2014年浙江省温州市永嘉县瓯渠中学中考数学复习卷34:圆的基本性质

合集下载

浙江新中考2014届中考总复习课件(19)圆的有关概念及性质

浙江新中考2014届中考总复习课件(19)圆的有关概念及性质

A.
3
B.
5
C.
15
D.
17
3. (2012· 衢州 )如图, 点 A, B, C 在⊙ O 上, ∠ ACB = 30° ,则 sin∠ AOB 的值是 ( C )
1 A. 2
2 B. 2
3 C. 2
3 D. 3
4.(2013· 丽水)一条排水管的截面如图所示,已知 排水管的半径 OB= 10,水面宽 AB=16,则截面圆心 O 到水面的距离 OC 是 ( C )
考点五
圆的性质的应用
1.垂径定理的应用 用垂径定理进行计算或证明,常需作出圆心到弦 的垂线段 (即弦心距 ), 则垂足为弦的中点,再利用解由 半径、弦心距和弦的一半组成的直角三角形来达到求 解的目的. 2.借助在同圆或等圆中,同弧或等弧所对的圆周 角和圆心角相等进行角的等量代换;也可在同圆或等 圆中, 由相等的圆周角所对的弧(或弦 )相等, 进行弧(或 弦 )的等量代换.
在 Rt△ AOC 中, x2- (x- 2)2= 42, 解得 x= 5, ∴ AO = 5, AE= 10.在 Rt△ ABE 中 , BE= AE - AB = 10 - 8 = 6. 在 Rt△ CBE 中 , CE = BE + BC = 62+ 42= 2 13.故选 D. 答案:D
2 2 2 2 2 2
考点二 弦所对的两条弧.
垂径定理及推论
1.垂径定理:垂直于弦的直径平分弦,并且平分 如图,CD 是⊙ O 的直径,AB 为弦, CD⊥ AB ,垂足为 E,则 AE= EB, AD = DB , AC = BC . 2.推论:平分弦 (不是直径 )的直径垂直于弦,并 且平分弦所对的两条弧.
温馨提示 平分弦的直径不一定垂直于弦,只有被平分的弦 间的关系

浙江省永嘉县桥下镇瓯渠中学2014届中考数学总复习《第四讲 因式分解》基础演练 新人教版

浙江省永嘉县桥下镇瓯渠中学2014届中考数学总复习《第四讲 因式分解》基础演练 新人教版

《第四讲因式分解》基础演练【基础演练】1.(2012·温州)把多项式a3-4a分解因式,下列结果正确的是( ) A.a3-4a B.(a-2)(a+2)C.a(a+2)(a-2) D.(a-2)2-4解析因为a3-4a=a(a2-4)=a(a+2)(a-2),所以选C.答案 C2.(2012·恩施自治州)分解因式a4b-6a3b+9a2b的正确结果是( ) A.a2b(a2-6a+9) B.a2b(a+3)(a-3)C.b(a2-3)2D.a2b(a-3)2解析因为a4b-6a3b+9a2b=a2b(a2-6a+9)=a2b(a-3)2,所以选D.答案 D3.下列等式不成立的是 ( ) A.m2-16=(m-4)(m+4)B.m2+4m=m(m+4)C.m2-8m+16=(m-4)2D.m2+3m+9=(m+3)2答案 D4.把代数式3x3-6x2y+3xy2分解因式,结果正确的是( ) A.x(3x+y)(x-3y)B.3x(x2-2xy+y2)C.x(3x-y)2D.3x(x-y)2解析先利用提公因式法,再利用公式法分解即可,所以3x3-6x2y+3xy2=3x(x-y)2.答案D5.(2012·无锡)分解因式(x-1)2-2(x-1)+1的结果是( ) A.(x-1)(x-2) B.x2C.(x+1)2D.(x-2)2解析因为(x-1)2-2(x-1)+1=(x-1-1)2=(x-2)2,所以选D.答案 D6.(2012·广东广州)分解因式:a3-8a=________.解析a3-8a=a(a2-8).答案a(a2-8)7.分解因式:x2+3x=________.解析利用提公因式法分解即可.答案x(x+3)8.(2012·义乌)分解因式:x2-9=________.答案(x+3)(x-3)9.(2012·宜宾)分解因式:3m2-6mn+3n2=________.答案3(m-n)210.(2012·绍兴)分解因式:a3-a.解析a3-a=a(a2-1)=a(a-1)(a+1)答案(x2+2)(x+2)(x-2)11.(2012·苏州)已知a=2,a+b=3,求a2+ab的值.答案a2+ab=a(a+b)=2×3=6【能力提升】12.(2011·杭州)在实数范围内分解因式:x4-4=________.解析x4-4=(x2+2)(x2-2)=(x2+2)(x+2)(x-2)答案(x2+2)(x+2)(x-2)13.分解因式:16-8(x-y)+(x-y)2=________.解析实质考查完全平方公式因式分解,把(x-y)看成一个整体.答案(x-y-4)214.分解因式:a4-2a2+1=________.解析先利用完全平方公式分解,再利用平方差公式.a 4-2a 2+1=(a 2-1)2=[(a +1)(a -1)]2=(a +1)2(a -1)2.答案 (a +1)2(a -1)2 15.7或-5 15.(2012·天门)若多项式a 2+(k -1)ab +9b 2能运用完全平方公式进行分解因式,则实数k =________.解析 因原式可用完全平方公式分解,所以k -1=±6,∴k =1±6,即k =7或-5. 答案 7或-516.分解因式:8(x 2-2y 2)-x (7x +y )+xy .解 原式=8x 2-16y 2-7x 2-xy +xy=x 2-16y 2=(x +4y )(x -4y ) 17.(2012·宁波)已知:x =3+1,y =3-1,求x 2-2xy +y 2x 2-y 2的值. 解 x 2-2xy +y 2x 2-y 2=(x -y )2(x +y )(x -y )=x -y x +y又∵x +y =23,x -y =2 ∴原式=223=3318.先化简,再求值⎝ ⎛⎭⎪⎫x -1x -x -2x +1÷2x 2-x x 2+2x +1,其中x 满足x 2-x -1=0. 解 原式=(x -1)(x +1)-x (x -2)x (x +1)×x 2+2x +12x 2-x=2x -1x (x +1)·(x +1)2x (2x -1)=x +1x2 又当x 2-x -1=0,∴x 2=x +1,∴原式=x +1x +1=1. 19.先化简、再求值⎝ ⎛⎭⎪⎫1-1x +1÷x x 2-1,其中x =2+1. 解 原式=x +1-1x +1×x 2-1x =xx +1·(x +1)(x -1)x =x -1∴当x =2+1时, 原式=2+1-1= 2.20.(2012·广东珠海)先化简,再求值:⎝ ⎛⎭⎪⎫x x -1-1x 2-x ÷(x +1)其中x = 2. 解 原式=x 2-1x (x -1)×1x +1=(x -1)(x +1)x (x -1)·1x +1=1x∴当x =2时,原式=12=22. 21.(2012·广东广州)已知1a +1b =5(a ≠b ),求a b (a -b )-b a (a -b )的值. 解 ∵1a +1b=5, ∴a +b ab =5, ∴a b (a -b )-b a (a -b )=a 2ab (a -b )-b 2ab (a -b )=a 2-b 2ab (a -b )=(a +b )(a -b )ab (a -b ) =a +b ab= 5. 22.(2012·潍坊)阅读下列材料,你能得到什么结论?并利用(1)的结论分解因式.(1)形如x 2+(p +q )x +pq 型的二次三项式,有以下特点:①二次项系数是1;②常数项是两个数之积;③一次项系数是常数项的两个因数之和,把这个二次三项式进行分解因式,可以这样来解: x 2+(p +q )x +pq =x 2+px +qx +pq=(x 2+px )+(qx +pq )=x (x +p )+q (x +p )=(x +p )(x +q ).因此,可以得x 2+(p +q )x +pq =________.利用上面的结论,可以直接将某些二次项系数为1的二次三项式分解因式.(2)利用(1)的结论分解因式:①m2+7m-18;②x2-2x-15.(1)解析x2+(p+q)x+pq=(x+p)(x+q) 答案(x+p)(x+q)(2)解①m2+7m-18=m2+(9-2)m+(-2)×9=(m+9)(m-2)②x2-2x-15=x2+(-5+3)x+(-5)×3=(x-5)(x+3)。

2014年浙江省温州市中考数学试卷(附答案与解析)

2014年浙江省温州市中考数学试卷(附答案与解析)

数学试卷 第1页(共6页) 数学试卷 第2页(共6页)绝密★启用前浙江省温州市2014年初中毕业生学业考试数 学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算:(3)4-+的结果是( )A .7-B .1-C .1D .72.如图是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最多的一组是()A .510元B .1015元C .1520元D .2025元3.如图所示的支架是由两个长方形构成的组合体,则它的主视图是()ABC D 4.要使分式+12x x -有意义,则x 的取值应满足( )A .2x ≠B .1x ≠-C .2x =D .1x =- 5.计算:63m m 的结果是( )A .18mB .9mC .3mD .2m6.小明记录了一星期天的最高气温如下表,则这个星期每天的最高气温的中位数是( )A .22℃B 23℃C .24℃D .25℃ 7.一次函数24y x =+的图象与y 轴交点的坐标是( )A .(0,4)-B (0,4).C .(2,0)D .(2,0)-8.如图,已知A ,B ,C 在O 上,ACB 为优弧,下列选项中与AOB ∠相等的是( )A .2C ∠B .4B ∠C .4A ∠D .B C ∠+∠9.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x 人,女生有y 人.根据题意,列方程组正确的是( )A .523220x y x y +=⎧⎨+=⎩B .522320x y x y+=⎧⎨+=⎩C .202352x y x y +=⎧⎨+=⎩D .203252x y x y +=⎧⎨+=⎩10.如图,矩形ABCD 的顶点A 在第一象限,AB x ∥轴,AD y ∥轴,且对角线的交点与原点O 重合.在边AB 从小于AD 到大于AD 的变化过程中,若矩形ABCD 的周长始终保持不变,则经过动点A 的反比例函数(0)ky k x=≠中k 的值的变化情况是 ( ) A .一直增大 B .一直减小 C .先增大后减小 D .先减小后增大毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共624页) 数学试卷 第4页(共6页)第Ⅱ卷(非选择题 共110分)二、填空题(本大题共6小题,每小题5分,共30分.把答案填写在题中的横线上) 11.因式分解:23a a += .12.如图,直线AB ,CD 被BC 所截,若AB CD ∥,145∠=,235∠=,则3∠= 度.13.不等式324x ->的解是 .14.如图,在ABC △中,90C ∠=,2AC =,1BC =,则tan A 的值是.15.请举反例说明命题“对于任意实数x ,255x x ++的值总是正数”是假命题.你举的反例是x = (写出一个x 的值即可).16.如图,在矩形ABCD 中,8AD =,E 是边AB 上一点,且14AE AB =.O 经过点E ,与边CD 所在直线相切于点G (GEB ∠为锐角),与边AB 所在直线相交于另一点F ,且:2EG EF =.当边AD 或BC 所在的直线与O 相切时,AB 的长是.三、解答题(本大题共8小题,共80分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)(1)202(5)(3)2014⨯-+-+;(2)化简:2(1)2(1)a a ++-.18.(本小题满分8分)如图,在所给方格纸中,每个小正方形边长都是1,标号为①,②,③的三个三角形均为格点三角形(顶点在方格顶点处).请按要求将图甲、图乙中的指定图形分割成三个三角形,使它们与标号为①,②,③的三个三角形分别对应全等.图甲图乙(1)图甲中的格点正方形ABCD ; (2)图乙中的格点平行四边形ABCD .19.(本小题满分8分)一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球. (1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是13.求从袋中取出黑球的个数.20.(本小题满分10分)如图,在等边三角形ABC 中,点D ,E 分别在边BC ,AC 上,且DE AB ∥,过点E 作EF DE ⊥,交BC 的延长线于点F . (1)求F ∠的度数;(2)若2CD =,求DF 的长.21.(本小题满分10分)如图,抛物线22y x x c =-++与x 轴交于A ,B 两点,它的对称轴与x 轴交于点N ,过顶点M 作ME y ⊥轴于点E ,连接BE 交MN 于点F .已知点A 的坐标为(1,0)-.(1)求该抛物线的解析式及顶点M 的坐标;(2)求EMF △与BNF △的面积之比.数学试卷 第5页(共6页) 数学试卷 第6页(共6页)22.(本小题满分8分)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜地发现:当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明.下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中90DAB ∠=,求证:222a b c +=.图1图2证明:连接DB ,过点D 作BC 边上的高DF ,则DF EC b a ==-.21122ACD ABC ADCB S S S b ab +==+△△四边形,又211()22ADB DCB ADCB S S S c a b a =+=+-△△四边形,221111()2222b ab c a b a ∴+=+-. 222a b c ∴+=.请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中90DAB ∠=. 求证:222a b c +=.证明:连接 . ACBED S =五边形 , 又ACBED S =五边形 ,∴.222a b c ∴+=.23.(本小题满分12分)八(1)班五位同学参加学校举办的数学素养竞赛.试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分.赛后A ,B ,C ,D ,E 五位同学对照评分标准回忆(1)根据以上信息,求A ,B ,C ,D 四位同学成绩的平均分;(2)最后获知A ,B ,C ,D ,E 五位同学成绩分别是95分,81分,64分,83分,58分. ①求E 同学的答对题数和答错题数;②经计算,A ,B ,C ,D 四位同学实际成绩的平均分是80.75分,与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况.请指出哪位同学记错了,并写出他的实际答题情况(直接写出答案即可).24.(本小题满分14分)如图,在平面直角坐标系中,点A ,B 的坐标分别为(3,0)-,(0,6).动点P 从点O 出发,沿x 轴正方向以每秒1个单位的速度运动,同时动点C 从B 出发,沿射线BO 方向以每秒2个单位的速度运动.以CP ,CO 为邻边构造□PCOD ,在线段OP 延长线上取点E ,使PE AO =.设点P 运动的时间为t 秒.(1)当点C 运动到线段OB 的中点时,求t 的值及点E 的坐标;(2)当点C 在线段OB 上时,求证:四边形ADEC 为平行四边形; (3)在线段PE 上取点F ,使1PF =,过点F 作MN PE ⊥,截取2FM =,1FN =,且点M ,N 分别在一、四象限.在运动过程中□PCOD 的面积为S .①当点M ,N 中有一点落在四边形ADEC 的边上时,求出所有满足条件的t 的值;②若点M ,N 中恰好只有一个点落在四边形ADEC 的内部(不包括边界)时,直接写出S 的取值范围.毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共624页)数学试卷 第8页(共6页)39m m =故选5 / 12,男女生共,点【解析】145∠=︒,3∠是△2BCD ∠+∠【考点】平行线的性质及三角形外角和定理数学试卷 第11页(共624页)数学试卷 第12页(共6页)【解析】当O 与AD ,O 与CD 相切于点于点H ,则.则2EF =,:EG EF 8AD =,则OE r =,2OE OH =1,14AE AB =当O 与BC ,5OE =,,14AE AB =13AE =,等于4或12.【易错提醒】注意勾股定理、垂径定理及数学分类讨论思想的应用,应正确画出两种图形,不能漏掉一种18.【答案】(1)(2)△是等边三角形,)ABC=∠=DE AB EDC B//⊥EF DEDEF∴∠=∴∠=90F7 / 12数学试卷 第15页(共624页)数学试卷 第16页(共6页))ACB ∠=EDC 是等边三角形2ED DC ==DEF ∠=2DE DE ∴=【考点】等边三角形的性质与平行线的判定和性质2y x =-+∴顶点(14)M ,)(-10)A ,,抛物线的对称轴为直线点(30)B ,. 1EM =,BN //EM BN EMF BNF S S ∴=△△ACBEDS五边形又ACBEDS五边形a b c∴+=ACBEDS五边形ACBEDS五边形9 / 12数学试卷 第19页(共624页)数学试卷 第20页(共6页)在PCOD 中,POC ∴∠=∠又AO PE =AC ED =,//AC ED∴四边形ADEC 为平行四边形.在PCOD 中,又AO PE =四边形ADEC 3)(I )当点)6OB =,32(i)当点M在CE边上时(如图2)//MF OCMF EFCO EO=(ii)当点N在DE边上时(如图3).//NF PDFN EFPD EP∴=9(i)当点M在DE边上时(如图4)11 / 12数学试卷 第23页(共624页)数学试卷 第24页(共6页)(ii )当点N 在CE 边上时(如图5)//NF OC FN EF OC EO ∴=32t =在1278S ∴<≤。

2014中考数学知识点:圆的基本性质

2014中考数学知识点:圆的基本性质

2014中考数学知识点:圆的基本性质
中考频道在考试后及时公布各科中考试题答案和中考作文及试卷专家点评,请广大考生家长关注。

时光飞逝,暑假过去了,新学期开始了,不管情愿与否,无论准备与否,我们已走进初三,走近我们的梦!祝愿决战2014中考的新初三学员能加倍努力,在2014年中考中也能取得优异的成绩。

知识点三、圆的基本性质
1圆是轴对称图形,其对称轴是任意一条过圆心的直线。

2、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。

垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦对的弧。

3、圆具有旋转对称性,特别的圆是中心对称图形,对称中心是圆心。

圆心角定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。

4、圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。

圆周角定理推论1:在同圆或等圆中,同弧或等弧所对的圆周角相等。

圆周角定理推论2:直径所对的圆周角是直角;90°的圆周角所对的弦是直径。

圆小测试题

圆小测试题

2014—2015学年度九年级数学圆的基本性质小测试题姓名 得分一、选择题(30分)1、下面三个命题:①圆既是轴对称图形,又是中心对称图形;②垂直于弦的直 径平分这条弦;③相等的圆心角所对的弧相等。

其中真命题的是( ) A.①②; B. ①③; C. ②③; D. ①②③。

2、如图1,CD 是O 的直径,A B ,是O 上的两点,若20ABD ∠=,则ADC ∠的度数为( )A .40 B .50C .60D .70图1 图2 图33、如图2,点A 、B 、D 、C 是⊙O 上的四个点,且∠BOC=110°,则∠BAC 的 度数是( )A.110°B.70°C.100°D.55°4、已知AB 是⊙O 的径,AC, AD 是弦,且AB=2, AC=2,AD=1,则圆周角∠CAD 的度数是 ( )A. 45°或60°B. 60° C . 105° D. 15°或105° 5、如图3,AB 是⊙的直径,弦CD 垂直平分OB ,则∠BDC=( ) A. 20° B.30°C.40°D.50°6、已知⊙O 的半径为5cm ,P 为该圆内一点,且OP=1cm ,则过点P 的弦中,最短的弦长为( )A 、8cm ;B 、6cm ;C 、46cm ;D 、43cm 。

