2014-2015道生中学九上数学期中考试卷(华东师大版附答案)

合集下载

2014—2015学年度第一学期华师大版九年级数学科期中检测题(含答案)

2014—2015学年度第一学期华师大版九年级数学科期中检测题(含答案)

2014—2015学年度第一学期华师大版九年级数学科期中检测题(含答案)时间:100分钟 满分:110分 得分:一、选择题(每小题3分,共42分)在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母代号填写在下表相应题号的方格内.1.计算(3)2的结果是A. -3B .3C .±3D .92.若二次根式x 2在实数范围内有意义,则x 的取值范围是A. x ≤2B. x ≥2C. x <2D. x ≠2 3.下列二次根式中是最简二次根式的是 A. 8B.31 C. 01 D.214.下列根式中, 与3是同类二次根式的是A. 12B. 18C. 30D.235.下列运算正确的是A .6+3=3 B. 32-2=3 C .2×8=4 D .6÷3=2 6. 方程x 2=9x 的解是A. x =0B. x =9C. x 1=-3,x 2=3D. x 1=0,x 2=9 7.若x =-2是一元二次方程x 2=m 2的一个根,则常数m 是A. -2B. 2C. ±2D. 48.将一元二次方程x 2-6x -5=0化成(x +h )2=k 的形式,则k 等于 A .-4B .4C .-14D .149.关于x 的一元二次方程x 2+p x -3=0的一个根为1,则p 的值为A .2B .-2C .1D .-110.某公司2008年缴税60万元,2010年缴税80万元,求该公司这两年缴税的年平均增长率. 若设该公司这两年缴税的年平均增长率为x ,则得到方程 A .60x 2=80 B .60(1+x )2=80C .60(1+2x )=80D .60+60(1+x )+60(1+x )2=80 11. 下列各组线段的长度成比例的是A. 2cm , 4cm , 6cm ,8cmB. 10cm , 20c m , 30cm , 40cmC. 0.2m , 0.3m , 0.5m , 0.8mD. 0.2m , 0.6m , 0.3m , 0.4m 12. 如图1,在△ABC 中,D 是AB 的中点,DE ∥BC ,若DE =4,则BC 的长等于A .6B .8C .10D .1213. 为了估算河的宽度,小明画了测量示意图(如图2). 若测得BD =120m ,DC =60m ,EC =50m ,则两岸间的大致距离AB 等于 A. 50m B. 90mC. 100mD. 110m14. 如图3,D 、E 两点分别在AC 、AB 上,且DE 与BC 不平行,那么添加下列一个条件后,仍无法..判定△ADE ∽△ABC 的是 A.AB ADAC AE = B. BCED AC AE =C. ∠1=∠BD. ∠2=∠C二、填空题(每小题3分,共12分) 15. 计算:105⨯= . 16. 若53=b a ,则bba += . 17. 学校课外生物小组的试验园地是长35米、宽20米的矩形,为便于管理,现要在中间开辟一横两纵三条等宽的小道(如图4),要使种植面积为600平方米,求小道的宽. 若设小道的宽为x 米,则可列方程为 .ABCDE 图1 图2ABCD E21图3图4ABDC 图5118. 如图5,∠ACB =∠CBD =90°,∠A =∠1,BC =3,AC =4,则BD = . 三、解答题(共56分)19.计算(每小题4分,共12分)(1) 327+; (2) )82(3-⨯; (3)2126⨯ .20.(6分)已知 -1<a <3, 化简2)3(1-++a a .21. (12分)请从以下四个一元二次方程中任选..三.个.,并用适当的方法解这三个方程. (1)x 2-x -2=0 ; (2)(y +3)2=16; (3)t 2-4t +1= 0; (4)(m -3)2+m -3=0. 我选择第 小题.22.(8分)如图6,在4×4的正方形方格中,△ABC 和△DEF 的顶点都在边长为1的小正方形顶点上.(1)填空:∠ABC = °,∠DEF = °,DE = ,BC = ; (2)判断△ABC 和△DEF 是否相似,并证明你的结论; (3)求△ABC 和△DEF 的面积比.23.(8分)小明把一张边长为10cm 的正方形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(如图7). 如果这个无盖的长方体底面积为81cm 2,那么该长方体盒子体积是多少?AEDBFC图6图23.3.1 图7图23.3.124.(10分)如图8,E 是矩形ABCD 的边DC 延长线上一点,连结AE 分别交BC ,BD 于F ,G .(1)写出所有..与△ABF 相似的三角形,并选择其中一对......相似三角形加以证明; (2)若DC =2CE ,求GFAG的值.ADCEFBG图82014—2015学年度第一学期九年级数学科期中检测题参考答案一、BACAC DCDAB DBCB二、15.52 16.58 17. (35-2x )(20-x )=600 18.49 三、19. (1) 43 (2)-6 (3)620. 421.(1)x 1=-1,x 2=2 (2)y 1=-7,y 2=1; (3)t 1=2+3,t 2=2-3 (4)m 1=2,m 2=3. 22.(1)135°,135°,2,22;(2)△ABC 与△DEF 相似.∵ ∠ABC =∠DEF =135°,AB =2,EF =2,∴22==EF BC DE AB ,∴ △ABC ∽△DEF . (3)△ABC 和△DEF 的面积比为2:1.23. 设剪去的小正方形边长为x cm ,根据题意,得 (10-2x )2=81. 解这个方程,得x 1=0.5,x 2=9.5 .当x 2=9.5时,2x =19cm >10cm ,所以x 2=9.5不合题意舍去,只取x =0.5 . 长方体盒子体积=81×0.5=40.5cm 3. 答:该长方体盒子体积是40.5cm 3.24.(1)① △ABF ∽△ECF ,② △ABF ∽△EDA .① 证明:∵ 四边形ABCD 是矩形, ∴ AB ∥DE ,∴ ∠ABF=∠ECF ,∠BAF=∠E , ∴ △ABF ∽△ECF .② 证明:∵ 四边形ABCD 是矩形, ∴ ∠ABF=∠EDA , AD ∥BC , ∴ ∠AFB=∠EAD , ∴ △ABF ∽△EDA . (2)23 .。

华师大版九年级上册数学期中考试试卷及答案

华师大版九年级上册数学期中考试试卷及答案

华师大版九年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.二次根式:( ) A .①和② B .②和③ C .①和④ D .③和④ 2.一元二次方程2x 2﹣x ﹣3=0的二次项系数、一次项系数、常数项分别是( ) A .2,1,3 B .2,1,﹣3 C .2,﹣1,3 D .2,﹣1,﹣3 3.下列计算正确的是( )A .√3⋅√2=√6B .√2+√3=√6C .√(−2)2=−2D .√2+√2=24.将方程x 2﹣6x +2=0配方后,原方程变形为( )A .(x+3)2=﹣2B .(x ﹣3)2=﹣2C .(x ﹣3)2=7D .(x +3)2=7 5.如图,四边形ABCD 和A ′B ′C ′D ′是以点O 为位似中心的位似图形,若OA :OA ′=2:3,则四边形ABCD 与四边形A ′B ′C ′D ′的面积比为( )A .4:9B .2:5C .2:3D 6.如图,已知12,∠=∠则添加下列一个条件后,仍无法判定ABC ADE ∆∆的是( )A .AB BC AD DE = B .AB AC AD AE = C .B ADE ∠=∠ D .C E ∠=∠ 7.如图,DE 是ABC 的中位线,已知ABC 的面积为12,则四边形BCED 的面积为A.3 B.6 C.9 D.108.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=5709.如图,已知AB、CD、EF互相平行,且AB=1,CD=4,那么EF的长是()A.13B.23C.34D.4510.如图,在矩形AOBC中,点A的坐标为(-2,1),点C的纵坐标是4,则B,C两点的坐标分别是()A .(32,3),(23-,4) B .(74,72),(23-,4) C .(32,3),(12-,4) D .(74,72),(12-,4)二、填空题11x 的取值范围是_____. 12.若53a b =,则a b a +=_____. 13.已知等腰三角形的两边长是方程x 2﹣9x+18=0的两个根,则该等腰三角形的周长为_____. 14.如图,在▱ABCD 中,E 为AD 的三等分点,AE=23AD ,连结BE ,交AC 于点F ,AC=15,则AF 为_____.15.将三角形纸片(ABC )按如图所示的方式折叠,使点C 落在边AB 上,记为点C ',折痕为EF ,已知4AB AC ==,5BC =,若以点B ,F ,C '为顶点的三角形与ABC 相似,那么CF 的长是________.16.已知Rt △ABC 中,斜边BC 上的高AD=4,cosB=45,则AC=____.三、解答题17.计算:(1-(2)-(3)21)+--18.解方程:(1)(2x -1)2-25=0 (2) (x +3)2−3x(x +3)=0 (3)x 2−3x +1=0 19.已知关于x 的方程x 2﹣(2k+1)x+4(k ﹣12)=0 (1)求证:无论k 取何值,这个方程总有实数根;(2)若等腰三角形ABC 的一边长a=4,另两边b 、c 恰好是这个方程的两个根,求△ABC 的周长.20.某商业街有店面房共100间,2015年平均每间店面房的年租金为1万元,由于物价上涨,到2017年平均每间店面房的年租金上涨到了1.21万元,据预测,当每间的年租金定为12100元时,可全部租出;若每间的年租金每增加0.1万元,就要少租出10间,该商业街管委会要为租出的商铺每间每年交各种费用0.1万元,未租出的商铺每间每年交各种费用0.05万元.(1)求2015年至2017年平均每间店面房年租金的平均增长率;(2)当每间店面房的年租金上涨多少万元时,该商业街的年收益(收益=租金﹣各种费用)为103.8万元?21.如图,在Rt △ABC 中,∠C =90˚,tanA 34=,BC =6,求AC 的长和sinA 的值.22.在△ABC 中,AB =8,BC =6,∠B 为锐角且cosB =12. (1)求△ABC 的面积.(2)求tanC .23.已知:如图,在平面直角坐标系中,ABC 是直角三角形,90ACB ︒∠=,点A 、C 的横坐标是一元二次方程2230x x +-=的两根(AO OC >),直线AB 与y 轴交于D ,D 点的坐标为90,4⎛⎫ ⎪⎝⎭.(1)求直线AB 的函数表达式;(2)在x 轴上找一点E ,连接EB ,使得以点A 、E 、B 为顶点的三角形与ABC 相似(不包括全等),并求点E 的坐标;(3)在(2)的条件下,点P 、Q 分别是AB 和AE 上的动点,连接PQ ,点P 、Q 分别从A 、E 同时出发,以每秒1个单位长度的速度运动,当点P 到达点B 时,两点停止运动,设运动时间为t 秒,请直接写出几秒时以点A 、P 、Q 为顶点的三角形与AEB △相似. 24.(1)观察发现:如图1,在Rt ABC △中,90B ︒∠=,点D 在边AB 上,过D 作DE BC ∥交AC 于E ,5AB =,3AD =,4AE =.填空:①ABC 与ADE 是否相似(直接回答)________;②AC =________;DE =________;△与AEC是否相(2)拓展探究:将ADE绕顶点A旋转到图2所示的位置,猜想ADB似?若不相似,说明理由;若相似,请证明;(3)迁移应用:将ADE绕顶点A旋转到点B、D、E在同一条直线上时,直接写出线段BE的长.参考答案1.C【解析】把各二次根式化简,然后根据能合并的是同类二次根式进行判断即可.【详解】解:=;;;;①和④.故选:C.【点睛】此题主要考查了同类二次根式的定义,即:二次根式化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.2.D【解析】根据一元二次方程的一般式:20ax bx c ++=,a 是二次项系数,b 是一次项系数,c 是常数项.故选D.3.A【解析】【分析】根据二次根式的乘法和加减法则及√a 2=|a|判断即可.【详解】A.因为√3⋅√2=√6,故本选项正确;B.因为√2+√3=√6,不是同类二次根式,不能合并,故本选项错误;C.因为√(−2)2=2≠−2,故本选项错误;D.因为√2+√2=2√2≠2,故本选项错误;故选:A .【点睛】本题考查了二次根式的性质,二次根式的乘法,二次根式的加减等知识点,解题的关键是理解二次根式的有关性质和法则.4.C【分析】方程常数项移到右边,两边加上9变形后,即可得到结果.【详解】方程x 2−6x+2=0,变形得:x 2−6x=−2,配方得:x 2−6x+9=7,即(x−3)2=7,故选C.【点睛】本题考查解一元二次方程-配方法,解题的关键是掌握解一元二次方程-配方法.5.A【分析】根据题意求出两个相似多边形的相似比,根据相似多边形的性质解答.【详解】解:∵四边形ABCD 和A′B′C′D′是以点O 为位似中心的位似图形,OA :OA′=2:3,∴DA :D′A′=OA :OA′=2:3,∴四边形ABCD 与四边形A′B′C′D′的面积比为:4:9,故选:A .【点睛】本题是对相似图形的考查,熟练掌握多边形相似的性质是解决本题的关键.6.A【分析】先根据∠1=∠2得出∠BAC=∠DAE ,再由相似三角形的判定定理对各选项进行逐一判定即可.【详解】解:∵∠1=∠2,∴∠BAC=∠DAE . A. AB BC AD DE=,∠B 与∠D 的大小无法判定,∴无法判定△ABC ∽△ADE ,故本选项符合题意; B.AB AC AD AE =,∴△ABC ∽△ADE ,故本选项不符合题意; C. B ADE ∠=∠∴△ABC ∽△ADE ,故本选项不符合题意;D. C E ∠=∠∴△ABC ∽△ADE ,故本选项不符合题意;故选:A【点睛】本题考查的是相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键. 7.C【分析】根据中位线得到面积的比,即可求出答案.【详解】∵DE 是ABC 的中位线, ∴12DE BC =,DE ∥BC, ∴△ADE ∽△ABC , ∴211()24S ADE S ABC ==∆,∵ABC 的面积为12,∴△ADE 的面积是3,∴四边形BCED 的面积为9,故选:C.【点睛】此题考查三角形的中位线的性质,相似三角形的性质.8.A【详解】六块矩形空地正好能拼成一个矩形,设道路的宽为xm ,根据草坪的面积是570m 2,即可列出方程:(32−2x )(20−x )=570,故选A.9.D【分析】易证明△DEF ∽△DAB ,△BEF ∽△BCD,EF BF CD BD =,从而可得+EF EF AB CD =+DF BF DB BD=1,然后把AB =1,CD =3代入即可求出EF 的值.【详解】∵AB ∥CD ∥EF ,∴∠A =∠FED ,∠C =∠FEB ,在△DAB 和△DEF 中,∵==A FED ADB EDF ∠∠⎧⎨∠∠⎩, ∴△DAB ∽△DEF ,, 同理可得△BEF ∽△BCD ,且EF BF CD BD =, ∴+EF EF AB CD =+DF BF DB BD=1, 又∵AB =1,CD =4,∴14EF EF +=1, ∴EF =45, 故答案选D.【点睛】 本题主要考查了相似三角形的判定与性质,发现+DF BF DB BD=1是解决问题的关键. 10.C【分析】如过点A 、B 作x 轴的垂线垂足分别为F 、M .过点C 作y 轴的垂线交FA 、根据△AOF ∽△CAE ,△AOF ≌△BCN ,△ACE ≌△BOM 解决问题.【详解】解:如图过点A 、B 作x 轴的垂线垂足分别为F 、M .过点C 作y 轴的垂线交FA 、∵点A 坐标(-2,1),点C 纵坐标为4,∴AF=1,FO=2,AE=3,∵∠EAC+∠OAF=90°,∠OAF+∠AOF=90°,∴∠EAC=∠AOF ,∵∠E=∠AFO=90°,∴△AEC ∽△OFA ,EC AE AF OF∴=, 3EC ,2∴= ∴点C 坐标1,42⎛⎫- ⎪⎝⎭, ∵△AOF ≌△BCN ,△AEC ≌△BMO ,∴CN=2,BN=1,BM=MN-BN=3,BM=AE=3,3OM EC 2==,∴点B坐标3,32⎛⎫ ⎪⎝⎭,故选C.【点睛】本题考查矩形的性质、坐标与图形的性质,添加辅助线构造全等三角形或相似三角形是解题的关键,属于中考常考题型.11.x≥﹣1且x≠1【分析】根据被开方数是非负数且分母不等于零,可得答案.【详解】由题意,得x+1≥0且x﹣1≠0,解得x≥﹣1且x≠1,故答案为x≥﹣1且x≠1.【点睛】本题考查了二次根式有意义的条件,利用被开方数是非负数且分母不等于零得出不等式是解题关键.12.8 3【分析】由53ab=得出5a3b=,然后代入求值.【详解】解:∵53 ab=∴5 a3b =∴5833b ba bb b++==故答案为8 3【点睛】本题考查了在给定条件下求分式的值,一般难以直接代入求值,将已知条件或所求分式适当变形,然后巧妙求解. 13.15. 【分析】解方程,分类讨论腰长,即可求解. 【详解】解:x 2﹣9x+18=0得x=3或6,分类讨论:当腰长为3时,三边为3、3、6此时不构成三角形,故舍, 当腰长为6时,三边为3、6、6,此时周长为15. 【点睛】本题考查了解一元二次方程和构成三角形的条件,属于简单题,分类讨论是解题关键. 14.6 【解析】 【分析】根据平行四边形对边相等的性质可得AD=BC ,然后求出AE=23AD=23BC ,再根据平行线分线段成比例定理求出AF 、FC 的比,然后求解. 【详解】解:在▱ABCD 中,AD =BC ,AD ∥BC ,∵E 为AD 的三等分点, ∵AE =23AD =23BC ,∵AD ∥BC , ∴AF FC =AE BC =23, ∵AC =15, ∴AF =22+3×15=6. 故答案为6. 【点睛】本题考查了平行线分线段成比例定理,平行四边形的对边平行且相等的性质,熟记定理并求出AF 、FC 的比是解题的关键.15.209或52【分析】分两种情况FC BF '=时,FC BC ''=时,根据等腰三角形的性质求线段CF 的长. 【详解】由折叠得:FC FC '=, ∵4AB AC ==, ∴△ABC 是等腰三角形,∵以点B ,F ,C '为顶点的三角形与ABC 相似, ∴△BFC '是等腰三角形, 当FC BF '=时,即5FC FC ''=-得52FC '=, ∴CF=52FC '=;当FC BC ''=时, ∵BFC '∽△BCA ,∴BF C F BC AC '=,即554C F C F''-=, 得CF=C F '=209, 故答案为:209或52. 【点睛】此题考查相似三角形的性质,等腰三角形的性质,注意分类讨论的方法. 16.5 【分析】根据三角形的内角和定理求出∠B=∠CAD ,推出cos ∠CAD=45=ADAC,把AD 的值代入求出即可. 【详解】 解:如图:∵AD 是△ABC 的高,∠BAC=90°, ∴∠ADB=∠ADC=∠BAC=90°,∴∠B+∠BAD=90°,∠BAD+∠DAC=90°, ∴∠B=∠CAD ,∵cosB=45,AD=4, ∴cosB=cos ∠CAD=45=ADAC,即445AC =, ∴AC=5, 故选:A . 【点睛】本题考查了三角形的内角和定理和解直角三角形,解题的关键是推出cosB=cos ∠CAD ,题目比较好.17.(1)0;(2)16;(3)4. 【分析】(1)先同时化简二次根式及乘法计算,再合并同类二次根式; (2)先化简二次根式并合并,再计算除法即可;(3)同时运算平方差公式及完全平方公式计算,再合并同类项. 【详解】解:(1)原式0=-=-=.(2)原式16=+-==;(3)原式21(5154=---=-+=. 【点睛】此题考查二次根式的混合运算,正确化简二次根式,掌握正确的运算顺序是解题的关键.18.(1)x 1=3,x 2=−2;(2)x 1=−3,x 2=32;(3)x 1=3+√52,x 2=3−√52.【解析】【分析】(1)分解因式得出(2x﹣1+5)(2x﹣1﹣5)=0,推出方程2x﹣1+5=0,2x﹣1﹣5=0,求出方程的解即可;(2)分解因式得出(x+3)(x+3﹣3x)=0,推出方程x+3=0,x+3﹣3x =0,求出方程的解即可;(3)求出b2﹣4ac的值,代入x=−b±√b2−4ac2a求出即可.【详解】(1)分解因式得:(2x﹣1+5)(2x﹣1﹣5)=0,2x﹣1+5=0,2x﹣1﹣5=0,解得:x1=3,x2=﹣2.(2)分解因式得:(x+3)(x+3﹣3x)=0,∴x+3=0,x+3﹣3x =0,解得:x1=﹣3,x2=32.(3)b2﹣4ac=32﹣4×1×1=5,∴x=3±√52,即x1=3+√52,x2=3−√52.【点睛】本题考查了对解一元二次方程,能正确地选择适当的方法解方程是解答此题的关键.19.(1)证明见解析;(2)10.【详解】试题分析:(1)先把方程化为一般式:x2﹣(2k+1)x+4k﹣2=0,要证明无论k取任何实数,方程总有两实数根,即要证明△≥0;(2)先利用因式分解法求出两根:x1=2,x2=2k﹣1.先分类讨论:若a=4为底边;若a=4为腰,分别确定b,c的值,求出三角形的周长.试题解析:(1)证明:方程化为一般形式为:x2﹣(2k+1)x+4k﹣2=0,∵△=(2k+1)2﹣4(4k﹣2)=(2k﹣3)2,而(2k﹣3)2≥0,∴△≥0,所以无论k取任何实数,方程总有两个实数根;(2)解:x2﹣(2k+1)x+4k﹣2=0,整理得(x﹣2)[x﹣(2k﹣1)]=0,∴x1=2,x2=2k﹣1,当a=4为等腰△ABC的底边,则有b=c,因为b、c恰是这个方程的两根,则2=2k﹣1,解得k=32,则三角形的三边长分别为:2,2,4,∵2+2=4,这不满足三角形三边的关系,舍去;当a=4为等腰△ABC的腰,因为b、c恰是这个方程的两根,所以只能2k﹣1=4,则三角形三边长分别为:2,4,4,此时三角形的周长为2+4+4=10.所以△ABC的周长为10.20.(1)10%;(2)当上涨0.2万元.【解析】【分析】(1)设2015年至2017年平均每间店面房年租金的平均增长率为x,根据2015年及2017年平均每间店面房年租金,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)设每间店面房的年租金上涨y万元,则可租出(100﹣100y)间店面房,根据收益=租金﹣各种费用,即可得出关于y的一元二次方程,解之取其正值即可得出结论.【详解】解:(1)设2015年至2017年平均每间店面房年租金的平均增长率为x,根据题意得:1(1+x)2=1.21,解得:x1=0.1=10%,x2=﹣2.1(舍去).答:2015年至2017年平均每间店面房年租金的平均增长率为10%.(2)设每间店面房的年租金上涨y万元,则可租出(100﹣100y)间店面房,根据题意得:(1.21+y)(100﹣100y)﹣0.1(100﹣100y)﹣0.05×100y=103.8,化简得:500y2+80y﹣36=0,解得:y1=0.2,y2=﹣0.36(舍去).答:当每间店面房的年租金上涨0.2万元时,该商业街的年收益为103.8万元.【点睛】考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.21.AC=8,sinA3 5【分析】 由tanA =34和BC =6可以求得AC 的值,再由勾股定理求得AB 的值后即可得到sinA 的值. 【详解】解:∵△ABC 中,tanA 34=,BC =6,∴34BC AC =,∴AC =8,∴AB ===10,∴sinA 35BC AB == 【点睛】本题考查用勾股定理解直角三角形,熟练掌握正弦和正切的定义是解题关键.22.(1)(2) 【分析】(1)如图,过点A 作AH ⊥BC 于H .解直角三角形求出AH 即可解决问题. (2)解直角三角形求出AH ,CH 即可解决问题. 【详解】(1)如图,过点A 作AH ⊥BC 于H .∵cosB=12, ∴∠B=60°,∴BH=AB•cosB=812⨯=4,AH=•8AB sinB ==,∴S △ABC=12•BC•AH=12×6× (2)在Rt △ACH 中,∵∠AHC=90°,AH=CH=BC ﹣BH=7﹣4=2,∴tanC AH CH ===. 【点睛】本题考查了解直角三角形,三角形的面积等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题. 23.(1)3944y x =+;(2)13,04E ⎛⎫⎪⎝⎭;(3)259t =或12536.【分析】(1)解方程得到点A 、C 的坐标,根据点D 的坐标设直线AB 解析式为94y kx =+, 将点A 坐标代入即可得到直线AB 的解析式;(2)过B 作BE AB ⊥交x 轴于E ,求出点B 的坐标,根据Rt Rt ABC AEB ∽得到对应线段成比例,由此求出AE ,即可得到点E 的坐标; (3)由题意得到AP t =,254AQ t =-,分两种情况:APQ ABE ∽,APQ AEB ∽,列比例式即可求出答案. 【详解】解:(1)2230x x +-=, (x+3)(x-1)=0, ∴13x =-,21x =,∵点A 、C 的横坐标是一元二次方程2230x x +-=的两根, ∴点A 、C 的横坐标分别为-3,1,即点(3,0)A -,点(1,0)C , 设直线AB 解析式为94y kx =+,且过点A , ∴9034k =-+, ∴34k =,∴直线AB 解析式:3944y x =+; (2)如图:过B 作BE AB ⊥交x 轴于E ,当1x =时,则39344y =+=,∴点()1,3B ∴4AC =,3BC =, ∴5AB =,∵Rt Rt ABC AEB ∽, ∴AB ACAE AB =, ∴545AE =, ∴254AE =, ∴2513344OE =-=, ∴点13,04E ⎛⎫⎪⎝⎭; (3)由题意可得:AP t =,254AQ t =-如图: 若APQ ABE ∽,∴AP AQAB AE=, ∴2542554t t-=,∴259t=;如图:若APQ AEB∽,∴AQ AQ AE AB=,∴2542554tt-=,∴12536t=,综上所述:259t=或12536时以点A、P、Q为顶点的三角形与AEB△相似.【点睛】此题考查解一元二次方程,待定系数法求函数解析式,三角形相似的性质定理,相似三角形与动点问题.24.(1)①相似;② 203(2)ADB AEC △∽△,证明见解析;(3)44 【分析】(1)①根据DE BC ∥即可得到相似的结论;②根据相似的性质列比例线段即可得到答案;(2)相似,根据两组边成比例夹角相等即可证明;(3)分别画出图形,根据勾股定理求出BD ,即可得到答案.【详解】解:(1)①∵DE BC ∥,∴ABC 与ADE 相似,故答案为:相似;②∵90B ︒∠=, DE BC ∥,∴∠ADE=90°,∵3AD =,4AE =,∴DE =∵ADE ∽ABC , ∴ADAEDEAB AC BC ==,∵5AB =,3AD =,4AE =,∴AE=203,故答案为:203(2)ADB AEC △∽△,理由如下:由旋转变换的性质可知,BAD CAE ∠=∠,由(1)得,ADAEAB AC =,又BAD CAE ∠=∠,∴ADB AEC △∽△;(3)如图2,在Rt ADB 中,4BD ==,∵点B、D、E在同一条直线上,∴4=+=+BE BD DE=-=-如图3,4BE BD DE线段BE的长为4+4综上所述,将ADE绕顶点A旋转到点B、D、E在同一条直线上时,线段BE的长为4+4【点睛】此题考查三角形相似的判定定理及性质定理,勾股定理,图形旋转的性质.。

