Building information modeling (BIM) for sustainable design-a review.pd
Building Information Modeling
BIM的全拼是Building Information Modeling,中文翻译最为贴切的、也被大家所认可的名称为:建筑信息模型。
这些建筑模型的数据在建筑信息模型中的存在是以多种数字技术为依托,从而以这个数字信息模型作为各个建筑项目的基础,去进行各个相关工作。
建筑工程与之相关的工作都可以从这个建筑信息模型中拿出各自需要的信息,即可指导相应工作又能将相应工作的信息反馈到模型中。
建筑信息模型不是简单的将数字信息进行集成,它还是一种数字信息的应用,并可以用于设计、建造、管理的数字化方法,这种方法支持建筑工程的集成管理环境,可以使建筑工程在其整个进程中显著提高效率、大量减少风险。
在建筑工程整个生命周期中,建筑信息模型可以实现集成管理,因此这一模型既包括建筑物的信息模型,同时又包括建筑工程管理行为的模型。
将建筑物的信息模型同建筑工程的管理行为模型进行完美的组合。
因此在一定范围内,建筑信息模型可以模拟实际的建筑工程建设行为,例如:建筑物的日照、外部维护结构的传热状态等。
同时BIM可以四维模拟实际施工,以便于在早期设计阶段就发现后期真正施工阶段所会出现的各种问题,来提前处理,为后期活动打下坚固的基础。
在后期施工时能作为施工的实际指导,也能作为可行性指导,以提供合理的施工方案及人员,材料使用的合理配置,从而来最大范围内实现资源合理运用。
当前建筑业已步入计算机辅助技术的引入和普及,例如CAD的引入,解决了计算机辅助绘图的问题。
而且这种引入受到了建筑业业内人士大力欢迎,良好地适应建筑市场的需求,设计人员不再用手工绘图了,同时也解决了手工绘制和修改易出现错误的弊端。
在“对图”时也不再用落后的将各专业的硫酸图纸进行重叠式的对图了。
这些CAD图形可以在各专业中进行相互的利用。
给人们带来便捷的工作方式,减轻劳动强度,所以计算机辅助绘图一直在受到人们的热烈欢迎。
其他方面的特点,在此就不再列举了。
特点那么BIM建筑信息模型也同CAD一样,也只是个设计绘图软件或者出图工具吗?对于这个问题,我们需要真正的认识BIM了。
什么是bim建模
什么是BIM建筑信息模型(Building Information Modeling)是以建筑工程项目的各项相关信息数据作为模型的基础,进行建筑模型的建立,通过数字信息仿真模拟建筑物所具有的真实信息。
它具有可视化,协调性,模拟性,优化性和可出图性五大特点。
BIM技术是一种应用于工程设计建造管理的数据化工具,通过参数模型整合各种项目的相关信息,在项目策划、运行和维护的全生命周期过程中进行共享和传递,使工程技术人员对各种建筑信息作出正确理解和高效应对,为设计团队以及包括建筑运营单位在内的各方建设主体提供协同工作的基础,在提高生产效率、节约成本和缩短工期方面发挥重要作用。
BIM的英文全称是Building Information Modeling,国内较为一致的中文翻译为:建筑信息模型。
定义由三部分组成:1.BIM是一个设施(建设项目)物理和功能特性的数字表达;2.BIM是一个共享的知识资源,是一个分享有关这个设施的信息,为该设施从建设到拆除的全生命周期中的所有决策提供可靠依据的过程;3.在项目的不同阶段,不同利益相关方通过在BIM中插入、提取、更新和修改信息,以支持和反映其各自职责的协同作业。
BIM的来源1975年,“BIM之父”——乔治亚理工大学的Charles Eastman教授创建了BIM理念至今,BIM技术的研究经历了三大阶段:萌芽阶段、产生阶段和发展阶段。
BIM理念的启蒙,受到了1973年全球石油危机的影响,美国全行业需要考虑提高行业效益的问题,1975年“BIM 之父”Eastman教授在其研究的课题“Building Description System”中提出“a computer-based description of-abuilding”,以便于实现建筑工程的可视化和量化分析,提高工程建设效率。
真正的BIM符合以下五个特点:1. 可视化可视化即“所见所得”的形式,对于建筑行业来说,可视化的真正运用在建筑业的作用是非常大的,例如经常拿到的施工图纸,只是各个构件的信息在图纸上的采用线条绘制表达,但是其真正的构造形式就需要建筑业参与人员去自行想象了。
简述bim的概念
简述bim的概念
建筑信息模型( Building(Information(Modeling,简称BIM)是一种基于先进的建筑信息模型( Building(Information(Modeling,简称BIM)是一种基于先进的三维数字技术,集成了建筑工程项目各种相关信息的工程数据模型。
它以三维数字建筑模型为基础,为各环节人员如设计师、建筑师、工程师等提供“模拟和分析的科学协作平台,帮助他们利用三维数字模型对项目进行设计、建造及运营管理。
”(
BIM的特点包括可视化、协调性、模拟性、优化性和可出图性。
可视化即“所见即所得”的形式,使建筑行业能够将统一的信息创新、设计和绘制出项目,通过真实性模拟和建筑可视化来更好地沟通,以便让项目各方了解工期、现场实时情况、成本和环境影响等基本信息。
(
同时,BIM也绝不仅仅是一种工具或一种软件,而是一种理念。
它要求设计师、建筑师和工程师在设计阶段贯彻协同设计、绿色设计和可持续设计理念,其最终目的是使整个工程项目在设计、施工和使用等各个阶段都能够有效地实现节约能源、节约成本、降低污染和提高效率。
(
此外,BIM技术在我国的应用也十分广泛。
例如,早在21世纪初就已经进入中国,并在奥运场馆-水立方以及上海世博会中国馆上得到应用。
至2011年,我国住建部发布的建筑业“十二五”发展纲要中更是建议建筑企业普及应用BIM 技术。
建筑的建筑信息模型(BIM)技术
建筑的建筑信息模型(BIM)技术建筑的建筑信息模型(Building Information Modeling,简称BIM)技术是建筑行业中的一项创新技术,它通过数字化的方式将建筑工程的设计、施工和运营过程进行整合和管理。
BIM技术的出现,使得建筑行业能够更加高效地进行项目的规划、设计和管理,有效解决了传统建筑行业中存在的许多问题。
一、BIM技术的基本概念BIM技术是一种基于三维模型的数字化建筑工程管理方法,它将建筑工程的各个方面,包括建筑结构、设备、用材等信息都统一存储在一个数字化的模型中,形成一个全面的、一体化的建筑信息库。
通过BIM技术,各个参与方可以在同一个平台上进行信息的分享、协同设计和施工,实现项目各个环节的无缝对接。
二、BIM技术的优势1. 提升工作效率:BIM技术可以将工程设计、施工和运营过程中产生的大量信息整合在一个平台上,不需要再单独进行数据的转换和整合,从而节省了时间和人力成本,大大提高了工作效率。
2. 减少错误和冲突:通过BIM技术,设计师可以在建模过程中及时发现和解决设计错误和冲突,减少施工过程中的修改和重建,降低了项目的风险和成本。
3. 提高项目质量:BIM技术可以将视觉化的三维模型与各项数据进行综合分析,帮助设计师、施工人员和业主更加准确地评估建筑方案的可行性,提高项目的质量和可持续性。
4. 优化资源管理:BIM技术能够对建筑材料、设备和施工人员等资源进行模拟和优化,帮助项目管理者更好地进行资源的配置和利用,提高资源的利用率,降低成本。
5. 提升协同性:BIM技术通过云计算等技术手段,实现了不同参与方之间的信息共享和协同设计,减少了信息传递的延误和错误,增强了各个参与方之间的合作和沟通。
三、BIM技术的应用领域BIM技术在建筑行业中已经广泛应用,并且逐渐拓展到其他相关领域。
在建筑设计阶段,BIM技术可以实现建筑模型的可视化展示、碰撞检测和材料优化等功能;在施工阶段,BIM技术可以实现施工过程的可视化模拟和优化、进度管理和质量控制等功能;在运营阶段,BIM技术可以实现建筑设备的智能化管理、能源消耗的监测和预测等功能。
bim技术名词解释
bim技术名词解释
BIM(Building Information Modeling)是建筑信息模型的缩写,是一种集成的
数字化建筑设计和管理方法。
它通过在建筑生命周期的各个阶段使用三维模型
和相关数据,实现了建筑项目的协同设计、施工和运营管理。
BIM技术的核心是建筑信息模型,它是一个包含了建筑物几何形状、空间关系、材料属性、构建过程和管理信息等的三维数字化表示。
BIM技术可以帮助建筑师、工程师和其他相关专业人员在设计、施工和运营过程中更好地协作和沟通。
举个例子,假设一个建筑项目使用了BIM技术。
在设计阶段,建筑师可以创建
一个三维建筑模型,并在其中添加各种信息,如墙体材料、管道系统、电气布
局等。
这些信息可以帮助建筑师更好地理解建筑物的结构和功能,并在设计中
进行优化。
在施工阶段,承包商可以使用BIM模型进行协调和冲突检测。
他们可以将施工
计划与BIM模型集成,以确保施工进度和质量的控制。
同时,施工人员还可以
使用BIM模型来可视化施工过程,并提前发现潜在的问题。
在运营阶段,建筑物的维护人员可以使用BIM模型来管理设备信息、维修记录
和能源消耗等数据。
他们可以通过BIM模型快速定位设备并了解其维护需求,
提高维护效率和减少成本。
总之,BIM技术通过整合建筑信息,提供全方位的建筑项目管理和决策支持,对于提高建筑项目的效率、质量和可持续性具有重要作用。
新加坡bim建模标准-概述说明以及解释
新加坡bim建模标准-概述说明以及解释1.引言1.1 概述BIM(Building Information Modeling)是一种虚拟建筑模型的技术,被广泛应用于新加坡的建筑和工程行业。
通过使用BIM,建筑专业人员可以创建、管理和可视化建筑项目的各个方面的信息。
这些信息包括建筑的几何形状、空间关系、材料、数量和属性等。
新加坡作为亚洲区域领先的建筑和基础设施开发中心,早早意识到了BIM技术的潜力。
为了更好地推动建筑行业的发展,新加坡政府积极主导制定了一系列BIM建模标准,以规范和统一建筑行业在BIM建模方面的操作和实践。
新加坡BIM建模标准的制定背景可以追溯到多年前,随着技术的不断进步和建筑行业的发展,越来越多的建筑项目开始采用BIM技术。
然而,由于缺乏标准和指导,不同的项目在BIM建模方面存在着差异,导致信息交流和合作受阻。
因此,为了解决这些问题并推动BIM技术的进一步应用,新加坡政府决定制定一套适用于全国建筑行业的BIM建模标准。
新加坡BIM建模标准的重要性不容忽视。
首先,它提供了一个统一的框架,使得不同项目之间可以更好地进行协作和信息交流。
通过遵循标准,建筑专业人员可以更加高效地共享和管理建筑项目的信息,减少沟通和协调的成本和风险。
其次,新加坡BIM建模标准还促进了建筑行业的创新和技术进步。
通过制定标准,建筑行业能够推动BIM技术在设计、施工和维护阶段的应用,提高项目的质量和效率。
这不仅有助于提升新加坡建筑行业的竞争力,还能为国内外的建筑专业人员提供更好的工作环境和发展机会。
最后,新加坡BIM建模标准的推行对于建筑行业的可持续发展具有重要意义。
通过采用BIM技术,建筑项目可以更好地优化设计和施工过程,减少浪费和资源消耗。
这符合新加坡政府提倡的绿色建筑和可持续发展的理念,有助于建立更加环保和可持续的城市环境。
综上所述,新加坡BIM建模标准的制定和推行对于新加坡建筑行业的发展至关重要。
它不仅提供了一个统一的框架,促进协作和信息交流,还推动了建筑行业的创新和技术进步,以及可持续发展的实现。
建筑信息模型(Building_Information_Modeling,_BIM)
建筑信息模型(Building_Information_Modeling,_BIM) 建筑信息模型BIM的全拼是Building Information Modeling,即:建筑信息模型。
建筑信息模型(Building Information Modeling, BIM)是近两年来出现在建筑界中的一个新名词。
其实,它是引领建筑业信息技术走向更高层次的一种新技术,它的全面应用,将为建筑业界的科技进步产生无可估量的影响,大大提高建筑工程的集成化程度。
同时,也为建筑业的发展带来巨大的效益,使设计乃至整个工程的质量和效率显著提高,成本降低。
建筑信息模型,是以三维数字技术为基础,集成了建筑工程项目各种相关信息的工程数据模型,是对该工程项目相关信息的详尽表达。
建筑信息模型是数字技术在建筑工程中的直接应用,以解决建筑工程在软件中的描述问题,使设计人员和工程技术人员能够对各种建筑信息做出正确的应对,并为协同工作提供坚实的基础。
建筑信息模型同时又是一种应用于设计、建造、管理的数字化方法,这种方法支持建筑工程的集成管理环境,可以使建筑工程在其整个进程中显著提高效率和大量减少风险。
由于建筑信息模型需要支持建筑工程全生命周期的集成管理环境,因此建筑信息模型的结构是一个包含有数据模型和行为模型的复合结构。
它除了包含与几何图形及数据有关的数据模型外,还包含与管理有关的行为模型,两相结合通过关联为数据赋予意义,因而可用于模拟真实世界的行为,例如模拟建筑的结构应力状况、围护结构的传热状况。
当然,行为的模拟与信息的质量是密切相关的。
应用建筑信息模型,可以支持项目各种信息的连续应用及实时应用,这些信息质量高、可靠性强、集成程度高而且完全协调,大大提高设计乃至整个工程的质量和效率,显著降低成本。
应用建筑信息模型,马上可以得到的好处就是使建筑工程更快、更省、更精确,各工种配合得更好和减少了图纸的出错风险,而长远得到的好处已经超越了设计和施工的阶段,惠及将来的建筑物的运作、维护和设施管理。
BUILDINGINFORMATIONMODELING
