2017-2018学年高中数学随机变量及其分布2.3离散型随机变量的均值与方差(2)检测(含解析)

合集下载

2018-2019学年高中数学 第二章 随机变量及其分布 2.3 离散型随机变量的均值与方差 2.3

2018-2019学年高中数学 第二章 随机变量及其分布 2.3 离散型随机变量的均值与方差 2.3

由于 E(ξ)>E(η),说明甲平均射中的环数比乙高; 又因为 D(ξ)<D(η),说明甲射中的环数比乙集中,比 较稳定.(11 分) 射击技术的比较要从数学期望和方差两个方面进行, 一般的,期望值大、方差小表明技术好. 所以,甲比乙的技术好.(12 分) 失分警示:这一步必不可少,缺少该步,会扣 1 分.
5.牧场有 10 头牛,因误食含有病毒的饲料而被感染, 已知该病的发病率为 0.02,设发病的牛的头数为 ξ,则 D(ξ)等于________.
解析:因为 ξ~B(10,0.02), 所以 D(ξ)=10×0.02×(1-0.02)=0.196. 答案:0.196
类型 1 求离散型随机变量的方差、标准差(自主研
因为乙射中 10,9,8 环的概率分别为 0.3,0.3,0.2,
所以乙射中 7 环的概率为 1-(0.3+0.3+0.2)=0.2.(3 分)
所以 ξ,η的分布列分别为:
ξ 10 9 8 7 P 0.5 0.3 0.1 0.1
η 10 9 8 7 P 0.3 0.3 0.2 0.2 (2)由(1)可得(5 分) E(ξ)=10×0.5+9×0.3+8×0.1+7×0.1=9.2(环); E(η)=10×0.3+9×0.3+8×0.2+7×0.2=8.7(环); (7 分)
×0.2=40,
E(Y)=80×0.4+90×0.2+100×0.4=90, D(Y)=(80-90)2×0.4+(90-90)2×0.2+(100-90)2 ×0.4=80, 因为 E(X)=E(Y),D(X)<D(Y), 所以甲生与乙生的成绩均值一样,甲的方差较小,因 此甲生的学习成绩较稳定.
1.方差、标准差的定义及方差的性质 (1)方差及标准差的定义. 设离散型随机变量X的分布列为:

2017_2018学年高中数学第二章随机变量及其分布2.3离散型随机变量的均值与方差1课件新人教A版

2017_2018学年高中数学第二章随机变量及其分布2.3离散型随机变量的均值与方差1课件新人教A版

(2)随机变量的均值反映样本的平均水平. (3)若随机变量 X 的数学期望 E(X)=2,则 E(2X)= 4.( )
解析:(1)错误,随机变量的数学期望 E(X)是个常量, 是随机变量 X 本身固有的一个数字特征.(2)错误,随机 变量的均值反映随机变量取值的平均水平. (3)正确,由 均值的性质可知.(4)错误,因为 E(X)=x1p1+x2p2+…+ xnpn. 答案:(1)× (2)× (3)√ (4)×
2.已知 ξ 的分布列为:
ξ -1 0 1 2 P 则 ξ 的均值为( A.0 ) 1 C. 8 1 D. 4 1 4 3 1 1 8 4 8
B.-1
1 3 1 1 1 解析:E(ξ)=-1× +0× +1× +2× = . 4 8 4 8 4 答案:D
3. 已知 Y=5X+1,E(Y)=6,则 E(X)的值为( A.6 B.5 C.1 D.7
)
解析:因为 E(Y) =E(5X+ 1) = 5E(X) +1= 6,所以 E(X)=1. 答案:C
4.若随机变量 X 服从二项分布 值为________. 1 4 解析:E(X)=np=4× = . 3 3 4 答案: 3
1 B4,3,则
E(X)的
5.篮球运动员在比赛中每次罚球命中得 1 分,不命 中得 0 分.已知他命中的概率为 0.8,则罚球一次得分 X 的期望是____0.8. 答案:0.8
17 E(Y)=E(2X- 3)= 2E(X)-3= 2×-30- 3=-
法二 由于 Y=2X-3, 所以 Y 的分布列如下:
Y -7 -5 -3 -1 1 P 1 4 1 3 1 5 1 6 1 20
1 1 1 所以 E(Y) = ( - 7)× + ( - 5)× + ( - 3)× + ( - 4 3 5 1 1 62 1)× +1× =- . 6 20 15

人教课标版高中数学选修2-3《离散型随机变量的均值与方差(第1课时)》教案-新版

人教课标版高中数学选修2-3《离散型随机变量的均值与方差(第1课时)》教案-新版

2.3 离散型随机变量的均值与方差(第1课时)一、教学目标1.核心素养通过对离散型随机变量的均值的学习,更进一步提高了学生的数学建模能力和数学运算能力.2.学习目标(1)通过实例,理解取得有限值的离散型随机变量的均值的概念;(2)能计算简单离散型随机变量的期望,并能解决一些实际问题.3.学习重点离散型随机变量的期望的概念、公式及其应用.4.学习难点灵活利用公式求期望.二、教学设计1.预习任务任务1阅读教材P60-P63,思考:何为加权平均、权数?随机变量的均值(数学期望)的定义是什么?它反应了什么?任务2根据数学期望的计算过程,可得到它的什么性质?任务3何为两点分布?如果随机变量服从两点分布,则其数学期望有什么特点?任务4随机变量均值与样本的平均值有何联系与区别?2.预习自测1.已知X的分布列为则E(X)等于()A.0.7 B.0.61 C.-0.3 D.02.设E(X)=10,E(Y)=3,则E(3X+5Y)=()A.45 B.40 C.30 D.153.若X ~B (4,12),则E (X )的值为( )A .4B .2C .1 D.12 (二)课堂设计 1.知识回顾(1)何为离散型随机变量. (2)离散型性随机变量的分布列. (3)何为样本平均值?怎么计算?.(4)我们预习本课的数学期望是怎么定义的?怎么计算? 2.创设情境 引入新知前面我们学习了离散性随机变量分布列的概念,研究了一些简单离散型随机变量的分布,建立了二项分布、超几何分布等应用广泛的概率模型.离散型随机变量的分布列刻画了随机变量取值的概率规律,但往往还需要进一步了解离散型随机变量取值的特征.比如:某商店为了满足市场需求,要将单价分别为18元/kg ,24元/kg 、36元/kg ,如果按照3:2:1的比例对糖果进行混合销售,其中混合糖果中每颗质量都相等,如何对每千克糖果定价才合理?通过师生探究发现:当定价为混合糖果的平均价格时才合理.进而求混合糖果的平均价格,从而得出如下结论:根据混合糖果中3种糖果的比例可知在1kg 的混合糖果中,3种糖果的质量分别是63kg ,62 kg 和61kg ,则混合糖果的合理价格应该是18×63+24×62+36×61=23(元/kg ). 问题1:上述分式中36,26和61的意义是什么?在学生思考后,教师指出:上面的平均值其实是一种加权平均数,其中36,26和61表示一种权重系数,简称为权数.在计算平均数时,权数可以表示总体中的各种成分所占的比例.权数越大的数据在总体中所占的比例越大,它对加权平均数的影响越大.加权平均数是不同比重数据的平均数.加权平均数就是把原始数据按照合理的比例来计算.通过交流,使学生达成共识:36,26和61分别表示价格为18元/kg 、24元/kg 何36元/kg 的糖果在混合糖果中所占的比例.问题2:如果每一颗糖果的质量都相等,则在搅拌均匀的混合糖果中, 任取一颗恰好是18元/kg 的糖果的概率是多少?恰好是24元/kg 的糖果的概率是多少?恰好是36元/kg 的糖果的概率是多少?学生讨论,得出共识:在混合糖果中,任取一颗恰好是18元/kg 的糖果的概率是36,恰好是24元/kg 的糖果的概率是26,恰好是36元/kg 的糖果的概率是61.问题3:假如从混合糖果中随机的选取一颗,记X 为该糖果原来的单价,你能写出X 的分布列吗?学生不难得出随机变量X 的分布列为:问题4:能否将混合糖果的平均价格用X 的取值及其相应的概率来表示呢?由之前的知识,学生得出: 每千克混合糖果的平均价格为:18×63+24×62+36×61=23(元/kg ) 即18×P(X=18)+24×P(X=24)+36×P(X=36)=23(元/kg ) 教师总结:这里混合糖果的平均价格为随机变量X 的取值与其相应概率乘积之和.混合糖果的平均价格既为随机变量X 的均值.(设计意图:用实际问题为背景,从求学生熟悉的样本平均数为出发点,设置问题串,层层递进,逐步深入,最终得出结论:离散型随机变量X 取值的平均值为离散型随机变量X 的所有取值与其相应概率乘积之和.这样不但可以使学生直观感受到数学与生活的联系,而且可以激发学生的学习兴趣与热情.同时有利于学生进行知识迁移,为下面概括抽象得出科学定义做好铺垫.) 3.概括抽象 构建概念问题5:能否用数学语言表述离散型随机变量的均值这一概念的定义? 可以使学生自行定义,教师作出修正,最终形成正式的定义:若离散型随机变量X 的分布列为:则称E(X)=x1p1+x2p2+…+xnpn为随机变量X的均值或数学期望.数学期望又简称为期望.它反映了离散型随机变量取值的平均水平.(设计意图:使学生经历离散型随机变量均值概念的形成过程,体验从具体问题中概括、抽象,形成定义的思想方法,体会概括、抽象是一种常用的数学逻辑方法,使学生学会科学定义的方法.这里渗透了从特殊到一般的数学思想方法)问题6:离散型随机变量ξ的期望与ξ可能取值的算术平均数相同吗?通过师生共同分析得出结论,期望的计算是从概率分布出发,因而它是概率意义下的平均值.随机变量ξ取每个值时概率不同导致了期望不同于初中所学的算术平均数.(设计意图:期望源于平均值,但又不同于平均值,通过比较,进一步加深对数学期望的理解.)问题7:能给出两点分布与二项分布的均值吗?根据均值的计算公式,学生不难得出:4.例题分析应用新知例1:设随机变量X的分布列如下所示,已知E(X)=1.6,则a-b=()A.0.2B.0.1 C【知识点:期望】详解:a+b=0.8,且E(X)=0×0.1+1×a+2×b+3×0.1=1.6.即a+b=0.8,且a+2b=1.3,∴a=0.3,b=0.5,a-b=-0.2.点拨:本题主要考查离散型随机变量的均值的计算公式,且要熟知离散型随机变量的概率之和为1.例2:有一批数量很大的产品,其次品率是15℅.对这批产品进行抽查,每次抽出1件,如果抽出次品,则抽查终止,否则继续抽查,直到抽到次品,但抽查次数最多不超过10次.求抽查次数ξ的期望.【知识点:期望】详解:解决这个实际问题的难点是求ξ的分布列,一般地,在产品抽查中已说明产品数量很大时,各次抽查结果可以认为是相互独立的.并且取1~10的整数,前k-1次取到正品,而第k 次取到次品的概率是P (ξ=k )=15.085.01⨯-k (k=1,2,3,…,9),P (ξ=10)=185.09⨯.然后学生运用数学期望的定义来解题点拨:求离散型随机变量期望的步骤: (1)确定离散型随机变量ξ的取值.(2)写出分布列,并检查分布列的正确与否. (3)求出期望.例3:某同学代表班级参加设计比赛,每连续设计10次,其中有3次中10环,5次中9环,2次中8环.①求次同学射击一次中靶的环数的均值是多少?②如果把该同学射击一次所得的环数的2倍再加上5记为该同学的设计成绩Y ,即Y=2X+5,那么试求Y 的均值. 【知识点:分布列、期望及性质】详解:(1)击靶数的分布列,根据期望的计算公式可得出E(X)=9.1(2)写出得分Y 的分布列,并求出E (Y )=23.2点拨:当X 为随机变量时,若Y=aX+b(a,b 为常数),则Y 也为随机变量,并称随机变量X 和Y 具有线性关系.X 与Y 的均值也具有线性关系,且E(Y=aX+b)=aE(X)+b 练习:设E (X )=10,E (Y )=3,则E (3X +5Y )=( ) A .45 B .40 C .30 D .15【知识点:离散型随机变量期望的性质】 详解:E(3X+5Y)=3E(X)+5E(Y)=45.点拨:随机变量X 和Y 具有线性关系.X 与Y 的均值也具有线性关系,且E(Y=aX+b)=aE(x)+b 5.课堂总结均值或数学期望:一般地,若离散型随机变量ξ的概率分布为则称=ξE 为ξ的均值或数学期望,简称期望.均值或数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平.均值或期望的一个性质:若b aX Y +=,其中b a ,是常数(X 是随机变量),则Y 也是随机变量,且有()()E aX b aE X b +=+.(1)当0=a 时,()E b b =,即常数的数学期望就是这个常数本身;(2)当1=a 时,()()E X b E X b +=+,即随机变量X 与常数之和的期望等于X 的期;(3)当0=b 时,E aX aE X =()(),即常数与随机变量乘积的期望等于这个常数与随机变量期望的乘积.①若X 服从两点分布,则)(X E =p ; ②若ξ~),,(p n B 则)(X E =np . 6. 随堂检测1.随机抛掷一个骰子,所得点数η的均值为( ) A.16 B.13 C.12 D.3.52.若X ~B (4,12),则E (X )的值为( ) A .4 B .2 C .1 D .123.若X 是一个随机变量,则E (X -E (X ))的值为( ) A .无解 B .0 C .E (X ) D .2E (X ) (三)课后作业 (一)基础型1.若随机变量ξ~B (n,0.6),且E (ξ)=3,则P (ξ=1)的值是( ) A .2×0.44 B .2×0.45 C .3×0.44 D .3×0.642.今有两台独立工作在两地的雷达,每台雷达发现飞行目标的概率分别为0.9和0.85,设发现目标的雷达数为ξ,则E (ξ)的值为( ) A .0.765 B .1.75 C .1.765 D .0.223.有10张卡片,其中8张标有数字2,2张标有数字5,从中任意抽出3张卡片,设3张卡片上的数字之和为ξ,则ξ的期望是( ) A .7.8 B .8 C .16 D .15.64.若X 是一个随机变量,则E (X -E (X ))的值为( ) A .无解 B .0 C .E (X ) D .2E (X ) (二)能力型5.两封信随机投入A 、B 、C 三个空邮箱,则A 邮箱的信件数ξ的数学期望是( )A.13 B.23 C.43 D.346.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为()A.100 B.200 C.300 D.4007.某一供电网络,有n个用电单位,每个单位在一天中使用电的机会是p,供电网络中一天平均用电的单位个数是()A.np(1-p) B.Np C.n D.p(1-p)8.甲、乙两台自动车床生产同种标准产品1 000件,ξ表示甲机床生产1 000件产品中的次品数,η表示乙机床生产1 000件产品中的次品数,经过一段时间的考察,ξ,η的分布列分别是:据此判定()A.甲比乙质量好B.乙比甲质量好C.甲与乙的质量相同D.无法判定9.在10件产品中,有3件一等品,4件二等品,3件三等品.从这10件产品中任取3件,求:(1)取出的3件产品中一等品件数X的分布列和数学期望;(2)取出的3件产品中一等品件数多于二等品件数的概率.10.从4名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生的人数.(1)求ξ的分布列;(2)求ξ的数学期望;(3)求“所选3人中女生人数ξ≤1”的概率.11.某安全生产监督部门对5家小型煤矿进行安全检查(简称安检),若安检不合格,则必须整改,若整改后经复查仍不合格,则强制关闭.设每家煤矿安检是否合格是相互独立的,且每家煤矿整改前安检合格的概率是0.5,整改后安检合格的概率是0.8.计算(结果精确到0.01):(1)恰好有两家煤矿必须整改的概率;(2)平均有多少家煤矿必须整改;(3)至少关闭一家煤矿的概率.12.为了拉动经济增长,某市决定新建一批重点工程,分为基础设施工程、民生工程和产业建设工程三类.这三类工程所含项目的个数分别占总数的12、13、16.现有3名工人独立地从中任选一个项目参与建设.(1)求他们选择的项目所属类别互不相同的概率;(2)记ξ为3人中选择的项目属于基础设施工程或产业建设工程的人数,求ξ的分布列及数学期望.(三)探究型13.设l为平面上过点(0,1)的直线,l的斜率等可能地取-22,-3,-52,0,52,3,22,用ξ表示坐标原点到l的距离,则随机变量ξ的数学期望E(ξ)=________.14.马老师从课本上抄录一个随机变量ξ的概率分布如下表:请小牛同学计算ξ“?”处字迹模糊,但能断定这两个“?”处的数值相同.据此,小牛给出了正确答案E(ξ)=________.15.某企业2014年工作计划中,对每位员工完成工作任务的奖励情况作出如下规定:有一季度完成任务者得奖金300元;有两季度完成任务者得奖金750元;有三季度完成任务者得奖金1 260元;对四个季度均完成任务的员工,奖励 1 800元;若四个季度均未完成任务则没有奖金.假若每位员工在每个季度里完成任务与否都是等可能的,求企业每位员工在2014年所得奖金的数学期望.(四)自助餐1.已知某一随机变量X的概率分布列如下表,E(X)=6.3,则a值为()A.5 B.6 C.7 D.82.节日期间,某种鲜花的进价是每束2.5元,售价是每束5元,节后对没有卖出的鲜花以每束1.6元处理.根据前5年节日期间对这种鲜花销售情况需求量X(束)的统计(如下表),若进这种鲜花500束在今年节日期间销售,则期望利润是()A.706元B.690元3.如果袋中有6个红球,4个白球,从中任取1球,记住颜色后放回,连续摸取4次,设ξ为取得红球的次数,那么ξ的期望E(ξ)=()A.34 B.125 C.197 D.134.有10件产品,其中3件是次品,从中任取2件,若X表示取到次品的个数,则E(X)等于()A.35 B.815 C.1415 D.15.某人从家乘车到单位,途中有3个交通岗亭.假设在各交通岗遇到红灯的事件是相互独立的,且概率都是0.4,则此人上班途中遇红灯的次数的期望为()A.0.4 B.1.2 C.0.43 D.0.66.袋子装有5只球,编号为1,2,3,4,5,从中任取3个球,用X表示取出的球的最大号码,则E(X)=()A.4 B.5 C.4.5 D.4.757.设15 000件产品中有1 000件次品,从中抽取150件进行检查,由于产品数量较大,每次检查的次品率看作不变,则查得次品数的数学期望为()A.15 B.10 C.20 D.58.某班有14的学生数学成绩优秀,如果从班中随机地找出5名学生,那么其中数学成绩优秀的学生数X~B(5,14),则E(-X)的值为()A.14B.-14C.54D.-549.设随机变量X的分布列为P(X=k)=p k(1-p)1-k(k=0,1,0<p<1),则E(X)=________.10.一个人有n把钥匙,其中只有一把能打开他的房门,他随意地进行试开,并将试开不对的钥匙除去,则打开房门所试开次数ξ的数学期望是________.11.某公司有5万元资金用于投资开发项目,如果成功,一年后可获得12%;一旦失败,一年后将丧失全部资金的50%.下表是过去200例类似项目开发的实施结果:12.一个均匀小正方体的六个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2,将这个小正方体抛掷2次,则向上的数之积的数学期望是________.13.若事件在一次试验中发生次数的方差等于0.25,则该事件在一次试验中发生的概率为________. (四)参考答案 预习自测 1.C 2.A 3.B 随堂检测 1.D 2.B 3.B 课后作业 基础型 1.C 2.B 3.A 4.B 能力型 5.B 6.B 7.B 8.A9.解:(1)由于从10件产品中任取3件的结果数为C 310,从10件产品中任取3件,其中恰有k 件一等品的结果数为C k 3C 3-k 7,那么从10件产品中任取3件,其中恰有k 件一等品的概率为 P (X =k )=C k 3C 3-k7C 310,k =0,1,2,3.所以随机变量X 的分布列是X 的数学期望E (X )=0×724+1×2140+2×740+3×1120=910.(2)设“取出的3件产品中一等品件数多于二等品件数”为事件A ,“恰好取出1件一等品和2件三等品”为事件A 1,“恰好取出2件一等品”为事件A 2,“恰好取出3件一等品”为事件A 3.由于事件A 1,A 2,A 3彼此互斥,且A =A 1∪A 2∪A 3,而P (A 1)=C 13C 23C 310=340,P (A 2)=P (X =2)=740,P (A 3)=P (X =3)=1120,所以取出的3件产品中一等品件数多于二等品件数的概率为 P (A )=P (A 1)+P (A 2)+P (A 3)=340+740+1120=31120. ∴σ(X 3)=D X 3=10×12×12= 2.5.10. 解:(1)ξ可能取的值为0,1,2.P (ξ=k )=C k 2·C 3-k4C 36,k =0,1,2.所以,ξ的分布列为(2)由(1),ξ的数学期望为 E (ξ)=0×15+1×35+2×15=1.(3)由(1),“所选3人中女生人数ξ≤1”的概率为 P (ξ≤1)=P (ξ=0)+P (ξ=1)=45.11. 解:(1)每家煤矿必须整改的概率是1-0.5,且每家煤矿是否整改是相互独立的,所以恰好有两家煤矿必须整改的概率是P 1=C 25×(1-0.5)2×0.53=516≈0.31.(2)由题设,必须整改的煤矿数ξ服从二项分布B (5,0.5),从而ξ的数学期望E (ξ)=5×0.5=2.50,即平均有2.50家煤矿必须整改.(3)某煤矿被关闭,即该煤矿第一次安检不合格,整改后经复查仍不合格,所以该煤矿被关闭的概率是P 2=(1-0.5)×(1-0.8)=0.1,从而该煤矿不被关闭的概率是0.9.由题意可知,每家煤矿是否被关闭是相互独立的,故至少关闭一家煤矿的概率是P 3=1-0.95≈0.41.12. 解:记第i 名工人选择的项目属于基础设施工程、民生工程和产业建设工程分别为事件A i ,B i ,C i ,i =1,2,3,由题意知A 1,A 2,A 3相互独立,B 1,B 2,B 3相互独立,C 1,C 2,C 3相互独立,A i ,B j ,C k (i ,j ,k =1,2,3,且i ,j ,k 互不相同)相互独立,且P (A i )=12,P (B i )=13, P (C i )=16.(1)他们选择的项目所属类别互不相同的概率 P =3!P (A 1B 2C 3)=6P (A 1)P (B 2)P (C 3)=6×12×13×16=16.(2)解法一 设3名工人中选择的项目属于民生工程的人数为η, 由已知,η~B (3,13),且ξ=3-η, 所以P (ξ=0)=P (η=3)=C 33(13)3=127, P (ξ=1)=P (η=2)=C 23(13)2(23)=29, P (ξ=2)=P (η=1)=C 13(13)(23)2=49, P (ξ=3)=P (η=0)=C 03(23)3=827. 故ξ的分布列是ξ的数学期望E (ξ)=0×127+1×29+2×49+3×827=2.解法二 记第i 名工人选择的项目属于基础设施工程或产业建设工程分别为事件D i ,i =1,2,3. 由已知,D 1,D 2,D 3相互独立,且 P (D i )=P (A i +C i )=P (A i )+P (C i )=12+16=23.所以ξ~B (3,23),即P (ξ=k )=C k 3(23)k (13)3-k,k =0,1,2,3. 故ξ的分布列是ξ的数学期望E (ξ)=3×23=2. 探究型 13.47 14.215.解:P (X =0)=C 04(12)0(12)4=116;P (X =300)=C 14(12)1(12)3=14; P (X =750)=C 24(12)2(12)2=38;P (X =1 260)=C 34(12)3(12)1=14;P (X =1 800)=C 44(12)4(12)0=116. 故X 的分布列为E (X )=0×116+300×14+750×38+1 260×14+1 800×116=783.75(元). 自助餐 1.C 2.A 3.B 4.A 5.B 6.C 7.B 8.D 9.p 10.n +12 11.4 760 12.49 13.0.5。

