最全版导数专题精华知识点总结——理科
第3章 导数-高中数学备考知识点总结与规律方法总结(理科)
第三章 导数专题1 导数以及运算 考点一、导数的基本运算【备考知识梳理】1.常见函数的求导公式.(1)0)(='C (C 为常数);(2);(3);(4);(5);(6)()'x x e e =;(7)且1)a ≠;(8)()1ln 'x x =. 2.两个函数的和、差、积的求导法则法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即: (法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个 函数乘以第二个函数的导数,即: 若C 为常数,则.即常数与函数的积的导数等于常数乘以函数的导数: 法则3两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:⎪⎭⎫ ⎝⎛v u ‘=2''v uv v u -(v ≠0). 形如y=f [x (ϕ])的函数称为复合函数.复合函数求导步骤:分解—求导—回代. 法则:y '|X = y '|U ·u'|X【规律方法技巧】(1)求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错;(2)有的函数虽然表面形式为函数的商的形式,但在求导前利用代数或三角恒等变形将函数先化简,然后进行求导,有时可以避免使用商的求导法则,减少运算量;(3)复合函数的求导,要正确分析函数的复合层次,通过设中间变量,确定复合过程,然后求导.考点二、导数的几何意义【备考知识梳理】函数()y f x =在点0x 处的导数的几何意义是曲线()y f x =在点处的切线的斜率.也就是说,曲线()y f x =在点处的切线的斜率是()0f x '.相应地,切线方程为. 【规律方法技巧】求曲线切线方程的步骤:(1)求出函数()y f x =在0x x =的导数,即曲线()y f x =在点处切线的斜率;(2)在已知切点和斜率的条件下,求得切线方程特别地,当曲线()y f x =在点处的切线平行于y 轴时(此时导数不存在),可由切线的定义知切线方程为0x x =;当切点未知时,可以先设出切点坐标,再求解.【应试技巧点拨】1. 利用导数求切线问题中的“在”与“过”在解决曲线的切线问题时,利用导数求切线的斜率是非常重要的一类方法.在求解过程中特别注意:曲线在某点处的切线若有则只有一条,曲线过某点的要切线往往不止一条;切线与曲线的公共点不一定只有一个.因此在审题时应首先判断是“在”还是“过”.若“在”,利用该点出的导数为直线的斜率,便可直接求解;若“过”,解决问题关键是设切点,利用“待定切点法”,即:设点A (x 0,y 0)是曲线y=f(x)上的一点,则以A 为切点的切线方程为y -y 0=f,再根据题意求出切点.2.函数切线的相关问题的解决,抓住两个关键点:其一,切点是交点;其二,在切点处的导数是切线的斜率.因此,解决此类问题,一般要设出切点,建立关系——方程(组).其三,求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异.过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上;在点P 处的切线,点P 是切点.【 一轮复习指引】导数重点考查一次函数,二次函数,反比例函数,指数函数,对数函数,与三角函数等的求导公式,导数运算重点是高次多项式函数,分式函数,指数型,对数型函数,以及初等基本函数的和、差、积、商的运算方法,试题的命制往往与导数的应用结合,解决单调性,极值,最值,切线,方程的根,参数的范围等问题,它只作为解题的一部分,难度不大,只需会运用公式求导即可.因此在2019年高考备考中应狠下功夫,掌握求导公式,会灵活应用求导法则,理解导数的几何意义即可.【 高考考点定位】高考对导数的运算,导数的几何意义的考查,一般不单独出题,特别是导数的运算,往往和导数的几何意义,导数的应用结合起来,作为第一步求导来进一步研究导数其它应用.专题2 导数的应用考点一、借助导数研究函数单调性【备考知识梳理】一般地,函数的单调性与其导函数的正负有如下关系:在某个区间(,)a b 内,如果()0f x '>,那么函数()y f x =在这个区间内单调递增;如果()0f x '<,那么函数()y f x =在这个区间内单调递减;【规律方法技巧】求函数单调区间的一般步骤.(1)求函数()f x 的导数()f x '(2)令()0f x '≥解不等式,得x 的范围就是单调增区间;令()0f x '≤解不等式,得x 的范围就是单调减区间(3)对照定义域得出结论.考点二、借助导数研究函数的极值【备考知识梳理】若0x 满足0)(0='x f ,且在0x 的两侧)(x f 的导数异号,则0x 是)(x f 的极值点,)(0x f 是极值,并且如果)(x f '在0x 两侧满足“左正右负”,则0x 是)(x f 的极大值点,)(0x f 是极大值;如果)(x f '在0x 两侧满足“左负右正”,则0x 是)(x f 的极小值点,)(0x f 是极小值【规律方法技巧】求函数的极值的步骤:(1)确定函数的定义区间,求导数f ′(x ) .(2)求方程f ′(x )=0的根.(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查f ′(x )在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,那么f (x )在这个根处无极值.考点三、借助导数研究函数最值【备考知识梳理】求函数最值的步骤:(1)求出()f x 在(,)a b 上的极值.(2)求出端点函数值(),()f a f b .(3)比较极值和端点值,确定最大值或最小值.【规律方法技巧】1、利用导数研究函数的最值问题是要养成列表的习惯,这样能使解答过程直观条理;2、会利用导函数的图象提取相关信息;3、极值点不一定是最值点,最值点也不一定是极值点,但若函数在开区间内只有一个极值点,则这个极值点也一定是最值点.【应试技巧点拨】1. 函数的导数在其单调性研究的作用:(1)当函数在一个指定的区间内单调时,需要这个函数的导数在这个区间内不改变符号(即恒大于或者等于零、恒小于或者等于零),当函数在一个区间内不单调时,这个函数的导数在这个区间内一定变号,如果导数的图象是连续的曲线,这个导数在这个区间内一定存在变号的零点,可以把问题转化为对函数零点的研究.(2)根据函数的导数研究函数的单调性,在函数解析式中若含有字母参数时要进行分类讨论,这种分类讨论首先是在函数的定义域内进行,其次要根据函数的导数等于零的点在其定义域内的情况进行,如果这样的点不止一个,则要根据字母参数在不同范围内取值时,导数等于零的根的大小关系进行分类讨论,最后在分类解决问题后要整合一个一般的结论.[易错提示] 在利用“若函数()f x 单调递增,则()'0f x ≥”求参数的范围时,注意不要漏掉“等号”.2.利用导数研究函数的极值与最值:(1)确定定义域.(2)求导数()'f x .(3)①若求极值,则先求方程()'0f x =的根,再检验()'f x 在方程根左、右值的符号,求出极值.(当根中有参数时要注意分类讨论根是否在定义域内)②若已知极值大小或存在的情况,则转化为已知方程()'0f x =根的大小或存在情况,从而求解.3.求函数()y f x =在[],a b 上的最大值与最小值的步骤(1)求函数()y f x =在(),a b 内的极值;(2)将函数()y f x =的各极值与端点处的函数值()(),f a f b 比较,其中最大的一个是最大值,最小的一个是最小值.4.利用导数处理恒成立问题不等式在某区间的恒成立问题,可以转化为求函数在区间上的最值问题来解决,函数的最值问题的求解,利用求导分析函数单调性是常规途径,例如:①()0f x '>⇒()f x 为增函数(()0f x '<⇒()f x 为减函数).②()f x 在区间(),a b 上是增函数⇒()f x '≥0在(),a b 上恒成立;()f x 在区间(),a b 上为减函数⇒()f x '≤0在(),a b 上恒成立.5.利用导数,如何解决函数与不等式大题在高考题的大题中,每年都要设计一道函数大题. 在函数的解答题中有一类是研究不等式或是研究方程根的情况,基本的题目类型是研究在一个区间上恒成立的不等式(实际上就是证明这个不等式),研究不等式在一个区间上成立时不等式的某个参数的取值范围,研究含有指数式、对数式、三角函数式等超越式的方程在某个区间上的根的个数等,这些问题依据基础初等函数的知识已经无能为力,就需要根据导数的方法进行解决.使用导数的方法研究不等式和方程的基本思路是构造函数,通过导数的方法研究这个函数的单调性、极值和特殊点的函数值,根据函数的性质推断不等式成立的情况以及方程实根的个数.因为导数的引入,为函数问题的解决提供了操作工具.因此入手大家比较清楚,但是深入解决函数与不等式相结合的题目时,往往一筹莫展.原因是找不到两者的结合点,不清楚解决技巧.解题技巧总结如下(1)树立服务意识:所谓“服务意识”是指利用给定函数的某些性质(一般第一问先让解决出来),如函数的单调性、最值等,服务于第二问要证明的不等式. (2)强化变形技巧:所谓“强化变形技巧”是指对于给出的不等式直接证明无法下手,可考虑对不等式进行必要的等价变形后,再去证明.例如采用两边取对数(指数),移项通分等等.要注意变形的方向:因为要利用函数的性质,力求变形后不等式一边需要出现函数关系式.(3)巧妙构造函数:所谓“巧妙构造函数”是指根据不等式的结构特征,构造函数,利用函数的最值进行解决.在构造函数的时候灵活多样,注意积累经验,体现一个“巧妙”.【一轮复习指引】导数是研究函数的工具,导数进入教材之后,给函数问题注入了生机和活力,开辟了许多解题新途径,拓展了高考对函数问题的命题空间.所以把导数与函数综合在一起是顺理成章的事情,对函数的命题已不再拘泥于一次函数,二次函数,反比例函数,指数函数,对数函数等,对研究函数的目标也不仅限于求定义域,值域,单调性,奇偶性,对称性,周期性等,而是把高次多项式函数,分式函数,指数型,对数型函数,以及初等基本函数的和、差、积、商都成为命题的对象,试题的命制往往融函数,导数,不等式,方程等知识于一体,通过演绎证明,运算推理等理性思维,解决单调性,极值,最值,切线,方程的根,参数的范围等问题,这类题难度很大,综合性强,内容新,背景新,方法新,是高考命题的丰富宝藏.解题中需用到函数与方程思想、分类讨论思想、数形结合思想、转化与化归思想.因此在2019年高考备考中应狠下功夫,抓好基础,提高自己的解题能力,掌握好解题技巧,特别是构造函数的灵活运用.【高考考点定位】高考对导数的应用的考查主要有导数的几何意义,利用导数判断单调性,求最值,证明不等式,证明恒成立,以及存在性问题等,难度较大,往往作为把关题存在.专题3 积分与微积分基本定理考点一、求已知函数的定积分【备考知识梳理】1、定积分的概念如果函数()f x 在区间[],a b 上连续,用分点011i i n a x x x x x b -=<<<<<<=……将区间[],a b 等分成n 个小区间,在每个小区间[]1,i i x x - 上任取一点()1,2,i i ξ=…,n ,作和式()()11n n i i i i b a f x f nξξ==-∆=∑∑ ,当n →+∞ 时,上述和式无限接近某个水常数,这个常数叫做函数在区间上的定积分,记作()ba f x dx ⎰,即 ()()1lim n bi a n i b a f x dx f nξ→∞=-=∑⎰ 2、微积分基本定理如果()f x 是区间[],a b 上的连续函数,并且()()F x f x '= ,那么()()()ba f x dx Fb F a =-⎰ ,这个结论叫做微积分基本定理,又叫做牛顿——莱布尼兹公式.3、定积分的基本性质(1)()()=k bb aa kf x dx f x dx ⎰⎰,其中k 为常数 (2)()()()()[]b b baa a f x g x dx f x dx g x dx ±=±⎰⎰⎰ (3)()()()bc ba a c f x dx f x dx f x dx =+⎰⎰⎰,其中a cb << 【规律方法技巧】1.