高中数学第一轮复习函数与基本函数详细知识点和经典题目含答案

合集下载

2024高考一轮复习函数知识点及最新题型归纳

2024高考一轮复习函数知识点及最新题型归纳

2024高考一轮复习函数知识点及最新题型归纳函数是数学领域的一个重要概念,在高考中占据着很大的比重。

下面是2024年高考一轮复习函数知识点及最新题型的详细归纳。

1.函数的定义函数是一种特殊的关系,它将一个集合的元素映射到另一个集合的元素上。

通常用f(x)表示函数,其中x是函数的自变量,f(x)是函数的因变量。

2.函数的表示方法函数可以用解析式、图像、表格等多种方式表示。

其中,解析式是最常见的表示方法,常见的函数表示如下:线性函数:f(x) = ax + b二次函数:f(x) = ax^2 + bx + c指数函数:f(x)=a^x对数函数:f(x) = loga(x)三角函数:sin(x),cos(x),tan(x)3.函数的性质-定义域和值域:函数的定义域是自变量能取的全部实数值的集合,值域是因变量能取的全部实数值的集合。

-奇偶性:若对于函数的定义域内的任意x,有f(-x)=f(x),则称函数是偶函数;若对于函数的定义域内的任意x,有f(-x)=-f(x),则称函数是奇函数。

-单调性:如果对于函数的定义域内的任意x₁和x₂,当x₁<x₂时,有f(x₁)<f(x₂),则称函数是递增的;如果当x₁<x₂时,有f(x₁)>f(x₂),则称函数是递减的。

-周期性:如果对于函数的定义域内的任意x,有f(x)=f(x+T),其中T为正常数,则称函数具有周期T。

4.函数的运算函数之间可以进行加法、减法、乘法和除法等运算。

-两个函数的和:(f+g)(x)=f(x)+g(x)-两个函数的差:(f-g)(x)=f(x)-g(x)-两个函数的乘积:(f*g)(x)=f(x)*g(x)-一个函数除以另一个函数:(f/g)(x)=f(x)/g(x)随着高考的,函数的考查形式也在不断变化,以下是一些最新的函数题型归纳:-函数的图像分析:考生需要根据给定函数的解析式或表格,画出其对应的图像,然后分析图像的特点,如极值、拐点、单调性等。

高中数学第一轮复习函数与基本函数_详细知识点和经典题目含答案

高中数学第一轮复习函数与基本函数_详细知识点和经典题目含答案

函数、基本初等函数1.指数函数(1)通过具体实例(如细胞的分裂,考古中所用的14C的衰减,药物在人体内残留量的变化等),了解指数函数模型的实际背景;(2)理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。

(3)理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点;(4)在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型2.对数函数(1)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及对简化运算的作用;(2)通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点;3.知道指数函数xay=与对数函数xyalog=互为反函数(a>0,a≠1)。

4.幂函数(1)了解幂函数的概念(2)结合函数y=x, ,y=x2, y=x3,y=x21,y=x1的图象,了解它们的变化情况二.【命题走向】指数函数、对数函数、幂函数是三类常见的重要函数,在历年的高考题中都占据着重要的地位。

从近几年的高考形势来看,对指数函数、对数函数、幂函数的考查,大多以基本函数的性质为依托,结合运算推理,能运用它们的性质解决具体问题。

为此,我们要熟练掌握指数、对数运算法则,明确算理,能对常见的指数型函数、对数型函数进行变形处理。

预测20XX年对本节的考察是:1.题型有两个选择题和一个解答题;2.题目形式多以指数函数、对数函数、幂函数为载体的复合函数来考察函数的性质。

同时它们与其它知识点交汇命题,则难度会加大三.【要点精讲】1.指数与对数运算 (1)根式的概念:①定义:若一个数的n 次方等于),1(*∈>N n n a 且,则这个数称a 的n 次方根。

即若a x n =,则x 称a 的n 次方根)1*∈>N n n 且,1)当n 为奇数时,n a 的次方根记作na ;2)当n 为偶数时,负数a 没有n 次方根,而正数a 有两个n 次方根且互为相反数,记作)0(>±a a n ②性质:1)a a n n =)(;2)当n 为奇数时,a a nn =; 3)当n 为偶数时,⎩⎨⎧<-≥==)0()0(||a a a a a a n。

完整版)高一数学函数经典习题及答案

完整版)高一数学函数经典习题及答案

完整版)高一数学函数经典习题及答案函数练题一、求函数的定义域1、求下列函数的定义域:⑴y = (x-1)/(2x^2-2x-15)⑵y = 1-[(2x-1)+4-x^2]/[1/(x+1)+1/(x+3)-3]2、设函数f(x)的定义域为[0,1],则函数f(x-2)的定义域为[-2,-1];函数f(2x-1)的定义域为[(1/2,1)]。

3、若函数f(x+1)的定义域为[-2,3],则函数f(2x-1)的定义域为[-3/2,2];函数f(2)的定义域为[1,4]。

4、已知函数f(x)的定义域为[-1,1],且函数F(x) = f(x+m)-f(x-m)的定义域存在,求实数m的取值范围。

二、求函数的值域5、求下列函数的值域:⑴y = x+2/x-3 (x∈R)⑵y = x+2/x-3 (x∈[1,2])⑶y = 2/(3x-1)-3/(x-1) (x∈R)⑷y = (x+1)/(x+1) if x≥5y = 5x^2+9x+4/2x-6 (x<5)⑸y = (x-3)/(x+2)⑹y = x-3+x+1⑺y = (x^2-x)/(2x-1)(x+2)⑼y = -x^2+4x+5⑽y = 4-1/(x^2+4x+5)⑾y = x-1-2x/(2x^2+ax+b)6、已知函数f(x) = 2x+1/(x∈R)的值域为[1,3],求a,b的值。

三、求函数的解析式1、已知函数f(x-1) = x-4x,求函数f(x),f(2x+1)的解析式。

2、已知f(x)是二次函数,且f(x+1)+f(x-1) = 2x-4x,求f(x)的解析式。

3、已知函数2f(x)+f(-x) = 3x+4,则f(x) = (3x+4)/5.4、设f(x)是R上的奇函数,且当x∈[0,+∞)时,f(x) =x/(1+x),则f(x)在R上的解析式为f(x) = x/(1+x)-2/(1-x^2)。

5、设f(x)与g(x)的定义域是{x|x∈R,且x≠±1},f(x)是偶函数,g(x)是奇函数,且f(x)+g(x) = 3x,则f(x) = x,g(x) = 3x-x^3.四、求函数的单调区间6、求下列函数的单调区间:⑴y = x+2/x+3⑵y = -x^2+2x+3⑶y = x-6/x-127、函数f(x)在[0,+∞)上是单调递减函数,则f(1-x)的单调递增区间是(0,1]。

高中数学函数经典复习题(含答案)

高中数学函数经典复习题(含答案)

《函 数》复习题一、 求函数的定义域1、求下列函数的定义域:⑴33y x =+-⑵y =⑶01(21)111y x x =+-++-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。

4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。

二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥⑸y =⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =-⑼y ⑽4y =⑾y x =-6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。

三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。

2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。

3、已知函数()f x 满意2()()34f x f x x +-=+,则()f x = 。

4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式四、求函数的单调区间6、求下列函数的单调区间:⑴ 223y x x =++ ⑵y =⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236xy x -=+的递减区间是 ;函数y =的递减区间是五、综合题9、推断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g =; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。

高中数学函数经典复习题(含答案)

高中数学函数经典复习题(含答案)

《函 数》复习题一、 求函数的定义域 1、求下列函数的定义域:⑴y =⑵y =⑶01(21)111y x x =+-++-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。

4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。

二、求函数的值域 5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥⑸ y = ⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =-⑼y ⑽ 4y =⑾y x =-6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。

三、求函数的解析式 1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。

2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。

3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。

4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式四、求函数的单调区间 6、求下列函数的单调区间:⑴ 223y x x =++ ⑵y = ⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236xy x -=+的递减区间是 ;函数y =的递减区间是五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。

高考一轮复习函数知识点

高考一轮复习函数知识点

高考一轮复习函数知识点函数作为数学的一个重要概念,在高中数学课程中占据着非常重要的地位。

对于学生来说,掌握好函数的相关知识点不仅有助于在高考中取得更好的成绩,还能为将来的学习和工作打下坚实的数学基础。

在本文中,我们将介绍一些高考中常见的函数知识点,希望能对大家的复习提供一些帮助。

一、函数的定义函数是一种对应关系,它将一个自变量的值映射到一个因变量的值上。

在数学中,我们常用f(x)表示函数,其中x为自变量,f(x)为因变量。

函数的定义包括定义域、值域和对应关系三个要素。

在复习函数的过程中,我们要注意区分函数和方程的概念,理解函数作为一种映射关系的特性。

二、常见函数类型1. 一次函数一次函数,也称线性函数,是指函数的表达式中只含有一次幂的变量。

例如,f(x) = ax + b就是一个一次函数,其中a和b为常数。

在高考中,一次函数的性质和应用经常会被考察,我们要掌握一次函数的图像特征、截距和斜率等重要概念。

2. 二次函数二次函数是函数的表达式中含有二次幂的变量。

例如,f(x) =ax^2 + bx + c就是一个二次函数,其中a、b和c为常数,a ≠ 0。

二次函数的图像通常为抛物线,我们需要对二次函数的开口方向、顶点坐标和对称轴等进行熟练掌握。

3. 指数函数指数函数是以一个常数为底数,自变量是指数的函数。

例如,f(x) = a^x就是一个指数函数,其中a为常数。

指数函数在自然界和社会现象中有广泛应用,我们要了解指数函数的增减性、图像特征和指数函数与对数函数的相关性质。

4. 对数函数对数函数是指以某个正常数为底数,自变量为真数的对数的函数。

例如,f(x) = loga(x)就是一个对数函数,其中a为大于0且不等于1的常数。

在复习对数函数时,我们要熟练掌握对数函数的单调性、图像特征和对数函数与指数函数的性质。

5. 三角函数三角函数是以角度(或弧度)为自变量的周期函数。

例如,f(x) = sin(x)就是一个正弦函数,其中x可以表示角度或弧度。

高一数学《函数的基本性质》知识点及对应练习(详细答案)

高一数学《函数的基本性质》知识点及对应练习(详细答案)

函数的基本性质一、函数的有关概念1.函数的概念:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作:y=f(x),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域.概念重点疑点:对于定义域中任何x ,都有唯一确定的y=f (x )与x 相对应。

即在直角坐标系中的图像,对于任意一条x=a (a 是函数的定义域)的直线与函数y=f (x )只有一个交点;例1、下列对应关系中,x 为定义域,y 为值域,不是函数的是()A.y=x 2+x3 B.y= C.|y|=x D.y=8x 解:对于|y|=x ,对于任意非零x ,都有两个y 与x 对应,所以|y|=x 不是函数。

图像如下图,x=2的直线与|y|=x 的图像有两个交点。

故答案选C 例2、下列图象中表示函数图象的是()(A ) (B) (C ) (D)解析:对于任意x=a 的直线,只有C 选项的图形与x=a 的直线只有一个交点,即对于定义域中任何x ,都有唯一确定的y=f (x )与x 相对应。

故选C 。

x y 0 x y 0 x y 0xy注意:1、如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;2、函数的定义域、值域要写成集合或区间的形式.定义域补充:能使函数式有意义的实数x 的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于 1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x 的值组成的集合.(6)指数为零底不可以等于零(7)实际问题中的函数的定义域还要保证实际问题有意义.(注意:求出不等式组的解集即为函数的定义域。

高中数学函数的概念知识点总结及练习题(含答案)

高中数学函数的概念知识点总结及练习题(含答案)

高中数学函数的概念知识点总结及练习题(含答案)※函数的定义设f是集合A﹐B中元素之间的一个对应关系。

若对于集合A中的每个元素a﹐都可以找到集合B中的唯一元素b﹐使得a对应到b﹐则称f为A到B的一个函数。

用f:A→ B表示此函数。

而a对应到b记为f(a)=b﹐b称为函数f在a的值。

集合A称为f的定义域﹐集合B称为f的对应域高中数学中常见的函数﹐例如多项式函数﹑指数函数﹑对数函数﹑三角函数等﹐因为函数值都是实数﹐故对应域皆可定为实数集合R﹐通称为实数值函数。

一般而言﹐实数值函数的定义域指的是﹐会使函数作用有意义的最大可能集合。

※根式函数y=x此函数是由非负实数所成的集合﹐到实数集合R的一个对应关系每一个非负实数﹐都有唯一的非负平方根。

函数的定义域:{x|x∈﹐且x≥0}函数的对应域:实数集合R函数的值域:{y|y∈﹐且y≥0}例题1 ---------------------------------------------------------------------------------------------------------------- 试求下列各函数的定义域:(1)f (x )=1x (2)f (x )=3-x (3)f (x )=1x 2-x +1------------------------------------------------------------------------------------------------------------------------ (1)定义域为{x |x ∈﹐且 x 0}。

(2)定义域为{x |x ∈﹐且 x ≤3}。

(3)分母须有 x 2-x +10﹐但 x 2-x +1=⎝ ⎛⎭⎪⎫x -12 2+34 >0 恒成立﹐故定义域为 R 。

随堂练习 ------------------------------------------------------------------------------------------------------------ 试求下列各函数的定义域: (1)f (x )=1x 2-4 (2)f (x )=1x 2+x +1(3)f (x )=x -2 ------------------------------------------------------------------------------------------------------------------------※区间的符号设 a ﹐b 为实数﹐且 a <b 。

高一数学《函数的基本性质》知识点及对应练习(详细答案)

高一数学《函数的基本性质》知识点及对应练习(详细答案)

函数的基本性质一、函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x 叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.概念重点疑点:对于定义域中任何x,都有唯一确定的y=f(x)与x相对应。

即在直角坐标系中的图像,对于任意一条x=a(a是函数的定义域)的直线与函数y=f(x)只有一个交点;例1、下列对应关系中,x为定义域,y为值域,不是函数的是()A.y=x²+x³B.y=C.|y|=xD.y=8x解:对于|y|=x,对于任意非零x,都有两个y与x对应,所以|y|=x不是函数。

图像如下图,x=2的直线与|y|=x的图像有两个交点。

故答案选C例2、下列图象中表示函数图象的是()解析:对于任意x=a的直线,只有C选项的图形与x=a的直线只有一个交点,即对于定义域中任何x,都有唯一确定的y=f(x)与x相对应。

故选C。

注意:1、如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;2、函数的定义域、值域要写成集合或区间的形式.定义域补充:能使函数式有意义的实数x 的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x 的值组成的集合.(6)指数为零底不可以等于零 (7)实际问题中的函数的定义域还要保证实际问题有意义.(注意:求出不等式组的解集即为函数的定义域。

