2019年数学二轮专题复习 大题规范练(一)文
中考数学二轮专题复习-矩形、菱形及正方形及答案详解
中考数学二轮专题复习-矩形、菱形及正方形一、单选题1.下列四边形中,对角线互相垂直平分的是()A.平行四边形、菱形B.矩形、菱形C.矩形、正方形D.菱形、正方形2.下列测量方案中,能确定四边形门框为矩形的是()A.测量对角线是否互相平分B.测量两组对边是否分别相等C.测量对角线是否相等D.测量对角线交点到四个顶点的距离是否都相等3.如图,菱形的对角线、相交于点,过点作于点,连接,若,,则菱形的面积为()A.B.C.D.4.如图,有甲、乙、丙三个矩形,其中相似的是()A.甲与丙B.甲与乙C.乙与丙D.三个矩形都不相似5.如图,在菱形ABCD中,DE⊥AB,cosA=,AE=3,则tan∠DBE的值是()A.B.2C.D.6.如图,在菱形ABCD中,对角线AC与BD交于点O,E是边AB的中点,连结OE.若菱形ABCD的面积为24,AC=8,则OE的长为()A.B.3C.D.57.如图,在正方形ABCD中,E是边BC上一点,且BE:CE=1:3,DE交AC于点F,若DE=10,则CF等于()A.B.C.D.8.如图,矩形中,对角线交于点O,,则矩形的面积是()A.2B.C.D.89.如图,将长、宽分别为6cm,cm的长方形纸片分别沿AB,AC折叠,点M,N恰好重合于点P.若∠α=60°,则折叠后的图案(阴影部分)面积为()A.cm2 B.(36)cm2C.cm2D.cm210.如图所示,反比例函数的图象经过矩形OABC的边AB的中点,则矩形OABC的面积为()A.2B.4C.5D.811.如图,在菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD ,垂足分别为点E,F,连结EF,则△AEF 的面积是()A.B.C.D.12.如图,四边形ABCD是正方形,BE⊥EF,DF⊥EF,BE=2.5dm,DF=4dm,那么EF的长为()A.6.5dm B.6dm C.5.5dm D.4dm13.将一矩形纸片ABCD沿CE折叠,B点恰好落在AD边上的F处,若,则的值为()A.B.C.D.14.正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上的一动点,DN+MN的最小值为()A.6B.8C.10D.915.如图,在矩形ABCD中,对角线、BD交于C,,垂足为E,,那么的面积是()A.B.C.D.16.如图,在Rt△ABC中,∠ACB=90°,以其三边为边向外作正方形,过点C作CI⊥HJ于点I,交AB于K,在图形的外部作矩形MNPQ,使点D,E,G和H,J都落在矩形的边上.已知矩形BJIK的面积为1,正方形ACDE的面积为4,则为()A.B.C.D.17.如图,正方形的边长为a,点E在边上运动(不与点A,B重合),,点F在射线上,且与相交于点G,连接.则下列结论:①,② 的周长为 ,③;④当 时,G 是线段 的中点,其中正确的结论是( )A .①②③B .①④C .①③④D .①②③④ 18.如图,菱形ABCD 的边长为4,E 、F 分别是AB 、AD 上的点,AC 与EF 相交于点G ,若, ,则FG 的长为( )A .B .2C .3D .419.如图,在△ABC 中,∠ACB =90°,以△ABC 的各边为边分别作正方形BAHI ,正方形BCFG 与正方形CADE ,延长BG ,FG 分别交AD ,DE 于点K ,J ,连结DH ,IJ.图中两块阴影部分面积分别记为S 1,S 2.若S 1:S 2=1:4,S 四边形边BAHE =18,则四边形MBNJ 的面积为( )A.5B.6C.8D.920.如图,在Rt△ABC中,∠CBA=60°,斜边AB=10,分别以△ABC的三边长为边在AB上方作正方形,S1,S2,S3,S4,S5分别表示对应阴影部分的面积,则S1+S2+S3+S4+S5=()A.50B.50C.100D.100二、填空题21.在四边形ABCD中,对角线AC,BD交于点O,OA=OC=OB=OD,添加一个条件使四边形ABCD是正方形,那么所添加的条件可以是(写出一个即可)22.如图,分别以Rt△ABC三边构造三个正方形,面积分别为S1,S2,S3,若S1=15,S3=39,则S2=.23.如图,在平面直角坐标系中,点A1(1,0)、A2(3,0)、A3(6,0)、A4(10,0)、……,以A1A2为对角线作第一个正方形A1C1A2B1,以A2A3为对角线作第二个正方形A2C2A3B2,以A3A4,为对角线作第三个正方形A3C3A4B3,……,顶点B1,B2,B3……都在第一象限,按照此规律依次下去,则点Bn的坐标为.24.如图,菱形ABCD的对角线,BD相交于点,,,以AB为直径作一个半圆,则图中阴影部分的面积为.25.如图,在矩形ABCD中,AB=8,AD=10,AD,AB,BC分别与⊙O相切于E,F,G三点,过D作⊙O的切线交BC于点M,切点为N,则DM的长为.26.建党100周年主题活动中,702班浔浔设计了如图1的“红色徽章”其设计原理是:如图2,在边长为的正方形四周分别放置四个边长为的小正方形,构造了一个大正方形,并画出阴影部分图形,形成了“红色徽章”的图标.现将阴影部分图形面积记作,每一个边长为的小正方形面积记作,若,则的值是.27.如图,正方形ABCD的边长为4,P是边CD上的一动点,EF⊥BP交BP于G,且EF平分正方形ABCD的面积,则线段GC的最小值是.28.正方形ABCD的边长为4,点E是BC边上的一动点,连结AE,过点B作BF⊥AE于点F,以BF为边作正方形FBHG,当点E从B运动到C时,求CF的最短距离为;线段HG扫过的面积为29.