Building Information ModelingIntroductionBuilding Information Modeling (BIM) is a process that involves the creation and management of digital representations of physical and functional characteristics of buildings. BIM provides a collaborative platform for architects, engineers, contractors, and other stakeholders involved in the construction industry to work together on a virtual model of a building, enabling better coordination, communication, and visualization throughout the entire lifecycle of the project.Benefits of BIMBIM offers several benefits compared to traditional 2D drafting and design methods:1.Improved collaboration: BIM allows differentdisciplines to work together on a shared model, reducing conflicts and improving coordination between teams. This collaboration leads to improved efficiency and reducederrors during construction.2.Visualization and simulation: BIM enables thecreation of realistic 3D models that can be visualized and simulated before construction begins. This allowsstakeholders to better understand the design, identifypotential issues, and make informed decisions before costly construction mistakes occur.3.Clash detection: BIM software can automatically detect clashes or conflicts between different elements of the design, such as MEP systems and structural components. This helps to identify and resolve clashes early in the design phase, reducing the need for costly rework during construction.4.Improved communication: BIM facilitates better communication between project teams through the use of a centralized database. All stakeholders have access to the most up-to-date information, reducing misunderstandings and improving decision-making.5.Efficient cost estimation: BIM software can generate accurate quantity takeoffs and cost estimates based on the 3D model, reducing the time and effort required for manual calculations. This helps to improve the accuracy of cost estimation and reduce the risk of cost overruns.BIM ProcessThe BIM process typically consists of the following key steps:1.Conceptualization and design: The first step in the BIM process is to create a conceptual design of the building using BIM software. This involves defining the basic architectural and structural elements of the building.2.Collaborative modeling: After the conceptual design is complete, different disciplines, such as architects, engineers, and contractors, collaborate on the model to addfurther details. This includes the addition of MEP systems, structural elements, and other building components.3.Clash detection and coordination: Once the modelis complete, it is checked for clashes and conflicts usingclash detection software. Any clashes or conflicts areresolved, and coordination between different disciplines is ensured to avoid errors during construction.4.Construction documentation: The BIM model isused to generate construction documentation, includingdetailed drawings and specifications. These documents are used by contractors during the construction phase.5.Construction and facility management: Duringthe construction phase, the BIM model is used to monitor the progress of the project and support decision-making.After construction, the BIM model serves as a valuableresource for facility management, allowing for efficientoperation and maintenance of the building.BIM ToolsThere are several BIM software tools available in the market that support the creation and management of BIM models. Some popular BIM tools include:•Autodesk Revit•ArchiCAD•Bentley MicroStation•Tekla StructuresThese tools provide a wide range of features and functionalities, including 3D modeling, clash detection, cost estimation, and construction documentation generation. The choice of the BIM tool depends on the specific requirements of the project and the preferences of the project team.ConclusionBuilding Information Modeling (BIM) has revolutionized the construction industry by improving collaboration, communication, and visualization throughout the entire project lifecycle. BIM enables stakeholders to work together on a shared model, detect and resolve clashes early, and generate accurate construction documentation. By embracing BIM and leveraging the power of BIM software tools, construction professionals can improve the efficiency, quality, and sustainability of their projects.。
B I M
B I MBIM的全拼是Building Information Modeling,中文翻译最为贴切的、也被大家所认可的名称为:建筑信息模型。
这些建筑模型的数据在建筑信息模型中的存在是以多种数字技术为依托,从而以这个数字信息模型作为各个建筑项目的基础,去进行各个相关工作。
建筑工程与之相关的工作都可以从这个建筑信息模型中拿出各自需要的信息,即可指导相应工作又能将相应工作的信息反馈到模型中。
建筑信息模型不是简单的将数字信息进行集成,它还是一种数字信息的应用,并可以用于设计、建造、管理的数字化方法,这种方法支持建筑工程的集成管理环境,可以使建筑工程在其整个进程中显著提高效率、大量减少风险。
在建筑工程整个生命周期中,建筑信息模型可以实现集成管理,因此这一模型既包括建筑物的信息模型,同时又包括建筑工程管理行为的模型。
将建筑物的信息模型同建筑工程的管理行为模型进行完美的组合。
因此在一定范围内,建筑信息模型可以模拟实际的建筑工程建设行为,例如:建筑物的日照、外部维护结构的传热状态等。
同时BIM可以四维模拟实际施工,以便于在早期设计阶段就发现后期真正施工阶段所会出现的各种问题,来提前处理,为后期活动打下坚固的基础。
在后期施工时能作为施工的实际指导,也能作为可行性指导,以提供合理的施工方案及人员,材料使用的合理配置,从而来最大范围内实现资源合理运用。
当前建筑业已步入计算机辅助技术的引入和普及,例如CAD的引入,解决了计算机辅助绘图的问题。
而且这种引入受到了建筑业业内人士大力欢迎,良好地适应建筑市场的需求,设计人员不再用手工绘图了,同时也解决了手工绘制和修改易出现错误的弊端。
在“对图”时也不再用落后的将各专业的硫酸图纸进行重叠式的对图了。
这些CAD图形可以在各专业中进行相互的利用。
给人们带来便捷的工作方式,减轻劳动强度,所以计算机辅助绘图一直在受到人们的热烈欢迎。
其他方面的特点,在此就不再列举了。
特点那么BIM建筑信息模型也同CAD一样,也只是个设计绘图软件或者出图工具吗?对于这个问题,我们需要真正的认识BIM了。
BIM基础知识介绍
一、概述BIM的英文全称是Building Information Modeling,国内较为一致的中文翻译为:建筑信息模型。
建筑信息模型是以建筑工程项目的各项相关信息数据作为模型的基础,进行建筑模型的建立,通过数字信息仿真模拟建筑物所具有的真实信息。
它具有可视化,协调性,模拟性,优化性和可出图性五大特点。
二、专业网站中国BIM门户BIM智库筑龙BIM EaBIM 中国BIM论坛中国BIM培训网三、定义从BIM设计过程的资源、行为、交付三个基本维度,给出设计企业的实施标准的具体方法和实践内容。
BIM(建筑信息模型)不是简单的将数字信息进行集成,而是一种数字信息的应用,并可以用于设计、建造、管理的数字化方法。
这种方法支持建筑工程的集成管理环境,可以使建筑工程在其整个进程中显著提高效率、大量减少风险。
住房和城乡建设部工程质量安全监管司处长对BIM作出了解释。
她表示:BIM技术是一种应用于工程设计建造管理的数据化工具,通过参数模型整合各种项目的相关信息,在项目策划、运行和维护的全生命周期过程中进行共享和传递,使工程技术人员对各种建筑信息作出正确理解和高效应对,为设计团队以及包括建筑运营单位在内的各方建设主体提供协同工作的基础,在提高生产效率、节约成本和缩短工期方面发挥重要作用!由于国内《建筑信息模型应用统一标准》还在编制阶段,这里暂时引用美国国家BIM 标准(NBIMS)对BIM的定义,定义由三部分组成:1.BIM是一个设施(建设项目)物理和功能特性的数字表达;2.BIM是一个共享的知识资源,是一个分享有关这个设施的信息,为该设施从建设到拆除的全生命周期中的所有决策提供可靠依据的过程;3.在项目的不同阶段,不同利益相关方通过在BIM中插入、提取、更新和修改信息,以支持和反映其各自职责的协同作业。
四、来源1975年,“BIM之父”——乔治亚理工大学的Chunk Eastman教授创建了BIM理念至今,BIM技术的研究经历了三大阶段:萌芽阶段、产生阶段和发展阶段。
建筑信息模型(BIM)技术介绍
建筑信息模型(BIM)技术介绍什么是建筑信息模型(BIM)技术?建筑信息模型(Building Information Modeling,简称BIM)是一种基于三维模型的数字化建筑设计、建造和管理方法。
它通过整合建筑项目各个方面的信息,包括几何形状、构造、材料、空间关系以及时间和成本等,提供了一种全面的多维建筑数据视图。
BIM技术的主要特点多维信息集成: BIM技术可以将建筑项目的各个方面的信息进行集成,包括几何、时间、成本、材料等多维数据,使得设计师、工程师和其他利益相关者可以从不同的角度分析和理解建筑项目。
可视化展示: BIM技术采用三维模型来表示建筑物,使得用户可以通过可视化方式更直观地了解建筑物的设计和结构。
协同工作: BIM技术可以实现多个人在同一个平台上对建筑项目进行协同工作,提高设计和施工过程中各方之间的沟通和合作效率。
数据共享: BIM技术将建筑项目的数据存储在一个统一的数据库中,方便不同角色的用户之间共享和获取所需的信息。
BIM技术在建筑设计阶段的应用可视化设计: BIM技术可以使用三维模型展示建筑物的外观和内部结构,帮助设计师更好地理解和表达自己的设计意图,并与客户进行有效的沟通。