函数基础知识梳理高三数学一轮复习

函数基础知识梳理高三数学一轮复习

函数基础知识梳理一、函数的概念与表示【知识清单】1.函数的概念:设A ,B 是两个 ,如果对于集合A 中的 一个数x ,按照某种确定的对应关系f ,使,在集合B 中都有 的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =f (x ),x ∈A .在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的 ;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的 .特别地,如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数. 3.函数的表示法表示函数的常用方法有 、图象法和 . 4.分段函数(1)若函数在其定义域的不同子集上,因 不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数的定义域等于各段函数的定义域的 ,其值域等于各段函数的值域的 ,分段函数虽由几个部分组成,但它表示的是一个函数. 【必备知识】 1.常见函数的定义域(1)分式函数中分母不等于0. (2)偶次根式函数的被开方式大于或等于0. (3)一次函数、二次函数的定义域为R . (4)零次幂的底数不能为0. (5)y =a x (a >0且a ≠1),y =sin x ,y =cos x 的定义域均为 .(6)y =log a x (a >0,a ≠1)的定义域为 . (7)y =tan x 的定义域为 . 2.基本初等函数的值域 (1)y =kx +b (k ≠0)的值域是R .(2)y =ax 2+bx +c (a ≠0)的值域:当a >0时,值域为 ;当a <0时,值域为 . (3)y =kx(k ≠0)的值域是 .(4)y =a x (a >0且a ≠1)的值域是 .(5)y =log a x (a >0且a ≠1)的值域是 . 补充(1)一次分式函数()()0ax b f x c cx d+=≠+的值域 ;(2)函数()()0,0bf x ax a b x =+>>的值域为 ;(3)函数()()0,0b f x ax a b x=->>的值域为 ; (4)函数()(),,R f x x a x b a b x =-+-∈的值域为),a b ⎡-+∞⎣; 函数()(),,R f x x a x b a b x =---∈的值域为,a b a b ⎡---⎤⎣⎦.二、函数的基本性质【知识清单】 1.函数的单调性 (1)单调函数的定义自左向右看图象是 的自左向右看图象是 的(2)单调区间的定义如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做函数y =f (x )的单调区间.★函数单调性的证明:定义法“取值—作差—变形—定号—结论”。

2023版高考数学一轮总复习2-1函数及其性质习题

2023版高考数学一轮总复习2-1函数及其性质习题

专题二函数的概念与基本初等函数2.1 函数及其性质基础篇固本夯基考点一函数的概念及表示1.(2020西藏山南二中一模,3)若函数y=f(x)的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数y=f(x)的图象可能是( )答案 B2.(2021陕西榆林一模,4)下列四个函数:①y=2x+3;②y=1x;③y=2x;④y=x12,其中定义域与值域相同的函数的个数为( )A.1B.2C.3D.4答案 C3.(2022届昆明第一中学检测,4)给出下列三个条件:①函数是奇函数;②函数的值域为R;③函数图象经过第一象限.则下列函数中满足上述三个条件的是( )A.f(x)=x14B.f(x)=x+1xC.f(x)=sinxD.f(x)=2x-2-x答案 D4.(2022届江西新余第一中学二模,13)已知函数f(x)的定义域为(-1,1),则函数g(x)=f(x2)+f(x-1)的定义域是.答案(0,2)5.(2020北京,11,5分)函数f(x)=1x+1+lnx的定义域是.答案(0,+∞)考点二分段函数1.(2021河南安阳4月模拟,4)已知函数f(x)={3x-1-1,x≥1,-1-log3(x+7),x<1且f(m)=-2,则f(8+m)=( )A.-16B.16C.24D.26答案 D2.(2020四川双流中学模拟,5)已知函数f(x)={e x -3,x <1,ln x ,x ≥1,则关于函数f(x)的说法不正确的是( )A.定义域为RB.值域为(-3,+∞)C.在R 上为增函数D.只有一个零点 答案 B3.(2021安徽蚌埠三模,7)已知函数f(x)={e 2−x ,x ≤1,lg (x +2),x >1,则不等式f(x+1)<1的解集为( )A.(1,7)B.(0,7)C.(1,8)D.(-∞,7) 答案 B4.(2021浙江,12,4分)已知a∈R,函数f(x)={x 2-4,x >2,|x -3|+x ,x ≤2.若f(f(√6))=3,则a= .答案 25.(2022届河南重点中学调研一,14)已知f(x)={x 2-ax,x >0,-x +x +1,x ≤0,若方程f(x)=-x 有实根,则a 的取值范围是 . 答案 {a|a=-1或a>1}6.(2022届山西长治第八中学阶段测,13)已知函数f(x)={ln (−x ),x <0,2x (x -3),x ≥0,则f(1)= . 答案 2ln2考点三 函数的单调性与最值1.(2022届广西玉林育才中学10月月考,8)函数g(x)=2x-√x +1的最小值为( ) A.-178B.-2C.-198D.-94答案 A2.(2022届黑龙江八校期中联考,8)已知函数f(x)=x·|x|-2x,则下列结论正确的是( ) A.f(x)是偶函数,单调增区间是(-∞,0) B.f(x)是偶函数,单调减区间是(-∞,1) C.f(x)是奇函数,单调减区间是(-1,1)D.f(x)是奇函数,单调增区间是(0,+∞) 答案 C3.(2020四川宜宾四中月考,7)下列函数中,同时满足:①图象关于y 轴对称;②∀x 1,x 2∈(0,+∞)(x 1≠x 2),x (x 2)-f(x 1)x 2-x 1>0的是( )A.f(x)=x -1B.f(x)=log 2|x|C.f(x)=cosxD.f(x)=2x+1答案 B4.(2021广州番禺象贤中学期中,4)已知函数f(x)={(2x -1)x -1,x ≤1,log x x +1,x >1,若函数f(x)在定义域R 上单调递增,则实数a 的取值范围为( ) A.{x |1<a <32} B.{x |1<a ≤32}C.{x |a >32}D.{x |a ≥32} 答案 B5.(2017课标Ⅰ,5,5分)函数f(x)在(-∞,+∞)单调递减,且为奇函数.若f(1)=-1,则满足-1≤f(x -2)≤1的x 的取值范围是( ) A.[-2,2] B.[-1,1] C.[0,4] D.[1,3] 答案 D6.(2021河南十所名校阶段检测,5)已知函数f(x)=1x x +1-12(a>0,且a≠1),则f(x)是( ) A.偶函数,值域为(0,12) B.非奇非偶函数,值域为(-12,12) C.奇函数,值域为(-12,12) D.奇函数,值域为(0,12) 答案 C7.(2021江西重点中学协作体联考,7)已知f(x)=(35)|x -1|,则下列不等关系正确的是( )A.f(log 27)<f(log 0.52.5)<f(1)B.f(log 0.52.5)<f(log 27)<f(1)C.f(1)<f(log0.52.5)<f(log27)D.f(1)<f(log27)<f(log0.52.5)答案 B8.(2021全国百强名校“领军考试”,13)函数f(x)=√2−x+√x2-6x+10的值域为. 答案[√2,+∞)考点四函数的奇偶性1.(2022届成都蓉城名校联盟联考一,3)已知定义在R上的函数f(x)的部分图象如图所示,则下列说法正确的是( )A.f(x)有极小值B.f(x)有最大值C.f(x)是奇函数D.f(x)是偶函数答案 A2.(2022届江西新余第一中学模拟,3)已知f(x)是R上的奇函数,g(x)是R上的偶函数,且f(x)+g(x)=2x3+x2+3x+1,则f(1)+g(2)=( )A.5B.6C.8D.10答案 D3.(2021陕西渭南一模,4)已知函数f(x)=3-x+a·3x是奇函数,则f(2)=( )A.829B.-829C.809D.-809答案 D4.(2020课标Ⅱ,10,5分)设函数f(x)=x3-1x3,则f(x)( )A.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减答案 A5.(2021银川重点高中一模,6)已知g(x)是定义在R上的奇函数,f(x)=g(x)+x2,若f(a)=2,f(-a)=2a+2,则a的值为( )A.2B.-1C.2或-1D.2或1答案 C,则下列函数中为奇函数的是( )6.(2021全国乙,4,5分)设函数f(x)=1−x1+xA.f(x-1)-1B.f(x-1)+1C.f(x+1)-1D.f(x+1)+1答案 B7.(2020江苏,7,5分)已知y=f(x)是奇函数,当x≥0时,f(x)=x23,则f(-8)的值是.答案-48.(2021新高考Ⅰ,13,5分)已知函数f(x)=x3·(a·2x-2-x)是偶函数,则a= .答案 1考点五函数的周期性1.(2021吉林调研三,2)若f(x)是定义在R上的奇函数,且f(x+2)=-f(x),则f(8)的值为( )A.1B.2C.0D.-1答案 C2.(2020江西鹰潭二模,7)偶函数f(x)的图象关于点(1,0)对称,当-1≤x≤0时,f(x)=-x2+1,则f(2020)=( )A.2B.0C.-1D.1答案 D3.(2021广西名校联考三,9)已知f(x)是定义在R上的奇函数,满足f(1+x)=f(1-x),f(1)=2,则f(2)+f(3)+f(4)=( )A.0B.-2C.2D.6答案 B4.(2018江苏,9,5分)函数f(x)满足f(x+4)=f(x)(x∈R),且在区间(-2,2]上,f(x)={cos πx2,0<x ≤2,|x +12|,-2<x ≤0, 则f(f(15))的值为 . 答案√22综合篇 知能转换考法一 函数定义域的求法1.(2021湖北荆州中学四模,4)定义域是函数的三要素之一,已知函数Jzzx(x)的定义域为[211,985],则函数shuangyiliu(x)=Jzzx(2018x)+Jzzx(2021x)的定义域为( ) A.[2112018,9852021] B.[2112021,9852018] C.[2112018,9852018] D.[2112021,9852021]答案 A2.(2021山西临汾一中期中,5)若函数f(x)的定义域为[-1,2],则函数g(x)=√x -1的定义域是( )A.[1,4]B.(1,4]C.[1,2]D.(1,2] 答案 B3.(2021黑龙江省实验中学测试,3)若函数f(x 2+1)的定义域为[-1,1],则f(lgx)的定义域为( )A.[-1,1]B.[1,2]C.[10,100]D.[0,lg2] 答案 C4.(2022届湖北襄阳五中10月月考,2)已知函数y=f(x)的定义域为(-1,1),则函数F(x)=f(|2x-1|)的定义域为( ) A.(-∞,1) B.(-1,1) C.(0,+∞) D.[0,1) 答案 A5.(2022届河南重点中学调研一,9)若函数f(x)=2x2+1+aln (2x 2+1+a)的定义域为R,则实数a 的取值范围是( )A.(-2,+∞)B.(-1,+∞)C.(-2,-1)D.(-2,-1)∪(-1,+∞)答案 B考法二函数解析式的求法1.(2022届湖南名校10月联考,7)已知函数f(x)满足2f(x)+f(-x)=3x2+2x+6,则( )A.f(x)的最小值为2B.∃x∈R,2x2+4x+3x(x)>2C.f(x)的最大值为2D.∀x∈R,2x2+4x+5x(x)>2答案 D2.(2022届宁夏青铜峡第一次月考,11)已知函数f(x)在R上满足f(x)=2f(2-x)-x2+8x-8,则曲线y=f(x)在点(1,f(1))处的切线方程是( )A.y=2x-1B.y=xC.y=3x-2D.y=-2x+3答案 A3.(2021东北三省四市联考,8)已知f(x)是定义域为R的奇函数,f(1+x)=f(1-x),当0≤x≤1时,f(x)=e x-1,则2≤x≤3时,f(x)的解析式为( )A.f(x)=1-e x-2B.f(x)=e x-2-1C.f(x)=1-e x-1D.f(x)=e x-1-1答案 A4.(2021天津南开中学模拟,13)已知函数f(x)的定义域为(0,+∞),且f(x)=2f(1x)√x-1,则f(x)= .答案23√x+13考法三分段函数问题的解题策略1.(2022届江西新余重点高中第二次月考,5)已知函数f(x)={x2-ax+14,x≥1,log x x,0<x<1是(0,+∞)上的单调函数,则实数a的取值范围是( )A.(1,2]B.(1,54]C.[54,2) D.(1,+∞) 答案 B2.(2022届广西玉林育才中学10月月考,7)已知函数f(x)={-x 3+2,x <0,-x +3,x ≥0,g(x)=kx+5-2k(k>0),若对任意的x 1∈[-1,1],总存在x 2∈[-1,1]使得f(x 1)≤g(x 2)成立,则实数k 的取值范围为( )A.(0,2]B.(0,23] C.(0,3] D.(1,2] 答案 A3.(2021黑龙江顶级名校一模,12)已知定义在R 上的函数f(x)满足:f(x)={-x 2,x ≤0,x (x -1)-x (x -2),x >0,则f(2020)+f(2021)的值等于( )A.-5B.-4C.-3D.-2 答案 D4.(2021贵州毕节期末,11)已知函数f(x)={(4-x )x +3x ,x <1,log 3x,x ≥1的值域为R,则实数a 的取值范围是( ) A.(-2,4) B.[-2,4) C.(-∞,-2] D.{-2} 答案 B5.(2017课标Ⅲ,15,5分)设函数f(x)={x +1,x ≤0,2x ,x >0,则满足f(x)+f (x -12)>1的x 的取值范围是 . 答案 (-14,+∞)考法四 函数单调性的判断及应用1.(2022届江西新余第一中学模拟,7)已知函数f(x)在定义域R 上单调,且x∈(0,+∞)时均有f(f(x)+2x)=1,则f(-2)的值为( ) A.3 B.1 C.0 D.-1 答案 A2.(2022届安徽安庆怀宁中学模拟一,10)定义:[x]表示不大于x 的最大整数,已知函数f(x)=[x ]x 2-2x+1,x∈[0,3],则( ) A.函数f(x)在(0,1]上单调递增B.函数f(x)的最大值为0C.函数f(x)在(0,3]上单调递减D.函数f(x)的最小值为-203答案 B3.(2021东北三省三校联合模拟,9)下列函数中,既是奇函数,又在(0,1)上单调递减的是( )A.f(x)=ln(e x+e -x)-ln(e x-e -x) B.f(x)=sinx+1sin xC.f(x)=ln(1+x)-ln(1-x)D.f(x)=e x-1ex答案 B4.(2021河南南阳期末,9)已知函数g(x)=e x-e -x+sinx,若不等式g(2x+a)+g(x 2-1)>0对任意x∈[-1,1]恒成立,则a 的取值范围为( ) A.[2,+∞) B.(2,+∞) C.(-2,+∞) D.[-2,+∞) 答案 B5.(2020课标Ⅱ,9,5分)设函数f(x)=ln|2x+1|-ln|2x-1|,则f(x)( ) A.是偶函数,且在(12,+∞)单调递增 B.是奇函数,且在(-12,12)单调递减C.是偶函数,且在(-∞,-12)单调递增D.是奇函数,且在(-∞,-12)单调递减 答案 D6.(2021江西五市九校协作体联考,9)已知函数f(x)是定义在R 上的奇函数,对任意两个不相等的正数x 1,x 2,都有x 2f(x 1)-x 1f(x 2)x 1-x 2<0,记a=x (3)3,b=f(1),c=-x (-2)2,则( )A.b<c<aB.a<b<cC.c<b<aD.a<c<b 答案 D7.(2022届安徽淮南第一中学月考三,14)已知f(x)为定义在[-1,1]上的偶函数,且在[-1,0]上单调递减,则满足不等式f(a)<f(2a-1)的a的取值范围是.(用区间表示)答案[0,13)8.(2017浙江,17,4分)已知a∈R,函数f(x)=|x+4x-a|+a在区间[1,4]上的最大值是5,则a 的取值范围是.答案(-∞,92]考法五函数奇偶性的判断及应用1.(2020海南第一次联考,3)已知定义在R上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=a x-a-x+2(a>0且a≠1),若g(2)=a,则函数f(x2+2x)的单调递增区间为( ) A.(-1,1) B.(-∞,1)C.(1,+∞)D.(-1,+∞)答案 D2.(2021山西晋中二模,8)定义在(-1,1)上的函数f(x)满足f(x)=g(x)-g(-x)+2,对任意的x1,x2∈(-1,1),x1≠x2,恒有[f(x1)-f(x2)](x1-x2)>0,则关于x的不等式f(3x+1)+f(x)>4的解集为( )A.(-14,+∞) B.(-14,0)C.(-∞,-14) D.(-23,0)答案 B3.(2020新高考Ⅰ,8,5分)若定义在R的奇函数f(x)在(-∞,0)单调递减,且f(2)=0,则满足xf(x-1)≥0的x的取值范围是( )A.[-1,1]∪[3,+∞)B.[-3,-1]∪[0,1]C.[-1,0]∪[1,+∞)D.[-1,0]∪[1,3]答案 D4.(2019课标Ⅲ,11,5分)设f(x)是定义域为R的偶函数,且在(0,+∞)单调递减,则( )A.f(log314)>f(2-32)>f(2-23)B.f(log314)>f(2-23)>f(2-32)C.f(2-32)>f(2-23)>f(log314)D.f(2-23)>f(2-32)>f (log 314) 答案 C5.(2021内蒙古赤峰二中月考,12)定义在R 上的偶函数f(x)满足f(x+2)=f(x),且在[-3,-2]上是减函数,若A,B 是锐角三角形ABC 的两个内角,则下列各式一定成立的是( )A.f(sinA)>f(cosB)B.f(sinA)<f(cosB)C.f(sinA)>f(sinB)D.f(cosA)>f(cosB)答案 A6.(2022届长春重点高中月考一,10)对于任意的实数a 、b,记max{a,b}={x (x ≥x ),x (x <x ).设F(x)=max{f(x),g(x)}(x∈R),其中g(x)=13x,y=f(x)是奇函数.当x≥0时,y=f(x)的图象与y=g(x)的图象如图所示.则下列关于函数y=F(x)的说法中,正确的是( )A.y=F(x)有极大值F(-1)且无最小值B.y=F(x)为奇函数C.y=F(x)的最小值为-2且最大值为2D.y=F(x)在(-3,0)上为增函数答案 A7.(2022届湖南名校10月联考,15)已知偶函数f(x)满足f(x)+f(4-x)=16,且当x∈(0,1]时,2f(2x)=[f(x)]2,则f(-3)= .答案 12考法六 函数周期性的判断及应用1.(2021河南新乡二模,10)已知y=f(x)的图象关于坐标原点对称,且对任意的x∈R,f(x+2)=f(-x)恒成立,当-1≤x<0时,f(x)=2x ,则f(2021)=( )A.-1B.-12C.12D.1答案 B2.(2021全国甲,12,5分)设函数f(x)的定义域为R,f(x+1)为奇函数,f(x+2)为偶函数,当x∈[1,2]时,f(x)=ax 2+b.若f(0)+f(3)=6,则f (92)=( )A.-94B.-32C.74D.52答案 D3.(2022届乌鲁木齐第二十中学月考一,12)已知定义在R 上的函数f(x)满足①f(x+2)=f(x);②f(x -2)为奇函数;③当x∈[0,1)时,x (x 1)-f(x 2)x 1-x 2>0(x 1≠x 2)恒成立.则f (-152)、f(4)、f (112)的大小关系正确的是( ) A.f (112)>f(4)>f (-152) B.f(4)>f (112)>f (-152) C.f (-152)>f(4)>f (112)D.f (-152)>f (112)>f(4)答案 C创新篇 守正出奇创新 “新定义型”函数1.(2022届云南大理统一检测,5数学成就)在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可应用到有限维空间,并构成一般不动点定理的基石.简单地讲就是对于满足一定条件的连续函数f(x),存在一个点x 0,使得f(x 0)=x 0,那么我们称该函数为“不动点”函数,下列为“不动点”函数的是( )A.f(x)=lnx-1B.f(x)=e x +1C.f(x)=x+1xD.f(x)=x 2+2x-1 答案 D2.(2021陕西宝鸡渭滨二模,情境创新)设定义在R 上的函数y=f(x),对于任一给定的正数p,定义函数f p (x)={x (x ), x (x )≤x ,x , x (x )>x ,则称函数f p (x)为f(x)的“p 界函数”.关于函数f(x)=x 2-2x-1的2界函数,结论不成立的是( )A.f 2(f(0))=f(f 2(0))B.f 2(f(1))=f(f 2(1))C.f 2(f(2))=f(f 2(2))D.f 2(f(3))=f(f 2(3))答案 B3.(2021山西怀仁期末,14情境创新)黎曼函数是一个特殊函数,由德国数学家黎曼发现并提出,黎曼函数定义在[0,1]上,其定义为R(x)={ 1x ,当x =x x (p,q 都是正整数,xx 是不可以再约分的真分数)时,0,当x =0,1或者[0,1]上的无理数时.若函数f(x)是定义在R 上的奇函数,且f(x)+f(2-x)=0,当x∈[0,1]时,f(x)=R(x),则f (103)+f (√33)= .答案 -134. (2021上海虹口二模,8情境创新)设函数f(x)的定义域为D.若对于D 内的任意x 1,x 2(x 1≠x 2),都有(x 2-x 1)[f(x 2)-f(x 1)]>0,则称函数f(x)为“Z 函数”.有下列函数:①f(x)=1;②f(x)=-2x+1;③f(x)=x 3;④f(x)=lgx.其中“Z 函数”的序号是 (写出所有的正确序号). 答案 ③④。