如图,在矩形ABCD中,AB=4,BC=3,将△BCD沿射线BD平移长度a(a>0)得到△B'C'D',连接AB',AD',则当△AB'D'是直角三角形时,a的长为.30.如图,矩形ABCD中,AB=20,AD=15,P,Q分别是AB,AD边上的动点,PQ=16,以PQ 为直径的⊙O与BD交于点M,N,则MN的最大值为.三、计算题31.如图,在中,,D为的中点,,,连接交于点O.(1)证明:四边形为菱形;(2)若,,求菱形的高.32.如图,已知在矩形ABCD中,AB=6,BC=2,点E,F分别在边CD,AB上,且DE=BF.(1)求证:四边形AFCE是平行四边形;(2)若□AFCE是菱形,求菱形AFCE的边长.四、解答题33.如图,在四边形ABCD中,E,F,G,H分别是AB,BD,CD,AC的中点,AD=BC,求证:四边形EFGH是菱形.34.如图,矩形ABCD中,BC=4,将矩形ABCD绕点C顺时针旋转得到矩形A′B′C′D′,此时点B′恰好落在边AD上.连接B′B,若∠AB′B=75°,求旋转角及AB长.35.如图,△ABC中,点D是边AC的中点,过D作直线PQ∥BC,∠BCA的平分线交直线PQ于点E,点G是△ABC的边BC延长线上的点,∠ACG的平分线交直线PQ于点F.求证:四边形AECF是矩形.36.在几何探究问题中,经常需要通过作辅助线(如,连接两点,过某点作垂线,作延长线,作平行线等等)把分散的条件相对集中,以达到解决问题的目的.(1)(探究发现)如图1,点E,F分别在正方形ABCD的边BC,CD上,,连接EF.通过探究,可发现BE,EF,DF之间的数量关系为(直接写出结果).(2)(验证猜想)同学们讨论得出下列三种证明思路(如图1):思路一:过点A作,交CD的延长线于点G.思路二:过点A作,并截取,连接DG.思路三:延长CD至点G,使,连接AG.请选择你喜欢的一种思路证明(探究发现)中的结论.(3)(迁移应用)如图2,点E,F分别在正方形ABCD的边BC,CD上,且,,设,试用含的代数式表示DF的长.37.在平面直角坐标系中,O为原点,点A(6,0),点B在y轴的正半轴上,∠ABO=30°.矩形CODE的顶点D,E,C分别在OA,AB,OB上,OD=2.(Ⅰ)如图①,求点E的坐标;(Ⅱ)将矩形CODE沿x轴向右平移,得到矩形C′O′D′E′,点C,O,D,E的对应点分别为C′,O′,D′,E′.设OO′=t,矩形C′O′D′E′与△ABO重叠部分的面积为S.①如图②,当矩形C′O′D′E′与△ABO重叠部分为五边形时,C′E′,E′D′分别与AB相交于点M,F,试用含有t的式子表示S,并直接写出t的取值范围;②当≤S≤5 时,求t的取值范围(直接写出结果即可).38.阅读下面的例题及点拨,并解决问题:例题:如图①,在等边中,是边上一点(不含端点),是的外角的平分线上一点,且.求证:.点拨:如图②,作,与的延长线相交于点,得等边,连接.易证:,可得;又,则,可得;由,进一步可得又因为,所以,即:.问题:如图③,在正方形中,是边上一点(不含端点),是正方形的外角的平分线上一点,且.求证:.五、综合题39.将绕点A按逆时针方向旋转度,并使各边长变为原来的n倍,得,如图①,我们将这种变换记为.(1)如图①,对作变换得,则;直线与直线所夹的锐角为度;(2)如图②,中,,对作变换得,使点B、C、在同一直线上,且四边形为矩形,求和n的值;(3)如图③,中,,对作变换得,使点B、C、在同一直线上,且四边形为平行四边形,求和n的值. 40.如图(1)如图1,正方形ABCD与调研直角△AEF有公共顶点A,∠EAF=90°,连接BE、DF,将△AEF绕点A旋转,在旋转过程中,直线BE、DF相交所成的角为β,则=;β=;(2)如图2,矩形ABCD与Rt△AEF有公共顶点A,∠EAF=90°,且AD=2AB,AF=2AE,连接BE、DF,将Rt△AEF绕点A旋转,在旋转过程中,直线BE、DF相交所成的角为β,请求出的值及β的度数,并结合图2进行说明;(3)若平行四边形ABCD与△AEF有公共项点A,且∠BAD=∠EAF=α(0°<α<180°),AD=kAB,AF=kAE(k≠0),将△AEF绕点A旋转,在旋转过程中,直线BE、DF相交所成的锐角的度数为β,则:①=;②请直接写出α和β之间的关系式.答案解析部分【解析】【解答】解:∵平行四边形对角线互相平分,菱形对角线互相垂直平分,矩形对角线互相平分且相等,正方形对角线互相垂直平分且相等,∴A、B、C不符合题意,D符合题意.故答案为:D.【分析】根据平行四边形对角线互相平分,菱形对角线互相垂直平分,矩形对角线互相平分且相等,正方形对角线互相垂直平分且相等,即可得出答案.【解析】【解答】解:A、∵对角线互相平分的四边形是平行四边形,而对角线互相平分且相等的四边形才是矩形,∴选项A不符合题意;B、∵两组对边分别相等是平行四边形,∴选项B不符合题意;C、∵对角线互相平分且相等的四边形才是矩形,∴对角线相等的四边形不是矩形,∴选项C不符合题意;D、∵对角线交点到四个顶点的距离都相等,∴对角线互相平分且相等,∵对角线互相平分且相等的四边形是矩形,∴选项D符合题意.故答案为:D.【分析】利用对角线互相平分且相等的四边形是矩形,可作出判断.【解析】【解答】解:∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,∵DH⊥AB,∴∠BHD=90°,∴BD=2OH,∵OH=2,∴BD=4,∵OA=3,∴AC=6,∴菱形ABCD的面积.故答案为:A.【分析】根据菱形的性质和直角三角形斜边上的中线定理求出对角线的长即可求出菱形的面积。
不等关系与不等式——比大小-高三数学二轮专题复习
,则a,b,c
的大小关系是___b____c____a__.