碰撞检测: BIM技术可以在建筑设计过程中进行碰撞检测,即通过模型分析来识别潜在的冲突和问题,减少设计错误带来的成本和延误。
能源分析: BIM技术可以在设计阶段进行能源分析,评估不同设计方案对能源消耗的影响,并优化建筑物的能源使用效率。
自动量取: BIM技术可以自动从三维模型中提取出各类量值信息,如材料数量、面积、体积等,提高量取效率并减少人为误差。
BIM技术在施工阶段的应用施工协调: BIM技术可以帮助施工方进行协调规划,在施工前就预测可能出现的问题,并通过优化施工顺序和资源分配来提高施工效率。
进度管理: BIM技术可以将施工计划与三维模型相结合,实现实时进度管理和可视化展示,以便更好地控制项目进展。
20建筑信息模型(BIM)
建筑信息模型(BIM)
BIM技术
(2)数据的提取和分析 BIM将各种不同数据汇集后,通过提取和分析可以获得价值。例如AutodeskNavisworks 软件能将AutoCAD 和Revit 等软件创 建的数据与几何图形的信息相结合,通过整合模型可以以多种文件格式进行实时审阅。以成本核算为例,当有变更时,与材料有 关的信息会自动反映到相关明细表中,造价人员通过BIM 系统可以实时获取最新的材料信息,自动完成成本核算。
(1)多系统数据的汇集 在整个工程项目的过程中,不同软件在各个阶段会产生大量的数据,这些数据形成信息孤岛。BIM 技术通过统一平台集成各 模型,内部协同作业,建立有效的沟通配合,防止出现冲突;外部则有效地衔接施工和后期运营过程,更有效合理地调整事前和 事后控制。同时可以将管道碰撞检测、建筑漫游、采光和仿真分析的数据集中在统一平台上进行数据存储和分析,实现数据与模 型是“建模”的使用率低造成的,建一个模型只用于建造一个建筑物,或因软件原 因,模型只能在个别电脑上显示。所以提高回报率的方法就是提高已建模型的使用率,建模后,要多次利用才可能得到多次回报。 BIM 技术可以实现数据和经验的重用。例如Autodesk 公司平台级Vault 产品线能提高设计的重复使用效率,帮助用户最大限度地 提高设计数据的投资回报。
建筑信息模型(BIM)
BIM技术
(2)设计阶段 设计阶段把规划和计划阶段的需求转化为对这个建筑物的物理描述,这是一个复杂而关键的阶段,在这个阶段作决策的人以 及产生信息的质量会对物业的最终效果产生最大程度的影响。相当数量不同专业的专业人士在这个阶段介入设计过程,而这些专 业人士可能分属于不同的机构,因此他们之间的实时信息共享非常关键。在项目的设计阶段,BIM 技术让建筑设计从二维真正走 向三维。通过BIM 技术,建筑师们能够深刻的对复杂三维形态的可实施性进行拓展,可以不再困惑如何用传统的二维图纸来表达 复杂的三维形态。通过BIM的可视化,设计人员可以对自己的设计想法做到怎么想的就怎么做出来,并且能让业主随时了解到自己 的投资可以获得什么样的成果。
BIM建筑信息模型(Building Information Modeling)
六维(6D) :5D+性能分析应用,使得可以配合建设全寿命周期中的应用主要包括:成 本预算、各阶段规划、设计方案论证、能量分析、 日照分析、3D协调、信息化项目管理以及基于BIM 模型的运营维护等。
——谢谢观赏 如有不足之处, 欢迎批评指正
按照模型中所集成的信息的特征,可以 分为3D 模型、4D 模型、5D模型乃至 nD 模型等。
三维(3D) :包含了工程项目所有的几何、物理、功能和 性能信息。 四维(4D) :3D +项目发展的时间,用来研究建筑可建性 (可施工性)、施工计划安排以及优化任务和工作顺序。 五维(5D) :4D+造价控制。
建筑信息模型
Building Information Modeling
什么是BIM?
建筑信息模型 (Building Information Modeling ,简称 BIM),是通过创建并利用数字模型对项目进行设计、建造 及运营管理的过程。 所谓建筑信息模型(BIM ),是指通过数字信息仿真模拟 建筑物所具有的真实信息,在这里,信息的内涵不仅仅是 几何形状描述的视觉信息,还包含大量的非几何信息,如 材料的耐火等级、材料的传热系数、构件的造价、采购信 息等。实际上,BIM就是通过数字化技术,在计算机中建 立一座虚拟建筑,一个建筑信息模型就是提供了一个单一 的、完整一致的、逻辑的建筑信息库。
bim介绍
bim介绍BIM,全称为“Building Information Modeling”,即建筑信息模型。
BIM是一种通过计算机技术将设计、施工和运营全过程中的所有建筑信息实时集成、协同、共享和分析的方法。
BIM的实现需要在整个建筑生命周期内进行全面的数据收集和管理,包括设计数据、施工数据和运营数据。
BIM将所有相关方的数据整合为一个共享的数字化模型,通过对该模型进行协同和分析,可以优化建筑设计与施工,并降低运营成本,提高建筑安全性和可持续性。
BIM技术的应用范围十分广泛,包括建筑、土木工程、电气工程、机械工程等各个领域。
在现代建筑设计中,BIM被广泛应用于多个重要领域,比如可视化建筑设计、碰撞检查和协调、信息共享与协作、模拟与分析以及建筑施工和管理等方面,以提高建筑质量,降低成本和提高效率。
在可视化建筑设计中,BIM技术可以帮助设计师在建筑设计阶段内创建三维模型,进一步提高对建筑的理解。
通过BIM技术还可以对三维模型的不同部分进行操作,包括CD等具体的领域操作。
BIM还可以帮助设计师实现与下游的工程师和承包商紧密合作,以更好地合理规划建筑的细节。
在碰撞检查和协调方面,BIM技术可以检查设计模型中的构建元素和各种系统之间的相互碰撞和矛盾。
通过对设计模型进行分析和协调,可以规划和解决各种问题,并消除可能存在的工程难题。
在信息共享和协作方面,BIM技术重要的贡献是在设计团队中建立信息的一致性和普适性。
在多部门参与的设计项目中,BIM技术可以帮助团队成员共享设计数据并与设计模型中的所有元素进行实时交互。
这样可以实现信息的快速和有效传递,并加强不同学科之间的合作,提高工程设计的协作性和准确性。
BIM技术还可以帮助进行各种模拟分析,包括灯具、水力、暖通空调等系统分析。
通过这些分析,可以预测元素互动、构件性能、运行成本等方面,提前发现可能存在的错误和隐患,掌握相关技术参数,优化建筑设计方案,提高效率和减少成本。
建筑信息模型(BIM)数字化设计与协作平台
建筑信息模型(BIM)数字化设计与协作平台在当今数字化时代,建筑行业也在不断的追随科技的步伐,并逐渐引入建筑信息模型(Building Information Modeling,简称BIM)数字化设计与协作平台,以提高效率、减少成本,并实现更好的协作和沟通。
BIM平台作为建筑行业的创新工具,正在革新传统的建筑设计与施工模式,给行业带来了前所未有的优势和便利。
一、 BIM平台的定义和特点BIM平台是基于数字技术和建筑信息模型的一种集成化的设计与协作平台。
它通过将建筑项目的各种信息整合在一个平台上,实现多学科、多专业的协同工作。
BIM平台具备以下几个特点:1. 数字化模型:BIM平台以数字化建模为核心,通过3D模型的方式呈现建筑的各个方面,包括结构、机电、供排水等。
这种数字化模型的建立,通过减少二维图纸的使用,提高了设计效率和精度。
2. 多学科协同:BIM平台将不同专业的设计人员整合到同一个平台上,方便各个专业之间的协同工作和信息共享。
这种协同性质的工作方式,不仅可以避免在设计过程中出现信息断层和冲突,也能更好地实现设计的一体化。
3. 时空协同:BIM平台不仅可以促进多学科之间的协同工作,还可以实现设计过程中的时空协同。
设计人员可以在不同地点分别进行设计工作,并实时同步到平台上。
这为设计团队的远程协作提供了良好的条件,提高了工作效率。
二、 BIM平台在数字化设计中的应用BIM平台在数字化设计中扮演着至关重要的角色,以下是BIM平台应用的几个方面:1. 设计效率提升:传统的设计方式依赖于二维图纸的绘制和修改,而使用BIM平台可以将设计过程转变为三维数字化模型。
设计师可以通过在模型中进行修改和查看,实时预览设计效果,减少了繁琐的纸质图纸绘制过程,大大提高了设计效率。
2. 冲突检测与解决:BIM平台可以自动检测模型中的冲突和错误,识别出潜在问题并给出解决方案。
这大大减少了设计中的错误和返工,同时也提高了设计的准确性和一致性。
建筑信息模型在建筑工程中的应用
建筑信息模型在建筑工程中的应用一、引言建筑信息模型(Building Information Modeling, BIM)是指在建筑和基础设施项目中,利用一系列相关技术和工具,整合所有的项目信息到一个统一的信息模型中,从而实现项目各个阶段的协同工作、优化设计、减少误差,提高工程效率和质量。
二、BIM的基本原理BIM的基本原理是通过数字化技术将各种工具和系统集成到一个信息模型中,实现三维建筑设计、工程分析、成本估算、进度控制、物资管理等功能,可以使建筑项目在设计开始之前就可以得到更加精确的计划和预测,大大提高了项目的建设效率和控制质量。
三、BIM在建筑工程中的应用1.项目规划和设计在规划和设计阶段,BIM可以帮助建筑师进行设计决策,并协助项目团队进行视觉检查和优化。
利用BIM的模拟和分析工具,可以帮助业主和设计师在设计过程中获得更精确的数据,从而使整个设计过程更加高效、精准和可追溯。
2.施工管理在施工管理过程中,BIM可以帮助项目团队管理施工进度、质量和成本。
利用BIM的数字建模和管理工具,可以协助项目经理进行供应链管理、进度控制、工人安排和材料进度管理,从而提高施工效率和降低项目成本。
3.运维管理在建筑物的使用后期,BIM还可以帮助业主和建筑管理者进行运维管理。
通过BIM的建筑物模拟和数据分析工具,可以帮助业主和管理者监控建筑物的使用情况、调整设施设备和进行建筑物维护。
这有助于延长建筑物的使用寿命,同时确保建筑物的安全、可靠和高效。
四、BIM应用的优势1.信息整合:BIM将设计、工程和建筑物管理过程中的数据和信息集成到一个统一的模型中,提高了整个建筑项目的信息整合和数据管理的效率。
2.简化决策:BIM提供了丰富的可视化信息和数字建模工具,在项目的开发和管理过程中可以协助决策者快速识别潜在的问题和决策方案。
3.提高设计效率:BIM的数字建模和设计工具使项目团队可以更加直观地理解和制定建筑方案,在多种竞争性方案中快速选择出最优的策略。
bim中buildinginformationmodel的含义
bim中buildinginformationmodel的含义随着科技的不断发展,建筑行业也在不断融入新技术。
BIM(Building Information Modeling,建筑信息模型)作为一种全新的建筑行业设计、施工和管理方法,正逐渐被我国建筑行业所接受和重视。
BIM,全称Building Information Model,翻译成中文就是“建筑信息模型”。
它是一种基于数字技术的建筑设计、施工和管理方法,通过建立一个三维可视化的、包含建筑物各种信息的模型,实现对建筑项目的全过程管理。
BIM技术将建筑设计、施工、运营等各个环节有机地联系起来,提高了建筑项目的效率和质量。
BIM在建筑行业的应用具有明显优势。
首先,BIM技术可以在建筑设计阶段发现潜在的问题,避免后期施工过程中的大量修改和浪费。
其次,通过BIM 模型,各参与方可以更好地沟通与协作,提高项目管理的效率。
此外,BIM还可以为施工阶段提供精确的数据支持,减少现场施工失误,降低施工成本。
在我国,BIM技术已经在一些大型项目中取得了显著的成效,如上海中心大厦、北京大兴国际机场等。
然而,我国BIM技术的发展仍处于初级阶段。
虽然近年来,政府、企业和学术界都对BIM给予了高度重视,但在实际应用中,还存在诸多问题,如BIM 人才短缺、技术标准不统一、行业规范缺失等。
为了推动我国BIM技术的进一步发展,政府应加大政策扶持力度,企业应加强人才培养和技术研发,学术界则需积极开展BIM相关研究,以期为我国建筑行业的发展贡献力量。
总之,BIM作为一种具有广泛应用前景和巨大市场潜力的建筑技术,已经在全球范围内得到了广泛关注。
我国应抓住这一历史机遇,大力发展BIM技术,推动建筑行业的转型升级。
bim技术应用外文文献
bim技术应用外文文献BIM技术是一种在建筑设计、施工和运营过程中应用的数字化技术,已经成为建筑行业中不可或缺的工具。
BIM技术可以协调和整合建筑设计过程中的各个环节,从而提高建筑设计质量,降低建筑项目成本。
本文将介绍几篇关于BIM技术应用的外文文献。
1. 'Building Information Modeling (BIM): Implementation Strategies for Construction Organizations'(作者:Sulaiman Almutairi,发表于2014年):该文研究了BIM技术在建筑施工过程中的应用,探讨了BIM技术的实施策略,提出了一些可行的建议和建议。
2. 'Building Information Modeling (BIM) for Facility Management: A Review and Future Directions'(作者:Nawari O. Nawari,发表于2016年):该文综述了BIM技术在设施管理中的应用,分析了BIM技术在设施管理中的优点和局限性,并探讨了BIM技术在未来的发展方向。
3. 'Building Information Modeling (BIM) in Construction Industry: A Review'(作者:Mohammed Arif,发表于2017年):该文回顾了BIM技术在建筑行业中的应用,分析了BIM技术对建筑行业的影响,探讨了BIM技术的未来发展方向。
4. 'Building Information Modeling (BIM) and Construction Safety: A Review'(作者:Md. Tahmidul Islam,发表于2018年):该文探讨了BIM技术在建筑施工安全方面的应用,分析了BIM技术在施工安全中的作用和局限性,提出了一些改进建议。
建筑行业的建筑信息模型资料
建筑行业的建筑信息模型资料建筑行业的建筑信息模型(Building Information Modeling,简称BIM)是一种应用信息技术的方法,结合3D建模、软件工具和协同合作,用于在建筑项目的全生命周期中实现建筑和设施信息的集成、管理和交互。
BIM技术在建筑行业中的应用不断增加,成为建筑设计、施工和运营的重要工具。
本文将探讨建筑行业中使用的BIM的相关资料和信息。