2017-2018学年高中数学第二章概率5第一课时离散型随机变量的均值教学案北师大版选修2-3

2017-2018学年高中数学第二章概率5第一课时离散型随机变量的均值教学案北师大版选修2-3

第一课时 离散型随机变量的均值[对应学生用书P31]求离散型随机变量的均值[例1] (重庆高考)某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球,根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:奖级 摸出红、蓝球个数获奖金额 一等奖 3红1蓝 200元 二等奖 3红0蓝 50元 三等奖2红1蓝10元(1)求一次摸奖恰好摸到1个红球的概率;(2)求摸奖者在一次摸奖中获奖金额X 的分布列与数学期望EX . [思路点拨] (1)利用古典概型结合计数原理直接求解.(2)先确定离散型随机变量的取值,求出相应的概率分布,进一步求出随机变量的期望值.[精解详析] 设A i 表示摸到i 个红球,B j 表示摸到j 个蓝球,则A i (i =0,1,2,3)与B j (j =0,1)独立.(1)恰好摸到1个红球的概率为P (A 1)=C 13C 24C 37=1835.(2)X 的所有可能值为0,10,50,200,且 P (X =200)=P (A 3B 1)=P (A 3)P (B 1)=C 33C 37·13=1105,P (X =50)=P (A 3B 0)=P (A 3)P (B 0)=C 33C 37·23=2105,P (X =10)=P (A 2B 1)=P (A 2)P (B 1)=C 23C 14C 37·13=12105=435,P (X =0)=1-1105-2105-435=67.综上知,X 的分布列为X 0 10 50 200 P6743521051105从而有EX =0×67+10×35+50×105+200×105=4(元).[一点通] 求离散型随机变量X 的均值的步骤 (1)理解X 的意义,写出X 可能取的全部值; (2)求X 取每个值的概率;(3)写出X 的分布列(有时可以省略);(4)利用定义公式EX =x 1p 1+x 2p 2+…+x n p n ,求出均值.1.(广东高考)已知离散型随机变量X 的分布列为X 1 2 3 P35310110则X 的数学期望EX =( A.32 B .2 C.52D .3解析:EX =1×35+2×310+3×110=1510=32.答案:A2.某高等学院自愿献血的20位同学的血型分布情形如下表:血型 A B AB O 人数8732(1)现从这20(2)现有A 血型的病人需要输血,从血型为A 、O 的同学中随机选出2人准备献血,记选出A 血型的人数为X ,求随机变量X 的数学期望EX .解:(1)从20人中选出两人的方法数为C 220=190, 选出两人同血型的方法数为C 28+C 27+C 23+C 22=53, 故两人血型相同的概率是53190.(2)X 的取值为0,1,2, P (X =0)=C 22C 210=145,P (X =1)=C 18C 12C 210=1645,P (X =2)=C 28C 210=2845.X 的分布列为X 0 1 2 P14516452845∴EX =145×0+1645×1+2845×2=45=5.二项分布及超几何分布的均值[例2] 甲、乙两人各进行3次射击,甲每次击中目标的概率为2,乙每次击中目标的概率为23,记甲击中目标的次数为X ,乙击中目标的次数为Y ,求(1)X 的概率分布; (2)X 和Y 的数学期望.[思路点拨] 甲、乙击中目标的次数均服从二项分布. [精解详析] (1)P (X =0)=C 03⎝ ⎛⎭⎪⎫123=18,P (X =1)=C 13⎝ ⎛⎭⎪⎫123=38, P (X =2)=C 23⎝ ⎛⎭⎪⎫123=38, P (X =3)=C 33⎝ ⎛⎭⎪⎫123=18. 所以X 的概率分布如下表:X 0 1 2 3 P18383818(2)由题意X ~B ⎝ ⎛⎭⎪⎫3,12,Y ~B ⎝ ⎛⎭⎪⎫3,23, ∴EX =3×12=1.5,EY =3×23=2.[一点通] 如果随机变量X 服从二项分布即X ~B (n ,p ),则EX =np ;如果随机变量X 服从参数为N ,M ,n 的超几何分布时,则EX =n MN,以上两特例可以作为常用结论,直接代入求解,从而避免了繁杂的计算过程.3.若随机变量X ~B ⎝ ⎛⎭⎪⎫n ,12,EX =2,则P (X =1)等于________. 解析:由X ~B ⎝ ⎛⎭⎪⎫n ,12∴EX =n ·12=2, ∴n =4,∴P (X =1)=C 14⎝ ⎛⎭⎪⎫121⎝ ⎛⎭⎪⎫123=14.答案:144.袋中有7个球,其中有4个红球,3个黑球,从袋中任取3个球,以X 表示取出的红球数,则EX 为________.解析:由题意知随机变量X 服从N =7,M =4,n =3的超几何分布,则EX =3×47=127.答案:1275.(浙江高考)已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X 为取出此3球所得分数之和.(1)求X 的分布列; (2)求X 的数学期望EX .解:(1)由题意得X 取3,4,5,6,且 P (X =3)=C 35C 39=542,P (X =4)=C 14C 25C 39=1021,P (X =5)=C 24C 15C 39=514,P (X =6)=C 34C 39=121.所以X 的分布列为X 3 4 5 6P542 1021 514 121(2)由(1)知EX =3·P (X =3)+4·P (X =4)+5·P (X =5)+6·P (X =6)=133.数学期望的实际应用[例3] 某商场准备在“五一”期间举行促销活动.根据市场行情,该商场决定从3种服装商品、2种家电商品、4种日用商品中,选出3种商品进行促销活动.(1)试求选出的3种商品中至少有一种是日用商品的概率;(2)商场对选出的家电商品采用的促销方案是有奖销售,即在该商品成本价的基础上提高180元作为售价销售给顾客,同时允许顾客有3次抽奖的机会,若中奖一次,就可以获得一次奖金.假设顾客每次抽奖时获奖的概率都是12,且每次获奖时的奖金数额相同,请问:该商场应将每次中奖的奖金数额至多定为多少元,此促销方案才能使商场自己不亏本?[思路点拨] (1)利用间接法求概率;(2)先求中奖的期望,再列不等式求解. [精解详析] (1)设选出的3种商品中至少有一种是日用商品为事件A ,则P (A )=1-C 35C 39=3742. 即选出的3种商品中至少有一种是日用商品的概率为3742.(4分)(2)设顾客抽奖的中奖次数为X ,则X =0,1,2,3,于是P (X =0)=⎝⎛⎭⎪⎫1-12×⎝⎛⎭⎪⎫1-12×⎝⎛⎭⎪⎫1-12=18,P (X =1)=C 13×⎝ ⎛⎭⎪⎫1-122×12=38, P (X =2)=C 23×⎝⎛⎭⎪⎫1-12×⎝ ⎛⎭⎪⎫122=38, P (X =3)=12×12×12=18,∴顾客中奖的数学期望EX =0×18+1×38+2×38+3×18=1.5.(10分)设商场将每次中奖的奖金数额定为x 元,则1.5x ≤180,解得x ≤120,即该商场应将每次中奖的奖金数额至多定为120元,才能使自己不亏本. (12分)[一点通] 处理与实际问题有关的均值问题,应首先把实际问题概率模型化,然后利用有关概率的知识去分析相应各事件可能性的大小,并写出分布列,最后利用有关的公式求出相应的概率及均值.6.(湖南高考)某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35,现安排甲组研发新产品A ,乙组研发新产品B ,设甲、乙两组的研发相互独立.(1)求至少有一种新产品研发成功的概率;(2)若新产品A 研发成功,预计企业可获利润120万元;若新产品B 研发成功,预计企业可获利润100万元,求该企业可获利润的分布列和数学期望.解:记E ={甲组研发新产品成功},F ={乙组研发新产品成功}. 由题设知P (E )=23,P (E )=13,P (F )=35,P (F )=25.且事件E 与F ,E 与F ,E 与F ,E 与F 都相互独立. (1)记H ={至少有一种新产品研发成功},则H =E F ,于是P (H )=P (E )P (F )=13×25=215,故所求的概率为P (H )=1-P (H )=1-215=1315.(2)设企业可获利润为X (万元),则X 的可能取值为0,100,120,220. 因P (X =0)=P (E F )=13×25=215,P (X =100)=P (E F )=13×35=315, P (X =120)=P (E F )=23×25=415, P (X =220)=P (EF )=23×35=615.故所求的X 分布列为X 0 100 120 220P 215315415615数学期望为E(X)=0×15+100×15+120×15+220×15=+480+1 32015=2 10015=140.7.某突发事件,在不采取任何预防措施的情况下发生的概率为0.3,一旦发生,将造成400万元的损失.现有甲、乙两种相互独立的预防措施可供采用.单独采用甲、乙预防措施所需的费用分别为45万元和30万元,采用相应的预防措施后此突发事件不发生的概率为0.9和0.85.若预防方案允许甲、乙两种预防措施单独采取、联合采取或不采取,请确定预防方案使总费用最少.(总费用=采取预防措施的费用+发生突发事件损失的期望值.) 解:①不采取预防措施时,总费用即损失期望值为E1=400×0.3=120(万元);②若单独采取预防措施甲,则预防措施费用为45万元,发生突发事件的概率为1-0.9=0.1,损失期望值为E2=400×0.1=40(万元),所以总费用为45+40=85(万元);③若单独采取预防措施乙,则预防措施费用为30万元,发生突发事件的概率为1-0.85=0.15,损失期望值为E3=400×0.15=60(万元),所以总费用为30+60=90(万元);④若联合采取甲、乙两种预防措施,则预防措施费用为45+30=75(万元),发生突发事件的概率为(1-0.9)(1-0.85)=0.015,损失期望值为E4=400×0.015=6(万元),所以总费用为75+6=81(万元).综合①②③④,比较其总费用可知,选择联合采取甲、乙两种预防措施,可使总费用最少.1.求随机变量的数学期望的方法步骤:(1)写出随机变量所有可能的取值.(2)计算随机变量取每一个值对应的概率.(3)写出分布列,求出数学期望.2.离散型随机变量均值的性质 ①Ec =c (c 为常数);②E (aX +b )=aEX +b (a ,b 为常数); ③E (aX 1+bX 2)=aEX 1+bEX 2(a ,b 为常数).[对应课时跟踪训练十三]1.一名射手每次射击中靶的概率均为0.8,则他独立射击3次中靶次数X 的均值为( )A .0.8B .0.83C .3D .2.4解析:射手独立射击3次中靶次数X 服从二项分布,即X ~B (3,0.8),∴EX =3×0.8=2.4.答案:D2.已知离散型随机变量X 的概率分布如下:X 0 1 2 P0.33k4k随机变量Y =2X +1,则Y A .1.1 B .3.2 C .11kD .33k +1解析:由题意知,0.3+3k +4k =1,∴k =0.1.EX =0×0.3+1×0.3+2×0.4=1.1, ∴EY =E (2X +1)=2EX +1=2.2+1=3.2. 答案:B3.口袋中有5个球,编号为1,2,3,4,5,从中任取3个球,以X 表示取出的球的最大号码,则EX =( )A .4B .5C .4.5D .4.75解析:X 的取值为5,4,3. P (X =5)=C 24C 35=35,P (X =4)=C 23C 35=310,P (X =3)=1C 35=110.∴EX =5×35+4×310+3×110=4.5.答案:C4.(湖北高考)如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体.经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X ,则X 的均值EX =( )A.126125B.65C.168125D.75解析:由题意知X 可能为0,1,2,3,P (X =0)=33125=27125,P (X =1)=9×6125=54125,P (X =2)=3×12125=36125,P (X =3)=8125,EX =0×P (X =0)+1×P (X =1)+2×P (X =2)+3×P (X =3)=0×27125+1×54125+2×36125+3×8125=150125=65,故选B. 答案:B5.设10件产品有3件次品,从中抽取2件进行检查,则查得次品数的均值为________. 解析:设查得次品数为X ,由题意知X 服从超几何分布且N =10,M =3,n =2.∴EX =n ·M N =2×310=35.答案:356.某射手射击所得环数X 的分布列如下X 7 8 9 10已知EX =8.9,则y 解析:由⎩⎪⎨⎪⎧x +0.1+0.3+y =1,7x +8×0.1+9×0.3+10y =8.9,解得y =0.4. 答案:0.47.某工厂生产甲、乙两种产品,每种产品都是经过第一道和第二道工序加工而成,两道工序的加工结果相互独立,每道工序的加工结果均有A ,B 两个等级.对每种产品,两道工序的加工结果都为A 级时,产品为一等品,其余均为二等品.表一表二(1)已知甲、乙两种产品每一道工序的加工结果为A 级的概率如表一所示,分别求生产出的甲、乙产品为一等品的概率P 甲、P 乙;(2)已知一件产品的利润如表二所示,用X ,Y 分别表示一件甲、乙产品的利润,在(1)的条件下,分别求甲、乙两种产品利润的分布列及均值.解:(1)P 甲=0.8×0.85=0.68,P 乙=0.75×0.8=0.6.(2)随机变量X ,Y 的分布列是EX =5×0.68+2.5×0.32=4.2,EY =2.5×0.6+1.5×0.4=2.1.所以甲、乙两种产品利润的均值分别为4.2万元、2.1万元.8.(山东高考)甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率都是23.假设各局比赛结果互相独立.(1)分别求甲队以3∶0,3∶1,3∶2胜利的概率;(2)若比赛结果为3∶0或3∶1,则胜利方得3分、对方得0分;若比赛结果为3∶2,则胜利方得2分、对方得1分.求乙队得分X 的分布列及数学期望.解:(1)记“甲队以3∶0胜利”为事件A 1,“甲队以3∶1胜利”为事件A 2,“甲队以3∶2胜利”为事件A 3,由题意知,各局比赛结果相互独立,故P (A 1)=⎝ ⎛⎭⎪⎫233=827, P (A 2)=C 23⎝ ⎛⎭⎪⎫232⎝⎛⎭⎪⎫1-23×23=827, P (A 3)=C 24⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫1-232×12=427. 所以,甲队以3∶0胜利、以3∶1胜利的概率都为827,以3∶2胜利的概率为427. (2)设“乙队以3∶2胜利”为事件A 4,由题意知,各局比赛结果相互独立,所以P (A 4)=C 24⎝ ⎛⎭⎪⎫1-232⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫1-12=427. 由题意知,随机变量X 的所有可能的取值为0,1,2,3,根据事件的互斥性得P (X =0)=P (A 1+A 2)=P (A 1)+P (A 2)=1627,又P (X =1)=P (A 3)=427, P (X =2)=P (A 4)=427,P (X =3)=1-P (X =0)-P (X =1)-P (X =2)=327, 故X 的分布列为所以EX =0×1627+1×27+2×27+3×27=9.。