二、填空题(30分)1、半径为10cm 的圆内有两条平行弦,长度分别为12cm 、16cm ,则这两条平 所弦间的距离为 cm 。

2、已知AB 是半径为1的⊙O 的一条弦,且AB=3,则弦AB 所对圆周角的度数为 .3、如图.AB 为⊙O 的直径,点C 、D 在⊙O 上,∠BAC=50 o .则∠ADC= .4、已知:如图,四边形ABCD 是⊙O 的内 接四边形,∠BOD=140°,则∠DCE= .A BDCO第3题第4题5、在⊙O 中,AB 是直径,CD 是弦,若AB ⊥CD 于E ,且AE=2,EB=8,则 CD=__________.6、如图,AB 是⊙O 的直径,C, D, E 都是⊙O 上的点, 则∠1+∠2 =三、解答题(40分)1、已知:如图∠PAC=30°,在射线AC 上顺次截取AD=3cm ,DB=10cm ,以 DB 为直径作⊙O 交射线AP 于 E 、F 两点,求圆心O 到AP 的距离及EF 的长.2、已知:如图,AB 为O ⊙的直径,AB AC BC =,交O ⊙于点D ,AC 交O ⊙于点45E BAC ∠=,°.(1)求EBC ∠的度数;(2)求证:BD CD =.3、如图,⊙C 经过原点O 且与两坐标轴分别交于点A 与点B, 点A 的 坐标为(0, 4 ) , M 是圆上一点,∠BMO=120°,求:⊙C 的半径和圆 心C 的坐标.6题。

浙江省永嘉县桥下镇瓯渠中学2014届中考数学总复习《阶段检测一》基础演练 新人教版

浙江省永嘉县桥下镇瓯渠中学2014届中考数学总复习《阶段检测一》基础演练 新人教版

《阶段检测一》基础演练(时间:100分钟 满分:100分)一、选择题(每小题2分,共24分)1.(2012·陕西)如果零上5 ℃记作+5 ℃,那么零下7 ℃可记作( )A .-7 ℃B .+7 ℃C .+12 ℃D .-12 ℃解析 ∵“正”和“负”相对,∴零上5 ℃记作+5 ℃,则零下7 ℃可记作-7 ℃. 答案 A2.(2012·襄阳)一个数的绝对值等于3,这个数是( )A .3B .-3C .±3D.13解析 因为|3|=3,|-3|=3,所以绝对值等于3的数是±3. 答案 C3.(2012·衢州)下列四个数中,最小的数是`( )A .2B .-2C .0D .-12解析 ∵2>0,-2<0,-12<0,∴可排除A 、C ,∵|-2|=2,|-12|=12,2> 12,∴-2<-12.答案 B4.(2012·杭州)计算(2-3)+(-1)的结果是( )A .-2B .0C .1D .2解析 (2-3)+(-1)=-1+(-1)=-2. 答案 A5.(2012·义乌市)一个正方形的面积是15,估计它的边长大小在( )A .2与3之间B .3与4之间C .4与5之间D .5与6之间解析∵一个正方形的面积是15,∴该正方形的边长为15,∵9<15<16,∴3<15<4.答案 B6.(2012·宁波)(-2)0的值为( ) A.-2 B.0 C.1 D.2解析由a0=1(a≠0)易知(-2)0=1.答案 C7.(2012·湖州)计算2a-a,正确的结果是( ) A.-2a3B.1 C.2 D.a解析合并同类项字母及字母的指数不变,系数相加减.答案 D8.(2012·义乌市)下列计算正确的是( ) A.a3·a2=a6B.a2+a4=2a2C.(a3)2=a6D.(3a)2=a6解析A.a3·a2=a3+2=a5,故此选项错误;B.a2和a4不是同类项,不能合并,故此选项错误;D.(3a)2=9a2,故此选项错误;答案 C9. (2012·无锡)分解因式(x-1)2-2(x-1)+1的结果是( )A.(x-1)(x-2) B.x2C.(x+1)2D.(x-2)2解析(x-1)2-2(x-1)+1=(x-1-1)2=(x-2)10.答案 D10.(2012·自贡)下列计算正确的是( )A.3+2= 5B.3×2=6C.12-3= 3D.8÷2=4解析 A.3与2不能合并,所以A选项不正确;B. 3× 2= 6,所以B 选项不正确;C. 12- 3=2 3- 3= 3,所以C 选项正确;D.8÷ 2=2 2÷ 2=2,所以D 选项不正确. 答案 C11.(2012·云南)若a 2-b 2=14,a -b =12,则a +b 的值为( )A .-12B.12C .1D .2解析 ∵a 2-b 2=14,a -b =12,∴a 2-b 2=(a +b )(a -b )=12(a +b )=14,∴a +b =12.答案 B12.(2012·绍兴)在一条笔直的公路边,有一些树和路灯,每相邻的两盏灯之间有3棵树,相邻的树与树、树与灯间的距离都是10 m ,如图,第一棵树左边5 m 处有一个路牌,则从此路牌起向右510 m ~550 m 之间树与灯的排列顺序是( )解析 由题意得每40米就回到第一棵树的摆放位置,由于510÷40=12×40+30,所以再向右移动30米,恰好到第3棵树的位置,故此题应选B. 答案 B二、填空题(每小题2分,共16分)13.(2012·温州)化简:2(a +1)-a =________. 解析 原式=2a +2-a =a +2. 答案 a +214.(2012·宁夏)当________时,分式1a +2有意义. 解析 根据题意得,a +2≠0,解得a ≠-2. 答案 a ≠-215.(2012·遵义)计算:32- 2=________. 解析 原式=4 2- 2=3 2. 答案 3 216.(2012·遵义)猜数字游戏中,小明写出如下一组数:25,47,811,1619,3235,…小亮猜想出第六个数字是6467,根据此规律,第n 个数是________.解析 ∵分数的分子分别是:22=4,23=8,24=16,… 分数的分母分别是:22+3=7,23+3=11,24+3=19,… ∴第n 个数是2n2n +3.答案 2n2n +317.(2012·德州)5-12________12.(填“>”、“<”或“=”) 解析 ∵ 5>2, ∴ 5-1>2-1, ∴ 5-1>1 ∴5-12>12. 答案 >18.(2012·泰州)如图,数轴上的点P 表示的数是-1,将点P 向右移动3个单位长度得到点P ′,则点P ′表示的数是________. 解析 设P ′表示的数为a ,则|a +1|=3, ∵将点P 向右移动, ∴a >-1,即a +1>0, ∴a +1=3,解得a =2. 答案 219.(2012·衡阳)2012年我省各级政府将总投入594亿元教育经费用于“教育强省”战略,将594亿元用科学记数法(保留两个有效数字)表示为________.解析 根据题意先将594亿元写成594×108=5.94×1010元.再用四舍五入法保留两个有效数字即得5.9×1010元. 答案 5.9×1010元20.(2012·张家界)已知(x -y +3)2+ 2-y =0,则x +y =________. 解析 ∵(x -y +3)2+ 2-y =0,∴⎩⎪⎨⎪⎧x -y +3=0,2-y =0, 解得⎩⎪⎨⎪⎧x =-1,y =2则x +y =-1+2=1.答案 1三、解答题(共60分,解答应写出必要的文字说明、证明过程或推演步骤)21.(5分)计算:(2012·永州)6tan 30°+ 12+(-1)2 012+⎝ ⎛⎭⎪⎫1π0. 解 原式=6×33-2 3+1+1 =2.22.(5分)(2012·扬州)因式分解:m 3n -9mn . 解 原式=mn (m 2-9)=mn (m +3)(m -3)23.(5分)(2011·绍兴)(1)计算:|-2|+2sin 30°-(- 3)2+(tan 45°)-1. (2)先化简,再求值:2(a +3)(a -3)-a (a -6)+6,其中a = 2-1. 解 (1)原式=2+1-3+1=1;(2)原式=2a 2-6-a 2+6a +6=a 2+6a ,当a = 2-1时,原式=4 2-3.24.(5分)(2012·扬州)先化简:1-a -1a ÷a 2-1a 2+2a ,再选取一个合适的a 值代入计算.解 原式=1-a -1a ×a 2+2aa 2-1=1-a -1a ×a (a +2)(a +1)(a -1) =1-a +2a +1=a +1a +1-a +2a +1=-1a +1,a取除0、-2、-1、1以外的数,如取a=10,原式=-111.25.(8分)(2012·张家界)阅读材料:对于任何实数,我们规定符号的意义是=ad-bc.例如:=1×4-2×3=-2,=(-2)×5-4×3=-22.(1)按照这个规定,请你计算的值;(2)按照这个规定,请你计算:当x2-4x+4=0时,的值.解(1)=5×8-7×6=-2;(2)由x2-4x+4=0得(x-2)2=0,∴x=2,∴=3×1-4×1=-1.26.(8分)观察下面的点阵图和相应的等式,探究其中的规律:(1)在④和⑤后面的横线上分别写出相应的等式;(2)根据上面算式的规律,请计算:1+3+5+…+199=________;(3)请你用代数式表示出上面规律.(1)解析由图①知黑点个数为1个,由图②知在图①的基础上增加3个,由图③知在图②基础上增加5个,则可推知图④应为在图③基础上增加7个即有1+3+5+7=42,图⑤应为1+3+5+7+9=52.答案1+3+5+7=421+3+5+7+9=52(2)解析由(1)中的推理可知1+3+5+…+199共有100项即为第100个图,所以1+3+5+…+199=1002.答案 1002(3)由(1)中推理可知第n 个图形黑点个数为1+3+5+…+(2n -1)=n 2.27.(8分)观察下面的图形(每个正方形的边长均为1)和相应的等式,探究其中的规律: (1)写出第五个等式,并在右边给出的五个正方形上画出与之对应的图示;(2)猜想并写出与第n 个图形相对应的等式.解 观察等式与图形之间的关系我们可以看出等式左边式子是通过矩形面积公式求阴影部分面积的,而右边式子是通过整体面积减去空白部分面积得到阴影部分面积,利用此关系,可以得到答案为: (1)5×56=5-56(2)n ×n n +1=n -nn +1. 28.(8分)(2011·衢州)有足够多的长方形和正方形卡片,如下图:(1)如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙),请画出这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.这个长方形的代数意义是______________.(2)小明想用类似方法解释多项式乘法(a+3b)(2a+b)=2a2+7ab+3b2,那么需用2号卡片________张,3号卡片________张.解析(1)a2+3ab+2b2=(a+b)(a+2b);(2)1号正方形的面积为a2,2号正方形的面积为b2,3号长方形的面积为ab,所以需用2号卡片3张,3号卡片7张.答案图见解析a2+3ab+2b2=(a+b)(a+2b)(2)3 729.(8分)(2012·益阳)观察图形,解答问题:(1)按下表已填写的形式填写表中的空格:(2)请用你发现的规律求出图④中的数y 和图⑤中的数x . 解 (1)观察图形与表格算法可得如下规律:三个角上三个数的积除以三个角上三个数的和等于三角形中的数,由此易得结论.1(2)图④:5×(-8)×(-9)=360, 5+(-8)+(-9)= -12,y =360÷(-12)= -30,图⑤:1×x ×31+x +3=-3,解得x =-2.。

2014年浙江省温州市永嘉县瓯渠中学中考数学复习专题三:归纳猜想问题

2014年浙江省温州市永嘉县瓯渠中学中考数学复习专题三:归纳猜想问题

2014年浙江省温州市永嘉县瓯渠中学中考数学复习专题三:归纳猜想问题一、选择题(共5小题,每小题3分,满分15分)1.(3分)(2013•武昌区校级模拟)观察图中正方形四个顶点所标的数字规律,可知数2013应标在()A.第503个正方形的左下角B.第503个正方形的右下角C.第504个正方形的左上角D.第504个正方形的右下角2.(3分)(2011•台湾)已知世运会、亚运会、奥运会分别于公元2009年、2010年、2012年举办.若这三项运动会均每四年举办一次,则这三项运动会均不在下列哪一年举办?()A.公元2070年B.公元2071年C.公元2072年D.公元2073年3.(3分)(2011•安顺)一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是()A.(4,0)B.(5,0)C.(0,5)D.(5,5)4.(3分)(2011•德州)图1是一个边长为1的等边三角形和一个菱形的组合图形,菱形边长为等边三角形边长的一半,以此为基本单位,可以拼成一个形状相同但尺寸更大的图形(如图2),依此规律继续拼下去(如图3),…,则第n个图形的周长是()A.2n B.4n C.2n+1D.2n+25.(3分)(2011•黔南州)观察下列算式:21=2,22=4,23=8,24=16,….根据上述算式中的规律,请你猜想210的末位数字是()A.2 B.4 C.8 D.6二、填空题(共3小题,每小题3分,满分9分)6.(3分)(2011•保山)下面是按一定规律排列的一列数:,,,,…那么第n个数是.7.(3分)(2012•佛山)规律是数学研究的重要内容之一.初中数学中研究的规律主要有一些特定的规则、符号(数)及其运算规律、图形的数值特征和位置关系特征等方面.请你解决以下与数的表示和运算相关的问题:(1)写出奇数a用整数n表示的式子;(2)写出有理数b用整数m和整数n表示的式子;(3)函数的研究中,应关注y随x变化而变化的数值规律(课本里研究函数图象的特征实际上也是为了说明函数的数值规律).2请回答:①当x的取值从0开始每增加个单位时,y的值变化规律是什么?②当x的取值从0开始每增加个单位时,y的值变化规律是什么?8.(3分)(2014•永嘉县校级模拟)我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b2展开式中的系数等等.(1)根据上面的规律,则(a+b)5的展开式=.(2)利用上面的规律计算:25﹣5×24+10×23﹣10×22+5×2﹣1=.2014年浙江省温州市永嘉县瓯渠中学中考数学复习专题三:归纳猜想问题参考答案与试题解析一、选择题(共5小题,每小题3分,满分15分)1.(3分)(2013•武昌区校级模拟)观察图中正方形四个顶点所标的数字规律,可知数2013应标在()A.第503个正方形的左下角B.第503个正方形的右下角C.第504个正方形的左上角D.第504个正方形的右下角【分析】观察图形得到一个正方形从左上角开始按逆时针标四个数,而2013=4×503+1,则可判断数2013应标在第504个正方形的左上角.【解答】解:∵2013=4×503+1,∴数2013应标在第504个正方形的左上角.故选C.【点评】本题考查了规律型:图形的变化类:通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.2.(3分)(2011•台湾)已知世运会、亚运会、奥运会分别于公元2009年、2010年、2012年举办.若这三项运动会均每四年举办一次,则这三项运动会均不在下列哪一年举办?()A.公元2070年B.公元2071年C.公元2072年D.公元2073年【分析】由已知,我们可总结出每4年举办一次,只要每个选项与2009,2010,2012的差有一个是4的倍数,则能在这一年此项运动会,否则这三项运动会均不在这一年举办.【解答】解:A、2070﹣2009=61,2070﹣2010=60,2070﹣2012=58,其中60是4的倍数,所以亚运会能在2070年举办,则世运会在2069年、奥运会在2072年举办.B、2071﹣2009=62,2071﹣2010=61,2071﹣2012=59,均不是4的倍数,所以,这三项运动会均不在2071年举办.C、2072﹣2009=63,2072﹣2010=62,2072﹣2012=60,60是4的倍数,所以奥运会能在2072年举办,则世运会在2069年、亚运会在2071年举办.D、2073﹣2009=64,2073﹣2010=63,2073﹣2012=61,64是4的倍数,所以世运会能在2073年举办,则亚运会在2074年、奥运会在2076年举办.故选:B.【点评】此题考查的知识点是数字变化类问题,解题的关键是要通过每4年举办一次,求出每个选项与2009,2010,2012的差,看是否有4的倍数确定答案.3.(3分)(2011•安顺)一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是()A.(4,0)B.(5,0)C.(0,5)D.(5,5)【分析】由题目中所给的质点运动的特点找出规律,即可解答.【解答】解:跳蚤运动的速度是每秒运动一个单位长度,(0,0)→(0,1)→(1,1)→(1,0)用的秒数分别是1秒,2秒,3秒,到(2,0)用4秒,到(2,2)用6秒,到(0,2)用8秒,到(0,3)用9秒,到(3,3)用12秒,到(4,0)用16秒,依此类推,到(5,0)用35秒.故第35秒时跳蚤所在位置的坐标是(5,0).故选:B.【点评】本题主要考查点的坐标问题,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而可以得到到达每个点所用的时间.4.(3分)(2011•德州)图1是一个边长为1的等边三角形和一个菱形的组合图形,菱形边长为等边三角形边长的一半,以此为基本单位,可以拼成一个形状相同但尺寸更大的图形(如图2),依此规律继续拼下去(如图3),…,则第n个图形的周长是()A.2n B.4n C.2n+1D.2n+2【分析】从图1到图3,周长分别为4,8,16,由此即可得到通式,利用通式即可求解.【解答】解:下面是各图的周长:图1中周长为4;图2周长为8;图3周长为16;所以第n个图形周长为2n+1.故选C.【点评】本题考查了图形的变化规律,首先从图1到图3可得到规律,然后利用规律得到一般结论解决问题.5.(3分)(2011•黔南州)观察下列算式:21=2,22=4,23=8,24=16,….根据上述算式中的规律,请你猜想210的末位数字是()A.2 B.4 C.8 D.6【分析】本题需先根据已知条件,找出题中的规律,即可求出210的末位数字.【解答】解:∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…∴210的末位数字是4.故选B.【点评】本题主要考查了有理数的乘方,根据题意找出规律是本题的关键.二、填空题(共3小题,每小题3分,满分9分)6.(3分)(2011•保山)下面是按一定规律排列的一列数:,,,,…那么第n个数是.【分析】根据题意,首先从各个数开始分析,n=1时,分子:2=(﹣1)2•21,分母:3=2×1+1;n=2时,分子:﹣4=(﹣1)3•22,分母:5=2×2+1;…,即可推出第n个数为【解答】解:∵n=1时,分子:2=(﹣1)2•21,分母:3=2×1+1;n=2时,分子:﹣4=(﹣1)3•22,分母:5=2×2+1;n=3时,分子:8=(﹣1)4•23,分母:7=2×3+1;n=4时,分子:﹣16=(﹣1)5•24,分母:9=2×4+1;…,∴第n个数为:故答案为:【点评】本题主要考查通过分析数的变化总结归纳规律,解题的关键在于求出分子、分母与n的关系.7.(3分)(2012•佛山)规律是数学研究的重要内容之一.初中数学中研究的规律主要有一些特定的规则、符号(数)及其运算规律、图形的数值特征和位置关系特征等方面.请你解决以下与数的表示和运算相关的问题:(1)写出奇数a用整数n表示的式子;(2)写出有理数b用整数m和整数n表示的式子;(3)函数的研究中,应关注y随x变化而变化的数值规律(课本里研究函数图象的特征实际上也是为了说明函数的数值规律).2请回答:①当x的取值从0开始每增加个单位时,y的值变化规律是什么?②当x的取值从0开始每增加个单位时,y的值变化规律是什么?【分析】(1)n是任意整数,偶数是能被2整除的数,则偶数可以表示为2n,因为偶数与奇数相差1,所以奇数可以表示为2n+1.(2)根据有理数是整数与分数的统称,而所有的整数都可以写成分数的形式,据此可以得到答案;(3)根据图表计算出相应的数值后即可看出y随着x的变化而变化的规律;【解答】解:(1)n是任意整数,则表示任意一个奇数的式子是:a=2n+1;(2)有理数b=(n≠0);(3)①当x=0时,y=0,当x=时,y=,当x=1时,y=1,当x=时,y=.故当x的取值从0开始每增加个单位时,y的值依次增加、、…②当x=0时,y=0,当x=时,y=,当x=时,y=,当x=时,y=,故当x的取值从0开始每增加个单位时,y的值依次增加、、…【点评】本题考查了二次函数的性质及实数的性质,解题的关键是发现规律并利用规律解题.8.(3分)(2014•永嘉县校级模拟)我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b2展开式中的系数等等.(1)根据上面的规律,则(a+b)5的展开式=a5+5a4b+10a3b2+10a2b3+5ab4+b5.(2)利用上面的规律计算:25﹣5×24+10×23﹣10×22+5×2﹣1=1.【分析】(1)根据规律能得出(a+b)1,(a+b)2,(a+b)3,(a+b)4的值,即可推出(a+b)5的值;(2)根据规律得出原式=(2﹣1)5,求出即可.【解答】解:(1)∵(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3,(a+b)4=a4+4a3b+6a2b2+4ab3+b4,∴(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5,故答案为:(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5;(2)25﹣5×24+10×23﹣10×22+5×2﹣1=(2﹣1)5=15=1(根据(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5的逆运用得出的),故答案为:1.【点评】本题考查了完全平方公式的应用,解此题的关键是找出规律,题目比较好,但是有一定的难度.参与本试卷答题和审题的老师有:gsls;马兴田;lbz;Liuzhx;ZHAOJJ;sjzx;zjx111(排名不分先后)菁优网2016年6月8日。