高三数学一轮复习《函数的概念与性质》练习题 (含答案)

高三数学一轮复习《函数的概念与性质》练习题 (含答案)

高三数学一轮复习《函数的概念与性质》练习题 (含答案)函数的概念及其表示一、单选题1.函数11y x =-的定义域是( )A. (0,2]B. (,1)(1,2]-∞⋃C. (1,)+∞D. [1,2]2.设函数21,1()2,1x x f x x x ⎧+≤⎪=⎨>⎪⎩,则[(3)]f f =( )A .15 B.3 C. 23 D. 1393.已知函数f (x +1)=3x +2,则f (x )的解析式( )A.3x -1B. 3x +1C. 3x +2D. 3x +44.下列各对函数表示同一函数的是( )(1) ()f x x =与2()g x =;(2) ()2f x x =-与()g x =(3) 2()(0)f x x x π=≥与2()(0)g r r r π=≥; (4) ()f x x =与,0(),0x x g x x x ≥⎧=⎨-<⎩.A.(1)(2)(4)B.(2)(4)C.(3)(4)D.(1)(2)(3)(4)5.已知函数y = f (x )的定义域是[-2,3], 则y =f (2x -1)的定义域是() A. 5[0,]2 B. [1,4]- C. 1[,2]2- D. [5,5]-6.已知函数221,0()3,0x x f x x x +≥⎧=⎨<⎩,且0()3f x =,则实数0x 的值为( )A.-1B.1C.-1或1D.-1或-3二、多选题7.关于函数y =f (x ),以下说法正确的是( )A.y 是关于x 的函数B.对于不同的x ,y 的值也不同C.f (a )表示当x =a 时函数f (x )的值,是一个常量D.f (x )一定可以用一个具体的式子表示出来8.若函数2(),(,0)(0,)1x f x x x =∈-∞⋃+∞+,则下列等式成立的是( ) A. 1()()f x f x = B. 1()()f x f x -= C.11()()f f x x = D. ()()f x f x -=- 三、填空题9.已知函数()1f x ax =+,且(2)1f =-,则(2)f -=_______.10.若函数2(21)2f x x x +=-,则(3)f =_______,()f x =___________.11.已知函数22,2()21,2x ax x f x x x ⎧+≥=⎨+<⎩,若[(1)]0f f >,则实数a 的取值范围是___________.函数的基本性质一、单选题1. 下列函数中,值域为(,0)-∞的是( )A. 2y x =-B. 131()3y x x =-<C. 1y x =D. y =2.下列函数是偶函数,且在(,0]-∞上是增函数的是( )A .1y x =- B. 2()f x x = C. 3y x = D. ,0,0x x y x x -≥⎧=⎨<⎩3.已知()f x 是实数集上的偶函数,且在区间[0,)+∞上是增函数,则(2)f -,()f π-,(3)f 的大小关系是( )A. ()(2)(3)f f f π->->B. (3)()(2)f f f π>->-C. (2)(3)()f f f π->>-D. ()(3)(2)f f f π->>-4.函数()y f x =在R 上是增函数,且(2)(9)f m f m >-+,则实数m 的取值范围是( )A. (,3)-∞-B. (0,)+∞C. (3,)+∞D. (,3)(3,)-∞-⋃+∞5.函数()y f x =是以3为周期的偶函数,且当(0,1)x ∈时,()21f x x =+,则2021()2f =( ) A.2022 B.2 C.4 D.66.已知偶函数()f x 在区间[0,)+∞上是单调递增,则满足1(21)()3f x f -<的x 的取值范围是( ) A. 12(,)33 B. 12[,)33 C. 12(,)23 D. 12[,)23二、多选题7.如果函数()f x 在[a ,b ]上是减函数,对于任意的1212,[,]()x x a b x x ∈≠,那么下列结论正确的是( ) A. 1212()()0f x f x x x -<- B. 1212()[()()]0x x f x f x --< C. 12()()()()f a f x f x f b ≥>≥ D. 12()()f x f x <8.已知函数()f x 是定义在R 上的奇函数,下列说法正确的是( )A. (0)0f =B.若()f x 在[0,)+∞上有最小值-1,则()f x 在(,0]-∞上有最大值1C. 若()f x 在[1,)+∞上为增函数,则()f x 在(,1]-∞-上为减函数D.若0x >时,2()2f x x x =-,则0x <时,2()2f x x x =--三、填空题9.如图是定义在闭区间[5,5]-上的函数()y f x =的部分图像,根据图像可知函数()y f x =的单调递增区间是_______,单调递减区间是______.10.若()f x 是定义在R 上的奇函数,且1(2)()f x f x +=,则(8)f 的值为___. 11.若2()3f x ax bx a b =+++是偶函数,且定义域为[1,2]a a -,则a =_____,b =______.本章检测 函数的概念和性质一、单选题1. 已知函数2()23f x x mx =-+在[-2,+∞)上单调递增,在(-∞,-2]上单调递减,则f (1)的值为( )A.-3B.13C.7D.52.已知f (x )为奇函数,且在(-∞,0)上为增函数,g (x )为偶函数,且在(-∞,0)上为增函数,则在(0,+∞)_上,下列结论正确的)A.两个都是增函数B.两个都是减函数C. f (x )为增函数,g (x )为减函数D. f (x )为减函数,g (x )为增函数3.已知函数g (x )= f (2x )-x 2是奇函数,且f (1)=2,则f (-1)=( ) _3 A. 32- B.-1 C. 32 D. 744.已知函数(3)5,1()2,1a x x f x a x x -+≤⎧⎪=⎨>⎪⎩是(-∞,+∞)上的减函数,则a 的取值范围是( )A. (0,3)B. (0,3]C. (0,2)D. (0,2]5.已知函数g (x )是定义在[a -16,3a ]上的奇函数,且21,0()(),0x x f x f x a x -≥⎧=⎨+<⎩, 则f (-2020)=( )A.2B. 7C. 10D.-16. 已知定义在R 上的奇函数f (x )满足当x >0时,f(x )=x 2-2x ,则关于x的不等式f (x )<0的解集为( )A. (-2,2)B. (2,0)(0,2)-⋃C. (,2)(2,)-∞-⋃+∞D. (,2)(0,2)-∞-⋃二、多选题7.已知定义在区间[-3,3]上的一个偶函数,它在[-3,0]上的图象如图所示,则下列说法正确的是( )A.这个函数有两个单调递增区间B.这个函数有三个单调递减区间C. f (2)<2D.这个函数的值域为[-2,2]8.已知定义域为R 的函数f (x )是奇函数,且满足f (1-x )=f (1+x ),当0<x ≤1时,f (x )=2x ,则下列结论正确的是( )A. f (x )的最小正周期为2B.当-1<x ≤1时,f (x )=2xC. f (x )在[11,13]上单调递增D. f (x )的最大值为2,最小值为-2三、填空题9.已知函数,0(),0x x f x x x ⎧≥⎪=-<若f (a )+f (-1)=2,则a =_______.10.已知函数f (x )=x 5+ax 3+bx +2,且f (2)=3,则f (-2)=________.11.函数f (x )为奇函数,定义域为R ,若f (x +1)为偶函数,且f (1)=1,则f (2020)+f (2021)=_______。

高考第一轮复习数学:函数(附答案)

高考第一轮复习数学:函数(附答案)