华师大版九年级上册数学期中考试试卷及答案

华师大版九年级上册数学期中考试试卷及答案

华师大版九年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案) 1.下列根式是最简二次根式的是( )A B C D 2.下列运算正确的是( )A =BC =D 23= 3.已知关于x 的方程2(1)210a x x -+-=有实数根,则a 的取值范围是( ) A .1a ≠B .2a ≤C .2a ≤且1a ≠D .无法确定4.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,下列说法中不正确...的是A .12DE BC =B .AD AEAB AC = C .△ADE ∽△ABC D .:1:2ADEABCS S=5.某商品经过连续两次降价,售价由原来的每件25元降到每件16元,则平均每次降价的百分率为( ). A .20%;B .40%;C .18%;D .36%.6.如图,在△ABC 中,D 、F 分别是AB 、BC 上的点,且DF ∥AC ,若S △BDF :S △DFC =1:4,则S △BDF :S △DCA =( )A .1:16B .1:18C .1:20D .1:247.如图,点A 在线段BD 上,在BD 的同侧作等腰Rt ABC ∆和等腰Rt ADE ∆,CD 与BE 、AE 分别交于点P 、M .对于下列结论:①BAECAD ∆∆;②MP MD MA ME ⋅=⋅;③22CB CP CM =⋅.其中正确的是( )A .①②③B .①C .①②D .②③8.在ABC 中,13,cos 2AB AC B ∠===BC 边长为( ) A .7B .8C .7或17D .8或179.如图,在直角BAD 中,延长斜边BD 到点C ,使12DC BD =,连接AC ,若tanB=53,则tan CAD ∠的值( )A B C .13D .1510.已知△ABC ∽△A 1B 1C 1,且∠A =60°,∠B 1=40°,则∠C 1的度数为( ) A .40° B .60°C .80°D .100°二、填空题 11.若23b a =,则a ba b +=-______________. 12.一个等腰三角形的两条边长分别是方程x 2﹣7x +10=0的两根,则该等腰三角形的周长是_____.13.如图,在一块长为22m 、宽为17m 的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形一边平行),剩余部分种上草坪,使草坪面积为300m 2.若设道路宽为xm ,则根据题意可列方程为 .14.如图,在矩形ABCD 中,点E 为AB 的中点,点F 为射线AD 上一动点,A 'EF 与AEF 关于EF 所在直线对称,连接AC ,分别交E A '、EF 于点M 、N ,AB =AD =2.若EMN 与AEF 相似,则AF 的长为_____.三、解答题15.(1)计算: 2|1+-(2)解下列方程①2(2)24x x -=- ②2410x x --=(配方法)16.先化简,再求值:222444(2)11x x x x x x x-+++-+÷--,其中x 满足x 2﹣4x +3=0.17.已知关于x 的一元二次方程22(22)(2)0x m x m m --+-=. (1)求证:方程有两个不相等的实数根.(2)如果方程的两实数根为12x x ,,且221210x x +=,求m 的值.18.小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?19.如图所示,在正方形ABCD 中,E ,F 分别是边AD ,CD 上的点,AE =ED ,DF=14DC ,连结EF 并延长交BC 的延长线于点G ,连结BE . (1)求证:△ABE ∽△DEF .(2)若正方形的边长为4,求BG 的长.20.如图,在ABCD 中,AM BC ⊥,AN CD ⊥,垂足分别为M ,N .求证:(1)~AMB AND ∆∆; (2)AM MNAB AC=.21.先阅读理解下面的例题,再按要求解答下列问题: 例题:求代数式y 2+4y +8的最小值.解:y 2+4y +8=y 2+4y +4+4=(y +2)2+4,∵(y +2)2≥0,∴(y +2)2+4≥4,∴y 2+4y +8的最小值是4.(1)求代数式m2+m+4的最小值;(2)求代数式4-x2+2x的最大值;(3)某居民小区要在一块一边靠墙(墙长15 m)的空地上建一个长方形花园ABCD,花园一边靠墙,另三边用总长为20 m的栅栏围成.如图,设AB=x(m),请问:当x取何值时,花园的面积最大?最大面积是多少?22.在△ABC中,AB=8,BC=6,∠B为锐角且cosB=12.(1)求△ABC的面积.(2)求tanC.23.如图,在△ABC中,点N为AC边的任意一点,D为线段AB上一点,若∠MPN的顶点P为线段CD上任一点,其两边分别与边BC,AC交于点M、N,且∠MPN+∠ACB=180°.(1)如图1,若AC=BC,∠ACB=90°,且D为AB的中点时,则PMPN=,请证明你的结论;(2)如图2,若BC=m,AC=n,∠ACB=90°,且D为AB的中点时,则PMPN=;(3)如图3,若BDAB=k,BC=m,AC=n,请直接写出PMPN的值.(用k,m,n表示)参考答案1.A【分析】根据最简二次根式的定义,逐一验证排除即可.【详解】A是最简二次根式,故此选项正确;BCD=故选:A.【点睛】本题考查了最简二次根式的定义,熟记最简二次根式的定义是解题的关键.2.C【分析】根据二次根式的加减乘除运算法则进行计算即可.【详解】AB2-C=,故此选项正确; D= 故选:C . 【点睛】本题考查了二次根式的混合运算,掌握二次根式的混合运算是解题的关键. 3.B 【分析】根据方程2(1)210a x x -+-=有实数根,分情况讨论:方程为关于x 的一次方程时,则1a -=0计算可得;方程为关于x 的二次方程时,10a -≠且0∆≥计算即可得,综合二种情况即可. 【详解】根据题意知,若方程是关于x 的一次方程时,可得1a -=0,解得a =1;若方程为二次方程时,10a -≠且0∆≥,解得2a ≤且1a ≠,综合二种情况可得2a ≤, 故选:B . 【点睛】本题考查了方程的根的判定,分情况讨论的思想,掌握分情况讨论思想是解题的关键. 4.D 【解析】∵在△ABC 中,点D 、E 分别是AB 、AC 的中点, ∴DE ∥BC ,DE=12BC , ∴△ADE ∽△ABC ,AD AEAB AC=, ∴21()4ADE ABCS DE SBC ==. 由此可知:A 、B 、C 三个选项中的结论正确,D 选项中结论错误. 故选D. 5.A 【分析】可设降价的百分率为x ,第一次降价后的价格为()251x -,第一次降价后的价格为()2251x -,根据题意列方程求解即可.【详解】解:设降价的百分率为x根据题意可列方程为()225116x -= 解方程得115x =,295x =(舍) ∴每次降价得百分率为20% 故选A . 【点睛】本题考查了一元二次方程的在销售问题中的应用,正确理解题意,找出题中等量关系是解题的关键. 6.C 【分析】根据等高三角形面积的比等于底的比和相似三角形面积的比等于相似比的平方即可解出结果. 【详解】∵S △BDF :S △DFC =1:4, ∴BF :FC=1:4, ∴BF :BC=1:5, ∵DF ∥AC , ∴△BFD ∽△BCA ,∴2125BFD BCASBF SBC ⎛⎫== ⎪⎝⎭, 设S △BFD =k ,则S △DFC =4k ,S △ABC =25k , ∴S △ADC =20k ,∴S △BDF :S △DCA =1:20. 故选C . 【点睛】本题考查了相似三角形的性质,相似三角形面积的比等于相似比的平方,注意各三角形面积之间的关系是解题的关键.7.A【详解】分析:(1)由等腰Rt△ABC和等腰Rt△ADE三边份数关系可证;(2)通过等积式倒推可知,证明△PAM∽△EMD即可;(3)2CB2转化为AC2,证明△ACP∽△MCA,问题可证.详解:由已知:,∴AC AD AB AE=∵∠BAC=∠EAD ∴∠BAE=∠CAD ∴△BAE∽△CAD 所以①正确∵△BAE∽△CAD ∴∠BEA=∠CDA ∵∠PME=∠AMD ∴△PME∽△AMD∴MP ME MA MD=∴MP•MD=MA•ME所以②正确∵∠BEA=∠CDA∠PME=∠AMD∴P、E、D、A四点共圆∴∠APD=∠EAD=90°∵∠CAE=180°-∠BAC-∠EAD=90°∴△CAP∽△CMA∴AC2=CP•CM∵∴2CB 2=CP•CM 所以③正确 故选A .点睛:本题考查了相似三角形的性质和判断.在等积式和比例式的证明中应注意应用倒推的方法寻找相似三角形进行证明,进而得到答案. 8.C 【分析】由B 的余弦值得到它的度数,再分情况讨论,画出图象,利用锐角三角函数求出BC 的长. 【详解】解:∵cos B ∠= ∴45B ∠=︒,如图,当ABC 是钝角三角形时,∵AB =,45B ∠=︒, ∴12AD BD ==, ∵13AC =, ∴5CD =,∴1257BC BD CD =-=-=, 如图,当ABC 是锐角三角形时,12517BC BD CD =+=+=.故选:C .【点睛】本题考查解直角三角形,解题的关键是掌握解直角三角形的方法,需要注意进行分类讨论.9.D【分析】延长AD ,过点C 作CE AD ⊥,垂足为E ,由5tan 3B =,即53AD AB =,设5AD x =,则3AB x =,然后可证明CDE BDA ∆∆∽,然后相似三角形的对应边成比例可得:12CE DE CD AB AD BD ===,进而可得32CE x =,52DE x =,从而可求1tan 5EC CAD AE ∠==. 【详解】解:如图,延长AD ,过点C 作CE AD ⊥,垂足为E ,5tan 3B =,即53AD AB =, ∴设5AD x =,则3AB x =,CDE BDA ∠=∠,CED BAD ∠=∠,CDE BDA ∴∆∆∽, ∴12CE DE CD AB AD BD ===, 32CE x ∴=,52DE x =, 152AE x ∴=, 1tan 5EC CAD AE ∴∠==. 故选:D .【点睛】本题考查了锐角三角函数的定义,相似三角形的判定和性质以及直角三角形的性质,是基础知识要熟练掌握,解题的关键是:正确添加辅助线,将CAD ∠放在直角三角形中. 10.C【分析】直接利用相似三角形的性质得出对应角相等进而得出答案.【详解】解:∵△ABC∽△A1B1C1,∴∠A1=∠A=60°,∠B=∠B1=40°,则∠C1=180°﹣60°﹣40°=80°.故选:C.【点睛】此题主要考查了相似三角形的性质,正确得出对应角度数是解题关键.11.5【分析】根据题意,把23ba=化简整理得23b a=,代入所求代数式计算即可.【详解】由题意得,23b a=,代入所求代数式,可得原式=253352133a a aa a a+==-,故答案为:5.【点睛】本题考查了分式的化简求值,整体代换的思想,掌握整体代换的思想是解题的关键.12.12【分析】首先利用因式分解法解方程,再利用三角形三边关系得出各边长,进而得出答案. 【详解】解:x2﹣7x+10=0(x﹣2)(x﹣5)=0,解得:x1=2,x2=5,故等腰三角形的腰长只能为5,5,底边长为2,则其周长为:5+5+2=12.故答案为:12.【点睛】本题考查因式分解法解一元二次方程,需要熟悉三角形三边的关系以及等腰三角形的性质. 13.(22-x )(17-x )=300.【分析】把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的草坪是一个长方形,根据长方形的面积公式列方程.【详解】设道路的宽应为x 米,由题意有(22﹣x )(17﹣x )=300,故答案为(22﹣x )(17﹣x )=300.14.1或3【分析】分两种情形①当EM ⊥AC 时,△EMN ∽△EAF .②当EN ⊥AC 时,△ENM ∽△EAF ,分别求解.【详解】解:①当EM ⊥AC 时,△EMN ∽△EAF ,∵四边形ABCD 是矩形,∴AD =BC =2,∠B =90°,∴tan ∠CAB =3BC AB =, ∴∠CAB =30°,∴∠AEM =60°,∴∠AEF =30°,∴AF =AE•tan30°1, ②当EN ⊥AC 时,△ENM ∽△EAF ,由(1)可知,∠CAB =30°,EN ⊥AC∴∠AEN=∠MEN=60°,∵1122AE AB ==⨯= ∴tan tan 60AF AEF AE ∠=︒=,= ∴AF =3,故答案为:1或3.【点睛】本题考查翻折变换,矩形的性质,解直角三角形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.(1)②3;(2)①12x =,24x =;②12x =22x =【分析】(1)①先把每个二次根式进行化简,化成最简二次根式,然后进行合并计算即可; ②先把每个式子进行化简,利用最简二次根式,二次根式平方的性质,绝对值的性质,化简后进行计算即可;(2)①先去括号,把一元二次方程化简为一般形式,然后利用因式分解法解方程即可; ②利用配方法直接求解一元二次方程即可.【详解】(1)①原式3=-,=②原式21=,3=,故答案为:3;(2)①把原方程化简为:244240x x x -+-+=,2680x x -+=,(2)(4)0x x --=,解得:12x =或24x =,故答案为:12x =或24x =;②原方程可化为:2445x x +=-,2(2)5x -=,2x =解得:12x =22x =故答案为:12x =22x =【点睛】本题考查了二次根式的化简计算,绝对值的性质,二次根式平方的性质,一元二次方程的解法,掌握计算的方法是解题的关键.16.化简结果是12x -+,求值结果是:15-. 【分析】先根据分式混合运算的法则把原式进行化简,再求出x 的值代入进行计算即可.【详解】解:原式=2224(2)(1)1(112)⎛⎫-+---⋅ ⎪--⎝⎭-+x x x x x x x x =222243211(2)-+-+--⋅-+x x x x x x x =2211(2)+-⋅-+x x x x =12x -+, ∵x 满足x 2﹣4x +3=0,∴(x -3)(x -1)=0,∴x 1=3,x 2=1,当x =3时,原式=﹣132+=15-; 当x =1时,分母等于0,原式无意义.∴分式的值为15-. 故答案为:化简结果是12x -+,求值结果是:15-. 【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及解一元二次方程的能力.17.(1)证明见详解.(2)m 的值为3或1-.【分析】(1)根据240b ac =->,即可证明方程有两个不相等的实数根(2)根据根与系数的关系,通过变形计算即可求出答案.【详解】解:(1)证明:∵22[(22)]4(2)m m m ∆=----=2248448m m m m -+-+=40>∴该方程有两个不相等的实数根.(2)由一元二次方程根与系数的关系,得:1222x x m +=-,2122x x m m ⋅=-.∵221210x x +=,∴21212()210x x x x +-=,即22(22)2(2)10m m m ---=,化简,得2230m m --=,解得13m =,21m =-,∴m 的值为3或1-.【点睛】本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系以及一元二次方程的解法,本题属于中等题型.18.解:设购买了x 件这种服装,根据题意得:()802x 10x 1200⎡⎤--=⎣⎦,解得:x 1=20,x 2=30.当x=30时,80﹣2(30﹣10)=40(元)<50不合题意舍去.答:她购买了30件这种服装.【详解】试题分析:根据一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,表示出每件服装的单价,进而得出等式方程求出即可.19.(1)见解析;(2)BG=BC+CG=10.【分析】(1)利用正方形的性质,可得∠A =∠D ,根据已知可得AE :AB =DF :DE ,根据有两边对应成比例且夹角相等三角形相似,可得△ABE ∽△DEF ;(2)根据相似三角形的预备定理得到△EDF ∽△GCF ,再根据相似的性质即可求得CG 的长,那么BG 的长也就不难得到.【详解】(1)证明:∵ABCD 为正方形,∴AD =AB =DC =BC ,∠A =∠D =90 °.∵AE =ED ,∴AE :AB =1:2.∵DF =14DC , ∴DF :DE =1:2,∴AE :AB =DF :DE ,∴△ABE ∽△DEF ;(2)解:∵ABCD 为正方形,∴ED ∥BG ,∴△EDF ∽△GCF ,∴ED :CG =DF :CF .又∵DF =14DC ,正方形的边长为4, ∴ED =2,CG =6,∴BG =BC+CG =10.【点睛】本题考查了正方形的性质,相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答本题的关键.20.(1)见解析;(2)见解析【分析】(1)根据平行四边形的性质得B D ∠=∠,AD BC =,再由AM BC ⊥,AN CD ⊥得到90AMB AND ∠=∠=︒,然后根据相似三角形的判定方法即可得到结论;(2)由~AMB AND ∆∆得到AM AB AN AD=,再证明出B MAN ∠=∠,利用AD BC =,从而证明出~AMN BAC ∆∆即可得出结论.【详解】解:(1)四边形ABCD 为平行四边形,B D ∴∠=∠,AD BC =,AM BC ⊥,AN CD ⊥,90AMB AND ∴∠=∠=︒,~AMB AND ∴∆∆;(2)~AMB AND ∆∆,AM AB AN AD∴=, 而AD BC =, AM AB AN BC∴=①, //AD BC , 90DAM AMB ∴∠=∠=︒,90MAN DAN ∠=︒-∠,而90D DAN ∠=︒-∠,MAN D ∴∠=∠,而D B ∠=∠,B MAN ∴∠=∠②,由①②得,~AMN BAC ∆∆,AM MN AB AC∴=. 【点睛】本题考查了平行四边行的性质应用,相似三角形的判定和性质,掌握相似三角形的判定和性质是解题的关键.21.(1)154;(2)5;(3)当x =5m 时,花园的面积最大,最大面积是50m 2. 【详解】试题分析:(1)、将原式进行配方,然后根据非负数的性质得出最小值;(2)、将原式进行配方,然后根据非负数的性质得出最大值;(2)、根据题意得出代数式,然后进行配方得出最值.试题解析:(1)、m 2+m+4=(m+)2+, ∵(m+)2≥0, ∴(m+)2+≥,则m 2+m+4的最小值是; (2)、4﹣x 2+2x=﹣(x ﹣1)2+5, ∵﹣(x ﹣1)2≤0, ∴﹣(x ﹣1)2+5≤5,则4﹣x 2+2x 的最大值为5;(3)、由题意,得花园的面积是x (20﹣2x )=﹣2x 2+20x ,∵﹣2x 2+20x=﹣2(x ﹣5)2+50=﹣2(x ﹣5)2≤0, ∴﹣2(x ﹣5)2+50≤50,∴﹣2x 2+20x 的最大值是50,此时x=5, 则当x=5m 时,花园的面积最大,最大面积是50m 2.考点:一元二次方程的应用22.(1)(2)【分析】(1)如图,过点A 作AH ⊥BC 于H .解直角三角形求出AH 即可解决问题.(2)解直角三角形求出AH ,CH 即可解决问题.【详解】(1)如图,过点A 作AH ⊥BC 于H .∵cosB=12, ∴∠B=60°,∴BH=AB•cosB=812⨯=4,AH=•8AB sinB ==,∴S △ABC=12•BC•AH=12×6× (2)在Rt △ACH 中,∵∠AHC=90°,AH=CH=BC ﹣BH=7﹣4=2,∴tanC 2AH CH ===. 【点睛】本题考查了解直角三角形,三角形的面积等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.23.(1)1,证明见解析;(2)n m;(3)()1kn k m - . 【分析】(1)如图1中,作PG ⊥AC 于G ,PH ⊥BC 于H ,只需证明△PHM ∽△PGN ,根据相似三角形对应边成比例即可得;(2)如图2中,作PG ⊥AC 于G ,PH ⊥BC 于H 通过证明△PHM ∽△PGN ,可得PM PH PN PG =,再根据△PHC ∽△ACB ,PG=HC ,即可得PM n PN m=; (3)如图3中,作PG ⊥AC 于G ,PH ⊥BC 于H ,DT ⊥AC 于T ,DK ⊥BC 于K ,易证△PMH ∽△PGN ,可得PM PH PN PG =,由1·21·2ACD BCD AC DT S AD S BD BC DK==,得出()1DK kn DT k m =-,再根据DT ∥PG ,DK ∥PH ,可得PH CPPGDK CD DT ==,从而可推导得出()1PHDK knPG DT k m ==-,据此问题得以解决.【详解】(1)如图1中,作PG ⊥AC 于G ,PH ⊥BC 于H ,∵AC=BC ,∠ACB=90°,且D 为AB 的中点,∴CD 平分∠ACB ,∵PG ⊥AC 于G ,PH ⊥BC 于H ,∴PG=PH ,∵∠PGC=∠PHC=∠GCH=90°,∴∠GPH=∠MPN=90°,∴∠MPH=∠NPG ,∵∠PHM=∠PGN=90°,∴△PHM ∽△PGN ,∴PM PHPN PG ==1,故答案为:1;(2)如图2中,作PG ⊥AC 于G ,PH ⊥BC 于H ,∵∠PGC=∠PHC=∠GCH=90°,∴∠GPH=∠MPN=90°,∴∠MPH=∠NPG ,∵∠PHM=∠PGN=90°,∴△PHM ∽△PGN , ∴PMPHPN PG =,∵PG=HC , ∴C PMPHPN H =∵D 为AB 中点,∴DC=DB ,∴∠DBC=∠DCB ,∴△PHC ∽△ACB , ∴PHACHC BC =, ∴HC PMPHACnPN BC m === 故答案为:nm ;(3)如图3中,作PG ⊥AC 于G ,PH ⊥BC 于H ,DT ⊥AC 于T ,DK ⊥BC 于K ,同(2)可得△PMH ∽△PGN , ∴PMPHPN PG =, ∵1·21·2ACD BCD AC DTSAD S BDBC DK ==,∴()1DK kn DT k m=-, ∵DT ∥PG ,DK ∥PH , ∴PH CP PG DK CD DT==, ∴()1PH DK kn PG DT k m==-, ∴()1PM kn PN k m=-. 【点睛】本题考查了相似三角形的综合题,涉及相似三角形的判定与性质、角平分线的性质定理、三角形的面积等,解题的关键是灵活运用所知识、添加辅助线构造直角三角形解决问题.。