最新人教版高中数学选修2-3《离散型随机变量的均值与方差》教材梳理

最新人教版高中数学选修2-3《离散型随机变量的均值与方差》教材梳理

庖丁巧解牛知识·巧学一、离散型随机变量的均值 若离散型随机变量X 的分布列为X x 1 x 2 … x i … x n P p 1 p 2 … p i … p n 则称EX=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望.随机变量的均值反映的是离散型随机变量的平均取值水平.由定义可知,离散型随机变量的均值与它本身有相同的单位.知识拓展 上述问题推广到一般有:假设随机试验进行了n次,根据X 的分布列,在n次试验中,有p 1n 次出现了x 1,p 2n 次出现了x 2,…,p n n 次出现了x n ,在n次试验中,X 出现的总次数为p 1nx 1+p 2nx 2+…+p n nx n .因此n次试验中,X 出现的平均值=nnx p nx p nx p nn i +++ 221=EX ,即EX=p 1x 1+p 2x 2+…+p n x n .辨析比较 随机变量的均值与样本的平均值的关系:随机变量的均值是一个常数,它不依赖于样本的抽取,而样本平均值是一个随机变量,它随样本抽取的不同而变化.对于简单随机抽样,随着样本容量的增加,样本平均值越来越接近于总体的均值. 二、随机变量函数的数学期望对随机变量X ,若Y=aX +b,其中a,b是常数,则Y 是随机变量,且有E(aX+b)=aEX+b.对上述公式,特别地:(1)当a=0时,E (b )=b ,即常数的数学期望就是这个常数本身;(2)当a=1时,E (X +b )=EX +b ,即随机变量X 与常数之和的期望等于X 的期望与这个常数的和; (3)当b=0时,E(aX)=aEX ,即常数与随机变量乘积的期望等于这个常数与随机变量期望的乘积.三、常见的离散型随机变量的均值1.两点分布:若X 服从两点分布,则EX=p.事实上,假设在一次试验中某事件发生的概率为p ,X 是一次试验中此事件发生的次数,令q=1-p ,则有P (X=0)=q ,P (X=1)=p ,可得: EX=0×q +1×p=p.2.二项分布:若随机变量X 服从二项分布,即X —B (n,p ),则EX=np.在一次试验中该事件平均发生p次,我们可以猜想,在n 次独立重复试验中,该事件平均发生np次,也就是若X —B(n,p),则Eξ=np.这就是X 的二项分布的期望的特点. 四、离散型随机变量的方差设离散型随机变量X 的分布列为X x 1 x 2 … x i … x n P p 1 p 2 … p i … p n 则(x i -EX )2描述了x i (i=1,2,…,n)相对于均值EX 的偏离程度,而DX=∑=-ni iEX x12)(p i为这些偏离程度的加权平均,刻画了随机变量X 与其均值EX 的平均偏离程度.我们称DX 为随机变量X 的方差.其算术平方根DX 为随机变量X 的标准差,记作σX.随机变量X 的方差与标准差都反映了随机变量ξ取值的稳定与波动、集中与离散的程度.DX 越小,稳定性越高,波动越小.显然DX≥0,校准差与随机变量本身有相同单位. 辨析比较 随机变量的方差即为总体方差,它是一个常数,不随着抽样样本而客观存在;样本方差则是随机变量,它是随样本不同而变化的.对于简单随机样本,随着样本容易的增加,样本方差越来越接近于总体方差.联想发散 方差是随机变量另一个重要的数字特征,它表现了随机变量所取的值相对于它的均值的集中与离散的程度,因此二者的关系是十分密切的.由方差的定义DX=∑=-ni iEX x12)(p i 可知,计算方差DX 必须先求均值EX ,并且由此定义进一步可得到公式DX=EX 2-(EX)2. 随机变量函数的方差当a ,b 均为常数时,随机变量函数η=aξ+b 的方差D(η)=D(aξ+b)=a 2Dξ. 特别地:(1)当a=0时,D (b )=0,即常数的方差等于0;(2)当a=1时,D(ξ+b)=Dξ,即随机变量与常数之积的方差等于这个随机变量的方差本身; (3)当b=0时,D(aξ)=a 2Dξ,即随机变量与常数之积的方差,等于这常数的平方与这个随机变量方差的乘积.五、两点分布及二项分布的方差1.两点分布:若X 服从两点分布,则DX=p(1-p).证明:由于X 服从两点分布,即P(X=0)=1-p,P(X=1)=p , ∴EX=p,EX 2=0×(1-p)+1×p=p, ∴DX=EX 2-(EX)2=p-p 2=p(1-p).2.二项分布:若X —B(n,p),则DX=np(1-p).证明:由X —B(n,p),令q=1-p,则P(x=i)=i n X p i q n-i,∴EX 2=∑=-ni in i qp i22=∑∑∑==--=-=+-ni ni in iin ini i i qip qp i i 0)1()1(+EX=n(n-1)p2)2()2(2222-+--=--∑n n i ni i n qpC+EX=n(n-1)p2∑-=-22n j i n Cp j q (n-2)-j +EX=n(n-1)p 2(p+q)n-2+EX=n(n-1)p 2+EX=n(n-1)p 2+np. ∴DX=EX 2-(EX)2=n(n-1)p 2+np-np 2=np-np 2=np(1-p). 故DX=np(1-p). 问题·探究问题1 如果X —B(n,p),你能求出x 的均值吗?思路:如果X —B(n,p),则有P(x=k)=k n C p k(1-p)n-k ,由均值定义有EX=∑=nk k kn p kC0(1-p)n-k ,又由组合数性质有k k n C =n 11--k n C .EX=∑=--nk k n npC111(1-p)n-1-(k-1)=k n k nk k n p p Cnp--=--∑111)1(=np.探究:均值这一概率是建立在分布列的基础之上的,分布列中随机变量X 的一切可能值x i 与对应的概率P (ξ=x i )的乘积的和就是随机变量X 的均值.离散型随机变量的分布列和均值虽然都是从整体和全局上刻画随机变量的,但二者大有不同,分布列只给出了随机变量取所有可能值的概率,而均值却反映了随机变量取值的平均水平. 问题2 移动公司在某地区共有客户3 000人,若该地区的办事处准备了100份小礼品,邀请客户在指定时间来领取.假设任一客户去领奖的概率为4%.问该办事处能否向每一位客户都发出领奖邀请?若能使每一位领奖人都得到礼品,办事处至少应准备多少份礼品?思路:可能来多少人,是一个随机变量,由于每人是否去领奖,相互间是独立的,因而随机变量服从二项分布,用数学期望来反映平均领奖人数,即能说明是否可行.探究:如问题2,我们可以设来领奖的人数为一个随机变量ξ=k(k=0,1,2,…,3 000),所以P(ξ=k )=kC 3000(0.04)k (1-0.04)3 000-k ,则可以得出ξ—(3 000,0.04),那么Eξ=3 000×0.04=120(人)>100(人).所以办事处不能向每一位客户都发出领奖邀请.若能使每一位领奖人都得到礼品,办事处至少应准备120份礼品. 典题·热题例1某份英语竞赛试题共有100道选择题,每题有4个选项,只有一个答案正确.选对得1分,否则得0分.学生甲会其中的20题,学生乙会其中的80题,不会的均随机选择.求甲、乙在这次竞赛中得分的期望.思路分析: 数学期望反映了随机变量取值的平均水平,要求数学期望首先要得到分布列,由题意可知,本题为二项分布问题.解:设甲和乙不会的题的得分分别为随机变量X 和Y ,由题意知X —B(80,0.25),Y —B(20,0.25),∴EX=80×0.25=20,EY=20×0.25=5.故甲、乙在这次竞赛中得分的期望分别为40分和85分. 拓展延伸设15 000件产品中有1 000件次品,从中抽取150件进行检查,则查得次品数的数学期望为( )A.15B.10C.20D.5 思路分析:次品率为P=151150001000 ,且该题服从二项分布,由公式,得EX=nP=150×151=10.故选B. 答案:B方法归纳 通常情况下,在n次独立重复试验中事件发生的次数X 服从二项分布,直接代入公式即可求得期望.例2(2005湖南高考)某城市有甲、乙、丙3个旅游景点,一位客人游览这三个景点的概率分别是0.4,0.5,0.6,且客人是否游览哪个景点互不影响,设ξ表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值. (1)求ξ的分布及数学期望;(2)记“函数f(x)=x 2-3ξx +1在区间[2,+∞)上单调递增”为事件A ,求事件A 的概率. 思路分析: (1)写出ξ的可能取值,利用相互独立事件的概率公式求出P (ξ=k )(k=1,3),写出ξ的分布列,求出Eξ.(2)利用二次函数的单调性求解. 解:(1)分别记“客人游览甲景点”“客人游览乙景点”“客人游览丙景点”.为事件A 1,A 2,A 3.由已知A 1,A 2,A 3相互独立,P (A 1)=0.4,P (A 2)=0.5,P (A 3)=0.6. 客人游览的景点数的可能取值为0,1,2,3.相应地,客人没有游览的景点数的可能取值为3,2,1,0,所以ξ的可能取值为1,3.P (ξ=3)=P (A 1·A 2·A 3)+P (321A A A ∙∙)=P (A 1)P (A 2)P (A 3)+P (1A )P (2A )P (3A )=2×0.4×0.5×0.6=0.24, P (ξ=1)=1-0.24=0.76. 所以ξ的分布列为Ξ 1 3 P0.76 0.24Eξ=1×0.76+3×0.24=1.48. (2)解法一:因为f(x)=(x-23ξ)2+1-49ξ2, 所以函数f(x)=x 2-3ξx+1在区间[23ξ,+∞)上单调递增,要使f(x)在[2,+∞)上单调递增,当且仅当23ξ≤2,即ξ≤34.从而P(A)=P(ξ≤34)=P(ξ=1)=0.76.解法二:ξ的可能取值为1,3.当ξ=1时,函数f(x)=x 2-3x+1在区间[2,+∞)上单调递增, 当ξ=3时,函数f(x)=x 2-9x+1在区间[2,+∞)上不单调递增. 所以P(A)=P(ξ=1)=0.76.深化升华 本题主要考查离散型随机变量分布列、数学期望和事件的概率等问题.一般解法是先由题意求出分布列,再由随机变量的数学期望公式代入求解即可.这一知识点应是未来高考中的一个热点.例3(2005全国高考)9粒种子分种在3个坑内,每坑3粒,每粒种子发芽的概率为0.5,若一个坑内至少有1粒种子发芽,则这个坑不需要补种,若一个坑里的种子都没发芽,则这个坑需要补种,假定每个坑至多补种一次,每补种1个坑需10元,用ξ表示补种费用,写出ξ的分布列并求ξ的数学期望.(精确到0.01)思路分析: 首先要求出单个坑不需要补种的概率,然后三个坑认为是三次独立重复试验,然后利用公式求解.解:因为甲坑内的3粒种子都不发芽的概率为(1-0.5)3=81, 所以甲坑不需要补种的概率为1-8781=. 3个坑都不需要补种的概率3003)87()81(⨯⨯C =0.670;恰有1个坑需要补种的概率为213)87(81⨯⨯C =0.287;恰有2个坑需要补种的概率为87)81(223⨯⨯C 8=0.041;3个坑都需要补种的概率为0333)87()81(⨯⨯C =0.002.补种费用ξ的分布列为Ξ 0 10 20 30 P 0.670 0.287 0.041 0.002ξ的数学期望为Eξ=0×0.670+10×0.287+20×0.041+30×0.002=3.75.方法归纳 本题主要考查计算随机事件发生概率的能力,包括互斥事件有一个发生的概率的计算方法,考查随机变量、数学期望等知识以及利用概率知识解决实际问题的能力.本题解决的关键有两点:一是单坑是否需要补种的概率;二是独立重复试验.首先,一个坑内的3粒种子是否发芽是独立重复试验,据此可得到单坑需要补种的概率;然后,3个坑是否需要补种也是独立重复试验,据此可得需要补种的坑的数目的分布列.例4交5元钱,可以参加一次摸奖,一袋中有完全相同的球10个,其中有8个标有1元钱,2个标有5元钱,摸奖者只能从中任取2个球,他所得奖励是所抽2球的钱数之和.求抽奖人获利的数学期望.思路分析: 抽到的2个球上的钱数之和ξ是个随机变量,其中每一个ξ取值时所代表的随机事件的概率值是容易获得的,本题的目标是求参加摸奖的人获利η的数学期望.由ξ与η的关系η=ξ-5,利用公式Eη=Eξ-5可得.解:设ξ为抽到的2个球上的钱数之和,则ξ的取值如下: ξ=2(抽到2个1元),ξ=6(抽到1个1元,1个5元),ξ=10(抽到2个5元).所以,由题意:P(ξ=2)=452821028=C C ,P(ξ=6)=45162101218=C C C , P(ξ=10)=45121022=C C ,Eξ=2×4516245110451664528=⨯+⨯+,又设η为抽奖者获利可能值,则η=ξ-5. 所以抽奖者获利的期望为:Eη=Eξ-5=57545162-=-=-1.4. 误区警示 要分清是谁获利,不能忽视了条件是先交5元钱才能参加这一抽奖.因此,不能只计算Eξ,最终Eη的结果出现负值,说明摸奖者若重复这种抽奖,平均每摸一次要亏1.4元.例5甲、乙两名工人加工同一种零件,两人每天加工的零件数相等,所得次品数分别为ξ,η,ξ和η的分布列如下:Ξ 0 1 2P106101 103η 012P105 103 102 试对这两名工人的技术水平进行比较.思路分析:一是要比较两名工人在加工零件数相等的条件下出次品数的平均值,即期望;二是要看出次品数的波动情况,即方差的大小.解:工人甲生产出次品数ξ的期望和方差分别为: Eξ=0×106+1×101+2×103=0.7,Dξ=(0-0.7)2×106+(1-0.7)2×101+(2-0.7)2×103=0.81; 工人乙生产出次品数ξ的期望和方差分别为:Eξ=0×105+1×103+2×102=0.7; Dξ=(0-0.7)2×105+(1-0.7)2×103+(2-0.7)2×102=0.61.由Eξ=Eη知,两人出次品的平均数相同,技术水平相当,但Dξ>Dη,可见乙的技术比较稳定.深化升华 均值仅体现了随机变量取值的平均大小,但有时仅知道均值的大小还不够.如果两个随机变量的均值相等,还要看随机变量的取值如何在均值周围变化,即计算方差.方差大说明随机变量取值较分散,方差小说明取值比较集中与稳定.即不要误认为均值相等时,水平就一样好,还要看一下相对于均值的偏离程度,也就是看哪一个相对稳定.例6设一次试验的成功率为p,进行100次独立重复试验,求当p为何值时,成功次数的标准差的值最大,并求最大值.思路分析: 解决本题的关键就是根据题目所给出的条件,找出几个变量之间的关系. 解:设成功次数为随机变量ξ,由题意可知ξ—B(100,p). 那么σξ=)1(100p p D -=ξ, 即Dξ=100p(1-p)=100p-100p 2.把上式看作一个以p为自变量的一元二次函数,易知当p=21时,Dξ有最大值为25.所以最大ξD 值为5. 故当21时,成功次数的标准差的最大值为5. 方法归纳 对求离散型随机变量的均值与方差的综合问题,首先应仔细地分析题意,当概率分布是一些熟知的类型(如两点分布、二项分布等)时,应全面地分析各个随机变量所包含的各种事件,并准确判断各事件的相互关系,再由此求出各随机变量相应的概率.本例中正是利用二项分布快速地得到方差,从而建立了关于p的目标函数,进而求其最值. 此级HS5的大图若接排前加,若另面则不加。