【解析】
由题意得,a
1 0.8 2
20,.8
b
log 1
2
2 3
log2
2 3
lo,g2
31
c 40.3 20.6
∴ b log2 3 1 1 c 20..6 a 20.8
故 b c a.
答案
出现函数“同构”形式时,可将数(式)看作同一个函数 在某一区间借助函数的单调性来进行比较大小。
.
答案
1.一般情况下,作差,可处理底数不一样的的对数比大小; 2.作差的难点在于后续变形处理,注意此处的常见技巧和 方法解 3.其中难点在于恒等变形的方向和变形的技巧,变形的目 的是为了判断正负,所以可以因式分解,或者计算化简, 或者放缩为具体值,准确计算找对变形方向是关键。
题型探究1
技巧二 作商法 例2.已知 2a 3 ,3b 4 则a,b 的大小关系是________.
变式探究
已知
a
30.7
,b
(1)0.8 , 3
c
log0.7
0.8
则a,b,c的大小关系是_c___a____b.
【解析】
因为
a
30.7
1
,b
1 3
0.8
30.8
30.7
a
,
c log0.7 0.8 log0.7 0.7 1,
所以 c 1 a b ,
故 c a b.
答案
题型探究1
23
lg lg
22 20
lg lg
23 22
lg
222 lg 20
lg 20 lg 22
高考数学(文)二轮专题复习课件:第1部分 专题八 选考系列4-4、4-5 1-8-2
[ 自我挑战] 2.(2017· 高考全国卷Ⅱ)已知 a>0,b>0,a3+b3=2,证明: (1)(a+b)(a5+b5)≥4; (2)a+b≤2.
证明:(1)(a+b)(a5+b5)=a6+ab5+a5b+b6 =(a3+b3)2-2a3b3+ab(a4+b4)=4+ab(a2-b2)2≥4. (2)证明:因为(a+b)3=a3+3a2b+3ab2+b3=2+3ab(a+b)≤2 3a+b2 3a+b3 + 4 (a+b)=2+ 4 , 所以(a+b)3≤8,因此 a+b≤2.
于是 a=3.
1.用零点区分法解绝对值不等式的步骤: (1)求零点;(2)划区间、去绝对值号;(3)分别解去掉绝对值的 不等式;(4)取每个结果的并集,注意在分段时不要遗漏区间的端 点值. 2.用图象法、数形结合可以求解含有绝对值的不等式,使得 代数问题几何化,既通俗易懂,又简洁直观,是一种较好的方法.
a+b+c 3 定理 3:如果 a,b,c 为正数,则 3 ≥ abc,当且仅当 a=b=c 时,等号成立. 定理 4:(一般形式的算术—几何平均不等式)如果 a1、a2、…、 a1+a2+…+an n an 为 n 个正数, 则 ≥ a1a2…an, 当且仅当 a1=a2=… n =an 时,等号成立.
2.|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法: (1)|ax+b|≤c⇔-c≤ax+b≤c; (2)|ax+b|≥c⇔ax+b≥c 或 ax+b≤-c. 3.基本不等式 定理 1:设 a,b∈R,则 a2+b2≥2ab.当且仅当 a=b 时,等号 成立. a+b 定理 2:如果 a,b 为正数,则 2 ≥ ab,当且仅当 a=b 时, 等号成立.
1.不等式的证明常利用综合法、分析法、反证法、放缩法、 基本不等式和柯西不等式等,要根据题目特点灵活选用方法. 2.证明含绝对值的不等式主要有以下三种方法: (1)利用绝对值的定义去掉绝对值符号,转化为普通不等式再 证明; (2)利用三角不等式||a|-|b||≤|a± b|≤|a|+|b|进行证明; (3)转化为函数问题,利用数形结合进行证明.
江苏省南京市高三数学二轮专题复习(第一层次)专题13空间的平行与垂直问题 Word版含答案
专题13:空间的平行与垂直问题班级 姓名一、前测训练1.如图所示,在三棱柱ABC -A 1B 1C 1中,若D 、E 是棱CC 1,AB 的中点,求证:DE ∥平面AB 1C 1.提示:法一:用线面平行的判定定理来证: “平行投影法”:取AB 1的中点F ,证四边形C 1DEF 是平行四边形.“中心投影法”延长BD 与B 1C 1交于M ,利用三角线中位线证DE ∥法二:用面面平行的性质取BB 1中点G ,证平面DEG ∥平面AB 1C 1. 2.在正方体ABCD -A 1B 1C 1D 1中, (1)求证:平面A 1BD ∥平面B 1D 1C(2)若E ,F 分别是A 1A ,C 1C 的中点,求证:平面EB 1D 1∥平面BDF .提示:(1)用面面平行的判定定理证: 证明BD ∥B 1D 1,A 1B ∥D 1C . (2)证明BD ∥B 1D 1,BF ∥D 1E .【变式】在正方体ABCD -A 1B 1C 1D 1中,E 是A 1A 的中点.点F 在棱CC 1上,使得平面EB 1D 1∥平面BDF .求证:点F 为棱CC 1的中点.3.在正方体ABCD —A 1B 1C 1D 1中,M 为棱CC 1的中点,AC 交BD 于O ,求证:A 1O ⊥平面MBD提示:用线面垂直的判定定理:证BD ⊥平面AA 1C 1C ,从而得出BD ⊥A 1O ; 在矩形AA 1C 1C 中,用平几知识证明A 1O ⊥OM ;4.在正三棱柱ABC -A 1B 1C 1中,所有棱长均相等,D 为BB 1的中点,求证:A 1B ⊥C D . 分析:要证明A 1B ⊥C D ,只要证明A 1B 与CD 所在的平面垂直,或CD 与A 1B 所在的平面垂直,但都没有现成的平面,构造经过CD 的平面与直线A 1B 垂直,或经过A 1B 的平面与直线CD 垂直.方法1:取AB 的中点E ,连CE ,证A 1B ⊥平面CDE ; 方法2:取B 1C 1的中点F ,连BF ,证CD ⊥平面A 1BF .A E A 1B CC 1B 1DAM O A 1 D 1A B CD B 1C 1【变式】在正三棱柱ABC -A 1B 1C 1中, D 为BB 1的中点, A 1B ⊥CD ,求证:AA 1=AB .5.如图,在四棱锥P -ABCD 中,四边形ABCD 是菱形,PB =PD ,且E ,F 分别是BC , CD 的中点.