华师大版九年级上册数学期中考试试题及答案

华师大版九年级上册数学期中考试试题及答案

华师大版九年级上册数学期中考试试卷一、选择题。

(每小题只有一个正确答案)1)A.3 B.3-C.3±D.92有意义的条件是( )A.x≠2B.x>﹣2 C.x≥2D.x>23.一元二次方程230 4y y--=配方后可化为()A.2112y⎛⎫+=⎪⎝⎭B.2112y⎛⎫-=⎪⎝⎭C.21324y⎛⎫+=⎪⎝⎭D.21324y⎛⎫-=⎪⎝⎭4.下面四个等式:①=,=,=-④347=+=,其中正确的个数是( )A.1 B.2 C.3 D.45.已知34ab=,则下列等式不成立的是( )A.4a=3b B.74a bb+=C.43a b=D.37aa b=+6.如图,DE∥FG∥BC,DF=2FB,则下面结论错误的是( )A.EG=2GC B.DF=EGC.BF×EG=DF×GC D.DF FB EG GC=7.如图,在△ABC中,AB=AC,D、E、F分别是边AB、AC、BC的中点,若CE=2,则四边形ADFE的周长为( )A.2 B.4 C.6 D.88.如图,在△ABC中,D、E分别在AB、AC上,且DE∥BC,AD=12DB,若S△ADE=3,则S四边形DBCE=( )A.12 B.15 C.24 D.279.已知三角形的两边长分别为4和7,第三边长是方程x2﹣16x+55=0的根.则这个三角形的周长是( )A.16 B.22 C.16或22 D.010.已知点M(2,2),规定一次变换是:先作点M关于x轴对称,再将对称点向左平移1个单位长度,则连续经过2019次变换后,点M的坐标变为( )A.(﹣2016,2) B.(﹣2016,﹣2) C.(﹣2017,2) D.(﹣2017,﹣2)二、填空题11是同类二次根式,则x的值为______.12.已知x:y=1:2,2y=3z,则23x yy z++=______.13.设(a2+a+1)2﹣2(a2+a+1)﹣3=0,则a=______.14.如图,在△ABC中,AB=8,AC=6,AM平分∠BAC,CM⊥AM于点M,N为BC 的中点,连结MN,则MN的长为______.15.如图,在△ABC中,AB=8,AC=16,点P从点A出发,沿AB方向以每秒2个长度单位的速度向点B运动:同时点Q从点C出发,沿CA方向以每秒3个长度单位的速度向点A运动,其中一点到达终点,则另一点也随之停止运动,当△ABC与以A、P、Q为顶点的三角形相似时,运动时间为______秒.三、解答题1).16.计算:2)×﹣3217.解方程:(1) 2x2﹣7x﹣4=0 (2) x2+4x+4=(3x+1)218.在所给格点图中,画出△ABC作下列变换后的三角形,并写出所得到的三角形三个顶点的坐标.(1)沿y轴正方向平移2个单位后得到△A1B1C1;(2)关于y轴对称后得到△A2B2C2.(3)以点B为位似中心,放大到2倍后得到△A3B3C3.19.已知关于x的一元二次方程(k﹣1)x2+(2k+1)x+k=0.(1)依据k的取值讨论方程解的情况.(2)若方程有一根为x=﹣2,求k的值及方程的另一根.20.某学校对毕业班同学三年来参加各项活动获奖情况进行统计,七年级时有48人次获奖,之后两年逐年增加,到九年级毕业时累计共有228人次获奖.求这两年中获奖人次的年平均增长率.21.小明想利用影长测量学校旗杆的高度,他在某一时刻测得1米长的竹竿竖直放置时影长是1.4米;此时,他发现旗杆AB的一部分影子BD落在地面上,另一部分影子CD落在楼房的墙壁上,分别测得BD=11.2米,CD=3米,求旗杆AB的高度.22.如图,正方形ABCD中,点F是BC边上一点,连结AF,以AF为对角线作正方形AEFG,边FG与正方形ABCD的对角线AC相交于点H,连结DG.(1)填空:若∠BAF=18°,则∠DAG=______°.(2)证明:△AFC∽△AGD;(3)若BFFC=12,请求出FCFH的值.23.在矩形ABCD中,E为DC边上一点,把ADE沿AE翻折,使点D恰好落在BC边上的点F.;(1)求证:ABF FCE(2)若AB=AD=4,求EC的长.24.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.(1)如图1,当点E在线段AC上时,求证:△DEC∽△DFB.(2)当点E在线段AC的延长线上时,(1)中的结论是否仍然成立?若成立,请结合图2给出证明;若不成立,请说明理由;(3)若AC BC=DF=,请直接写出CE的长.参考答案1.A【解析】3==.故选A .考点:二次根式的化简2.D【分析】根据二次根式和分式有意义的条件可得x ﹣2>0,再解即可.【详解】解:由题意得:x ﹣2>0,解得:x >2,故选:D.【点睛】此题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数是非负数,分式分母不为零.3.B【分析】根据题意直接对一元二次方程配方,然后把常数项移到等号右边即可.【详解】解:根据题意, 把一元二次方程2304y y --=配方得:22113()()0224y ---=, 即21()102y --=,∴化成2()x a b +=的形式为21()12y -=.故选:B .【点睛】本题考查配方法解一元二次方程,注意掌握配方法的一般步骤:把常数项移到等号的右边;把二次项的系数化为1;等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.4.A【分析】直接利用二次根式的性质分别化简得出答案.【详解】解:①×24,故此选项错误;=,正确;,故此选项错误;5,故此选项错误;故选:A.【点睛】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.5.C【分析】依据比例的基本性质,依次判断即可.【详解】解:A.由34ab =,可得4a =3b ,故本选项正确;B.由74a b b +=可得ab +1=74,即34ab =,故本选项正确;C.由4a =3b 可得a b =43,故本选项错误;D.由aa b +=37可得3b =4a ,即34a b =,故本选项正确;故选:C.【点睛】本题主要考查了比例的基本性质.6.B【分析】根据平行线分线段成比例定理解答即可.【详解】解:∵DE∥FG∥BC,DF=2FB,∴DF EG2FB GC1==,故A正确;∴BF•EG=DF•GC,故C正确;∴DF FBEG GC=,故D正确;故选:B.【点睛】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.7.D【分析】根据三角形的中点的概念求出AB、AC,根据三角形中位线定理求出DF、EF,计算得到答案.【详解】解:∵点E是AC的中点,AB=AC,∴AB=AC=4,∵D是边AB的中点,∴AD=2,∵D、F分别是边、AB、BC的中点,∴DF=12AC=2,同理,EF=2,∴四边形ADFE的周长=AD+DF+FE+EA=8,故选:D.【点睛】本题考查的是三角形中位线定理,三角形的中位线平行于第三边,且等于第三边的一半.8.C【分析】根据DE∥BC得到△ADE∽△ABC,再结合相似比是AD:AB=1:3,因而面积的比是1:9,则可求出S△ABC,问题得解.【详解】解:∵DE∥BC,∴△ADE∽△ABC,∵AD:DB=1:2,∴AD:AB=1:3,∴S△ADE:S△ABC是1:9,∵S△ADE=3,∴S△ABC=3×9=27,则S四边形DBCE=S△ABC﹣S△ADE=27﹣3=24.故选:C.【点睛】本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.9.A【分析】求出方程的解,即可得出三角形三边长,看看是否符合三角形三边关系定理即可.【详解】解:x2﹣16x+55=0,(x﹣11)(x﹣5)=0,x﹣11=0,x﹣5=0,x1=11,x2=5,①当三角形的三边是4,7,11,此时4+7=11,不符合三角形三边关系定理,②当三角形的三边是4,7,5,此时符合三角形三边关系定理,三角形的周长是4+7+5=16,故选:A.【点睛】本题考查了三角形三边关系定理,解一元二次方程的应用,关键是求出三角形的三边长.10.D【分析】根据轴对称判断出点M变换后在x轴下方,然后求出点M纵坐标,再根据平移的距离求出点M变换后的横坐标,最后写出坐标即可.【详解】解:由题可得,第2019次变换后的点M在x轴下方,∴点M的纵坐标为-2,横坐标为2﹣2019×1=﹣2017,∴点M的坐标变为(﹣2017,-2),故选:D.【点睛】本题考查了坐标与图形变化-平移,读懂题目信息,确定出连续2019次这样的变换得到点在x轴下方是解题的关键.11.1 2【分析】根据同类二次根式的定义得出方程x+2=3﹣x,求出方程的解即可. 【详解】解:由题意,得x+2=3﹣x解得x=1 2 .故答案是:1 2 .【点睛】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.12.2 3【分析】依据比例的基本性质,即可得到2x=y,进而得出23x yy z++的值.【详解】解:∵x:y=1:2,∴2x=y,又∵2y=3z,∴23x yy z++=2y yy y++=23,故答案为:2 3 .【点睛】本题主要考查了比例的基本性质,根据性质变换求解即可.13.1或﹣2【分析】设a2+a+1=t,则原方程为t2﹣2t﹣3=0,利用因式分解法解方程求得t的值,然后再求关于a的一元二次方程即可.【详解】解:设a2+a+1=t,则原方程为t2﹣2t﹣3=0,所以(t﹣3)(t+1)=0.解得t=3或t=﹣1.所以a2+a+1=3,或a2+a+1=﹣1.所以a2+a﹣2=0或a2+a+2=0(无解).所以(a﹣1)(a+2)=0解得a=1或﹣2.故答案是:1或﹣2.【点睛】考查了换元法解一元二次方程,换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.14.1【分析】延长CM交AB于H,证明△AMH≌△AMC,根据全等三角形的性质得到AH=AC=6,CM=MH,根据三角形中位线定理解答.【详解】解:延长CM交AB于H,∵AM平分∠BAC,∴MAH MAC ∠=∠在△AMH 和△AMC 中,MAH MAC AM AMAMH AMC 90︒∠=∠⎧⎪=⎨⎪∠=∠=⎩, ∴△AMH ≌△AMC(ASA)∴AH =AC =6,CM =MH ,∴BH =AB ﹣AH =2,∵CM =MH ,CN =BN ,∴MN =12BH =1, 故答案为:1.【点睛】本题考查的是三角形中位线定理、全等三角形的判定和性质,三角形的中位线平行于第三边,且等于第三边的一半.15.4或167【分析】首先设t 秒钟△ABC 与以A 、P 、Q 为顶点的三角形相似,则AP =2t ,CQ =3t ,AQ =AC ﹣CQ =16﹣3t ,然后分两种情况当△ABC ∽△APQ 和当△ACB ∽△APQ 讨论.【详解】解:设运动时间为t 秒.AP =2t ,CQ =3t ,AQ =AC ﹣CQ =16﹣3t ,当△ABC ∽△APQ ,AP AQ AB AC=, 即2163816t t -=, 解得t =167; 当△ACB ∽△APQ ,AP AQ AC AB=,即2163 168t t-=,解得t=4,故答案为4或16 7.【点睛】本题考查了相似三角形的判定与性质,注意数形结合思想与分类讨论思想.16.【分析】先利用平方差公式、完全平方公式和二次根式的除法法则运算,然后合并即可. 【详解】解:原式=﹣3÷﹣(3﹣=2×(3﹣1)﹣3﹣=4+3﹣4.【点睛】此题主要考查了二次根式的混合运算,熟悉相关性质是解题的关键.17.(1)x1=4,x2=﹣12;(2)x1=12,x2=﹣34.【分析】(1)利用因式分解法求解即可;(2)开方,即可得出两个一元一次方程,求出方程的解即可. 【详解】解:(1)2x2﹣7x﹣4=0,(x﹣4)(2x+1)=0,∴x﹣4=0或2x+1=0,∴x1=4,x2=﹣12;(2)x2+4x+4=(3x+1)2,(x+2)2=(3x+1)2,(x+2)=±(3x+1),解得:x1=12,x2=﹣34.【点睛】本题考查了解一元二次方程的应用,关键是能把一元二次方程转化成一元一次方程.18.(1)见解析;A1(0,0),B1(3,1),C1(2,3);(2)见解析;A2(0,﹣2),B2(﹣3,﹣1),C2(﹣2,1);(3)见解析,A3(﹣3,﹣3),B2(3,﹣1),C2(1,3).【分析】(1)将三角形的三点沿y轴正向平移2个单位,即是向上平移两个单位后得到新点,顺次连接得到新图;(2)分别将A,B,C向y轴作垂线,找对应点,顺次连接得到新图形;(3)延长BC、BA,并使其到点B的距离是他们的二倍,找到对应点A3,C3,然后顺次连接,即可得到新图.【详解】解:(1)如图所示,△A1B1C1即为所求;A1(0,0),B1(3,1),C1(2,3);(2)如图所示,△AB2C2即为所求;A2(0,﹣2),B2(﹣3,﹣1),C2(﹣2,1);(3)如图所示,△AB2C2即为所求;A3(﹣3,﹣3),B2(3,﹣1),C2(1,3).【点睛】本题主要考查了平移,轴对称,位似放大变换作图.注意:位似图形的对应点到位似中心的距离之比等于相似比.19.(1)k>﹣18且k≠1时,原方程有两个不相等的实数根;k=﹣18时,原方程有两个相等的实数根;k<﹣18时,原方程没有实数根;(2)k=6,方程的另一根为﹣35.【分析】(1)根据方程的系数可得出根的判别式△=8k+1,进而可得出方程解得情况;(2)将x=﹣2代入原方程可求出k值,再利用两根之和等于ba及方程的一根为x=﹣2,可求出方程的另一根.【详解】解:(1)a=k﹣1,b=2k+1,c=k,∵△=b2﹣4ac=(2k+1)2﹣4×(k﹣1)×k=8k+1,∴当k>﹣18且k≠1时,原方程有两个不相等的实数根;当k=﹣18时,原方程有两个相等的实数根;当k<﹣18时,原方程没有实数根.(2)将x=﹣2代入原方程,得:(k﹣1)×(﹣2)2+(2k+1)×(﹣2)+k=0,解得:k=6,∴原方程为5x2+13x+6=0,∴方程的另一根为x=﹣135﹣(﹣2)=﹣35.【点睛】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根”;(2)代入x=-2求出k值.20.这两年中获奖人次的年平均年增长率为50%.【分析】设这两年中获奖人次的平均年增长率为x,根据到九年级毕业时累计共有228人次获奖,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【详解】解:设这两年中获奖人次的平均年增长率为x,根据题意得:48+48(1+x)+48(1+x)2=228,解得:x1=12=50%,x2=﹣72(不符合题意,舍去).答:这两年中获奖人次的年平均年增长率为50%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.21.旗杆AB的高度是11米.【分析】作CE⊥AB于E,可得矩形BDCE,利用同一时刻物高与影长的比一定得到AE的长度,加上CD的长度即为旗杆的高度.【详解】解:作CE⊥AB于E,∵DC⊥BD于D,AB⊥BD于B,∴四边形BDCE为矩形,∴CE=BD=11.2米,BE=DC=2米,∵同一时刻物高与影长所组成的三角形相似,∴AEEC=11.4,即11.2AE=11.4,解得AE=8,∴AB=AE+EB=8+3=11(米).答:旗杆AB的高度是11米.【点睛】考查相似三角形的应用;作出相应辅助线得到矩形是解决本题的难点;用到的知识点为:同一时刻物高与影长的比一定.22.(1)27;(2)证明见解析;(3)FC FH =5. 【分析】(1)由四边形ABCD ,AEFG 是正方形,得到∠BAC =∠GAF =45°,于是得到∠BAF+∠FAC =∠FAC+∠GAC =45°,推出∠HAG =∠BAF =18°,由于∠DAG+∠GAH =∠DAC =45°,于是得到结论;(2)由四边形ABCD ,AEFG 是正方形,推出AD AC =AG AF =2,得AD AC =AG AF ,由于∠DAG =∠CAF ,得到△ADG ∽△CAF ,列比例式即可得到结果;(3)设BF =k ,CF =2k ,则AB =BC =3k ,根据勾股定理得到AF =k ,AC AB =k ,由于∠AFH =∠ACF ,∠FAH =∠CAF ,于是得到△AFH ∽△ACF ,得到比例式即可得到结论.【详解】解:(1)∵四边形ABCD ,AEFG 是正方形,∴∠BAC =∠GAF =45°,∴∠BAF+∠FAC =∠FAC+∠GAC =45°,∴∠HAG =∠BAF =18°,∵∠DAG+∠GAH =∠DAC =45°,∴∠DAG =45°﹣18°=27°,故答案为:27.(2)∵四边形ABCD ,AEFG 是正方形,∴AD AC =2,AG AF =2, ∴AD AC =AG AF, ∵∠DAG+∠GAC =∠FAC+∠GAC =45°,∴∠DAG =∠CAF ,∴△AFC ∽△AGD ;(3)∵BF FC =12, 设BF =k ,∴CF =2k ,则AB =BC =3k ,∴AF ,AC AB =,∵四边形ABCD ,AEFG 是正方形,∴∠AFH =∠ACF ,∠FAH =∠CAF ,∴△AFH ∽△ACF , ∴AF FH AC CF=,∴FCFH =5. 【点睛】本题考查了正方形的性质,相似三角形的判定和性质,勾股定理,找准相似三角形是解题的关键.23.(1)证明见解析;(2. 【分析】(1)先根据矩形的性质可得90B C D ∠=∠=∠=︒,再根据翻折的性质可得90AFE D ∠=∠=︒,然后根据角的和差、直角三角形的性质可得AFB FEC ∠=∠,最后根据相似三角形的判定即可得证;(2)设EC x =,先根据翻折的性质可得4AF AD ==,再根据勾股定理可得2BF =,从而可得2CF =,然后根据相似三角形的性质即可得.【详解】(1)∵四边形ABCD 是矩形,∴90B C D ∠=∠=∠=︒,由翻折的性质得:90AFE D ∠=∠=︒,∴90,90AFB EFC FEC EFC ∠+∠=︒∠+∠=︒,∴AFB FEC ∠=∠,在ABF 和FCE △中,B C AFB FEC ∠=∠⎧⎨∠=∠⎩, ∴ABF FCE ~;(2)设EC x =,由翻折的性质得:4AFAD ==,∴2BF ===,∵四边形ABCD 是矩形,4BC AD ∴==,∴2CF BC BF =-=,由(1)可知,ABF FCE ~, ∴CF ECAB BF=2x =,解得x =即3EC =. 【点睛】本题考查了矩形的翻折问题、相似三角形的判定与性质、勾股定理等知识点,熟练掌握相似三角形的判定与性质是解题关键.24.(1)证明见解析;(2)成立,理由见解析;(3)CE =CE . 【分析】(1)首先证明∠ACD =∠B ,∠EDC =∠BDF ,得到△DEC ∽△DFB.(2)方法和(1)一样,首先证明∠ACD =∠B ,∠EDC =∠BDF ,得到△DEC ∽△DFB.(3)由(2)的结论得出△ADE ∽△CDF ,判断出CF =2AE ,求出EF ,再利用勾股定理,分三种情形分别求解即可.【详解】(1)证明:如图1中,∵∠ACB=90°,CD⊥AB,∴∠ACD+∠A=∠B+∠A=90°,∴∠ACD=∠B,∵DE⊥DF,∴∠EDF=∠CDB=90°,∴∠CDE=∠BDF,∴△DEC∽△DFB.(2)结论成立.理由:如图2中,∵∠ACB=90°,CD⊥AB,∴∠ACD+∠A=∠B+∠A=90°,∴∠ACD=∠B,∴∠DCE=∠A+90°,∠DBF=∠A+90°,,∴∠DCE=∠DBF,∵DE⊥DF,∴∠EDF=∠CDB=90°,∴∠CDE=∠BDF,∴△DEC∽△DFB.(3)∵∠ACD=∠B,∠ADC=∠BDC,∴△ADC∽△CDB∴CDBD=ACBC=12,由(2)有,△CDE∽△BDF,∵DEDF=DCBD=12,∴ADCD=AECF=DEDF=12,∴CF=2AE,在Rt△DEF中,DE=,DF=,∴EF,①当E在线段AC上时,在Rt△CEF中,CF=2AE=2(AC﹣CE)=CE),EF=,根据勾股定理得,CE2+CF2=EF2,∴CE2CE)]2=40∴CE=CE(舍)而AC CE,∴此种情况不存在,②当E在AC延长线上时,在Rt△CEF中,CF=2AE=2(AC+CE)=,EF=,根据勾股定理得,CE2+CF2=EF2,∴CE22=40,∴CE,或CE=﹣舍),③如图3中,当点E在CA延长线上时,CF=2AE=2(CE﹣AC)=2(CE,EF=,根据勾股定理得,CE2+CF2=EF2,∴CE2+[2(CE2=40,∴CE=CE(舍)即:CE=CE.【点睛】本题属于相似形综合题,考查了相似三角形的判定和性质,解直角三角形,勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,学会用分类讨论的思想思考问题.。