求函数()f x 的定积分,关键是求出函数()f x 的一个原函数()F x ,即满足()F x '=()f x .正确运用求导运算与求原函数运算互为逆运算的关系.2.计算简单定积分的步骤(1)把被积函数变为幂函数、正弦函数、余弦函数、指数函数与常数的和或差;(2)利用定积分的性质把所求的定积分化为若干个定积分的和或差;(3)分别用求导公式找到F (x ),使得F ′(x )=f (x );(4)利用牛顿——莱布尼兹公式求出各个定积分的值;(5)计算所求定积分的值.3.求导运算与求原函数运算互为逆运算,求定积分的关键是找到被积函数的原函数,为避免出错,在求出原函数后可利用求导与积分互为逆运算的关系进行验证.考点二、求分段函数的定积分【备考知识梳理】1、分段函数的定积分(1)分段函数在区间[],a b 上的定积分可分成几段定积分的和的形式.(2)分段的标准是使每一段上的函数表达式是确定的,一般按照原函数分段的情况分,无需分得过细.2、奇函数与偶函数在对称区间上的定积分若()f x 为偶函数,且在关于原点对称的区间[],a a -上连续,则()()02aaa f x dx f x dx -=⎰⎰ 若()f x 为奇函数,且在关于原点对称的区间[],a a -上连续,则()0a a f x dx -=⎰【规律方法技巧】 分段函数在区间[],a b 上的定积分可分成几段定积分的和的形式. 分段的标准只需依据已知函数的分段标准即可.考点三、定积分的几何意义【备考知识梳理】1、当函数()f x 在区间[],a b 上恒为正时,定积分()ba f x dx ⎰的几何意义是直线,,0x a xb y === 和曲线()y f x =围成的曲边梯形的面积;2、一般情况下,定积分()ba f x dx ⎰的几何意义是介于x 轴、曲线()y f x =和直线,x a xb ==之间的曲边梯形的面积的代数和,其中在x 轴上方的面积等于该区间上定积分值,x 轴下方的面积等于该区间上定积分的相反数.【规律方法技巧】1.利用定积分求平面图形面积的关键是画出几何图形,结合图形位置,确定积分区间以及被积函数,从而得到面积的积分表达式,再利用微积分基本定理求出积分值.2. 定积分的应用及技巧:(1)对被积函数,要先化简,再求定积分.(2)求被积函数是分段函数的定积分,依据定积分的性质,分段求定积分再求和.(3)对含有绝对值符号的被积函数,要去掉绝对值符号才能求定积分.(4)应用定积分求曲边梯形的面积,解题的关键是利用两条曲线的交点确定积分区间以及结合图形确定被积函数.求解两条曲线围成的封闭图形的面积一般是用积分区间内上方曲线减去下方曲线对应的方程、或者直接作差之后求积分的绝对值,否则就会求出负值.[易错提示] 在使用定积分求两曲线围成的图形的面积时,要注意根据曲线的交点判断这个面积是怎样的定积分,既不要弄错积分的上下限,也不要弄错被积函数.用微积分基本定理求定积分时,要掌握积分与导数的互逆关系及求导公式的逆向形式.3.定积分的应用主要有两个问题:一是能利用定积分求曲边梯形的面积;二是能利用定积分求变速直线运动的路程及变力做功问题,其中,应特别注意求定积分的运算与利用定积分计算曲边梯形面积的区别.【应试技巧点拨】1. 利用定积分求曲边图形面积时,一定要找准积分上限、下限及被积函数.当图形的边界不同时,要分不同情况讨论.2.求曲边图形面积的方法与步骤(1)画图,并将图形分割为若干个曲边梯形;(2)对每个曲边梯形确定其存在的范围,从而确定积分的上、下限;(3)确定被积函数;(4)求出各曲边梯形的面积和,即各积分的绝对值的和.3. 定积分()ba f x dx ⎰的几何意义是介于x 轴、曲线y =()f x 以及直线,x a xb ==之间的曲边梯形面积的代数和 ,其中在x 轴上方的面积等于该区间上的积分值,在x 轴下方的面积等于该区间上积分值的相反数,所以在用定积分求曲边形面积时,一定要分清面积与定积分是相等还是互为相反数.【 一轮复习指引】定积分可以看作是导数在某一区间上的逆运算.它是新课标新增加的内容之一,在以前的课本中没有出现定积分的概念,在高考中主要考查定积分的计算和定积分的几何意义,多为容易题,一般每年出一道题,有时和二项式结合出题,因此在2019年复习备考中,只须掌握积分的概念,积分的运算,会用积分求面积,体积即可.【高考考点定位】高考对定积分的考查主要有定积分的计算和定积分的几何意义,作为新增内容,它是大学微积分的基础,很受出题人的青睐,故在复习时应引起重视.。
(完整版)高中数学导数知识点归纳总结
§14. 导 数 知识要点1. 导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ∆,则函数值y 也引起相应的增量)()(00x f x x f y -∆+=∆;比值xx f x x f x y ∆-∆+=∆∆)()(00称为函数)(x f y =在点0x 到x x ∆+0之间的平均变化率;如果极限x x f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim 0000. 注:①x ∆是增量,我们也称为“改变量”,因为x ∆可正,可负,但不为零.②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ⊇. 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系:⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. 可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续. 事实上,令x x x ∆+=0,则0x x →相当于0→∆x .于是)]()()([lim )(lim )(lim 000000x f x f x x f x x f x f x x x x +-+=∆+=→∆→∆→).()(0)()(lim lim )()(lim )]()()([lim 000'0000000000x f x f x f x f xx f x x f x f x x x f x x f x x x x =+⋅=+⋅∆-∆+=+∆⋅∆-∆+=→∆→∆→∆→∆⑵如果)(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的. 例:||)(x x f =在点00=x 处连续,但在点00=x 处不可导,因为xx x y ∆∆=∆∆||,当x ∆>0时,1=∆∆x y ;当x ∆<0时,1-=∆∆xy ,故x yx ∆∆→∆0lim不存在. 注:①可导的奇函数函数其导函数为偶函数.②可导的偶函数函数其导函数为奇函数.3. 导数的几何意义:函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=-4. 求导数的四则运算法则:''')(v u v u ±=±)(...)()()(...)()(''2'1'21x f x f x f y x f x f x f y n n +++=⇒+++=⇒''''''')()(cv cv v c cv u v vu uv =+=⇒+=(c 为常数))0(2'''≠-=⎪⎭⎫⎝⎛v v u v vu v u 注:①v u ,必须是可导函数.②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导.例如:设x x x f 2sin 2)(+=,xx x g 2cos )(-=,则)(),(x g x f 在0=x 处均不可导,但它们和=+)()(x g x fx x cos sin +在0=x 处均可导.5. 复合函数的求导法则:)()())(('''x u f x f x ϕϕ=或x u x u y y '''⋅= 复合函数的求导法则可推广到多个中间变量的情形.6. 函数单调性:⑴函数单调性的判定方法:设函数)(x f y =在某个区间内可导,如果)('x f >0,则)(x f y =为增函数;如果)('x f <0,则)(x f y =为减函数. ⑵常数的判定方法;如果函数)(x f y =在区间I 内恒有)('x f =0,则)(x f y =为常数.注:①0)(φx f 是f (x )递增的充分条件,但不是必要条件,如32x y =在),(+∞-∞上并不是都有0)(φx f ,有一个点例外即x =0时f (x ) = 0,同样0)(πx f 是f (x )递减的充分非必要条件.②一般地,如果f (x )在某区间内有限个点处为零,在其余各点均为正(或负),那么f (x )在该区间上仍旧是单调增加(或单调减少)的. 7. 极值的判别方法:(极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的极大值,极小值同理)当函数)(x f 在点0x 处连续时,①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值; ②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值.也就是说0x 是极值点的充分条件是0x 点两侧导数异号,而不是)('x f =0①. 此外,函数不可导的点也可能是函数的极值点②. 当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同).注①: 若点0x 是可导函数)(x f 的极值点,则)('x f =0. 但反过来不一定成立. 对于可导函数,其一点0x 是极值点的必要条件是若函数在该点可导,则导数值为零. 例如:函数3)(x x f y ==,0=x 使)('x f =0,但0=x 不是极值点.②例如:函数||)(x x f y ==,在点0=x 处不可导,但点0=x 是函数的极小值点.8. 极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较.注:函数的极值点一定有意义. 9. 几种常见的函数导数:I.0'=C (C 为常数) x x cos )(sin '= 2'11)(arcsin xx -=1')(-=n n nx x (R n ∈) x x sin )(cos '-= 2'11)(arccos xx --=II. x x 1)(ln '=e x x a a log 1)(log '= 11)(arctan 2'+=x x x x e e =')( a a a x x ln )('= 11)cot (2'+-=x x arcIII. 求导的常见方法: ①常用结论:xx 1|)|(ln '=. ②形如))...()((21n a x a x a x y ---=或))...()(())...()((2121n n b x b x b x a x a x a x y ------=两边同取自然对数,可转化求代数和形式.③无理函数或形如x x y =这类函数,如x x y =取自然对数之后可变形为x x y ln ln =,对两边求导可得x x x x x y y x y y xx x y y +=⇒+=⇒⋅+=ln ln 1ln '''.导数知识点总结复习经典例题剖析 考点一:求导公式。