求证:平面PEF ⊥平面PAC .提示:设EF 与AC 交于点O ,证EF ⊥AC ,EF ⊥OP , 从而得出EF ⊥平面PAC .【变式】如图,在四棱锥P -ABCD 中,四边形ABCD 是平行四边形,PB =PD ,且E ,F 分别是BC , CD 的中点,若平面PEF ⊥平面PAC ,求证:四边形ABCD 是菱形.6.如图,已知VB ⊥平面ABC ,侧面VAB ⊥侧面VAC ,求证:△VAC 是直角三角形. 提示:过B 作BD ⊥VA ,垂足为D ,由侧面VAB ⊥侧面VAC ,得出BD ⊥侧面VAC ,从面BD ⊥AC ,由VB ⊥平面ABC ,得AC ⊥VB ,从而AC ⊥平面VAB . 所以AC ⊥VA .7.(1)设P ,A ,B ,C 是球O 表面上的四个点,P A ,PB ,PC 两两垂直,且P A =PB =1,PC =2,则球O 的表面积是________.(2)如图,直三棱柱ABC -A 1B 1C 1中,AB =1,BC =2,AC =5,AA 1=3,M 为线段B 1B 上的一动点,则当AM +MC 1最小时,△AMC 1的面积为________.答案 :(1)6π;(2) 3二、方法联想1.线线平行B C DA P EF B C A V(1)证明线线平行 方法1:利用中位线;方法2:利用平行四边形; 方法3:利用平行线段成比例; 方法4:利用平行公理; 方法5:利用线面平行性质定理;方法6:利用线面垂直性质定理;方法7:利用面面平行.(2)已知线线平行,可得线面平行【变式1】如图,在五面体ABCDEF 中,面ABCD 为平行四边形,求证:EF ∥BC . (平行公理证明线线平行,由线线平行得线面平行) 2.线面平行(1)证明线面平行 方法1 构造三角形(中心投影法),转化为线线平行.寻找平面内平行直线步骤,如下图:①在直线和平面外寻找一点P ;②连接PA 交平面α于点M ;③连接PA 交平面α于点N ,④连接MN 即为要找的平行线.方法2:构造平行四边形(平行投影法) ,转化为线线平行.寻找平面内平行直线步骤,如下图:①选择直线上两点A 、B 构造两平行直线和平面α相交于M 、N ;②连接MN 即为要找的平行线.方法3:构造面面平行.构造平行平面步骤,如下图:①过A 做AC 平行于平面α内一条直线A ’C ’;②连结BC ;③平面ABC 即为所要找的平行平面.(2)已知线面平行方法1 可得线线平行,过直线l 做平面β交已知平面α于直线m ,则l ∥m .方法2 可得面面平行【变式】(1)如图所示,在三棱柱ABC -A 1B 1C 1中,D 、E 是棱CC 1,AB 的上的点,且AE =23AB ,若DE ∥平面AB 1C 1,求CDDC 1的值.(已知线面,转化为线线平行)(2)E ,P ,G ,H 分别是四面体的棱ABCD 的棱AB 、CD 、CA 、CB 的中点,求证:PE ∥平面PGH . (通过面面的平行证明线面平行) 3.面面平行(1)证明面面平行方法 在一个平面内寻找两条相交直线证明与另一个平面平行.注意 证面面平行必须先通过证线面平行,不可以直接通过证线线平行来证面面平行.m lα① ② A B C A ’ C ’ ①② ① A M NB 或①② ③ P A B④ ① ② ③A B P ④M N M N M NN(2)已知面面平行 可得线线平行 4.线线垂直 (1)证明线线垂直方法1:利用线面垂直;构造垂面证线线垂直要证l 垂直于AB ,构造垂面证线线垂直步骤:如下图:①过A 找垂直于l 的直线AC ;②连结BC ,③证BC 垂直l ,则l ⊥面ABC . 方法2:利用线线平行转移线线垂直; 方法3:利用勾股定理;方法4:利用等腰三角形三线合一; 方法5:利用菱形对角线互相垂直; 方法6:利用四边形为矩形. (2)已知线线垂直 可得线面垂直 5.线面垂直 (1)证明线面垂直方法 证明直线与平面内两条相交直线垂直. (2)已知线面垂直 可得线线垂直和面面垂直【变式】(1)在正方体ABCD —A 1B 1C 1D 1中,AC 交BD 于O ,点M 在棱CC 1上,且A 1O ⊥平面MBD ,求证:M 为棱CC 1的中点. (线面垂直得线线垂直)(2)在四面体ABCD 中,AD ⊥BC ,CA =CB =CD =1,BD =2,则△ABC 的面积为_____. (计算证明线线垂直)(3)在直三棱柱ABC -A 1B 1C 1中,AB =AC ,AB 1⊥BC 1,求证:A 1C ⊥BC 1. (利用平行转移线线垂直,从而一条直线与两异面直线的 垂直转化为线面的垂直)6.面面垂直(1)证明面面垂直关键是找到和另一个平面垂直的垂线,转化为线面垂直.找垂线的一般方法:①分别在两个平面内找两条互相垂直的直线,再判断其中一条直线垂直于平面; ②找(或作)两平面交线的垂线.③若存在第三个平面与其中一个面垂直,则在第三个内作找或作它们的交线的垂线(可以就是第三个与另一个平面的交线),再将这个垂线转移到另一个平面内.(2)已知面面垂直优先在其中一个平面内找或作两个平面交线的垂线,转化为线面垂直.ABlC①② MOA 1D1ABCD B 1C 1A 1【变式】在四棱锥P -ABCD 中,CD ⊥平面PAD ,△PAD 是正三角形,DC //AB ,DA =DC =2AB .求证:平面PBC ⊥平面PDC.(存在第三个面与其中一个面垂直)提示1:取PD 中点M ,则AM ⊥平面PDC ,下面只需将AM 平移到平面PBC 内. 提示2:作出平面PAD 与平面PBC 的交线PN ,只需证明PN ⊥平面PDC . 7.有关表面积、体积计算①表面距离问题考虑表面展开,转化成平面问题②体积计算,先证明高,后用体积公式求体积三、例题分析例1:在四棱锥P -ABCD 中,∠ABC =∠ACD =90°,∠BAC =∠CAD =60°,P A ⊥平面ABCD ,E 为PD 的中点,P A =2AB .(1)若F 为PC 的中点,求证:PC ⊥平面AEF ; (2)求证:CE ∥平面P AB .提示:(1)证明:PC ⊥AF ,PC ⊥EF .