华师大版九年级上册数学期中考试试卷及答案

华师大版九年级上册数学期中考试试卷及答案

华师大版九年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.下列式子属于最简二次根式的是()A B C>0) D2a的取值范围是()A.a≥-1 B.a≠2C.a≥-1且a≠2D.a>23.若关于x的方程kx2﹣3x﹣94=0有实数根,则实数k的取值范围是()A.k=0 B.k≥﹣1 C.k≥﹣1且k≠0D.k>﹣14.若关于x的一元二次方程2x2x k10--+=有两个不相等的实数根,则一次函数y kx k=-的大致图象是()A.B.C.D.5.如图,△ABC中,AB=AC=12,AD⊥BC于点D,点E在AD上且DE=2AE,连接BE 并延长交AC于点F,则线段AF长为()A.4 B.3 C.2.4 D.26.下列结论中,错误的有:()①所有的菱形都相似;②放大镜下的图形与原图形不一定相似;③等边三角形都相似;④有一个角为110度的两个等腰三角形相似;⑤所有的矩形不一定相似.A.1个B.2个C.3个D.4个7.如图,△ABC 的面积是12,点D 、E 、F 、G 分别是BC 、AD 、BE 、CE 的中点,则△AFG 的面积是( )A .4.5B .5C .5.5D .68.在平面直角坐标系中,以原点O 为位似中心,把△ABC 放大得到△A 1B 1C 1,使它们的相似比为1:2,若点A 的坐标为(2,2),则它的对应点A 1的坐标一定是( ) A .(﹣2,﹣2)B .(1,1)C .(4,4)D .(4,4)或(﹣4,﹣4)9.如图所示,ABC 的顶点是正方形网格的格点,则sin A 的值为( )A .12BCD 10.如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC ,垂足为点F ,连接DF ,下列四个结论:①△AEF ∽△CAB ;②CF=2AF ;③DF=DC ;④tan ∠A .4个B .3个C .2个D .1个二、填空题11_____.12.一个多边形图案在一个有放大功能的复印机上复印出来,它的一条边由原来的1cm变成了2cm,那么它的面积会由原来的6cm2变为________.13.如图,在平行四边形ABCD中,AB=3,AD=4 ,AF交BC于E,交DC的延长线于F,且CF=1,则CE的长为________.14.如图,已知∠AON=40°,OA=6,点P是射线ON上一动点,当△AOP为直角三角形时,∠A=_____°.15.已知a,b为直角三角形两边的长,满足2a40-,则第三边的长是_三、解答题16.(1)计算:(12)-2)0(2)解方程:2x2+5x=3.17.已知关于x的方程x2+mx+m﹣3=0.(1)若该方程的一个根为2,求m的值及方程的另一个根;(2)求证:不论m取何实数,该方程都有两个不相等的实数根.18.阅读下列材料,并解决相应问题:222===应用:用上述类似的方法化简下列各式:;(2)若a 3a的值.19.已知:如图,△ABC是等边三角形,点D、E分别在边BC、AC上,∠ADE=60°.(1)求证:△ABD∽△DCE;(2)如果AB=3,EC=,求DC的长.20.如图,面积为48cm2的正方形,四个角是面积为3cm2的小正方形,现将四个角剪掉,制作一个无盖的长方体盒子,求这个长方体盒子的体积.21.如图,点C在△ADE的边DE上,AD与BC相交于点F,∠1=∠2,AB AD AC AE=.(1)试说明:△ABC ∽△ADE;(2)试说明:AF•DF=BF•CF.22.如图,在Rt△ABC中,∠C=90°,以AC为一边向外作等边三角形ACD,点E为AB 的中点,连结DE(1)证明DE∥CB;(2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形.23.已知:如图,ABC是边长为3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1/cm s,当点P到达点B时,P、Q两点停止运动,设点P的运动时间()t s,解答下列各问题:()1经过25秒时,求PBQ△的面积;()2当t为何值时,PBQ△是直角三角形?()3是否存在某一时刻t,使四边形APQC的面积是ABC面积的三分之二?如果存在,求出t的值;不存在请说明理由.参考答案1.B【解析】分析:根据最简二次根式的定义即可求出答案.详解:A.原式A不是最简二次根式;B.是最简二次根式;C.原式=C不是最简二次根式;D.原式D不是最简二次根式;故选B.点睛:本题考查了最简二次根式,解题的关键是正确理解最简二次根式的定义,本题属于基础题型.2.C【分析】根据被开方数大于等于0,分母不等于0列式计算即可.【详解】解:由题意得,a10,a2+≥≠解得,a≥-1且a≠2,故答案为:C.【点睛】本题考查的知识点是根据分式有意义的条件确定字母的取值范围,属于基础题目,比较容易掌握.3.B【分析】讨论: ①当k=0时,方程化为一次方程, 方程有一个实数解; 当k≠0时,方程为二次方程,Δ≥0,然后求出两个中情况下的的公共部分即可.【详解】解:①当k=0时,方程化为-3x-94=0,解得x=34;当k≠0时,Δ=29(3)4()4k --⨯⨯-≥0,解得 k≥-1,所以k 的范围为k≥-1.故选B.【点睛】本题主要考查一元二次方程根的判别式,注意讨论k 的取值.4.B【分析】首先根据一元二次方程有两个不相等的实数根确定k 的取值范围,然后根据一次函数的性质确定其图象的位置.【详解】∵关于x 的一元二次方程x 2﹣2x ﹣k +1=0有两个不相等的实数根,∴(﹣2)2﹣4(﹣k +1)>0,即k >0,∴﹣k <0,∴一次函数y =kx ﹣k 的图象位于一、三、四象限.故选B .【点睛】本题考查了根的判别式及一次函数的图象的问题,解题的关键是根据一元二次方程的根的判别式确定k 的取值范围,难度不大.5.C【分析】作DH ∥BF 交AC 于H ,根据等腰三角形的性质得到BD=DC ,得到FH=HC ,根据平行线分线段成比例定理得到HF DE 2FA EA==,计算即可. 【详解】解:作DH ∥BF 交AC 于H ,∵AB=AC ,AD ⊥BC ,∴BD=DC ,∴FH=HC ,∵DH ∥BF , ∴HF DE 2FA EA==, ∴AF=15AC=2.4.故选C.【点睛】考查的是等腰三角形的性质、平行线分线段成比例定理,掌握等腰三角形的三线合一、平行线分线段成比例定理是解题的关键.6.B【分析】根据相似多边形的定义判断①⑤,根据相似图形的定义判断②,根据相似三角形的判定判断③④.【详解】相似多边形对应边成比例,对应角相等,菱形之间的对应角不一定相等,故①错误;放大镜下的图形只是大小发生了变化,形状不变,所以一定相似,②错误;等边三角形的角都是60°,一定相似,③正确;钝角只能是等腰三角形的顶角,则底角只能是35°,所以两个等腰三角形相似,④正确;矩形之间的对应角相等,但是对应边不一定成比例,故⑤正确.有2个错误,故选B.【点睛】本题考查相似图形的判定,注意相似三角形与相似多边形判定的区别.7.A【详解】试题分析:∵点D,E,F,G分别是BC,AD,BE,CE的中点,∴AD是△ABC的中线,BE是△ABD的中线,CF是△ACD的中线,AF是△ABE的中线,AG是△ACE的中线,∴△AEF的面积=×△ABE的面积=×△ABD的面积=×△ABC的面积=,同理可得△AEG的面积=,△BCE的面积=×△ABC的面积=6,又∵FG是△BCE的中位线,∴△EFG的面积=×△BCE的面积=,∴△AFG的面积是×3=,故选A.考点:三角形中位线定理;三角形的面积.8.D【解析】【分析】根据如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k进行解答.【详解】∵以原点O为位似中心,相似比为:1:2,把△ABC放大得到△A1B1C1,点A的坐标为(2,2),则它的对应点A1的坐标一定为:(4,4)或(-4,-4),故选D.【点睛】本题考查了位似变换:位似图形与坐标,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.9.B【分析】连接CD,求出CD⊥AB,根据勾股定理求出AC,在Rt△ADC中,根据锐角三角函数定义求出即可.【详解】解:连接CD(如图所示),设小正方形的边长为1,∵∠DBC=∠DCB=45°,∴CD AB ⊥,在Rt ADC 中,AC =,CD =,则sin CD A AC ===故选B .【点睛】本题考查了勾股定理,锐角三角形函数的定义,等腰三角形的性质,直角三角形的判定的应用,关键是构造直角三角形.10.B【解析】试题解析:如图,过D 作DM ∥BE 交AC 于N ,∵四边形ABCD 是矩形,∴AD ∥BC ,∠ABC =90°,AD =BC ,∵BE ⊥AC 于点F ,∴∠EAC =∠ACB ,∠ABC =∠AFE =90°,∴△AEF ∽△CAB ,故①正确;∵AD ∥BC ,∴△AEF ∽△CBF , ∴AE AF BC CF=, ∵AE =12AD =12BC , ∴12AF CF =,∴CF =2AF ,故②正确;∵DE ∥BM ,BE ∥DM ,∴四边形BMDE 是平行四边形,∴BM =DE =12BC , ∴BM =CM ,∴CN =NF ,∵BE ⊥AC 于点F ,DM ∥BE ,∴DN ⊥CF ,∴DM 垂直平分CF ,∴DF =DC ,故③正确;设AE =a ,AB =b ,则AD =2a ,由△BAE ∽△ADC ,有2b a a b =,即b ,∴tan ∠CAD =2CD b AD a ==.故④不正确; 故选B .【点睛】本题主要考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键.解题时注意:相似三角形的对应边成比例.11【详解】解:原式 12.24cm 2【解析】【分析】复印前后的多边形按照比例放大或缩小,因此它们是相似多边形,按照相似多边形的性质求解即可.【详解】由题意可知,相似多边形的边长之比=相似比=1:2,∴面积之比=(1:2)2=1:4,∴它的面积会由原来的6cm2变为:6×4=24cm2,故答案为:24cm2.【点睛】本题考查的知识点是相似多边形的性质,解题的关键是熟练的掌握相似多边形的性质. 13.【详解】试题分析:由两线段平行,同位角相等,即可证出三角形相似,根据相似三角形的对应边成比例,结合已有的量即可解决本题.解:∵四边形ABCD为平行四边形,∴AB=CD=3,BC∥AD,∵E为BC上一点,∴CE∥AD,∠FEC=∠FAD,∠FCE=∠D,∴△FCE∽△FDA,∴==,又∵CD=3,CF=1,AD=4,∴CE=,故答案为.考点:相似三角形的判定与性质;平行四边形的性质.14.50°或90°【详解】分析:分别从若AP⊥ON与若PA⊥OA去分析求解,根据三角函数的性质,即可求得答案.详解:当AP⊥ON时,∠APO=90°,则∠A=50°,当PA⊥OA时,∠A=90°,即当△AOP为直角三角形时,∠A=50或90°.故答案为50°或90°.点睛:此题考查了直角三角形的性质,注意掌握数形结合思想与分类讨论思想的应用.15.【分析】根据非负数的性质可求出a 和b 的值,再分别讨论不同的斜边情况下的第三边长.【详解】∵2a 40-≥0,2a 40-+=∴2a 4=0-解得a=2或2-,b=2或3,因为a 、b 为边长,则a=-2舍去.当a=2,b=2当a=2,b=3若b 为斜边,a综上,第三边的长是【点睛】本题考查非负数的性质,注意题目没有说明直角边斜边的情况,需要进行分类讨论. 16.(1)1;(2)x 1=12,x 2=-3. 【分析】(1)根据负指数,算术平方根,零次幂和三角函数值的运算进行计算即可.(2)将方程变为一般式,利用求根公式解方程.【详解】解:(1)原式=2-1=1. (2)解:2x 2+5x -3=0,这里a =2,b =5,c =-3,∵b 2-4ac =49>0,∴x =574-±, 则x 1=12,x 2=-3. 【点睛】本题考查实数的混合运算和解一元二次方程,实数的运算需要记住几个常考点:负指数、算术平方根、零次幂和特殊角度的三角函数.17.(1)m=﹣13,x1=-53;(2)见解析.【解析】【分析】(1)把x=2代入原方程求得m的值,进一步求得方程的另一个根即可;(2)计算出根的判别式,进一步利用配方法和非负数的性质证得结论即可.【详解】解:(1)将x=2代入方程x2+mx+m﹣3=0得4+2m+m﹣3=0,解得m=﹣13,方程为x2﹣13x﹣103=0,即3x2﹣x﹣10=0,解得x1=-53,x2=2故答案为m=﹣13,另一个根为-53(2)∵△=m2﹣4(m﹣3)=m2﹣4m+12=(m﹣2)2+8>0,∴不论m取何实数,该方程都有两个不相等的实数根.【点睛】考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.18.【分析】(1)直接找出分母有理化因式进而化简求出答案;(2)直接表示出a的值,进而化简求出答案.【详解】(2).∵∴3∴=3.a【点睛】此题主要考查了分母有理化,正确表示出有理化因式是解题关键.19.(1)见解析;(2)DC=1或DC=2.【解析】试题分析:(1)△ABC是等边三角形,得到∠B=∠C=60°,AB=AC,推出∠BAD=∠CDE,得到△ABD∽△DCE;(2)由△ABD∽△DCE,得到=,然后代入数值求得结果.(1)证明:∵△ABC是等边三角形,∴∠B=∠C=60°,AB=AC,∵∠B+∠BAD=∠ADE+∠CDE,∠B=∠ADE=60°,∴∠BAD=∠CDE∴△ABD∽△DCE;(2)解:由(1)证得△ABD∽△DCE,∴=,设CD=x,则BD=3﹣x,∴=,∴x=1或x=2,∴DC=1或DC=2.考点:相似三角形的判定与性质.20.3【分析】由大正方形的面积可求出边长,再由小正方形面积求出边长,然后由底面积乘以高得到盒子体积.【详解】解:∵大正方形面积为48cm2,∴,∵小正方形面积为3cm2,∴,∴长方体盒子的体积=(23.【点睛】本题考查二次根式的计算,根据条件找出盒子的底面边长,和高是关键.21.(1)见解析;(2)见解析.【分析】(1)由∠1=∠2易得∠BAC=∠DAE,再根据对应边成比例,可判定相似;(2)由△ABC ∽△ADE得到∠B=∠D,再由对顶角相等可得△ABF ∽△CDF,最后列出比例式得出结论.【详解】(1)证明:∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC,∴∠BAC=∠DAE,∵ABAC=ADAE,∴ABAD=ACAE,∴△ABC ∽△ADE;(2)证明:∵△ABC ∽△ADE,∴∠B=∠D,∵∠BFA =∠DFC,∴△ABF ∽△CDF,∴BFDF=AFCF,∴AF•DF=BF•CF.【点睛】本题考查相似三角形的判定和性质,熟练掌握相似三角形的判定定理是解题的关键. 22.(1)见解析(2)当1AC AB2=或AB=2AC时,四边形DCBE是平行四边形.【分析】(1)首先连接CE,根据直角三角形的性质可得CE=AB=AE,再根据等边三角形的性质可得AD=CD,然后证明△ADE≌△CDE,进而得到∠ADE=∠CDE=30°,再有∠DCB=150°可证明DE∥CB.(2)当1AC AB2=或AB=2AC时,四边形DCBE是平行四边形.若四边形DCBE是平行四边形,则DC∥BE,∠DCB+∠B=180°进而得到∠B=30°,再根据三角函数可推出答案.【详解】解:(1)证明:连结CE,∵点E为Rt△ACB的斜边AB的中点,∴CE=12AB=AE.∵△ACD是等边三角形,∴AD=CD.在△ADE与△CDE中,AD DC {DE DE AE CE===,∴△ADE≌△CDE(SSS)∴∠ADE=∠CDE=30°∵∠DCB=150°∴∠EDC+∠DCB=180°∴DE∥CB(2)∵∠DCB=150°,若四边形DCBE是平行四边形,则DC∥BE,∠DCB+∠B=180°.∴∠B=30°.在Rt△ACB中,sinB=ACAB,即sin30°=AC1AB2=∴1AC AB 2=或AB=2AC . ∴当1AC AB 2=或AB=2AC 时,四边形DCBE 是平行四边形. 【点睛】此题主要考查了平行线的判定、全等三角形的判定与性质,以及平行四边形的判定,关键是掌握直角三角形的性质,以及等边三角形的性质.23.(1)50;(2)当1t =秒或2t =秒时,PBQ △是直角三角形(3)无论t 取何值,四边形APQC 的面积都不可能是ABC 面积的23. 【分析】(1)根据路程=速度×时间,求出BQ ,AP 的值,再求出BP 的值,然后利用三角形的面积公式进行解答即可;(2)①∠BPQ=90°;②∠BQP=90°.然后在直角三角形BQP 中根据BP ,BQ 的表达式和∠B 的度数进行求解即可;(3)本题可先用△ABC 的面积-△PBQ 的面积表示出四边形APQC 的面积,即可得出y ,t 的函数关系式,然后另y 等于三角形ABC 面积的三分之二,可得出一个关于t 的方程,如果方程无解则说明不存在这样的t 值,如果方程有解,那么求出的t 值即可.【详解】()1经过25秒时,22AP cm BQ cm 55==,, ABC 是边长为3cm 的等边三角形,AB BC 3cm B 60,∠∴===, 213BP 3cm 55∴=-=,PBQ ∴的面积11132BP BQ sin B 2255∠=⋅⋅=⨯⨯= ()2设经过t 秒PBQ 是直角三角形,则AP tcm BQ tcm ==,, ABC 中,AB BC 3cm B 60∠===,,()BP 3t cm ∴=-, PBQ 中,()BP 3t cm BQ tcm ,=-=,若PBQ 是直角三角形,则BQP 90∠=或BPQ 90∠=,当BQP 90∠=时,1BQ BP 2=, 即()1t 3t t 1(2=-=,秒),当BPQ 90∠=时,1BP BQ 2=,13t t t 2(2,-==秒),答:当t 1=秒或t 2=秒时,PBQ 是直角三角形.() 3过P 作PM BC ⊥于M ,BPM 中,PMsin B PB ∠=,)PM PB sin B 3t ∠∴=⋅=-,)PBQ 11S BQ PM t 3t 22∴=⋅=⋅-,)2ABC PBQ 11y S S 3t 3t 22∴=-=⨯⨯-2=+y ∴与t 的关系式为2y t t 444=-+,假设存在某一时刻t ,使得四边形APQC 的面积是ABC 面积的23, 则ABC APQC 2S S 3=四边形,2221t 332=⨯⨯ 2t 3t 30∴-+=,2(3)4130--⨯⨯<,∴方程无解,∴无论t 取何值,四边形APQC 的面积都不可能是ABC 面积的23. 【点睛】:本题考查的是等边三角形的性质、直角三角形的判定与三角形面积公式,根据题意作出辅助线,利用数形结合求解是解答此题的关键.。