2014年温州市中考数学真题及答案解析

2014年温州市中考数学真题及答案解析

2014年浙江省初中毕业生学业考试(温州市卷)数学试题卷满分150分,考试时间为120分钟参考公式:一元二次方程)0(02≠=++a c bx ax 的求根公式是aac b b x 242-±-=(ac b 42-≥0)卷 Ⅰ一、选择题(本题有10小题,每小题4分,共40分) 1. 计算4)3(+-的结果是A. -7B. -1C. 1D. 72. 右图是某班45名同学爱心捐款额的频数分布直方图(每组含前一 个边界值,不含后一个边界值),则捐款人数最多的一个组是A. 5~10元B. 10~15元C. 15~20元D. 20~25元 3. 如图所示的支架是由两个长方体构成的组合体,则它的主视图是4. 要使分式21-+x x 有意义,则x 的取值应满足 A. 2≠x B. 1-≠x C. 2=x D. 1-=x 5. 计算36m m ⋅的结果是A. 18m B. 9m C. 3m D. 2m6. 小明记录了一星期每天的最高气温如下表,则这个星期每天最高气温的中位数是星期 一 二 三 四 五 六 日 最高气温(℃)22242325242221A. 22℃B. 23℃C. 24℃D. 25℃ 7. 一次函数42+=x y 的图像与y 轴交点的坐标是A. (0,-4)B. (0,4)C. (2,0)D. (-2,0) 8. 如图,已知点A ,B ,C 在⊙O 上,为优弧,下列选项中与∠AOB 相等的是A. 2∠CB. 4∠BC. 4∠AD. ∠B+∠C9. 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,列方程组正确的是 A. ⎩⎨⎧=+=+202352y x y x B.⎩⎨⎧=+=+203252y x y x C. ⎩⎨⎧=+=+523220y x y x D. ⎩⎨⎧=+=+522320y x y x 10. 如图,矩形ABCD 的顶点A 在第一象限,AB ∥x 轴,AD ∥y 轴,且对角线的交点与原点重合,在边AB从小于AD 到大于AD 的变化过程中,若矩形ABCD 的周长始终保持不变,则经过动点A 的反比例函数)0(≠=k xky 中,k 的值的变化情况是 A. 一直增大 B. 一直减小 C. 先增大后减小 D. 先减小后增大 二、填空题(本题有6小题,每小题5分,共30分) 11. 因式分解:=+a a 32▲12. 如图,直线AB ,CD 被BC 所截,若AB ∥CD ,∠1=45°,∠2=35°,则∠3= ▲ 度 13. 不等式423>-x 的解是 ▲14. 如图,在△ABC 中,∠C=90°,AC=2,BC=1,则tanA 的值是 ▲15. 请举反例说明“对于任意实数x ,552++x x 的值总是正数”是假命题,你举的反例是x = ▲ (写出一个x 的值即可)16. 如图,在矩形ABCD 中,AD=8,E 是边AB 上一点,且AE=41AB ,⊙O 经过点E ,与边CD 所在直线相切于点G (∠GEB 为锐角),与边AB 所在直线相较于另一点F ,且EG :EF=2:5。

浙江省永嘉县桥下镇瓯渠中学2014届中考数学总复习《阶段检测三》基础演练 新人教版

浙江省永嘉县桥下镇瓯渠中学2014届中考数学总复习《阶段检测三》基础演练 新人教版

《阶段检测三》基础演练(时间:100分钟 满分:100分)一、选择题(每小题2分,共20分)1.(2012·某某)一次函数y =-2x +4的图象与y 轴的交点坐标是( ) A.(0,4) B.(4,0) C.(2,0) D.(0,2)解析 令x =0,得y =-2×0+4=4, 则函数图象与y 轴的交点坐标是(0,4). 答案 A2.(2012·某某)矩形的长为x ,宽为y ,面积为9,则y 与x 之间的函数关系式用图象表示大致为( )解析 矩形的长为x ,宽为y ,面积为9,则y 与x 之间的函数关系式是:y =9x(x >0).是反比例函数,且图象只在第一象限. 答案 C3.(2012·某某)将抛物线y =3x 2向左平移2个单位,再向下平移1个单位,所得抛物线为( )A.y =3(x +2)2-1 B.y =3(x -2)2+1 C.y =3(x -2)2-1D.y =3(x +2)2+1解析 由“左加右减”的原则可知,将抛物线y =3x 2向左平移2个单位所得抛物线的解析式为:y =3(x +2)2;由“上加下减”的原则可知,将抛物线y =3(x +2)2向下平移1个单位所得抛物线的解析式为:y =3(x +2)2-1. 答案 A4.(2012·某某)点(-1,y 1),(2,y 2),(3,y 3)均在函数y =6x的图象上,则y 1,y 2,y 3的大小关系是( ) A.y 3<y 2<y 1 B.y 2<y 3<y 1 C.y 1<y 2<y 3D.y 1<y 3<y 2解析 ∵函数y =6x中k =6>0,∴此函数的图象在一、三象限,且在每一象限内y 随x 的增大而减小, ∵-1<0,∴点(-1,y 1)在第三象限, ∴y 1<0,∵0<2<3,∴(2,y 2),(3,y 3)在第一象限,∴y 2>y 3>0, ∴y 2>y 3>y 1. 答案 D5.(2012·某某)当a ≠0时,函数y =ax +1与函数y =ax在同一坐标系中的图象可能是( )解析 当a >0时,y =ax +1过一、二、三象限,y =a x过一、三象限;当a <0时,y =ax +1过一、二、四象限,y =ax过二、四象限.答案 C6.(2012·某某)已知二次函数y =ax 2+bx +c (a <0)的图象如图所示,当-5≤x ≤0时,下列说法正确的是( ) A.有最小值-5、最大值0 B.有最小值-3、最大值6 0、最大值6D.有最小值2、最大值6 解析 由二次函数的图象可知, ∵-5≤x ≤0,∴当x =-2时函数有最大值,y 最大=6; 当x =-5时函数值最小,y 最小=-3. 答案 B7.已知二次函数y =ax 2+bx +c 的图象如图所示,那么一次函数y =bx +c 和反比例函数y =a x在同一平面直角坐标系中的图象大致是( ).解析 ∵二次函数图象开口向下,∴a <0, ∵对称轴x =-b2a <0,∴b <0,∵二次函数图象经过坐标原点,∴c =0,∴一次函数y =bx +c 过第二、四象限且经过原点,反比例函数y =ax位于第二、四象限,纵观各选项,只有C 选项符合. 答案 C8.已知二次函数y =ax 2+bx +c 的图象如图所示,对称轴为直线x =1,则下列结论正确的是 ( ).A.ac >0B.方程ax 2+bx +c =0的两根是x 1=-1,x 2=3 C.2a -b =0D.当y>0时,y随x的增大而减小解析根据抛物线的开口方向,对称轴,与x轴、y轴的交点,逐一判断:A.∵抛物线开口向下,与y轴交于正半轴,∴a<0,c>0,ac<0,故本选项错误;B.∵抛物线对称轴是x=1,与x轴交于(3,0),∴抛物线与x轴另一交点为(-1,0),即方程ax2+bx+c=0的两根是x1=-1,x2=3,故本选项正确;C.∵抛物线对称轴为x=-b2a=1,∴2a+b=0,故本选项错误;D.∵抛物线对称轴为x=1,开口向下,∴当x>1时,y随x B.答案 B9.下列四幅图象近似刻画两个变量之间的关系,请按图象顺序将下面四种情景与之对应排序().①一辆汽车在公路上匀速行驶(汽车行驶的路程与时间的关系)②向锥形瓶中匀速注水(水面的高度与注水时间的关系)③将常温下的温度计插入一杯热水中(温度计的读数与时间的关系)④一杯越来越凉的水(水温与时间的关系)A. ①②④③B.③④②①C.①④②③D.③②④①解析本题考查的是变量关系图象的识别,借助生活经验,弄明白一个量是如何随另一个量的变化而变化是解决问题的关键.①一辆汽车在公路上匀速行驶(汽车行驶的路程与时间的关系),路程是时间的正比例函数,对应第四个图象;②向锥形瓶中匀速注水(水面的高度与注水时间的关系),高度是注水时间的函数,由于锥形瓶中的直径是下大上小,故先慢后快,对应第二个函数的图象;③将常温下的温度计插入一杯热水中(温度计的读数与时间的关系),温度计的读数随时间的增大而增大,由于温度计的温度在放入热水前有个温度,故对应第一个图象; ④一杯越来越凉的水(水温与时间的关系),水温随时间的增大而减小,由于水冷却到室温后不变化,故对应第三个图象;综合以上,得到四个图象对应的情形的排序为③②④①. 答案D10.如图,在矩形中截取两个相同的圆作为圆柱的上、下底面,剩余的矩形作为圆柱的侧面y 和x ,则y 与x 的函数图象大致是 ( ).解析 由y -x 2等于该圆的周长,得列方程式y -x 2=π2x ,即y =⎝ ⎛⎭⎪⎫π2+12x .∴y 与x A.答案 A二、填空题(每小题2分,共20分)11.(2012·某某)试写出图象位于第二、四象限的一个反比例函数的解析式y = W.解析 ∵反比例函数位于二、四象限, ∴k <0,解析式为:y =-1x.故答案为y =-1x,答案不唯一.答案 y =-1x,答案不唯一l 甲、l 乙分别表示甲、乙两人前往目的地所行驶的路程S (千米)随时间t (分)变化的函数图象,则每分钟乙比甲多行驶千米.解析 ∵据函数图形知:甲用了30分钟行驶了12千米,乙用(18-6)分钟行驶了12千米, ∴甲每分钟行驶12÷30=25千米,乙每分钟行驶12÷12=1千米, ∴每分钟乙比甲多行驶1-25=35千米.答案 3513.(2012·某某)一次函数y =kx +b (k ,b 为常数,且k ≠0)的图象如图所示,根据图象信息可求得关于x 的方程kx +b =0的解为W.解析 ∵一次函数y =kx +b 过(2,3)(0,1)点,∴⎩⎪⎨⎪⎧3=2k +b , 1=b 解得: k =1,b =1, 一次函数的解析式为:y =x +1,∵一次函数y =x +1的图象与x 轴交与(-1,0)点, ∴关于x 的方程kx +b =0的解为x =-1. 答案x =-114.(2012·某某)如图,某某建邦大桥有一段抛物线型的拱梁,抛物线的表达式为y =ax 2+bx .小强骑自行车从拱梁一端O 沿直线匀速穿过拱梁部分的桥面OC ,当小强骑自行车行驶10秒时和26秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC 共需秒.解析 设在10秒时到达A 点,在26秒时到达B , ∵10秒时和26秒时拱梁的高度相同,∴A ,BA 到B 需要16秒,则从A 到D 需要8秒. ∴从O 到D 需要10+8=18秒. ∴从O 到C 需要2×18=36秒. 答案 3615.(2012·聊城)如图,在直角坐标系中,正方形的中心在原点O ,且正方形的一组对边与x 轴平行,点P (3a ,a )是反比例函数y =k x(k >0)的图象上与正方形的一个交点.若图中阴影部分的面积等于9,则这个反比例函数的解析式为W.解析 ∵反比例函数的图象关于原点对称, ∴阴影部分的面积和正好为正方形面积的14,设正方形的边长为b ,则14b 2=9,解得b =6,∵正方形的中心在原点O , ∴直线AB 的解析式为:x =3, ∵点P (3a ,a )在直线AB 上, ∴3a =3,解得a =1,∴P (3,1),∵点P 在反比例函数y =k x(k >0)的图象上, ∴k =3,∴此反比例函数的解析式为:y =3x.答案 y =3x16.在函数y =1-2xx -12中,自变量x 的取值X 围是. 解析 要使函数有意义,则⎩⎪⎨⎪⎧1-2x ≥0x -12≠0,所以x <12.答案 x <1217.已知点P (2a +1,2a -3)关于x 轴的对称点在第一象限,则a 的取值X 围是 .P (2a +1,2a -3)在第四象限,则点P的横坐标为正,纵坐标为负,可得⎩⎪⎨⎪⎧2a +1>02a -3<0,易求得结果为-12<a <32.答案 -12<a <3218.根据下图所示程序计算函数值,若输入的x 的值为52,则输出的函数值为.解析 因为2≤52≤4,把x =52代入y =1x 得,y =25.答案 2519.在平面直角坐标系中,一青蛙从点A (-1,0)处向右跳2个单位长度,再向上跳2个单位长度到点A ′处,则点A ′的坐标为.A (-1,0)向右跳2个单位长度,-1+2=1,向上2个单位,0+2=2,所以点A ′的坐标为(1,2). 答案 (1,2)20.在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换.如图,已知等边三角形ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把△ABC 经过连续9次这样的变换得到△A 9B 9C 9,则点A 的对应点A 9的坐标是.解析 可求得点A (-2,-1-3)经过一次变换后得点A 1(0,1+3), 第二次后A 2(2,-1-3) 第三次A 3(4,1+3)第四次A 4(6,-1-3) 第五次A 5(8,1+3) 第六次A 6(10,-1-3) 第七次A 7(12,1+3) 第八次A 8(14,-1-3) 第九次A 9(16,1+3). 答案 (16,1+3)三、解答题(共60分,解答应写出必要的文字说明、证明过程或推演步骤) 21.(10分)(2012·某某)如图,一次函数y 1=kx +b 的图象与反比例函数y 2=mx的图象相交于点A (2,3)和点B ,与x 轴相交于点C (8,0).(1)求这两个函数的解析式; (2)当x 取何值时,y 1>y 2.解 (1)把 A (2,3)代入y 2=m x,得m =6. 把 A (2,3)、C (8,0)代入y 1=kx +b , 得k =-12,b =4,∴这两个函数的解析式为y 1=-12x +4, y 2=6x;(2) 由题意得⎩⎪⎨⎪⎧y =-12x +4,y =6x解得⎩⎪⎨⎪⎧x 1=6,y 1=1⎩⎪⎨⎪⎧x 2=2,y 2=3.当x <0 或 2<x <6 时,y 1>y 2.22.(10分)(2012·某某)游泳池常需进行换水清洗,图中的折线表示的是游泳池换水清洗过程“排水——清洗——灌水”中水量y (m 3)与时间 t (min )之间的函数关系式. (1)根据图中提供的信息,求整个换水清洗过程水量y (m 3)与时间t (min )的函数解析式;(2)问:排水、清洗、灌水各花多少时间?解 (1)排水阶段:设解析式为:y =kt +b , 图象经过(0,1 500),(25,1 000),则:⎩⎪⎨⎪⎧b =1 500, 25k +b =1 000 解得: k =-20,b =1 500,故排水阶段解析式为:y =-20t +1 500; 清洗阶段:y =0,灌水阶段:设解析式为:y =at +c , 图象经过(195,1 000),(95,0),则:⎩⎪⎨⎪⎧195a +c =1 000, 95a +c =0解得: a =10,c =-950, 灌水阶段解析式为:y =10t -950;(2)∵排水阶段解析式为:y =-20t +1 500; ∴y =0时,0=-20t +1 500, 解得:t =75, 则排水时间为75分钟,清洗时间为:95-75=20(分钟),∵根据图象可以得出游泳池蓄水量为1 500(m 3), ∴1 500=10t -950, 解得:t =245,故灌水所用时间为:245-95=150(分钟).答 排水时间为75分钟;清洗时间20分钟;灌水所用时间150分钟.23.(10分)在同一直角坐标系中反比例函数y =m x 的图象与一次函数y =kx +b 的图象相交,且其中一个交点A 的坐标为(-2,3),若一次函数的图象又与x 轴相交于点B ,且△AOB 的面积为6(点O 为坐标原点).求一次函数与反比例函数的解析式.解 将点A (-2,3)代入y =m x 中得:3=m -2, ∴m =-6.∴反比例函数的解析式为y =-6x. 又∵△AOB 的面积为6,∴12|OB |·|y A |=6. ∴12|OB |·3=6,∴|OB |=4. ∴B 点坐标为(4,0)或(-4,0).①当B (4,0)时,又∵点A (-2,3)是两函数图象的交点,∴代入y =kx +b 中得⎩⎪⎨⎪⎧4k +b =0-2k +b =3, 解得⎩⎪⎨⎪⎧k =-12b =2. ∴y =-12x +2. ②当B (-4,0)时,又∵点A (-2,3)是两函数图象的交点,∴代入y =kx +b 中得⎩⎪⎨⎪⎧-4k +b =0,-2k +b =3, 解得⎩⎪⎨⎪⎧k =32,b =6.∴y =32x +6. 综上所述,一次函数的解析式为y =-12x +2或y =32x +6. 24.(10分)在平面直角坐标系中,已知O 为坐标原点,点A (3,0),B (0,4).以点A 为旋转中心,把△ABO 顺时针旋转,得△ACD .记旋转角为α.∠ABO 为β.(1) 如图①,当旋转后点D 恰好落在ABD 的坐标;(2) 如图②,当旋转后满足BC ∥xα与β之间的数量关系;(3) 当旋转后满足∠AOD =βCD 的解析式.解 (1)∵点A (3,0),B (0,4),∴OA =3,OB =4.∴在Rt △ABO 中,由勾股定理,得AB =OA 2+OB 2=32+42=5.根据题意,有DA =OA =3.如图①.过点D 作DM ⊥x 轴于点M ,则MD ∥OB .∴△ADM ∽△ABO .有AD AB =AM AO =DM BO, 得AM =AD AB ×AO =95,DM =AD AB ×BO =125. 又OM =OA -AM ,得OM =3-95=65.∴点D 的坐标为⎝ ⎛⎭⎪⎫65,125. (2)如题图②.由已知,得∠CAB =α,AC =AB ,∴∠ABC =∠ACB .∴在△ABC 中,由∠ABC +∠ACB +∠CAB =180°,得α=180°-2∠ABC .又∵BC ∥x 轴,得∠OBC =90°,有∠ABC =90°-∠ABO =90°-β.∴α=180°-2(90°-β)=2β.(3)如图1,连接BD ,作DF ⊥x 轴于点F .由∠AOD =β=∠ABO 可证△AOB ≌△ADB ,∴∠ADB =∠AOB =90°.又∵∠ADC =90°, ∴B 在直线CD 上, ∴可设直线CD 方程式为y =kx +4.由△AOE ∽△ABO 得OE OB =OA AB ⇒OE =OA ·OB AB =3×45=125⇒OD =245. 设D 点坐标为(a ,b ),则有 ⎩⎪⎨⎪⎧a b =43(△ODF ∽△BAO ),a 2+b 2=⎝ ⎛⎭⎪⎫2452,解之得⎩⎪⎨⎪⎧a =9625,b =7225. 代入直线CD 方程y =kx +4,得k =-724. ∴直线CD 的解析式为y =-724x +4.同样考虑∠AOD 在x 轴下方的情况,如图2,可得直线CD 的解析式y =724x -4. ∴直线CD 的解析式y =-724x +4或y =724x -4. 25.(10分)在平面直角坐标系xOy 中,抛物线的解析式是y =14x 2+1,点C 的坐标为(-4,0),平行四边形OABC 的顶点A ,B 在抛物线上,AB 与y 轴交于点M ,已知点Q (x ,y )在抛物线上,点P (t ,0)在x 轴上.(1)写出点M 的坐标;(2)当四边形CMQP 是以MQ ,PC 为腰的梯形时;①求t 关于x 的函数解析式和自变量x 的取值X 围;②当梯形CMQP 的两底的长度之比为1∶2时,求t 的值.解 (1)M (0,2).(2)①当点P 与点C 重合时,梯形不存在,此时t =4,解得x =1±5,当Q 与B 或A重合时,四边形为平行四边形,此时,x =±2,∴x 的取值X 围是x ≠1±5,且x ≠±2的所有实数.②分两种情况讨论:Ⅰ.当CM >PQ 时,则点P 在线段OC 上,t =-2.Ⅱ.当CM <PQ 时,则点P 在OC 的延长线上,当x =-23时,得t =-8-23,∴当x =23时,得t =23-8.26.(10分)如图,直线y =x +3与坐标轴分别交于A ,B 两点,抛物线y =ax 2+bx -3a 经过点A ,B ,顶点为C ,连接CB 并延长交x 轴于点E ,点D 与点B 关于抛物线的对称轴MN 对称.(1)求抛物线的解析式及顶点C 的坐标;(2)求证:四边形ABCD 是直角梯形.(1)解 ∵y =x +3与坐标轴分别交与A ,B 两点,∴A 点坐标(-3,0)、B 点坐标(0,3).∵抛物线y =ax 2+bx -3a 经过A ,B 两点,∴⎩⎪⎨⎪⎧9a -3b -3a =0,-3a =3, 解得⎩⎪⎨⎪⎧a =-1,b =-2. ∴抛物线解析式为:y =-x 2-2x +3.∵y =-x 2-2x +3=-(x +1)2+4,∴顶点C 的坐标为(-1,4).(2)证明 ∵B ,D 关于MN 对称,C (-1,4),B (0,3),∴D (-2,3).∵B (0,3),A (-3,0),∴OA =OB .又∠AOB =90°,∴∠ABO =∠BAO =45°.∵B ,D 关于MN 对称,∴BD ⊥MN .又∵MN ⊥x 轴,∴BD ∥x 轴.∴∠DBA =∠BAO =45°.∴∠DBO =∠DBA +∠ABO =45°+45°=90°. 设直线BC 的解析式为y =kx +b ,把B (0,3),C (-1,4)代入得, ⎩⎪⎨⎪⎧b =3,-k +b =4,解得⎩⎪⎨⎪⎧k =-1,b =3.∴y =-x +3.当y =0时,-x +3=0,x =3,∴E (3,0). ∴OB =OE ,又∵∠BOE =90°,∴∠OEB =∠OBE =∠BAO =45°.∴∠ABE =180°-∠BAE -∠BEA =90°. ∴∠ABC =180°-∠ABE =90°.∴∠CBD =∠ABC -∠ABD =45°.∵CM ⊥BD ,∴∠MCB =45°.∵B ,D 关于MN 对称,∴∠CDM =∠CBD =45°,CD ∥AB .又∵AD 与BC 不平行,∴四边形ABCD 是梯形. ∵∠ABC =90°,∴四边形ABCD 是直角梯形.。