(2)①中心投影法:延长CD 与AB 交于G ,证明CE ∥PG . ②平行投影法:取P A 中点M ,过C 作CN ∥AD 交AB 于N . 证四边形CEMN 是平行四边形,从而得CE ∥MN . ③面面平行的性质:取AD 中点H ,证明平面CEH ∥平面P AB . 〖教学建议〗一、主要问题归类与方法:1.证明直线与平面垂直.方法:(1)定义法:a ⊥b ,b 为平面α内任意一条直线⇒a ⊥平面α.(2)线面垂直的判定定理:a ⊥m ,a ⊥n ,m ⊂平面α,n ⊂平面α,m ∩n =A ⇒ a ⊥平面α.(3)面面垂直的性质定理:平面α⊥平面β,平面α∩平面β=l ,a ⊂平面α,a ⊥l ⇒ a ⊥平面α.2.证明直线与平面平行.方法:(1)定义法:常常借助反证法完成;(2)判定定理:a ∥b ,a ⊄平面α,b ⊂平面α⇒a ∥平面α.用判定定理来证线面平行的关键是在平面内找到与已知直线平行的直线,其方法有:中心投影法与平行投影法. 证明线线平行常用方法:①平面几何的方法:三角形中位线,平行四边形,平行线段成比例等. ②面面平行的性质:α∥β,γ∩α=m ,γ∩β=n ⇒m ∥n .ACBEPFPABC D③线面垂直的性质:a⊥平面α,b⊥平面α⇒a∥b.④公理4:a∥c,b∥c⇒a∥b.(3)面面平行的性质:平面α∥平面β,a⊂平面α⇒a∥平面α.二、方法选择与优化建议:1.用方法(2),方法(2)是证明线面垂直的常用方法。
2019数学(文)通用版二轮精准提分练习第二篇 第18练 概率与统计的综合问题
第18练概率与统计的综合问题[中档大题规范练][明晰考情]1。
命题角度:概率与统计知识的交汇处是高考命题的考点。
2.题目难度:中档难度。
考点一古典概型与几何概型要点重组(1)古典概型的两个特征①试验中所有可能出现的基本事件只有有限个;②每个基本事件发生的可能性相等.(2)几何概型将古典概型的有限性推广到无限性,几何概型的测度包括长度、面积、角度、体积等。
1.已知A,B两个盒子中分别装有标记为1,2,3,4的大小相同的四个小球,甲从A盒中等可能地取出1个球,乙从B盒中等可能地取出1个球。
(1)用有序数对(i,j)表示事件“甲抽到标号为i的小球,乙抽到标号为j的小球”,试写出所有可能的事件;(2)甲、乙两人玩游戏,约定规则:若甲抽到的小球的标号比乙大,则甲胜;反之,则乙胜。
你认为此游戏是否公平?请说明理由。
解(1)甲、乙两人抽到的小球的所有情况有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16种不同的情况。
(2)甲抽到的小球的标号比乙大,有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),共6种情况,故甲胜的概率P 1=错误!=错误!,乙胜的概率为P 2=1-错误!=错误!。
因为错误!≠错误!,所以此游戏不公平。
2.已知集合A =[-2,2],B =[-1,1],设M ={(x ,y )|x ∈A ,y ∈B },在集合M 内随机取出一个元素(x ,y ).(1)求以(x ,y )为坐标的点落在圆x 2+y 2=1内的概率;(2)求以(x ,y )为坐标的点到直线x +y =0的距离不大于错误!的概率. 解 (1)集合M 内的点形成的区域面积S =8。
因为圆x 2+y 2=1的面积S 1=π,故所求概率为P 1=错误!=错误!。
数学浙江专三维二轮专题复习 选择填空提速专练(一)
选择填空提速专练(一)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知A={x|y2=x},B={y|y2=x},则( )A.A∪B=A B.A∩B=AC.A=B D.(∁R A)∩B=∅解析:选B 因为A={x|x≥0},B={y|y∈R},所以A∩B=A,故选B.2.设a,b是两条不同的直线,α,β是两个不同的平面,则下列四个命题错误的是()A.若a⊥b,a⊥α,b⊄α,则b∥αB.若a⊥b,a⊥α,b⊥β,则α⊥βC.若a⊥β,α⊥β,则a∥α或a⊂αD.若a∥α,α⊥β,则a⊥β解析:选D 易知A,B,C均正确;D中a和β的位置关系有三种可能,a∥β,a⊂β或a与β相交,故D错误,故选D.3.已知函数f(2x)=x·log32,则f(39)的值为( )A。
错误!B。
错误!C.6 D.9解析:选D 令t=2x(t>0),则x=log2t,于是f(t)=log2t·log32=log3t(t>0),故函数f(x)=log3x(x>0),所以f(39)=log339=9,故选D。
4.在复平面内,已知复数z=错误!,则z在复平面上对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限解析:选B 因为z=错误!=错误!=错误!=错误!+错误!i,所以复数z 在复平面上对应的点为错误!,显然此点在第二象限,故选B.5.将函数y=cos(2x+φ)的图象向右平移错误!个单位,得到的函数为奇函数,则|φ|的最小值为()A.错误!B.错误!C。
错误! D.错误!解析:选B 设y=cos(2x+φ)向右平移错误!个单位长度得到的函数为g(x),则g(x)=cos错误!,因为g(x)=cos错误!为奇函数,且在原点有定义,所以-错误!+φ=kπ+错误!(k∈Z),解得φ=kπ+错误!(k ∈Z),故当k=-1时,|φ|min=错误!,故选B.6.已知实数a,b,则“|a+b|+|a-b|≤1”是“a2+b2≤1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A 由绝对值三角不等式|a±b|≤|a|+|b|可得错误!即错误!此不等式组表示边长为1的正方形区域(含边界),而a2+b2≤1表示单位圆域(含边界),故由错误!可以推出a2+b2≤1,但是反之不成立,故选A。
新高考数学二轮专题复习高频考点强化训练1(附解析)