素质能力检测(二)一、选择题(每小题5分,共60分)1.(年全国)函数y =x 2+bx +c (x ∈[0,+∞))是单调函数的充要条件是 A.b ≥0 B.b ≤0 C.b >0 D.b <0 解析:y =x 2+bx +c 的对称轴为x =-2b ,∴-2b≤0.∴b ≥0. 答案:A2.(年全国Ⅲ,理11)设函数f (x )=⎪⎩⎪⎨⎧--+14)1(2x x ,1,1≥<x x 则使得f (x )≥1的自变量x的取值范围为A.(-∞,-2]∪[0,10]B.(-∞,-2]∪[0,1]C.(-∞,-2]∪[1,10]D.[-2,0]∪[1,10] 解析:当x <1时,f (x )≥1⇔(x +1)2≥1⇔x ≤-2或x ≥0,∴x ≤-2或0≤x <1.当x ≥1时,f (x )≥1⇔4-1-x ≥1⇔1-x ≤3⇔1≤x ≤10.综上,知x ≤-2或0≤x ≤10. 答案:A3.f (x )是定义在R 上的奇函数,它的最小正周期为T ,则f (-2T)的值为 A.0B.2TC.TD.-2T 解法一:由f (2T )=f (-2T +T )=f (-2T )=-f (2T ),知f (2T)=0. 解法二:取特殊函数f (x )=sin x . 答案:A4.(年上海,文15)若函数y =f (x )的图象与函数y =lg (x +1)的图象关于直线x -y =0对称,则f (x )等于A.10x -1B.1-10xC.1-10-xD.10-x -1 解析:∵y =f (x )与y =lg (x +1)关于x -y =0对称, ∴y =f (x )与y =lg (x +1)互为反函数. ∴由y =lg (x +1),得x =10y -1. ∴所求y =f (x )=10x -1. 答案:A5.函数f (x )是一个偶函数,g (x )是一个奇函数,且f (x )+g (x )=11-x ,则f(x )等于A.112-xB.1222-x x C.122-xD.122-x x解析:由题知f (x )+g (x )=11-x ,①以-x 代x ,①式得f (-x )+g (-x )=11--x ,即f (x )-g (x )=11--x , ②①+②得f (x )=112-x . 答案:A6.(年江苏,11)设k >1,f (x )=k (x -1)(x ∈R ),在平面直角坐标系xOy 中,函数y =f (x )的图象与x 轴交于A 点,它的反函数y =f -1(x )的图象与y 轴交于B 点,且这两个函数的图象交于P 点.已知四边形OAPB 的面积是3,则k 等于A.3B.23 C.34D.56 解析:用k 表示出四边形OAPB 的面积. 答案:B7.F (x )=(1+122-x )·f (x )(x ≠0)是偶函数,且f (x )不恒等于零,则f (x )A.是奇函数B.是偶函数C.既是奇函数,又是偶函数D.是非奇非偶函数解析:g (x )=1+122-x 是奇函数,∴f (x )是奇函数. 答案:A8.(年杭州市质检题)当a ≠0时,函数y =ax +b 和y =b ax 的图象只可能是Oxy OxyOxyOy1111AB答案:C9.(年全国Ⅳ,12)设函数f (x )(x ∈R )为奇函数,f (1)=21,f (x +2)=f (x )+ f (2),则f (5)等于A.0B.1C.25D.5解析:∵f (x +2)=f (x )+f (2)且f (x )为奇函数,f (1)=21,∴f (1)=f (-1+2)=f (-1)+f (2)=-f (1)+f (2).∴f (2)=2f (1)=1.∴f (5)=f (3)+f (2)=f (1+2)+ f (2)=f (1)+2f (2)=25. 答案:C 10.设函数f (x )=cx bax ++2的图象如下图所示,则a 、b 、c 的大小关系是 11-1-1OxyA.a >b >cB.a >c >bC.b >a >cD.c >a >b 解析:f (0)=c b=0,∴b =0. f (1)=1,∴ca+1=1.∴a =c +1.由图象看出x >0时,f (x )>0,即x >0时,有cx ax+2>0,∴a >0.又f (x )= xc x a +,当x >0时,要使f (x )在x =1时取最大值1,需x +x c≥2c ,当且仅当x =c =1时.∴c =1,此时应有f (x )=2a=1.∴a =2. 答案:B11.偶函数y =f (x )(x ∈R )在x <0时是增函数,若x 1<0,x 2>0且|x 1|<|x 2|,下列结论正确的是A.f (-x 1)<f (-x 2)B.f (-x 1)>f (-x 2)C.f (-x 1)=f (-x 2)D.f (-x 1)与f (-x 2)大小关系不确定解析:|x |越小,f (x )越大.∵|x 1|<|x 2|,∴选B. 答案:B12.方程log 2(x +4)=3x 实根的个数是 A.0 B.1 C.2D.3解析:设y =log 2(x +4)及y =3x . 画图知交点有两个. 答案:C二、填空题(每小题4分,共16分)13.(年浙江,理13)已知f (x )=⎩⎨⎧<-≥,0,1,0,1x x 则不等式x +(x +2)·f (x +2)≤5的解集是___________________.解析:当x +2≥0时,原不等式⇔x +(x +2)≤5⇔x ≤23.∴-2≤x ≤23. 当x +2<0时,原不等式⇔x +(x +2)(-1)≤5⇔-2≤5.∴x <-2.综上,知x ≤23.答案:(-∞,23]14.设函数f (x )的定义域是N *,且f (x +y )=f (x )+f (y )+xy ,f (1)=1,则f (25)= ___________________.解析:由f (x +y )=f (x )+f (y )+xy ⇒f (2)=f (1)+f (1)+1=3. ∴f (2)-f (1)=2. 同理,f (3)-f (2)=3. ……f (25)-f (24)=25.∴f (25)=1+2+3+…+25=325. 答案:32515.(年春季上海)已知函数f (x )=log 3(x4+2),则方程f -1(x )=4的解x =___________________.解析:由f -1(x )=4,得x =f (4)=log 3(44+2)=1.答案:116.对于函数y =f (x )(x ∈R ),有下列命题:①在同一坐标系中,函数y =f (1+x )与y =f (1-x )的图象关于直线x =1对称; ②若f (1+x )=f (1-x ),且f (2-x )=f (2+x )均成立,则f (x )为偶函数; ③若f (x -1)=f (x +1)恒成立,则y =f (x )为周期函数;④若f (x )为单调增函数,则y =f (a x )(a >0,且a ≠1)也为单调增函数. 其中正确命题的序号是______________. (注:把你认为正确命题的序号都填上)解析:①不正确,y =f (x -1)与y =f (1-x )关于直线x =1对称.②正确.③正确.④不正确.答案:②③三、解答题(共6小题,满分74分)17.(12分)函数y =lg (3-4x +x 2)的定义域为M ,x ∈M 时,求f (x )=2x +2-3×4x的最值.解:由3-4x +x 2>0得x >3或x <1, ∴M ={x |x >3或x <1},f (x )=-3×22x +22·2x =-3(2x -32)2+34. ∵x >3或x <1, ∴2x >8或0<2x <2.∴当2x =32即x =log 232时,f (x )最大,最大值为34. f (x )没有最小值.18.(12分)(年高考新课程卷)设a >0,求函数f (x )=x -ln (x +a )(x ∈(0,+∞))的单调区间.分析:本小题主要考查导数的概念和计算,应用导数研究函数性质的方法及推理和运算能力.解:f '(x )=x21-ax +1(x >0). 当a >0,x >0时,f '(x )>0⇔x 2+(2a -4)x +a 2>0, f '(x )<0⇔x 2+(2a -4)x +a 2<0.①当a >1时,对所有x >0,有x 2+(2a -4)x +a 2>0,即f '(x )>0. 此时f (x )在(0,+∞)内单调递增.②当a =1时,对x ≠1,有x 2+(2a -4)x +a 2>0,即f '(x )>0,此时f (x )在(0,1)内单调递增,在(1,+∞)内单调递增. 又知函数f (x )在x =1处连续.因此,函数f (x )在(0,+∞)内单调递增. ③当0<a <1时,令f '(x )>0,即x 2+(2a -4)x +a 2>0,解得x <2-a -2a -1,或x >2-a +2a -1.因此,函数f (x )在区间(0,2-a -2a -1)内单调递增,在区间(2-a +2a -1,+∞)内也单调递增.令f '(x )<0,即x 2+(2a -4)x +a 2<0,解得2-a -2a -1<x <2-a +2a -1. 因此,函数f (x )在区间(2-a -2a -1,2-a +2a -1)内单调递减.19.(12分)(年春季北京,理20)现有一组互不相同且从小到大排列的数据:a 0,a 1,a 2,a 3,a 4,a 5,其中a 0=0.为提取反映数据间差异程度的某种指标,今对其进行如下加工:记T =a 0+a 1+…+a 5,x n =5n ,y n =T1(a 0+a 1+…+a n ),作函数y =f (x ),使其图象为逐点依次连结点P n (x n ,y n )(n =0,1,2,…,5)的折线.(1)求f (0)和f (5)的值;(2)设P n -1P n 的斜率为k n (n =1,2,3,4,5),判断k 1、k 2、k 3、k 4、k 5的大小关系;(3)证明f (x n )<x n (n =1,2,3,4).(1)解:f (0)=500a a a +⋅⋅⋅+=0,f (5)=5050a a a a +⋅⋅⋅++⋅⋅⋅+=1.(2)解:k n =11----n n n n x x y y =T5a n ,n =1,2, (5)因为a 1<a 2<a 3<a 4<a 5, 所以k 1<k 2<k 3<k 4<k 5.(3)证法一:对任何n (n =1,2,3,4), 5(a 1+…+a n )=[n +(5-n )](a 1+…+a n ) =n (a 1+…+a n )+(5-n )(a 1+…+a n ) ≤n (a 1+…+a n )+(5-n )na n =n [a 1+…+a n +(5-n )a n ]<n (a 1+…+a n +a n +1+…+a 5)=nT ,所以f (x n )=T a a n +⋅⋅⋅+1<5n=x n .证法二:对任何n (n =1,2,3,4), 当k n <1时,y n =(y 1-y 0)+(y 2-y 1)+…+(y n -y n -1) =51(k 1+k 2+…+k n )<5n=x n . 当k n ≥1时, y n =y 5-(y 5-y n )=1-[(y n +1-y n )+(y n +2-y n +1)+…+(y 5-y 4)]=1-51(k n +1+k n +2+…+k 5)<1-51(5-n )=5n=x n ,综上,f (x n )<x n .20.(12分)(年北京)有三个新兴城镇,分别位于A 、B 、C 三点处,且AB =AC =a ,BC =2b .今计划合建一个中心医院,为同时方便三镇,准备建在BC 的垂直平分线上的P 点处.(建立坐标系如下图)O x y A PB b, (-0)(),0h C (0) (1)若希望点P 到三镇距离的平方和为最小,点P 应位于何处?(2)若希望点P 到三镇的最远距离为最小,点P 应位于何处?分析:本小题主要考查函数、不等式等基本知识,考查运用数学知识分析问题和解决问题的能力.(1)解:由题设可知,a >b >0,记h =22b a -,设P 的坐标为(0,y ),则P 至三镇距离的平方和为f (y )=2(b 2+y 2)+(h -y )2=3(y -3h )2+32h 2+2b 2. ∴当y =3h时,函数f (y )取得最小值. ∴点P 的坐标是(0,3122b a -). (2)解法一:P 至三镇的最远距离为g (y )=⎪⎩⎪⎨⎧-+||22y h y b ,||,||2222时当时当y h y b y h y b -<+-≥+由22y b +≥|h -y |解得y ≥h b h 222-,记y *=hb h 222-,于是g (y )=⎪⎩⎪⎨⎧-+||22y h y b .,**时当时当y y y y <≥当y *=hb h 222-≥0,即h ≥b 时,22y b +在[y *,+∞)上是增函数,而|h -y |在(-∞,y *)上是减函数,由此可知,当y =y *时,函数g (y )取得最小值;当y *=hb h 222-<0,即h <b 时,函数22y b +在[y *,+∞)上,当y =0时,取得最小值b ,而|h -y |在(-∞,y *)上为减函数,且|h -y |>b .可见,当y =0时,函数g (y )取得最小值.∴当h ≥b 时,点P 的坐标为(0,222222ba b a --);当h <b 时,点P 的坐标为(0,0).其中h =22b a -. 解法二:P 至三镇的最远距离为g (y )=⎪⎩⎪⎨⎧-+||22y h y b .||,||2222时当时当y h y b y h y b -<+-≥+由22y b +≥|h -y |解得y ≥h b h 222-,记y *=hb h 222-,于是 g (y )=⎪⎩⎪⎨⎧-+||22y h y b .,**时当时当y y y y <≥当y *≥0,即h ≥b 时,z =g (y )的图象如图(a ),因此,当y =y *时,函数g (y )取得最小值.当y *<0,即h <b 时,z =g (y )的图象如图(b ),因此,当y =0时,函数g (y )取得最小值.O h by O y y hb g g ()y ()y (b )'∴当h ≥b 时,点P 的坐标为(0,222222ba b a --);当h <b 时,点P 的坐标为(0,0).其中h =22b a -. 解法三:∵在△ABC 中,AB =AC =a ,∴△ABC 的外心M 在射线AO 上,其坐标为(0,222222ba b a --),且AM =BM =CM .当P 在射线MA 上,记P 为P 1;当P 在射线MA 的反向延长线上,记P 为P 2. 若h =22b a -≥b 〔如图(c )〕,2 Pxy O B (-b,0) C (b ,0) A MP 1(c)则点M 在线段AO 上.这时P 到A 、B 、C 三点的最远距离为P 1C 或P 2A ,且P 1C ≥MC ,P 2A ≥MA , 所以点P 与外心M 重合时,P 到三镇的最远距离最小. 若h =22b a -<b 〔如图(d )〕,则点M 在线段AO 外.xy O B (-b,0)C (b,0) AM P 1P2(d)这时P 到A 、B 、C 三点的最远距离为P 1C 或P 2A ,且P 1C ≥OC ,P 2A ≥OC ,所以点P 与BC 边的中点O 重合时,P 到三镇的最远距离最小.∴当22b a -≥b 时,点P 的位置在△ABC 的外心(0,222222ba b a --);当22b a -<b 时,点P 的位置在原点O .21.(12分)设f (x )是定义在R 上的偶函数,其图象关于直线x =1对称,对任意x 1、x 2∈[0,21],都有f (x 1+x 2)=f (x 1)·f (x 2). (1)设f (1)=2,求f (21),f (41);(2)证明f (x )是周期函数.(1)解:由f (x 1+x 2)=f (x 1)·f (x 2),x 1、x 2∈[0,21]知f (x )=f (2x)·f (2x )=[f (2x)]2≥0,x ∈[0,1]. 因为f (1)=f (21)·f (21)=[f (21)]2,及f (1)=2,所以f (21)=221.因为f (21)=f (41)·f (41)=[f (41)]2,及f (21)=221,所以f (41)=241.(2)证明:依题设y =f (x )关于直线x =1对称,故f (x )=f (1+1-x )⇔f (x )=f (2-x ),x ∈R .又由f (x )是偶函数知f (-x )=f (x ),x ∈R ,所以f (-x )=f (2-x ),x ∈R .将上式中-x 以x 代换,得f (x )=f (x +2),x ∈R .这表明f (x )是R 上的周期函数,且2是它的一个周期.22.(14分)设函数y =f (x )定义在R 上,对任意实数m 、n ,恒有f (m +n )=f (m )·f (n )且当x >0时,0<f (x )<1.(1)求证:f (0)=1,且当x <0时,f (x )>1; (2)求证:f (x )在R 上递减;(3)设集合A ={(x ,y )|f (x 2)·f (y 2)>f (1)},B ={(x ,y )|f (ax -y +2)=1,a ∈R },若A ∩B =∅,求a 的取值范围.(1)证明:在f (m +n )=f (m )f (n )中, 令m =1,n =0,得f (1)=f (1)f (0). ∵0<f (1)<1,∴f (0)=1.设x <0,则-x >0.令m =x ,n =-x ,代入条件式有f (0)=f (x )·f (-x ),而f (0)=1,∴f (x )=)(1x f ->1.(2)证明:设x 1<x 2,则x 2-x 1>0, ∴0<f (x 2-x 1)<1. 令m =x 1,m +n =x 2,则n =x 2-x 1,代入条件式,得 f (x 2)=f (x 1)·f (x 2-x 1), 即0<)()(12x f x f <1.∴f (x 2)<f (x 1). ∴f (x )在R 上单调递减.(3)解:由f (x 2)·f (y 2)>f (1)⇒f (x 2+y 2)>f (1). 又由(2)知f (x )为R 上的减函数,∴x 2+y 2<1⇒点集A 表示圆x 2+y 2=1的内部.由f (ax -y +2)=1得ax -y +2=0⇒点集B 表示直线ax -y +2=0. ∵A ∩B =∅,∴直线ax -y +2=0与圆x 2+y 2=1相离或相切. 于是122+a ≥1⇒-3≤a ≤3.。