2014年中考数学试题分类 圆的有关性质

2014年中考数学试题分类 圆的有关性质

2014年中考数学试题分类圆的有关性质(2)若a=4,设BF=m,四边形ADFE面积为S,求出S与m之间的函数关系,并探究当m为何值时S取最大值;(3)已知A、D、F、E四点共圆,已知tan∠EDF=,求此圆直径.(第1题图)考点:相似形综合题;二次函数的最值;等边三角形的性质;圆周角定理;解直角三角形分析:(1)只需找到两组对应角相等即可.(2)四边形ADFE面积S可以看成△ADF与△AEF的面积之和,借助三角函数用m表示出AD、DF、AE、EF的长,进而可以用含m的代数式表示S,然后通过配方,转化为二次函数的最值问题,就可以解决问题.(3)易知AF就是圆的直径,利用圆周角定理将∠EDF转化为∠EAF.在△AFC中,知道tan∠EAF、∠C、AC,通过解直角三角形就可求出AF 长.解答:解:(1)∵DF⊥AB,EF⊥AC,∴∠BDF=∠CEF=90°.∵△ABC为等边三角形,∴∠B=∠C=60°.∵∠BDF=∠CEF,∠B=∠C,∴△BDF∽△CEF.(2)∵∠BDF=90°,∠B=60°,∴sin60°=∵BF=m,∴DF=m,BD=.=,cos60°==.∵AB=4,∴AD=4﹣.∴S△ADF=AD?DF=×(4﹣)×=﹣m2+m m.同理:S△AEF=AE?EF =×(4﹣=﹣m2+2)×.(4﹣m)∴S=S△ADF+S△AEF =﹣=﹣=﹣∵﹣m2+m+2 (m2﹣4m﹣8)(m﹣2)2+3.其中0<m<4.<0,0<2<4,.∴当m=2时,S取最大值,最大值为3∴S 与m之间的函数关系为:S═﹣(m﹣2)2+3(其中0<m<4)..当m=2时,S取到最大值,最大值为3(3)如图2,∵A、D、F、E四点共圆,∴∠EDF=∠EAF.∵∠ADF=∠AEF=90°,∴AF是此圆的直径.∵tan∠EDF=∴tan∠EAF=∴=.,.∵∠C=60°,∴=tan60°=.x,EA=2x.设EC=x,则EF=∵AC=a,∴2x+x=A.∴x=.∴EF=,AE=.∵∠AEF=90°,∴AF=∴此圆直径长为=..点评:本题考查了相似三角形的判定、二次函数的最值、三角函数、解直角三角形、圆周角定理、等边三角形的性质等知识,综合性强.利用圆周角定理将条件中的圆周角转化到合适的位置是解决最后一小题的关键.14. (2014年江苏南京,第26题)如图,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,⊙O为△ABC的内切圆.(1)求⊙O的半径;(2)点P从点B沿边BA向点A以1cm/s的速度匀速运动,以P为圆心,PB 长为半径作圆,设点P运动的时间为t s,若⊙P与⊙O相切,求t的值.(第2题图)考点:圆的性质、两圆的位置关系、解直角三角形分析:(1)求圆的半径,因为相切,我们通常连接切点和圆心,设出半径,再利用圆的性质和直角三角形性质表示其中关系,得到方程,求解即得半径.(2)考虑两圆相切,且一圆已固定,一般就有两种情形,外切与内切.所以我们要分别讨论,当外切时,圆心距等于两圆半径的和;当内切时,圆心距等于大圆与小圆半径的差.分别作垂线构造直角三角形,类似(1)通过表示边长之间的关系列方程,易得t的值.解答:(1)如图1,设⊙O与AB、BC、CA的切点分别为D、E、F,连接OD、OE、OF,则AD=AF,BD=BE,CE=CF.∵⊙O为△ABC的内切圆,∴OF⊥AC,OE⊥BC,即∠OFC=∠OEC=90°.∵∠C=90°,∴四边形CEOF是矩形,∵OE=OF,∴四边形CEOF是正方形.设⊙O的半径为rcm,则FC=EC=OE=rcm,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,∴AB==5cm.∵AD=AF=AC﹣FC=4﹣r,BD=BE=BC﹣EC=3﹣r,∴4﹣r+3﹣r=5,解得r=1,即⊙O的半径为1cm.(2)如图2,过点P作PG⊥BC,垂直为G.∵∠PGB=∠C=90°,∴PG∥AC.∴△PBG∽△ABC,∴.∵BP=t,∴PG=,BG=.若⊙P与⊙O相切,则可分为两种情况,⊙P与⊙O外切,⊙P与⊙O内切.①当⊙P与⊙O外切时,如图3,连接OP,则OP=1+t,过点P作PH⊥OE,垂足为H.∵∠PHE=∠HEG=∠PGE=90°,∴四边形PHEG是矩形,∴HE=PG,PH=CE,∴OH=OE﹣HE=1﹣在Rt△OPH中,由勾股定理,解得t=.②当⊙P与⊙O内切时,如图4,连接OP,则OP=t﹣1,过点O作OM⊥PG,垂足为M.∵∠MGE=∠OEG=∠OMG=90°,∴四边形OEGM是矩形,∴MG=OE,OM=EG,∴PM=PG﹣MG=在Rt△OPM中,由勾股定理,综上所述,⊙P与⊙O相切时,t=s或t=2s.点评:本题考查了圆的性质、两圆相切及通过设边长,表示其他边长关系再利用直角三角形求解等常规考查点,总体题目难度不高,是一道非常值得练习的题目.15.(2014?呼和浩特,第24题8分)如图,AB是⊙O的直径,点C在⊙O上,过点C作⊙O的切线CM.(1)求证:∠ACM=∠ABC;(2)延长BC到D,使BC=CD,连接AD与CM交于点E,若⊙O的半径为3,ED=2,求△ACE的外接圆的半径.,解得t=2.,OM=EG=BC﹣EC﹣BG=3﹣1﹣=2﹣,,,PH=GE=BC﹣EC﹣BG=3﹣1﹣=2﹣.圆的有关性质一、选择题1. (2014?珠海,第5题3分)如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()160° A.考点:圆周角定理;垂径定理.分析:利用垂径定理得出=,进而求出∠BOD=40°,再利用邻补角的性质得出答案.150° B.140° C.120° D.解答:解:∵线段AB是⊙O的直径,弦CD丄AB,∴=,∵∠CAB=20°,∴∠BOD=40°,∴∠AOD=140°.故选:C.点评:此题主要考查了圆周角定理以及垂径定理等知识,得出∠BOD的度数是解题关键.2. (2014?广西贺州,第11题3分)如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE=,CE=1.则弧BD的长是()A.B.C.D.考点:垂径定理;勾股定理;勾股定理的逆定理;弧长的计算.分析:连接OC,先根据勾股定理判断出△ACE的形状,再由垂径定理得出CE=DE,故=,由锐角三角函数的定义求出∠A的度数,故可得出∠BOC的度数,求出OC的长,再根据弧长公式即可得出结论.解答:解:连接OC,∵△ACE中,AC=2,AE=∴AE2+CE2=AC2,∴△ACE是直角三角形,即AE⊥CD,∵sinA==,,CE=1,∴∠A=30°,∴∠COE=60°,∴=sin∠COE,即=,解得OC=,∵AE⊥CD,∴=,∴===.故选B.点评:本题考查的是垂径定理,涉及到直角三角形的性质、弧长公式等知识,难度适中.3.(2014?温州,第8题4分)如图,已知A,B,C在⊙O上,∠AOB相等的是()为优弧,下列选项中与A.2∠C考点:圆周角定理.分析:根据圆周角定理,可得∠AOB=2∠C.解答:解:如图,由圆周角定理可得:∠AOB=2∠C.故选A.点评:此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.4.(2014?毕节地区,第5题3分)下列叙述正确的是()A.方差越大,说明数据就越稳定B.在不等式两边同乘或同除以一个不为0的数时,不等号的方向不变C.不在同一直线上的三点确定一个圆D.两边及其一边的对角对应相等的两个三角形全等考点:分析:方差;不等式的性质;全等三角形的判定;确定圆的条件利用方差的意义、不等号的性质、全等三角形的判定及确定圆的条件对每个选项逐一判断后即可确定正确的选项.解答:解:A、方差越大,越不稳定,故选项错误;B、在不等式的两边同时乘以或除以一个负数,不等号方向改变,故选项错误;C、正确;D、两边及其夹角对应相等的两个三角形全等,故选项错误.故选C.点评:本题考查了方差的意义、不等号的性质、全等三角形的判定及确定圆的条件,属于基本定理的应用,较为简单.B.4∠B C.4∠A D.∠B+∠C5.(2014?毕节地区,第6题3分)如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A.6 考点:分析:垂径定理;勾股定理5 B.4 C. 3 D.过O作OC⊥AB于C,根据垂径定理求出AC,根据勾股定理求出OC即可.解答:解:过O作OC⊥AB于C,∵OC过O,∴AC=BC=AB=12,在Rt△AOC中,由勾股定理得:OC=故选:B.=5.点评:6.(2014?毕节地区,第15题3分)如图是以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD⊥AB交AB于D.已知cos∠ACD=,BC=4,则AC 的长为()本题考查了垂径定理和勾股定理的应用,关键是求出OC的长.A.1B. 3 C.D.考点:分析:圆周角定理;解直角三角形由以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD⊥AB交AB于D.易得∠ACD=∠B,又由cos∠ACD=,BC=4,即可求得答案.解答:解:∵AB为直径,∴∠ACB=90°,∴∠ACD+∠BCD=90°,∵CD⊥AB,∴∠BCD+∠B=90°,∴∠B=∠ACD,∵cos∠ACD=,∴cos∠B=,∴tan∠B=,∵BC=4,∴tan∠B=∴AC=.==,故选D.点评:此题考查了圆周角定理以及三角函数的性质.此题难度适中,注意掌握数形结合思想的应用.7.(2014?武汉,第10题3分)如图,PA,PB切⊙O于A、B两点,CD切⊙O 于点E,交PA,PB于C,D.若⊙O的半径为r,△PCD的周长等于3r,则tan∠APB 的值是()∴==,∵AD=2,PD=1 ∴BD=4,AB=2AP,∴BP=BD﹣DP=3,∵∠APD=180°﹣∠BPA=60°,∴∠APD=∠APC,∵∠PAD=∠E,∠PCA=∠E,∴PAD=∠PCA,∴△ADP∽△CAP,∴=,∴AP2=CP?PD,∴AP2=(3+AP)?1,解得:AP=∴BC=AB=2AP=1+或AP=.(舍去),x§k§b 1 点评:此题主要考查了相似三角形的判定与性质以及全等三角形的判定与性质和切线的判定与性质等知识,熟练利用相似三角形的判定与性质得出是解题关键.10.(2014?孝感,第20题8分)如图,在Rt△ABC中,∠ACB=90°.(1)先作∠ABC的平分线交AC边于点O,再以点O为圆心,OC为半径作⊙O (要求:尺规作图,保留作图痕迹,不写作法);(2)请你判断(1)中AB与⊙O的位置关系,并证明你的结论.考点:作图—复杂作图;直线与圆的位置关系.分析:(1)根据角平分线的作法求出角平分线BO;(2)过O作OD⊥AB交AB于点D,先根据角平分线的性质求出DO=CO,再根据切线的判定定理即可得出答案.解答:解:(1)如图:(2)AB与⊙O相切.证明:作OD⊥AB于D,如图.∵BO平分∠ABC,∠ACB=90°,OD⊥AB,∴OD=OC,∴AB与⊙O相切.点评:此题主要考查了复杂作图以及切线的判定等知识,正确把握切线的判定定理是解题关键.11.(2014?孝感,第24题10分)如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE 平分∠ACB,交AB于点F,连接BE.(1)求证:AC平分∠DAB;(2)求证:△PCF 是等腰三角形;(3)若tan∠ABC=,BE=7,求线段PC的长.