总结导数的知识点归纳
总结导数的知识点归纳一、导数的概念1. 导数的定义导数是描述函数在某一点处的变化率的概念。
如果函数f(x)在点x处可导,那么它的导数表示为f'(x),即函数f(x)在点x处的导数为f'(x)。
导数可以理解为函数曲线在该点处的切线的斜率,它描述了函数在该点附近的变化情况。
2. 函数的可导性函数在某一点可导,意味着该点处函数曲线存在切线,并且切线的斜率存在有限值。
如果函数在某一点处可导,那么该点也称为函数的导数存在的点。
函数在某一点处可导的充分必要条件是该点处函数的左极限和右极限存在且相等。
3. 导数的图像解释函数的导数可以理解为函数曲线在该点处的切线斜率。
当函数曲线上升时,导数为正;当函数曲线下降时,导数为负;当函数曲线水平时,导数为零。
函数曲线的凸凹性可以通过导数的正负来判断。
二、导数的性质1. 可导函数与连续函数可导函数必定是连续函数,但是连续函数不一定可导。
可导函数的导数在其定义域内连续,也就是说,可导函数的导数也是连续函数。
2. 导数的四则运算函数的导数满足四则运算的性质。
设函数f(x)和g(x)在点x处可导,那么它们的和、差、积、商的导数分别为(f+g)' = f' + g',(f-g)' = f'-g',(fg)' = f'g + fg',(f/g)' = (f'g - fg') / g^2。
3. 复合函数的导数复合函数的导数可以通过链式法则来求导。
设函数y=f(u)和u=g(x)都可导,那么复合函数y=f(g(x))的导数为f'(g(x))g'(x)。
4. 高阶导数函数的导数也可以再求导,得到的导数称为原函数的高阶导数。
高阶导数的符号表示一阶导数的凸凹性。
三、导数的计算方法1. 导数的基本求导法则导数的基本求导法则包括幂函数的导数、指数函数的导数、对数函数的导数、三角函数的导数以及反三角函数的导数等。
(完整版)导数知识点总结及应用
《导数及其应用》知识点总结一、导数的概念和几何意义1. 函数的平均变化率:函数()f x 在区间12[,]x x 上的平均变化率为:2121()()f x f x x x --。
2. 导数的定义:设函数()y f x =在区间(,)a b 上有定义,0(,)x a b ∈,若x ∆无限趋近于0时,比值00()()f x x f x y x x+∆-∆=∆∆无限趋近于一个常数A ,则称函数()f x 在0x x =处可导,并称该常数A 为函数()f x 在0x x =处的导数,记作0()f x '。
函数()f x 在0x x =处的导数的实质是在该点的瞬时变化率。
3. 求函数导数的基本步骤:(1)求函数的增量00()()y f x x f x ∆=+∆-;(2)求平均变化率:00()()f x x f x x +∆-∆;(3)取极限,当x ∆无限趋近与0时,00()()f x x f x x+∆-∆无限趋近与一个常数A ,则0()f x A '=.4. 导数的几何意义:函数()f x 在0x x =处的导数就是曲线()y f x =在点00(,())x f x 处的切线的斜率。
由此,可以利用导数求曲线的切线方程,具体求法分两步:(1)求出()y f x =在x 0处的导数,即为曲线()y f x =在点00(,())x f x 处的切线的斜率; (2)在已知切点坐标和切线斜率的条件下,求得切线方程为000()()y y f x x x '-=-。
当点00(,)P x y 不在()y f x =上时,求经过点P 的()y f x =的切线方程,可设切点坐标,由切点坐标得到切线方程,再将P 点的坐标代入确定切点。
特别地,如果曲线()y f x =在点00(,())x f x 处的切线平行与y 轴,这时导数不存在,根据切线定义,可得切线方程为0x x =。
5. 导数的物理意义:质点做直线运动的位移S 是时间t 的函数()S t ,则()V S t '=表示瞬时速度,()a v t '=表示瞬时加速度。
高考数学一轮复习专题3.1导数的概念及运算定积分知识点讲解理科版含解析
知识点 7.微积分基本定理
一般地,如果 f(x)是在区间[a,b]上的连续函数,且 F′(x)=f(x),那么 错误!f(x)dx=F(b)-F(a).
b
| 这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.可以把 F(b)-F(a)记为 F(x) ,即 错误!f(x)dx a b
| =F(x) )=F(b)-F(a). a 【特别提醒】
于形如 y=f(ax+b)的复合函数)的导数;
5.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念,几何意义;
6.了解微积分基本定理的含义。
【重点知识梳理】
知识点 1.导数的概念
(1)函数 y=f(x)在 x=x0 处的导数:函数 y=f(x)在 x=x0 处的瞬时变化率 liΔxm→0 Δy=liΔxm→0 Δx
x 【答案】e
【方法技巧】
1.求函数导数的总原则:先化简解析式,再求导.
2.常见形式及具体求导 6 种方法
连乘形式
先展开化为多项式形式,再求导
三角形式 先利用三角函数公式转化为和或差的形式,再求导
分式形式
先化为整式函数或较为简单的分式函数,再求导
根式形式
先化为分数指数幂的形式,再求导
对数形式
先化为和、差形式,再求导
n
n b-a
点ξi(i=1,2,…,n),作和式 ∑ f(ξi)Δx= ∑
f(ξi),当 n→∞时,上述和式无限接近于某个
i=1
i=1 n
常数,这个常数叫做函数 f(x)在区间[a,b]上的定积分,记作 错误!f(x误!f(x)dx 中,a,b 分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,函数 f(x)叫做被
函数 f(x)在闭区间[-a,a]上连续,则有
导数知识点归纳总结
导数知识点归纳总结一、导数的定义1. 导数的几何意义导数描述了函数在某一点的切线斜率,即函数曲线在该点的瞬时变化率。
在几何上,导数可以理解为函数曲线在某一点的切线斜率,它表示了函数在该点的瞬时变化情况。
2. 导数的代数定义设函数y=f(x),在x=a处可导的充分必要条件是改点的柯西收敛序列极限为相同的值。
这个值就是在点a处的导数。
它是一个数值,常常用f'(a)表示。
3. 导数的表示导数通常用f'(x)、dy/dx或y'表示。
4. 导数的图形意义导数的图形意义是函数在某点处的导数等于该点处的切线的斜率,即在该点函数的线性增长率。
二、导数的性质1. 导数存在性函数在某点可导的充分必要条件是函数在该点连续,连续函数一定可以导。
2. 导数的基本性质导数满足加法性、乘法性、常数法则、幂法则、反函数法则、复合函数法则、分段函数法则等性质。
三、求导法则1. 基本函数的导数包括常数函数、幂函数、指数函数、对数函数、三角函数、反三角函数的导数。
2. 导数的四则运算导数的四则运算包括两个导数相加、导数与常数相乘、导数的乘积法则、导数的商法则。
3. 高阶导数函数的二阶导数为对其一阶导数进行求导,即f''(x)=(f'(x))',依次类推,得到高阶导数。
四、导数的应用1. 导数在最值问题中的应用y=f(x)在[a,b]上可导,且在[a,b]的端点不可导,则y=f(x)在[a,b]上有最大值和最小值,它们一般在驻点或者在区间的端点。
2. 导数在凹凸性与拐点判别中的应用y=f(x)的凹凸性和拐点以及弯曲率的研究,主要利用f''(x)的正负性和零点。
3. 导数在函数图形的创作中的应用利用导数的计算公式,可以绘制函数的图形,描绘函数的特点,掌握图形的整体特征。
4. 导数在微分中的应用微分可以看作函数的变化量,它与导数之间有着密切的联系。
微分和导数的关系可以帮助我们求解函数的变化率、近似值、极限值等问题。
导数知识点概念归纳总结
导数知识点概念归纳总结1. 导数的定义导数的定义是建立在函数的极限概念上的。
设函数y = f(x),在点x处的导数定义为:\[ f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} \]其中,Δx表示x的增量,当Δx趋于0时,上式的极限存在则称函数在点x处可导,这个极限的值就是函数在点x处的导数。
导数表示了函数在某一点处的变化率,可以理解为函数在这一点处的斜率。
2. 导数的性质导数具有一些基本性质,例如:(1)可导函数一定是连续函数,但连续函数不一定可导。
(2)导数存在的充要条件是函数在该点处有切线。
(3)可导函数在一点的导数等于该点的切线的斜率。
(4)导数具有线性运算性质,即\[ (f(x) \pm g(x))' = f'(x) \pm g'(x) \],\[ (k \cdot f(x))' = k \cdot f'(x) \],其中f(x)和g(x)都是可导函数,k是常数。
(5)复合函数的导数公式,如果y = f(u),u = g(x),则\[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \]。
3. 导数的计算方法对于简单的函数,可以通过导数的定义进行计算。
但是对于一些复杂的函数,使用导数的定义进行计算过于繁琐,因此需要借助一些常用的导数公式和方法来进行计算。
(1)常用函数的导数公式常用函数的导数公式包括:- 幂函数的导数:\[ (x^n)' = nx^{n-1} \],其中n是常数。
- 指数函数的导数:\[ (a^x)' = a^x \ln a \],其中a是常数。
- 对数函数的导数:\[ (\log_a x)' = \frac{1}{x \ln a} \],其中a是常数。
- 三角函数的导数:\[ (\sin x)' = \cos x \],\[ (\cos x)' = -\sin x \],\[ (\tan x)' = \sec^2 x \]。
理科导数知识点总结
理科导数知识点总结一、导数的基本概念1.1 导数的定义在微积分中,函数在某一点处的导数定义为函数在该点处的变化率。
具体而言,对于函数y=f(x),在点x处的导数定义为:f'(x) = lim(h->0) (f(x+h)-f(x))/h其中,lim表示极限,h表示自变量x的变化量。
这个定义是一个极限的定义,表示当自变量x的变化量趋于0时,函数值的变化率。
1.2 导数的几何意义导数在几何上表示函数曲线在某一点处的切线的斜率。
具体而言,对于函数y=f(x),在点(x,f(x))处的切线的斜率即为函数在该点处的导数。
这个几何意义对于理解导数在图形上的意义有着重要的帮助。
1.3 导数的物理意义在物理学中,导数有着重要的物理意义。
例如,对于位移函数s(t),时间t处的速度v(t)即为位移函数的导数s'(t)。
同样地,速度函数v(t)的导数a(t)即为物体在时间t处的加速度。
这个物理意义可以帮助学生理解导数在实际应用中的重要性。
二、求导法则2.1 基本导数法则对于一些基本函数,可以利用导数的定义来求导。
例如,对于常数函数y=c,其导数为0;对于幂函数y=x^n,其导数为nx^(n-1);对于指数函数y=e^x,其导数为e^x;对于对数函数y=log_a(x),其导数为1/xln(a)等。
这些基本导数法则可以帮助学生快速求出一些基本函数的导数。
2.2 导数的四则运算法则在微积分中,导数具有一些常规的运算法则。
例如,如果函数y=f(x)和g(x)都可以求导,则有(f(x)+g(x))' = f'(x) + g'(x)、(f(x)-g(x))' = f'(x) - g'(x)、(f(x)·g(x))' = f'(x)·g(x) + f(x)·g'(x)等。