一、什么是BIM资料?BIM资料是指在建筑信息模型中所涉及的各种数据、图纸、模型和相关文件。
其中包括但不限于建筑设计图纸、结构分析报告、施工图、设备参数、工程进度计划、材料清单等。
这些资料以数字化形式存在,并通过BIM软件进行管理和交互。
BIM资料的全面和准确性对于建筑项目的设计、施工、运营和维护至关重要。
二、BIM资料的重要性1. 提升设计效率:BIM资料能够将建筑设计、结构计算、设备选型等数据集成,并通过3D模型进行可视化展示,帮助设计师快速找出问题和改进方案,提升设计效率。
2. 管理施工过程:BIM资料可以为施工管理提供全面的信息支持,包括自动化的工程进度计划、材料清单和施工图纸。
这有助于减少施工过程中的冲突和错误,并提高项目的执行效率。
3. 改善沟通协作:BIM资料的共享和交流使得设计师、施工方、业主等各方能够更加密切地合作,减少信息传递的误差和不一致,提高沟通效率,促进项目顺利进行。
4. 降低项目成本:BIM资料的使用有助于提前发现设计和施工过程中的问题,避免了后期的更改和延误,从而减少了额外的成本开支。
三、常见的BIM资料类型1. 3D建模:BIM的核心是建筑的三维模型,用于展示建筑物的空间结构和外观。
通过3D建模,可以进行可视化设计和演示,使得各方对建筑物的形态有更清晰的认识。
2. 2D图纸:BIM软件可以自动生成建筑项目的平面、立面和剖面图等2D图纸,方便设计师和施工方进行详细设计和施工操作。
3. 数据参数:BIM资料中包含了建筑元素的各种参数信息,比如材料规格、造价、施工方法等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
EVALUATING THE BENEFITS OF BIM FOR SUSTAINABLE DESIGN –A REVIEW.R.M. Dowsett* and C.F. Harty*** TSBE Centre, University of Reading,Whiteknights, PO Box 219, Reading RG6 6AY, UK** School of Construction Management & Engineering, University of Reading,Whiteknights, PO Box 219, Reading RG6 6AY, UKABSTRACTThe application of Building Information Modelling (BIM) to construction projects has the potential to enhance the quality of information provided for making critical design decisions regarding a building’s environmental impact. However, the provision and utilisation of such information has yet to be effectively exploited in most instances and disconnections between BIM methodologies and sustainable design practices within construction companies are evident. But the fundamental aspects of integrative design, multiple stakeholder collaboration, common goal-setting, the quick efficient presentation of complex concepts to enable fast and effective decision-making, and an emphasis on dialogue between stakeholders are as fundamental to sustainable design processes as they are to BIM enabled construction. Differing perceptions and misaligned expectations of the benefits and expected outcomes of BIM and sustainable design adoption go some way to prevent a synthesis between the two approaches. There have been attempts to develop methods to calculate and quantify the benefits of BIM and related information system adoption but existing methods of analysis lack industry acceptance and fail to provide a principal framework methodology that can measure comparable data across multiple projects. This paper presents an in-depth review of existing literature surrounding frameworks and methodologies to evaluate and analyse the benefits of BIM and sustainable design. The paper reviews the issues surrounding the implementation of BIM alongside sustainable design practices and the inherent problems associated with attempting to evaluate benefits in a purely quantitative fashion. Limitations of past research studies in BIM benefits measurement are discussed and the development of a broader framework that incorporates both quantitative measurement and a more qualitative understanding of the process of integrating BIM and sustainable design to measure the potential of BIM for sustainability are suggested.Keywords: bim, sustainable design, benefits evaluation.1. INTRODUCTIONThe built environment is recognised by policy-makers and stakeholders as having a significant role to play in reducing carbon emissions and achieving sustainable development (DEFRA, 2005; IPCC, 2007). Assessment and certification methods are consistently extolled as an important means by which to achieve such targets with the predominant and most established method used within the UK being the Building Research Establishment Environmental Assessment Method (BREEAM). Though the effectiveness of these tools at engendering the ideal notions of sustainability advocated by some authors is refuted due to the failure to address underlying industry-wide organisational issues and a lack of a definitive understanding of what sustainability really is and means to the construction industry.Within this paper sustainable design is defined as the processes and practices of design that contribute to sustainable patterns of living throughout the built environment based on the dominant ‘triple-bottom-line’ approach. A paradigm shift from static notions of building performance to the regenerative contribution the built environment can make to the social, ecological and economic health of the place in which it functions is the ideal. To achieve this, common understanding amongst diverse stakeholders is required; a move from an isolated and static understanding of building performance in terms of design dialogue to an expansive and dynamic dialogue that encourages an understanding of the implications of the building lifecycle on occupant lives and business success will engage and maintain stakeholder commitment (Clements-Croome et al. 2004; Cole 2011; du Plessis & Cole 2011).However, the highly fragmented design and construction process consisting of differentiated stakeholders with disparate approaches to phase specific project goals that are influenced by varying professional practice codes make interdisciplinary work difficult at early stages of design (Feige et al. 2011). Consequently the adversarial culture associated with traditional construction promotes self-interest and a necessity for voluntary and institutional mechanisms to ensure compliance in terms of sustainability. The current culture allows stakeholders to make decisions that reflect their own interests and select the approach that gives the best solution for them to meet organisational performance rather than building performance within the context of place. With current legislation stipulating the minimum requirements for sustainability this is invariably perceived by project teams as supplementary to the primary goals of on-time and within budget. Cole (2012) refers to Robinson (2004) and the suggestion that for sustainability to become a meaningful concept it will require ‘new concepts and tools that are integrative and synthetic, not disciplinary and analytic; and that actively creates synergy, not just summation’.This paper presents an exposition of the role of BIM as a regime to facilitate a change in the prevailing perceptions and practices of sustainable construction, and why the