
C.①④
D.④
20、函数恰有两个不同的零点,则的取值范围是()
A、 B、 C、 D、
26、已知函数,则()
A.8 B.9 C.11 D.10
28、已知集合={1,2,3}, ={1,2,3,4,5},定义函数.若点A(1,(1))、B(2,)、
C(3,),ΔABC的外接圆圆心为,且,则满足条件的函数有( )
A.15个
B.20个
C. 25个
D. 30个
29、.已知函数,在定义域[-2,2]上表示的曲线过原点,且在x=±1处的
切线斜率均为.有以下命题:①是奇函数;②若在内递减,则的最大值为4;
③的最大值为,最小值为,则;④若对,恒成立,则的最大值为2.其中正确命题的个数为
A .1个 B. 2个 C .3个 D. 4个
32、若函数满足,当时,,若在区间
上,有两个零点,则实数的取值范围是()
A. B. C. D.
33、若函数有两个零点,其中,那么在两个函数值中()A.只有一个小于1 B.至少有一个小于1C.都小于1 D.可能都大于1 34、若实数满足,则称是函数的一个次不动点.设函数与函数(其中为自然对数的底数)的所有次不动点之和为,则A.B.C.D.
35、方程的解的个数为()
A.0 B.1 C.2 D.3
37、(本大题满分13分)若存在常数k和b(k、b∈R),使得函数和对其定义域上的任意实数x分别满足:和,则称直线l:为和的“隔离直线”.已知
, (其中e为自然对数的底数).(1)求的极值;(2)函数
和是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.
38、.(本小题满分13分)已知常数a为正实数,曲线C n:y=在其上一点P n(x n,y n)的切线l n总经过定点(-a,0)(n∈N*).
(1)求证:点列:P1,P2,…,P n在同一直线上;(2)求证: (n∈N*).
39、(本小题满分14分)对于函数和,若存在常数,对于任意,不等式
都成立,则称直线是函数的分界线. 已知函数
为自然对数的底,为常数).
(Ⅰ)讨论函数的单调性;(Ⅱ)设,试探究函数与函数是否存在“分界线”?若存在,求出分界线方程;若不存在,试说明理由.
40、已知函数和.其中.(1)若函数与的图像的一个公共点恰好在轴上,求的值;(2)若和是方程的两根,且满足
,证明:当时,.
1、解:(1)对于函数,当时,.当或时,
恒成立,故是“平底型”函数.对于函数,当时,;当时,.所以不存在闭区间,使当时,恒成立.故不是“平底型”函数.
(Ⅱ)若对一切R恒成立,则.所以
.又,则.则,解得.故实数的范围是.
(Ⅲ)因为函数是区间上的“平底型”函数,则存在区间
和常数,
使得恒成立.所以恒成立,即.解得或.当时,.当时,,当
时恒成立.此时,是区间上的“平底型”函数.当
时,.当时,,当时,.
此时,不是区间上的“平底型”函数.综上分析,m=1,n=1为所求.
2、B
3、 7、②③ 8、 10、264 11、2010 12、 15、 16、C 20、D 28、B29、B
32、D33、分析:因为有两个零点,所以,
,故与
中至少有1个小于1.
34、B 35、C
37、(1)解:∵,∴当
时,
∵当时,,此时函数递减;当时,,此时函数递增;∴当时,F(x)取极小值,其极小值为0.
(2)解:由(1)可知函数和的图象在处有公共点,因此若存在和的隔离直线,则该直线过这个公共点.设隔离直线的斜率为k,则直线方程为,即
由,可得当时恒成立由
得下面证明当时恒成立.令
,则,当
时,.∵当时,,此时函数递增;当时,,此时函数递减;
∴当时,取极大值,其极大值为0.从而,即
恒成立.
∴函数和存在唯一的隔离直线.
38、.证法一:(1)∵f(x)=,∴f′(x)=·(nx)′=·.(1分)C n:y=在点P n(x n,y n)处的切线l n的斜率k n=f′(x n)=·,∴l n的方程为y-y n=·(x-x n).(2分)
∵l n经过点(-a,0),∴y n=-·(-a-x n)=·(a+x n).又∵P n在曲线C n上,∴y n==·(a+x n),
∴x n=a,∴y n=,∴P n(a,)总在直线x=a上,即P1,P2,…,P n在同一直线x=a上.(4分)
(2)由(1)可知y n=,∴f(i)===.(5分)=<=2(-)(i=1,2,…,n),
.(9分)
设函数F(x)=-ln(x+1),x∈[0,1],有F(0)=0,∴F′(x)=-==
>0(x∈(0,1)),
∴F(x)在[0,1]上为增函数,即当0<x<1时F(x)>F(0)=0,故当0<x<1时>ln(x+1)恒成立.(11分)取x =(i=1,2,3,…,n),f(i)=>ln(1+)=ln(i+1)-ln i,即f(1)=>ln2,f(2)=>ln(1+)=ln3-ln2,…,f(n)=>ln(n+1)-ln n,
综上所述有 (n∈N*).(13分)
证法二:(1)设切线l n的斜率为k n,由切线过点(-a,0)得切线方程为y=k n(x+a),则方程组
的解为.(1分)由方程组用代入法消去y化简得k x2+(2ak-n)x+
k a2=0,(*)有Δ=(2ak-n)2-4k·k a2=-4ank+n2=0,∴k=.(2分)代入方程(*),得x2+(2a·-n)x+·a2=0,即x2-2a·x+a2=0,
∴x=a,即有x n=a,y n==,即P1,P2,…,P n在同一直线x=a上.(4分)(2)先证:0<x<1时
>x>ln(x+1),以下类似给分.
39、(本小题满分14分)
解:(1),当时,,即,
函数在区间上是增函数,在区间上是减函数
当时,,函数是区间上的增函数当时,
即,函数在区间上是增函数,在区间
上是减函数.…7分
(2)若存在,则恒成立,
令,则,所以,因此:恒成立,即恒成立,
由得到:,现在只要判断是否恒成立,设,因为:,当时,,,当时,
,,
所以,即恒成立,所以函数与函数存在“分界线”.
40、解:(1)设函数图像与轴的交点坐标为(,0),∵点(,0)也在函数的图像上,∴.而,∴.
(2)由题意可知当时,,∴
,
即:当时,即.又
,当时,
∴<0,∴,综上可知,
.。

相关文档
最新文档