这些导数的四则运算法则对于求导的运算非常有帮助。
(完整版)导数知识点汇总
导数1.导数的几何意义:函数()y f x =在0x x =处的导数0'()f x ,就是曲线()y f x =过点0x 的切线斜率.∴过点00(,)x y 的切线方程为000'()()y y f x x x -=-0'()0f x =时,切线与x 轴 .0'()0f x >时,切线的倾斜角为 .0'()0f x <时,切线的倾斜角为 .0'()f x 不存在时,切线 .2.基本初等函数的导数公式:3.导数运算法则:[()()]''()'()f x g x f x g x ±=±[()()]''()()()'()f x g x f x g x f x g x ⋅=+2()'()()()g'()'()()f x f x g x f x x g x g x ⎡⎤-=⎢⎥⎣⎦4.复合函数求导:{[()]}''[()]'()f g x f g x g x =⋅:(sin 2)'2cos 2eg x x = 252424[(1)]'5(1)210(1)x x x x x +=+⋅=+5.导数与函数单调性、极值的关系. ① '()0()'()0()f x f x f x f x ⎧>⇒↑⎪⎨<⇒↓⎪⎩()'()0()'()0f x f x f x f x ⎧↑⇒≥⎪⎨↓⇒≤⎪⎩② 若0'()0,f x =且在0x 左边'()0f x >,右边'()0f x <,则0x 是()f x 的极大值点在0x 左边'()0f x <,右边'()0f x >,则0x 是()f x 的极小值点★ 0x 为极值点 0'()0f x =题型一:导数的几何意义【基础题】1.曲线y =在点(4,2)P 处的切线方程是2.已知3y x =在点P 处的切线斜率为3,则P 的坐标为3.已知直线10x y --=与抛物线2y ax =相切,则a =4.已知曲线ln y x x =+在点(1,1)处的切线与曲线2(2)1y ax a x =+++相切,则a =5.若曲线x y e -=上点P 处的切线平行于直线210x y ++=,则点P 的坐标为6.若函数()f x 的导数为'()sin f x x =-,则函数图象在点(4,(4))f 处的切线倾斜角为( ).A 90︒ .0B ︒ .C 锐角 .D 钝角【提高题】1.设点P 是曲线211ln 42y x x =+上的任意一点,P 点处切线倾斜角为α,则角α的取值范围是2.曲线21x y e -=+在点(0,2)处的切线与直线0y =和y x =围成的三角形的面积为( )1.3A 1.2B2.3C .1D3.点P 是曲线2ln y x x =-上任意一点,则P 到直线2y x =-的距离的最小值是变式:函数2()x f x e =的图象上的点到直线240x y --=的距离的最小值是题型二:导数与函数单调性、极值、最值【基础题】1.函数()ln (0)f x x x x =>的单调递增区间是2.函数32()39f x x ax x =++-,已知()f x 在3x =-时取得极值,则a =3.设2()ln f x a x bx x =++,在121,2x x ==处有极值,则a = ,b = .4.已知函数32()(6)1f x x ax a x =++++有极大值和极小值,则实数a 的取值范围是5.若函数x y e ax =+有大于0的极值点,则a 的取值范围是6.已知函数3()128f x x x =-+在区间[3,3]-上的最大值与最小值分别为,,M m 则【提高题】1.直线y a =与函数33y x x =-的图象有三个相异的交点,则a 的取值范围是2.若函数3()26f x x x k =-+在R 上只有一个零点,求常数k 的取值范围.3.已知函数()(1)ln 1,f x x x x =+-+若'2()1xf x x ax ≤++恒成立,求a 的取值范围.4.已知函数21()2,f x ax x =-若()f x 在(0,1]上是增函数,求a 的取值范围.变式:函数3y ax x =-在R 上是减函数,则a 的取值范围是5.已知函数2()ln (0),f x x ax x a =-->若函数()f x 是单调函数,求a 的取值范围.题型三:与函数性质有关1.若函数42()f x ax bx c =++满足'(1)2,f =则'(1)f -=2.已知函数3()f x x x =+对任意的[2,2],(2)()0m f mx f x ∈--+<恒成立,则x 的取值范围是3.已知对任意实数x ,有()(),()(),f x f x g x g x -=--=且0x >时,''()0,()0,f x g x >>则0x <时( )''.()0,()0A f x g x >> ''.()0,()0B f x g x ><''.()0,()0C f x g x <> ''.()0,()0D f x g x <<4.若函数()f x 对定义域R 内的任意x 都有()(2)f x f x =-,且当1x ≠时其导函数'()f x 满足(1)'()0,x f x ->若12,a <<则( )2.(log )(2)(2)a A f a f f << 2.(2)(log )(2)a B f f a f <<2.(2)(2)(log )a C f f f a << 2.(log )(2)(2)a D f a f f <<5.设(),()f x g x 分别是定义在R 上的奇函数和偶函数,当0x <时,'()()()'()0,f x g x f x g x +>且(3)0,g -=则不等式()()0f x g x <的解集为( ).(3,0)(3,)A -+∞ .(3,0)(0,3)B -.(,3)(3,)C -∞-+∞ .(,3)(0,3)D -∞-6.已知函数()y f x =是定义在R 上的奇函数,且当(,0)x ∈-∞时,不等式()'()0f x xf x +>恒成立,0.10.122112(2),(log 2)(log 2),(log )(log )44a fb fc f ππ===,则,,a b c 的大小关系是( ).Aa b c >> .B c b a >> .C b a c >> .D a c b >>题型四:图象题 1.函数()f x 的定义域为开区间(,)a b ,导函数'()f x 在(,)a b 内的图象如图所示,则函数()f x 在开区间(,)a b 内有 个极小值点.2.设'()f x 是函数()f x 的导函数,将()y f x =和'()y f x =的图象画在同一个个直角坐标系中,不可能正确的是( )3.设曲线21y x =+在其上任一点(,)x y 处的切线的斜率为()g x ,则()cos y g x x =的部分图象可以为( )4.已知函数'()y xf x =的图象如右图所示,则()y f x =的图象大致是( )5.已知()y f x =在(0,1)内的一段图象是图象所示的一段圆弧,若1201,x x <<<则( )1212()().f x f x A x x < 1212()().f x f x B x x > 1212()().f x f x C x x = .D 不能确定 6.若函数2()f x x bx c =++的图象顶点在第四象限,则函数'()f x 的图象是( )链接高考:1.(2015,12)设函数'()f x 是奇函数()f x 的导函数,(1)0,f -=当0x >时,'()()0,xf x f x -<则使得()0f x >成立的x 的取值范围是( ).(,1)(0,1)A -∞- .(1,0)(1,)B -+∞.(,1)(1,0)C -∞-- .(0,1)(1,)D +∞2.(2015,21)设函数2().mx f x e x mx =+-(1)证明:()f x 在(,0)-∞上单调递减,在(0,)+∞上单调递增;(2)若对于任意12,[1,1],x x ∈-都有12|()()|1,f x f x e -≤-求m 的取值范围.3.(2015,21)已知函数31(),()ln .4f x x axg x x =++=- (1)当a 为何值时,x 轴为曲线()y f x =的切线;(2)用min{,}m n 表示,m n 中的最小值,设函数()min{(),()}(0),h x f x g x x =>讨论()h x 零点的个数.4.(2014,7)设曲线ln(1)y ax x =-+在点(0,0)处的切线方程为2,y x =则a =() .0A .1B .2C .3D5.(2014,12)设函数(),xf x m π=若存在()f x 的极值点0x 满足22200[()],x f x m +<则m 的取值范围是 ( ).(,6)(6,)A -∞-+∞ .(,4)(4,)B -∞-+∞.(,2)(2,)C -∞-+∞ .(,1)(1,)D -∞-+∞6.(2014,21)已知函数()2.x x f x e ex -=-- (1)讨论()f x 的单调性.(2)设()(2)4()g x f x bf x =-,当0x >时,()0,g x >求b 的最大值,(3)已知1.4142 1.4143,<<估计ln 2的近似值(精确到0.001)7.(2014,11)已知函数32()31f x ax x =-+,若()f x 存在唯一零点0,x 且00x >,则a 的取值范围是8.(2014,21)设函数1()ln ,x xbe f x ae x x -=+曲线()y f x =在点(1,(1))f 处的切线方程为(1) 2.y e x =-+(1)求,.a b(2)证明:() 1.f x >9.(2013,21)设函数2(),()().xf x x ax bg x e cx d =++=+若曲线()y f x =和曲线()y g x =都过点(0,2)P ,且在点P 处有相同的切线4 2.y x =+(1)求,,,a b c d 的值.(2)若2x ≥-时,()(),f x kg x ≤求k 的取值范围.。
最全版导数专题精华知识点总结——理科