development of performance measurement frameworks requires more than the assessment of discrete technical performance for it to become meaningful and beneficial to both organisational performance and building performance.2. NORMALISATION OF SUSTAINABILITY VALUES THROUGH ASSESSMENT METHODSA common theme throughout much of the literature is that the ideal notions of sustainability are subject to interpretation and the normative effect of standardised assessment methods such as BREEAM, in part, determine practitioner perceptions of sustainability and facilitate, or conversely, impede dialogue amongst stakeholders over core values that shape and change the expectations of the environmental performance of buildings.Schweber (2013) considers the effect of BREEAM as a process and its ability to change prevailing perceptions and practices regarding sustainable construction. The presiding debate centres on the notion that along with top-down policy debate concerning the most comprehensive definition of sustainability within a wider domain, the specification of new standards and assessment methods within the construction industry contribute to a bottom-up definition. How such standards and assessment methods achieve this and to what extent were analysed through the systematic comparison of assessment processes across eight case studies from three firms who offer BREEAM assessments and one large engineering consultancy firm who contributed to the study in their capacity as project managers. Each firm provided two cases; one considered successful and one where lessons could be learnt and three types of relationships between assessment method and design and construction processes were determined: projects in which high integration occurred, projects in which moderateintegration occurred, and projects in which BREEAM was considered a bolt-on process that had relatively little impact on the design and construction processes. Data consisted of 49 semi-structured interviews with assessors, clients, architects, project managers, design managers, and specialist engineers, and documentation produced by the assessment process. And the findings suggest that while BREEAM provides an established measurement framework for a building’s environmental impact with relative ease of comprehension for those unfamiliar with sustainable design, the technique required to aggregate complex, heterogeneous and technically discrete specifications into a single score fails to engage clients in dialogue over the core values associated with specific design decisions that constitute a ‘green building’. Also, the highly bureaucratic demands associated with some credits that require client involvement, such as community engagement, undermine client engagement with the process as a whole and although BREEAM was successful in translating complex ideals of sustainability to project team members who would otherwise not engage in such discussions, practitioners familiar with sustainable design generally perceived the assessment method as inadequate in embodying the new rationality purported by many authors (Du Plessis & R. J. Cole 2011; Moffatt & Kohler 2008).The study also identifies the lack of accountability associated with some credits over which the design team have no control yet the linear technical approach to building assessment results in a loss of that credit, thereby weakening the internalisation of BREEAM as a measure of practitioner practice or challenge to existing perceptions.The study concludes that it is important to consider the impact of tools and assessment models and the taken for granted perceptions of standards on ‘best’ practice. It would appear that the assessment regime defines and permits decision-making toward minimum standards that fit best within existing organisational practice and that the value of BREEAM as an assessment model to achieve goals in line with revised definitions of progressive sustainability definitions may be limited.BUILDING INFORMATION MODELLINGThere have been a number of management methods and change frameworks to address inefficiencies within the construction industry in a bid to achieve ‘best’ practice, many of which were developed in response to reviews and reports (Green 2011). A key driver for UK mandated BIM strategy is the 2011 Government Construction Strategy, that calls for the replacement of “adversarial cultures with collaborative ones” and demands “cost reduction and innovation within the supply chain” as well as criticising the industry for failing to take advantage of the “full potential offered by digital technology”. It would appear that BIM enabled construction work has come closest to a mandated collaborative working methodology; facilitating the redesign of organisational functions and processes toward integrative design, multiple stakeholder collaboration, common goal-setting, the quick efficient presentation of complex concepts to enable fast and effective decision-making, and an emphasis on dialogue between stakeholders (Ahmad et al. 1995). Aspects of working methods that are purportedly required to meet already established BREEAM assessment criteria and a paradigm shift in the approach to sustainability advocated by many commentators (Du Plessis & Cole 2011; Cole 2011; Cole 2012). Using BIM may change the regime in which decisions are defined and permitted in line with progressive sustainability goals but there is a significant need to understand BIM as a ‘systemic’ (Taylor & Levitt 2004) and ‘unbounded’ (Harty 2005) innovation to avoid ineffective implementation because the perceived benefits of adopting IT enabled collaborative tools can only be realised when the antecedent conditions required to successfully implement IT are in place and the organisation is in a state of ‘readiness’ to synergise (Taylor, 2007).Successful implementation at project-level requires organisational-level strategic planning that considers issues of technical support in terms of hardware and software rationalisation for cost effective use, critical management support in terms of challenging embedded processes, a supportive workplace environment in the form of BIM champions to share experience and