高中数学离散型随机变量的分布列、均值与方差

高中数学离散型随机变量的分布列、均值与方差

离散型随机变量的分布列、均值与方差 结 束
抓高考命题的“形”与“神” 离散型随机变量均值与方差的计算
1.均值与方差的一般计算步骤 (1)理解X的意义,写出X的所有可能取的值; (2)求X取各个值的概率,写出分布列; (3)根据分布列,由均值的定义求出均值E(X),进一步由公
n
式D(X)= xi-EX2pi=E(X2)-(E(X))2求出D(X).
突破点一
突破点二
课时达标检测
离散型随机变量的分布列、均值与方差 结 束
[易错提醒] 利用分布列中各概率之和为1可求参数的值,此 时要注意检验,以保证每个概率值均为非负数.
突破点一
突破点二
课时达标检测
离散型随机变量的分布列、均值与方差 结 束
求离散型随机变量的分布列 [例2] 某商店试销某种商品20天,获得如下数据:
i=1
了随机变量X与其均值E(X)的_平__均__偏__离__程__度__,其算术平方根 DX为随机变量X的标准差. 2.均值与方差的性质 (1)E(aX+b)=_a_E__(X__)+__b__, (2)D(aX+b)=_a_2_D_(_X_)_ (a,b为常数).
突破点一
突破点二
课时达标检测
考点贯通
(2)设X为选出的2人参加义工活动次数之差的绝对值,求 随机变量X的分布列.
突破点一
突破点二
课时达标检测
离散型随机变量的分布列、均值与方差 结 束
[解] (1)由已知,有P(A)=C31CC41+120 C23=13.
所以事件A发生的概率为13.
(2)随机变量X的所有可能取值为0,1,2.
P(X=0)=C23+CC21320+C24=145,
突破点一

高中数学 第二章 随机变量及其分布 2.3 离散型随机变量的均值与方差 2.3.2 离散型随机变量的

高中数学 第二章 随机变量及其分布 2.3 离散型随机变量的均值与方差 2.3.2 离散型随机变量的

2.3.2 离散型随机变量的方差课堂导学三点剖析一、随机变量的方差与标准差的求法【例1】 设X 是一个离散型随机变量,其分布列如下表,试求EX ,DX.解析:由于离散型随机变量的分布列满足 (1)p i ≥0,i=1,2,3,...; (2)p 1+p 2+...+p n + (1)故⎪⎪⎩⎪⎪⎨⎧≤≤-≤=+-+112101)21(2122q q q q 解得 q=1-22 故X 的分布列为∴EX=(-1)×2+0×(2-1)+1×(22-)=-2321++(-2)=1-2 DX=[-1-(1-2)]2×21+(1-2)2×(2-1)+[1-(1-2)]2×(223-)=(2-2)2×21+(2-1)3+2(223-)=2-1温馨提示解本题时,要防止机械地套用均值与方差的计算公式,即EX=(-1)×21+0×(1-2q)+1×q 2=q 2-21; DX=[-1-(q 2-21)]2×21+(q 2-21)2×(1-2q)+[1-(q 2-21)]2×q 2这是由于忽略了随机变量分布列的性质所出现的误解,求离散型随机变量的均值与方差,应明确随机变量的分布列,若分布列中的概率值是待定常数时,应先求出待定常数后,再求其均值与方差.二、两点分布、二项分布的方差【例2】 设一次试验的成功率为p ,进行100次独立重复试验,求当p 为何值时,成功次数的标准差的值最大?并求其最大值.思路分析:根据题意,可知本题主要考查服从二项分布的随机变量的标准差公式,所以解本题的关键就是找出几个变量之间的关系.解:设成功次数为随机变量X ,由题意可知X —B (100,p ),那么σX=)1(100p p DX -=,因为DX=100p(1-p)=100p-100p 2(0≤p≤1)把上式看作一个以p 为自变量的一元二次函数,易知当p=21时,DX 有最大值25.所以DX 的最大值为5,即当p=21时,成功次数的标准差的最大值为5. 温馨提示要求成功次数标准差的最大值,就需先建立标准差关于变量p 的函数关系式,另外要注意利用分布列的性质求出定义域0≤p≤1. 三、方差的应用【例3】 海关大楼顶端镶有A 、B 两面大钟,它们的日走时误差分别为X 1、X 2(单位:s ),根据这两面大钟日走时误差的均值与方差比较这两面大钟的质量. 解:∵EX 1=0,EX 2=0 ∴EX 1=EX 2∵DX 1=(-2-0)2×0.05+(-1-0)2×0.05+(0-0)2×0.8+(1-0)2×0.05+(2-0)2×0.05=0.5DX 2=(-2-0)2×0.1+(-1-0)2×0.2+(0-0)2×0.4+(1-0)2×0.2+(2-1)2×0.1=1.2 ∴DX 1<DX 2由上可知,A 面大钟的质量较好. 温馨提示随机变量X 的方差的意义在于描述随机变量稳定与波动或集中与分散的状况.标准差σX=DX 则体现随机变量取值与其均值的偏差,在实际问题中,若有两个随机变量X 1、X 2,且EX 1=EX 2或EX 1与EX 2比较接近时,我们常用DX 1与DX 2来比较这两个随机变量,方差值大的,则表明X 较为离散,反之则表明X 较为集中.同样,标准差的值较大,则标明X 与其均值的偏差较大,反之,则表明X 与其均值的偏差较小. 各个击破【类题演练1】若随机事件A 在一次试验中发生的概率为2a.随机变量ξ表示在一次试验中发生的次数.求方差Dξ的最值.解析:由题意得ξ的分布列为∴Eξ=0×(1-2a)+1×2a=2a∴Dξ=(0-2a)2(1-2a)+(1-2a)22a =(1-2a)2a(2a+1-2a) =2a(1-2a)=-4[a-41]2+41 由分布列的性质得0≤1-2a≤1 且0≤2a≤1 ∴0≤a≤21∴当a=41时Dξ最大值为41; 当a=0或21时Dξ的最小值为0.【变式提升1】某射击手进行射击练习,每射击5发子弹算一组,一旦命中就停止射击,并进入下一组的练习,否则一直打完5发子弹才能进入下一组练习,若该射手在某组练习中射击命中一次,并且已知他射击一次的命中率为0.8,求在这一组练习中耗用子弹数ξ的分布列,并求出ξ的期望Eξ与方差Dξ(保留两位小数).解析:该组练习耗用的子弹数ξ为随机变量,ξ可以取值为1,2,3,4,5. ξ≈1表示一发即中,故概率为 P (ξ=1)=0.8ξ=2,表示第一发未中,第二发命中, 故P (ξ=2)=(1-0.8)×0.8=0.16;ξ=3,表示第一、二发未中,第三发命中,故P (ξ=3)=(1-0.8)2×0.8=0.032;ξ=4,表示第一、二、三发未中,第四发命中,故P (ξ=4)=(1-0.8)3×0.8=0.006 4;ξ=5,表示第一、二、三、四发未中,第五发命中,4Dξ=(1-1.25)2×0.8+(2-1.25)2×0.16+(3-1.25)2×0.032+(4-1.25)2×0.0064+(5-1.25)2×0.001 6=0.31.【类题演练2】若随机变量A 在一次试验中发生的概率为p(0<p <1),用随机变量ξ表示A 在1次试验中发生的次数. (1)求方差Dξ的最大值; (2)求ξξE D 12-的最大值. 解析:随机变量ξ的所有可能取值为0,1,并且有P (ξ=1)=p ,P (ξ=0)=1-p ,从而Eξ=0×(1-p)+1×p=p,Dξ=(0-p)2×(1-p)+(1-p)2×p=p -p 2. (1)Dξ=p -p 2=-(p-21)2+41,∵0<p <1, ∴当p=21时,Dξ取得最大值为41. (2)ξξE D 12-=)12(21)(22p p p p p +-=--, ∵0<p <1,∴2p+p1≥22. 当且仅当2p=p1,即p=22时,ξξE D 12-取得最大值2-22.【变式提升2】证明:事件在一次实验中发生的次数的方差不超过14.证明:设事件在一次试验中发生的次数为ξ,ξ的可能取值为0或1,又设事件在一次试验中发生的概率为p ,则p (ξ=0)=1-p,P(ξ=1)=p,Eξ=0×(1-p)+1×p=p,Dξ=(1-p)·(0-p)2+p(1-p)2= p(1-p)≤(21p p -+)2=41. 所以事件在一次试验中发生的次数的方差不超过41. 【类题演练3】甲、乙两名射手在一次射击中的得分为两个相互独立的随机变量ξ与η,计算ξ、η的期望与方差,并以此分析甲、乙的技术优劣. 解析:依题意,有Eξ=10×0.5+9×0.2+8×0.1+7×0.1+6×0.05+5×0.05+0×0=8.85(环). E η=10×0.1+9×0.1+8×0.1+7×0.1+6×0.2+5×0.2+0×0.2=5.6(环).D ξ=(10-8.85)2×0.5+(9-8.85)2×0.2+(8-8.85)2×0.1×…+(5-8.85)2×0.05+(0-8.85)2×0=2.227 5.D η=(10-5.6)2×0.1+(9-5.6)2×0.1+(8-5.6)2×0.1+…+(5-5.6)2×0.2+(0-5.6)2×0.2=10.24.所以Eξ<Eη,说明甲的平均水平比乙高,又因为Dξ<Dη,说明甲射中的环数比较集中,比较稳定,而乙射中的环数分散较大,技术波动较大,不稳定,所以甲比乙的技术好. 【变式提升3】现要从甲、乙两个技工中选派一个参加技术比赛,已知他们在同样的条件下乙根据以上条件,选派谁去合适?解析:Eξ1=0×0.1+1×0.5+2×0.4=1.3,Eξ2=0×0.3+1×0.3+2×0.2+3×0.2=1.3.由于Eξ1=Eξ2,所以甲技工与乙技工出现次品数的平均水平基本一致,因而还需考查稳定性.Dξ1=(0-1.3)2×0.1+(1-1.3)2×0.5+(2-1.3)2×0.4=0.41;Dξ2=(0-1.3)2×0.3+(1-1.3)2×0.3+(2-1.3)2×0.2+(3-1.3)2×0.2=1.21.因此Dξ1<Dξ2,所以技工乙波动较大,稳定性较差.综上所述,应选派技工甲去参加比赛.。

高中数学 第二章 随机变量及其分布 2.3 离散型随机变量的均值与方差 2.3.2 离散型随机变量的

高中数学 第二章 随机变量及其分布 2.3 离散型随机变量的均值与方差 2.3.2 离散型随机变量的

题型探究
类型一 求随机变量的方差与标准差
例1 已知X的分布列如下:
X
-1
0
1
P
1 2
1 4
a
(1)求X2的分布列;
解答
(2)计算X的方差;
解答
(3)若Y=4X+3,求Y的均值和方差. 解 因为Y=4X+3, 所以E(Y)=4E(X)+3=2,D(Y)=42D(X)=11.
解答
反思与感悟 方差的计算需要一定的运算能力,公式的记忆不能出 错!在随机变量X2的均值比较好计算的情况下,运用关系式D(X)= E(X2)-[E(X)]2不失为一种比较实用的方法.另外注意方差性质的应用, 如D(aX+b)=a2D(X).
解答
反思与感悟 解决此类问题第一步是判断随机变量ξ服从什么分布,第 二步代入相应的公式求解.若ξ服从两点分布,则D(ξ)=p(1-p);若ξ服从 二项分布,即ξ~B(n,p),则D(ξ)=np(1-p).
跟踪训练2 某厂一批产品的合格率是98%. (1)计算从中抽取一件产品为正品的数量的方差; 解 用ξ表示抽得的正品数,则ξ=0,1. ξ服从两点分布,且P(ξ=0)=0.02,P(ξ=1)=0.98, 所以D(ξ)=p(1-p)=0.98×(1-0.98)=0.019 6.
X
X服从两点分布
X~B(n,p)
D(X)
p(1-p) (其中p为成功概率)
__n_p_(_1_-__p_) _
[思考辨析 判断正误]
1.离散型随机变量的方差越大,随机变量越稳定.( × ) 2.若a是常数,则D(a)=0.( √ ) 3.离散型随机变量的方差反映了随机变量偏离于均值的平均程度.
( √)
跟踪训练1 已知η的分布列为