高三第一轮数学复习知识点

高三第一轮数学复习知识点

高三第一轮数学复习知识点在高三数学的学习过程中,第一轮复习是非常关键的一步。

在这个阶段,学生们要回顾并巩固自己在之前学习中所掌握的数学知识,同时要注意查漏补缺,填平知识漏洞,为接下来的复习打下坚实的基础。

一、函数与方程函数与方程是高三数学的基础。

在这一部分中,学生们需要掌握函数的概念、性质以及基本的图像变换知识。

此外,还需要了解常见的一次函数、二次函数、指数函数、对数函数等函数的性质与特点,并能熟练解决相关的题目。

在方程的学习中,需要掌握一元一次方程、一元二次方程等常见方程的解法,并能灵活应用于实际问题的解决过程中。

二、数列与数列的求和数列是高中数学中的重点知识,也是数学建模的基础。

在数列的学习中,学生们需要了解等差数列、等比数列、斐波那契数列等常见数列的概念、性质以及特点,并能运用差分法、通项公式等方法解决数列的相关问题。

此外,数列的求和也是数学学习中的重点内容,学生们需要学会通过列式法、分组求和法等方法求解数列的和,并能理解这些方法的推导过程。

三、几何图形与几何推理几何学是数学学科的基础,也是高三数学复习中不可或缺的一部分。

在几何图形的学习中,学生们需要掌握平面几何和立体几何相关的基本概念、性质以及定理,并能够灵活运用这些知识解决相关的几何问题。

在几何推理的学习中,学生们需要理解各种推理方法的基本原理,并能通过逻辑推理解决几何问题。

四、概率与统计概率与统计是高中数学中的实际应用部分。

在概率的学习中,学生们需要了解基本概率的概念、性质以及计算方法,并能够应用概率理论解决生活中的实际问题。

在统计的学习中,学生们需要熟悉数据的收集、整理、分析等基本方法,并能够通过统计理论解决实际问题。

五、解析几何与立体几何解析几何是数学学科的重要分支之一,立体几何是几何学的重要内容之一。

在解析几何的学习中,学生们需要掌握坐标系的建立与运用、直线与曲线的方程等相关内容,并能熟练解决相关的几何问题。

在立体几何的学习中,学生们需要了解空间几何中的基本概念、性质以及相关定理,并能运用这些知识解决实际问题。

高三数学一轮复习函数的概念与基本初等函数知识点突破训练含答案解析

高三数学一轮复习函数的概念与基本初等函数知识点突破训练含答案解析

第二章⎪⎪⎪函数的概念与基本初等函数Ⅰ 第一节 函数及其表示突破点(一) 函数的定义域基础联通 抓主干知识的“源”与“流”1.函数与映射的概念 函数映射两集合A ,B设A ,B 是两个非空的数集 设A ,B 是两个非空的集合 对应关系f :A →B如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应名称 称f :A →B 为从集合A 到集合B 的一个函数称对应f :A →B 为从集合A 到集合B 的一个映射记法y =f (x ),x ∈A对应f :A →B(1)函数的定义域、值域:在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.显然,值域是集合B 的子集.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.考点贯通 抓高考命题的“形”与“神”求给定解析式的函数的定义域(1)分式函数中分母不等于零.本节主要包括3个知识点:1.函数的定义域;2.函数的表示方法;3.分段函数.(2)偶次根式函数的被开方式大于或等于0. (3)一次函数、二次函数的定义域均为R. (4)y =x 0的定义域是{x |x ≠0}.(5)y =a x (a >0且a ≠1),y =sin x ,y =cos x 的定义域均为R. (6)y =log a x (a >0且a ≠1)的定义域为(0,+∞). (7)y =tan x 的定义域为⎩⎨⎧ x ⎪⎪⎭⎬⎫x ≠k π+π2,k ∈Z .[例1] y =x -12x-log 2(4-x 2)的定义域是( ) A .(-2,0)∪(1,2) B .(-2,0]∪(1,2) C .(-2,0)∪[1,2)D .[-2,0]∪[1,2][解析] 要使函数有意义,必须⎩⎪⎨⎪⎧x -12x ≥0,x ≠0,4-x 2>0,∴x ∈(-2,0)∪[1,2).即函数的定义域是(-2,0)∪[1,2). [答案] C [易错提醒](1)不要对解析式进行化简变形,以免定义域发生变化.(2)当一个函数由有限个基本初等函数的和、差、积、商的形式构成时,定义域一般是各个基本初等函数定义域的交集.(3)定义域是一个集合,要用集合或区间表示,若用区间表示,不能用“或”连接,而应该用并集符号“∪”连接.求抽象函数的定义域对于抽象函数定义域的求解(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域. [例2] 若函数y =f (x )的定义域是[0,2],则函数g (x )=f (2x )x -1的定义域为________.[解析] 由题意得,⎩⎪⎨⎪⎧x -1≠0,0≤2x ≤2,解得0≤x <1,即g (x )的定义域是[0,1).[答案] [0,1)[易错提醒]函数f [g (x )]的定义域指的是x 的取值范围,而不是g (x )的取值范围.已知函数定义域求参数[例3] (2017·杭州模拟)若函数f (x )=mx 2+mx +1的定义域为一切实数,则实数m 的取值范围是( )A .[0,4)B .(0,4)C .[4,+∞)D .[0,4][解析] 由题意可得mx 2+mx +1≥0恒成立. 当m =0时,1≥0恒成立;当m ≠0时,则⎩⎪⎨⎪⎧m >0,Δ=m 2-4m ≤0,解得0<m ≤4. 综上可得:0≤m ≤4. [答案] D[方法技巧]已知函数定义域求参数的思想方法已知函数的定义域,逆向求解函数中参数的取值,需运用分类讨论以及转化与化归的思想方法.转化与化归的思想方法是通过某种转化过程,将一个难以解决的问题转化为一个已经解决或者比较容易解决的问题,从而获解.基础联通 抓主干知识的“源”与“流” 1.[考点一]函数y =x ln(2-x )的定义域为( ) A .(0,2) B .[0,2) C .(0,1]D .[0,2]解析:选B 由题意知,x ≥0且2-x >0,解得0≤x <2,故其定义域是[0,2). 2.[考点一](2017·青岛模拟)函数y =1-x 22x 2-3x -2的定义域为( )A .(-∞,1]B .[-1,1]C .[1,2)∪(2,+∞)D.⎣⎡⎭⎫-1,-12∪⎝⎛⎦⎤-12,1解析:选D 由题意得⎩⎪⎨⎪⎧1-x 2≥0,2x 2-3x -2≠0,解得⎩⎪⎨⎪⎧-1≤x ≤1,x ≠2且x ≠-12,即-1≤x ≤1且x ≠-12, 所以函数的定义域为⎣⎡⎭⎫-1,-12∪⎝⎛⎦⎤-12,1.故选D. 3.[考点一]函数f (x )=1-|x -1|a x -1(a >0且a ≠1)的定义域为________.解析:由题意得⎩⎪⎨⎪⎧ 1-|x -1|≥0,a x -1≠0,解得⎩⎪⎨⎪⎧0≤x ≤2,x ≠0,即0<x ≤2,故所求函数的定义域为(0,2].答案:(0,2]4.[考点二]已知函数y =f (x 2-1)的定义域为[-3, 3 ],则函数y =f (x )的定义域为________.解析:∵y =f (x 2-1)的定义域为[-3, 3 ],∴x ∈[-3, 3 ],x 2-1∈[-1,2],∴y =f (x )的定义域为[-1,2].答案:[-1,2]5.[考点三]若函数f (x )=ax 2+abx +b 的定义域为{x |1≤x ≤2},则a +b 的值为________. 解析:函数f (x )的定义域是不等式ax 2+abx +b ≥0的解集.不等式ax 2+abx +b ≥0的解集为{x |1≤x ≤2},所以⎩⎪⎨⎪⎧a <0,1+2=-b ,1×2=b a ,解得⎩⎪⎨⎪⎧a =-32,b =-3,所以a +b =-32-3=-92.答案:-92突破点(二) 函数的表示方法1.函数的表示方法函数的表示方法有三种,分别为解析法、列表法和图象法.同一个函数可以用不同的方法表示.2.应用三种方法表示函数的注意事项(1)解析法:一般情况下,必须注明函数的定义域;(2)列表法:选取的自变量要有代表性,应能反映定义域的特征;(3)图象法:注意定义域对图象的影响.与x 轴垂直的直线与其最多有一个公共点.3.函数的三种表示方法的优缺点优点缺点解析法简明扼要,规范准确(1)有些函数关系很难或不能用解析式表示;(2)求x 与y 的对应关系时需逐个计算,比较繁杂列表法能鲜明地显示自变量与函数值之间的数量关系只能列出部分自变量及其对应的函数值,难以反映函数变化的全貌图象法形象直观,能清晰地呈现函数的增减变化、点的对称关系、最大(小)值等性质作出的图象是近似的、局部的,且根据图象确定的函数值往往有误差考点贯通 抓高考命题的“形”与“神”求函数的解析式[典例] (1)如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切).已知环湖弯曲路段为某三次函数图象的一部分,则该函数的解析式为( )A .y =12x 3-12x 2-xB .y =12x 3+12x 2-3xC .y =14x 3-xD .y =14x 3+12x 2-2x(2)定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________.(3)(2017·合肥模拟)已知f (x )的定义域为{x |x ≠0},满足3f (x )+5f ⎝⎛⎭⎫1x =3x +1,则函数f (x )的解析式为________.[解析] (1)设该函数解析式为f (x )=ax 3+bx 2+cx +d ,则f ′(x )=3ax 2+2bx +c ,由题意知⎩⎪⎨⎪⎧f (0)=d =0,f (2)=8a +4b +2c +d =0,f ′(0)=c =-1,f ′(2)=12a +4b +c =3,解得⎩⎪⎨⎪⎧a =12,b =-12,c =-1,d =0,∴f (x )=12x 3-12x 2-x .(2)∵-1≤x ≤0,∴0≤x +1≤1,∴f (x )=12f (x +1)=12(x +1)[1-(x +1)]=-12x (x +1).故当-1≤x ≤0时,f (x )=-12x (x +1).(3)用1x代替3f (x )+5f ⎝⎛⎭⎫1x =3x +1中的x ,得3f ⎝⎛⎭⎫1x +5f (x )=3x +1, ∴⎩⎨⎧3f (x )+5f ⎝⎛⎭⎫1x =3x +1, ①3f ⎝⎛⎭⎫1x +5f (x )=3x +1, ②①×3-②×5得f (x )=1516x -916x +18(x ≠0).[答案] (1)A (2)-12x (x +1) (3)f (x )=1516x -916x +18(x ≠0)[易错提醒]1.已知函数f (x )的定义域为(0,+∞),且f (x )=2f ⎝⎛⎭⎫1x x -1,则f (x )=________. 解析:在f (x )=2f ⎝⎛⎭⎫1x x -1中,用1x 代替x ,得f ⎝⎛⎭⎫1x =2f (x )1x -1,将f ⎝⎛⎭⎫1x =2f (x )1x -1代入f (x )=2f ⎝⎛⎭⎫1x x -1中,求得f (x )=23x +13(x >0). 答案:23x +13(x >0) 2.函数f (x )满足2f (x )+f (-x )=2x ,则f (x )=________.解析:由题意知⎩⎪⎨⎪⎧2f (x )+f (-x )=2x ,2f (-x )+f (x )=-2x ,解得f (x )=2x . 答案:2x3.已知f (x +1)=x +2x ,求f (x )的解析式. 解:设t =x +1,则x =(t -1)2,t ≥1,代入原式有 f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1. 故f (x )=x 2-1,x ≥1.4.已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x )的解析式. 解:设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx , 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x ,x ∈R.5.已知f ⎝⎛⎭⎫x +1x =x 2+1x 2,求f (x )的解析式. 解:由于f ⎝⎛⎭⎫x +1x =x 2+1x 2=⎝⎛⎭⎫x +1x 2-2, 所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2,x ≥2或x ≤-2.突破点(三) 分段函数基础联通 抓主干知识的“源”与“流”1.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.2.分段函数的相关结论(1)分段函数虽由几个部分组成,但它表示的是一个函数.(2)分段函数的定义域等于各段函数的定义域的并集,值域等于各段函数的值域的并集. 考点贯通 抓高考命题的“形”与“神”分段函数求值[例1] (1)设f (x )=⎩⎨⎧1-x ,x ≥0,2x ,x <0,则f (f (-2))=( )A .-1 B.14 C.12D.32(2)(2017·张掖高三模拟)已知函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x ,x ≥4,f (x +1),x <4,则f (1+log 25)的值为( ) A.14 B.⎝⎛⎭⎫12 21log 5+ C.12D.120[解析] (1)因为f (-2)=2-2=14,所以f (f (-2))=f ⎝⎛⎭⎫14=1- 14=12,故选C. (2)因为2<log 25<3,所以3<1+log 25<4,则4<2+log 25<5,则f (1+log 25)=f (1+log 25+1)=f (2+log 25)=⎝⎛⎭⎫12 22log 5+=14×⎝⎛⎭⎫12 2log 5=14×15=120,故选D. [答案] (1)C (2)D [方法技巧]分段函数求值的解题思路求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.求参数或自变量的值或范围[例2] (1)(2017·西安模拟)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,x 2,x ≤0,若f (4)=2f (a ),则实数a 的值为( )A .-1或2B .2C .-1D .-2(2)设函数f (x )=⎩⎪⎨⎪⎧e x -1,x <1,x 13,x ≥1,则使得f (x )≤2成立的x 的取值范围是________.[解析] (1)f (4)=log 24=2,因而2f (a )=2,即f (a )=1,当a >0时,f (a )=log 2a =1,因而a =2,当a ≤0时,f (a )=a 2=1,因而a =-1,故选A.(2)当x <1时,由e x -1≤2得x ≤1+ln 2,∴x <1;当x ≥1时,由x 13≤2得x ≤8,∴1≤x ≤8.综上,符合题意的x 的取值范围是x ≤8.[答案] (1)A (2)(-∞,8][方法技巧]求分段函数自变量的值或范围的方法求某条件下自变量的值或范围,先假设所求的值或范围在分段函数定义区间的各段上,然后求出相应自变量的值或范围,切记代入检验,看所求的自变量的值或范围是否满足相应各段自变量的取值范围.能力练通 抓应用体验的“得”与“失”1.[考点一]已知函数f (x )=⎩⎪⎨⎪⎧1-2x ,x ≤0,x 2,x >0,则f (f (-1))=( )A .2B .1 C.14D.12解析:选C 由题意得f (-1)=1-2-1=12,则f (f (-1))=f ⎝⎛⎭⎫12=⎝⎛⎭⎫122=14. 2.[考点一]已知f (x )=⎩⎨⎧3sin πx ,x ≤0,f (x -1)+1,x >0,则f ⎝⎛⎭⎫23的值为( ) A.12B .-12C .1D .-1解析:选B f ⎝⎛⎭⎫23=f ⎝⎛⎭⎫-13+1=3sin ⎝⎛⎭⎫-π3+1=-12. 3.[考点一]已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x +b ,x ≤0,且f (0)=2,f (-1)=3,则f (f (-3))=( )A .-2B .2C .3D .-3解析:选B 由题意得f (0)=a 0+b =1+b =2, 解得b =1.f (-1)=a -1+b =a -1+1=3,解得a =12.则f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,⎝⎛⎭⎫12x +1,x ≤0,故f (-3)=⎝⎛⎭⎫12-3+1=9, 从而f (f (-3))=f (9)=log 39=2.4.[考点二]设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x , x ≥1,则满足f (f (a ))=2f (a )的a 的取值范围是( )A.⎣⎡⎦⎤23,1 B .[0,1] C.⎣⎡⎭⎫23,+∞ D .[1,+∞)解析:选C 由f (f (a ))=2f (a )得,f (a )≥1. 当a <1时,有3a -1≥1,∴a ≥23,∴23≤a <1.当a ≥1时,有2a ≥1,∴a ≥0,∴a ≥1. 综上,a ≥23,故选C.5.[考点二]已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x ≥0,3x 2,x <0,且f (x 0)=3,则实数x 0的值为________.解析:由条件可知,当x 0≥0时,f (x 0)=2x 0+1=3,所以x 0=1;当x 0<0时,f (x 0)=3x 20=3,所以x 0=-1.所以实数x 0的值为-1或1.答案:-1或16.[考点二]已知f (x )=⎩⎪⎨⎪⎧12x +1,x ≤0,-(x -1)2,x >0,使f (x )≥-1成立的x 的取值范围是________.解析:由题意知⎩⎪⎨⎪⎧x ≤0,12x +1≥-1或⎩⎪⎨⎪⎧x >0,-(x -1)2≥-1, 解得-4≤x ≤0或0<x ≤2,故x 的取值范围是[-4,2]. 答案:[-4,2][全国卷5年真题集中演练——明规律] 1.(2016·全国甲卷)下列函数中,其定义域和值域分别与函数y =10lg x 的定义域和值域相同的是( )A .y =xB .y =lg xC .y =2xD .y =1x解析:选D 函数y =10lg x 的定义域与值域均为(0,+∞). 函数y =x 的定义域与值域均为(-∞,+∞).函数y =lg x 的定义域为(0,+∞),值域为(-∞,+∞). 函数y =2x 的定义域为(-∞,+∞),值域为(0,+∞). 函数y =1x的定义域与值域均为(0,+∞).故选D. 2.(2015·新课标全国卷Ⅱ)设函数f (x )=⎩⎪⎨⎪⎧1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 212)=( )A .3B .6C .9D .12解析:选C ∵-2<1,∴f (-2)=1+log 2(2+2)=1+log 24=1+2=3.