专题:导数知识点总结一、导数的定义1.函数y =f (x )在x =x 0处的导数称函数y =f (x )在x =x 0处的瞬时变化率lim Δx →0 ΔyΔx =lim Δx →0 fx 0+Δx -fx 0Δx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →0Δy Δx =lim Δx →0 fx 0+Δx -fx 0Δx. 2.函数f (x )的导函数 称函数f ′(x )=lim Δx →0fx +Δx -fxΔx为f (x )的导函数. 二.基本初等函数的导数公式三、.导数的运算法则 (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );(3)[]2)()()()()()()(x g x g x f x g x f x g x f '-'='⎥⎦⎤⎢⎣⎡ (4)[])()(x f c x Cf '='(6)、复合函数的导数 复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 四.导数的几何意义(1)函数f (x )在x 0处的导数f'(x 0)是曲线f (x )在点P (x 0,f (x 0))处的切线的斜率k ,即k=f'(x 0).用好这个条件是解决切线问题的关键,不知道切点时要先设切点.注:(1)曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,斜率为k =f ′(x 0)的切线,是唯一的一条切线.(2)曲线y =f (x )过点P (x 0,y 0)的切线,是指切线经过点P ,点P 可以是切点,也可以不是切点,而且这样的直线可能有多条.五、.函数的导数与单调性的关系1、函数y=f (x )在某个区间内可导,(1)若f'(x )>0在该区间内恒成立,则f (x )在这个区间内单调递增;(2)若f'(x )<0在该区间内恒成立,则f (x )在这个区间内单调递减; (3)若f'(x )=0在该区间内恒成立,则f (x )在这个区间内是常数函数.求单调区间要坚持“定义域优先”的原则..如果一个函数在给定定义域上的单调区间不止一个,这些区间之间一般不能用并集符号“∪”连接,只能用“,”或“和”字隔开.2、.确定函数单调区间的步骤(1)确定函数f (x )的定义域;(2)求f ′(x );(3)解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间; (4)解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间.[方法技巧] 用导数求函数单调区间的三种类型及方法3研究含参数函数的单调性时,需注意依据参数取值对不等式解集的影响进行分类讨论.常见的分类讨论标准有以下几种可能:①方程f ′(x )=0是否有根;②若f ′(x )=0有根,求出根后判断其是否在定义域内;③若根在定义域内且有两个,比较根的大小是常见的分类方法.当我们无法判段导函数的符号时,有时需要二次求导研究导函数的最值来判断导函数的正负.4.用充分必要条件来诠释导数与函数单调性的关系 (1)f ′(x )>0(或f ′(x )<0)是f (x )在(a ,b )内单调递增(或递减)的充分不必要条件;(2)f ′(x )≥0(或f ′(x )≤0)是f (x )在(a ,b )内单调递增(或递减)的必要不充分条件(f ′(x )=0不恒成立).5、根据函数y =f (x )在(a ,b )上的单调性,求参数范围的方法:(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集. (2)转化为恒成立或存在性问题处理①若函数y =f (x )在(a ,b )上单调递增,转化为f ′(x )≥0在(a ,b )上恒成立求解.②若函数y =f (x )在(a ,b )上单调递减,转化为f ′(x )≤0在(a ,b )上恒成立求解.③若函数y =f (x )在(a ,b )上单调,转化为f ′(x )在(a ,b )上不变号即f ′(x )在(a ,b )上恒正或恒负.④若函数y =f (x )在(a ,b )上不单调,转化为f ′(x )在(a ,b )上变号.存在极值点⑤函数在某个区间存在单调区间可转化为不等式有解问题.由函数f (x )在区间[a ,b ]内单调递增(或递减),可得f ′(x )≥0(或f ′(x )≤0)在该区间恒成立,而不是f ′(x )>0(或<0)恒成立,“=”不能少.必要时还需对“=”进行检验. 六.函数的极值与导数的关系 1.判断函数极值的方法一般地,当函数f (x )在点x 0处连续时,(1)如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值;(2)如果在x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是极小值.“极值点”不是点,若函数f (x )在x 1处取得极大值,则x 1即为极大值点,极大值为f (x 1);在x 2处取得极小值,则x 2为极小值点,极小值为f (x 2). 2.求可导函数f (x )的极值的步骤 (1)求导函数f ′(x ); (2)求方程f ′(x )=0的根;(3)检验f ′(x )在方程f ′(x )=0的根的左右两侧的函数值的符号,如果左正右负,那么函数y =f (x )在这个根处取得极大值;如果左负右正,那么函数y =f (x )在这个根处取得极小值,可列表完成.f ′(x 0)=0是x 0为f (x )的极值点的必要而非充分条件.例如,f (x )=x 3,f ′(0)=0,但x =0不是极值点. 七、.函数的最值与导数的关系 (1)函数f (x )在[a ,b ]上有最值的条件如果在区间[a ,b ]上函数y =f (x )的图象是一条连续不断的曲线,那么它必有最大值和最小值.若有唯一的极值点,则这个极值点就是最值点①设函数y=f (x )在[a ,b ]上连续,在(a ,b )内可导,则f (x )在[a ,b ]上必有最大值和最小值且最值在极值点或端点处取得. ②若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.(2)求y =f (x )在[a ,b ]上的最大(小)值的步骤 ①求函数y =f (x )在(a ,b )内的极值;②将函数y =f (x )的各极值与端点处的函数值f (a ),f (b )比较,其中最大的一个是最大值,最小的一个是最小值.极值只能在定义域内部取得,而最值却可以在区间的端点取得,有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值只要不在端点必定是极值. (3)求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情原函数 导函数 f (x )=C (C 为常数) f ′(x )=0 f (x )=x α(α∈Q *) f ′(x )=αxα-1f (x )=sin x f ′(x )=cos x f (x )=cos x f ′(x )=-sin x f (x )=a x f ′(x )=a x ln a (a >0)f (x )=e xf ′(x )=e x f (x )=log a xf ′(x )=1x ln a (a >0,且a ≠1)f (x )=ln xf ′(x )=1xf ′(x )>0(<0)可解先确定函数的定义域,解不等式f ′(x )>0或f ′(x )<0求出单调区间f ′(x )=0可解先确定函数的定义域,解方程f ′(x )=0,求出实数根,把函数f (x )的间断点(即f (x )的无定义点)的横坐标和实根按从大到小的顺序排列起来,把定义域分成若干个小区间,确定f ′(x )在各个区间内的符号,从而确定单调区间f ′(x )>0(<0)及f ′(x )=0不可解先确定函数的定义域,当不等式f ′(x )>0或f ′(x )<0及方程f ′(x )=0均不可解时,求导并化简,根据f ′(x )的结构特征,选择相应基本初等函数,利用其图象与性质确定f ′(x )的符号,得单调区间况,画出函数的大致图象,然后借助图象观察得到函数的最值.用导数法求给定区间上的函数的最值问题的一般步骤: 第一步:(求导数)求函数f (x )的导数f ′(x );第二步:(求极值)求f (x )在给定区间上的单调性和极值; 第三步:(求端点值)求f (x )在给定区间上的端点值; 第四步:(求最值)将f (x )的各极值与f (x )的端点值进行比较,确定f (x )的最大值与最小值;第五步:(反思)反思回顾,查看关键点,易错点和解题规范.八.构造辅助函数的四种方法(1)移项法:证明不等式f (x )>g (x )(或f (x )<g (x ))的问题转化为证明f (x )-g (x )>0(或f (x )-g (x )<0),进而构造辅助函数h (x )=f (x )-g (x );(2)构造“形似”函数:对原不等式同解变形,如移项、通分、取对数,把不等式转化为左右两边是相同结构的式子,根据“相同结构”构造辅助函数;(3)主元法:对于(或可化为)f (x 1,x 2)≥A 的不等式,可选x 1(或x 2)为主元,构造函数f (x ,x 2)(或f (x 1,x ));(4)放缩法:若所构造函数最值不易求解,则可将所证明不等式进行放缩,再重新构造函数.九、导数的综合应用题型一:利用导数研究与不等式有关的综合问题(一)对于含有参数的恒成立问题或存在性问题 常用的处理方法有分类讨论或参数分离,并借助于函数图象来解决问题。
导数知识点总结大全
导数知识点总结大全一、基本概念1.1 导数的定义对于函数y = f(x),在点x处的导数表示为f'(x),它定义为函数在该点的变化率。
导数可以用极限的概念来定义:\[f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}\]其中,h表示自变量x的小变化量,当h趋近于0时,这个极限就表示了函数在点x处的导数。
导数也可以表示为函数的微分形式,即dy = f'(x)dx。
1.2 导数的几何意义导数有着重要的几何意义,它表示了函数在某一点上的切线斜率。
对于函数y = f(x),在点(x, f(x))处的切线的斜率恰好等于函数在该点的导数f'(x)。
这意味着导数可以描述函数在某一点的变化速率和方向。
1.3 导数的物理意义在物理学中,导数也有着重要的物理意义。
对于物理量s关于时间t的函数s(t),它的导数s'(t)表示了速度的变化率,即s'(t) = ds/dt。
类似地,速度关于时间的函数v(t)的导数v'(t)表示了加速度的变化率,即v'(t) = dv/dt。
因此,导数在描述物理过程中的变化率和速度方面也有着重要的应用。
1.4 导数的符号表示导数的符号表示通常有几种形式,常见的包括f'(x)、dy/dx、y'等。
它们都表示对函数y =f(x)的自变量x求导所得到的结果,即函数在某一点上的变化率或者斜率。
二、导数的性质2.1 导数存在性对于一个函数f(x),它在某一点上的导数可能存在也可能不存在。
如果函数在某一点上导数存在,那么称该函数在该点上可导。
对于大多数常见的函数,它们在定义域内是可导的,例如多项式函数、三角函数、指数函数等。
但也存在一些特殊的函数,在某些点上导数可能不存在,例如绝对值函数在原点处的导数就不存在。
2.2 导数的连续性如果一个函数在某一点上导数存在,并且它在该点上是连续的,那么称该函数在该点上是可微的。
导数知识点总结最全
导数知识点总结最全一、导数的定义1. 函数的变化率在微积分中,导数是描述函数的变化率的重要工具。
当函数y=f(x)的自变量x在某一点x0处发生微小的增量Δx时,相应的函数值y也会发生微小的增量Δy,即Δy=f(x0+Δx)-f(x0)。
函数f(x)在点x0处的导数定义为:f'(x0)=lim(Δx→0)Δy/Δx=lim(Δx→0)(f(x0+Δx)-f(x0))/Δx该极限存在时,即函数f在点x0处可导,导数f'(x0)就是函数在该点处的变化率。
2. 函数的切线在直角坐标系中,当函数y=f(x)在点x0处可导时,我们可以利用导数来求得函数在该点处的切线。
设切线方程为y=kx+b,则k=f'(x0),b=f(x0)-f'(x0)x0。
通过这个切线方程,我们可以比较精确地描述函数在某一点的近似变化情况。
二、连续性与可导性1. 连续函数的导数在实际应用中,我们常常需要研究函数在某一点的变化情况。
在微积分中,我们知道,如果函数在某一点可导,则该点也是函数的连续点。
也就是说,可导性是函数连续性的充分条件。
但是,连续性并不是可导性的充分条件,也就是说,函数在某一点连续并不一定可导。
2. 可导函数的连续性对于可导函数来说,它具有一定的光滑性,也就是说,可导函数在某一点处的导数存在且有定义。
因此,可导函数的图像具有一定的光滑性,没有明显的折线或者间断点。
3. 不可导的情况在实际应用中,我们也会遇到一些不可导的函数,这些函数的导数在某些点处不存在。
这种情况常常出现在函数图像发生角点、尖点、间断、垂直渐近线等情况下。
这些函数在不可导点处的导数通常需要通过极限或者其他方法来求得。
三、导数的计算1. 基本函数的导数在微积分中,我们需要掌握一些基本函数的导数。