华东师大版九年级数学上册期中考试及参考答案

华东师大版九年级数学上册期中考试及参考答案

华东师大版九年级数学上册期中考试及参考答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =2.如果y =2x -+2x -+3,那么y x 的算术平方根是( )A .2B .3C .9D .±33.如果a 与1互为相反数,则|a+2|等于( )A .2B .-2C .1D .-14.若实数a 、b 满足a 2﹣8a+5=0,b 2﹣8b+5=0,则1111b a a b --+--的值是( ) A .﹣20 B .2 C .2或﹣20 D .125.若点1(),6A x -,2(),2B x -,32(),C x 在反比例函数12y x=的图像上,则1x ,2x ,3x 的大小关系是( )A .123x x x <<B .213x x x <<C .231x x x <<D .321x x x <<6.定义运算:21m n mn mn =--☆.例如2:42424217=⨯-⨯-=☆.则方程10x =☆的根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .只有一个实数根7.下面四个手机应用图标中是轴对称图形的是( )A .B .C .D .8.如图,A ,B 是反比例函数y=4x在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,则△OAB 的面积是( )A .4B .3C .2D .19.如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90°10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)1.计算618136_____________. 2.因式分解:a 3-ab 2=____________.3.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m=_____.4.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为_____________.5.如图,AB 为△ADC 的外接圆⊙O 的直径,若∠BAD=50°,则∠ACD=_____°.6.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为___________.三、解答题(本大题共6小题,共72分)1.解分式方程:2311x x x x +=--2.先化简,再求值(32m ++m ﹣2)÷2212m m m -++;其中m =2+1.3.如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE=∠B(1)求证:△ADF ∽△DEC ;(2)若AB=8,33AE 的长.4.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.5.某学校要开展校园文化艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次随机抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下不完整统计图.请你根据图中信息,回答下列问题:(1)本次共调查了名学生.(2)在扇形统计图中,“歌曲”所在扇形的圆心角等于度.(3)补全条形统计图(标注频数).(4)根据以上统计分析,估计该校2000名学生中最喜爱小品的人数为人.(5)九年一班和九年二班各有2名学生擅长舞蹈,学校准备从这4名学生中随机抽取2名学生参加舞蹈节目的编排,那么抽取的2名学生恰好来自同一个班级的概率是多少?6.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、C4、C5、B6、A7、D8、B9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)12、a (a+b )(a ﹣b )3、24、10.5、406、2.5×10-6三、解答题(本大题共6小题,共72分)1、x=32、11m m +-,原式=.3、(1)略(2)64、(1)略;(2)4.95、(1)50;(2)72°;(3)补全条形统计图见解析;(4)640;(5)抽取的2名学生恰好来自同一个班级的概率为13.6、(1)4元或6元;(2)九折.。

2014-2015年华师大九年级上数学期中检测试题及答案解析

2014-2015年华师大九年级上数学期中检测试题及答案解析

期中检测题(本检测题满分:120分,时间:120分钟)一、选择题(每小题2分,共24分)1.(2013·上海中考)下列式子中,属于最简二次根式的是( )2.在下列二次根式中,x 错误!未找到引用源。

的取值范围是x ≥3的是( )3.(2013 )A. C. 4.已知:错误!未找到引用源。

则错误!未找到引用源。

与错误!未找到引用源。

的关系为( ) 错误!未找到引用源。

5.(2014·湖北黄冈中考)在函数y x 的取值范围是( ) A.x ≠0B.x ≥2C.x >2或x ≠0D.x ≥2或x ≠0 6.2121003m x x m -++=是关于x 的一元二次方程,则错误!未找到引用源。

的值应为( ) A.m =2 B.23m = C.32m = D.无法确定 7.方程2(2)9x -=的解是( )A.125,1x x ==-B.125,1x x =-=C.1211,7x x ==-D.1211,7x x =-=8.若(0)n n ≠是关于x 的方程220x mx n ++=的根,则m n +的值为( )A .错误!未找到引用源。

B .错误!未找到引用源。

C .错误!未找到引用源。

D .错误!未找到引用源。

9.定义:如果一元二次方程20(0)ax bx c a ++=≠满足0a b c ++=,那么我们称这个方程为“凤凰”方程.已知20(0)ax bx c a ++=≠是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是( )A .a c =B .a b =C .b c =D .a b c ==10.下列说法中正确的是( )A.两个直角三角形相似B.两个等腰三角形相似C.两个等边三角形相似D.两个锐角三角形相似11.如图,在梯形错误!未找到引用源。