∵log 212>1,∴f (log 212)=2log 212-1=122=6.∴f (-2)+f (log 212)=3+6=9.3.(2015·新课标全国卷Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧2x -1-2,x ≤1,-log 2(x +1),x >1,且f (a )=-3,则f (6-a )=( )A .-74B .-54C .-34D .-14解析:选A 由于f (a )=-3,①若a ≤1,则2a -1-2=-3,整理得2a -1=-1.由于2x >0,所以2a -1=-1无解;②若a >1,则-log 2(a +1)=-3,解得a =7,所以f (6-a )=f (-1)=2-1-1-2=-74.综上所述,f (6-a )=-74.4.(2013·新课标全国卷Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≤0,ln (x +1),x >0.若|f (x )|≥ax ,则a 的取值范围是( )A .(-∞,0]B .(-∞,1)C .[-2,1]D .[-2,0]解析:选D y =|f (x )|的图象如图所示,y =ax 为过原点的一条直线,当|f (x )|≥ax 时,必有k ≤a ≤0,其中k 是y =x 2-2x (x ≤0)在原点处的切线的斜率,显然,k =-2.所以a 的取值范围是[-2,0].[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.下列图象可以表示以M ={x |0≤x ≤1}为定义域,以N ={y |0≤y ≤1}为值域的函数的是( )解析:选C A 选项中的值域不对,B 选项中的定义域错误,D 选项不是函数的图象,由函数的定义可知选项C 正确.2.若函数f (x +1)的定义域为[0,1],则f (2x -2)的定义域为( ) A .[0,1] B .[log 23,2] C .[1,log 23]D .[1,2]解析:选B ∵f (x +1)的定义域为[0,1],即0≤x ≤1,∴1≤x +1≤2.∵f (x +1)与f (2x -2)是同一个对应关系f ,∴2x -2与x +1的取值范围相同,即1≤2x -2≤2,也就是3≤2x ≤4,解得log 23≤x ≤2.∴函数f (2x -2)的定义域为[log 23,2].3.若二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,则g (x )的解析式为( ) A .g (x )=2x 2-3x B .g (x )=3x 2-2x C .g (x )=3x 2+2xD .g (x )=-3x 2-2x解析:选B 设g (x )=ax 2+bx +c (a ≠0),∵g (1)=1,g (-1)=5,且图象过原点,∴⎩⎪⎨⎪⎧a +b +c =1,a -b +c =5,c =0,解得⎩⎪⎨⎪⎧a =3,b =-2,c =0,∴g (x )=3x 2-2x .4.若函数f (x )= 2x 2+2ax -a -1的定义域为R ,则a 的取值范围为________.解析:因为函数f (x )的定义域为R ,所以2x 2+2ax -a -1≥0对x ∈R 恒成立,即2x 2+2ax -a ≥20,x 2+2ax -a ≥0恒成立,因此有Δ=(2a )2+4a ≤0,解得-1≤a ≤0.答案:[-1,0]5.设函数f (x )=⎩⎪⎨⎪⎧3x -b ,x <1,2x ,x ≥1.若f ⎝⎛⎭⎫f ⎝⎛⎭⎫56=4,则b =________. 解析:f ⎝⎛⎭⎫56=3×56-b =52-b ,若52-b <1,即b >32,则3×⎝⎛⎭⎫52-b -b =152-4b =4,解得b =78,不符合题意,舍去;若52-b ≥1,即b ≤32,则252-b =4,解得b =12.答案:12[练常考题点——检验高考能力]一、选择题1.函数f (x )=10+9x -x 2lg (x -1)的定义域为( )A .[1,10]B .[1,2)∪(2,10]C .(1,10]D .(1,2)∪(2,10]解析:选D 要使函数f (x )有意义,则x 须满足⎩⎪⎨⎪⎧10+9x -x 2≥0,x -1>0,lg (x -1)≠0,即⎩⎪⎨⎪⎧(x +1)(x -10)≤0,x >1,x ≠2,解得1<x ≤10,且x ≠2,所以函数f (x )的定义域为(1,2)∪(2,10].2.已知f (x )=⎩⎪⎨⎪⎧-cos πx ,x >0,f (x +1)+1,x ≤0,则f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43的值等于( ) A .1 B .2 C .3 D .-2解析:选C f ⎝⎛⎭⎫43=-cos 4π3=cos π3=12;f ⎝⎛⎭⎫-43=f ⎝⎛⎭⎫-13+1=f ⎝⎛⎭⎫23+2=-cos 2π3+2=12+2=52.故f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43=3. 3.若f (x )对于任意实数x 恒有2f (x )-f (-x )=3x +1,则f (1)=( ) A .2 B .0 C .1D .-1解析:选A 令x =1,得2f (1)-f (-1)=4,① 令x =-1,得2f (-1)-f (1)=-2, ② 联立①②得f (1)=2.4.(2017·贵阳检测)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎨⎧cx ,x <a ,ca ,x ≥a ,(a ,c 为常数).已知工人组装第4件产品用时30分钟,组装第a 件产品用时15分钟,那么c 和a 的值分别是( )A .75,25B .75,16C .60,25D .60,16 解析:选D 因为组装第a 件产品用时15分钟, 所以ca=15,① 所以必有4<a ,且c 4=c2=30.② 联立①②解得c =60,a =16.5.设x ∈R ,定义符号函数sgn x =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,则( )A .|x |=x |sgn x |B .|x |=x sgn|x |C .|x |=|x |sgn xD .|x |=x sgn x解析:选D 当x <0时,|x |=-x ,x |sgn x |=x ,x sgn|x |=x ,|x |sgn x =(-x )·(-1)=x ,排除A ,B ,C ,故选D.6.已知具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①y =x -1x ;②y =x +1x ;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( )A .①②B .①③C .②③D .①解析:选B 对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x-x =-f (x ),满足“倒负”变换;对于②,f ⎝⎛⎭⎫1x =1x +x =f (x ),不满足“倒负”变换;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足“倒负”变换.综上可知,满足“倒负”变换的函数是①③.二、填空题7.已知函数f (x )对任意的x ∈R ,f (x +1 001)=2f (x )+1,已知f (15)=1,则f (2 017)=________.解析:根据题意,f (2 017)=f (1 016+1 001)=2f (1 016)+1,f (1 016)=f (15+1 001)=2f (15)+1,而f (15)=1,所以f (1 016)=21+1=1,则f (2 017)=2f (1 016)+1=21+1=1.答案:18.(2017· 绵阳诊断)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.解析:当a >0时,1-a <1,1+a >1,此时f (1-a )=2(1-a )+a =2-a ,f (1+a )=-(1+a )-2a =-1-3a .由f (1-a )=f (1+a )得2-a =-1-3a ,解得a =-32,不合题意,舍去.当a <0时,1-a >1,1+a <1,此时f (1-a )=-(1-a )-2a =-1-a ,f (1+a )=2(1+a )+a =2+3a ,由f (1-a )=f (1+a )得-1-a =2+3a ,解得a =-34.综上可知,a 的值为-34.答案:-349.已知函数f (x )满足对任意的x ∈R 都有f ⎝⎛⎭⎫12+x +f ⎝⎛⎭⎫12-x =2成立,则f ⎝⎛⎭⎫18+f ⎝⎛⎭⎫28+…+f ⎝⎛⎭⎫78=________.解析:由f ⎝⎛⎭⎫12+x +f ⎝⎛⎭⎫12-x =2,得f ⎝⎛⎭⎫18+f ⎝⎛⎭⎫78=2,f ⎝⎛⎭⎫28+f ⎝⎛⎭⎫68=2,f ⎝⎛⎭⎫38+f ⎝⎛⎭⎫58=2,又f ⎝⎛⎭⎫48=12⎣⎡⎦⎤f ⎝⎛⎭⎫48+f ⎝⎛⎭⎫48=12×2=1,∴f ⎝⎛⎭⎫18+f ⎝⎛⎭⎫28+…+f ⎝⎛⎭⎫78=2×3+1=7. 答案:710.定义函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,则不等式(x +1)f (x )>2的解集是________.解析:①当x >0时,f (x )=1,不等式的解集为{x |x >1};②当x =0时,f (x )=0,不等式无解;③当x <0时,f (x )=-1,不等式的解集为{x |x <-3}.所以不等式(x +1)·f (x )>2的解集为{x |x <-3或x >1}.答案:{x |x <-3或x >1} 三、解答题11.已知函数f (x )对任意实数x 均有f (x )=-2f (x +1),且f (x )在区间[0,1]上有解析式f (x )=x 2.(1)求f (-1),f (1.5);(2)写出f (x )在区间[-2,2]上的解析式.解:(1)由题意知f (-1)=-2f (-1+1)=-2f (0)=0, f (1.5)=f (1+0.5)=-12f (0.5)=-12×14=-18.(2)当x ∈[0,1]时,f (x )=x 2;当x ∈(1,2]时,x -1∈(0,1],f (x )=-12f (x -1)=-12(x -1)2;当x ∈[-1,0)时,x +1∈[0,1),f (x )=-2f (x +1)=-2(x +1)2;当x ∈[-2,-1)时,x +1∈[-1,0),f (x )=-2f (x +1)=-2×[-2(x +1+1)2]=4(x +2)2.所以f (x )=⎩⎪⎨⎪⎧4(x +2)2,x ∈[-2,-1),-2(x +1)2,x ∈[-1,0),x 2,x ∈[0,1],-12(x -1)2,x ∈(1,2].12.行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y (米)与汽车的车速x (千米/时)满足下列关系:y =x 2200+mx+n (m ,n 是常数).如图是根据多次实验数据绘制的刹车距离y (米)与汽车的车速x (千米/时)的关系图.(1)求出y 关于x 的函数解析式;(2)如果要求刹车距离不超过25.2米,求行驶的最大速度.解:(1)由题意及函数图象,得⎩⎨⎧402200+40m +n =8.4,602200+60m +n =18.6,解得m =1100,n =0,所以y =x 2200+x 100(x ≥0).(2)令x 2200+x100≤25.2,得-72≤x ≤70.∵x ≥0,∴0≤x ≤70.故行驶的最大速度是70千米/时.第二节函数的单调性与最值突破点(一) 函数的单调性基础联通 抓主干知识的“源”与“流”1.单调函数的定义增函数减函数定义一般地,设函数f (x )的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量x 1,x 2当x 1<x 2时,都有f (x 1)<f (x 2),那么就说函数f (x )在区间D 上是增函数当x 1<x 2时,都有f (x 1)>f (x 2),那么就说函数f (x )在区间D 上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的2.单调区间的定义若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间上具有(严格的)单调性,区间D 叫做函数y =f (x )的单调区间.考点贯通 抓高考命题的“形”与“神”判断函数的单调性1.复合函数单调性的规则若两个简单函数的单调性相同,则它们的复合函数为增函数;若两个简单函数的单调性相反,则它们的复合函数为减函数.即“同增异减”.2.函数单调性的性质(1)若f (x ),g (x )均为区间A 上的增(减)函数,则f (x )+g (x )也是区间A 上的增(减)函数,更进一步,即增+增=增,增-减=增,减+减=减,减-增=减;本节主要包括2个知识点: 1.函数的单调性;2.函数的最值.(2)若k >0,则kf (x )与f (x )单调性相同;若k <0,则kf (x )与f (x )单调性相反; (3)在公共定义域内,函数y =f (x )(f (x )≠0)与y =-f (x ),y =1f (x )单调性相反;(4)在公共定义域内,函数y =f (x )(f (x )≥0)与y =f (x )单调性相同;(5)奇函数在其关于原点对称的区间上单调性相同,偶函数在其关于原点对称的区间上单调性相反.[例1] (1)下列四个函数中,在(0,+∞)上为增函数的是( ) A .f (x )=3-x B .f (x )=x 2-3x C .f (x )=-1x +1D .f (x )=-|x |(2)已知函数f (x )=x 2-2x -3,则该函数的单调递增区间为( ) A .(-∞,1] B .[3,+∞) C .(-∞,-1]D .[1,+∞)[解析] (1)当x >0时,f (x )=3-x 为减函数; 当x ∈⎝⎛⎭⎫0,32时,f (x )=x 2-3x 为减函数, 当x ∈⎝⎛⎭⎫32,+∞时,f (x )=x 2-3x 为增函数; 当x ∈(0,+∞)时,f (x )=-1x +1为增函数; 当x ∈(0,+∞)时,f (x )=-|x |为减函数. (2)设t =x 2-2x -3,由t ≥0,即x 2-2x -3≥0,解得x ≤-1或x ≥3. 所以函数的定义域为(-∞,-1]∪[3,+∞).因为函数t =x 2-2x -3的图象的对称轴为x =1,所以函数t 在(-∞,-1]上单调递减,在[3,+∞)上单调递增.所以函数f (x )的单调递增区间为[3,+∞). [答案] (1)C (2)B [易错提醒](1)单调区间是定义域的子集,故求单调区间时应树立“定义域优先”的原则.(2)单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分开写,不能用并集符号“∪”连接,也不能用“或”连接.(3)函数的单调性是函数在某个区间上的“整体”性质,所以不能仅仅根据某个区间内的两个特殊变量x 1,x 2对应的函数值的大小就判断函数在该区间的单调性,必须保证这两个变量是区间内的任意两个自变量.函数单调性的应用应用(一) 比较函数值或自变量的大小[例2] 已知函数f (x )的图象关于直线x =1对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (e),则a ,b ,c 的大小关系为( ) A .c >a >b B .c >b >a C .a >c >bD .b >a >c[解析] 由f (x )的图象关于直线x =1对称,可得f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52.由x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,知f (x )在(1,+∞)上单调递减.∵1<2<52<e ,∴f (2)>f ⎝⎛⎭⎫52>f (e),∴b >a >c . [答案] D应用(二) 解函数不等式[例3] f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是( )A .(8,+∞)B .(8,9]C .[8,9]D .(0,8)[解析] 2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2,可得f [x (x -8)]≤f (9),因为f (x ) 是定义在(0,+∞)上的增函数,所以有⎩⎪⎨⎪⎧x >0,x -8>0,x (x -8)≤9,解得8<x ≤9.[答案] B [方法技巧]用单调性求解与抽象函数有关不等式的策略(1)在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.(2)有时,在不等式一边没有符号“f ”时,需转化为含符号“f ”的形式.如若已知f (a )=0,f (x -b )<0,则f (x -b )<f (a ).应用(三) 求参数的取值范围[例4] (1)如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是( )A.⎝⎛⎭⎫-14,+∞ B.⎣⎡⎭⎫-14,+∞C.⎣⎡⎭⎫-14,0 D.⎣⎡⎦⎤-14,0 (2)设函数f (x )=⎩⎪⎨⎪⎧-x 2+4x ,x ≤4,log 2x ,x >4.若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a 的取值范围是( )A .(-∞,1]B .[1,4]C .[4,+∞)D .(-∞,1]∪[4,+∞)[解析] (1)当a =0时,f (x )=2x -3,在定义域R 上是单调递增的,故在(-∞,4)上单调递增;当a ≠0时,二次函数f (x )的对称轴为x =-1a ,因为f (x )在(-∞,4)上单调递增, 所以a <0,且-1a ≥4,解得-14≤a <0.综上所述得-14≤a ≤0.(2)作出函数f (x )的图象如图所示,由图象可知f (x )在(a ,a +1)上单调递增,需满足a ≥4或a +1≤2,即a ≤1或a ≥4,故选D.[答案] (1)D (2)D[易错提醒](1)若函数在区间[a ,b ]上单调,则该函数在此区间的任意子区间上也是单调的. (2)对于分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.能力练通 抓应用体验的“得”与“失”1.[考点一]函数f (x )=|x -2|x 的单调减区间是( ) A .[1,2] B .[-1,0] C .[0,2]D .[2,+∞)解析:选A 由于f (x )=|x -2|x =⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2.结合图象(图略)可知函数的单调减区间是[1,2].2.