考点:切线的性质;等腰三角形的判定;勾股定理;相似三角形的判定与性质分析:(1)由PD切⊙O于点C,AD与过点C的切线垂直,易证得OC∥AD,继而证得AC平分∠DAB;(2)由AD⊥PD,AB为⊙O的直径,易证得CE平分∠ACB,继而可得∴∠PFC=∠PCF,即可证得PC=PF,即△PCF是等腰三角形;(3)首先连接AE,易得AE=BE,即可求得AB的长,继而可证得△PAC∽△PCB,又由tan∠ABC=,BE=7,即可求得答案.解答:解:(1)∵PD切⊙O于点C,∴OC⊥PD.(1分)又∵AD⊥PD,∴OC∥AD.∴∠ACO=∠DAC.又∵OC=OA,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB.(3分)(2)∵AD⊥PD,∴∠DAC+∠ACD=90°.又∵AB为⊙O的直径,∴∠ACB=90°.∴∠PCB+∠ACD=90°,∴∠DAC=∠PCB.又∵∠DAC=∠CAO,∴∠CAO=∠PCB.…(4分)∵CE平分∠ACB,∴∠ACF=∠BCF,∴∠CAO+∠ACF=∠PCB+∠BCF,∴∠PFC=∠PCF,…(5分)∴PC=PF,∴△PCF是等腰三角形.…(6分)(3)连接AE.∵CE平分∠ACB,∴∴=,.∵AB为⊙O 的直径,∴∠AEB=90°.在Rt△ABE中,∵∠PAC=∠PCB,∠P=∠P,∴△PAC∽△PCB,(8分)∴..(7分)又∵tan∠ABC=,∴∴,.设PC=4k,PB=3k,则在Rt△POC中,PO=3k+7,OC=7,∵PC2+OC2=OP2,∴(4k)2+72=(3k+7)2,∴k=6 (k=0不合题意,舍去).∴PC=4k=4×6=24.(10分)点评:此题考查了切线的性质、相似三角形的判定与性质、垂径定理、圆周角定理、勾股定理以及等腰三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.12.(2014?浙江湖州,第19题分)已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).(1)求证:AC=BD;(2)若大圆的半径R=10,小圆的半径r=8,且圆O到直线AB的距离为6,求AC的长.考点:垂径定理;勾股定理.分析:(1)过O作OE⊥AB,根据垂径定理得到AE=BE,CE=DE,从而得到AC=BD;(2)由(1)可知,OE⊥AB且OE⊥CD,连接OC,OA,再根据勾股定理求出CE及AE的长,根据AC=AE﹣CE即可得出结论.解答:(1)证明:作OE⊥AB,∵AE=BE,CE=DE,∴BE﹣DE=AE﹣CE,即AC=BD;(2)∵由(1)可知,OE⊥AB且OE⊥CD,连接OC,OA,∴OE=6,∴CE= =.=2,AE===8,∴AC=AE﹣CE=8﹣2点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.13. (2014?湘潭,第25题)△ABC为等边三角形,边长为a,DF⊥AB,EF⊥AC,(1)求证:△BDF∽△CE F;F.请探求在动圆P中是否存在面积最小的四边形DEPF?若存在,请求出最小面积S的值;若不存在,请说明理由.考点:圆的综合题;待定系数法求一次函数解析式;垂线段最短;勾股定理;切线长定理;相似三角形的判定与性质.专题:综合题;存在型;分类讨论.分析:(1)只需先求出AC中点P的坐标,然后用待定系数法即可求出直线DP 的解析式.(2)由于△DOM与△ABC相似,对应关系不确定,可分两种情况进行讨论,利用三角形相似求出OM的长,即可求出点M的坐标.(3)易证S△PED=S△PFD.从而有S四边形DEPF=2S△PED=DE.由∠DEP=90°得DE2=DP2﹣PE2=DP2﹣.根据“点到直线之间,垂线段最短”可得:当DP⊥AC时,DP最短,此时DE 也最短,对应的四边形DEPF的面积最小.借助于三角形相似,即可求出DP⊥AC时DP 的值,就可求出四边形DEPF面积的最小值.解答:解:(1)过点P作PH∥OA,交OC于点H,如图1所示.∵PH∥OA,∴△CHP∽△COA.∴==.∵点P是AC中点,∴CP=CA.∴HP=OA,CH=CO.∵A(3,0)、C(0,4),∴OA=3,OC=4.∴HP=,CH=2.∴OH=2.∵PH∥OA,∠COA=90°,∴∠CHP=∠COA=90°.∴点P的坐标为(,2).设直线DP的解析式为y=kx+b,∵D(0,﹣5),P(,2)在直线DP上,∴∴∴直线DP的解析式为y=x﹣5.(2)①若△DOM∽△ABC,图2(1)所示,∵△DOM∽△ABC,∴=.∵点B坐标为(3,4),点D的坐标为(0.﹣5),∴BC=3,AB=4,OD=5.∴=∴OM=..∵点M在x轴的正半轴上,∴点M的坐标为(,0)②若△DOM∽△CBA,如图2(2)所示,∵△DOM∽△CBA,∴=.∵BC=3,AB=4,OD=5,∴=∴OM=..∵点M在x轴的正半轴上,∴点M的坐标为(,0).,0)或(,0).综上所述:若△DOM与△CBA相似,则点M的坐标为((3)∵OA=3,OC=4,∠AOC=90°,∴AC=5.∴PE=PF=AC=.∵DE、DF都与⊙P相切,∴DE=DF,∠DEP=∠DFP=90°.∴S△PED=S△PFD.∴S四边形DEPF=2S△PED =2×PE?DE =PE?DE =DE.∵∠DEP=90°,∴DE2=DP2﹣PE2.=DP2﹣.根据“点到直线之间,垂线段最短”可得:当DP⊥AC时,DP最短,此时DE取到最小值,四边形DEPF的面积最小.∵DP⊥AC,∴∠DPC=90°.∴∠AOC=∠DPC.∵∠OCA=∠PCD,∠AOC=∠DPC,∴△AOC∽△DPC.∴=.∵AO=3,AC=5,DC=4﹣(﹣5)=9,∴=..∴DP=∴DE2=DP2﹣=(=∴DE=)2﹣.,∴S四边形DEPF=DE =..∴四边形DEPF面积的最小值为点评:本题考查了相似三角形的判定与性质、用待定系数法求直线的解析式、切线长定理、勾股定理、垂线段最短等知识,考查了分类讨论的思想.将求DE的最小值转化为求DP的最小值是解决第3小题的关键.另外,要注意“△DOM与△ABC相似”与“△DOM∽△ABC“之间的区别.6.(2014年广东汕尾,第20题11分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于E.(1)求证:点E是边BC的中点;(2)求证:BC2=BD?BA;(3)当以点O、D、E、C为顶点的四边形是正方形时,求证:△ABC是等腰直角三角形.分析:(1)利用切线的性质及圆周角定理证明;(2)利用相似三角形证明;(3)利用正方形的性质证明.证明:(1)如图,连接OD.∵DE为切线,∴∠EDC+∠ODC=90°;∵∠ACB=90°,∴∠ECD+∠OCD=90°.又∵OD=OC,∴∠ODC=∠OCD,∴∠EDC=∠E CD,∴ED=EC;∵AC为直径,∴∠ADC=90°,∴∠BDE+∠EDC=90°,∠B+∠ECD=90°,∴∠B=∠BDE,∴ED=DB.∴EB=EC,即点E为边BC的中点;(2)∵AC为直径,∴∠ADC=∠ACB=90°,又∵∠B=∠B ∴△ABC∽△CDB,∴,∴BC2=BD?BA;(3)当四边形ODEC为正方形时,∠OCD=45°;∵AC为直径,∴∠ADC=90°,∴∠CAD=∠ADC﹣∠OCD=90°﹣45°=45° ∴Rt△ABC为等腰直角三角形.点评:本题是几何证明题,综合考查了切线性质、圆周角定理、相似三角形、正方形、等腰直角三角形等知识点.试题着重对基础知识的考查,难度不大.7.(2014?毕节地区,第26题14分)如图,在Rt△ABC中,∠ACB=90°,以AC 为直径作⊙O交AB于点D,连接CD.(1)求证:∠A=∠BCD;(2)若M为线段BC上一点,试问当点M在什么位置时,直线DM与⊙O相切?并说明理由.考点:分析:切线的判定(1)根据圆周角定理可得∠ADC=90°,再根据直角三角形的性质可得∠A+∠DCA=90°,再由∠DCB+∠ACD=90°,可得∠DCB=∠A;(2)当MC=MD时,直线DM与⊙O相切,连接DO,根据等等边对等角可得∠1=∠2,∠4=∠3,再根据∠ACB=90°可得∠1+∠3=90°,进而证得直线DM与⊙O相切.解答:(1)证明:∵AC为直径,∴∠ADC=90°,∴∠A+∠DCA=90°,∵∠ACB=90°,∴∠DCB+∠ACD=90°,∴∠DCB=∠A;新*课*标*第*一*网(2)当MC=MD(或点M是BC的中点)时,直线DM与⊙O相切;解:连接DO,∵DO=CO,∴∠1=∠2,∵DM=CM,∴∠4=∠3,∵∠2+∠4=90°,∴∠1+∠3=90°,∴直线DM与⊙O相切.点评:此题主要考查了切线的判定,以及圆周角定理,关键是掌握切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.8.(2014?武汉2014?武汉,第22题8分)如图,AB是⊙O的直径,C,P是AC=5.(1)如图(1),若点P是(2)如图(2),若点P是的中点,求PA的长;的中点,求PA的长.上两点,AB=13,考点:相似三角形的判定与性质;勾股定理;等腰直角三角形;圆心角、弧、弦的关系;圆周角定理分析:(1)根据圆周角的定理,∠APB=90°,p是弧AB的中点,所以三角形APB是等腰三角形,利用勾股定理即可求得.(2)根据垂径定理得出OP垂直平分BC,得出OP∥AC,从而得出△ACB∽△0NP,根据对应边成比例求得ON、AN的长,利用勾股定理求得NP的长,进而求得PA.解答:解:(1)如图(1)所示,连接PB,∵AB是⊙O的直径且P是的中点,∴∠PAB=∠PBA=45°,∠APB=90°,又∵在等腰三角形△ABC中有AB=13,∴P A= (2)如图(2)所示:连接BC.OP相交于M点,作PN⊥AB于点N,==.∵P点为弧BC的中点,∴OP⊥BC,∠OMB=90°,又因为AB为直径∴∠ACB=90°,∴∠ACB=∠OMB,∴OP∥AC,∴∠CAB=∠POB,又因为∠ACB=∠ONP=90°,∴△ACB∽△0NP ∴=,,又∵AB=13 AC=5 OP=代入得ON=,∴AN=OA+ON=9 ∴在RT△OPN中,有NP2=0P2﹣ON2=36 在RT△ANP中有PA=∴PA=3点评:.==3 本题考查了圆周角的定理,垂径定理,勾股定理,等腰三角形判定和性质,相似三角形的判定和性质,作出辅助线是本题的关键.9.(2014?襄阳,第25题10分)如图,A,P,B,C是⊙O上的四个点,∠APC=∠BPC=60°,过点A作⊙O的切线交BP的延长线于点D.(1)求证:△ADP∽△BDA;(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;(3)若AD=2,PD=1,求线段BC的长.考点:圆的综合题分析:(1)首先作⊙O的直径AE,连接PE,利用切线的性质以及圆周角定理得出∠PAD=∠PBA进而得出答案;(2)首先在线段PC上截取PF=PB,连接BF,进而得出△BPA≌△BFC(AAS),即可得出PA+PB=PF+FC=PC;(3)利用△ADP∽△BDA,得出则===,求出BP的长,进而得出△ADP∽△CAP,,则AP2=CP?PD求出AP的长,即可得出答案.解答:(1)证明:作⊙O的直径AE,连接PE,∵AE是⊙O的直径,AD是⊙O的切线,∴∠DAE=∠APE=90°,∴∠PAD+∠PAE=∠PAE+∠E=90°,∴∠PAD=∠E,∵∠PBA=∠E,∴∠PAD=∠PBA,∵∠PAD=∠PBA,∠ADP=∠BDA,∴△ADP∽△BDA;(2)PA+PB=PC,证明:在线段PC上截取PF=PB,连接BF,∵PF=PB,∠BPC=60°,∴△PBF是等边三角形,∴PB=BF,∠BFP=60°,∴∠BFC=180°﹣∠PFB=120°,∵∠BPA=∠APC+∠BPC=120°,∴∠BPA=∠BFC,在△BPA和△BFC 中,∴△BPA≌△BFC(AAS),∴PA=FC,AB=BC,∴PA+PB=PF+FC=PC;(3)解:∵△ADP∽△BDA,,。