强化训练1 集合、常用逻辑用语、不等式一、单项选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.[2022·全国甲卷]设全集U ={-2,-1,0,1,2,3},集合A ={-1,2},B ={x |x 2-4x +3=0},则∁U (A ∪B )=( )A .{1,3}B .{0,3}C .{-2,1}D .{-2,0}2.[2022·全国乙卷]设全集U ={1,2,3,4,5},集合M 满足∁U M ={1,3},则( )A .2∈MB .3∈MC .4∉MD .5∉M3.[2022·湖南常德一模]已知集合A ={x ∈Z |x 2≤1},B ={x |x 2-mx +2=0},若A ∩B ={1},则A ∪B =( )A .{-1,0,1}B .{x |-1≤x ≤1}C .{-1,0,1,2}D .{x |-1≤x ≤2}4.[2022·山东潍坊二模]十七世纪,数学家费马提出猜想:“对任意正整数n >2,关于x ,y ,z 的方程x n +y n =z n 没有正整数解”,经历三百多年,1995年数学家安德鲁·怀尔斯给出了证明,使它终成费马大定理,则费马大定理的否定为( )A .对任意正整数n ,关于x ,y ,z 的方程x n +y n =z n 都没有正整数解B .对任意正整数n >2,关于x ,y ,z 的方程x n +y n =z n 至少存在一组正整数解C.存在正整数n ≤2,关于x ,y ,z 的方程x n +y n =z n 至少存在一组正整数解D .存在正整数n >2,关于x ,y ,z 的方程x n +y n =z n 至少存在一组正整数解5.[2022·江苏南京模拟]设a 、b 均为非零实数,且a <b ,则下列结论中正确的是( ) A .1a >1bB .a 2<b 2C .1a 2 <1b 2D .a 3<b 3 6.[2022·山东潍坊一模]已知a >0,则“a a >a 3”是“a >3”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.[2022·广东汕头三模]下列说法错误的是( )A .命题“∀x ∈R ,cos x ≤1”的否定是“∃x 0∈R ,cos x 0>1”B .在△ABC 中,sin A ≥sin B 是A ≥B 的充要条件C .若a ,b ,c ∈R ,则“ax 2+bx +c ≥0”的充要条件是“a >0,且b 2-4ac ≤0”D .“若sin α≠12 ,则α≠π6”是真命题 8.[2022·河北保定二模]已知a ,b ∈(0,+∞),且a 2+3ab +4b 2=7,则a +2b 的最大值为( ) A.2 B .3C .22D .32二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多个符合题目要求,全部选对得5分,部分选对得2分,选错或多选得0分)9.[2022·湖北武汉二模]已知集合A ={1,4,a },B ={1,2,3},若A ∪B ={1,2,3,4},则a 的取值可以是( )A .2B .3C .4D .510.[2022·广东汕头二模]已知a ,b ,c 满足c <a <b ,且ac<0,那么下列各式中一定成立的是( )A .ac (a -c )>0B .c (b -a )<0C .cb 2<ab 2D .ab >ac11.[2022·江苏南京三模]设P =a +2a,a ∈R ,则下列说法正确的是( ) A .P ≥22B .“a >1”是“P ≥22 ”的充分不必要条件C.“P >3”是“a >2”的必要不充分条件D .∃a ∈(3,+∞),使得P <312.[2022·辽宁葫芦岛二模]已知a >b >0,a +b +1a +1b=5,则下列不等式成立的是( )A.1<a +b <4B .(1a +b )(1b+a )≥4 C .(1a +b )2>(1b+a )2 D .(1a +a )2>(1b+b )2 三、填空题(本题共4小题,每小题5分,共20分)13.[2022·南京师大附中模拟]命题“∀x >1,x 2≥1”的否定是____________.14.[2022·福建三明模拟]已知命题p :∃x ∈R ,x 2-ax +a <0,若命题p 为假命题,则实数a 的取值范围是________.15.[2022·湖南怀化一模]已知a ∈R ,且“x >a ”是“x 2>2x ”的充分不必要条件,则a 的取强化训练1 集合、常用逻辑用语、不等式1.解析:由题意,B ={x|x2-4x +3=0}={1,3},所以A ∪B ={-1,1,2,3},所以∁U (A ∪B )={-2,0}.答案:D2.解析:由题知M ={2,4,5},对比选项知,A 正确,BCD 错误. 答案:A3.解析:解不等式x2≤1得:-1≤x≤1,于是得A ={x ∈Z|-1≤x≤1}={-1,0,1},因A∩B ={1},即1∈B ,解得m =3,则B ={1,2},所以A ∪B ={-1,0,1,2}.答案:C4.解析:命题的否定形式为全称量词命题的否定是存在量词命题.故只有D 满足题意.答案:D5.解析:对于A ,取a =-1,b =1,则1a <1b ,A 错误;对于B ,取a =-1,b =1,则a2=b2,B 错误;对于C ,取a =-1,b =1,则1a2 =1b2 ,C 错误;对于D ,因a<b ,则b3-a3=(b -a )(b2+ab +a2)=(b -a )·⎣⎢⎡⎦⎥⎤(b +12a )2+34a2 >0,即a3<b3,D 正确. 答案:D6.解析:若0<a<1,由aa>a3可得a<3,此时0<a<1; 若a =1,则aa =a3,不合乎题意;若a>1,由aa>a3可得a>3,此时a>3.因此,满足aa>a3的a 的取值范围是{a|0<a<1或a>3},因为{a|0<a<1或a>3}{a|a>3},因此,“aa>a3”是“a>3”的必要不充分条件.答案:B7.解析:A.命题“∀x ∈R ,cos x≤1”的否定是“∃x0∈R ,cos x0>1”,正确;B .在△ABC 中,sin A≥sin B ,由正弦定理可得a 2R ≥b 2R (R 为外接圆半径),a≥b ,由大边对大角可得A≥B ;反之,A≥B 可得a≥b ,由正弦定理可得sin A≥sin B ,即为充要条件,故正确;C.