skill, and an understanding of users’ individual-characteristics so that the framework processes offered can be effectively applied (Peansupap & Walker 2006). Consequently, considerable mutual adjustment is required to enable successful technology adoption in inter-organisational collaborations and teams to bridge the boundaries between design, construction and operation, which is determined by a variety of factors: stakeholders attitude toward the technology, corporate culture, relationships between companies, project characteristics, industry-wide issues of legal standards currently employed, communication density, organisational barriers and individual’s resistance to change (Dossick & Neff 2010; Nitithamyong & Skibniewski 2006; O’Brien 2000). Factors that may affect the outcomes specified in many BIM assessment methods as well as sustainability assessment methods.3. BUILDING INFORMATION MODELLING PERFORMANCE ASSESSMENTMethods to measure implementation success referenced in this paper predominantly have a myopic focus on financial performance indicators with the majority of existing studies conducted in the US where there is no mandated BIM strategy. As such, these studies predominantly examine benefit measurement methods for the purpose of constructing a business case for practitioners and owners to invest. And although case studies realise benefits they provide no formalised repeatable measurement framework to determine best practice and/or process improvement.The McGraw Hill Report is based on an internet survey of 2,228 completed responses from 598 Architects, 326 Engineers, 817 Contractors, 118 owners, 73 Building product manufacturers and 296 other industry respondents to gauge the practitioner perception of the value of BIM. 77% of users perceived a positive ROI on their investment, 87% were experiencing a positive ROI and 93% believed there is more value to be realised in the future. The report also contains four case studies one of which, for an 11-storey 540,000 square-feet biomedical facility, bases its success on an integrative approach, engaging early with the design team with contractor and owner inclusion and an extensive design and preconstruction process to develop a data management process. It led to a reduction in RFI’s of 37% and a reduction of change orders of 32% throughout the project compared with the similar non-BIM enabled previous project. The project team also experienced an estimated 50% reduction in labour and work schedule as a result of BIM though the specific role of BIM is not discussed.The second case study, for a Health Science Centre, determined the success of BIM through completion within budget. The project was awarded on a second round tender and BIM was used to model the project in advance to give a firm understanding of project costs to compete in a ‘hard bid environment’. An understanding of the organisational processes that took place to make the technology adoption successful would provide a valuable contribution to the industry as a whole.The third case study, for a medical health centre, reported success in terms of improved scheduling and cost savings however the project narrative offers a more interesting insight into the processes required to achieve the identified success measures; faster decisions and streamlined processes as a result of the technology were predicted but there was resistance against technology specification in fear of constraints around creativity and productivity. A clear strategy of interdisciplinary information exchange was determined without software specification. Prior to commencement of on-site activitiesthe project team had produced over 25,000 electronic design documents and eight servers were used to enable 50 companies creating files across the US to have real-time data access from any location.The final case study of a high-explosives material pressing facility measured success through clash detection of extensive process piping, operating equipment and electrical and control systems. Cost savings of $10 million were attributed to the technology. The project specification was to optimise spatial coordination so it is logical that the performance measure was the number of clash detections.Indicating a need for a consistent cost-benefit benchmarking framework associated with BIM process enhancements and innovations as a motivator for adoption Becerik-Gerber & Rice (2010) conducted a survey to gauge the perceived value of BIM in the U.S building industry with specific focus on tangible benefits and costs at project-level. 424 respondents answered questions regarding; the size and type of projects BIM was used on; the type of software used; the tasks the software is used for; the number of projects it is used on; and the ratio of total cost spent on software, hardware, maintenance and training to overall net revenue. Hardware and software costs contributed most to overall expenditure whereas the majority of respondents reported spending less on software upgrades, hardware maintenance costs and training. Around 41% of total respondents realised an increase in overall project profitability with firms having more experience reporting higher returns. 48%, 47%, and 58% of respondents reported scheduling improvements during the design, bid preparation and construction phases, respectively. What affect independent variables such as software upgrades, hardware maintenance and training have on the dependant variables such as perceived project profitability is unknown and maybe a significant interdependent variable.