高中数学 第二章 随机变量及其分布 2.3 离散型随机变

高中数学 第二章 随机变量及其分布 2.3 离散型随机变

2.3.2 离散型随机变量的方差
课前导引
问题导入
随机变量的期望显示了随机变量取值的平均水平,但这还不足以描述随机变量的其它特征.在许多实际问题中,除了考虑随机变量的期望,还要研究它的各个值与平均值之间的离散程度.而方差就反映出了随机变量与平均值之间的差别程度.
知识预览
1.方差、标准差.
则(x i-EX)2描述了x i(i=1,2, …,n)相对于均值EX的偏离程度.而DX=∑
=-
n
N
i
i
P
EX
X
1
2
)
(为这
些偏离程度的加权平均,刻画了随机变量X与其均值EX的平均偏离程度,我们称DX为随机变量X的方差,其算术平方根DX为随机变量X的标准差,记作σX.
2.随机变量函数的方差
对随机变量函数y=ax+b(a、b的常数)而言,EY=E(ax+b)=aEX+b,则DY=a2DX
3.两点分布与二项分布的方差
(1)若X服从两点分布,则DX=p(p-p)
(2)若X—B(n,p),则DX=npq(q=1-p).
1。

高中数学选修2-3离散型随机变量的均值与方差精选题目(附答案)

高中数学选修2-3离散型随机变量的均值与方差精选题目(附答案)