中,错误!未找到引用源。

∥错误!未找到引用源。

,对角线错误!未找到引用源。

相交于点错误!未找到引用源。

若错误!未找到引用源。

,则的值为( )A.错误!未找到引用源。

华师大版九年级上册数学期中考试试卷带答案

华师大版九年级上册数学期中考试试卷带答案

华师大版九年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.下列各式中,一定是二次根式的是( )A B C D 2.方程x 2﹣9=0的解是( )A .x=3B .x=9C .x=±3D .x=±9 3.下列计算正确的是( )A =B =C =D .3=- 4.用配方法解方程2850x x -+=,将其化为2()x m n +=的形式,正确的是( ) A .2(4)11x += B .2(4)21x += C .2(8)11x -= D .2(4)11x -=5.当0xy <等于( )A .-B .C .D .- 6.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m ,另一边减少了2m ,剩余空地的面积为18m 2,求原正方形空地的边长.设原正方形的空地的边长为xm ,则可列方程为( )A .(x+1)(x+2)=18B .x 2﹣3x+16=0C .(x ﹣1)(x ﹣2)=18D .x 2+3x+16=0 7.已知34x y =,那么下列等式中,不成立的是( ) A .37x x y =+ B .14x y y C .3344x y +=+ D .4x=3y8.如图,在Rt △ABC 中,∠C=90°.CD 是斜边AB 上的高,若得到CD 2=BD•AD 这个结论可证明()A.△ADC∽△ACB B.△BDC∽△BCA C.△ADC∽△CBD D.无法判断9.如图,点A,B为定点,定直线l//AB,P是l上一动点.点M,N分别为PA,PB的中点,对于下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④D.④⑤10.在四边形ABCD 中,∠B=90°,AC=4,AB∥CD,DH 垂直平分AC,点H 为垂足,设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为( )A.B.C.D.二、填空题11有意义,则x的取值范围是__.12.我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是_____.13.2018-2019赛季中国男子篮球职业联赛,采用双循环制(每两队之间都进行现场比赛),比赛总场数为380场,则参赛队伍有__________支.14.“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为_____尺.15.在等腰三角形ABC 中,4AB AC ==,3BC =,将ABC ∆的一角沿着MN 折叠,点B 落在AC 上的点D 处,如图所示,若ABC ∆与DMC ∆相似,则BM 的长度为__________.三、解答题16.计算:(1(211)(1()3--17.解下列方程(1)3(2)2(2)x x x -=-(2)231060x x -+=(配方法).18.先化简,再求值:22222212a b a b a b ab ab ⎛⎫-+÷- ⎪+⎝⎭,其中a =3b =319.已知关于x 的一元二次方程22(21)10x m x m +++-=.(1)当m 为何值时,方程有两个不相等的实数根?(2)在(1)的结论下,若m 取最小整数,求此时方程的两个根.20.如图,△ABC 和△BEC 均为等腰直角三角形,且∠ACB=∠BEC=90°,点P 为线段BE 延长线上一点,连接CP ,以CP 为直角边向下作等腰直角△CPD ,线段BE 与CD 相交于点F .(1)求证:PC CE CD CB=; (2)连接BD ,请你判断AC 与BD 有什么位置关系?并说明理由.21.“早黑宝”葡萄品种是我省农科院研制的优质新品种在我省被广泛种植,邓州市某葡萄种植基地2017年种植“早黑宝”100亩,到2019年“早黑宝”的种植面积达到196亩 (1)求该基地这两年“早黑宝”种植面积的平均增长率;(2)市场查发现,当“早黑宝”的售价为20元千克时,每天售出200千克,售价每降价1元,每天可多售出50千克,为了推广直传,基地决定降价促销,同时减存已知该基地“早黑宝”的平均成本价为12元/千克,若使销售“早黑宝”天获利1750元,则售价应降低多少元?22.如图1,在矩形ABCD 中,2AB =,5BC =,1BP =,90MPN ∠=,将MPN ∠绕点P 从PB 处开始按顺时针方向旋转,PM 交边AB (或AD )于点E ,PN 交边AD (或CD )于点F ,当PN 旋转至PC 处时,MPN ∠停止旋转.(1)特殊情形:如图2,发现当PM 过点A 时,PN 也恰巧过点D ,此时ABP ∆ PCD ∆(填“≌”或“∽”);(2)类比探究:如图3,在旋转过程中,PE PF的值是否为定值?若是,请求出该定值;若不是,请说明理由.23.从三角形(不是等腰三角形)一个顶点引出一条射线于对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC 中,CD 为角平分线,∠A =40°,∠B =60°,求证:C D 为△ABC 的完美分割线.(2)在△ABC 中,∠A =48°,CD 是△ABC 的完美分割线,且△ACD 为等腰三角形,求∠ACB的度数.(3)如图2,△ABC 中,AC =2,BC CD 是△ABC 的完美分割线,且△ACD 是以CD 为底边的等腰三角形,求完美分割线CD 的长.参考答案1.D【分析】a≥)的式子叫二次根式,根据定义判断即可.【详解】解:A a表示任意实数,不是二次根式,故本选项错误;B被开方数-10<0,不是二次根式,故本选项错误;C a+1表示任意实数,不是二次根式,故本选项错误;D被开方数a2+1为非负数,即a2+1>0,是二次根式,故本选项正确.故选D【点睛】本题考查对二次根式的定义的应用,对二次根式定义的条件的理解是解答此题的关键. 2.C【解析】试题分析:首先把﹣9移到方程右边,再两边直接开平方即可.解:移项得;x2=9,两边直接开平方得:x=±3,故选C.考点:解一元二次方程-直接开平方法.3.C【分析】根据二次根式的乘法法则对A、C进行判断;根据二次根式的加减法对B进行判断;根据二次根式的性质对D进行判断.【详解】解:A、原式,所以A选项错误;B、原式,所以B选项错误;C、原式C选项正确;D 、原式=3,所以D 选项错误.故选C .【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.4.D【分析】先把5移到方程的右边,然后方程两边都加16,最后把左边根据完全平方公式写成完全平方的形式,然后两边同时开平方即可.【详解】2850x x -+=,移项得285x x -=-,配方得2816516x x -+=-+,即2(4)11x -=.故选D .【点睛】本题考查了配方法解一元二次方程,配方法的一般步骤:①把常数项移到等号的右边;②把二次项的系数化为1;③等式两边同时加上一次项系数一半的平方.5.A【分析】a =,再根据绝对值化简法则进行化简.【详解】∵0xy <,且2xy 为非负数,∴x>0,y<0,y y x .故选A【点睛】本题考查二次根式的化简,a =化简此题是关键之处. 6.C【详解】试题分析:可设原正方形的边长为xm ,则剩余的空地长为(x ﹣1)m ,宽为(x ﹣2)m .根据长方形的面积公式列方程可得()()-1-2x x =18.故选C .考点:由实际问题抽象出一元二次方程.7.B【详解】【分析】根据比例的基本性质逐项进行求解即可.【详解】A ,∵x 3y 4=,∴x 3x y 7=+,此选项正确,不合题意;B ,∵x 3y 4=,∴x y y-=–14,此选项错误,符合题意;C ,∵x 3y 4=,∴x 33y 44+=+,此选项正确,不合题意;D ,∵x 3y 4=,∴4x=3y ,此选项正确,不合题意, 故选B .【点睛】本题考查了比例的性质,熟练掌握和应用比例的性质是解题的关键.8.C【解析】 试题分析:根据题意可得:CD AD BD CD=,结合∠ADC=∠CDB 可得:△ADC ∽△CBD. 9.B【详解】试题分析: ①、MN=12AB ,所以MN 的长度不变; ②、周长C △PAB =12(AB+PA+PB ),变化;③、面积S△PMN=14S△PAB=14×12AB·h,其中h为直线l与AB之间的距离,不变;④、直线NM与AB之间的距离等于直线l与AB之间的距离的一半,所以不变;⑤、画出几个具体位置,观察图形,可知∠APB的大小在变化.故选B考点:动点问题,平行线间的距离处处相等,三角形的中位线10.D【详解】因为DH垂直平分AC,∴DA=DC,AH=HC=2,∴∠DAC=∠DCH,∵CD∥AB,∴∠DCA=∠BAC,∴∠DAN=∠BAC,∵∠DHA=∠B=90°,∴△DAH∽△CAB,∴AD AH AC AB=,∴24yx=,∴y=8x,∵AB<AC,∴x<4,∴图象是D.故选D.11.x≥﹣1【分析】根据二次根式有意义的条件可得x+1≥0,再解不等式即可.【详解】∵有意义,∴:x+1≥0,解得:x≥﹣1,故答案为:x≥﹣1.【点睛】本题考查的知识点为二次根式有意义的条件.二次根式的被开方数是非负数.12.x1=﹣1,x2=﹣3.【解析】【分析】换元法即可求解,见详解.【详解】令2x+3=t,则方程(2x+3)2+2(2x+3)﹣3=0化为t2+2t﹣3=0,解得:t=1或-3,即2x+3=1或2x+3=-3解得:x1=﹣1,x2=﹣3.【点睛】本题考查了一元二次方程求解方法中的换元法,熟悉换元法的解题步骤是解题关键. 13.20支【分析】设参赛队伍有x支,根据参加比赛采用双循环制(每两队之间都进行2场比赛),共有比赛380场,可列出方程,求解即可.【详解】解:设参赛队伍有x支,根据题意得,x x1380解得,x1=20,x2=-19(不符合题意,舍去)∴参赛队伍有20支.故答案为:20【点睛】本题考查了由实际问题抽象出一元二次方程,关键是根据总比赛场数做为等量关系列方程求解.14.57.5【分析】根据题意有△ABF∽△ADE,再根据相似三角形的性质可求出AD的长,进而得到答案. 【详解】如图,AE与BC交于点F,由BC //ED 得△ABF∽△ADE,∴AB:AD=BF:DE,即5:AD=0.4:5,解得:AD=62.5(尺),则BD=AD-AB=62.5-5=57.5(尺)故答案为57.5.【点睛】本题主要考查相似三角形的性质:两个三角形相似对应角相等,对应边的比相等.15.32或127【分析】根据折叠得到BM=ND,根据相似三角形的性质得到CM MDCB AB或CM MDAC AB,设BM=x,则CM=3-x,即可求出x的长,得到BM的长. 【详解】解:∵△BMN沿MN折叠,B和D重合,∴BM=DM,设BM=x,则CM=3-x,∵当△CMD∽△CBA,∴CM MD CB AB,∴334x x,解得:x=127,即BM=127;∵当△CMD∽△CAB,∴CM MD CA AB,∴344x x,解得:x=32,即BM=32;∴BM=32或127.故答案为:32或127【点睛】本题主要考查相似三角形性质以及图形的折叠问题,根据相似三角形的性质列出比例式是解答此题的关键.16.(12)4【分析】(1)化简各项二次根式,再合并同类二次根式;(2a=化简绝对值,利用平方差公式(a+b)(a-b)=a2-b2,根据负指数幂1ppaa-=进行计算.【详解】(1)解:原式223=⨯-==(2)原式2(13)=-224==【点睛】进行实数的运算,要明确有理数的运算法则及性质在实数范围内仍然成立.特别地,碰到化简绝对值的运算,首先判断绝对值符号里代数式整体的正负,再根据绝对值的意义,整体取正或负.17.(1)12x =,223x =-(2)153x =,253x = 【分析】(1)利用因式分解法解方程;(2)方程两边同时除以3,使二次项系数为1,利用配方法解方程.【详解】(1)移项,得3(2)2(2)0x x x ---=方程左边分解因式,得(2)(32)0x x -+=∴20x -=或320x +=∴12x =,223x =- (2)移项,得23106x x -=-方程两边同时除以3,得21023x x -=- 配方,得2221055()2()333x x -+=-+ 即257()39x -=.直接开平方,得53x -=.∴153x +=,253x = 【点睛】本题考查了解一元二次方程,根据方程系数特征,选用恰当的方法解方程是解答此题的关键.18.2a b-【分析】先将括号里的分式进行通分,再将括号里分式进行相减,最后再根据分式的除法法则计算,最后代入数值即可求解.【详解】原式=222222222a b a b ab a b ab ab ab ⎛⎫-+÷- ⎪+⎝⎭, =()()()()22a b a b a b ab a b ab ⎛⎫+-- ⎪÷ ⎪+⎝⎭, =2a b-, 把a =3b =3:原式【点睛】本题主要考查分式的化简求值,解决本题的关键是要熟练掌握分式的通分,分式减法和分式的除法法则.19.(1)54m >-(2)10x =,21x = 【分析】(1)根据方程的系数和根的判别式Δ=b 2-4ac>0,列出关于m 的不等式,求出解集即可解答;(2)在m 的解集中,确定m 的最小整数后再确定原方程,求根即可.【详解】解:(1)∵方程22(21)10x m x m +++-=有两个不相等的实数根,∴22(21)4(1)450m m m +--=+> 解得54m >- ∴当54m >-时,方程有两个不相等的实数根. (2)由(1),得54m >-,故m 的最小整数值是-1 当1m =-时,原方程为20x x -=解得10x =,21x =即此时方程的两个根分别为10x =,21x =【点睛】本题考查了一元二次方程根的差别式,明确由一元二次方程根的判别式和方程实数根的个数关系及正确解方程是解答此题的关键.20.(1)证明见解析;(2)AC∥BD,理由见解析.【分析】(1)证明△BCE∽△DCP,相似三角形的对应边成比例;(2)由△PCE∽△DCB,证∠CBD=∠CEP=90°.【详解】(1)∵,△ABC和△BEC均为等腰直角三角形,且∠ACB=∠BEC=90°,∴∠ECB=∠PCD=45°,∠CEB=∠CPD=90°,∴△BCE∽△DCP,∴PC CE CD CB=;(2)AC∥BD,理由:∵∠PCE+∠ECD=∠BCD+∠ECD=45°,∴∠PCE=∠BCD,∵PC CECD CB=,∴△PCE∽△DCB,∴∠CBD=∠CEP=90°,∵∠ACB=90°,∴∠ACB=∠CBD,∴AC∥BD.【点睛】本题考查了相似三角形的判定与性质,判定两个三角形相似的方法有:①平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似;②三边成比例的两个三角形相似;③两边成比例且夹角相等的两个三角形相似;④有两个角相等的三角形相似.21.(1)40%(2)3元【分析】(1)设该基地这两年“早黑宝”种植面积的平均增长率为x,根据题意得关于x的一元二次方程,解方程,然后根据问题的实际意义作出取舍即可;(2)设售价应降低y元,根据每千克的利润乘以销售量,等于1750,列方程并求解,再结合问题的实际意义作出取舍即可.【详解】(1)设该基地这两年“早黑宝”种植面积的平均增长率为x,根据题意得100(1+x)2=196解得x 1=0.4=40%,x 2=−2.4(不合题意,舍去)答:该基地这两年“早黑宝”种植面积的平均增长率为40%.(2)设售价应降低y 元,则每天可售出(200+50y )千克根据题意,得(20−12−y )(200+50y )=1750整理得,y 2−4y +3=0,解得y 1=1,y 2=3∵要减少库存∴y 1=1不合题意,舍去,∴y =3答:售价应降低3元.【点睛】本题考查了一元二次方程在增长率问题和销售问题中的应用,根据题目正确列出方程,是解题的关键.22.(1)∽(2)PE PF 的值为定值12,详见解析 【分析】(1)根据矩形的性质找出∠B=∠C=90°,再通过同角的余角相等得出BAP CPD ∠=∠,由此即可得出ΔABP ∽ΔPCD;(2)过点F 作FG ⊥PC 于点G ,根据矩形的性质以及角的关系找出∠B=∠FGP=90°,∠BEP=∠FPG,由此得出△EBP ≌△PGF,根据相似三角形的性质找出边与边之间的关系,即可得出结论.【详解】(1)∽,理由如下:∵90MPN ∠=,90B =∠,∴90BAP APB CPD APB ∠+∠=∠+∠=∴BAP CPD ∠=∠又∵B C ∠=∠∴ABP ∆∽PCD ∆(2)在旋转过程中,PE PF的值为定值理由如下:过点F 作FG BC ⊥于点G ,如图所示,则B FGP ∠=∠∵90,90MPN B ∠=∠=∴90BEP EPB CPF EPB ∠+∠=∠+∠=∴BEP CPF ∠=∠∴EBP ∆∽PGF ∆ ∴PE PB PF FG= 在矩形ABGF 中,2FG AB ==,1PB = ∴12PB FG = ∴12PE PF =,即PE PF 的值为定值12. 【点睛】本题考查相似三角形的性质和判定的综合应用,以及矩形性质和旋转性质,证明三角形相似用其性质列出对应边成比例是解答此题的关键.23.(1)证明见解析;(2)∠ACB =96°或114°;(3【分析】(1)根据完美分割线的定义只要证明①△ABC 不是等腰三角形,②△ACD 是等腰三角形,③△BDC ∽△BCA 即可.(2)分三种情形讨论即可①如图2,当AD =CD 时,②如图3中,当AD =AC 时,③如图4中,当AC =CD 时,分别求出∠ACB 即可.(3)设BD =x ,利用△BCD ∽△BAC ,得BC BD BA BC=,列出方程即可解决问题. 【详解】(1)如图1中,∵∠A =40°,∠B =60°,∴∠ACB =80°,∴△ABC 不是等腰三角形,∵CD 平分∠ACB ,∴∠ACD =∠BCD =12∠ACB =40°,∴∠ACD =∠A =40°,∴△ACD 为等腰三角形,∵∠DCB =∠A =40°,∠CBD =∠ABC ,∴△BCD ∽△BAC ,∴CD 是△ABC 的完美分割线.(2)①当AD =CD 时,如图2,∠ACD =∠A =45°,∵△BDC ∽△BCA ,∴∠BCD =∠A =48°,∴∠ACB =∠ACD +∠BCD =96°.②当AD =AC 时,如图3中,∠ACD =∠ADC =(180°-48°)÷2=66°,∵△BDC ∽△BCA ,∴∠BCD =∠A =48°,∴∠ACB =∠ACD +∠BCD =114°.③当AC =CD 时,如图4中,∠ADC =∠A =48°,∵△BDC ∽△BCA ,∴∠BCD =∠A =48°,∵∠ADC >∠BCD ,矛盾,舍弃,∴∠ACB =96°或114°.(3)由已知AC =AD =2,∵△BCD ∽△BAC ,∴BC BD BA BC=设BD =x ,∴2(2)x x =+),∵x >0,∴x 1,∵△BCD ∽△BAC ,∴CD BD AC BC =,∴CD ×2=【点睛】本题考查相似三角形的判定和性质、等腰三角形的性质等知识,解题的关键是理解题意,学会分类讨论思想,属于中考常考题型.。

华东师大版九年级数学上册期中测试卷带答案

华东师大版九年级数学上册期中测试卷带答案

华东师大版九年级数学上册期中测试卷带答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =2.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-3.如果a 与1互为相反数,则|a+2|等于( )A .2B .-2C .1D .-14.把函数y x =向上平移3个单位,下列在该平移后的直线上的点是( )A .()2,2B .()2,3C .()2,4D .(2,5)5.菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形6.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体( )A .主视图改变,左视图改变B .俯视图不变,左视图不变C .俯视图改变,左视图改变D .主视图改变,左视图不变7.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A .B .C .D .8.如图,已知BD 是ABC 的角平分线,ED 是BC 的垂直平分线,90BAC ∠=︒,3AD =,则CE 的长为( )A .6B .5C .4D .339.如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90°10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)1.计算:2131|32|2218-⎛⎫--+= ⎪⎝⎭____________. 2.分解因式:2ab a -=_______.3.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m=_____.4.如图1是一个由1~28的连续整数排成的“数阵”.如图2,用2×2的方框围住了其中的四个数,如果围住的这四个数中的某三个数的和是27,那么这三个数是a ,b ,c ,d 中的__________.5.如图,点A ,B 是反比例函数y=k x(x >0)图象上的两点,过点A ,B 分别作AC ⊥x 轴于点C ,BD ⊥x 轴于点D ,连接OA ,BC ,已知点C (2,0),BD=2,S △BCD =3,则S △AOC =__________.6.已知抛物线()20y ax bx c a =++≠的对称轴是直线1x =,其部分图象如图所示,下列说法中:①0abc <;②0a b c -+<;③30a c +=;④当13x 时,0y >,正确的是__________(填写序号).三、解答题(本大题共6小题,共72分)1.解方程:33122x x x -+=--2.先化简,再求值(32m ++m ﹣2)÷2212m m m -++;其中m 23.如图,在▱ABCD 中,AE ⊥BC ,AF ⊥CD ,垂足分别为E ,F ,且BE=DF(1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.4.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.5.老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.(1)求条形图中被遮盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.6.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、C4、D5、B6、D7、D8、D9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2+2、a (b +1)(b ﹣1).3、24、a ,b ,d 或a ,c ,d5、5.6、①③④.三、解答题(本大题共6小题,共72分)1、4x =2、11m m +-,原式=.3、(1)略;(2)S 平行四边形ABCD =244、(1)略;(2)4.95、(1)条形图中被遮盖的数为9,册数的中位数为5;(2)选中读书超过5册的学生的概率为512;(3)36、(1)4元或6元;(2)九折.。

华师大版九年级数学上册期中测试题(含答案)

华师大版九年级数学上册期中测试题(含答案)

华师大版九年级数学上册期中测试题(含答案)(本试卷满分120分 考试时间120分钟)第Ⅰ卷 (选择题 共24分)一、选择题(本大题共8小题,每小题3分,共24分) 1.下列计算错误的是( D ) A.14×7=7 2B.60÷5=23C.9a +25a =8a (a ≥0)D .32-2=32.当x ≤2时,下列等式一定成立的是( C ) A.(x -2)2=x -2 B.(x -3)2=x -3C.(x -2)(x -3)=2-x ·3-xD.3-x 2-x =3-x2-x3.如图,已知DE ∥BC ,EF ∥AB ,则下列比例式中错误的是( B ) A.CE CF =EA FB B.DE BC =AD BD C.AD AB =AE ACD.BD AB =CF CB第3题图 第4题图4.(随州中考)如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,下列条件中不能判断△ABC ∽△AED 的是( D )A .∠AED =∠B B .∠ADE =∠C C.AD AE =AC ABD.AD AB =AE AC5.解方程①2x 2-5=0;②9x 2-12x =0;③x 2-8x +14=0时,较简捷的方法分别是( D )A .①直接开平方 ②公式法③因式分解法B .①因式分解法 ②因式分解法③配方法C .①因式分解法 ②公式法③因式分解法D .①直接开平方 ②因式分解法③配方法6.(宁夏中考)关于x 的一元二次方程(a -1)x 2+3x -2=0有实数根,则a 的取值范围是( D )A .a >-18B .a ≥-18C .a >-18且a ≠1D .a ≥-18且a ≠17.★若一元二次方程x 2-2x -m =0无实数根,则一次函数y =(m +1)x +m -1的图象不经过( D )A .第四象限B .第三象限C .第二象限D .第一象限8.★如图,在△ABC 中,AB =6,AC =4,P 是AC 的中点,过P 点的直线交AB 于点Q ,若A ,P ,Q 为顶点的三角形和以A ,B ,C 为顶点的三角形相似,则AQ 的长为( B )A .3B .3或43C .3或34D.43第Ⅱ卷 (非选择题 共96分)二、填空题(本大题共8小题,每小题3分,共24分) 9.方程3(x -5)2=2(x -5)的根是 x 1=5,x 2=173 .10.计算a3a +9a -3a 3= . 11.化简:(2-a )2+(a -2)2= 4-2a .12.已知点P (3,a )关于y 轴对称点为Q (b ,2),则ab = -6 .13.如图,电灯P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB ∥CD ,AB =2 m ,CD =5 m ,点P 到CD 的距离是3 m ,则点P 到AB 的距离是 65m .14.已知m ,n 是方程x 2+22x +1=0的两根,则代数式m 2+n 2+3mn 的值为 3 . 15.如图,平行于BC 的直线DE 把△ABC 分成的两部分面积相等,则AD AB = 22.第15题图 第16题图16.★如图,在正方形ABCD 和正方形OEFG 中,点A 和点F 的坐标分别为(3,2),(-1,-1),则两个正方形的位似中心的坐标是 (1,0)或(-5,-2) .三、解答题(本大题共8小题,共72分) 17.(10分)解方程: (1)3x 2-5x -2=0;(2)(x -3)2+4x 2-12x =0. 解:x 1=-13,x 2=2;解:x 1=3,x 2=35.18.(6分)计算: (1)34×(-223)×56; 解:原式=-47;(2)24- 1.5+223-(3+2)2. 解:原式=166-5.19.(8分)如图,△ABC 三个顶点的坐标分别为A (2,7),B (6,8),C (8,2),以O 为位似中心,在第三象限内作出△A 1B 1C 1,使△A 1B 1C 1与△ABC 的相似比为1∶2 .不写作法,并写出A 1,B 1,C 1的坐标.解:作图略,A 1⎝⎛⎭⎫-1,-72,B 1(-3,-4),C 1(-4,-1).20.(8分)如图,在矩形ABCD 中,对角线AC ,BD 交于点O ,CE =AE ,F 是AE 的中点,AB =4,BC =8.求线段OF 的长.解:在矩形ABCD 中,AD =BC =8,CD =AB =4,OA =OC ,设CE =AE =x ,则DE =8-x ,在Rt △CDE 中,42+(8-x )2=x 2,解得x =5, ∴OF =12,CE =52.21.(8分)某单位于“五一”劳动节期间组织职工到“太湖仙岛”观光旅游.下面是领队与旅行社导游关于收费标准的一段对话:领队:组团去“太湖仙岛”旅游每人收费是多少? 导游:如果人数不超过25人,人均旅游费用为100元. 领队:超过25人怎样优惠呢?导游:如果超过25人,每增加1人,人均旅游费用降低2元,但人均旅游费用不得低于70元.该单位按旅行社的收费标准组团游览“太湖仙岛”结束后,共支付给旅行社2 700元. 请你根据上述信息,求该单位这次到“太湖仙岛”观光旅游的共有多少人?解:∵2 700>25×100,∴观光旅游的人数超过25人,设观光旅游的人数为x ,根据题意得x [100-2(x -25)]=2 700,解得x 1=45,x 2=30.当x 1=45时,2 70045=60<70;当x 2=30时,2 70030=90>70.∴观光旅游的人数应为30人.22.(10分)已知:△ABC 的两边AB ,AC 的长是关于x 的一元二次方程x 2-(2k +3)x +k 2+3k +2=0的两个实数根,第三边BC 的长为5.试问:k 取何值时,△ABC 是以BC 为斜边的直角三角形?解:设AB =a ,AC =b .∵a ,b 是方程x 2-(2k +3)x +k 2+3k +2=0的两根,∴a +b =2k +3,a ·b =k 2+3k +2.又∵△ABC 是以BC 为斜边的直角三角形,且BC =5,∴a 2+b 2=25.即(a +b )2-2ab =25,∴(2k +3)2-2(k 2+3k +2)=25.∴k 2+3k -10=0.∴k 1=-5或k 2=2.当k =-5时,方程为x 2+7x +12=0,解得x 1=-3,x 2=-4(舍去).当k =2时,方程为x 2-7x +12=0,解得x 1=3,x 2=4.∴当k =2时,△ABC 是以BC 为斜边的直角三角形.23.(10分)如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连结DE ,F 为线段DE 上一点,且∠AFE =∠B .(1)求证:△ADF ∽△DEC ;(2)若AB =8,AD =63,AF =43,求AE 的长.(1)证明:由AD ∥BC ,得∠ADF =∠DEC ,由AB ∥CD ,得∠B +∠C =180°,又∠AFD +∠AFE =180°,∠AFE =∠B ,∴∠AFD =∠C ,∴△ADF ∽△DEC ;(2)解:由(1)知△ADF ∽△DEC ,∴AD ∶DE =AF ∶CD ,∴DE =AD ·CD AF =63×843=12,∴AE =DE 2-AD 2=6.24.(12分)如图所示,在△ABC 中,D 是BC 的中点,且AD =AC ,DE ⊥BC 交AB 于E ,EC 交AD 于点F .(1)求证:△ABC ∽△FCD ;(2)若S △FCD =5,BC =10,求DE 的长.(1)证明:∵BD=CD,DE⊥BC,∴BE=CE,∴∠B=∠DCF,∵AD=AC,∴∠FDC=∠ACB,∴△ABC∽△FCD;(2)解:CD=BD=5,过点A作AM⊥BC于M,过点F作FN⊥BC于N,则DM=2.5,∵S△FCD=12CD·FN=5,∴FN=2.由△ABC∽△FCD,得AM∶FN=BC∶CD=2∶1,∴AM=4,由AM∥DE得△ABM∽△EBD,∴DE∶AM=BD∶BM=5∶(5+2.5)=2∶3,∴DE=8 3.。