这些基本函数包括常数函数、幂函数、指数函数、对数函数、三角函数、反三角函数等。
这些基本函数的导数公式对于我们计算更加复杂的函数的导数有着非常重要的作用。
导数复习知识点总结
高考数学复习详细资料——导数概念与运算知识清单 1.导数的概念函数y=fx,如果自变量x 在x 0处有增量x ∆,那么函数y 相应地有增量y ∆=fx 0+x ∆-fx 0,比值x y∆∆叫做函数y=fx 在x 0到x 0+x ∆之间的平均变化率,即x y ∆∆=x x f x x f ∆-∆+)()(00;如果当0→∆x 时,x y∆∆有极限,我们就说函数y=fx 在点x 0处可导,并把这个极限叫做fx 在点x 0处的导数,记作f’x 0或y’|0x x =;即fx 0=0lim→∆x x y∆∆=0lim→∆x x x f x x f ∆-∆+)()(00;说明:1函数fx 在点x 0处可导,是指0→∆x 时,x y ∆∆有极限;如果x y∆∆不存在极限,就说函数在点x 0处不可导,或说无导数;2x ∆是自变量x 在x 0处的改变量,0≠∆x 时,而y ∆是函数值的改变量,可以是零; 由导数的定义可知,求函数y=fx 在点x 0处的导数的步骤可由学生来归纳: 1求函数的增量y ∆=fx 0+x ∆-fx 0;2求平均变化率x y ∆∆=x x f x x f ∆-∆+)()(00;3取极限,得导数f’x 0=x yx ∆∆→∆0lim;2.导数的几何意义函数y=fx 在点x 0处的导数的几何意义是曲线y=fx 在点px 0,fx 0处的切线的斜率;也就是说,曲线y=fx 在点px 0,fx 0处的切线的斜率是f’x 0;相应地,切线方程为y -y 0=f/x 0x -x 0; 3.几种常见函数的导数:①0;C '= ②()1;n n x nx -'= ③(sin )cos x x '=; ④(cos )sin x x '=-; ⑤();xxe e '=⑥()ln x xa a a '=; ⑦()1ln x x '=; ⑧()1l g log a a o x ex '=.4.两个函数的和、差、积的求导法则法则1:两个函数的和或差的导数,等于这两个函数的导数的和或差,即:.)'''v u v u ±=± 法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,即:.)('''uv v u uv +=若C 为常数,则'''''0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数:.)(''Cu Cu =法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:⎪⎭⎫ ⎝⎛v u ‘=2''v uv v u -v ≠0;形如y=f [x (ϕ])的函数称为复合函数;复合函数求导步骤:分解——求导——回代;法则:y '|X = y '|U ·u '|X2010高考数学复习详细资料——导数应用 知识清单单调区间:一般地,设函数)(x f y =在某个区间可导,如果'f )(x 0>,则)(x f 为增函数; 如果'f 0)(<x ,则)(x f 为减函数;如果在某区间内恒有'f 0)(=x ,则)(x f 为常数;2.极点与极值:曲线在极值点处切线的斜率为0,极值点处的导数为0;曲线在极大值点左侧切线的斜率为正,右侧为负;曲线在极小值点左侧切线的斜率为负,右侧为正; 3.最值:一般地,在区间a,b 上连续的函数f )(x 在a,b 上必有最大值与最小值; ①求函数ƒ)(x 在a,b 内的极值; ②求函数ƒ)(x 在区间端点的值ƒa 、ƒb ;③将函数ƒ )(x 的各极值与ƒa 、ƒb 比较,其中最大的是最大值,其中最小的是最小值;4.定积分1概念:设函数fx 在区间a,b 上连续,用分点a =x0<x1<…<xi -1<xi<…xn =b 把区间a,b 等分成n 个小区间,在每个小区间xi -1,xi 上取任一点ξii =1,2,…n 作和式In =∑ni f1=ξi △x 其中△x 为小区间长度,把n→∞即△x→0时,和式In 的极限叫做函数fx 在区间a,b 上的定积分,记作:⎰badxx f )(,即⎰badxx f )(=∑=∞→ni n f1lim ξi △x;这里,a 与b 分别叫做积分下限与积分上限,区间a,b 叫做积分区间,函数fx 叫做被积函数,x 叫做积分变量,fxdx 叫做被积式; 基本的积分公式:⎰dx 0=C ;⎰dx x m=111++m x m +Cm ∈Q, m≠-1;⎰x 1dx =ln x +C ;⎰dx e x=xe+C ;⎰dx a x =a a xln +C ;⎰xdx cos =sinx +C ;⎰xdx sin =-cosx +C 表中C 均为常数;2定积分的性质 ①⎰⎰=babadxx f k dx x kf )()(k 为常数;②⎰⎰⎰±=±bab ab adxx g dx x f dx x g x f )()()()(;③⎰⎰⎰+=ba ca bc dxx f dx x f dx x f )()()(其中a <c <b );3定积分求曲边梯形面积由三条直线x =a,x =ba<b,x 轴及一条曲线y =fxfx≥0围成的曲边梯的面积⎰=badxx f S )(;如果图形由曲线y1=f1x,y2=f2x 不妨设f1x≥f2x≥0,及直线x =a,x =ba<b 围成,那么所求图形的面积S =S 曲边梯形AMNB -S 曲边梯形DMNC =⎰⎰-babadxx f dx x f )()(21;课前预习1.求下列函数导数 1)11(32x x x x y ++= 2)11)(1(-+=x x y 32cos 2sin x x x y -= 4y=x x sin 25y =x x x x x 9532-+-2.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为A .430x y --=B .450x y +-=C .430x y -+=D .430x y ++=3.过点-1,0作抛物线21y x x =++的切线,则其中一条切线为A 220x y ++=B 330x y -+=C 10x y ++=D 10x y -+=4.半径为r 的圆的面积Sr =πr2,周长Cr=2πr,若将r 看作0,+∞上的变量,则πr2`=2πr 错误!,错误!式可以用语言叙述为:圆的面积函数的导数等于圆的周长函数;对于半径为R 的球,若将R 看作0,+∞上的变量,请你写出类似于错误!的式子: ;错误!式可以用语言叙述为: ;5.曲线1y x =和2y x =在它们交点处的两条切线与x 轴所围成的三角形面积是 ;6.对于R 上可导的任意函数fx,若满足x -1f x '()≥0,则必有 A .f0+f2<2f1 B. f0+f2≤2f1 C .f0+f2≥2f1 D. f0+f2>2f17.函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点A .1个B .2个C .3个D . 4个 8.已知函数()11axx f x e x -+=-;Ⅰ设0a >,讨论()y f x =的单调性;Ⅱ若对任意()0,1x ∈恒有()1f x >,求a 的取值范围;9.32()32f x x x =-+在区间[]1,1-上的最大值是 A -2 B0 C2 D410.设函数fx=3223(1)1, 1.x a x a --+≥其中 Ⅰ求fx 的单调区间;Ⅱ讨论fx 的极值;11.设函数3()32f x x x =-++分别在12x x 、处取得极小值、极大值.xoy 平面上点A B 、的坐标分别为11()x f x (,)、22()x f x (,),该平面上动点P 满足•4PA PB =,点Q 是点P 关于直线2(4)y x =-的对称点.求I 求点A B 、的坐标; II 求动点Q 的轨迹方程.12.请您设计一个帐篷;它下部的形状是高为1m 的正六棱柱,上部的形状是侧棱长为3m 的正六棱锥如右图所示;试问当帐篷的顶点O 到底面中心1o 的距离为多少时,帐篷的体积最大 13.计算下列定积分的值 1⎰--312)4(dxx x2⎰-215)1(dxx ; 3dxx x ⎰+2)sin (π;4dxx ⎰-222cos ππ;14.1一物体按规律x =bt3作直线运动,式中x 为时间t 内通过的距离,媒质的阻力正比于速度的平方.试求物体由x =0运动到x =a 时,阻力所作的功;2抛物线y=ax2+bx 在第一象限内与直线x +y=4相切.此抛物线与x 轴所围成的图形的面积记为S .求使S 达到最大值的a 、b 值,并求Smax . 典型例题一 导数的概念与运算EG :如果质点A 按规律s=2t3运动,则在t=3 s 时的瞬时速度为A. 6m/sB. 18m/sC. 54m/sD. 81m/s 变式:定义在D 上的函数)(x f ,如果满足:x D ∀∈,∃常数0M >,都有|()|f x ≤M 成立,则称)(x f 是D 上的有界函数,其中M 称为函数的上界.文1若已知质点的运动方程为at t t S ++=11)(,要使在[0,)t ∈+∞上的每一时刻的瞬时速度是以M=1为上界的有界函数,求实数a 的取值范围.理2若已知质点的运动方程为at t t S -+=12)(,要使在[0,)t ∈+∞上的每一时刻的瞬时速度是以M=1为上界的有界函数,求实数a 的取值范围. EG :已知x f x f x x f x ∆-∆+=→∆)2()2(lim ,1)(0则的值是A.41-B. 2C. 41D. -2变式1:()()()为则设h f h f f h 233lim,430--='→A .-1 B.-2 C .-3 D .1变式2:()()()00003,limx f x x f x x f x x x ∆→+∆--∆∆设在可导则等于A .()02x f ' B .()0x f ' C .()03x f ' D .()04x f '根据所给的函数图像比较012(),,h t t t t 曲线在附近得变化情况。
导数知识点最全总结
导数知识点最全总结一、导数的概念导数是微积分学中的重要概念,它描述了函数在某一点处的变化率。
在几何学中,导数可以表示函数曲线在某点的切线斜率;在物理学中,导数可以表示时间的变化率。
导数的概念是微积分学的重要基础,对于理解函数的性质和函数曲线的变化具有重要意义。
导数的定义:设函数y=f(x),在点x=x0处可微,当自变量x在x=x0处有增量Δx时,相应的函数值的增量Δy=f(x0+Δx)-f(x0)。
称比值Δy/Δx为函数y=f(x)在点x=x0处的平均变化率,记作Δy/Δx。
平均变化率Δy/Δx刻画了当自变量x在x=x0处有增量Δx时,函数值的增量Δy与自变量的增量Δx之间的比值关系。
当Δx趋于0时,平均变化率Δy/Δx趋于一个确定的常数,这个常数称为函数y=f(x)在点x=x0处的导数,记作f'(x0)或者dy/dx|x=x0。
二、导数的性质1. 导数的存在性:对于函数y=f(x),如果在点x=a处存在导数,则称函数在点x=a处可导,否则称函数在点x=a处不可导。
2. 导数的唯一性:如果函数y=f(x)在点x=a处可导,则其导数是唯一的。
3. 导数与函数的关系:如果函数y=f(x)在点x=a处可导,则函数y=f(x)在点x=a处的切线方程为y=f(a)+f'(a)(x-a)。
4. 导数的运算法则:导数具有一系列的运算法则,包括和差法则、积法则、商法则、复合函数法则以及反函数求导法则等。
三、导数的计算方法1. 利用导数的定义求导:如果函数y=f(x)的导数存在,可以直接利用导数的定义求导,即求出函数在某一点处的变化率,进而得到导数的值。