高中数学选修2-3离散型随机变量的均值与方差精选题目(附答案)(1)离散型随机变量的均值的概念及性质 ①一般地,若离散型随机变量X 的分布列为则称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望.它反映了离散型随机变量取值的平均水平.②若Y =aX +b ,其中a ,b 为常数,则E (Y )=E (aX +b )=aE (X )+b . (2)两点分布与二项分布的均值①若随机变量X 服从两点分布,则E (X )=p . ②若X ~B (n ,p ),则E (X )=np . (2)离散型随机变量的方差、标准差 随机变量X 的分布列为则把D (X )=∑i =1n(x i -E (X ))2p i 叫做随机变量X 的方差,D (X )的算术平方根D (X )叫做随机变量X 的标准差,随机变量的方差和标准差都反映了随机变量取值偏离于均值的平均程度.(2)服从两点分布与二项分布的随机变量的方差 ①若X 服从两点分布,则D (X )=p (1-p );②若X 服从二项分布,即X ~B (n ,p ),则D (X )=np (1-p ). (3)离散型随机变量方差的性质 ①D (aX +b )=a 2D (X ); ②D (C )=0(C 是常数).一、离散型随机变量的均值1.袋中有4只红球,3只黑球,今从袋中随机取出4只球,设取到一只红球记2分,取到一只黑球记1分,试求得分X 的均值.解:取出4只球,颜色分布情况是:4红得8分,3红1黑得7分,2红2黑得6分,1红3黑得5分,相应的概率为P(X=5)=C14C33C47=435.P(X=6)=C24C23C47=1835.P(X=7)=C34C13C47=1235.P(X=8)=C44C03C47=135.随机变量X的分布列为所以E(X)=5×435+6×1835+7×1235+8×135=447.注:求离散型随机变量的均值的一般步骤:(1)理解随机变量的意义,写出随机变量的所有可能的取值;(2)求随机变量取每一个值的概率;(3)列出随机变量的分布列;(4)根据均值的计算公式求出E(X).2.在10件产品中,有3件一等品、4件二等品、3件三等品.从这10件产品中任取3件,求取出的3件产品中一等品件数X的分布列和均值.解:由题意知X的所有可能取值为0,1,2,3.P(X=0)=C03C37C310=35120=724,P(X=1)=C13C27C310=63120=2140,P(X=2)=C23C17C310=21120=740,P(X=3)=C33C07C310=1120.∴X的分布列为∴E(X)=0×724+1×2140+2×740+3×1120=910.3.篮球运动员在比赛中每次罚球命中得1分,没命中得0分,已知某篮球运动员命中的概率为0.8,则罚球一次得分ξ的均值是()A.0.2 B.0.8 C.1 D.0解析:选B因为P(ξ=1)=0.8,P(ξ=0)=0.2,所以E(ξ)=1×0.8+0×0.2=0.8.故选B.4.一个口袋中有5个球,编号为1,2,3,4,5,从中任取2个球,用X表示取出球的较大号码,则E(X)等于()A.4 B.5 C.3 D.4.5解析:选A P(X=2)=1C25=110,P(X=3)=C12C25=210=15,P(X=4)=C13C25=310,P(X=5)=C14C25=410=25,故E(X)=2×110+3×15+4×310+5×25=4.5.某中学选派40名学生参加北京市高中生技术设计创意大赛的培训,他们参加培训的次数统计如下表所示:(1)从这402名学生参加培训次数恰好相等的概率;(2)从这40名学生中任选2名,用X表示这2人参加培训次数之差的绝对值,求随机变量X的分布列及均值E(X).解:(1)这3名学生中至少有2名学生参加培训次数恰好相等的概率P=1-C15C115C120C340=419 494.(2)由题意知X=0,1,2,P(X=0)=C25+C215+C220C240=61156,P(X=1)=C15C115+C115C120C240=2552,P (X =2)=C 15C 120C 240=539,则随机变量X 的分布列为所以X 的均值E (X )=0×61156+1×2552+2×539=115156.二、离散型随机变量均值的性质 1.已知随机变量X 的分布列如下:(1)求m 的值; (2)求E (X );(3)若Y =2X -3,求E (Y ).解: (1)由随机变量分布列的性质,得14+13+15+m +120=1,解得m =16.(2)E (X )=(-2)×14+(-1)×13+0×15+1×16+2×120=-1730.(3)法一:由公式E (aX +b )=aE (X )+b ,得E (Y )=E (2X -3)=2E (X )-3=2×⎝ ⎛⎭⎪⎫-1730-3=-6215. 法二:由于Y =2X -3, 所以Y 的分布列如下:所以E (Y )=(-7)×14+(-5)×13+(-3)×15+(-1)×16+1×120=-6215. 注:若给出的随机变量Y 与X 的关系为Y =aX +b (其中a ,b 为常数),一般思路是先求出E (X ),再利用公式E (aX +b )=aE (X )+b 求E (Y ).2.掷骰子游戏:规定掷出1点,甲盒中放一球,掷出2点或3点,乙盒中放一球,掷出4点、5点或6点,丙盒中放一球,共掷6次,用x ,y ,z 分别表示掷完6次后甲、乙、丙盒中球的个数.令X =x +y ,则E (X )=( )A .2B .3C .4D .5解析:选B 将每一次掷骰子看作一次实验,实验的结果分丙盒中投入球(成功)或丙盒中不投入球(失败)两种,且丙盒中投入球(成功)的概率为12,z 表示6次实验中成功的次数,则z ~B ⎝ ⎛⎭⎪⎫6,12,∴E (z )=3,又x +y +z =6,∴X =x +y =6-z , ∴E (X )=E (6-z )=6-E (z )=6-3=3.3.随机变量X 的分布列如下表,则E (5X +4)等于( )A.16 B .11 C .2.2 解析:选A 由已知得E (X )=0×0.3+2×0.2+4×0.5=2.4,故E (5X +4)=5E (X )+4=5×2.4+4=16.故选A.5.已知η=2ξ+3,且E (ξ)=35,则E (η)=( ) A.35 B.65 C.215 D.125解析:选C E (η)=E (2ξ+3)=2E (ξ)+3=2×35+3=215.三、两点分布、二项分布的均值1.甲、乙两队参加奥运知识竞赛,每队三人,每人回答一个问题,答对者为本队赢得一分,答错得零分.假设甲队中每人答对的概率均为23,乙队中三人答对的概率分别为23,23,12,且各人回答得正确与否相互之间没有影响.(1)若用ξ表示甲队的总得分,求随机变量ξ的分布列和均值;(2)用A 表示事件“甲、乙两队总得分之和为3”,用B 表示事件“甲队总得分大于乙队总得分”,求P (AB ).解: (1)由题意知,ξ的所有可能取值为0,1,2,3,且ξ~B ⎝ ⎛⎭⎪⎫3,23,则有 P (ξ=0)=C 03×⎝ ⎛⎭⎪⎫1-233=127,P (ξ=1)=C 13×23×⎝ ⎛⎭⎪⎫1-232=29,P (ξ=2)=C 23×⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫1-23=49,P (ξ=3)=C 33×⎝ ⎛⎭⎪⎫233=827,所以ξ的分布列为由于随机变量ξ~B ⎝⎛⎭⎪⎫3,23,则有E (ξ)=3×23=2. (2)用C 表示“甲得2分乙得1分”这一事件,用D 表示“甲得3分乙得0分”这一事件,AB =C ∪D ,C ,D 互斥.P (C )=C 23×⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫1-23×23×13×12+13×23×12+13×13×12=1034, P (D )=C 33×⎝⎛⎭⎪⎫233×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-12=435, P (AB )=P (C )+P (D )=1034+435=3435=34243. 注:此类题的解法一般分两步:一是先判断随机变量服从两点分布还是二项分布;二是代入两点分布或二项分布的均值公式计算均值.2.一次单元测验由20个选择题组成,每个选择题有4个选项,其中仅有1个选项正确,每题选对得5分,不选或选错不得分.一学生选对任意一题的概率为0.9,则该学生在这次测验中成绩的均值为________.解析:设该学生在这次测验中选对的题数为X ,该学生在这次测试中成绩为Y ,则X ~B (20,0.9),Y =5X .由二项分布的均值公式得E (X )=20×0.9=18.由随机变量均值的线性性质得E (Y )=E (5X )=5×18=90. 答案:903.某一供电网络,有n 个用电单位,每个单位在一天中使用电的机会是p ,供电网络中一天平均用电的单位个数是( )A .np (1-p )B .npC .nD .p (1-p )解析:选B 供电网络中一天用电的单位个数服从二项分布,故所求为np .故选B.4.某班有50名学生,其中男生30名,女生20名,现随机选取1名学生背诵课文,若抽到女生的人数记为X ,则E (X )=________.解析:易知X 服从两点分布,且P (X =0)=35,P (X =1)=25,故E (X )=25. 答案:255.某广场上有4盏装饰灯,晚上每盏灯都随机地闪烁红灯或绿灯,每盏灯出现红灯的概率都是23,出现绿灯的概率都是13.记这4盏灯中出现红灯的数量为X ,当这4盏装饰灯闪烁一次时:(1)求X =2时的概率; (2)求X 的均值.解:(1)依题意知{X =2}表示“4盏装饰灯闪烁一次时,恰好有2盏灯出现红灯”,而每盏灯出现红灯的概率都是23,故X =2时的概率为C 24⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫132=827. (2)∵X 服从二项分布,即X ~B ⎝ ⎛⎭⎪⎫4,23,∴E (X )=4×23=83.四、均值的实际应用1.随机抽取某厂的某种产品200件,经质检,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元,设1件产品的利润(单位:万元)为X.(1)求X的分布列;(2)求1件产品的平均利润(即X的均值);(3)经技术革新后,仍有四个等级的产品,但次品率降为1%,一等品率提高为70%.如果此时要求1件产品的平均利润不小于4.73万元,则三等品率最多是多少?解:(1)利润X可以取6,2,1,-2;(2)利用均值的定义求值;(3)根据平均利润不小于4.73万元建立不等式求解.(1)X的所有可能取值有6,2,1,-2,P(X=6)=126200=0.63,P(X=2)=50200=0.25,P(X=1)=20200=0.1,P(X=-2)=4200=0.02.故X的分布列为(2)E(X)=6×0.63万元).(3)设技术革新后的三等品率为x,则此时1件产品的平均利润为E(X)=6×0.7+2×(1-0.7-0.01-x)+1×x+(-2)×0.01=4.76-x(0≤x≤0.29),依题意,E(X)≥4.73,即4.76-x≥4.73,解得x≤0.03,所以三等品率最多为3%.2.某公司拟资助三位大学生自主创业,现聘请两位专家独立地对每位学生的创业方案进行评审.假设评审结果为“支持”和“不支持”的概率都是12,若某人获得两个“支持”,则给予10万元的创业资助;若只获得一个“支持”,则给予5万元的资助;若未获得“支持”,则不予资助.令ξ表示该公司的资助总额,求E(ξ).解:法一:ξ的所有取值为0,5,10,15,20,25,30.P (ξ=0)=164,P (ξ=5)=332,P (ξ=10)=1564,P (ξ=15)=516,P (ξ=20)=1564,P (ξ=25)=332,P (ξ=30)=164.故ξ的分布列为因此E (ξ)=0×164+5×332+10×1564+15×516+20×1564+25×332+30×164=15.法二:设X i 为第i 名学生获得的“支持”数(i =1,2,3),ξi 为第i 名学生获得的“资助”额(i =1,2,3),则X i ~B ⎝ ⎛⎭⎪⎫2,12,且ξi =5X i (i =1,2,3),ξ=ξ1+ξ2+ξ3.因此E (ξ)=E (ξ1)+E (ξ2)+E (ξ3)=5E (X 1)+5E (X 2)+5E (X 3)=3×5×2×12=15. 3.某商场为刺激消费,拟按以下方案进行促销:顾客消费每满500元便得到抽奖券1张,每张抽奖券的中奖概率为12,若中奖,则商场返回顾客现金100元.某顾客现购买价格为2 300元的台式电脑一台,得到奖券4张.每次抽奖互不影响.(1)设该顾客抽奖后中奖的抽奖券张数为ξ,求ξ的分布列;(2)设该顾客购买台式电脑的实际支出为η(单位:元),用ξ表示η,并求η的数学期望.解:(1)∵每张奖券是否中奖是相互独立的,∴ξ~B (4,12). ∴P (ξ=0)=C 04(12)4=116,P (ξ=1)=C 14(12)4=14, P (ξ=2)=C 24(12)4=38,P (ξ=3)=C 34(12)4=14, P (ξ=4)=C 44(12)4=116. ∴ξ的分布列为(2)∵ξ~B(4,12),∴E(ξ)=4×12=2.又由题意可知η=2 300-100ξ,∴E(η)=E(2 300-100ξ)=2 300-100E(ξ)=2 300-100×2=2 100.即实际支出的数学期望为2 100元.4.端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同.从中任意选取3个.(1)求三种粽子各取到1个的概率;(2)设X表示取到的豆沙粽个数,求X的分布列与均值.解:(1)令A表示事件“三种粽子各取到1个”,则由古典概型的概率计算公式有P(A)=C12C13C15C310=14.(2)X的所有可能值为0,1,2,且P(X=0)=C38C310=715,P(X=1)=C12C28C310=715,P(X=2)=C22C18C310=115.综上知,X的分布列为故E(X)=0×715+1×715+2×115=35.五、求离散型随机变量的方差1.袋中有20个大小相同的球,其中标记0的有10个,标记n的有n个(n =1,2,3,4).现从袋中任取一球,X表示所取球的标号.(1)求X的分布列、均值和方差;(2)若Y=aX+b,E(Y)=1,D(Y)=11,试求a,b的值.解:(1)X的分布列为则E (X )=0×12+1×120+2×110+3×320+4×15=1.5.D (X )=(0-1.5)2×12+(1-1.5)2×120+(2-1.5)2×110+(3-1.5)2×320+(4-1.5)2×15=2.75.(2)由D (Y )=a 2D (X ),得a 2×2.75=11,得a =±2. 又E (Y )=aE (X )+b ,所以,当a =2时,由1=2×1.5+b ,得b =-2; 当a =-2时,由1=-2×1.5+b ,得b =4. 所以⎩⎨⎧ a =2,b =-2或⎩⎨⎧a =-2,b =4.注求离散型随机变量ξ的方差的步骤: (1)理解ξ的意义,明确其可能取值;(2)判定ξ是否服从特殊分布(如两点分布、二项分布等),若服从特殊分布,则可利用公式直接求解;若不服从特殊分布则继续下面步骤;(3)求ξ取每个值的概率;(4)写出ξ的分布列,并利用分布列性质检验;(5)根据方差定义求D (ξ).2.了激发学生了解数学史的热情,在班内进行数学家和其国籍的连线游戏,参加连线的同学每连对一个得1分.假定一个学生对这些数学家没有了解,只是随机地连线,试求该学生得分X 的分布列及其数学期望、方差.解:该学生连线的情况:连对0个,连对1个,连对2个,连对4个,故其得分可能为0分,1分,2分,4分.P (X =0)=3×3A 44=38,P (X =1)=C 14×2A 44=13,P (X =2)=C 24×1A 44=14,P (X =4)=1A 44=124.故X 的分布列为∴E (X )=0×38+1×13+2×14+4×124=1,D (X )=(0-1)2×38+(1-1)2×13+(2-1)2×14+(4-1)2×124=1. 3.已知随机变量X 的分布列如下:若E (X )=13,则D (X )的值是( ) A.13 B.23 C.59 D.79解析:选C 由分布列的性质可知a +b +12=1,∴a +b =12.又E (X )=-a +12=13,解得a =16,b =13,∴D (X )=⎝ ⎛⎭⎪⎫-1-132×16+⎝ ⎛⎭⎪⎫0-132×13+⎝ ⎛⎭⎪⎫1-132×12=59. 4.有10张卡片,其中8张标有数字2,2张标有数字5,从中随机地抽取3张卡片,设3张卡片上的数字之和为X ,求D (X ).解:由题知X =6,9,12.P (X =6)=C 38C 310=715,P (X =9)=C 28C 12C 310=715,P (X =12)=C 18C 22C 310=115.∴X 的分布列为∴E (X )=6×715+9×715+12×115=7.8.D (X )=(6-7.8)2×715+(9-7.8)2×715+(12-7.8)2×115=3.36.六、常见分布的方差1.(1)抛掷一枚硬币1次,正面向上得1分,反面向上得0分.用ξ表示抛掷一枚硬币的得分数,求E (ξ),D (ξ);(2)某人每次投篮时投中的概率都是12.若投篮10次,求他投中的次数ξ的均值和方差;(3)5件产品中含有2件次品,从产品中选出3件,所含的次品数设为X ,求X 的分布列及其均值、方差.解: (1)ξ服从两点分布,抛掷一枚硬币1次,正面向上的概率为12,所以E (ξ)=12,D (ξ)=14.(2)ξ~B ⎝ ⎛⎭⎪⎫10,12,所以E (ξ)=10×12=5.D (ξ)=10×12×12=52. (3)X 可能取的值是0,1,2.P (X =0)=C 02C 33C 35=110,P (X =1)=C 12C 23C 35=35,P (X =2)=C 22C 13C 35=310,所以X 的分布列为E (X )=0×110+1×35+2×310=1.2.D (X )=(0-1.2)2×110+(1-1.2)2×35+(2-1.2)2×310=0.36.2.为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物.某人一次种植了n 株沙柳,各株沙柳的成活与否是相互独立的,成活率为p ,设ξ为成活沙柳的株数,均值E (ξ)为3,标准差D (ξ)为62.(1)求n 和p 的值,并写出ξ的分布列;(2)若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率.解:由题意知,ξ~B (n ,p ),P (ξ=k )=C k n p k (1-p )n -k,k =0.1,…,n . (1)由E (ξ)=np =3,D (ξ)=np (1-p )=32, 得1-p =12,从而n =6,p =12. ξ的分布列为(2)记“得P (A )=164+332+1564+516=2132, 所以需要补种沙柳的概率为2132.3.从装有3个白球和7个红球的口袋中任取1个球,用X 表示是否取到白球,即X =⎩⎨⎧1(当取到白球时),0(当取到红球时),则X 的方差D (X )=( )A.21100B.750C.110D.310解析:选A 显然X 服从两点分布,P (X =0)=710,P (X =1)=310.故X 的分布列为所以E (X )=310,故D (X )=710×310=21100.4.已知一批产品中有12件正品,4件次品,有放回地任取4件,若X 表示取到次品的件数,则D (X )=( )A.34B.89C.38D.25解析:选B 由题意,可知每次取得次品的概率都为13,X ~B ⎝ ⎛⎭⎪⎫4,13,则D (X )=4×13×23=89.5.设随机变量X 的分布列为P (X =k )=C k n ⎝ ⎛⎭⎪⎫23k ·⎝ ⎛⎭⎪⎫13n -k,k =0,1,2,…,n ,且E (X )=24,则D (X )的值为( )A .8B .12 C.29 D .16解析:选A 由题意可知X ~B ⎝ ⎛⎭⎪⎫n ,23,∴E (X )=23n =24. ∴n =36.∴D (X )=36×23×⎝ ⎛⎭⎪⎫1-23=8.6.某出租车司机从某饭店到火车站途中需经过六个交通岗,假设他在各个交通岗遇到红灯这一事件是相互独立的,并且概率是13.(1)求这位司机遇到红灯次数X 的均值与方差;(2)若遇上红灯,则需等待30秒,求司机总共等待时间Y 的均值与方差. 解:(1)易知司机遇上红灯次数X 服从二项分布,且X ~B ⎝ ⎛⎭⎪⎫6,13,∴E (X )=6×13=2,D (X )=6×13×⎝ ⎛⎭⎪⎫1-13=43.(2)由已知得Y=30X,∴E(Y)=30E(X)=60,D(Y)=900D(X)=1 200.七、离散型随机变量的均值与方差的应用1.A,B两台机床同时加工零件,每生产一批数量较大的产品时,出现次品的概率如下表所示.A机床B机床问哪一台机床加工的质量较好?解:由表中数据可知,E(X1)=0×0.7+1×0.2+2×0.06+3×0.04=0.44,E(X2)=0×0.8+1×0.06+2×0.04+3×0.10=0.44.所以它们的期望相同,再比较它们的方差.D(X1)=(0-0.44)2×0.7+(1-0.44)2×0.2+(2-0.44)2×0.06+(3-0.44)2×0.04=0.606 4,D(X2)=(0-0.44)2×0.8+(1-0.44)2×0.06+(2-0.44)2×0.04+(3-0.44)2×0.10=0.926 4.因为0.606 4<0.926 4,所以A机床加工的质量较好.2.已知海关大楼顶端镶有A,B两面大钟,它们的日走时误差分别为X1,X2(单位:s),其分布列如下:解:∵由题意得E(X1)=0,E(X2)=0,∴E(X1)=E(X2).∵D(X1)=(-2-0)2×0.05+(-1-0)2×0.05+(0-0)2×0.8+(1-0)2×0.05+(2-0)2×0.05=0.5,D(X2)=(-2-0)2×0.1+(-1-0)2×0.2+(0-0)2×0.4+(1-0)2×0.2+(2-0)2×0.1=1.2,∴D(X1)<D(X2).综上可知,A大钟的质量较好.3.由以往的统计资料表明,甲、乙两名运动员在比赛中的得分情况为:A.甲B.乙C.甲、乙均可D.无法确定解析:选A E(X1)=E(X2)=1.1,D(X1)=1.12×0.2+0.12×0.5+0.92×0.3=0.49,D(X2)=1.12×0.3+0.12×0.3+0.92×0.4=0.69,∴D(X1)<D(X2),即甲比乙得分稳定,甲运动员参加较好.4.根据以往的经验,某工程施工期间的降水量X(单位:mm)对工期的影响如下表:为0.3,0.7,0.9,求:(1)工期延误天数Y的均值与方差;(2)在降水量X至少是300的条件下,工期延误不超过6天的概率.解:(1)由已知条件和概率的加法公式有P (X <300)=0.3,P (300≤X <700)=P (X <700)-P (X <300)=0.7-0.3=0.4, P (700≤X <900)=P (X <900)-P (X <700)=0.9-0.7=0.2. P (X ≥900)=1-P (X <900)=1-0.9=0.1. 所以Y 的分布列为于是,E (Y )=0×D (Y )=(0-3)2×0.3+(2-3)2×0.4+(6-3)2×0.2+(10-3)2×0.1=9.8. 故工期延误天数Y 的均值为3,方差为9.8.(2)由概率的加法公式,P (X ≥300)=1-P (X <300)=0.7, 又P (300≤X <900)=P (X <900)-P (X <300)=0.9-0.3=0.6. 由条件概率,得P (Y ≤6|X ≥300)=P (X <900|X ≥300)=P (300≤X <900)P (X ≥300)=0.60.7=67.故在降水量X 至少是300的条件下,工期延误不超过6天的概率是67.巩固练习:1.已知随机变量X 和Y ,其中Y =12X +7,且E (Y )=34,若X 的分布列如表,则m 的值为( )A.13B.14C.16D.18解析:选A 由Y =12X +7得E (Y )=12E (X )+7=34,从而E (X )=94,所以E (X )=1×14+2×m +3×n +4×112=94,又m +n +112+14=1,联立解得m =13.故选A.2.一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c (a ,b ,c ∈(0,1)),已知他投篮一次得分的均值为2,则2a +13b 的最小值为()A.323 B.283 C.143 D.163解析:选D由已知得3a+2b+0×c=2,即3a+2b=2,其中0<a<23,0<b<1.2 a+13b=3a+2b2⎝⎛⎭⎪⎫2a+13b=3+13+2ba+a2b≥103+22ba·a2b=16 3,当且仅当2ba=a2b,即a=2b时取“等号”,故2a+13b的最小值为163.故选D.3.设l为平面上过点(0,1)的直线,l的斜率k等可能地取-22,-3,-52,0,52,3,22,用ξ表示坐标原点到l的距离d,则随机变量ξ的数学期望E(ξ)为()A.37 B.47 C.27 D.17解析:选B当k=±22时,直线l的方程为±22x-y+1=0,此时d=1 3;当k=±3时,d=12;当k=±52时,d=23;当k为0时,d=1.由等可能事件的概率公式可得ξ的分布列为所以E(ξ)=13×27+12×27+23×27+1×17=47.4.某学校要从5名男生和2名女生中选出2人作为社区志愿者,若用随机变量ξ表示选出的志愿者中女生的人数,则随机变量ξ的数学期望E(ξ)=________(结果用分数表示).解析:随机变量ξ的所有可能取值为0,1,2,因为P (ξ=0)=C 25C 27=1021,P (ξ=1)=C 15C 12C 27=1021,P (ξ=2)=C 22C 27=121,所以E (ξ)=0×1021+1×1021+2×121=47.答案:475.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公司面试的概率均为p ,且三个公司是否让其面试是相互独立的.记X 为该毕业生得到面试的公司个数.若P (X =0)=112,则随机变量X 的均值E (X )=________.解析:由P (X =0)=⎝ ⎛⎭⎪⎫1-23(1-p )(1-p )=112可得p =12⎝ ⎛⎭⎪⎫p =32舍去, 从而P (X =1)=23·⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫1-23·C 12·⎝ ⎛⎭⎪⎫122=13, P (X =2)=23·C 12⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫1-23·⎝ ⎛⎭⎪⎫122=512, P (X =3)=23·⎝ ⎛⎭⎪⎫122=16. 所以E (X )=0×112+1×13+2×512+3×16=53. 答案:536.“键盘侠”是指部分在现实生活中不爱说话,却在网上习惯性地、集中性地发表各种言论的人群,人们对这种现象有着不同的看法.某调查组织在某广场上邀请了10名男士和10名女士请他们分别谈一下对“键盘侠”这种社会现象的认识,其中有4名男士和5名女士认为它的出现是“社会进步的表现”,其他人认为它的出现是“社会冷漠的表现”.(1)从这些男士和女士中各抽取1人,求至少有1人认为“键盘侠”这种社会现象是“社会进步的表现”的概率;(2)从男士中抽取2人,女士中抽取1人,3人中认为“键盘侠”这种社会现象是“社会进步的表现”的人数记为X ,求X 的分布列和数学期望.解:(1)由题意可知10名男士中有4人认为“键盘侠”的出现是“社会进步的表现”,10名女士中有5人也这样认为.记事件A={从这些男士和女士中各抽取1人,至少有1人认为“键盘侠”的出现是“社会进步的表现”},则P(A)=1-C16C15C110C110=1-30100=710.(2)X的所有可能取值为0,1,2,3.P(X=0)=C26C210×C15C110=16,P(X=1)=C14C16C210×C15C110+C26C210×C15C110=1330,P(X=2)=C24C210×C15C110+C14C16C210×C15C110=13,P(X=3)=C24C210×C15C110=115,所以X的分布列为数学期望E(X)=0×16+1×1330+2×13+3×115=1310.7.设某校新、老校区之间开车单程所需时间为T,T只与道路畅通状况有关,对其容量为100的样本进行统计,结果如下:(1)求T(2)刘教授驾车从老校区出发,前往新校区作一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率.解:(1)由统计结果可得T的频率分布为从而E (T )=25×0.2+30×0.3+35×0.4+40×0.1=32.(2)设T 1,T 2分别表示往、返所需时间,T 1,T 2的取值相互独立,且与T 的分布列相同.设事件A 表示“刘教授共用时间不超过120分钟”,由于讲座时间为50分钟,所以事件A 对应于“刘教授在路途中的时间不超过70分钟”.法一:P (A )=P (T 1+T 2≤70)=P (T 1=25,T 2≤45)+P (T 1=30,T 2≤40)+P (T 1=35,T 2≤35)+P (T 1=40,T 2≤30)=0.2×1+0.3×1+0.4×0.9+0.1×0.5=0.91.法二:P (A )=P (T 1+T 2>70)=P (T 1=35,T 2=40)+P (T 1=40,T 2=35)+P (T 1=40,T 2=40)=0.4×0.1+0.1×0.4+0.1×0.1=0.09.故P (A )=1-P (A )=0.91.8.若ξ~B (n ,p ),且E (ξ)=6,D (ξ)=3,则P (ξ=1)=( ) A .3×2-2 B .3×2-10 C .2-4 D .2-8解析:选B 由E (ξ)=np =6,D (ξ)=np (1-p )=3,得p =12,n =12,所以p (ξ=1)=C 112⎝ ⎛⎭⎪⎫1212=3210=3×2-10.故选B. 9.设X 是离散型随机变量,P (X =x 1)=23,P (X =x 2)=13,且x 1<x 2,现已知E (X )=43,D (X )=29,则x 1+x 2的值为( )A.53B.73 C .3 D.113解析:选C 由题意得P (X =x 1)+P (X =x 2)=1,所以随机变量X 只有x 1,x 2两个取值,所以⎩⎪⎨⎪⎧x 1·23+x 2·13=43,⎝ ⎛⎭⎪⎫x 1-432·23+⎝ ⎛⎭⎪⎫x 2-432·13=29.解得x 1=1,x 2=2x 1=53,x 2=23舍去,所以x 1+x 2=3,故选C.10.若p 为非负实数,随机变量X 的分布列为则E (X )的最大值是.解析:由分布列的性质可知p ∈⎣⎢⎡⎦⎥⎤0,12,则E (X )=p +1∈⎣⎢⎡⎦⎥⎤1,32,故E (X )的最大值为32.∵D (X )=⎝ ⎛⎭⎪⎫12-p (p +1)2+p (p +1-1)2+12(p +1-2)2=-p 2-p +1=-⎝ ⎛⎭⎪⎫p +122+54,又p ∈⎣⎢⎡⎦⎥⎤0,12,∴当p =0时,D (X )取得最大值1. 答案:32 111.已知随机变量X 的分布列为①E (X )=-13;②E (X +4)=-13;③D (X )=2327; ④D (3X +1)=5;⑤P (X >0)=13.解析:E (X )=(-1)×12+0×13+1×16=-13,E (X +4)=113,故①正确,②错误.D (X )=(-1+13)2×12+(0+13)2×13+(1+13)2×16=59,D (3X +1)=9D (X )=5,故③错误,④正确.P (X >0)=P (X =1)=16,故⑤错误.答案:212.A ,B 两个投资项目的利润率分别为随机变量X 1和X 2.根据市场分析,X 1和X 2的分布列分别为(1)在A ,B 两个项目上各投资100万元,Y 1(万元)和Y 2(万元)分别表示投资项目A 和B 所获得的利润,求方差D (Y 1),D (Y 2);(2)将x (0≤x ≤100)万元投资A 项目,(100-x )万元投资B 项目,f (x )表示投资A 项目所得利润的方差与投资B 项目所得利润的方差的和.求f (x )的最小值,并指出x 为何值时,f (x )取到最小值.解:(1)由题设可知Y 1和Y 2的分布列分别为E (Y 1)=5×0.8+10×0.2=6,D (Y 1)=(5-6)2×0.8+(10-6)2×0.2=4;E (Y 2)=2×0.2+8×0.5+12×0.3=8,D (Y 2)=(2-8)2×0.2+(8-8)2×0.5+(12-8)2×0.3=12. (2)f (x )=D ⎝ ⎛⎭⎪⎫x 100·Y 1+D ⎝ ⎛⎭⎪⎫100-x 100·Y 2 =⎝ ⎛⎭⎪⎫x 1002D (Y 1)+⎝⎛⎭⎪⎫100-x 1002D (Y 2) =41002[x 2+3(100-x )2] =41002(4x 2-600x +3×1002). 所以当x =6002×4=75时,f (x )取最小值3.。