(Giel et al. 2010) conducted a study based on the premise that a company’s capacity to finance virtual design and construction (VDC) goals is determined by the owner’s willingness to pay additional fees. Two case studies were conducted and compared based on BIM-preventable change orders and the associated schedule differences: Case Study One compared two commercial warehouse projects of around $8 million and 365 days duration with savings of 36.7% in the non-BIM project and 16.2% in the BIM project; Case Study Two compared two concrete condominium projects of around $40 million and around 600 days duration with ROI's of 1653.9% and 299.9%. However it is difficult to determine whether the scheduling improvements were entirely attributable to the use of a BIM-based model.Barlish & Sullivan (2012) recognise the highly contextual domain in which BIM benefits measurement is set and the void of a balanced repeatable framework for BIM implementation that considers both monetary and managerial outcomes. The paper offers a reductive and positivist analysis that purposefully ignores the qualitative aspects of BIM implementation in order to develop a BIM GO/NO-GO decision mechanism through net benefit analysis. The framework is in response to the numerous IS evaluation methods that are reactive and prescriptive, relying on individual perceptions of value and a matrix of potential BIM benefits was composed from a review of existing literature. The most quantifiable and generalizable returns were determined; schedule, change orders, and RFIs. Returns on investment of reduced change orders and improved scheduling were 70% and 53% respectively and alongside quantifiable calculations the study conducted individual interviews with Project Managers and Coordinators to gauge the contextual information of BIM implementation rather than the interdependency. They reported an increase in contractor attendance at coordination meetings, a diminishing BIM software learning curve and decreased contractor accountability from BIM utilisation. Whether accountability was decreased as a result of increased attendance was not examined nor if the diminishing learning curve could be diminished further through increased expenditure on training.In summary the metrics chosen in each study only provide an indicator of improvements; they do not provide a narrative of improvements, interdependencies of process change and benefits as a result of technologies, training or information quality, and/or lessons learnt. For example, Perceived ROI though important to understand the industry perception of the benefits of BIM, cannot replace actual ROI and the variables that can be adjusted to improve it. Also, measures identified are specific to different disciplines; RFIs are used as a measure of improved quality of information however the number will vary depending on project and participant context; productivity through drafting and documentation though a direct benefit to design teams are not as effective for contractors whose work focusses less on modelling or drafting (Lee et al. 2012). Consequently, shortened project duration is often used as a metric to determine success during construction, however there are many other factors that contribute to improved scheduling such as construction methods and equipment, number of personnel on site, and management quality (Lee et al. 2012).‘What gets measured, gets attention’ (Eccles 1991) and can obstruct good judgement (Pfeffer & Sutton 2000) and the oversimplification of complex problems into localised improvement initiatives can reduced overall performance (Owen & Huang 2007) so it is important that the relevant measures identified contribute to the quality and productivity of the IS function and the larger organisational performance by providing feedback to manage and improve IS function to meet the needs of the organisation/project (Myers et al. 1997). Perhaps it is more pertinent to develop benchmarks that are used as a proxy to determine efficiencies, or lack thereof, to track and mitigate implementation failure. In which case metrics alone cannot determine the success of BIM; qualitative analysis of its role must supplement quantitative factors to develop an iterative measurement and analysis framework of existing performance to improve BIM capabilities and achieve differentiation.4. BUILDING INFORMATION MODELLING & SUSTAINABLE DESIGNDuring the design and preconstruction stages of a building the most significant decisions regarding sustainable design features can be made (Azhar et al. 2011). Linking new approaches to simulation and analysis within sustainable design to enhanced coordination of information via BIM throughout the construction process allows both reduction of rework and waste and the realisation of ‘designed-for-performance’ new buildings and infrastructure through dialogic engagement of stakeholders.(Krygiel & Nies 2008) suggest BIM can assist in the following areas of sustainable design: Building orientation (selecting a good orientation can reduce energy costs), Building massing (to analyse building form and optimize the building envelope), Day-lighting analysis, Water harvesting (reducing water needs in a building), Energy modelling (reducing energy needs and analysing renewable energy options can contribute to low energy costs), Sustainable materials (reducing material needs and using recycled materials), Site and logistics management (to reduce waste and carbon footprints). Design options for sustainability can be tracked and studied in a model along with spatial data to geographically locate and import building site information to place it within context and to contribute to an understanding of issues relating to climate, surrounding systems and resources. The building can then be adjusted and engineered using real coordinates to reduce the impact on and utilise sustainably the surrounding environment to reduce energy requirements, for example solar orientation (Hardin 2011).Literature regarding the integration of sustainability tools with BIM has shown improvement in assessment processes and effectiveness through comprehensive and efficient data extraction that reduces the time, effort and cost of an assessment, multi-disciplinary sustainable design decisions made at the design stage that enable relatively fast and inexpensive improvements to be made relativeto changes made during and after construction, and a reduction in human error through the use of standardised and authorised information. Azhar et al. (2011) demonstrated the relationship between BIM and the LEED rating process making four conclusions: no explicit relationship exists between the LEED® certification process and BIM-based sustainability analyses due to inadequate software integration; up to 17 LEED® credits and 2 