当a =b =0,c≥0时满足ax2+bx +c≥0,但是得不到“a>0,且b2-4ac≤0”,则不是充要条件,故错误;D .若sin α≠12 ,则α≠π6 与α=π6 则sin α=12 的真假相同,故正确.答案:C8.解析:7=(a +2b )2-ab =(a +2b )2-12 a·2b≥(a +2b )2-12 (a +2b 2 )2=7(a +2b )28, 则(a +2b )2≤8,当且仅当a =2b = 2 时,“=”成立,又a ,b ∈(0,+∞),所以0<a +2b≤2 2 ,当且仅当a =2b = 2 时,“=”成立,所以a +2b 的最大值为2 2 . 答案:C9.解析:因为A ∪B ={1,2,3,4},所以{1,4,a}{1,2,3,4},所以a =2或a =3.答案:AB10.解析:因为a ,b ,c 满足c<a<b ,且ac<0,所以c<0,a>0,b>0,a -c>0,b -a>0,所以ac (a -c )<0,c (b -a )<0,cb2<ab2,ab>ac.答案:BCD11.解析:A 错误,当a<0时,显然有P 小于0;B 正确,a>1时,P =a +2a ≥2a·2a =2 2 ,当且仅当a =2a 时,即a = 2 时等号成立.故充分性成立,而P≥2 2 只需a>0即可;C 正确,P =a +2a >3可得0<a<1或a>2,当a>2时P>3成立,故C 正确;D 错误,因为a>3有a +2a >3+23 >3,故D 错误. 答案:BC12.解析:a +b +1a +1b =5,即a +b +a +b ab =5,所以ab =a +b 5-(a +b ),因为a>b>0,所以由基本不等式得:ab<(a +b )24 ,所以a +b 5-(a +b ) <(a +b )24, 解得:1<a +b<4,A 正确;(1a +b )(1b +a )=1ab +ab +2≥21ab ·ab +2≥4,当且仅当1ab =ab 时等号成立,故B 正确;(1a +b )2-(1b +a )2=(1a +b +1b +a )(1a +b -1b -a )=(1a +b +1b +a )(1ab +1)(b -a ),因为a>b>0,所以(1a +b +1b +a )(1ab +1)(b -a )<0,所以(1a +b )2<(1b +a )2,C 错误;(1a +a )2-(1b +b )2=(1a +a +1b +b )(1a +a -1b -b )=(1a +a +1b +b )(1ab -1)(b -a ),因为a>b>0,而1ab 可能比1大,可能比1小,所以(1a +a +1b +b )(1ab -1)(b -a )符号不确定,所以D 错误.答案:AB13.解析:因为命题“∀x>1,x2≥1”是全称量词命题,所以其否定是存在量词命题,即 “∃x>1,x2<1”.答案:“∃x>1,x2<1”14.解析:根据题意,∀x ∈R ,x2-ax +a≥0恒成立,所以Δ=a2-4a≤0⇒a ∈[0,4].答案:[0,4]15.解析:x2>2x 等价于x<0或x>2,而且“x>a”是“x2>2x”的充分不必要条件,则a≥2.答案:[2,+∞)16.解析:因为第一象限的点M (a ,b )在直线x +y -1=0上,所以a +b =1,a>0,b>0,所以1a +2b =(a +b )(1a +2b )=3+b a +2a b ≥3+2 2 ,当且仅当a = 2 -1,b =2- 2 时等号成立.答案:3+2 2。
高考数学二轮复习专题
高考数学二轮复习专题汇总1专题一:集合、函数、导数与不等式。
此专题函数和导数以及应用导数知识解决函数问题是重点,特别要注重交汇问题的训练。
每年高考中导数所占的比重都非常大,一般情况是在客观题中考查导数的几何意义和导数的计算,属于容易题;二是在解答题中进行综合考查,主要考查用导数研究函数的性质,用函数的单调性证明不等式等,此题具有很高的综合性,并且与思想方法紧密结合。
2专题二:数列、推理与证明。
数列由旧高考中的压轴题变成了新高考中的中档题,主要考查等差等比数列的通项与求和,与不等式的简单综合问题是近年来的热门问题。
3专题三:三角函数、平面向量和解三角形。
平面向量和三角函数的图像与性质、恒等变换是重点。
近几年高考中三角函数内容的难度和比重有所降低,但仍保留一个选择题、一个填空题和一个解答题的题量,难度都不大,但是解三角形的内容应用性较强,将解三角形的知识与实际问题结合起来将是今后命题的一个热点。
平面向量具有几何与代数形式的“双重性”,是一个重要的知识交汇点,它与三角函数、解析几何都可以整合。
4专题四:立体几何。
注重几何体的三视图、空间点线面的关系及空间角的计算,用空间向量解决点线面的问题是重点。
5专题五:解析几何。
直线与圆锥曲线的位置关系、轨迹方程的探求以及最值范围、定点定值、对称问题是命题的主旋律。
近几年高考中圆锥曲线问题具有两大特色:一是融“综合性、开放性、探索性”为一体;二是向量关系的引入、三角变换的渗透和导数工具的使用。
我们在注重基础的同时,要兼顾直线与圆锥曲线综合问题的强化训练,尤其是推理、运算变形能力的训练。
6专题六:概率与统计、算法与复数。
要求具有较高的阅读理解和分析问题、解决问题的能力。
高考对算法的考查集中在程序框图,主要通过数列求和、求积设计问题。
高考数学二轮复习策略1.加强思维训练,规范答题过程解题一定要非常规范,俗语说:“不怕难题不得分,就怕每题都扣分”,所以大家要形成良好的思维品质和学习习惯,务必将解题过程写得层次分明结构完整。
2023年高考数学二轮复习第三篇小题提速练透大题规范增分第1讲集合与简易逻辑
¬p 为
(B )
A.∃a0≥0,使得 a0+2 0122≤0
B.∀a<0,都有 a+2 0122≤0
C.∃a0<0,使得 a0+2 0122≤0
D.∀a<0,都有
a+2
1 022<0
第三篇 小题提速练透•大题规范增分
高考二轮总复习 • 数学
【解析】 命题是特称命题,则特称命题的否定是全称命题, 得¬p 为∀a<0,都有 a+2 0122≤0, 故选 B.