高中数学 第二章 随机变量及其分布 2.3 离散型随机变量的均值与方差 2.3.1 离散型随机变量的

高中数学 第二章 随机变量及其分布 2.3 离散型随机变量的均值与方差 2.3.1 离散型随机变量的

思考3 如何求每个西瓜的平均重量? 答案 5×4+6×123+7×5=5×13+6×14+7×152=1723.
梳理 (1)离散型随机变量的均值 若离散型随机变量X的分布列为
X
x1
x2

xi

xn
P
p1
p2

pi

pn
则称E(X)= x1p1+x2p2+…+xipi+…+xnpn 为随机变量X的均值或数 学期望,它反映了离散型随机变量取值的 平均水平 .
解 ξ的分布列为
ξ0
1
2
3
4
P
1 2
1 20
1 10
3 20
1 5
ξ 的均值 E(ξ)=0×12+1×210+2×110+3×230+4×15=32.
12345
解答
(2)若η=aξ+4,E(η)=1,求a的值. 解 E(η)=aE(ξ)+4=1,又 E(ξ)=32, 则 a×32+4=1,∴a=-2.
(2)均值的性质 若Y=aX+b,其中a,b为常数,X是随机变量, ①Y也是随机变量; ②E(aX+b)= aE(X)+b .
知识点二 两点分布、二项分布的均值
1.两点分布:若X服从两点分布,则E(X)= p . 2.二项分布:若X~B(n,p),则E(X)= np .
[思考辨析 判断正误]
1.随机变量X的均值E(X)是个变量,其随X的变化而变化.( × ) 2.随机变量的均值与样本的平均值相同.( × ) 3.若随机变量X的均值E(X)=2,则E(2X)=4.( √ )
5
C.2
D.3
解析 E(X)=1×35+2×130+3×110=32.
12345
解析 答案

高中数学 第二章 随机变量及其分布 2.3 离散型随机变量的均值与方差 2.3.1 离散型随机变量的

高中数学 第二章 随机变量及其分布 2.3 离散型随机变量的均值与方差 2.3.1 离散型随机变量的

2.3.1 离散型随机变量的均值1.离散型随机变量的均值或数学期望(1)则称________________为随机变量的均值或数学期望.(2)意义:离散型随机变量X 的均值或数学期望反映了离散型随机变量取值的________. (3)性质:如果X 为离散型随机变量,则Y =aX +b (其中a ,b 为常数)也是随机变量,且E (Y )=E (aX +b )=________.预习交流1(1)随机变量的均值与样本平均值有何联系与区别? (2)随机变量X 的分布列为则其数学期望为( ). A .1 B.13C .4.5D .2.2(3)若随机变量X 的期望为E (X )=2,则E (2X +1)=__________. 2.两点分布、二项分布的均值(1)若随机变量X 服从两点分布,则E (X )=__(p 为成功概率). (2)若X ~B (n ,p ),则E (X )=____. 预习交流2若随机变量X ~B (5,0.3),则E (X )=__________. 答案:1.(1)E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n (2)平均水平 (3)aE (X )+b 预习交流1:(1)提示:①随机变量的均值是常数,而样本的均值随样本的不同而变化;②对于简单随机样本,随着样本容量的增加,样本均值就越来越接近总体的均值. (2)提示:E (X )=1×0.5+3×0.3+4×0.2=2.2.(3)提示:5 2.(1)p (2)np预习交流2:提示:E (X )=5×0.3=1.5.一、求离散型随机变量的均值从装有2个红球,2个白球和1个黑球的袋中逐一取球,已知每个球被抽到的可能性相同.若抽取后不放回,设取完红球所需的次数为X ,求X 的分布列及期望.思路分析:先确定好抽取次数X 的取值,再求出对应的概率,从而得到X 的分布列及期望.在甲、乙等6个单位参加的一次“唱读讲传”演出活动中,每个单位的节目集中安排在一起,若采用抽签的方式随机确定各单位的演出顺序(序号为1,2,…,6),求:(1)甲、乙两单位的演出序号至少有一个为奇数的概率; (2)甲、乙两单位之间的演出单位个数ξ的分布列与期望.求离散型随机变量ξ的均值的步骤:(1)根据ξ的实际意义,写出ξ的全部取值; (2)求出ξ的每个值的概率; (3)写出ξ的分布列; (4)利用定义求出均值.二、离散型随机变量的期望的性质已知随机变量ξ若η=aξ+3,E (η)=73,则a =( ).A .1B .2C .3D .4 思路分析:先由分布列的性质求出m ,从而可求E (ξ),利用期望的性质E (η)=aE (ξ)+3求出a .设ξ的分布列为,又设η=2ξ+5,则若给出的随机变量ξ与X 的关系为ξ=aX +b ,a ,b 为常数.一般思路是先求出E (X ),再利用公式E (aX +b )=aE (X )+b 求E (ξ).三、二项分布的均值及其应用某商场为刺激消费,拟按以下方案进行促销:顾客每消费500元便得到抽奖券一张,每张抽奖券的中奖概率为12,若中奖,商场返回顾客现金100元.某顾客现购买价格为2 300元的台式电脑一台,得到奖券4张.每次抽奖互不影响.(1)设该顾客抽奖后中奖的抽奖券张数为ξ,求ξ的分布列;(2)设该顾客购买台式电脑的实际支出为η(元),用ξ表示η,并求η的数学期望.思路分析:由题意知抽奖券4次,相当于独立重复试验4次,每次中奖的概率为12,所以ξ服从二项分布,从而求解相应的问题.某俱乐部共有客户3 000人,若俱乐部准备了100份小礼品,邀请客户在指定时间来领取.假设任一客户去领奖的概率为4%.问俱乐部能否向每一位客户都发出领奖邀请?若能使每一位领奖人都得到礼品,俱乐部至少应该准备多少礼品?(1)如果随机变量X 服从两点分布,则其期望值E (X )=p (p 为成功概率).(2)如果随机变量X 服从二项分布即X ~B (n ,p ),则E (X )=np ,以上两特例可以作为常用结论,直接代入求解,从而避免了繁杂的计算过程.四、数学期望的应用(2011福建高考,理19)某产品按行业生产标准分成8个等级,等级系数X 依次为1,2,…,8,其中X ≥5为标准A ,X ≥3为标准B.已知甲厂执行标准A 生产该产品,产品的零售价为6元/件;乙厂执行标准B 生产该产品,产品的零售价为4元/件.假定甲、乙两厂的产品都符合相应的执行标准.(1)1且X 1的数学期望E (X 1)(2)为分析乙厂产品的等级系数X 2,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:3 5 3 3 8 5 5 6 34 6 3 4 75 3 4 8 5 3 8 3 4 3 4 4 7 56 7用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数X 2的数学期望. (3)在(1)、(2)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由.注:(1)产品的“性价比”=产品的等级系数的数学期望产品的零售价;(2)“性价比”大的产品更具可购买性.思路分析:(1)根据题意,结合均值的计算与概率分布列的性质列方程组,解之即可;(2)将频率视为概率,先由数据得到样本的频率分布列,进而可得其概率分布列,由均值公式可得答案;(3)由题意及(2)的结论,可得两厂产品的均值,结合题意,计算可得他们产品的“性价比”,比较其大小,可得答案.某工厂生产甲、乙两种产品,甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10%.生产1件甲产品,若是一等品,则获利4万元,若是二等品,则亏损1万元;生产1件乙产品,若是一等品,则获利6万元,若是二等品,则亏损2万元.两种产品生产的质量相互独立.设生产1件甲产品和1件乙产品可获得的总利润为X ,求X 的分布列和该工厂生产甲、乙产品各1件获得利润的期望.(1)实际问题中的均值问题均值在实际中有着广泛的应用,如在体育比赛的安排和成绩预测,消费预测,工程方案的预测,产品合格率的预测,投资收益等,都可以通过随机变量的均值来进行估计.(2)概率模型的解答步骤①审题,确定实际问题是哪一种概率模型,可能用到的事件类型,所用的公式有哪些. ②确定随机变量的分布列,计算随机变量的均值. ③对照实际意义,回答概率、均值等所表示的结论.答案:活动与探究1:解:由题意知X 的取值为2,3,4,5. 当X =2时,表示前2次取的都是红球,∴P (X =2)=A 22A 25=110;当X =3时,表示前2次中取得一红球,一白球或黑球,第3次取红球, ∴P (X =3)=C 12C 13A 22A 35=15;当X =4时,表示前3次中取得一红球,2个不是红球,第4次取红球, ∴P (X =4)=C 12C 23A 33A 45=310;当X =5时,表示前4次中取得一红球,3个不是红球,第5次取红球, ∴P (X =5)=C 12C 33A 44A 55=25.∴X 的分布列为∴数学期望E (X )=2×110+3×15+4×310+5×25=4.迁移与应用:解:只考虑甲、乙两单位的相对位置,故可用组合计算基本事件数. (1)设A 表示“甲、乙的演出序号至少有一个为奇数”,则A 表示“甲、乙的演出序号均为偶数”,由等可能性事件的概率计算公式得P (A )=1-P (A )=1-C 23C 26=1-15=45.(2)ξ的所有可能值为0,1,2,3,4,且P (ξ=0)=5C 26=13,P (ξ=1)=4C 26=415, P (ξ=2)=3C 26=15,P (ξ=3)=2C 26=215, P (ξ=4)=1C 26=115.从而知ξ∴E (ξ)=0×13+1×415+2×15+3×215+4×115=43.活动与探究2:B 解析:由分布列的性质得12+13+m =1,∴m =16.∴E (ξ)=-1×12+0×13+1×16=-13.∴E (η)=E (aξ+3)=aE (ξ)+3=-13a +3=73,∴a =2.迁移与应用:323 解析:E (ξ)=1×16+2×16+3×13+4×13=16+26+66+86=176.∴E (η)=E (2ξ+5)=2E (ξ)+5=2×176+5=323.活动与探究3:解:(1)由于每张奖券是否中奖是相互独立的,因此ξ~B ⎝ ⎛⎭⎪⎫4,12.∴P (ξ=0)=C 04×⎝ ⎛⎭⎪⎫124=116,P (ξ=1)=C 14×⎝ ⎛⎭⎪⎫124=14,P (ξ=2)=C 24×⎝ ⎛⎭⎪⎫124=38, P (ξ=3)=C 34×⎝ ⎛⎭⎪⎫124=14,P (ξ=4)=C 44×⎝ ⎛⎭⎪⎫124=116. 其分布列为(2)∵ξ~B ⎝ ⎛⎭⎪⎫4,12, ∴E (ξ)=4×12=2.又由题意可知η=2 300-100ξ,∴E (η)=E (2 300-100ξ)=2 300-100E (ξ) =2 300-100×2=2 100元.即所求变量η的期望为2 100元.迁移与应用:解:设来领奖的人数ξ=k (k =0,1,…,3 000),所以P (ξ=k )=C k 3 000(0.04)k (1-0.04)3 000-k,则ξ~B (3 000,0.04),那么E (ξ)=3 000×0.04=120(人)>100(人). ∴俱乐部不能向每一位客户都发送领奖邀请.若要使每一位领奖人都得到礼品,俱乐部至少应准备120份礼品.活动与探究4:解:(1)因为E (X 1)=6, 所以5×0.4+6a +7b +8×0.1=6, 即6a +7b =3.2.又由X 1的概率分布列得0.4+a +b +0.1=1, 即a +b =0.5.由⎩⎪⎨⎪⎧6a +7b =3.2,a +b =0.5,解得⎩⎪⎨⎪⎧a =0.3,b =0.2.(2)X 2的概率分布列如下:所以E (X 2)=322222=7)+8P (X 2=8)=3×0.3+4×0.2+5×0.2+6×0.1+7×0.1+8×0.1=4.8.即乙厂产品的等级系数的数学期望等于4.8. (3)乙厂的产品更具可购买性.理由如下:因为甲厂产品的等级系数的数学期望等于6,价格为6元/件,所以其性价比为66=1.因为乙厂产品的等级系数的数学期望等于4.8,价格为4元/件,所以其性价比为4.84=1.2.据此,乙厂的产品更具可购买性.迁移与应用:解:由题设知,X 的取值为10,5,2,-3.P (X =10)=0.8×0.9=0.72,P (X =5)=0.2×0.9=0.18,P (X =2)=0.8×0.1=0.08,P (X =-3)=0.2×0.1=0.02.∴X 的分布列为E (X )=10×0.72+5×0.18+2×0.08-3×0.02=8.2(万元).∴获得利润的期望为8.2万元.1.若随机变量ξ的分布列为则E (ξ)=( ).A .1B .1.8C .2.4D .0.62.设随机变量X 的分布列为P (X =k )=14,k =1,2,3,4,则E (X )的值为( ).A .2.5B .3.5C .0.25D .23.某城市有甲、乙、丙3个旅游景点,一位客人游览这三个景点的概率分别是0.4,0.5,0.6,且客人是否游览哪个景点互不影响,设ξ表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值.则E (ξ)=( ).A .1.48B .0.76C .0.24D .14.若随机变量η~B (5,0.2),则E (2η+1)的值为__________.5.(2011ξ的概率分布列如下表:请小牛同学计算ξ的数学期望,尽管“!”处无法完全看清,且两个“?”处字迹模糊,但能断定这两个“?”处的数值相同.据此,小牛给出了正确答案E (ξ)=__________.答案:1.B 解析:E (ξ)=0×0.4+2×0.3+4×0.3=1.8.2.A 解析:E (X )=1×14+2×14+3×14+4×14=2.5.3.A 解析:ξE (ξ)=1×0.76+3×0.24=1.48.4.3 解析:E (η)=np =5×0.2=1, ∴E (2η+1)=2E (η)+1=3.5.2 解析:设P (ξ=1)=P (ξ=3)=a ,P (ξ=2)=b ,则2a +b =1. 于是,E (ξ)=a +2b +3a =2(2a +b )=2.。

高中数学第二章随机变量及其分布2.3离散型随机变量的

高中数学第二章随机变量及其分布2.3离散型随机变量的

7 40
1 120
∴E(X)=0×274+1×2410+2×470+3×1120=190.
求随机变量的数学期望关键是写出分布列,一般分为四步:(1)确定 X 的可能取值; (2)计算出 P(X=k);(3)写出分布列;(4)利用数学期望的计算公式计算 E(X).
1.已知随机变量 X 的分布列为:
求两点分布、二项分布的均值的方法: (1)准确判断随机变量所服从的分布类型是解决此类问题的关键,通常情况下,在 n 次独立重复试验中事件发生的次数 ξ 服从二项分布,直接代入公式即可求得数 学期望. (2)对于两点分布,要准确辨别成功率 p.
2.根据以往统计资料,某地车主购买甲种保险的概率为 0.5,购买乙种保险但不购买 甲种保险的概率为 0.3,设各车主购买保险相互独立. (1)求该地 1 位车主至少购买甲、乙两种保险中的 1 种的概率; (2)X 表示该地的 100 位车主中甲、乙两种保险都不购买的车主数,求 X 的期望.
3.设 E(X)=10,则 E(3X+5)=________. 解析:E(3X+5)=3E(X)+5=3×10+5=35. 答案:35
探究一 求离散型随机变量的均值 [典例 1] 在 10 件产品中,有 3 件一等品、4 件二等品、3 件三等品.从这 10 件产品 中任取 3 件,求取出的 3 件产品中一等品件数 X 的分布列和数学期望.
解析:设该车主购买乙种保险的概率为 p, 由题意知 p×(1-0.5)=0.3,解得 p=0.6. (1)设所求概率为 P1,则 P1=1-(1-0.5)×(1-0.6)=0.8. 故该地 1 位车主至少购买甲、乙两种保险中的 1 种的概率为 0.8. (2)对每位车主甲、乙两种保险都不购买的概率为 (1-0.5)×(1-0.6)=0.2. ∴X~B(100,0.2),∴E(X)=100×0.2=20. 所以 X 的期望是 20 人.