2014年浙江省温州市中考数学试卷参考答案与考试试题解析

2014年浙江省温州市中考数学试卷参考答案与考试试题解析

2014年浙江省温州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(4分)(2014•温州)计算:(﹣3)+4的结果是()A.﹣7B.﹣1 C. 1 D.7考点:有理数的加法.分析:根据异号两数相加,取绝对值较大的数的符号,再用较大的绝对值减去较小的绝对值,可得答案.解答:解:原式=+(4﹣3)=1,故选:C.点评:本题考查了有理数的加法,先确定和的符号,再进行绝对值得运算.2.(4分)(2014•温州)如图是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最多的一组是()A.5﹣10元B.10﹣15元C.15﹣20元D.20﹣25元考点:频数(率)分布直方图.分析:根据图形所给出的数据直接找出捐款人数最多的一组即可.解答:解:根据图形所给出的数据可得:15﹣20元的有20人,人数最多,则捐款人数最多的一组是15﹣20元;故选C.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.3.(4分)(2014•温州)如图所示的支架是由两个长方形构成的组合体,则它的主视图是()A .B .C .D .考点:简单组合体的三视图.分析: 找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从几何体的正面看可得此几何体的主视图是,故选:D .点评: 本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.(4分)(2014•温州)要使分式有意义,则x 的取值应满足( ) A . x ≠2 B . x ≠﹣1 C . x =2 D . x =﹣1考点: 分式有意义的条件.分析: 根据分式有意义,分母不等于0列式计算即可得解.解答: 解:由题意得,x ﹣2≠0,解得x ≠2.故选A .点评: 本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.5.(4分)(2014•温州)计算:m 6•m 3的结果( )A . m 18B . m 9C . m 3D . m 2考点: 同底数幂的乘法.分析: 根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,进行计算即可.解答: 解:m 6•m 3=m 9.故选B .点评: 本题考查了同底数幂的乘法,解答本题的关键是掌握同底数幂的乘法法则.6.(4分)(2014•温州)小明记录了一星期天的最高气温如下表,则这个星期每天的最高气温的中位数是( )星期 一 二 三 四 五 六 日最高气温(℃) 22 24 23 25 24 22 21A . 22℃B . 23℃C . 24℃D . 25℃考点: 中位数.分析: 将数据从小到大排列,根据中位数的定义求解即可.解答: 解:将数据从小到大排列为:21,22,22,23,24,24,25,中位数是23.故选B.点评:本题考查了中位数的知识,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.7.(4分)(2014•温州)一次函数y=2x+4的图象与y轴交点的坐标是()A.(0,﹣4)B.(0,4)C.(2,0)D.(﹣2,0)考点:一次函数图象上点的坐标特征.分析:在解析式中令x=0,即可求得与y轴的交点的纵坐标.解答:解:令x=0,得y=2×0+4=4,则函数与y轴的交点坐标是(0,4).故选B.点评:本题考查了一次函数图象上点的坐标特征,是一个基础题.8.(4分)(2014•温州)如图,已知A,B,C在⊙O上,为优弧,下列选项中与∠AOB相等的是()A.2∠C B.4∠B C.4∠A D.∠B+∠C考点:圆周角定理.分析:根据圆周角定理,可得∠AOB=2∠C.解答:解:如图,由圆周角定理可得:∠AOB=2∠C.故选A.点评:此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.9.(4分)(2014•温州)20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()A.B.C.D.考点:由实际问题抽象出二元一次方程组.分析:设男生有x人,女生有y人,根据男女生人数为20,共种了52棵树苗,列出方程组成方程组即可.解答:解:设男生有x人,女生有y人,根据题意得,.故选:D.点评:此题考查二元一次方程组的实际运用,找出题目蕴含的数量关系是解决问题的关键.10.(4分)(2014•温州)如图,矩形ABCD的顶点A在第一象限,AB∥x轴,AD∥y轴,且对角线的交点与原点O重合.在边AB从小于AD到大于AD的变化过程中,若矩形ABCD的周长始终保持不变,则经过动点A的反比例函数y=(k≠0)中k的值的变化情况是()A.一直增大B.一直减小C.先增大后减小D.先减小后增大考点:反比例函数图象上点的坐标特征;矩形的性质.分析:设矩形ABCD中,AB=2a,AD=2b,由于矩形ABCD的周长始终保持不变,则a+b为定值.根据矩形对角线的交点与原点O重合及反比例函数比例系数k的几何意义可知k=AB•AD=ab,再根据a+b一定时,当a=b时,ab最大可知在边AB从小于AD到大于AD的变化过程中,k的值先增大后减小.解答:解:设矩形ABCD中,AB=2a,AD=2b.∵矩形ABCD的周长始终保持不变,∴2(2a+2b)=4(a+b)为定值,∴a+b为定值.∵矩形对角线的交点与原点O重合∴k=AB•AD=ab,又∵a+b为定值时,当a=b时,ab最大,∴在边AB从小于AD到大于AD的变化过程中,k的值先增大后减小.故选C.点评:本题考查了矩形的性质,反比例函数比例系数k的几何意义及不等式的性质,有一定难度.根据题意得出k=AB•AD=ab是解题的关键.二、填空题(共6小题,每小题5分,满分30分)11.(5分)(2014•温州)分解因式:a2+3a=a(a+3).考点:因式分解-提公因式法.分析:直接提取公因式a,进而得出答案.解答:解:a2+3a=a(a+3).故答案为:a(a+3).点评:此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.12.(5分)(2014•温州)如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=80度.考点:平行线的性质.分析:根据平行线的性质求出∠C,根据三角形外角性质求出即可.解答:解:∵AB∥CD,∠1=45°,∴∠C=∠1=45°,∵∠2=35°,∴∠3=∠∠2+∠C=35°+45°=80°,故答案为:80.点评:本题考查了平行线的性质,三角形的外角性质的应用,解此题的关键是求出∠C的度数和得出∠3=∠2+∠C.13.(5分)(2014•温州)不等式3x﹣2>4的解是x>2.考点:解一元一次不等式.分析:先移项,再合并同类项,把x的系数化为1即可.解答:解:移项得,3x>4+2,合并同类项得,3x>6,把x的系数化为1得,x>2.故答案为:x>2.点评:本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.14.(5分)(2014•温州)如图,在△ABC中,∠C=90°,AC=2,BC=1,则tanA的值是.考点:锐角三角函数的定义.分析:根据锐角三角函数的定义(tanA=)求出即可.解答:解:tanA==,故答案为:.点评:本题考查了锐角三角函数定义的应用,注意:在Rt△ACB中,∠C=90°,sinA=,cosA=,tanA=.15.(5分)(2014•温州)请举反例说明命题“对于任意实数x,x2+5x+5的值总是整数”是假命题,你举的反例是x=(写出一个x的值即可).考点:命题与定理.专题:开放型.分析:能使得x2+5x+5的值不是整数的任意实数均可.解答:解:当x=时,原式=+5=5,不是整数,故答案为:.点评:本题考查了命题与定理的知识,在判断一个命题为假命题时,可以举出反例.16.(5分)(2014•温州)如图,在矩形ABCD中,AD=8,E是边AB上一点,且AE=AB.⊙O经过点E,与边CD所在直线相切于点G(∠GEB为锐角),与边AB所在直线交于另一点F,且EG:EF=:2.当边AB或BC所在的直线与⊙O相切时,AB的长是12.考点:切线的性质;矩形的性质.分析:过点G作GN⊥AB,垂足为N,可得EN=NF,由EG:EF=:2,得:EG:EN=:1,依据勾股定理即可求得AB的长度.解答:解:如图,过点G作GN⊥AB,垂足为N,∴EN=NF,又∵EG:EF=:2,∴EG:EN=:1,又∵GN=AD=8,∴设EN=x,则,根据勾股定理得:,解得:x=4,GE=,设⊙O的半径为r,由OE2=EN2+ON2得:r2=16+(8﹣r)2,∴r=5.∴O K=NB=5,∴EB=9,又AE=AB,∴AB=12.故答案为12.点评:本题考查了切线的性质以及勾股定理和垂径定理的综合应用,解答本题的关键在于做好辅助线,利用勾股定理求出对应圆的半径.三、解答题(共8小题,满分80分)17.(10分)(2014•温州)(1)计算:+2×(﹣5)+(﹣3)2+20140;(2)化简:(a+1)2+2(1﹣a)考点:实数的运算;整式的混合运算;零指数幂.分析:(1)分别根据有理数乘方的法则、数的开放法则及0指数幂的运算法则计算出各数,再根据实数混合运算的法则进行计算即可;(2)根据整式混合运算的法则进行计算即可.解答:解:(1)原式=2﹣10+9+1=2;(2)原式=a2+2a+1+2﹣2a=a2+3.点评:本题考查的是实数的运算,熟知有理数乘方的法则、数的开放法则及0指数幂的运算法则是解答此题的关键.18.(8分)(2014•温州)如图,在所给方格纸中,每个小正方形边长都是1,标号为①②③的三个三角形均为格点三角形(顶点在方格顶点处),请按要求将图甲,图乙中的指定图形分割成三个三角形,使它们与标号为①②③的三个三角形分别对应全等.(1)图甲中的格点正方形ABCD;(2)图乙中的格点平行四边形ABCD.注:图甲,图乙在答题卡上,分割线画成实线.考点:作图—应用与设计作图.分析:(1)利用三角形的形状以及各边长进而拼出正方形即可;(2)利用三角形的形状以及各边长进而拼出平行四边形即可.解答:解:(1)如图甲所示:(2)如图乙所示:点评:此题主要考查了应用设计与作图,利用网格结合三角形各边长得出符合题意的图形是解题关键.19.(8分)(2014•温州)一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球.(1)从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是,求从袋中取出黑球的个数.考点:概率公式;分式方程的应用.分析:(1)由一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球,直接利用概率公式求解即可求得答案;(2)首先设从袋中取出x个黑球,根据题意得:=,继而求得答案.解答:解:(1)∵一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球,∴从袋中摸出一个球是黄球的概率为:=;(2)设从袋中取出x个黑球,根据题意得:=,解得:x=2,经检验,x=2是原分式方程的解,∴从袋中取出黑球的个数为2个.点评:此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.20.(10分)(2014•温州)如图,在等边三角形ABC中,点D,E分别在边BC,AC上,DE∥AB,过点E 作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.考点:等边三角形的判定与性质;含30度角的直角三角形.分析:(1)根据平行线的性质可得∠EDC=∠B=60,根据三角形内角和定理即可求解;(2)易证△EDC是等边三角形,再根据直角三角形的性质即可求解.解答:解:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4.点评:本题考查了等边三角形的判定与性质,以及直角三角形的性质,30度的锐角所对的直角边等于斜边的一半.21.(10分)(2014•温州)如图,抛物线y=﹣x2+2x+c与x轴交于A,B两点,它的对称轴与x轴交于点N,过顶点M作ME⊥y轴于点E,连结BE交MN于点F,已知点A的坐标为(﹣1,0).(1)求该抛物线的解析式及顶点M的坐标.(2)求△EMF与△BNE的面积之比.考点:抛物线与x轴的交点;二次函数的性质;待定系数法求二次函数解析式;相似三角形的判定与性质.分析:(1)直接将(﹣1,0)代入求出即可,再利用配方法求出顶点坐标;(2)利用EM∥BN,则△EMF∽△BNF,进而求出△EMF与△BNE的面积之比.解答:解:(1)由题意可得:﹣(﹣1)2+2×(﹣1)+c=0,解得:c=3,∴y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点M(1,4);(2)∵A(﹣1,0),抛物线的对称轴为直线x=1,∴点B(3,0),∴EM=1,BN=2,∵EM∥BN,∴△EMF∽△BNF,∴=()2=()2=.点评:此题主要考查了待定系数法求二次函数解析式以及相似三角形的判定与性质,得出△EMF∽△BNF是解题关键.22.(8分)(2014•温州)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2证明:连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a.∵S四边形ADCB=S△ACD+S△ABC=b2+ab.又∵S四边形ADCB=S△ADB+S△DCB=c2+a(b﹣a)∴b2+ab=c2+a(b﹣a)∴a2+b2=c2请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2证明:连结过点B作DE边上的高BF,则BF=b﹣a,∵S五边形ACBED=S△ACB+S△ABE+S△ADE=ab+b2+ab,又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=ab+c2+a(b﹣a),∴ab+b2+ab=ab+c2+a(b﹣a),∴a2+b2=c2.考点:勾股定理的证明.分析:首先连结BD,过点B作DE边上的高BF,则BF=b﹣a,表示出S,进而得出答案.五边形ACBED解答:证明:连结BD,过点B作DE边上的高BF,则BF=b﹣a,∵S五边形ACBED=S△ACB+S△ABE+S△ADE=ab+b2+ab,又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=ab+c2+a(b﹣a),∴ab+b2+ab=ab+c2+a(b﹣a),∴a2+b2=c2.点评:此题主要考查了勾股定理得证明,表示出五边形面积是解题关键.23.(12分)(2014•温州)八(1)班五位同学参加学校举办的数学素养竞赛.试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分.赛后A,B,C,D,E五位同学对照评分标准回忆并记录了自己的答题情况(E同学只记得有7道题未答),具体如下表参赛同学答对题数答错题数未答题数A 19 0 1B 17 2 1C 15 2 3D 17 1 2E / / 7(1)根据以上信息,求A,B,C,D四位同学成绩的平均分;(2)最后获知ABCDE五位同学成绩分别是95分,81分,64分,83分,58分.①求E同学的答对题数和答错题数;②经计算,A,B,C,D四位同学实际成绩的平均分是80.75分,与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况,请指出哪位同学记错了,并写出他的实际答题情况(直接写出答案即可)考点:二元一次方程组的应用;加权平均数.分析:(1)直接算出A,B,C,D四位同学成绩的总成绩,再进一步求得平均数即可;(2)①设E同学答对x题,答错y题,根据对错共20﹣7=13和总共得分58列出方程组成方程组即可;②根据表格分别算出每一个人的总成绩,与实际成绩对比:A为19×5=95分正确,B为17×5+2×(﹣2)=81分正确,C为15×5+2×(﹣2)=71错误,D为17×5+1×(﹣2)=83正确,E正确;所以错误的是E,多算7分,也就是答对的少一题,打错的多一题,由此得出答案即可.解答:解:(1)==82.5(分),答:A,B,C,D四位同学成绩的平均分是82.5分.(2)①设E同学答对x题,答错y题,由题意得,解得,答:E同学答对12题,答错1题.②C同学,他实际答对14题,答错3题,未答3题.点评:此题考查加权平均数的求法,一元二次方程组的实际运用,以及有理数的混合运算等知识,注意理解题意,正确列式解答.24.(14分)(2014•温州)如图,在平面直角坐标系中国,点A,B的坐标分别为(﹣3,0),(0,6).动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从B出发,沿射线BO方向以每秒2个单位的速度运动,以CP,CO为邻边构造▱PCOD,在线段OP延长线上取点E,使PE=AO,设点P运动的时间为t秒.(1)当点C运动到线段OB的中点时,求t的值及点E的坐标.(2)当点C在线段OB上时,求证:四边形ADEC为平行四边形.(3)在线段PE上取点F,使PF=1,过点F作MN⊥PE,截取FM=2,FN=1,且点M,N分别在一,四象限,在运动过程中▱PCOD的面积为S.①当点M,N中有一点落在四边形ADEC的边上时,求出所有满足条件的t的值;②若点M,N中恰好只有一个点落在四边形ADEC的内部(不包括边界)时,直接写出S的取值范围.考点:四边形综合题.分析:(1)由C是OB的中点求出时间,再求出点E的坐标,(2)连接CD交OP于点G,由▱PCOD的对角线相等,求四边形ADEC是平行四边形.(3)当点C在BO上时,第一种情况,当点M在CE边上时,由△EMF∽△ECO求解,第二种情况,当点N在DE边上时,由△EFN∽△EPD求解,当点C在BO的延长线上时,第一种情况,当点M在DE边上时,由EMF∽△EDP求解,第二种情况,当点N在CE边上时,由△EFN∽△EOC求解,②当1≤t<时和当<t≤5时,分别求出S的取值范围,解答:解:(1)∵OB=6,C是OB的中点,∴BC=OB=3,∴2t=3即t=,∴OE=+3=,E(,0)(2)如图,连接CD交OP于点G,在▱PCOD中,CG=DG,OG=PG,∵AO=PO,∴AG=EG,∴四边形ADEC是平行四边形.(3)①(Ⅰ)当点C在BO上时,第一种情况:如图,当点M在CE边上时,∵MF∥OC,∴△EMF∽△ECO,∴=,即=,∴t=1,第二种情况:当点N在DE边∵NF∥PD,∴△EFN∽△EPD,∴==,∴t=,(Ⅱ)当点C在BO的延长线上时,第一种情况:当点M在DE边上时,∵MF∥PD,∴EMF∽△EDP,∴=即=,∴t=,第二种情况:当点N在CE边上时,∵NF∥OC,∴△EFN∽△EOC,∴=即=,∴t=5.②<S≤或<S≤20.当1≤t<时,S=t(6﹣2t)=﹣2(t﹣)2+,∵t=在1≤t<范围内,∴<S≤,当<t≤5时,S=t(2t﹣6)=2(t﹣)2﹣,∴<S≤20.点评:本题主要是考查了四边形的综合题,解题的关键是正确分几种不同种情况求解.。

初三圆的基本性质练习题

初三圆的基本性质练习题

初三圆的基本性质练习题1. 判断题1) 四分之一圆的圆心角为90度。

2) 每个半圆的弧长是直径的一半。

3) 在同一圆上,弧长相等的弧对应的圆心角相等。

4) 在同一圆上,圆心角相等的弧的弧长相等。

5) 半径相等的两个圆,面积相等。

2. 选择题1) 半径为r的圆,其面积S等于下面哪个式子?a) S = πrb) S = 2πrc) S = πr^2d) S = 2πr^22) 如果圆的直径是8cm,那么该圆的半径是多少?a) 2cmb) 4cmc) 6cmd) 8cm3) 半径为3cm的圆,它的周长等于多少?a) πcmb) 3πcmc) 6πcmd) 9πcm4) 一个扇形的圆心角是120度,如果圆的半径为5cm,那么该扇形的弧长是多少?a) 2.5cmb) 5cmc) 10cmd) 20cm3. 计算题1) 半径为6cm的圆,计算其面积和周长。

2) 直径为12cm的圆,计算其面积和周长。

3) 圆的周长为20πcm,计算其半径和面积。

4) 一个扇形的圆心角是60度,半径为8cm,计算其弧长和面积。

5) 两个圆的面积分别为36πcm^2和64πcm^2,它们的半径分别是多少?4. 应用题1) 一个半径为10cm的圆中,切一个等边三角形,求三角形的边长。

2) 一个半径为r的圆中,切一个等边三角形,求三角形的边长与r的关系。

3) 一个直径为20cm的圆,在圆的外部连接两个相切的切线,连接切线的两个端点和圆心构成一个直角三角形,请计算该三角形的斜边长。

4) 一个半径为5cm的圆上,取一点O,并连接O与圆的两个切点A和B,形成一条弦AB。

设弧OA所对的圆心角为α,则弦AB的长度与圆心角α之间有什么关系?5) 在平面直角坐标系中,一个圆心位于原点O,半径为r的圆与x轴和y轴相交于四个点A、B、C、D,求证:四边形ABCD是一个正方形。

以上就是初三圆的基本性质练习题的内容,希望能够帮助你巩固和提高对圆的基本性质的理解和应用。

浙江省永嘉县桥下镇瓯渠中学中考数学总复习《第三十四讲 圆的基本性质》课件 新人教版

浙江省永嘉县桥下镇瓯渠中学中考数学总复习《第三十四讲 圆的基本性质》课件 新人教版

分析 过点O作OD⊥AB于D,先求出钢珠的半径及OD 的长,则AB=2AD,在Rt△AOD中利用勾股定理即可求 出AD的长,进而得出AB的长. 解析 连接OA,过点O作OD⊥AB于点D,则AB= 2AD,
∵钢珠的直径是10 mm, ∴钢珠的半径是5 mm, ∵钢珠顶端离零件表面的距离为8 mm,
∴OD=3 mm, 在 Rt△AOD 中, ∵AD= OA2-OD2= 52-32=4 mm, ∴AB=2AD=2×4=8 mm.
(2)解 由(1)得△POD≌△ABO, ∴∠PDO=∠AOB, ∵∠AOB=12∠APB=12×60°=30°, ∴∠PDO=30°, ∴OP=OD·tan 30°=3× 33= 3, ∴点 P 的坐标为:(- 3,0)
∴b-=33,k+b=0,
解得:k= 3 b=3,
∴直线 l 的解析式为:y= 3x+3.
_弦__所__对__的__两__条__弧__ .
②平分弦(_不__是__直__径__)的直径_垂__直__于__弦__,并且平分 _弦__所__对__的__两__条__弧__. ③平分弧的直径_垂__直__平__分__弧所对的弦. 2.圆的中心对称性及圆心角定理 (1)圆是中心对称图形,__圆__心_是对称中心,旋转任__意__ 角度与自身重合. (2)顶点在__圆__心__的角叫做圆心角;__n_°__的__圆__心__角_所对 的弧就是n°的弧. (3)圆心角的性质 ①在同圆或等圆中,相等的圆心角所对的_弧__相__等__,所 对的_弦__也__相__等__.
名师助学 1.圆心确定圆的位置,半径确定圆的大小; 2.钝角三角形的外心在三角形的外部,直角三角形
的外心在斜边中点处,锐角三角形的外心在三角 形内部; 3.经过同一直线上的三点不能作圆.