华东师大版九年级数学上册期中考试题及答案【各版本】

华东师大版九年级数学上册期中考试题及答案【各版本】

华东师大版九年级数学上册期中考试题及答案【各版本】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.8的相反数的立方根是()A.2 B.12C.﹣2 D.12-2.如果y=2x-+2x-+3,那么y x的算术平方根是()A.2 B.3 C.9 D.±33.如果23a b-=,那么代数式22()2a b aba a b+-⋅-的值为()A.3B.23C.33D.434.如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是()A.﹣2 B.0 C.1 D.45.菱形不具备的性质是()A.四条边都相等 B.对角线一定相等C.是轴对称图形 D.是中心对称图形6.正十边形的外角和为()A.180°B.360°C.720°D.1440°7.下面四个手机应用图标中是轴对称图形的是()A.B.C.D.8.如图,已知BD是ABC的角平分线,ED是BC的垂直平分线,90BAC∠=︒,3AD=,则CE的长为()A .6B .5C .4D .339.如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90°10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)1368______________.2.因式分解:a 3-a =_____________.3.已知二次函数y=x 2﹣4x+k 的图象的顶点在x 轴下方,则实数k 的取值范围是__________.4.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是__________.5.如图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为_________m .6.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为___________.三、解答题(本大题共6小题,共72分)1.解分式方程:2311x x x x +=--2.先化简,再求值:2443(1)11m m m m m -+÷----,其中22m =.3.如图,已知点A (﹣1,0),B (3,0),C (0,1)在抛物线y=ax 2+bx+c 上.(1)求抛物线解析式;(2)在直线BC 上方的抛物线上求一点P ,使△PBC 面积为1;(3)在x 轴下方且在抛物线对称轴上,是否存在一点Q ,使∠BQC=∠BAC ?若存在,求出Q 点坐标;若不存在,说明理由.4.周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D 竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.5.某商场服装部分为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组销售额的数据,绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)该商场服装营业员的人数为,图①中m的值为;(2)求统计的这组销售额数据的平均数、众数和中位数.6.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、A4、C5、B6、B7、D8、D9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)12、a (a -1)(a + 1)3、k <44、425、136、2.5×10-6三、解答题(本大题共6小题,共72分)1、x=32、22mm -+ 1.3、(1)抛物线的解析式为y=﹣13x 2+23x+1;(2)点P 的坐标为(1,43)或(2,1);(3)存在,理由略.4、河宽为17米5、(1)25;28;(2)平均数:18.6;众数:21;中位数:18.6、(1)4元或6元;(2)九折.。

华师大版九年级数学上册道生中学级九中期考试

华师大版九年级数学上册道生中学级九中期考试

5题图FEDCBA道生中学2015级九上中期考试数学试卷2014.11(全卷共五个大题,满分150分,考试时间120分钟)一、选择题:(本大题12个小题,每小题4分,共48分)题号 1 2 3 4 5 6 7 8 9 10 11 12答案1. 在-3,21-,0,3四个数中,最小的数是(☆)A.-3 B.21-C.0 D.32. 下列计算正确的是(☆)A.a2+a3=a5B.a6÷a2=a3C.a2•a3=a6D.(a4)3=a123. 在下列四个图案中,既是轴对称图形,又是中心对称图形的是(☆)A.B.C.D.4. 数据1,2,3,3,5,5,5的众数和中位数分别是(☆)A.5 , 4B.3, 5C.5 , 5D.5, 35.如图所示,AB∥CD,AF与CD交于点E,BE⊥AF,∠B=60°,则∠DEF的度数是(☆)A.10°B.20°C.30°D.40°6.下列调查方式中最适合的是(☆)A.要了解一批炮弹的杀伤半径,采用全面调查方式B.调查你所在班级的同学的身高,采用抽样调查方式C.环保部门调查嘉陵江某段水域的水质情况,采用抽样调查方式D.调查全市中学生每天的就寝时间,采用全面调查方式7.将一个有45°角的三角板的直角顶点放在一张宽为3cm 的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为( ☆ )A. B .C .D .8.若x=-1是关于x 的一元二次方程)0(022≠=-+a bx ax 的一个根,则b a 222014+-的值等于(☆) A.2014 B.2010 C.2018 D.20129.如图,在□ABCD 中,E 为CD 上一点,连接AE 、BD 相交于 点F ,已知DE :EC=2:3,则=∆∆ABF DEF S S :(☆) A.2:3 B.4:9 C.2:5 D.4:2510.张华从家骑自行车上学,匀速行驶了一段距离,休息了一段时间,发现自己忘了带数学复习资料,立刻原路原9题图速返回,在途中遇到给他送数学复习资料的妈妈,拿到数学复习资料后,张华立刻掉头沿原方向用比原速大的速度匀速行驶到学校.在下列图形中,能反映张华离家的距离s 与时间t 的函数关系的大致图象是(☆)11.下列图形都是由同样大小的正方形和正三角形按一定的规律组成,其中第①个图形一共有5个正多边形,第②个图形一共有13个正多边形,第③个图形一共有26个正多边形,……,则第⑥个图形正多边形的个数为(☆)A.90B.91C.115D.11612.已知:如图,矩形OABC 的边OA 在x 轴的负半轴上,边OC 在y 轴的tots o t s o t so A . C . D .sOyxNM EDCBA正半轴上,且OA=2OC ,直线y=x+b 过点C ,并且交对角线OB 于点E ,交x 轴于点D ,反比例函数xa y =过点E 且交AB 于点M ,交BC 于点N ,连接MN 、OM 、ON,若△OMN 的面积是980,则a 、b 的值分别为(☆) A. =a 2,=b 3 B.=a 3,,=b 2 C. =a -2,=b 3 D.=a -3,=b 2二、填空题:(本大题6个小题,每小题4分,共24分)13.钓鱼岛是中国的固有领土,位于中国东海,面积约4400000平方米,将数据4400000用科学记数法表示为_____________. 14.在函数3-=x xy 中,自变量x 的取值范围是______. 15.方程x x32=的解是______________________.16.如图,在△ABC 中,∠ACB=90°,cosB=54,点D 在BC 上,tan ∠CAD=31,若CD=2,则BD=___________.17.15.如图,△OAB 和△ACD 是等边三角形,O 、A 、C 在x 轴上,DCBA16题图。