[考点二·应用(一)]已知函数y =f (x )是R 上的偶函数,当x 1,x 2∈(0,+∞),x 1≠x 2时,都有(x 1-x 2)·[f (x 1)-f (x 2)]<0.设a =ln 1π,b =(ln π)2,c =ln π,则( )A .f (a )>f (b )>f (c )B .f (b )>f (a )>f (c )C .f (c )>f (a )>f (b )D .f (c )>f (b )>f (a )解析:选C 由题意可知f (x )在(0,+∞)上是减函数,且f (a )=f (|a |),f (b )=f (|b |),f (c )=f (|c |),又|a |=ln π>1,|b |=(ln π)2>|a |,|c |=12ln π,且0<12ln π<|a |,故|b |>|a |>|c |>0,∴f (|c |)>f (|a |)>f (|b |),即f (c )>f (a )>f (b ).3.[考点二·应用(二)](2017·太原模拟)定义在R 上的奇函数y =f (x )在(0,+∞)上单调递增,且f ⎝⎛⎭⎫12=0,则满足f log 19x >0的x 的集合为________.解析:由题意,y =f (x )为奇函数且f ⎝⎛⎭⎫12=0, 所以f ⎝⎛⎭⎫-12=-f ⎝⎛⎭⎫12=0, 又y =f (x )在(0,+∞)上单调递增,则y =f (x )在(-∞,0)上单调递增, 于是⎩⎪⎨⎪⎧log 19x >0,f log 19x >f ⎝⎛⎭⎫12或⎩⎪⎨⎪⎧log 19x <0,f log 19x >f ⎝⎛⎭⎫-12,即⎩⎪⎨⎪⎧log 19x >0,log 19x >12或⎩⎪⎨⎪⎧log19x <0,log 19x >-12,解得0<x <13或1<x <3.答案:⎝⎛⎭⎫0,13∪(1,3) 4.[考点二·应用(三)]已知f (x )=⎩⎪⎨⎪⎧(2-a )x +1,x <1,a x,x ≥1,满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是________.解析:由已知条件得f (x )为增函数,∴⎩⎪⎨⎪⎧2-a >0,a >1,(2-a )×1+1≤a ,解得32≤a <2,∴a 的取值范围是⎣⎡⎭⎫32,2.答案:⎣⎡⎭⎫32,25.[考点一]用定义法讨论函数f (x )=x +ax (a >0)的单调性.解:函数的定义域为{x |x ≠0}.任取x 1,x 2∈{x |x ≠0},且x 1<x 2,则f (x 1)-f (x 2)=x 1+ax 1-x 2-a x 2=(x 1-x 2)(x 1x 2-a )x 1·x 2=(x 1-x 2)⎝⎛⎭⎫1-a x 1x 2. 令x 1=x 2=x 0,1-ax 20=0可得到x 0=±a ,这样就把f (x )的定义域分为(-∞,-a ],[-a ,0),(0,a ],[a ,+∞)四个区间,下面讨论它的单调性.若0<x 1<x 2≤a ,则x 1-x 2<0,0<x 1x 2<a ,所以x 1x 2-a <0.所以f (x 1)-f (x 2)=x 1+ax 1-x 2-a x 2=(x 1-x 2)(x 1x 2-a )x 1·x 2>0,即f (x 1)>f (x 2),所以f (x )在(0,a ]上单调递减. 同理可得,f (x )在[a ,+∞)上单调递增,在(-∞,-a ]上单调递增,在[-a ,0)上单调递减.故函数f (x )在(-∞,-a ]和[a ,+∞)上单调递增,在[-a ,0)和(0,a ]上单调递减.突破点(二) 函数的最值基础联通 抓主干知识的“源”与“流” 1.函数的最值 前提设函数f (x )的定义域为I ,如果存在实数M 满足条件对于任意x ∈I ,都有f (x )≤M ;对于任意x ∈I ,都有f (x )≥M ; 存在x 0∈I ,使得f (x 0)=M存在x 0∈I ,使得f (x 0)=M结论 M 为最大值 M 为最小值2.函数最值存在的两条结论(1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点处取到.(2)开区间上的“单峰”函数一定存在最大或最小值.考点贯通 抓高考命题的“形”与“神”求函数的最值(值域)1.(1)判断或证明函数的单调性; (2)计算端点处的函数值; (3)确定最大值和最小值.2.分段函数的最值由于分段函数在定义域不同的子区间上对应不同的解析式,因而求其最值的常用方法是先求出分段函数在每一个子区间上的最值,然后取各区间上最大值中的最大者作为分段函数的最大值,各区间上最小值中的最小者作为分段函数的最小值.[典例] (1)函数y =x +x -1的最小值为________. (2)函数y =2x 2-2x +3x 2-x +1的值域为________.(3)函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.[解析] (1)法一:令t =x -1,且t ≥0,则x =t 2+1, ∴原函数变为y =t 2+1+t ,t ≥0. 配方得y =⎝⎛⎭⎫t +122+34, 又∵t ≥0,∴y ≥14+34=1.故函数y =x +x -1的最小值为1.法二:因为函数y =x 和y =x -1在定义域内均为增函数,故函数y =x +x -1在其定义域[1,+∞)内为增函数,所以当x =1时y 取最小值,即y min =1.(2)y =2x 2-2x +3x 2-x +1=2(x 2-x +1)+1x 2-x +1=2+1x 2-x +1=2+1⎝⎛⎭⎫x -122+34. ∵⎝⎛⎭⎫x -122+34≥34,∴2<2+1⎝⎛⎭⎫x -122+34≤2+43=103.故函数的值域为⎝⎛⎦⎤2,103. (3)当x ≥1时,函数f (x )=1x 为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2.故函数f (x )的最大值为2.[答案] (1)1 (2)⎝⎛⎦⎤2,103 (3)2 [方法技巧] 求函数最值的五种常用方法1.已知a >0,设函数f (x )=2 018x +1+2 0162 018x +1(x ∈[-a ,a ])的最大值为M ,最小值为N ,那么M +N =( )A .2 016B .2 018C .4 032D .4 034解析:选D 由题意得f (x )=2 018x +1+2 0162 018x +1=2 018-22 018x+1.∵y =2 018x +1在[-a ,a ]上是单调递增的,∴f (x )=2 018-22 018x +1在[-a ,a ]上是单调递增的,∴M =f (a ),N =f (-a ),∴M +N =f (a )+f (-a )=4 036-22 018a+1-22 018-a +1=4 034. 2.(2017·贵阳检测)定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -2⊕x ,x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12解析:选C 由已知得当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2,∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数,且1-2=13-2=-1.∴f (x )的最大值为f (2)=23-2=6.3.函数f (x )=⎝⎛⎭⎫13x -log 2(x +2)在区间[-1,1]上的最大值为________.解析:∵y =⎝⎛⎭⎫13x 和y =-log 2(x +2)都是[-1,1]上的减函数,∴f (x )=⎝⎛⎭⎫13x -log 2(x +2)在区间[-1,1]上是减函数,∴函数f (x )在区间[-1,1]上的最大值为f (-1)=3.答案:34.(2017·益阳模拟)已知函数f (x )的值域为⎣⎡⎦⎤38,49,则函数g (x )=f (x )+1-2f (x )的值域为________.解析:∵38≤f (x )≤49,∴13≤1-2f (x )≤12.令t =1-2f (x ),则f (x )=12(1-t 2)⎝⎛⎭⎫13≤t ≤12,令y =g (x ),则y =12(1-t 2)+t ,即y =-12(t -1)2+1⎝⎛⎭⎫13≤t ≤12.∴当t =13时,y 有最小值79;当t =12时,y 有最大值78.∴g (x )的值域为⎣⎡⎦⎤79,78. 答案:⎣⎡⎦⎤79,785.对于任意实数a ,b ,定义min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b .函数f (x )=-x +3,g (x )=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是________.解析:依题意,h (x )=⎩⎪⎨⎪⎧log 2x ,0<x ≤2,-x +3,x >2.当0<x ≤2时,h (x )=log 2x 是增函数,当x >2时,h (x )=3-x 是减函数,则h (x )max =h (2)=1.答案:1[全国卷5年真题集中演练——明规律] 1.(2015·新课标全国卷Ⅱ)设函数f (x )=ln(1+|x |)-11+x 2,则使得f (x )>f (2x -1)成立的x的取值范围是( )A.⎝⎛⎭⎫13,1B.⎝⎛⎭⎫-∞,13∪(1,+∞) C.⎝⎛⎭⎫-13,13 D.⎝⎛⎭⎫-∞,-13∪⎝⎛⎭⎫13,+∞ 解析:选A ∵f (-x )=ln(1+|-x |)-11+(-x )2=f (x ),∴函数f (x )为偶函数.∵当x ≥0时,f (x )=ln(1+x )-11+x 2,在(0,+∞)上y =ln(1+x )递增,y =-11+x 2也递增,根据单调性的性质知,f (x )在(0,+∞)上单调递增.综上可知:f (x )>f (2x -1)⇔f (|x |)>f (|2x -1|)⇔|x |>|2x -1|⇔x 2>(2x -1)2⇔3x 2-4x +1<0⇔13<x <1.故选A.2.(2013·新课标全国卷Ⅰ)若函数f (x )=(1-x 2)(x 2+ax +b )的图象关于直线x =-2对称,则f (x )的最大值为________.解析:∵点(1,0),(-1,0)在f (x )的图象上,且图象关于直线x =-2对称, ∴点(-5,0),(-3,0)必在f (x )的图象上.∴⎩⎪⎨⎪⎧f (-5)=(1-25)(25-5a +b )=0,f (-3)=(1-9)(9-3a +b )=0, 即⎩⎪⎨⎪⎧ 5a -b =25,3a -b =9,解得⎩⎪⎨⎪⎧a =8,b =15. ∴f (x )=(1-x 2)(x 2+8x +15) =-(x +1)(x -1)(x +3)(x +5) =-(x 2+4x +3)(x 2+4x -5) 令t =x 2+4x =(x +2)2-4≥-4, 则y =-(t +3)(t -5) =-(t 2-2t -15)=-(t -1)2+16.故当t =1时,f (x )max =16. 答案:16[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =ln(x +2) B .y =-x +1 C .y =⎝⎛⎭⎫12xD .y =x +1x解析:选A 函数y =ln(x +2)的增区间为(-2,+∞),所以在(0,+∞)上一定是增函数.2.如果二次函数f (x )=3x 2+2(a -1)x +b 在区间(-∞,1)上是减函数,则( ) A .a =-2 B .a =2 C .a ≤-2D .a ≥2解析:选C 二次函数的对称轴方程为x =-a -13,由题意知-a -13≥1,即a ≤-2. 3.函数y =|x |(1-x )在区间A 上是增函数,那么区间A 是( ) A .(-∞,0) B.⎣⎡⎦⎤0,12 C .[0,+∞) D.⎝⎛⎭⎫12,+∞ 解析:选B y =|x |(1-x )=⎩⎪⎨⎪⎧x (1-x ),x ≥0,-x (1-x ),x <0=⎩⎨⎧-⎝⎛⎭⎫x -122+14,x ≥0,⎝⎛⎭⎫x -122-14,x <0.画出函数的大致图象,如图所示.由图易知函数在⎣⎡⎦⎤0,12上单调递增,故选B.4.函数f (x )=2x -1在[-6,-2]上的最大值是________;最小值是________. 解析:因为f (x )=2x -1在[-6,-2]上是减函数,故当x =-6时,f (x )取最大值-27.当x=-2时,f (x )取最小值-23.答案:-27 -235.已知f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,ln x ,x ≥1的值域为R ,那么a 的取值范围是________.解析:要使函数f (x )的值域为R ,需使⎩⎪⎨⎪⎧1-2a >0,ln 1≤1-2a +3a ,∴⎩⎪⎨⎪⎧a <12,a ≥-1,∴-1≤a <12,即a 的取值范围是⎣⎡⎭⎫-1,12. 答案:⎣⎡⎭⎫-1,12[练常考题点——检验高考能力]一、选择题1.给定函数①y =x 12,②y =log 12(x +1),③y =|x -1|,④y =2x +1.其中在区间(0,1)上单调递减的函数序号是( )A .①②B .②③C .③④D .①④解析:选B ①y =x 12在(0,1)上递增;②∵t =x +1在(0,1)上递增,且0<12<1,故y =log12(x +1)在(0,1)上递减;③结合图象(图略)可知y =|x -1|在(0,1)上递减;④∵u =x +1在(0,1)上递增,且2>1,故y =2x+1在(0,1)上递增.故在区间(0,1)上单调递减的函数序号是②③.2.定义在R 上的函数f (x )的图象关于直线x =2对称,且f (x )在(-∞,2)上是增函数,则( )A .f (-1)<f (3)B .f (0)>f (3)C .f (-1)=f (3)D .f (0)=f (3)解析:选A 依题意得f (3)=f (1),且-1<1<2,于是由函数f (x )在(-∞,2)上是增函数得f (-1)<f (1)=f (3).3.函数y =⎝⎛⎭⎫132x 2-3x +1的单调递增区间为( ) A .(1,+∞) B.⎝⎛⎦⎤-∞,34 C.⎝⎛⎭⎫12,+∞ D.⎣⎡⎭⎫34,+∞ 解析:选B 令u =2x 2-3x +1=2⎝⎛⎭⎫x -342-18.因为u =2⎝⎛⎭⎫x -342-18在⎝⎛⎦⎤-∞,34上单调递减,函数y =⎝⎛⎭⎫13u 在R 上单调递减.所以y =⎝⎛⎭⎫132x 2-3x +1在⎝⎛⎦⎤-∞,34上单调递增,即该函数的单调递增区间为⎝⎛⎦⎤-∞,34. 4.已知f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a ,x <1,log a x ,x ≥1是(-∞,+∞)上的减函数,那么a 的取值范围是( )A .(0,1) B.⎝⎛⎭⎫0,13 C.⎣⎡⎭⎫17,13D.⎣⎡⎭⎫17,1解析:选C 当x =1时,log a 1=0,若f (x )为R 上的减函数,则(3a -1)x +4a >0在x <1时恒成立,令g (x )=(3a -1)x +4a ,则必有⎩⎪⎨⎪⎧ 3a -1<0,g (1)≥0,即⎩⎪⎨⎪⎧3a -1<0,3a -1+4a ≥0,解得17≤a <13.此时,log a x 是减函数,符合题意.5.(2017·九江模拟)已知函数f (x )=log 2x +11-x ,若x 1∈(1,2),x 2∈(2,+∞),则( )A .f (x 1)<0,f (x 2)<0B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0解析:选B ∵函数f (x )=log 2x +11-x 在(1,+∞)上为增函数,且f (2)=0,∴当x 1∈(1,2)时,f (x 1)<f (2)=0;当x 2∈(2,+∞)时,f (x 2)>f (2)=0,即f (x 1)<0,f (x 2)>0.6.(2017·日照模拟)若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是( )A .(-1,0)∪(0,1)B .(-1,0)∪(0,1]C .(0,1)D .(0,1]解析:选D ∵f (x )=-x 2+2ax 在[1,2]上是减函数,∴a ≤1,又∵g (x )=ax +1在[1,2]上是减函数,∴a >0,∴0<a ≤1.二、填空题7.已知函数f (x )为(0,+∞)上的增函数,若f (a 2-a )>f (a +3),则实数a 的取值范围为________.解析:由已知可得⎩⎪⎨⎪⎧a 2-a >0,a +3>0,a 2-a >a +3,解得-3<a <-1或a >3.所以实数a 的取值范围为(-3,-1)∪(3,+∞).答案:(-3,-1)∪(3,+∞) 8.设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的单调递减区间是________.解析:由题意知g (x )=⎩⎪⎨⎪⎧x 2,x >1,0,x =1,-x 2,x <1.函数图象如图所示,由函数图象易得函数g (x )的单调递减区间是[0,1).答案:[0,1)9.已知函数f (x )=⎩⎪⎨⎪⎧x +2x -3,x ≥1,lg (x 2+1),x <1,则f (x )的最小值是________.解析:当x ≥1时,x +2x -3≥2x ·2x -3=22-3,当且仅当x =2x ,即x =2时等号成立,此时f (x )min =22-3<0;当x <1时,lg(x 2+1)≥lg(02+1)=0,此时f (x )min =0.所以f (x )的最小值为22-3.答案:22-310.(2017·豫南名校联考)已知f (x )=⎩⎪⎨⎪⎧x 2-4x +3,x ≤0,-x 2-2x +3,x >0,不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立,则实数a 的取值范围是________.解析:作出函数f (x )的图象的草图如图所示,易知函数f (x )在R 上为单调递减函数,所以不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立等价于x +a <2a -x ,即x <a 2在[a ,a +1]上恒成立,所以只需a +1<a2,即a <-2.答案:(-∞,-2) 三、解答题 11.已知f (x )=xx -a(x ≠a ). (1)若a =-2,试证明f (x )在(-∞,-2)内单调递增; (2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围. 解:(1)证明:任设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2).∵(x 1+2)(x 2+2)>0,x 1-x 2<0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),∴f (x )在(-∞,-2)上单调递增.(2)任设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ).∵a >0,x 2-x 1>0,∴要。