2014年中考圆的有关性质及其计算真题组卷1

2014年中考圆的有关性质及其计算真题组卷1

2014年中考圆的有关性质及其计算真题组卷12014年中考圆的有关性质及其计算真题组卷1一.选择题(共11小题)1.(2014•北京)如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为()A .2B.4 C.4D.82.(2014•天津)如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C的大小等于()A .20°B.25°C.40°D.50°3.(2014•重庆)如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是()A .30°B.45°C.60°D.70°4.(2014•广州)已知⊙O1和⊙O2的半径分别为2cm和3cm,若O1O2=7cm,则⊙O1和⊙O2的位置关系是()A .外离B.外切C.内切D.相交5.(2014•济南)如图,⊙O的半径为1,△ABC是⊙O的内接等边三角形,点D、E在圆上,四边形BCDE为矩形,这个矩形的面积是()6.(2014•哈尔滨)如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,∠C=40°.则∠ABD 的度数是()A .30°B.25°C.20°D.15°7.(2014•南昌)如图,A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,则∠B的度数为()A .40°B.45°C.50°D.55°8.(2014•山西)如图,⊙O是△ABC的外接圆,连接OA、OB,∠OBA=50°,则∠C的度数为()A .30°B.40°C.50°D.80°9.(2014•温州)如图,已知A,B,C在⊙O上,为优弧,下列选项中与∠AOB相等的是()A .2∠C B.4∠B C.4∠A D.∠B+∠C10.(2014•呼和浩特)已知⊙O的面积为2π,则其内接正三角形的面积为()11.(2014•南宁)在直径为200cm的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm,则油的最大深度为()A .40cm B.60cm C.80cm D.100cm二.填空题(共7小题)12.(2014•南京)如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD=22°30′,则⊙O的半径为_________cm.13.(2014•长沙)如图,在△ABC中,DE∥BC,=,△ADE的面积是8,则△ABC的面积为_________.14.(2014•广东)如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为_________.15.(2014•黄冈)如图,在⊙O中,弦CD垂直于直径AB于点E,若∠BAD=30°,且BE=2,则CD=_________.16.(2014•吉林)如图,OB是⊙O的半径,弦AB=OB,直径CD⊥AB.若点P是线段OD上的动点,连接PA,则∠PAB 的度数可以是_________(写出一个即可)17.(2014•温州)如图,在矩形ABCD中,AD=8,E是边AB上一点,且AE=AB.⊙O经过点E,与边CD所在直线相切于点G(∠GEB为锐角),与边AB所在直线交于另一点F,且EG:EF=:2.当边AD或BC所在的直线与⊙O相切时,AB的长是_________.18.(2014•南宁)如图,△ABC是等腰直角三角形,AC=BC=a,以斜边AB上的点O为圆心的圆分别与AC,BC相切于点E,F,与AB分别交于点G,H,且EH的延长线和CB的延长线交于点D,则CD的长为_________.三.解答题(共12小题)19.(2014•北京)如图,AB是⊙O的直径,C是的中点,⊙O的切线BD交AC的延长线于点D,E是OB的中点,CE的延长线交切线BD于点F,AF交⊙O于点H,连接BH.(1)求证:AC=CD;(2)若OB=2,求BH的长.20.(2014•天津)已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.(Ⅰ)如图①,若BC为⊙O的直径,AB=6,求AC,BD,CD的长;(Ⅱ)如图②,若∠CAB=60°,求BD的长.21.(2014•武汉)如图,AB是⊙O的直径,C,P是上两点,AB=13,AC=5.(1)如图(1),若点P是的中点,求PA的长;(2)如图(2),若点P是的中点,求PA的长.22.(2014•长沙)如图,以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点恰好为BC的中点D,过点D作⊙O 的切线交AC于点E.(1)求证:DE⊥AC;(2)若AB=3DE,求tan∠ACB的值.23.(2014•沈阳)如图,⊙O是△ABC的外接圆,AB为直径,OD∥BC交⊙O于点D,交AC于点E,连接AD,BD,CD.(1)求证:AD=CD;(2)若AB=10,cos∠ABC=,求tan∠DBC的值.24.(2014•哈尔滨)如图,⊙O是△ABC的外接圆,弦BD交AC于点E,连接CD,且AE=DE,BC=CE.(1)求∠ACB的度数;(2)过点O作OF⊥AC于点F,延长FO交BE于点G,DE=3,EG=2,求AB的长.25.(2014•安徽)如图,在⊙O中,半径OC与弦AB垂直,垂足为E,以OC为直径的圆与弦AB的一个交点为F,D是CF延长线与⊙O的交点.若OE=4,OF=6,求⊙O的半径和CD的长.26.(2014•河南)如图,CD是⊙O的直径,且CD=2cm,点P为CD的延长线上一点,过点P作⊙O的切线PA,PB,切点分别为点A,B.(1)连接AC,若∠APO=30°,试证明△ACP是等腰三角形;(2)填空:①当DP=_________cm时,四边形AOBD是菱形;②当DP=_________cm时,四边形AOBP是正方形.27.(2014•黄冈)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E.(1)求证:EB=EC;(2)若以点O、D、E、C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.28.(2014•南通)如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.29.(2014•吉林)如图,四边形OABC是平行四边形,以O为圆心,OA为半径的圆交AB于点D,延长AO交⊙O 于点E,连接CD,CE,若CE是⊙O的切线,解答下列问题:(1)求证:CD是⊙O的切线;(2)若BC=3,CD=4,求平行四边形OABC的面积.30.(2014•呼和浩特)如图,AB是⊙O的直径,点C在⊙O上,过点C作⊙O的切线CM.(1)求证:∠ACM=∠ABC;(2)延长BC到D,使BC=CD,连接AD与CM交于点E,若⊙O的半径为3,ED=2,求△ACE的外接圆的半径.31.(2014•杭州)点A,B,C都在半径为r的圆上,直线AD⊥直线BC,垂足为D,直线BE⊥直线AC,垂足为E,直线AD与BE相交于点H.若BH=AC,则∠ABC所对的弧长等于πr或r(长度单位).32.(2014•成都)如图,AB是⊙O的直径,点C在AB的延长线上,CD切⊙O于点D,连接AD.若∠A=25°,则∠C= 40度.2014年中考圆的有关性质及其计算真题组卷1参考答案与试题解析一.选择题(共11小题)1.(2014•北京)如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为()A .2B.4 C.4D.8考点:垂径定理;等腰直角三角形;圆周角定理.分析:根据圆周角定理得∠BOC=2∠A=45°,由于⊙O的直径AB垂直于弦CD,根据垂径定理得CE=DE,且可判断△OCE为等腰直角三角形,所以CE=OC=2,然后利用CD=2CE进行计算.解答:解:∵∠A=22.5°,∴∠BOC=2∠A=45°,∵⊙O的直径AB垂直于弦CD,∴CE=DE,△OCE为等腰直角三角形,∴CE=OC=2,∴CD=2CE=4.故选:C.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等腰直角三角形的性质和垂径定理.2.(2014•天津)如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C的大小等于()考点:切线的性质;圆心角、弧、弦的关系.专题:几何图形问题.分析:连接OA,根据切线的性质,即可求得∠C的度数.解答:解:如图,连接OA,∵AC是⊙O的切线,∴∠OAC=90°,∵OA=OB,∴∠B=∠OAB=25°,∴∠AOC=50°,∴∠C=40°.故选:C.点评:本题考查了圆的切线性质,以及等腰三角形的性质,已知切线时常用的辅助线是连接圆心与切点.3.(2014•重庆)如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是()A .30°B.45°C.60°D.70°考点:圆周角定理.专题:计算题.分析:先根据圆周角定理得到∠ABC=∠AOC,由于∠ABC+∠AOC=90°,所以∠AOC+∠AOC=90°,然后解方程即可.解答:解:∵∠ABC=∠AOC,而∠ABC+∠AOC=90°,∴∠AOC+∠AOC=90°,∴∠AOC=60°.故选:C.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.4.(2014•广州)已知⊙O1和⊙O2的半径分别为2cm和3cm,若O1O2=7cm,则⊙O1和⊙O2的位置关系是()考点:圆与圆的位置关系.分析:由⊙O1与⊙O2的半径分别为3cm、2cm,且圆心距O1O2=7cm,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.解答:解:∵⊙O1与⊙O2的半径分别为3cm、2cm,且圆心距O1O2=7cm,又∵3+2<7,∴两圆的位置关系是外离.故选:A.点评:此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.5.(2014•济南)如图,⊙O的半径为1,△ABC是⊙O的内接等边三角形,点D、E在圆上,四边形BCDE为矩形,这个矩形的面积是()A .2 B.C.D.考点:垂径定理;等边三角形的性质;矩形的性质;解直角三角形.分析:连接BD、OC,根据矩形的性质得∠BCD=90°,再根据圆周角定理得BD为⊙O的直径,则BD=2;由ABC为等边三角形得∠A=60°,于是利用圆周角定理得到∠BOC=2∠A=120°,易得∠CBD=30°,在Rt△BCD中,根据含30°的直角三角形三边的关系得到CD=BD=1,BC=CD=,然后根据矩形的面积公式求解.解答:解:连结BD、OC,如图,∵四边形BCDE为矩形,∴∠BCD=90°,∴BD为⊙O的直径,∴BD=2,∵△ABC为等边三角形,∴∠A=60°,∴∠BOC=2∠A=120°,而OB=OC,∴∠CBD=30°,在Rt△BCD中,CD=BD=1,BC=CD=,∴矩形BCDE的面积=BC•CD=.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理、等边三角形的性质和矩形的性质.6.(2014•哈尔滨)如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,∠C=40°.则∠ABD 的度数是()A .30°B.25°C.20°D.15°考点:切线的性质;三角形内角和定理;三角形的外角性质;等腰三角形的性质.专题:计算题.分析:根据切线的性质求出∠OAC,结合∠C=40°求出∠AOC,根据等腰三角形性质求出∠B=∠BDO,根据三角形外角性质求出即可.解答:解:∵AC是⊙O的切线,∴∠OAC=90°,∵∠C=40°,∴∠AOC=50°,∵OB=OD,∴∠ABD=∠BDO,∵∠ABD+∠BDO=∠AOC,∴∠ABD=25°,故选:B.点评:本题考查了切线的性质,三角形外角性质,三角形内角和定理,等腰三角形性质的应用,解此题的关键是求出∠AOC的度数,题目比较好,难度适中.7.(2014•南昌)如图,A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,则∠B的度数为()A .40°B.45°C.50°D.55°考点:圆周角定理;平行线的性质.分析:连接OC,由AO∥DC,得出∠ODC=∠AOD=70°,再由OD=OC,得出∠ODC=∠OCD=70°,求得∠COD=40°,进一步得出∠AOC,进一步利用圆周角定理得出∠B的度数即可.解答:解:如图,连接OC,∵AO∥DC,∴∠ODC=∠AOD=70°,∵OD=OC,∴∠ODC=∠OCD=70°,∴∠COD=40°,∴∠AOC=110°,∴∠B=∠AOC=55°.故选:D.点评:此题考查平行线的性质,等腰三角形的性质,三角形的内角和,圆周角定理,正确作出辅助线是解决问题的关键.8.(2014•山西)如图,⊙O是△ABC的外接圆,连接OA、OB,∠OBA=50°,则∠C的度数为()A .30°B.40°C.50°D.80°考点:圆周角定理.专题:几何图形问题.分析:根据三角形的内角和定理求得∠AOB的度数,再进一步根据圆周角定理求解.解答:解:∵OA=OB,∠OBA=50°,∴∠OAB=∠OBA=50°,∴∠AOB=180°﹣50°×2=80°,∴∠C=∠AOB=40°.故选:B.点评:此题综合运用了三角形的内角和定理以及圆周角定理.一条弧所对的圆周角等于它所对的圆心角的一半.9.(2014•温州)如图,已知A,B,C在⊙O上,为优弧,下列选项中与∠AOB相等的是()A .2∠C B.4∠B C.4∠A D.∠B+∠C考点:圆周角定理.分析:根据圆周角定理,可得∠AOB=2∠C.解答:解:如图,由圆周角定理可得:∠AOB=2∠C.故选:A.点评:此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.10.(2014•呼和浩特)已知⊙O的面积为2π,则其内接正三角形的面积为()A .3B.3C.D.考点:垂径定理;等边三角形的性质.专题:几何图形问题.分析:先求出正三角形的外接圆的半径,再求出正三角形的边长,最后求其面积即可.解答:解:如图所示,连接OB、OC,过O作OD⊥BC于D,∵⊙O的面积为2π∴⊙O的半径为∵△ABC为正三角形,∴∠BOC==120°,∠BOD=∠BOC=60°,OB=,∴BD=OB•sin∠BOD==,∴BC=2BD=,∴OD=OB•cos∠BOD=•cos60°=,∴△BOC的面积=•BC•OD=××=,∴△ABC的面积=3S△BOC=3×=.故选:C.点评:本题考查的是三角形的外接圆与外心,根据题意画出图形,利用数形结合求解是解答此题的关键.11.(2014•南宁)在直径为200cm的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm,则油的最大深度为()A .40cm B.60cm C.80cm D.100cm考点:垂径定理的应用;勾股定理.分析:连接OA,过点O作OE⊥AB,交AB于点M,由垂径定理求出AM的长,再根据勾股定理求出OM的长,进而可得出ME的长.解答:解:连接OA,过点O作OE⊥AB,交AB于点M,∵直径为200cm,AB=160cm,∴OA=OE=100cm,AM=80cm,∴OM===60cm,∴ME=OE﹣OM=100﹣60=40cm.故选:A.点评:本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.二.填空题(共7小题)12.(2014•南京)如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD=22°30′,则⊙O的半径为2cm.考点:垂径定理;等腰直角三角形;圆周角定理.专题:计算题.分析:先根据圆周角定理得到∠BOD=2∠BCD=45°,再根据垂径定理得到BE=AB=,且△BOE为等腰直角三角形,然后根据等腰直角三角形的性质求解.解答:解:连结OB,如图,∵∠BCD=22°30′,∴∠BOD=2∠BCD=45°,∵AB⊥CD,∴BE=AE=AB=×2=,△BOE为等腰直角三角形,∴OB=BE=2(cm).故答案为:2.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了等腰直角三角形的性质和圆周角定理.13.(2014•长沙)如图,在△ABC中,DE∥BC,=,△ADE的面积是8,则△ABC的面积为18.考点:相似三角形的判定与性质.分析:根据相似三角形的判定,可得△ADE∽△ABC,根据相似三角形的性质,可得答案.解答:解;∵在△ABC中,DE∥BC,∴△ADE∽△ABC.∵=,∴=()2=,,∴S△ABC=18,故答案为:18.点评:本题考查了相似三角形判定与性质,利用了相似三角形的判定与性质.14.(2014•广东)如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为3.考点:垂径定理;勾股定理.分析:作OC⊥AB于C,连接OA,根据垂径定理得到AC=BC=AB=3,然后在Rt△AOC中利用勾股定理计算OC即可.解答:解:作OC⊥AB于C,连结OA,如图,∵OC⊥AB,∴AC=BC=AB=×8=4,在Rt△AOC中,OA=5,∴OC===3,即圆心O到AB的距离为3.故答案为:3.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.15.(2014•黄冈)如图,在⊙O中,弦CD垂直于直径AB于点E,若∠BAD=30°,且BE=2,则CD=4.考点:垂径定理;解直角三角形.专题:计算题.分析:连结OD,设⊙O的半径为R,先根据圆周角定理得到∠BOD=2∠BAD=60°,再根据垂径定理由CD⊥AB得到DE=CE,在Rt△ODE中,OE=OB﹣BE=R﹣2,利用余弦的定义得cos∠EOD=cos60°=,即=,解得R=4,则OE=2,DE=OE=2,所以CD=2DE=4.解答:解:连结OD,如图,设⊙O的半径为R,∵∠BAD=30°,∴∠BOD=2∠BAD=60°,∵CD⊥AB,∴DE=CE,在Rt△ODE中,OE=OB﹣BE=R﹣2,OD=R,∵cos∠EOD=cos60°=,∴=,解得R=4,∴OE=4﹣2=2,∴DE=OE=2,∴CD=2DE=4故答案为:4.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理和解直角三角形.16.(2014•吉林)如图,OB是⊙O的半径,弦AB=OB,直径CD⊥AB.若点P是线段OD上的动点,连接PA,则∠PAB 的度数可以是70°(写出一个即可)考点:圆周角定理;等腰三角形的性质;垂径定理.专题:开放型.分析:当P点与D点重合是∠DAB=75°,与O重合则OAB=60°,∠OAB≤∠PAB≤∠DAB,所以∠PAB的度数可以是60°﹣﹣75°之间的任意数.解答:解:连接DA,OA,则△OAB是等边三角形,∴∠OAB=∠AOB=60°,∵DC是直径,DC⊥AB,∴∠AOC=∠AOB=30°,∴∠ADC=15°,∴∠DAB=75°,∵,∠OAB≤∠PAB≤∠DAB,∴∠PAB的度数可以是60°﹣75°之间的任意数.故答案为:70°点评:本题考查了垂径定理,等边三角形的判定及性质,等腰三角形的判定及性质.17.(2014•温州)如图,在矩形ABCD中,AD=8,E是边AB上一点,且AE=AB.⊙O经过点E,与边CD所在直线相切于点G(∠GEB为锐角),与边AB所在直线交于另一点F,且EG:EF=:2.当边AD或BC所在的直线与⊙O相切时,AB的长是12或4.考点:切线的性质;矩形的性质.专题:几何图形问题.分析:过点G作GN⊥AB,垂足为N,可得EN=NF,由EG:EF=:2,得:EG:EN=:1,依据勾股定理即可求得AB的长度.解答:解:边AB所在的直线不会与⊙O相切;边BC所在的直线与⊙O相切时,如图,过点G作GN⊥AB,垂足为N,∴EN=NF,又∵EG:EF=:2,∴EG:EN=:1,又∵GN=AD=8,∴设EN=x,则,根据勾股定理得:,解得:x=4,GE=,设⊙O的半径为r,由OE2=EN2+ON2得:r2=16+(8﹣r)2,∴r=5.∴OK=NB=5,∴EB=9,又AE=AB,∴AB=12.同理,当边AD所在的直线与⊙O相切时,AB=4.故答案为:12或4.点评:本题考查了切线的性质以及勾股定理和垂径定理的综合应用,解答本题的关键在于做好辅助线,利用勾股定理求出对应圆的半径.18.(2014•南宁)如图,△ABC是等腰直角三角形,AC=BC=a,以斜边AB上的点O为圆心的圆分别与AC,BC相切于点E,F,与AB分别交于点G,H,且EH的延长线和CB的延长线交于点D,则CD的长为a.考点:切线的性质;切割线定理;相似三角形的性质.分析:连接OE、OF,由切线的性质结合结合直角三角形可得到正方形OECF,并且可求出⊙O的半径为0.5a,则BF=a﹣0.5a=0.5a,再由切割线定理可得BF2=BH•BG,利用方程即可求出BH,然后又因OE∥DB,OE=OH,利用相似三角形的性质即可求出BH=BD,最终由CD=BC+BD,即可求出答案.