【华东师大版】九年级数学上期中试题附答案

【华东师大版】九年级数学上期中试题附答案

一、选择题1.下列图形中,不是中心对称图形的是()A.B.C.D.2.下列四个图案中,是中心对称图形的是()A.B.C.D.3.下列图形中,既是轴对称又是中心对称图形的是()A.B.C.D.4.如图,将正方形ABCD绕点A顺时针旋转35°,得到正方形AEFG,DB的延长线交EF于点H,则∠DHE的大小为 ()A.90°B.95°C.100°D.105°5.如图,在平面直角坐标系中Rt△ABC的斜边BC在x轴上,点B坐标为(1,0),AC=2,∠ABC=30°,把Rt△ABC先绕B点顺时针旋转180°,然后再向下平移2个单位,则A点的对应点A′的坐标为()A .(﹣4,﹣2﹣3)B .(﹣4,﹣2+3)C .(﹣2,﹣2+3)D .(﹣2,﹣2﹣3) 6.既是中心对称图形又是轴对称图形,且只有两条对称轴的四边形是( )A .正方形B .矩形C .菱形D .矩形或菱形7.如图,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,顶点坐标为(1,)n 与y 轴的交点在(0,2)、(0,3) 之间(包含端点).有下列结论:①24ac b <;②30a b +>;③420a b c ++>;④当0y >时,x 的取值范围为13x;⑤当0x >时,y 随着x的增大而减小;⑥若抛物线经过点()12,y -、23,2y ⎛⎫ ⎪⎝⎭、()33,y ,则312y y y <<.其中正确的有( )A .②③⑤B .①③④C .①③⑥D .②③⑥8.抛物线28y x x q =++与x 轴有交点,则q 的取值范围是( ) A .16q <B .16q >C .16q ≤D .16q ≥9.已知抛物线y =ax 2+bx +c 上部分点的横坐标与纵坐标的对应值如下表,给出下列结论:①抛物线y =ax 2+bx +c 经过原点;②2a +b =0;③当y >0时,x 的取值范围是x <0或x >2;④若点P (m ,n )在该抛物线上,则am 2+bm ≤a +b .其中正确结论的个数是( ) x … ﹣1 0 1 2 3 … y…3﹣13…A .4个B .3个C .2个D .1个10.将抛物线22y x =先向右平移1个单位长度,再向下平移3个单位长度后,所得的抛物线对应的函数关系式是 ( ) A .2(2-1)-3y x =B .22(-1)-3y x =C .2(21)-3y x =+D .22(1)-3y x =+11.一面足够长的墙,用总长为30米的木栅栏(图中的虚线)围一个矩形场地ABCD ,中间用栅栏隔成同样三块,若要围成的矩形面积为54平方米,设垂直于墙的边长为x 米,则x 的值为( )A .3B .4C .3或5D .3或4.512.小刚在解关于x 的方程20(a 0)++=≠ax bx c 时,只抄对了1a =,4b =,解出其中一个根是1x =-.他核对时发现所抄的c 比原方程的c 值小2.则原方程的根的情况是( )A .不存在实数根B .有两个不相等的实数根C .有一个根是xD .有两个相等的实数根13.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为xcm ,那么x 满足的方程是( )A .x 2+65x-350=0B .x 2+130x-1400=0C .x 2-130x-1400=0D .x 2-65x-350=014.关于x 的方程x 2﹣kx ﹣2=0的根的情况是( ) A .有两个相等的实数根 B .没有实数根 C .有两个不相等的实数根D .无法确定二、填空题15.已知抛物线2y x bx c =++的部分图象如图所示,当0y <时,x 的取值范围是______.16.如图,在平面直角坐标系中,菱形ABCD 的顶点A 的坐标为(5,0),顶点B 在y 轴正半轴上,顶点D 在x 轴负半轴上.若抛物线y =-x 2-13x +c 经过点B 、C ,则菱形ABCD 的面积为________.17.小明从如图所示的二次函数()20y ax bx c a =++≠图象中,观察得出了下面五条信息:①32a b =;②240b ac -=;③ 0ab >;④0a b c ++<;⑤20b c +>.你认为正.确.信息的有_______________.(请填序号)18.已知x =2是关于x 一元二次方程x 2+kx ﹣6=0的一个根,则另一根是_____. 19.若关于x 的一元二次方程()21210k x x -+-=有两个不相等的实数根,则k 的取值范围是______.20.已知x 1和x 2是方程2x 2-5x+1=0的两个根,则1212x x x x +的值为_____.三、解答题21.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点A ,C 的坐标分别为()4,5-,()1,3-.(1)请在如图所示的网格平面内作出平面直角坐标系.(2)请作出ABC 向下平移的3个单位,再向右平移3个单位后的的A B C '''. (3)点A 关于x 轴的对称点坐标是______;点C 关于y 轴的对称点坐标是______;点B 关于原点的对称点坐标是______.22.综合与实践 问题情境从“特殊到一般”是数学探究的常用方法之,类比特殊图形中的数量关系和探究方法可以发现一般图形具有的普遍规律.如图1,在ABC 中,90ACB ∠=︒,AC BC =,AD 为BC 边上的中线,E 为AD 上一点,将AEC 以点C 为旋转中心,逆时针旋转90°得到BFC △,AD 的延长线交线段BF 于点P .探究线段EP ,FP ,BP 之间的数量关系.数学思考(1)请你在图1中证明AP BF ⊥; 特例探究(2)如图2,当CE 垂直于AD 时,求证:2EP FP BP +=; 类比再探(3)请判断(2)的结论在图1中是否仍然成立?若成立,请证明;若不成立,请说明理由.23.有这样一个问题:探究函数243y x x =-+的图象与性质.小丽根据学习函数的经验,对函数243y x x =-+的图象与性质进行了探究.下面是小丽的探究过程,请补充完整:(1)函数243y x x =-+的自变量x 的取值范围是_______.(2)如图,在平面直角坐标系xOy 中,画出了函数243y x x =-+的部分图象,用描点法将这个函数的图象补充完整;(3)对于上面的函数243y x x =-+,下列四个结论: ①函数图象关于y 轴对称;②函数既有最大值,也有最小值;③当2x >时,y 随x 的增大而增大,当2x <-时,y 随x 的增大而减小; ④函数图象与x 轴有2个公共点. 所有正确结论的序号是_____.(4)结合函数图象,解决问题:若关于x 的方程243x x k -+=有4个不相等的实数根,则k 的取值范围是____.24.如图,已知抛物线2y ax c =+过点()2,2-,()4,5,过定点()0,2F 的直线y kx b =+与抛物线交于A 、B 两点,点B 在点A 的右侧,过点B 作x 轴的垂线,垂足为C .(1)直接写出抛物线的解析式. (2)求证:BF BC =.(3)若1k =,在直线y kx b =+下方抛物线上是否存在点Q ,使得QBF 的面积最大?若存在,求出点Q 的坐标及QBF 的最大面积;若不存在,请说明理由.25.商店销售某种商品,每件成本为30元.经市场调研,售价为40元时,可销售200件;售价每增加2元,销售量将减少20件.如果这种商品全部销售完,该商店可盈利2250元,那么该商品每件售价多少元?26.水果店张阿姨以每斤4元的价格购进某种水果若干斤,然后以每斤6元的价格出售,每天可售出150斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出30斤,为保证每天至少售出360斤,张阿姨决定降价销售.(1)设这种水果每斤的售价降低x 元(02x ≤≤),每天的销售量为y 斤,求y 与x 的关系式;(2)销售这种水果要想每天盈利450元,张阿姨需将每斤的售价降低多少元?【参考答案】***试卷处理标记,请不要删除一、选择题 1.A解析:A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,故本选项符合题意;B、是中心对称图形,故本选项不符合题意;C、是中心对称图形,故本选项不符合题意;D、是中心对称图形,故本选项不符合题意;故选:A.【点睛】本题考查了中心对称图形的概念.中心对称是要寻找对称中心,旋转180°后与原图重合.2.B解析:B【分析】根据中心对称图形的概念和各图特点即可解答.【详解】解:根据中心对称图形的概念,可知B中的图形是中心对称图形,而A、C和D中的图形不是中心对称图形.故选:B.【点睛】考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.B解析:B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故错误;B、是轴对称图形,是中心对称图形,故正确;C、不是轴对称图形,是中心对称图形,故错误;D、是轴对称图形,不是中心对称图形,故错误.故选B.【点睛】本题考查的是中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.C解析:C【分析】直接根据四边形AEHB的四个内角和为360°即可求解.【详解】解:∵将正方形ABCD绕点A顺时针旋转35°,得到正方形AEFG,∴∠BAE=35°,∠E=90°,∠ABD=45°,∴∠ABH=135°,∴∠DHE=360°-∠E-∠BAE-∠ABH=360°-90°-35°-135°=100°.故选C.【点睛】此题考查了正方形的性质、旋转角、多边形的内角和定理,正确找出旋转角是解题关键.5.D解析:D【解析】解:作AD⊥BC,并作出把Rt△ABC先绕B点顺时针旋转180°后所得△A1BC1,如图所示.∵AC=2,∠ABC=30°,∴BC=4,∴AB=23,∴AD=AB ACBC⋅=2324⨯=3,∴BD=2ABBC=223()=3.∵点B坐标为(1,0),∴A点的坐标为(4,3).∵BD=3,∴BD1=3,∴D1坐标为(﹣2,0),∴A1坐标为(﹣2,﹣3).∵再向下平移2个单位,∴A′的坐标为(﹣2,﹣3﹣2).故选D.点睛:本题主要考查了直角三角形的性质,勾股定理,旋转的性质和平移的性质,作出图形利用旋转的性质和平移的性质是解答此题的关键.6.D解析:D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】正方形是轴对称图形,也是中心对称图形,有4条对称轴;矩形是轴对称图形,也是中心对称图形,有2条对称轴;菱形是轴对称图形,也是中心对称图形,有2条对称轴.故选D.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.7.B解析:B 【分析】根据二次函数图像可知1x =为抛物线的对称轴,可以求出与x 轴正半轴交点坐标,可解④⑤,开口朝下,与y 轴交于正半轴,可知:0a <,23c ≤≤,根据对称轴公式可得:0b >,可解①②③,根据图像可解⑥. 【详解】∵抛物线开口朝下, ∴0a <,∵与y 轴的交点在(0,2)、(0,3) 之间(包含端点), ∴23c ≤≤, ∴4ac <0, ∴24ac b <, ∴①正确;∵1x =为抛物线的对称轴, ∴12ba-=, ∴0b >,12a b =-, ∴313202a b b b b +=-+=-<,∴②不正确;∵1x =-时,0a b c -+=, ∴32c b =, ∴1424202a b c b b c c ⎛⎫++=⨯-++= ⎪⎝⎭> ∴③正确;∵1x =为抛物线的对称轴,(1,0)A -, ∴B 点坐标为(3,0),∴当0y >时,x 的取值范围为13x∴④正确;∵1x =为抛物线的对称轴, ∴1x >时,y 随着x 的增大而减小, ∴⑤不正确;由图像可知:213000y y y =<,>,, ∴132y y y <<, ∴⑥不正确; 故选:B . 【点睛】本题主要考查的是二次函数图像的性质以及二次函数对称轴,数量掌握二次函数图像的性质是解决本题的关键.8.C解析:C 【分析】根据抛物线与x 轴的交点情况可得到方程280x x q ++=根的情况,进而得到根的判别式大于等于0,即可得到关于q 的不等式,最后解不等式即可得到答案. 【详解】解:∵抛物线28y x x q =++与x 轴有交点∴方程280x x q ++=有实数根∴2248416440b ac q q ∆=-=-⨯⋅=-≥ ∴16q ≤. 故选:C 【点睛】本题考查了二次函数图象性质与一元二次方程根的情况的关系、解一元一次不等式等,体现了数形结合的思想.9.B解析:B 【分析】根据二次函数的性质和表格中的数据,可以判断各个小题中的结论是否成立,本题得以解决. 【详解】解:由表格数据可知:当x=0时,y=0,∴抛物线y =ax 2+bx +c 经过原点;①正确;抛物线对称轴为:直线0212x +==,即12b a-=,∴2a +b =0,②正确; 当y=0时,x=0或x=2且抛物线顶点坐标为(1,-1)∴抛物线开口向上,当y >0时,x 的取值范围是x <0或x >2;③正确 由以上分析可知当x=1时,y 取得最小值为a+b+c若点P (m ,n )在该抛物线上,则am 2+bm+c≥a+b+c .即am 2+bm≥a+b ,④错误 故选:B 【点睛】本题考查抛物线与x 轴的交点、二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.10.B解析:B【分析】先确定出原抛物线的顶点坐标,然后根据向右平移横坐标加,向下平移纵坐标减求出新图象的顶点坐标,然后写出即可.【详解】解:抛物线y =22x 的顶点坐标为(0,0),向右平移1个单位,再向下平移3个单位后的图象的顶点坐标为(1,−3),所以,所得图象的解析式为y =22(1)x - -3.故选:B【点睛】本题考查了函数图象的平移,根据平移规律“左加右减,上加下减”利用顶点的变化确定图象的变化是解题的规律.11.D解析:D【分析】设AD 长为x 米,四边形ABCD 是矩形,根据矩形的性质,即可求得AB 的长;根据题意可得方程x (30−4x )=54,解此方程即可求得x 的值.【详解】解:设与墙头垂直的边AD 长为x 米,四边形ABCD 是矩形,∴BC =MN =PQ =x 米,∴AB =30−AD−MN−PQ−BC =30−4x (米),根据题意得:x (30−4x )=54,解得:x =3或x =4.5,∴AD 的长为3或4.5米.故选:D .【点睛】考查了一元二次方程的应用中的围墙问题,正确列出一元二次方程,并注意解要符合实际意义.12.A解析:A直接把已知数据代入进而得出c 的值,再利用根的判别式求出答案.【详解】∵小刚在解关于x 的方程20ax bx c ++=(0a ≠)时,只抄对了1a =,4b =,解出其中一个根是1x =-,∴()()21410c -+⨯-+=, 解得:3c =,∵核对时发现所抄的c 比原方程的c 值小2,故原方程中5c =,则224441540b ac =-=-⨯⨯=-<,则原方程的根的情况是不存在实数根.故选:A .【点睛】本题主要考查了根的判别式,正确利用方程的解得出c 的值是解题关键.13.A解析:A【分析】本题可设长为(80+2x ),宽为(50+2x ),再根据面积公式列出方程,化简即可.【详解】解:依题意得:(80+2x )(50+2x )=5400,即4000+260x+4x 2=5400,化简为:4x 2+260x-1400=0,即x 2+65x-350=0.故选:A .【点睛】本题考查的是一元二次方程的应用,解此类题目要注意运用面积的公式列出等式再进行化简.14.C解析:C【分析】根据一元二次方程根的判别式可得△=(﹣k )2﹣4×1×(﹣2)=k 2+8>0,即可得到答案.【详解】解:△=(﹣k )2﹣4×1×(﹣2)=k 2+8.∵k 2≥0,∴k 2+8>0,即△>0,∴该方程有两个不相等的实数根.故选:C .本题考查一元二次方程根的判别式, 24b ac ∆=-,当0∆>时方程有两个不相等的实数根,当0∆=时方程有两个相等的实数根,当∆<0时方程没有实数根.二、填空题15.【分析】先根据二次函数的对称性求出其与x 轴的另一个交点坐标再根据图象法即可得【详解】由图象可知抛物线的对称轴为与x 轴的一个交点坐标为则其与x 轴的另一个交点坐标为结合图象得:当时故答案为:【点睛】本题 解析:13x【分析】先根据二次函数的对称性求出其与x 轴的另一个交点坐标,再根据图象法即可得.【详解】由图象可知,抛物线的对称轴为1x =,与x 轴的一个交点坐标为(1,0)-,则其与x 轴的另一个交点坐标为(3,0),结合图象得:当0y <时,13x, 故答案为:13x.【点睛】本题考查了二次函数的对称性、二次函数与不等式,熟练掌握二次函数的对称性是解题关键. 16.156【分析】由题意可得:结合已知条件求解再求解的坐标再代入抛物线的解析式求解即可得到答案【详解】解:在抛物线上菱形ABCD >故答案为:【点睛】本题考查的是抛物线的性质菱形的性质勾股定理的应用掌握以解析:156【分析】由题意可得:()0B c ,,结合已知条件求解AB = 再求解C 的坐标,再代入抛物线的解析式求解c 即可得到答案.【详解】解:B 在抛物线上,()0B c ∴,()5,0A ,AB ∴=菱形ABCD ,BC AB ∴==()C c ∴()(2225+1325,c c c c ∴=-+++225c ∴+=2250,c +≠13,=2144,c ∴=c >0,12,c ∴=1312=156.ABCD S ∴=⨯菱形故答案为:156.【点睛】本题考查的是抛物线的性质,菱形的性质,勾股定理的应用,掌握以上知识是解题的关键.17.①③④⑤【分析】由抛物线的开口方向判断a 与0的关系由抛物线与y 轴的交点判断c 与0的关系然后再根据对称轴与抛物线与x 轴的交点情况进行判断即可;【详解】∵抛物线开口向下∴a <0∴对称轴∴故①正确;∵抛物 解析:①③④⑤【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后再根据对称轴与抛物线与x 轴的交点情况进行判断即可;【详解】∵抛物线开口向下,∴a <0,∴对称轴123b x a =-=-, ∴32a b =,故①正确; ∵抛物线与x 轴有两个交点,∴24b ac ->0,故②错误;∵对称轴123b x a =-=-,a <0, ∴32a b =<0, ∴ab >0,故③正确;当1x =时,y >0,即,y <0,∴a b c ++<0,故④正确;当1x =-时,y >0,即,a b c -+>0,∴222a b c -+>0, ∵32a b =, ∴322b b c -+>0,∴2b c +>0,故⑤正确;故答案是①③④⑤.【点睛】本题主要考查了二次函数图象与系数的关系,准确分析判断是解题的关键.18.-3【分析】设方程的另一个根为x2根据两根之积列出关于x2的方程解之可得答案【详解】解:设方程的另一个根为x2则2x2=﹣6解得x2=﹣3故答案为:﹣3【点睛】本题考查了一元二次方程ax2+bx+c解析:-3.【分析】设方程的另一个根为x 2,根据两根之积列出关于x 2的方程,解之可得答案.【详解】解:设方程的另一个根为x 2,则2x 2=﹣6,解得x 2=﹣3,故答案为:﹣3.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)根与系数的关系,若x 1,x 2为方程的两个根,则x 1,x 2与系数的关系式:12b x x a +=-,12c x x a⋅=. 19.且【分析】根据题意结合一元二次方程的定义和根的判别式可得关于k 的不等式然后解不等式即可求解【详解】解:∵关于的一元二次方程有两个不相等的实数根∴∴的取值范围是且故答案为:且【点睛】本题考查了一元二次 解析:0k >且1k ≠【分析】根据题意,结合一元二次方程的定义和根的判别式可得关于k 的不等式,然后解不等式即可求解.【详解】解:∵关于x 的一元二次方程()21210k x x -+-=有两个不相等的实数根, ∴21024(1)(1)0k k -≠⎧⎨∆=--⨯->⎩,10k k ≠⎧⎨>⎩, ∴k 的取值范围是0k >且1k ≠,故答案为:0k >且1k ≠.【点睛】本题考查了一元二次方程的定义、根的判别式、解一元一次不等式,熟练掌握一元二次方程的根的判别式与根的关系是解答的关键.20.5【分析】直接根据根与系数的关系求出再代入求值即可【详解】解:∵x1x2是方程2x2-5x+1=0的两个根∴x1+x2=-∴故答案为:5【点睛】本题考查了根与系数的关系:若x1x2是一元二次方程ax解析:5【分析】直接根据根与系数的关系,求出12x x +,12x x 再代入求值即可.【详解】解:∵x 1,x 2是方程2x 2-5x+1=0的两个根,∴x 1+x 2=--55-=22,121=2x x . ∴121252==512x x x x + 故答案为:5.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=b a -,x 1x 2=c a. 三、解答题21.(1)画图见解析;(2)画图见解析;(3)()4,5--;()1,3;()2,1-.【分析】(1)直接利用A ,C 点坐标建立平面直角坐标系即可;(2)直接利用平移的性质得出对应点位置进而得出答案;(3)分别根据轴对称和中心对称点的求法作出对称点即可.【详解】(1)如图所示:(2)如图所示:(3)()4,5A -关于x 轴的对称点坐标是()4,5--;()1,3C -关于y 轴的对称点坐标是()1,3;()2,1B -关于原点的对称点坐标是()2,1-.【点睛】此题主要考查了平移变换以及轴对称和中心对称变换,正确得出对应点位置是解题关键. 22.(1)见解析;(2)见解析;(3)成立.证明见解析.【分析】(1)根据旋转图形的性质,可得△AEC ≌△BFC ,得到∠FBC=∠EAC ,再由三角形内角和证明AP ⊥BE 即可.(2)先证明四边形CEPF 是正方形,得到CE=FP ,再证明△CED ≌△BPD ,可得CE=BP ,则问题可证.(3)过点C 作CG ⊥AD ,垂足为G ,CH ⊥BP ,垂足为H ,则按照(1)中方法问题证.【详解】(1)证明:根据旋转图形的性质,可得△AEC ≌△BFC ,∴∠FBC=∠EAC .又∵∠ADC=∠BDP ,∠EAC+∠ADC=180°-∠ACD=90°,∴∠BDP+∠FBC=90°,∴∠BPD=180°-(∠BDP+∠FBC )=90°,∴AP ⊥BE .(2)证明:∵∠CEP=∠EPF=∠ECF=90°,∴四边形CEPF 是矩形.∵CE=CF∴四边形CEPF 是正方形.∴CE=EP=FP .又∵∠CDE=∠BDP ,CD=BD ,∠CED=∠BPD=90°∴△CED ≌△BPD ,∴CE=BP .∴EP+FP=2CE=2BP .(3)成立.理由如下:过点C 作CG ⊥AD ,垂足为G ,CH ⊥BP ,垂足为H .∵△BFC 由△AEC 逆时针90°旋转得到,∴∠AEC=∠BFC ,CE=CF ,∠ECF=90°.∵∠CEG+∠AEC=180°,∠CFH+∠BFC=180°,∴∠CEG=∠CFH .∵∠CGE=∠CHF=90°,∴△CEG ≌△CFH ,∴CH=CG ,EG=FH .∴EP+FP=GP+HP∵∠CGP=∠GPH=∠H=90°,∴四边形CGPH 是正方形.又(2)可知,GP+PH=2BP ,∴EP+PF=2BP .【点睛】本题考查了利用图形旋转证明三角形全等以及正方形的性质和判定,解答关键是应用由特殊到一般思想,通过类比方法证明问题.23.(1)x 为任意实数;(2)见解析;(3)①③;(4)13k -<<【分析】(1)根据函数解析式可以写出x 的取值范围;(2)根据函数图象的特点,可以得到该函数关于y 轴对称,从而可以画出函数的完整图象;(3)根据函数图象可以判断各个小题中的结论是否成立;(4)根据函数图象,可以写出关于x 的方程x 2-4|x |+3=k 有4个不相等的实数根时,k 的取值范围.【详解】解:(1)∵函数y =x 2-4|x |+3,∴x 的取值范围为任意实数,故答案为:任意实数;(2)由函数y =x 2-4|x |+3可知,x >0和x <0时的函数图象关于y 轴对称,函数图象如右图所示;(3)由图象可得,函数图象关于y 轴对称,故①正确;函数有最小值,但没有最大值,故②错误;当x >2时,y 随x 的增大而增大,当x <-2时,y 随x 的增大而减小,故③正确; 函数图象与x 轴有4个公共点,故④错误;故答案为:①③;(4)由图象可得,关于x 的方程x 2-4|x |+3=k 有4个不相等的实数根,则k 的取值范围是-1<k <3, 故答案为:-1<k <3.【点睛】本题考查抛物线与x 轴的交点、二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用数形结合的思想解答.24.(1)2114y x =+;(2)见解析;(3)存在,最大值为222+,此时Q 点坐标为()2,2.【分析】(1)利用待定系数法求抛物线解析式;(2)设B(x ,2114x +),而F (0,2),利用两点间的距离公式得到BF=2114x +,而BC=2114x +,所以BF=BC ; (3)作//QE y 轴交AB 于点E ,设2114Q t t ⎛⎫+ ⎪⎝⎭,,利用QBF EQF EQB S S S =+△△△和二次函数的性质即可求解.【详解】(1)把点(-2,2),(4,5)代入2y ax c =+得:42165a c a c +=⎧⎨+=⎩,解得:141 ac⎧=⎪⎨⎪=⎩,所以抛物线解析式为2114y x=+;(2)设B(x,2114x+),已知F(0,2),∴222 2222221111211444BF x x x x x⎛⎫⎛⎫⎛⎫=++-=+-=+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,∴2114BF x=+,∵BC x⊥轴,∴2114BC x=+,∴BF BC=;(3)作//QE y轴交AB于点E.经过点F(0,2),且1k=时,∴一次函数解析式为2y x=+,解方程组22114y xy x=+⎧⎪⎨=+⎪⎩,得22242xy⎧=+⎪⎨=+⎪⎩2242xy⎧=-⎪⎨=-⎪⎩则(22222B++,,设2114Q t t⎛⎫+⎪⎝⎭,,则()2E t t+,,∴221121144EQ t t t t⎛⎫=+-+=-++⎪⎝⎭,∴QBF EQF EQB S S S =+△△△((2111221224EQ t t ⎛⎫=⋅+⋅=⋅+-++ ⎪⎝⎭)21224t +=--++当2t =时,QBF S △有最大值,最大值为2+,此时Q 点坐标为()22,. 【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质;会利用待定系数法求函数解析式;要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.25.每件售价为45元【分析】设该商品的单价为x 元,根据题意得到方程,解方程即可求解.【详解】解:设该商品的单价为x 元.根据题意,得()()3020010402250---=⎡⎤⎣⎦x x .解这个方程,得1245x x ==.答:每件售价为45元.【点睛】本题考查一元一次方程的应用,解题的关键是根据利润得到相应的等量关系是解题的关键.26.(1)300150y x =+;(2)只需将每斤的售价降低1元.【分析】(1)销售量=原来销售量+下降销售量,据此列式即可;(2)根据销售量×每斤利润=总利润列出方程求解即可.【详解】(1)当02x ≤≤时,150303001500.1x y x =+⨯=+ (2)由题意得:()()64300150450x x --+=解得:112x =,21x = 当12x =时,13001503003602y =⨯+=<(舍去) 当1x =时,3001150450360y =⨯+=> ∴只需将每斤的售价降低1元.【点睛】本题考查了理解解题的能力,销售量×每斤利润=总利润,掌握利润公式是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014-2015道生中学九上数学期中考试卷(华东师大版附答案)2014-2015道生中学九上数学期中考试卷(华东师大版附答案)(全卷共五个大题,满分150分,考试时间120分钟)一、选择题:(本大题12个小题,每小题4分,共48分)题号123456789101112答案1.在-3,,0,3四个数中,最小的数是(☆)A.-3B.C.0D.32.下列计算正确的是(☆)A.a2+a3=a5B.a6÷a2=a3C.a2•a3=a6D.(a4)3=a123.在下列四个图案中,既是轴对称图形,又是中心对称图形的是(☆)A.B.C.D.4.数据1,2,3,3,5,5,5的众数和中位数分别是(☆)A.5,4B.3,5C.5,5D.5,35.如图所示,AB∥CD,AF与CD交于点E,BE⊥AF,∠B=60°,则∠DEF 的度数是(☆)A.10°B.20°C.30°D.40°6.下列调查方式中最适合的是(☆)A.要了解一批炮弹的杀伤半径,采用全面调查方式B.调查你所在班级的同学的身高,采用抽样调查方式C.环保部门调查嘉陵江某段水域的水质情况,采用抽样调查方式D.调查全市中学生每天的就寝时间,采用全面调查方式7.将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为(☆)A.B.C.D.8.若x=-1是关于x的一元二次方程的一个根,则的值等于(☆)A.2014B.2010C.2018D.20129.如图,在□ABCD中,E为CD上一点,连接AE、BD相交于点F,已知DE:EC=2:3,则(☆)A.2:3B.4:9C.2:5D.4:2510.张华从家骑自行车上学,匀速行驶了一段距离,休息了一段时间,发现自己忘了带数学复习资料,立刻原路原速返回,在途中遇到给他送数学复习资料的妈妈,拿到数学复习资料后,张华立刻掉头沿原方向用比原速大的速度匀速行驶到学校.在下列图形中,能反映张华离家的距离与时间的函数关系的大致图象是(☆)11.下列图形都是由同样大小的正方形和正三角形按一定的规律组成,其中第①个图形一共有5个正多边形,第②个图形一共有13个正多边形,第③个图形一共有26个正多边形,……,则第⑥个图形正多边形的个数为(☆)A.90B.91C.115D.11612.已知:如图,矩形OABC的边OA在x轴的负半轴上,边OC在y轴的正半轴上,且OA=2OC,直线y=x+b过点C,并且交对角线OB于点E,交x轴于点D,反比例函数过点E且交AB于点M,交BC于点N,连接MN、OM、ON,若△OMN的面积是,则、的值分别为(☆)A.2,3B.3,,2C.-2,3D.-3,2二、填空题:(本大题6个小题,每小题4分,共24分)题号131415答案题号161718答案13.钓鱼岛是中国的固有领土,位于中国东海,面积约4400000平方米,将数据4400000用科学记数法表示为_____________.14.在函数中,自变量的取值范围是______.15.方程的解是______________________.16.如图,在△ABC中,∠ACB=90°,cosB=,点D在BC上,tan∠CAD=,若CD=2,则BD=___________.17.15.如图,△OAB和△ACD是等边三角形,O、A、C在x轴上,点B、D在的图象上,则点C的坐标是18.如图,正方形ABCD的对角线AC、BD相交于点O,∠BAC的平分线交BD于点E,交BC于点F,点G是AD的中点,连接CG交BD于点H,连接FO并延长FO交CG于点P,则PG:PC的值为_____________.三、解答题:(本大题2个小题,每小题7分,共14分)19.计算:20.解方程:四、解答题:(本大题4个小题,每小题10分,共40分)21.先化简,再求值:,其中x,y满足.22.2013年1月1日新交通法规开始实施.为了解某社区居民遵守交通法规情况,小明随机选取部分居民就“行人闯红灯现象”进行问卷调查,调查分为“A:从不闯红灯;B:偶尔闯红灯;C:经常闯红灯;D:其他”四种情况,并根据调查结果绘制出部分条形统计图(如图1)和部分扇形统计图(如图2).请根据图中的信息,解答下列问题:(1)本次调查共选取________________名居民;(2)求出扇形统计图中“C”所对扇形的圆心角的度数,并将条形统计图补充完整;(3)如果该社区共有居民1600人,估计有多少人偶尔闯红灯?23.某商场计划购进,两种新型节能台灯共100盏,这两种台灯的进价、售价如下表所示:价格类型进价(元/盏)售价(元/盏)型3045型5070(1)若商场预计进货款为3500元,则这两种台灯各购进多少盏?(2)若商场规定型台灯的进货数量不超过型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?24.已知:如图,在△ABC中,AB=AC,延长BC到D,使BD=2BC,连接AD,过C作CE⊥BD交AD于点E,连接BE交AC于点O.(1)求证:∠CAD=∠ABE.(2)求证:OA=OC五、解答题:(本大题2个小题,每小题12分,共24分)25.如图1,直线y=x与双曲线交于点P,PA⊥轴于点A,S△PAO=.(1)求k的值.(2)如图2,点E的坐标为(0,-1),连接PE,过点P作PF⊥PE,交轴于点F,求点F的坐标.(3)如图3,将点A向右平移5个单位长度得点M,问:双曲线上是否存在点Q,使S△QPO=S△MPO?若存在,求Q点的坐标;若不存在,请说明理由.26.如图,矩形ABCD中,AB=CD=6,AD=BC=8,△GEF中,∠EGF=90°,GE=GF=2,把△GEF按图1位置摆放(点G与点A重合,其中E、G、A、B在同一直线上).∠BAC的角平分线AN交BC于点M,△GEF按图1的起始位置沿射线AN方向以每秒个单位长度匀速移动(始终保持GF∥BC,GE∥DC),设移动的时间为t秒.当点E移到BC上时,△GEF 停止移动(如图3)(1)求BM=__________;在移动的过程中,t=_________时,点F在AC上.(2)在移动的过程中,设△GEF和△ACM重叠的面积为s,请直接写出s与t之间的函数关系式以及自变量t的取值范围.(3)如图3,将△GEF绕着点E旋转,在旋转过程中,设直线GF交直线AC于点P,直线GF交直线BC于点Q,当△CPQ为等腰三角形时,求PC的长度.道生中学2015级九上中期考试数学试题参考答案及评分意见一、选择题:题号123456789101112答案ADBDCCDBDDCC二、填空题:13.;14.;15.;16.6;17.;18..三、解答题:19.解:原式=…………………………………………(5分)=-7.………………………………………………………………(7分)20.解:………………………………2分……………………………………5分经检验,为原分式方程的根…………………………………6分四、解答题:21.解:原式====………………6分解方程组得:带入上式得:原式=.…………10分22.解:(1)80.……………………2分(2)80-56-12-4=8(人),×100%×360°=36°.所以“C”所对圆心角的度数是36°.……………………5分图形补充正确如下图.……………8分(3)1600×=240(人).所以该社区约有240人偶尔闯红灯.……………………10分23.解:(1)设商场应购进型台灯盏,则型台灯为盏,……(1分)根据题意得:.………………………(3分)解得:,.………………………………(4分)答:应购进型台灯75盏,型台灯25盏.…………………………(5分)(2)设商场销售完这批台灯可获利元,则……………………………(6分)……(7分)由题意得:,解得:…………………………(8分),随的增大而减小,当时,取得最大值:…………(9分)答:商场购进型台灯25盏,型台灯75盏,销售完这批台灯获利最多,此时利润为1875元.……………………………(10分)24.证明:(1)(1)∵BD=2BC∴BC=DC∵CE⊥BD∴DE=BE∴∠D=∠DBE………………………………………………(2分)∵AC=AB∴∠ACB=∠ABC∵∠ACB=∠D+∠CAD∠ABC=∠DBE+∠ABE……………………………………(4分)∴∠CAD=∠ABE……………………………………………(5分)(2)取DE的中点为F,连接CF……(6分)∵CE⊥BD∴DF=CF=EF∵BC=CD∴CF∥BE且CF=BE∴∠CFA=∠AEB………………(7分)在△CAF和△ABE中∵∠CFA=∠AEBAC=BA∠CAF=∠ABE∴△CAF≌△ABE(ASA)………(9分)∴AE=CF∴AE=CF=DF=EF∵CF∥BE∴AO=CO………………………(10分)(2)方法二:取AD的中点为M,连接CM.方法三:取AB的中点为G,连接CG.方法四:过A作AH⊥BC于H,AH交BE于点K.方法五:过A作AN∥BD 交BE的延长线于点N.五、解答题:25.(1)…………4分(2)过点P作PM⊥y轴交y轴于点M解得∴P(3,3)∴PA=PM=3∠MPA=∠EPF=90°∴∠MPE=∠APF在△PME和△PAF中∴△PME≌△PAF∴AF=EM=4∴OF=OA+AF=4+3=7∴F(7,0)…………8分(3)由题意得:A(3,0)M(8,0)设当整理得解得∴Q(1,9)当整理得解得∴Q(9,1)…………12分26.解:(1)3;……………………………………………………………(4分)(2)①当时,S=②当时,S=③当时,S=2④当3(3)①当CP=CQ时,②当PC=PQ时,③当PQ=CQ时,综上所述,……(12分)(说明:每对两个得1分,对1个、3个、5个、7个分别也得1分、2分、3分、4分)。

相关文档
最新文档