2018年秋高中数学 第二章 随机变量及其分布 2.3 离散型随机变量的均值与方差 2.3.1 离散型随机变量的均值学

2018年秋高中数学 第二章 随机变量及其分布 2.3 离散型随机变量的均值与方差 2.3.1 离散型随机变量的均值学

2.3.1 离散型随机变量的均值学习目标:1.理解离散型随机变量的均值的意义和性质,会根据离散型随机变量的分布列求出均值.(重点)2.掌握两点分布、二项分布的均值.(重点)3.会利用离散型随机变量的均值解决一些相关的实际问题.(难点)[自 主 预 习·探 新 知]1.离散型随机变量的均值(1)定义:若离散型随机变量X 的分布列为:=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量(2)意义:它反映了离散型随机变量取值的平均水平.(3)性质:如果X 为(离散型)随机变量,则Y =aX +b (其中a ,b 为常数)也是随机变量,且P (Y =ax i +b )=P (X =x i ),i =1,2,3,…,n .E (Y )=E (aX +b )=aE (X )+b .2.两点分布和二项分布的均值 (1)若X 服从两点分布,则E (X )=p ; (2)若X ~B (n ,p ),则E (X )=np . 3.随机变量的均值与样本平均值的关系随机变量的均值是一个常数,它不依赖于样本的抽取,而样本的平均值是一个随机变量,它随样本抽取的不同而变化.对于简单随机样本,随着样本容量的增加,样本的平均值越来越接近于总体的均值.[基础自测]1.判断(正确的打“√”,错误的打“×”)(1)随机变量X 的数学期望E (X )是个变量,其随X 的变化而变化;( )(2)随机变量的均值反映样本的平均水平; ( ) (3)若随机变量X 的数学期望E (X )=2,则E (2X )=4; ( ) (4)随机变量X 的均值E (X )=x 1+x 2+…+x nn.( )[解析] (1)× 随机变量的数学期望E (X )是个常量,是随机变量X 本身固有的一个数字特征.(2)× 随机变量的均值反映随机变量取值的平均水平. (3)√ 由均值的性质可知.(4)× 因为E (X )=x 1p 1+x 2p 2+…+x n p n . [答案] (1)× (2)× (3)√ (4)×2.若随机变量X 的分布列为A .0B .-1C .-16D .-12C [E (X )=∑i =13x i p i =(-1)×12+0×16+1×13=-16.]3.设E (X )=10,则E (3X +5)=________. 35 [E (3X +5)=3E (X )+5=3×10+5=35.]4.若随机变量X 服从二项分布B ⎝ ⎛⎭⎪⎫4,13,则E (X )的值为________.【导学号:95032178】43 [E (X )=np =4×13=43.] [合 作 探 究·攻 重 难]考试的机会,一旦某次考试通过,即可领取驾照,不再参加以后的考试,否则就一直考到第4次为止.如果李明决定参加驾照考试,设他每次参加考试通过的概率依次为0.6,0.7,0.8,0.9,求在一年内李明参加驾照考试次数X 的分布列和X 的均值.[解] X 的取值分别为1,2,3,4.X =1,表明李明第一次参加驾照考试就通过了,故P (X =1)=0.6.X =2,表明李明在第一次考试未通过,第二次通过了,故P (X =2)=(1-0.6)×0.7=0.28.X =3,表明李明在第一、二次考试未通过,第三次通过了,故P (X =3)=(1-0.6)×(1-0.7)×0.8=0.096.X =4,表明李明第一、二、三次考试都未通过,故P (X =4)=(1-0.6)×(1-0.7)×(1-0.8)=0.024.所以李明实际参加考试次数X 的分布列为1.盒中装有5节同牌号的五号电池,其中混有两节废电池.现在无放回地每次取一节电池检验,直到取到好电池为止,求抽取次数X 的分布列及均值.[解] X 可取的值为1,2,3,则P (X =1)=35,P (X =2)=25×34=310,P (X =3)=25×14×1=110.抽取次数X 的分布列为E (X )=1×5+2×10+3×10=2.(2)求E (X );(3)若Y =2X -3,求E (Y ).【导学号:95032179】[解] (1)由随机变量分布列的性质,得14+13+15+m +120=1,解得m =16.(2)E (X )=(-2)×14+(-1)×13+0×15+1×16+2×120=-1730.(3)法一:(公式法)由公式E (aX +b )=aE (X )+b ,得E (Y )=E (2X -3)=2E (X )-3=2×⎝ ⎛⎭⎪⎫-1730-3=-6215. 法二:(直接法)由于Y =2X -3,所以Y 的分布列如下:所以E (Y )=(-7)×4+(-5)×3+(-3)×5+(-1)×6+1×20=-15.2.已知随机变量X 的分布列为-3 [E (X )=1×12+2×13+3×16=53.∵Y =aX +3,∴E (Y )=aE (X )+3=53a +3=-2.解得a =-3.](1)求投篮1次时命中次数X 的均值; (2)求重复5次投篮时,命中次数Y 的均值.【导学号:95032180】[思路探究](1)利用两点分布求解.(2)利用二项分布的数学期望公式求解.[解](1)投篮1次,命中次数X的分布列如下表:(2)由题意,重复5次投篮,命中的次数Y服从二项分布,即Y~B(5,0.6),则E(Y)=np=5×0.6=3.1.某篮球明星罚球命中率为0.7,罚球命中得1分,不中得0分,则他罚球一次的得分X可以取哪些值?X取每个值时的概率是多少?[提示]随机变量X可能取值为0,1.X取每个值的概率分别为P(X=0)=0.3,P(X=1)=0.7.2.在探究1中,若该球星在一场比赛中共罚球10次,命中8次,那么他平均每次罚球得分是多少?[提示] 每次平均得分为810=0.8.3.在探究1中,你能求出在他参加的各场比赛中,罚球一次得分大约是多少吗?为什么?[提示] 在球星的各场比赛中,罚球一次的得分大约为0×0.3+1×0.7=0.7(分).因为在该球星参加各场比赛中平均罚球一次的得分只能用随机变量X 的数学期望来描述他总体得分的平均水平.具体到每一场比赛罚球一次的平均得分应该是非常接近X 的均值的一个分数.随机抽取某厂的某种产品200件,经质检,其中一等品126件,二等品50件,三等品20件,次品4件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元,设1件产品的利润(单位:元)为X .(1)求X 的分布列;(2)求1件产品的平均利润(即X 的均值);(3)经技术革新后,仍有四个等级的产品,但次品率降为1%,一等品率提高为70%,如果此时要求1件产品的平均利润不小于4.73万元,则三等品率最多是多少?【导学号:95032181】[思路探究] 根据利润的意义写出X 的取值→写出X 的分布列 →求出均值E X→利用期望回答问题[解] (1)X 的所有可能取值有6,2,1,-2.P (X =6)=126200=0.63, P (X =2)=50200=0.25,P (X =1)=20200=0.1, P (X =-2)=4200=0.02. 故X 的分布列为:(3)设技术革新后的三等品率为x ,则此时1件产品的平均利润为E (X )=6×0.7+2×(1-0.7-0.01-x )+1×x +(-2)×0.01=4.76-x (0≤x ≤0.29).依题意,E (X )≥4.73,即4.76-x ≥4.73, 解得x ≤0.03,所以三等品率最多为3%.3.在一次射击比赛中,战士甲得1分、2分、3分的概率分别为0.4,0.1,0.5;战士乙得1分、2分、3分的概率分别为0.1,0.6,0.3,那么两名战士获胜希望较大的是谁?[解] 设这次射击比赛战士甲得X 1分,战士乙得X 2分,则分布列分别如下:E (X 1)=1×0.4+2×0.1+3×0.5=2.1; E (X 2)=1×0.1+2×0.6+3×0.3=2.2;因为E (X 2)>E (X 1),故这次射击比赛战士乙得分的均值较大,所以战士乙获胜的希望较大.[当 堂 达 标·固 双 基]1.若随机变量X ~B (5,0.8),则E (X )=( ) A .0.8 B .4 C .5D .3B [E (X )=np =5×0.8=4.故选B.]2.设随机变量X 的分布列为P (X =k )=14,k =1,2,3,4,则E (X )的值为( )【导学号:95032182】A .2.5B .3.5C .0.25D .2A [E (X )=1×14+2×14+3×14+4×14=2.5.]3.袋中装有6个红球,4个白球,从中任取1个球,记下颜色后再放回,连续摸取4次,设X 是取得红球的次数, 则E (X )=________.125 [每一次摸得红球的概率为610=35,由X ~B ⎝ ⎛⎭⎪⎫4,35,则E (X )=4×35=125.]4.已知X ~B ⎝ ⎛⎭⎪⎫100,12,则E (2X +3)=________.103 [E (X )=100×12=50,E (2X +3)=2E (X )+3=103.]5.袋中有4个黑球,3个白球,2个红球,从中任取2个球,每取到1个黑球记0分,每取到1个白球记1分,每取到1个红球记2分,用X 表示取得的分数.求:(1)X 的分布列; (2)X 的均值.【导学号:95032183】[解] (1)由题意知,X 可能取值为0,1,2,3,4. P (X =0)=C 24C 29=16,P (X =1)=C 13C 14C 29=13,P (X =2)=C 14C 12+C 23C 29=1136, P (X =3)=C 12C 13C 29=16,P (X =4)=C 22C 29=136.故X 的分布列为(2)E (X )=0×6+1×3+2×36+3×6+4×36=9.。

2018_2019学年高中数学第二章随机变量及其分布2.3.1离散型随机变量的均值课件新人教A版选修2_3

2018_2019学年高中数学第二章随机变量及其分布2.3.1离散型随机变量的均值课件新人教A版选修2_3

【解析】
赌金的分布列为 ξ P
1
1 1 5
2 1 5
3 1 5
4 1 5
5 1 5
1 所以 E(ξ1)= (1+2+3+4+5)=3. 5 奖金的分布列为
ξ P 所以
2
1.4
2.8
4.2
5.6 1 1 = C2 10 5
4 2 3 3 2 1 = 2= 2= C2 5 C 10 C 5 5 5 5
第二章 随机变量及其分布
2.3 离散型随机变量的均值与方差
2.3.1 离散型随机变量的均值
第二章 随机变量及其分布
1.通过实例理解离散型随机变量均值的概念,能计算简 单离散型随机变量的均值. 质. 3.会利用离散型随机变量的均值,反映离散型随机变量取值 水平,解决一些相关的实际问题. 2.理解离散型随机变量均值的性
判断正误(正确的打“√”,错误的打“×”) (1)随机变量 X 的数学期望 E(X)是个变量,其随 X 的变化而变 化.( × ) (2)随机变量的均值与样本的平均值相同.( × ) (3)若随机变量 X 的数学期望 E(X)=2,则 E(2X)=4.( √ )
若 A.4 C.1
1 X~B4,2,则
探究点 4 均值问题的实际应用 (2016· 高考全国卷Ⅰ)某公司计划购买 2 台机器, 该种机 器使用三年后即被淘汰.机器有一易损零件,在购进机器时, 可以额外购买这种零件作为备件,每个 200 元.在机器使用期 间,如果备件不足再购买,则每个 500 元.现需决策在购买机 器时应同时购买几个易损零件,为此搜集并整理了 100 台这种 机器在三年使用期内更换的易损零件数,得下面柱状图:
1.离散型随机变量的均值或数学期望 (1)定义:一般地,若离散型随机变量 X 的分布列为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.3 离散型随机变量的均值与方差
2.3. 2 离散型随机变量的方差
A级基础巩固
一、选择题
1.已知随机变量ξ满足P(ξ=1)=0.3,P(ξ=2)=0.7,则E(ξ)和D(ξ)的值分别为( )
A.0.6和0.7 B.1.7和0.09
C.0.3和0.7 D.1.7和0.21
解析:E(ξ)=1×0.3+2×0.7=1.7,D(ξ)=(1.7-1)2×0.3+(1.7-2)2×0.7=0.21.
答案:D
2.已知随机变量X~B(100,0.2),那么D(4X+3)的值为( )
A.64 B.256 C.259 D.320
解析:由X~B(100,0.2)知n=100,p=0.2,由公式得D(X)=100×0.2×0.8=16,因此D(4X+3)=42D(X)=16×16=256.
答案:B
3.甲、乙两个运动员射击命中环数ξ、η的分布列如下表.其中射击比较稳定的运动员是( )
A.甲
C.一样D.无法比较
解析:E(ξ)=9.2,E(η)=9.2,所以E(η)=E(ξ),D(ξ)=0.76,D(η)=0.56<D(ξ),所以乙稳定.
答案:B
4.已知随机变量ξ,η满足ξ+η=8,且ξ服从二项分布ξ~B(10,0.6),则E(η)和D(η)的值分别是( )
A.6和2.4 B.2和2.4
C.2和5.6 D.6和5.6
解析:由已知E(ξ)=10×0.6=6,D(ξ)=10×0.6×0.4=2.4.因为ξ+η=8,所以η=8-ξ.
所以E (η)=-E (ξ)+8=2,D (η)=(-1)2
D (ξ)=2.4. 答案:B
5.已知p ,q ∈R ,X ~B (5,p ).若E (X )=2,则D (2X +q )的值为( ) A .2.4 B .4.8 C .2.4+q D .4.8+q 解析:因为X ~B (5,p ), 所以E (X )=5p =2,所以p =2
5

D (X )=5×25×35=65

所以D (2X +q )=4D (X )=4×6
5=4.8,故选B.
答案:B 二、填空题
6.若事件在一次试验中发生次数的方差等于0.25,则该事件在一次试验中发生的概率为________.
解析:在一次试验中发生次数记为ξ,则ξ服从两点分布,则D (ξ)=p (1-p ),所以
p (1-p )=0.25,解得p =0.5.
答案:0.5
7.已知X 的分布列为:
若η=2X +2,则D (η解析:E (X )=-1×12+0×13+1×16=-13,D (X )=59,D (η)=D (2X +2)=4D (X )=20
9.
答案:20
9
8.随机变量X 的分布列如下表:
其中x ,y ,z 成等差数列,若E (X )=3,则D (X )的值是________.
解析:E (X )=0×x +1×y +2×z =y +2z =1
3

又x +y +z =1,且2y =x +z ,解得x =23,y =13,z =0,所以D (X )=⎝ ⎛⎭⎪⎫0-132
×23+⎝ ⎛⎭
⎪⎫1-13
2
×13+⎝ ⎛⎭⎪⎫2-132
×0=29
. 答案:29
三、解答题
9.袋中有大小相同的小球6个,其中红球2个、黄球4个,规定取1个红球得2分,1
个黄球得1分.从袋中任取3个小球,记所取3个小球的得分之和为X ,求随机变量X 的分布列、均值和方差.
解:由题意可知,X 的所有可能的取值为5,4,3. P (X =5)=C 22C 1
4C 36=1
5,
P (X =4)=C 12C 24C 36=3
5,
P (X =3)=C 34C 36=1
5,
故X 的分布列为:
E (X )=5×15+4×35+3×5
=4,
D (X )=(5-4)2×15+(4-4)2×35+(3-4)2×15=25
.
10.每人在一轮投篮练习中最多可投篮4次,现规定一旦命中即停止该轮练习,否则一直试投到4次为止.已知一选手的投篮命中率为0.7,求一轮练习中该选手的实际投篮次数ξ的分布列,并求出ξ的期望E (ξ)与方差E (ξ) (保留3位有效数字).
解:ξ的取值为1,2,3,4.若ξ=1,表示第一次即投中,故P (ξ=1)=0.7;若ξ=2,表示第一次未投中,第二次投中,故P (ξ=2)=(1-0.7)×0.7=0.21;若ξ=3,表示第一、二次未投中,第三次投中,故P (ξ=3)=(1-0.7)2
×0.7=0.063;若ξ=4,表示前三次未投中,故P (ξ=4)=(1-0.7)3
=0.027.
因此ξ的分布列为:
E (ξ)D (ξ)=(1-1.417)2×0.7+(2-1.417)2×0.21+(3-1.417)2×0. 063+(4-1.417)2
×0.027=0.513.
B 级 能力提升
1.若ξ是离散型随机变量,P (ξ=X 1)=23,P (ξ=X 2)=1
3,且X 1<X 2,又已知E (ξ)
=43,D (ξ)=2
9
,则X 1+X 2的值为( ) A.53 B.7
3 C .3
D.113
解析:X 1,X 2满足
⎩⎪⎨⎪⎧23X 1
+13X 2=43
,⎝
⎛⎭⎪⎫X 1
-432
×2
3+⎝ ⎛⎭⎪⎫X 2
-432
×13=29,
解得⎩
⎪⎨⎪⎧X 1=1,X 2
=2或⎩⎪⎨⎪⎧X 1
=53,X 2
=23.
因为X 1<X 2,所以X 1=1,X 2=2,所以X 1+X 2=3. 答案:C
2.抛掷一枚均匀硬币n (3≤n ≤8)次,正面向上的次数ξ服从二项分布B ⎝ ⎛⎭
⎪⎫n ,12,若
P (ξ=1)=332
,则方差D (ξ)=________.
解析:因为3≤n ≤8,ξ服从二项分布B ⎝ ⎛⎭⎪⎫n ,12,且P (ξ=1)=332,所以C 1n ·⎝ ⎛⎭
⎪⎫12n -1
·⎝ ⎛⎭

⎫1-12=332,即n ⎝ ⎛⎭⎪⎫12n
=6
64
,解得n =6,所以方差D (ξ)=np (1-p )=6×12×⎝ ⎛⎭⎪⎫1-12=32. 答案:32
3.一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.
将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.
(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;
(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列、期望E(X)及方差D(X).
解:(1)设A1表示事件“日销售量不低于100个”,A2表示事件“日销售量低于50个”,B表示事件“在未来连续3天里有连续2天的日销售量不低于100个且另1天的日销售量低于50个”.因此
P(A1)=(0.006+0.004+0.002)×50=0.6,
P(A2)=0.003×50=0.15,
P(B)=0.6×0.6×0.15×2=0.108.
(2)X可能取的值为0,1,2,3,相应的概率为
P(X=0)=C03(1-0.6)3=0.064,
P(X=1)=C13·0.6(1-0.6)2=0.288,
P(X=2)=C23·0.62(1-0.6)=0.432,
P(X=3)=C33·0.63=0.216,
则X的分布列为:
因为X~B(3,=3×0.6×(1-0.6)=0.72.。

相关文档
最新文档