prerequisites may be documented using results generated by BIM-based sustainability software directly, semi-directly or indirectly; compared to traditional methods BIM-based sustainability software saves substantial time and resources; discrepancies between the software and manual results were mainly due to an inadequately developed model.During the life cycle of a large commercial structure Scheuer & Keoleian (2002) found that approximately 95% of energy consumption and emissions occur in the operational phase. Through the use of highly energy efficient materials and building operation optimisation technologies the impacts to life cycle energy and emissions consumption from the operational phase can be shifted back to the material production and construction phase (Blanchard & Reppe 1998). Integration of LCA software and BIM software to automate this process will not only for allow efficiencies in LCA assessment procedures but also enable design changes to be made prior to construction and assist building management in the optimisation of a building’s environmental footprint throughout its operation (Russell-Smith & Lepech 2012).There are a number of other BIM-based tools and systems that have been and are being investigated and developed to tackle a range of sustainability concerns across the entire construction process from design inception to Facilities Management and lifecycle analysis (Azhar et al. 2009; Capper 2012; Che et al. 2010; Geyer 2012; J. Park & Kim 2012; Schlueter & Thesseling 2009). And whilst these technologies may assist in achieving the outcomes stipulated by sustainable assessment methods, the mechanistic and linear approach required to achieve credits fails to capture, and may even prevent, the more humanistic and developmental benefits BIM may bring in terms of dialogic stakeholder engagement, common understanding and internalisation of sustainability values that add value to the end user through continuous analysis and discussion of sustainability throughout the design and construction process with relevant stakeholders.5. CONCLUSIONSThe metrics chosen in most studies only provide an indicator of improvements; they do not provide a narrative of improvements, interdependencies of process change and technologies, training or information quality, and/or lessons learnt. Static notions of best practice neglect aspects of cultural environment, and social interaction and negotiation that could affect not only the outcomes but also the constructs themselves.Practitioners are encouraged to follow routine algorithms within a dominant culture of compliance rather than to adopt innovative solutions to the inherently complex problems of organisational development and sustainable design that standardisation should support. Exemplary buildings are achieved but they are accomplished in spite of the current traditional methods not because of them. BIM methodologies and tools, through the standardisation of practices and processes, may free practitioners from the bureaucracy of traditional construction capacitating meaningful dialogic stakeholder engagement, practitioner discretion over design and improved decision-making by eliminating the restrictive conditions associated with traditional construction.Mechanistic conceptions of measurement methods across a disparate group of construction practitioners are difficult to achieve when the change required to improve is constrained by imbeddedpractice and professional structure and different path dependencies themselves have different embedded practices and professional structures. BIM methodologies and tools go some way to address these issues but to realise the benefits assessment methods must be diagnostic in order to identify the conditions required to successfully implement appropriate techniques relevant to the organisation and projects. Renewed expectations and broader ranges of opportunities created by the adoption of BIM should inevitably produce improved organisational capabilities and subsequently value-added sustainable design.REFERENCESAhmad, I, Russell, J, & Abou-Zeid, A (1995). Information technology (IT) and integration in the construction industry. Construction Management and Economics, 13, 163–171.Azhar, S, Brown, J, & Farooqui, R (2009) BIM-based sustainability analysis: An evaluation of building performance analysis software. In Sulbaran, T & Sterling C (Eds) "Proceedings of the Associated Schools of Construction (ASC) 45th annual international conference", 1-4 April 2009, University of Florida.Azhar, S, Carlton, W, Olsen, D, & Ahmad, I (2011). Building information modeling for sustainable design and LEED® rating analysis. Automation in Construction, 20(2), 217–224.Barlish, K, & Sullivan, K (2012). How to measure the benefits of BIM - A case study approach. Automation in Construction, 24, 149-159.Becerik-Gerber, B, & Rice, S (2010). The perceived value of Building Information Modeling in the U.S. building industry. Journal of Information Technology in Construction, 15, 185–201.Blanchard, S, & Reppe, P (1998). Life cycle analysis of a residential home in Michigan. School of Natural Resources and Environment, University of Michigan.Capper, G (2012). Incorporating embodied energy in the BIM process. In: " CIBSE ASHRAE Technical Symposium", 18-19 April 2012, Imperial College London, 1–11.Intergovernmental Panel on Climate Change (IPCC). (2007) Climate Change 2007: Mitigation of climate change. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge.Che, L, Gao, Z,Chen, D, Nguyen, T (2010). Using building information modeling for measuring the efficiency of building energy performance, In: Tizani (Ed.), "Proceedings of the International Conference on Computing in Civil and Building Engineering", 30 June-2 July, Nottingham, Nottingham University Press.Clements-Croome, D. J, John, G, Loy, H, & Wu, S (2004). Building Performance of Intelligent Buildings. In: "CIB World Building Congress 2004" Toronto, Canada. 1-10Cole, R (2012). Transitioning from green to regenerative design. Building Research & Information, 37–41.Cole, R (2011) Motivating stakeholders to deliver environmental change. Building Research & Information, 39(5), 431–435.。