高中函数经典试题及答案

高中函数经典试题及答案

高中函数经典试题及答案一、选择题1. 函数f(x) = 2x^2 - 3x + 1在x = 1处的导数是:A. 1B. 2C. 3D. 4答案:C2. 若f(x) = x^3 - 2x^2 + x - 2,求f'(x):A. 3x^2 - 4x + 1B. x^3 - 2x^2 + 1C. 3x^2 - 4xD. 3x^2 - 4x + x - 2答案:A3. 函数y = sin(x)的周期是:A. πB. 2πC. 3πD. 4π答案:B二、填空题4. 若f(x) = x^2 + 2x + 1,则f(-1) = _______。

答案:05. 函数g(x) = 3x + 5的反函数是 _______。

答案:g^(-1)(x) = (x - 5)/3三、解答题6. 已知函数h(x) = x^3 - 6x^2 + 9x - 2,求h'(x)。

答案:h'(x) = 3x^2 - 12x + 97. 求函数f(x) = 2x^3 - 5x^2 + 3x - 1在区间[1, 2]上的最大值和最小值。

答案:首先求导得到f'(x) = 6x^2 - 10x + 3。

令f'(x) = 0,解得x = 1 或 x = 5/3。

在区间[1, 2]上,f'(x) > 0,说明f(x)在此区间单调递增。

因此,最小值为f(1) = -2,最大值为f(2) = 3。

四、综合题8. 已知函数F(x) = ln(x) + x^2,求F'(x)并讨论其单调性。

答案:首先求导得到F'(x) = 1/x + 2x。

由于x > 0,1/x > 0,2x > 0,所以F'(x) > 0,说明F(x)在(0, +∞)上单调递增。

结束语:本试题涵盖了高中数学中函数的基本概念、导数及其应用、函数的周期性、反函数、最值问题等,旨在检验学生对高中函数知识点的掌握程度和应用能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数、基本初等函数1.指数函数(1)通过具体实例(如细胞的分裂,考古中所用的14C的衰减,药物在人体内残留量的变化等),了解指数函数模型的实际背景;(2)理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。

(3)理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点;(4)在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型2.对数函数(1)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及对简化运算的作用;(2)通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点;3.知道指数函数xay=与对数函数xyalog=互为反函数(a>0,a≠1)。

4.幂函数(1)了解幂函数的概念(2)结合函数y=x, ,y=x2, y=x3,y=x21,y=x1的图象,了解它们的变化情况二.【命题走向】指数函数、对数函数、幂函数是三类常见的重要函数,在历年的高考题中都占据着重要的地位。

从近几年的高考形势来看,对指数函数、对数函数、幂函数的考查,大多以基本函数的性质为依托,结合运算推理,能运用它们的性质解决具体问题。

为此,我们要熟练掌握指数、对数运算法则,明确算理,能对常见的指数型函数、对数型函数进行变形处理。

预测2010年对本节的考察是:1.题型有两个选择题和一个解答题;2.题目形式多以指数函数、对数函数、幂函数为载体的复合函数来考察函数的性质。

同时它们与其它知识点交汇命题,则难度会加大三.【要点精讲】1.指数与对数运算 (1)根式的概念:①定义:若一个数的n 次方等于),1(*∈>N n n a 且,则这个数称a 的n 次方根。

即若a x n =,则x 称a 的n 次方根)1*∈>N n n 且,1)当n 为奇数时,n a 的次方根记作na ;2)当n 为偶数时,负数a 没有n 次方根,而正数a 有两个n 次方根且互为相反数,记作)0(>±a a n ②性质:1)a a n n =)(;2)当n 为奇数时,a a nn =; 3)当n 为偶数时,⎩⎨⎧<-≥==)0()0(||a a a a a a n。

(2).幂的有关概念①规定:1)∈⋅⋅⋅=n a a a a n (ΛN *;2))0(10≠=a a ; n 个3)∈=-p a a p p (1Q ,4)m a a a n m n m,0(>=、∈n N * 且)1>n ②性质:1)r a a a a s r s r ,0(>=⋅+、∈s Q ); 2)r a a a sr s r ,0()(>=⋅、∈s Q ); 3)∈>>⋅=⋅r b a b a b a r r r ,0,0()( Q )。

(注)上述性质对r 、∈s R 均适用。

(3).对数的概念①定义:如果)1,0(≠>a a a 且的b 次幂等于N ,就是N a b=,那么数b 称以a 为底N 的对数,记作,log b N a =其中a 称对数的底,N 称真数1)以10为底的对数称常用对数,N10log 记作N lg ;2)以无理数)71828.2(Λ=e e 为底的对数称自然对数,Ne log ,记作N ln ;②基本性质:1)真数N为正数(负数和零无对数);2)1log=a;3)1log=aa;4)对数恒等式:Na N a=log。

③运算性质:如果,0,0,0,0>>≠>NMaa则1)NMMNaaaloglog)(log+=;2)NMNMaaalogloglog-=;3)∈=nMnMana(loglogR)④换底公式:),0,1,0,0,0(logloglog>≠>≠>=NmmaaaNNmma1)1loglog=⋅abba;2)bmnbana mloglog=。

2.指数函数与对数函数(1)指数函数:①定义:函数)1,0(≠>=aaay x且称指数函数,1)函数的定义域为R;2)函数的值域为),0(+∞;3)当10<<a时函数为减函数,当1>a时函数为增函数。

②函数图像:1)指数函数的图象都经过点(0,1),且图象都在第一、二象限;2)指数函数都以x轴为渐近线(当10<<a时,图象向左无限接近x轴,当1>a时,图象向右无限接近x轴);3)对于相同的)1,0(≠>a a a 且,函数xx a y a y -==与的图象关于y 轴对称③函数值的变化特征:(2)对数函数: ①定义:函数)1,0(log ≠>=a a x y a 且称对数函数,1)函数的定义域为),0(+∞;2)函数的值域为R ; 3)当10<<a 时函数为减函数,当1>a 时函数为增函数; 4)对数函数xy a log =与指数函数)1,0(≠>=a a a y x 且互为反函数 ②函数图像:1)对数函数的图象都经过点(0,1),且图象都在第一、四象限; 2)对数函数都以y 轴为渐近线(当10<<a 时,图象向上无限接近y 轴;当1>a 时,图象向下无限接近y 轴);4)对于相同的)1,0(≠>a a a 且,函数xy x y aa 1log log ==与的图象关于x 轴对称。

③函数值的变化特征:(3)幂函数1)掌握5个幂函数的图像特点10<<a1>a①100<<>y x 时, ②10==y x 时, ③10><y x 时 ①10>>y x 时, ②10==y x 时, ③100<<<y x 时,10<<a1>a①01<>y x 时, ②01==y x 时, ③010><<y x 时.①01>>y x 时, ②01==y x 时, ③100<<<y x 时.2)a>0时,幂函数在第一象限内恒为增函数,a<0时在第一象限恒为减函数 3)过定点(1,1)当幂函数为偶函数过(-1,1),当幂函数为奇函数时过(-1,-1) 当a>0时过(0,0)4)幂函数一定不经过第四象限要点考向一:基本初等函数问题考情聚焦:1.一元二次函数、指数函数、对数函数和幂函数是最重要的基本初等函数,在每年高考中都有涉及到直接考查它们定义、定义域和值域、图象和性质的问题。

2.常与函数的性质、方程、不等式综合命题,多以选择、填空题的形式出现,属容易题。

考向链接:1.一元二次、二次函数及指数\对数函数和幂函数的定义、定义域、值域、图象和性质是解决此类题目的关键,同时要注意数形结合、化归和分类讨论思想的应用。

2.熟记幂和对数的运算性质并能灵活运用。

例1:(2011四川文)4.函数1()12x y =+的图象关于直线y =x 对称的图象像大致是(天津文)5.已知244log 3.6,log 3.2,log 3.6a b c ===则A .a b c >>B .a c b >>C .b a c >>D .c a b >>例2:(2010·天津高考文科·T6)设554a log 4b log c log ===25,(3),,则( ) (A)a<c<b (B) )b<c<a (C) )a<b<c (D) )b<a<c 【命题立意】考查利用对数的性质及对数函数的单调性比较大小。

【方法技巧】比较对数函数值的大小问题,要特别注意分清底数是否相同,如果底数相同,直接利用函数的单调性即可比较大小;如果底数不同,不仅要利用函数的单调性,还要借助中间量比较大小。

要点考向二:函数与映射概念的应用问题考情聚焦:1.该考向在高考中主要考查与函数、映射概念相关的定义域、映射个数、函数值、解析式的确定与应用。

2.常结合方程、不等式及函数的有关性质交汇命题,属低、中档题。

考向链接:1.求函数定义域的类型和相应方法。

2.求f(g(x))类型的函数值时,应遵循先内后外的原则,面对于分段函数的求值问题,必须依据条件准确地找出利用哪一段求解,特别地对具有周期性的函数求值要用好其周期性。

3.求函数的解析式,常见命题规律是:先给出一定的条件确定函数的解析式,再研究函数的有关性质;解答的常用方法有待定系数法、定义法、换元法、解方程组法、消元法等。

4.映射个数的计算一般要分类计数。

例3:(2011福建文)8.已知函数f (x )=。

若f (a )+f (1)=0,则实数a 的值等于A .-3B .-1C .1D .3(2011山东文)3.若点(a,9)在函数3xy =的图象上,则tan=6a π的值为 (A )0 (B)3(C) 1 (D) 3(2011陕西文)6.方程cos x x =在(),-∞+∞内 ( ) (A)没有根 (B)有且仅有一个根 (C) 有且仅有两个根 (D )有无穷多个根(湖南文)8.已知函数2()1,()43,xf x eg x x x =-=-+-若有()(),f a g b =则b 的取值范围为 A .[22,22]-+ B .(22,22) C .[1,3] D .(1,3)(2011安徽文)(11)设()f x 是定义在R 上的奇函数,当x≤0时,()f x =22x x -,则(1)f = ..要点考向三:函数图象问题考情聚焦:1.函数图象作为高中数学的一个“重头戏”,是研究函数性质、方程、不等式的重要武器,已成为各省市高考命题的一个热点。

2.常以几类初等函数的图象为基础,结合函数的性质综合考查,多以选择、填空题的形式出现。

考向链接:1.基本初等函数的图象和性质,函数图象的画法以及图象的三种变换。

2.在研究函数性质特别是单调性、最值、零点时,要注意用好其与图象的关系、结合图象研究。

3.在研究一些陌生的方程和不等式时常用数形结合法求解。

例4:(2011陕西文)4. 函数13y x =的图像是 ( )(2010·山东高考·T11)函数22xy x =-的图象大致是( )【命题立意】本题考查函数的图象,函数的基础知识以及数形结合的思维能力, 考查了考生的分析问题解决问题的能力和运算求解能力。

要点考向四:函数性质问题考情聚焦:该考向是各省市高考命题大做文章的一个重点。

相关文档
最新文档