2. 利用导数的运算法则求导:对于复合函数、乘积、商等形式的函数,可以利用导数的运算法则来求导,简化计算过程。
3. 利用导数的几何意义求导:导数可以表示函数曲线在某点处的切线斜率,因此可以利用导数的几何意义来求导,从而得到导数的值。
四、导数的应用1. 函数的极值与单调性:利用导数可以求得函数的极值点以及函数的单调区间,进而描绘函数曲线的变化规律。
导数专题知识点总结
导数专题知识点总结导数是微积分中的重要概念,它是函数在某一点的变化率,描述了函数曲线的切线斜率。
在实际应用中,导数有着广泛的应用,如在物理学、经济学、工程学等领域中都有着重要的作用。
本文将对导数的相关知识点进行总结,包括导数的定义、性质、常见函数的导数计算、导数的应用等方面。
一、导数的定义1. 函数的变化率导数是描述函数在某一点的变化率,即函数在该点的瞬时速度。
通俗地讲,导数就是函数曲线在某一点的切线斜率。
2. 导数的定义设函数y=f(x),当自变量x在x=a的某个邻域内有增量Δx时,对应的函数值的增量Δy=f(a+Δx)-f(a),当Δx趋向于0时,相应的Δy也趋向于0,则称函数f(x)在点x=a处可导,并称导数为f'(a),即f'(a)=lim[Δx→0]{f(a+Δx)-f(a)}/Δx,如果该极限存在,则称f(x)在点x=a处可导。
3. 几何意义导数的几何意义是函数曲线在某一点的切线斜率。
当函数在某一点可导时,该点的切线斜率就是该点的导数值。
4. 导数的算符表示导数也可以表示为算符的形式,如y=f(x),则y'=dy/dx表示导数,其中dy表示y的微小增量,dx表示x的微小增量。
二、导数的性质1. 导数的加法性设函数y=f(x)和y=g(x)在点x=a处可导,则有(f(x)±g(x))'|a=f'(a)±g'(a)。
2. 导数的乘法性设函数y=f(x)和y=g(x)在点x=a处可导,则有(f(x)·g(x))'|a=f'(a)·g(a)+f(a)·g'(a)。
3. 导数的复合函数设函数y=f(g(x))和y=f(x)在点x=a处可导,则有(f(g(x)))'|a=f'(g(a))·g'(a)。
4. 导数的倒数设函数y=1/f(x)在点x=a处可导且f(a)≠0,则有(1/f(x))'|a=-f'(a)/[f(a)]^2。
物理导数知识点总结
物理导数知识点总结导数是微积分学中的重要概念,它是描述函数在某一点处变化率的数学工具。
在物理学中,导数可以用于描述物体运动的速度、加速度以及力学系统中的各种变化。
因此,了解导数的概念和应用对于理解物理学中的运动和变化是非常重要的。
下面我们将对物理学中导数的相关知识点进行总结。
一、导数的定义导数的定义可以简单地理解为函数在某一点处的变化率。
具体来说,对于函数y = f(x),在点x处的导数可以定义为:f'(x) = lim(h->0) ((f(x+h) - f(x))/h)其中f'(x)表示函数f在点x处的导数,lim表示极限,h表示自变量的增量。
当h趋近于0时,导数表示的是函数在点x处的瞬时变化率。
从这个定义中可以看出,导数描述的是函数在某一点的瞬时变化率,表示了函数在这一点附近的局部变化情况。
这对于描述物体在空间中的运动和力学系统中的变化非常重要。
二、导数的应用1. 物体的速度和加速度在物理学中,导数可以用来描述物体的速度和加速度。
假设物体的位置随时间变化的函数为s(t),那么物体在某一时刻t处的速度可以表示为s'(t),即位置函数对时间的导数。
同样,物体在某一时刻t处的加速度可以表示为s''(t),即速度函数对时间的导数。
通过导数的概念,我们可以精确地描述物体在空间中的运动情况。
2. 力学系统的变化在力学系统中,导数也可以用来描述各种变化情况。
例如,弹簧振子系统中,位移随时间的函数可以表示为x(t),而速度和加速度分别可以表示为x'(t)和x''(t),通过导数的概念,可以精确地描述弹簧振子系统中的运动情况。
另外,对于力学系统中的各种变化,导数也可以用来描述系统的稳定性、平衡点、振动情况等重要特征。
因此,导数在物理学中有着非常重要的应用价值。
三、导数的计算方法导数的计算方法主要包括常用函数的导数、复合函数的导数、隐函数的导数、参数方程的导数等。
导数知识点总结归纳
导数知识点总结归纳一、导数的定义在数学中,函数的导数是描述函数在某一点附近的变化率。
具体地,对于函数y=f(x),其在x点处的导数可以用极限的形式来表示:\[f'(x)=\lim_{h \to 0}\frac{f(x+h)-f(x)}{h}\]其中,f'(x)表示函数f(x)在x点处的导数,它表示了在x点处的斜率或变化率。
当h趋于0时,这个极限表示了函数在x点处的瞬时变化率,即导数的定义。
导数也可以理解为函数曲线在某一点处的切线斜率,可以用来描述函数曲线的上升或下降趋势,以及曲线的凹凸性。
导数的正负还可以用来判断函数在该点的增减性,从而找到函数的极值点和拐点。
二、导数的性质导数具有一些重要的性质,它们可以帮助我们更好地理解和计算导数。
1. 导数的线性性:如果函数y=f(x)和g(x)的导数都存在,那么它们的和、差、常数倍和乘积的导数仍然存在,并且有以下公式:\[ (f(x) \pm g(x))' = f'(x) \pm g'(x) \]\[ (cf(x))' = cf'(x) \]\[ (f(x)g(x))' = f'(x)g(x) + f(x)g'(x) \]其中,f(x)和g(x)分别为两个函数,c为常数。
2. 导数的乘积法则:如果函数y=f(x)和g(x)的导数都存在,那么它们的乘积的导数可以用以下公式计算:\[ (f(x)g(x))' = f'(x)g(x) + f(x)g'(x) \]3. 导数的商法则:如果函数y=f(x)和g(x)的导数都存在且g(x)不为0,那么它们的商的导数可以用以下公式计算:\[ \left( \frac{f(x)}{g(x)} \right)' = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2} \]4. 复合函数的导数:如果函数y=f(g(x))的导数存在,那么可以用以下公式计算:\[ (f(g(x)))' = f'(g(x)) \cdot g'(x) \]其中,f(x)和g(x)分别为两个函数。
数学高考导数知识点总结
数学高考导数知识点总结数学是一门理科学科,也是高考中的一门重要科目。
对于高考来说,数学的导数知识点是必须要掌握的内容之一。
导数作为微积分的基础,不仅在高考中会考到,而且在大学阶段的数学学习中也是必不可少的。
本文将对数学高考导数知识点进行总结,帮助广大考生更好地复习和理解。
一、导数的定义导数是函数的变化率。
当自变量变化一个无穷小的增量时,函数的值相应地变化了多少。
定义如下:$f'(x) = \lim _{ \Delta x \rightarrow 0 } \frac{f(x_0 + \Delta x) -f(x_0)}{\Delta x}$其中,$f(x_0)$是函数在$x_0$处的值,$f'(x)$表示函数在$x_0$处的导数。
二、导数的基本运算规则1. 常数函数的导数为0。
2. 幂函数的导数等于幂次乘以底数的幂次减一。
3. 指数函数的导数等于自然对数的底数乘以指数函数的值。
4. 对数函数的导数等于自然对数的底数乘以函数自变量的导数的倒数。
5. 三角函数的导数可以通过导数公式进行推导。
三、导数的基本性质1. 导数存在性定理:若函数在某一点附近存在导数,则在该点处函数连续。
2. 可导条件:当函数在某一点时,左极限等于右极限,并且存在导数,则该函数在该点可导。
3. 函数在最值点处的导数为0。
4. 若函数在某一点存在导数,则函数在该点处可导。
反之,函数在某一点处可导,则函数在该点存在导数。
四、常用函数的导数1. 幂函数的导数:$(x^n)' = nx^{n-1}$,其中$n$为常数。
2. 指数函数的导数:$(e^x)' = e^x$。
3. 对数函数的导数:$(\ln x)' = \frac{1}{x}$。
4. 三角函数的导数:$(\sin x)' = \cos x, (\cos x)' = -\sin x, (\tan x)' =\sec^2x$。
导数的相关知识点总结
导数的相关知识点总结一、导数的定义导数的定义是微积分中最基本的概念之一。
设函数y=f(x),如果x在某一点a处有微小的增量Δx,对应的函数值的增量为Δy=f(a+Δx)-f(a),那么当Δx趋于0时,所得到的极限值称为函数f(x)在点a处的导数,记作f'(a),即:f'(a) = lim(Δx→0) (f(a+Δx)-f(a))/Δx导数的定义直观地表示了函数在某一点的斜率,也就是函数在该点处的变化率。
导数是描述函数变化的重要工具,它能够告诉我们函数在某一点的增长速度或减少速度。
二、导数的性质导数具有一些重要的性质,这些性质对于理解导数的概念和计算导数都非常重要。
以下是导数的一些基本性质:1. 和的导数等于导数的和:(f(x)+g(x))' = f'(x) + g'(x)2. 差的导数等于导数的差:(f(x)-g(x))' = f'(x) - g'(x)3. 常数的导数等于0:(kf(x))' = kf'(x) (k为常数)4. 常数函数的导数等于0:(c)' = 0 (c为常数)5. 乘积的导数公式:(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)6. 商的导数公式:(f(x)/g(x))' = (f'(x)g(x) - f(x)g'(x))/[g(x)]^2 (g(x)≠0)这些性质是求导过程中的重要规律,对于求解具体的导数问题非常有帮助。
三、求导规则求导是微积分中的一个重要内容,求导规则是在特定的函数类型下,用来求导的一些通用的方法和技巧。
下面列举一些常用的求导规则:1. 基本函数的导数:- 常数函数的导数为0:(c)' = 0 (c为常数)- 幂函数的导数:(x^n)' = nx^(n-1) (n为常数)- 指数函数的导数:(a^x)' = a^xlna (a为常数且a>0)- 对数函数的导数:(loga x)' = 1/(xlna) (a为常数且a>0)- 三角函数的导数:(sinx)' = cosx,(cosx)' = -sinx,(tanx)' = sec^2x2. 复合函数的导数:- 复合函数的求导需要使用链式法则:(f(g(x)))' = f'(g(x))g'(x)3. 反函数的导数:- 反函数的导数与原函数的导数互为倒数:(f^(-1)(x))' = 1/(f'(f^(-1)(x)))4. 参数方程的导数:- 对于参数方程x=x(t),y=y(t),则dy/dx = (dy/dt)/(dx/dt)这些求导规则是在实际计算中经常使用的,熟练掌握这些规则对于解决导数相关的问题非常有帮助。
高中《导数》知识点总结