解答:解:如图,连接OE、OF,∵由切线的性质可得OE=OF=⊙O的半径,∠OEC=∠OFC=∠C=90°,∴OECF是正方形,∵由△ABC的面积可知×AC×BC=×AC×OE+×BC×OF,∴OE=OF=a=EC=CF,BF=BC﹣CF=0.5a,GH=2OE=a,∵由切割线定理可得BF2=BH•BG,∴a2=BH(BH+a),∴BH=a或BH=a(舍去),∵OE∥DB,OE=OH,∴△OEH∽△BDH,∴=,∴BH=BD,CD=BC+BD=a+a=a.故答案为:a.点评:考查了切线的性质,本题需仔细分析题意,结合图形,利用相似三角形的性质及切线的性质即可解决问题.三.解答题(共12小题)19.(2014•北京)如图,AB是⊙O的直径,C是的中点,⊙O的切线BD交AC的延长线于点D,E是OB的中点,CE的延长线交切线BD于点F,AF交⊙O于点H,连接BH.(1)求证:AC=CD;(2)若OB=2,求BH的长.考点:切线的性质;全等三角形的判定与性质;勾股定理.分析:(1)连接OC,由C是的中点,AB是⊙O的直径,则CO⊥AB,再由BD是⊙O的切线,得BD⊥AB,从而得出OC∥BD,即可证明AC=CD;(2)根据点E是OB的中点,得OE=BE,可证明△COE≌△FBE(ASA),则BF=CO,即可得出BF=2,由勾股定理得出AF=,由AB是直径,得BH⊥AF,可证明△ABF∽△BHF,即可得出BH的长.解答:(1)证明:连接OC,∵C是的中点,AB是⊙O的直径,∴CO⊥AB,∵BD是⊙O的切线,∴BD⊥AB,∴OC∥BD,∵OA=OB,∴AC=CD;(2)解:∵E是OB的中点,∴OE=BE,在△COE和△FBE中,,∴△COE≌△FBE(ASA),∴BF=CO,∵OB=2,∴BF=2,∴AF==2,∵AB是直径,∴BH⊥AF,∴△ABF∽△BHF,∴=,∴AB•BF=AF•BH,∴BH===.点评:本题考查了切线的性质以及全等三角形的判定和性质、勾股定理,是中档题,难度不大.20.(2014•天津)已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.(Ⅰ)如图①,若BC为⊙O的直径,AB=6,求AC,BD,CD的长;(Ⅱ)如图②,若∠CAB=60°,求BD的长.考点:圆周角定理;等边三角形的判定与性质;勾股定理.专题:证明题.分析:(Ⅰ)利用圆周角定理可以判定△CAB和△DCB是直角三角形,利用勾股定理可以求得AC的长度;利用圆心角、弧、弦的关系推知△DCB也是等腰三角形,所以利用勾股定理同样得到BD=CD=5;(Ⅱ)如图②,连接OB,OD.由圆周角定理、角平分线的性质以及等边三角形的判定推知△OBD是等边三角形,则BD=OB=OD=5.解答:解:(Ⅰ)如图①,∵BC是⊙O的直径,∴∠CAB=∠BDC=90°.∵在直角△CAB中,BC=10,AB=6,∴由勾股定理得到:AC===8.∵AD平分∠CAB,∴=,∴CD=BD.在直角△BDC中,BC=10,CD2+BD2=BC2,∴易求BD=CD=5;(Ⅱ)如图②,连接OB,OD.∵AD平分∠CAB,且∠CAB=60°,∴∠DAB=∠CAB=30°,∴∠DOB=2∠DAB=60°.又∵OB=OD,∴△OBD是等边三角形,∴BD=OB=OD.∵⊙O的直径为10,则OB=5,∴BD=5.点评:本题综合考查了圆周角定理,勾股定理以及等边三角形的判定与性质.此题利用了圆的定义、有一内角为60度的等腰三角形为等边三角形证得△OBD是等边三角形.21.(2014•武汉)如图,AB是⊙O的直径,C,P是上两点,AB=13,AC=5.(1)如图(1),若点P是的中点,求PA的长;(2)如图(2),若点P是的中点,求PA的长.考点:相似三角形的判定与性质;勾股定理;等腰直角三角形;圆心角、弧、弦的关系;圆周角定理.专题:几何综合题.分析:(1)根据圆周角的定理,∠APB=90°,p是弧AB的中点,所以三角形APB是等腰三角形,利用勾股定理即可求得.(2)根据垂径定理得出OP垂直平分BC,得出OP∥AC,从而得出△ACB∽△0NP,根据对应边成比例求得ON、AN的长,利用勾股定理求得NP的长,进而求得PA.解答:解:(1)如图(1)所示,连接PB,∵AB是⊙O的直径且P是的中点,∴∠PAB=∠PBA=45°,∠APB=90°,又∵在等腰三角形△APB中有AB=13,∴PA===.(2)如图(2)所示:连接BC.OP相交于M点,作PN⊥AB于点N,∵P点为弧BC的中点,∴OP⊥BC,∠OMB=90°,又因为AB为直径∴∠ACB=90°,∴∠ACB=∠OMB,∴OP∥AC,∴∠CAB=∠POB,又因为∠ACB=∠ONP=90°,∴△ACB∽△0NP∴=,又∵AB=13 AC=5 OP=,代入得ON=,∴AN=OA+ON=9∴在Rt△OPN中,有NP2=0P2﹣ON2=36在Rt△ANP中有PA===3∴PA=3.点评:本题考查了圆周角的定理,垂径定理,勾股定理,等腰三角形判定和性质,相似三角形的判定和性质,作出辅助线是本题的关键.22.(2014•长沙)如图,以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点恰好为BC的中点D,过点D作⊙O 的切线交AC于点E.(1)求证:DE⊥AC;(2)若AB=3DE,求tan∠ACB的值.考点:切线的性质.专题:几何综合题.分析:(1)连接OD,可以证得DE⊥OD,然后证明OD∥AC即可证明DE⊥AC;(2)利用△DAE∽△CDE,求出DE与CE的比值即可.解答:(1)证明:连接OD,∵D是BC的中点,OA=OB,∴OD是△ABC的中位线,∴OD∥AC,∵DE是⊙O的切线,∴OD⊥DE,∴DE⊥AC;(2)解:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∵DE⊥AC,∴∠ADC=∠DEC=∠AED=90°,∴∠ADE=∠DCE在△ADE和△CDE中,∴△CDE∽△DAE,∴,设tan∠ACB=x,CE=a,则DE=ax,AC=3ax,AE=3ax﹣a,∴,整理得:x2﹣3x+1=0,解得:x=,∴tan∠ACB=.点评:本题主要考查了切线的性质的综合应用,解答本题的关键在于如何利用三角形相似求出线段DE 与CE的比值.23.(2014•沈阳)如图,⊙O是△ABC的外接圆,AB为直径,OD∥BC交⊙O于点D,交AC于点E,连接AD,BD,CD.(1)求证:AD=CD;(2)若AB=10,cos∠ABC=,求tan∠DBC的值.考点:圆周角定理;勾股定理;圆心角、弧、弦的关系;解直角三角形.专题:几何综合题.分析:(1)由AB为直径,OD∥BC,易得OD⊥AC,然后由垂径定理证得,=,继而证得结论;(2)由AB=10,cos∠ABC=,可求得OE的长,继而求得DE,AE的长,则可求得tan∠DAE,然后由圆周角定理,证得∠DBC=∠DAE,则可求得答案.解答:(1)证明:∵AB为⊙O的直径,∴∠ACB=90°,∵OD∥BC,∴∠AEO=∠ACB=90°,∴OD⊥AC,∴=,∴AD=CD;(2)解:∵AB=10,∴OA=OD=AB=5,∵OD∥BC,∴∠AOE=∠ABC,在Rt△AEO中,OE=OA•cos∠AOE=OA•cos∠ABC=5×=3,∴DE=OD﹣OE=5﹣3=2,∴AE===4,在Rt△AED中,tan∠DAE===,∵∠DBC=∠DAE,∴tan∠DBC=.点评:此题考查了圆周角定理、垂径定理以及勾股定理.此题难度适中,注意掌握数形结合思想的应用.24.(2014•哈尔滨)如图,⊙O是△ABC的外接圆,弦BD交AC于点E,连接CD,且AE=DE,BC=CE.(1)求∠ACB的度数;(2)过点O作OF⊥AC于点F,延长FO交BE于点G,DE=3,EG=2,求AB的长.考点:三角形的外接圆与外心;全等三角形的判定与性质;等边三角形的判定与性质;勾股定理.专题:几何图形问题.分析:(1)首先得出△AEB≌△DEC,进而得出△EBC为等边三角形,即可得出答案;(2)由已知得出EF,BC的长,进而得出CM,BM的长,再求出AM的长,再由勾股定理求出AB的长.解答:(1)证明:在△AEB和△DEC中,∴△AEB≌△DEC(ASA),∴EB=EC,又∵BC=CE,∴BE=CE=BC,∴△EBC为等边三角形,∴∠ACB=60°;(2)解:∵OF⊥AC,∴AF=CF,∵△EBC为等边三角形,∴∠GEF=60°,∴∠EGF=30°,∵EG=2,∴EF=1,又∵AE=ED=3,∴CF=AF=4,∴AC=8,EC=5,∴BC=5,作BM⊥AC于点M,∵∠BCM=60°,∴∠MBC=30°,∴CM=,BM==,∴AM=AC﹣CM=,∴AB==7.点评:此题主要考查了全等三角形的判定与性质以及等边三角形的性质和勾股定理以及锐角三角函数关系等知识,得出CM,BM的长是解题关键.25.(2014•安徽)如图,在⊙O中,半径OC与弦AB垂直,垂足为E,以OC为直径的圆与弦AB的一个交点为F,D是CF延长线与⊙O的交点.若OE=4,OF=6,求⊙O的半径和CD的长.考点:垂径定理;勾股定理;圆周角定理;相似三角形的判定与性质.专题:计算题;几何图形问题.分析:由OE⊥AB得到∠OEF=90°,再根据圆周角定理由OC为小圆的直径得到∠OFC=90°,则可证明Rt△OEF∽Rt△OFC,然后利用相似比可计算出⊙O的半径OC=9;接着在Rt△OCF中,根据勾股定理可计算出CF=3,由于OF⊥CD,根据垂径定理得CF=DF,所以CD=2CF=6.解答:解:∵OE⊥AB,∴∠OEF=90°,∵OC为小圆的直径,∴∠OFC=90°,而∠EOF=∠FOC,∴Rt△OEF∽Rt△OFC,∴OE:OF=OF:OC,即4:6=6:OC,∴⊙O的半径OC=9;在Rt△OCF中,OF=6,OC=9,∴CF==3,∵OF⊥CD,∴CF=DF,∴CD=2CF=6.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理、圆周角定理和相似三角形的判定与性质.26.(2014•河南)如图,CD是⊙O的直径,且CD=2cm,点P为CD的延长线上一点,过点P作⊙O的切线PA,PB,切点分别为点A,B.(1)连接AC,若∠APO=30°,试证明△ACP是等腰三角形;(2)填空:①当DP=1cm时,四边形AOBD是菱形;②当DP=﹣1cm时,四边形AOBP是正方形.考点:切线的性质;等腰三角形的判定;菱形的判定;正方形的判定.分析:(1)利用切线的性质可得OC⊥PC.利用同弧所对的圆周角等于圆心角的一半,求得∠ACP=30°,从而求得.(2)①要使四边形AOBD是菱形,则OA=AD=OD,所以∠AOP=60°,所以OP=2OA,DP=OD.②要使四边形AOBP是正方形,则必须∠AOP=45°,OA=PA=1,则OP=,所以DP=OP﹣1.解答:解:(1)连接OA,AC∵PA是⊙O的切线,∴OA⊥PA,在Rt△AOP中,∠AOP=90°﹣∠APO=90°﹣30°=60°,∴∠ACP=30°,∵∠APO=30°∴∠ACP=∠APO,∴AC=AP,∴△ACP是等腰三角形.(2)①DP=1,理由如下:∵四边形AOBD是菱形,∴OA=AD=OD,∴∠AOP=60°,∴OP=2OA,DP=OD.∴DP=1,②DP=,理由如下:∵四边形AOBP是正方形,∴∠AOP=45°,∵OA=PA=1,OP=,∴DP=OP﹣1∴DP=.点评:本题考查了切线的性质,圆周角的性质,熟练掌握圆的切线的性质和直角三角形的边角关系是解题的关键.27.(2014•黄冈)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E.(1)求证:EB=EC;(2)若以点O、D、E、C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.考点:切线的性质;正方形的性质;圆周角定理.专题:证明题.分析:(1)连接CD,根据直径所对的圆周角是直角,得到直角三角形ACD和BCD,根据切线的判定定理知BC是圆的切线,结合切线长定理得到ED=EB,再根据等边对等角以及等角的余角相等证明DE=CE;(2)当以点O、D、E、C为顶点的四边形是正方形时,则△DEB是等腰直角三角形,据此即可判断.解答:(1)证明:连接OD,∵AC是直径,∠ACB=90°,∴BC是⊙O的切线,∠BCA=90°.又∵DE是⊙O的切线,∴ED=EC,∠ODE=90°,∴∠ODA+∠EDB=90°,∵OA=OD,∴∠OAD=∠ODA,又∵∠OAD+∠DBE=90°,∴∠EDB=∠EBD,∴ED=EB,∴EB=EC.(2)解:当以点O、D、E、C为顶点的四边形是正方形时,则∠DEB=90°,又∵ED=EB,∴△DEB是等腰直角三角形,则∠B=45°,∴△ABC是等腰直角三角形.点评:本题考查了切线的性质以及切线长定理、圆周角定理,解题的关键是连接OD得垂直,构造出等腰三角形,利用“等角的余角相等解答.28.(2014•南通)如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.考点:垂径定理;勾股定理;圆周角定理.专题:几何综合题.分析:(1)先根据CD=16,BE=4,得出OE的长,进而得出OB的长,进而得出结论;(2)由∠M=∠D,∠DOB=2∠D,结合直角三角形可以求得结果;解答:解:(1)∵AB⊥CD,CD=16,∴CE=DE=8,设OB=x,又∵BE=4,∴x2=(x﹣4)2+82,解得:x=10,∴⊙O的直径是20.(2)∵∠M=∠BOD,∠M=∠D,∴∠D=∠BOD,∵AB⊥CD,∴∠D=30°.点评:本题考查了圆的综合题:在同圆或等圆中,相等的弧所对的圆周角相等,直径所对的圆周角为直角;垂直于弦的直径平分弦,并且平分弦所对的弧;29.(2014•吉林)如图,四边形OABC是平行四边形,以O为圆心,OA为半径的圆交AB于点D,延长AO交⊙O 于点E,连接CD,CE,若CE是⊙O的切线,解答下列问题:(1)求证:CD是⊙O的切线;(2)若BC=3,CD=4,求平行四边形OABC的面积.考点:切线的判定与性质;全等三角形的判定与性质;平行四边形的性质.专题:证明题.分析:(1)连接OD,求出∠EOC=∠DOC,根据SAS推出△EOC≌△DOC,推出∠ODC=∠OEC=90°,根据切线的判定推出即可;(2)根据全等三角形的性质求出CE=CD=4,根据平行四边形性质求出OA=3,根据平行四边形的面积公式求出即可.解答:(1)证明:连接OD,∵OD=OA,∴∠ODA=∠A,∵四边形OABC是平行四边形,∴OC∥AB,∴∠EOC=∠A,∠COD=∠ODA,∴∠EOC=∠DOC,在△EOC和△DOC中∴△EOC≌△DOC(SAS),∴∠ODC=∠OEC=90°,即OD⊥DC,∴CD是⊙O的切线;(2)解:∵△EOC≌△DOC,∴CE=CD=4,∵四边形OABC是平行四边形,∴OA=BC=3,∴平行四边形OABC的面积S=OA×CE=3×4=12.点评:本题考查了全等三角形的性质和判定,切线的判定,平行四边形的性质的应用,解此题的关键是推出△EOC≌△DOC.30.(2014•呼和浩特)如图,AB是⊙O的直径,点C在⊙O上,过点C作⊙O的切线CM.(1)求证:∠ACM=∠ABC;(2)延长BC到D,使BC=CD,连接AD与CM交于点E,若⊙O的半径为3,ED=2,求△ACE的外接圆的半径.考点:切线的性质;勾股定理;圆周角定理;相似三角形的判定与性质.专题:几何综合题.分析:(1)连接OC,由∠ABC+∠BAC=90°及CM是⊙O的切线得出∠ACM+∠ACO=90°,再利用∠BAC=∠AOC,得出结论,(2)连接OC,得出△AEC是直角三角形,△AEC的外接圆的直径是AC,利用△ABC∽△CDE,求出AC,解答:(1)证明:如图,连接OC,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年浙江省温州市永嘉县瓯渠中学中考数学复
习卷34:圆的基本性质
2014年浙江省温州市永嘉县瓯渠中学中考数学复
习卷34:圆的基本性质
一、【基础演练】
1.(3分)下列语句中,不正确的个数是()
2.(3分)(2012•泰州)如图,△ABC内接于⊙O,OD⊥BC于D,∠A=50°,则∠OCD的度数是()
3.(3分)(2012•黔东南州)如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=55°,则∠BCD的度数为()
5.(3分)(2012•陕西)如图,在半径为5的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为()
二、填空题(共4小题,每小题3分,满分12分)
6.(3分)(2012•嘉兴)如图,在⊙O中,直径AB丄弦CD于点M,AM=18,BM=8,则CD的长为_________.
7.(3分)(2012•咸宁)如图,量角器的直径与直角三角板ABC的斜边AB重合,其中量角器0刻度线的端点N 与点A重合,射线CP从CA处出发沿顺时针方向以每秒2度的速度旋转,CP与量角器的半圆弧交于点E,第35秒时,点E在量角器上对应的读数是_________度.
8.(3分)(2012•资阳)直角三角形的两边长分别为16和12,则此三角形的外接圆半径是_________.
9.(3分)(2012•六盘水)当宽为3cm的刻度尺的一边与圆相切时,另一边与圆的两个交点处的读数如图所示(单位:cm),那么该圆的半径为_________cm.
三、解答题(共4小题,)
10.(2012•肇庆)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC于点E,交BC于点D,连接BE、AD交于点P.求证:
(1)D是BC的中点;
(2)△BEC∽△ADC;
(3)AB•CE=2DP•AD.
11.如图,AB是⊙O的直径,C是的中点,CE⊥AB于E,BD交CE于点F.
求证:CF﹦BF.
12.(2012•沈阳)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上一点,OD⊥AC,垂足为E,连接BD (1)求证:BD平分∠ABC;
(2)当∠ODB=30°时,求证:BC=OD.
13.(2012•荆州)如图所示为圆柱形大型储油罐固定在U型槽上的横截面图.已知图中ABCD为等腰梯形(AB∥DC),支点A与B相距8m,罐底最低点到地面CD距离为1m.设油罐横截面圆心为O,半径为5m,∠D=56°,求:U型槽的横截面(阴影部分)的面积.(参考数据:sin53°≈0.8,tan56°≈1.5,π≈3,结果保留整数)
2014年浙江省温州市永嘉县瓯渠中学中考数学复
习卷34:圆的基本性质
参考答案与试题解析
一、【基础演练】
1.(3分)下列语句中,不正确的个数是()
2.(3分)(2012•泰州)如图,△ABC内接于⊙O,OD⊥BC于D,∠A=50°,则∠OCD的度数是()
=40
3.(3分)(2012•黔东南州)如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=55°,则∠BCD的度数为()
∠AOC=×
5.(3分)(2012•陕西)如图,在半径为5的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为()
OM=ON=
OP=3
二、填空题(共4小题,每小题3分,满分12分)
6.(3分)(2012•嘉兴)如图,在⊙O中,直径AB丄弦CD于点M,AM=18,BM=8,则CD的长为24.
OD==
DM==
7.(3分)(2012•咸宁)如图,量角器的直径与直角三角板ABC的斜边AB重合,其中量角器0刻度线的端点N 与点A重合,射线CP从CA处出发沿顺时针方向以每秒2度的速度旋转,CP与量角器的半圆弧交于点E,第35秒时,点E在量角器上对应的读数是140度.
8.(3分)(2012•资阳)直角三角形的两边长分别为16和12,则此三角形的外接圆半径是10或8.
=20
9.(3分)(2012•六盘水)当宽为3cm的刻度尺的一边与圆相切时,另一边与圆的两个交点处的读数如图所示(单
位:cm),那么该圆的半径为cm.
AB=(
AD=AB=(
故答案为:
三、解答题(共4小题,)
10.(2012•肇庆)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC于点E,交BC于点D,连接BE、AD交于点P.求证:
(1)D是BC的中点;
(2)△BEC∽△ADC;
(3)AB•CE=2DP•AD.


∴,

11.如图,AB是⊙O的直径,C是的中点,CE⊥AB于E,BD交CE于点F.求证:CF﹦BF.
的中点,证得∠
12.(2012•沈阳)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上一点,OD⊥AC,垂足为E,连接BD (1)求证:BD平分∠ABC;
(2)当∠ODB=30°时,求证:BC=OD.
为半径,根据垂径定理,即可得,又由在同圆或等圆中,同弧或等弧所对的圆∴,
AB
OD=AB
13.(2012•荆州)如图所示为圆柱形大型储油罐固定在U型槽上的横截面图.已知图中ABCD为等腰梯形(AB∥DC),支点A与B相距8m,罐底最低点到地面CD距离为1m.设油罐横截面圆心为O,半径为5m,∠D=56°,求:U型槽的横截面(阴影部分)的面积.(参考数据:sin53°≈0.8,tan56°≈1.5,π≈3,结果保留整数)
AB=4
=0.8=sin53
OF=
=
(﹣(×
参与本试卷答题和审题的老师有:zhjh;kuaile;zcx;sjzx;ZJX(排名不分先后)菁优网
2014年11月8日。

相关文档
最新文档