《导数》知识点一.导数公式:a a a x x ln )(=' x x e e =')( a x x a ln 1)(log =' xx 1)(ln =' 二.运算法则: (1) ; (2) ;(3) , 为常数; (4) .三.导数的物理意义: 位移的导数是速度, 速度的导数是加速度.四.导数的几何意义:导数就是切线斜率.函数 在 处的导数是曲线 在点.处切线的斜率,即 . 注: 点 是切点五.用导数求单调区间、极值、最值、零点个数:对于函数 给定区间 内,1.(1)若 , 则 在 内是增函数;若 , 则 在 内是减函数.(2)若 在 内是增函数,则 在 内恒成立;若 在 内是减函数,则.在 内恒成立..注: 递增; 递增2.极值:图中 , 是极大值点, 相应的函数值为极大值;, 为极小值点, 相应的函数值为极小值.且=')(1x f =')(2x f =')(3x f 0)(4='x f3.已知 是可导函数, 则“ 为极值点”是“ ”的充分不必要条件.( 为极值点 ;但满足 的 不一定是极值点.例如:函数 , 虽然 , 但 不是其极值点, 因为 在定义域内单调递增, 没有极值点)4.利用导数求极值的步骤:第一步:求导数 ; 第二步:令 , 解方程;第三步: 由方程的根将定义域分为若干个区间; 第四步: 判断 在每个区间上的正负; 第五步:确定极值点, 并求出极值.5.利用导数求函数 在闭区间 内最值:(1)若 在闭区间 内有唯一的极大(小)值, 那么这个极大(小)值就是函数的最大(小)值;(2)若 在闭区间 内的极值不唯一, 那么将所有的极值和 , 比大小, 最大者为函数的最大值,最小者为函数的最小值.六.含参数的恒成立问题: (分离参数法)(1)若 恒成立, 则 ; (2)若 恒成立, 则 ;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题:导数知识点总结一、导数的定义1.函数y =f (x )在x =x 0处的导数称函数y =f (x )在x =x 0处的瞬时变化率lim Δx →0 ΔyΔx =lim Δx →0f x 0+Δx -f x 0Δx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →0ΔyΔx=lim Δx →0 f x 0+Δx -f x 0Δx.2.函数f (x )的导函数称函数f ′(x )=lim Δx →0 f x +Δx -f xΔx为f (x )的导函数.二.基本初等函数的导数公式三、.导数的运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );(3)[]2)()()()()()()(x g x g x f x g x f x g x f '-'='⎥⎦⎤⎢⎣⎡ (4)[])()(x f c x Cf '='(6)、复合函数的导数 的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 四.导数的几何意义(1)函数f (x )在x 0处的导数f'(x 0)是曲线f (x )在点P (x 0,f (x 0))处的切线的斜率k ,即k=f'(x 0).用好这个条件是解决切线问题的关键,不知道切点时要先设切点.注:(1)曲线y =f (x )在点P (x 0,y 0)处的切线是指P为切点,斜率为k =f ′(x 0)的切线,是唯一的一条切线.(2)曲线y =f (x )过点P (x 0,y 0)的切线,是指切线经过点P ,点P 可以是切点,也可以不是切点,而且这样的直线可能有多条.五、.函数的导数与单调性的关系1、函数y=f (x )在某个区间内可导,(1)若f'(x )>0在该区间内恒成立,则f (x )在这个区间内单调递增;(2)若f'(x )<0在该区间内恒成立,则f (x )在这个区间内单调递减;(3)若f'(x )=0在该区间内恒成立,则f (x )在这个区间内是常数函数.求单调区间要坚持“定义域优先”的原则..如果一个函数在给定定义域上的单调区间不止一个,这些区间之间一般不能用并集符号“∪”连接,只能用“,”或“和”字隔开.2、.确定函数单调区间的步骤(1)确定函数f (x )的定义域;(2)求f ′(x );(3)解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间;(4)解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间.[方法技巧] 用导数求函数单调区间的三种类型及方法3研究含参数函数的单调性时,需注意依据参数取值对不等式解集的影响进行分类讨论.常见的分类讨论标准有以下几种可能:①方程f ′(x )=0是否有根;②若f ′(x )=0有根,求出根后判断其是否在定义域内;③若根在定义域内且有两个,比较根的大小是常见的分类方法.当我们无法判段导函数的符号时,有时需要二次求导研究导函数的最值来判断导函数的正负.4.用充分必要条件来诠释导数与函数单调性的关系(1)f ′(x )>0(或f ′(x )<0)是f (x )在(a ,b )内单调递增(或递减)的充分不必要条件;(2)f ′(x )≥0(或f ′(x )≤0)是f (x )在(a ,b )内单调递增(或递减)的必要不充分条件(f ′(x )=0不恒成立).5、根据函数y =f (x )在(a ,b )上的单调性,求参数范围的方法:(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集. (2)转化为恒成立或存在性问题处理①若函数y =f (x )在(a ,b )上单调递增,转化为f ′(x )≥0在(a ,b )上恒成立求解.②若函数y =f (x )在(a ,b )上单调递减,转化为f ′(x )≤0在(a ,b )上恒成立求解.③若函数y =f (x )在(a ,b )上单调,转化为f ′(x )在(a ,b )上不变号即f ′(x )在(a ,b )上恒正或恒负.④若函数y =f (x )在(a ,b )上不单调,转化为f ′(x )在(a ,b )上变号.存在极值点⑤函数在某个区间存在单调区间可转化为不等式有解问题.由函数f (x )在区间[a ,b ]内单调递增(或递减),可得f ′(x )≥0(或f ′(x )≤0)在该区间恒成立,而不是f ′(x )>0(或<0)恒成立,“=”不能少.必要时还需对“=”进行检验.六.函数的极值与导数的关系1.判断函数极值的方法一般地,当函数f (x )在点x 0处连续时,(1)如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值;(2)如果在x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是极小值.“极值点”不是点,若函数f (x )在x 1处取得极大值,则x 1即为极大值点,极大值为f (x 1);在x 2处取得极小值,则x 2为极小值点,极小值为f (x 2). 2.求可导函数f (x )的极值的步骤 (1)求导函数f ′(x ); (2)求方程f ′(x )=0的根;(3)检验f ′(x )在方程f ′(x )=0的根的左右两侧的函数值的符号,如果左正右负,那么函数y =f (x )在这个根处取得极大值;如果左负右正,那么函数y =f (x )在这个根处取得极小值,可列表完成.f ′(x 0)=0是x 0为f (x )的极值点的必要而非充分条件.例如,f (x )=x 3,f ′(0)=0,但x =0不是极值点.七、.函数的最值与导数的关系 (1)函数f (x )在[a ,b ]上有最值的条件如果在区间[a ,b ]上函数y =f (x )的图象是一条连续不断的曲线,那么它必有最大值和最小值.若有唯一的极值点,则这个极值点就是最值点①设函数y=f (x )在[a ,b ]上连续,在(a ,b )内可导,则f (x )在[a ,b ]上必有最大值和最小值且最值在极值点或端点处取得.原函数导函数f (x )=C (C 为常数)f ′(x )=0f (x )=x α(α∈Q *)f ′(x )=αxα-1f (x )=sin x f ′(x )=cos x f (x )=cos x f ′(x )=-sin x f (x )=a x f ′(x )=a x ln a (a >0) f (x )=e xf ′(x )=e xf (x )=log a xf ′(x )=1x ln a (a >0,且a ≠1)f (x )=ln xf ′(x )=1xf ′(x )>0(<0)可解先确定函数的定义域,解不等式f ′(x )>0或f ′(x )<0求出单调区间f ′(x )=0可解先确定函数的定义域,解方程f ′(x )=0,求出实数根,把函数f (x )的间断点(即f (x )的无定义点)的横坐标和实根按从大到小的顺序排列起来,把定义域分成若干个小区间,确定f ′(x )在各个区间内的符号,从而确定单调区间f ′(x )>0(<0)及f ′(x )=0不可解先确定函数的定义域,当不等式f ′(x )>0或f ′(x )<0及方程f ′(x )=0均不可解时,求导并化简,根据f ′(x )的结构特征,选择相应基本初等函数,利用其图象与性质确定f ′(x )的符号,得单调区间②若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.(2)求y=f(x)在[a,b]上的最大(小)值的步骤①求函数y=f(x)在(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f (b)比较,其中最大的一个是最大值,最小的一个是最小值.极值只能在定义域内部取得,而最值却可以在区间的端点取得,有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值只要不在端点必定是极值.(3)求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图象,然后借助图象观察得到函数的最值.用导数法求给定区间上的函数的最值问题的一般步骤:第一步:(求导数)求函数f(x)的导数f′(x);第二步:(求极值)求f(x)在给定区间上的单调性和极值;第三步:(求端点值)求f(x)在给定区间上的端点值;第四步:(求最值)将f(x)的各极值与f(x)的端点值进行比较,确定f(x)的最大值与最小值;第五步:(反思)反思回顾,查看关键点,易错点和解题规范.八.构造辅助函数的四种方法(1)移项法:证明不等式f(x)>g(x)(或f(x)<g(x))的问题转化为证明f(x)-g(x)>0(或f(x)-g(x)<0),进而构造辅助函数h(x)=f(x)-g(x);(2)构造“形似”函数:对原不等式同解变形,如移项、通分、取对数,把不等式转化为左右两边是相同结构的式子,根据“相同结构”构造辅助函数;(3)主元法:对于(或可化为)f(x1,x2)≥A的不等式,可选x1(或x2)为主元,构造函数f(x,x2)(或f(x1,x));(4)放缩法:若所构造函数最值不易求解,则可将所证明不等式进行放缩,再重新构造函数.九、导数的综合应用题型一:利用导数研究与不等式有关的综合问题(一)对于含有参数的恒成立问题或存在性问题常用的处理方法有分类讨论或参数分离,并借助于函数图象来解决问题。
常有以下几种考虑途径:(1)已知不等式f(x,λ)≥0(λ为实参数)对任意的x∈D恒成立,求参数λ的取值范围.利用导数解决此类问题可以运用分离参数法,转化为最值问题;(2)如果无法分离参数,可以考虑对参数或自变量进行分类讨论求解,直接求最值建立关于参数的不等式求解,例如:要使不等式()0f x≥恒成立,可求得()f x的最小值()h a,令()0h a≥即可求出a的范围.(3)如果是二次不等式恒成立的问题,可以考虑二次项系数与判别式的方法(a>0,Δ<0或a<0,Δ<0)求解.必记结论:恒成立问题1. ∀x∈D,均有f(x)>A恒成立,则f(x)min>A;2. ∀x∈D,均有f(x)﹤A恒成立,则 f(x)ma x<A.3. ∀x∈D,均有f(x) >g(x)恒成立,则F(x)= f(x)-g(x) >0,∴ F(x)min >04.∀x∈D,均有f(x)﹤g(x)恒成立,则F(x)= f(x)-g(x) ﹤0,∴ F(x) ma x﹤0二次函数恒成立问题类型1:设)0()(2≠++=acbxaxxf,(1)Rxxf∈>在)(上恒成立00<∆>⇔且a;(2)Rxxf∈<在)(上恒成立00<∆<⇔且a。