所以∁U(A∪B)={-2,0}.故选D.
第三篇 小题提速练透•大题规范增分
高考二轮总复习 • 数学
6.(2022·鹰潭二模)设全集U={x|-5<x<5},集合A={x|x2-4x-5
<0},B={x|-3<x<4},则(∁UA)∩B=
A.[4,5)
B.(-3,-1]
(B )
C.(-5,-3)
D.(-5,2]
第三篇 小题提速练透•大题规范增分
高考二轮总复习 • 数学
8.(2022·浙江高考)设x∈R,则“sin x=1”是“cos x=0”的 (A )
A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件
第三篇 小题提速练透•大题规范增分
高考二轮总复习 • 数学
【解析】 因为sin2x+cos2x=1可得: 当sinx=1时,cos x=0,充分性成立; 当cos x=0时,sin x=±1,必要性不成立; 所以当x∈R,sin x=1是cos x=0的充分不必要条件. 故选A.
第三篇
小题提速练透•大题规范增分
第1讲 集合与简易逻辑
返回导航
导航立前沿 考点启方向
高考二轮总复习 • 数学
高考理科数学二轮复习练习:大题规范练1“17题~19题+二选一”46分练
大题规范练(一)“17题~19题+二选一”46分练(时间:45 分钟分值:46 分)解答题(本大题共 4 小题,共46 分,第22~23题为选考题.解答应写出文字说明、证明过程或演算步骤)17.已知正项等差数列{ a n} 的前n项和为S n,且知足a1+a5=2a723,S7=63.(1)求数列{a n} 的通项公式a n;(2)若数列{b n}知足b1=a1 且b n+1-b n=a n+1,求数列1b n的前n项和T n.【导学号:07804229】[解] (1)法一:(等差数列的基本量)设正项等差数列{a n} 的首项为a1,公差为d,易知a n>0,2a1+a1+4d=1+2d7 a则2,7a1+21d=63a=31解得,d 2=∴a n=2n+1.22法二:(等差数列的性质)∵{ a n} 是等差数列且a1+a5=3,∴2a3=a7 272 a3,又a n>0,∴a3=7.∵S7=a1+a72=7a4=63,∴a4=9,∴d=a4-a3=2,∴a n=a3+( n-3)d=2n+1.+1-b n=a n+1 且a n=2n+1,(2)∵b n∴b n+1-b n=2n+3,当n≥2时,b n=( b n-b n -1-b n-2)+⋯+(b2-b1)+b1=(2 n+1)+(2n-1)+⋯+5+3=-1)+(b nn(n+2),当n=1时,b1=3知足上式,故b n=n( n+2).1 1 ∴=b nn n+=121 1-n n+2.1 ∴T n=+b11+⋯+b21+b n-1-11b n1=2 1-13+1 1-2 4+1-315+⋯+1-n-11n+1+1n-1n+212=1+12-1 1-n+1 n+23 =-42n+3n+n+.18.如图1,已知直角梯形ABCD 中,AB=AD=12CD=2,AB∥DC,AB⊥AD,E为C D 的中点,沿AE 把△DAE 折起到△PAE 的地点(D 折后变成P),使得PB=2,如图2.(1)求证:平面PAE⊥平面ABCE;(2)求直线P B 和平面PCE 所成角的正弦值.[解] (1)证明:如图(1),取AE 的中点O,连结PO,OB,BE.因为在平面图形中,如题图(图1),连结BD,BE,易知四边形ABED为正方形,图(1)因此在立体图形中,△PAE,△BAE为等腰直角三角形,因此PO⊥AE,OB⊥AE,PO=OB=2,因为PB=2,因此PO2+OB2=PB2,因此PO⊥OB,又AE∩OB=O,因此PO⊥平面ABCE,因为PO? 平面PAE,因此平面PAE⊥平面ABCE .(2)由(1)知,OB,OE,OP 两两垂直,以O为坐标原点,以OB,OE,OP 所在直线分别为x轴、y轴、z轴成立空间直角坐标系,如图(2),则O(0,0,0),P(0,0,2),B( 2,0,0),E(0,→→→=( 2,0,-2),EP=(0,-2,2),EC=( 2,2,0).2,0),C( 2,2 2,0),PB图(2)设平面PCE 的法向量为n=(x,y,z),→n·EP则→=0,=0,n·EC 即-2y+2z=0,2x+2y=0,令x=1,得y=-1,z=-1,故平面PCE 的一个法向量为n=(1,-1,-1).→因此cos〈PB,n〉=→PB·n 2 2==→2 3|PB| ·|n|6,36因此直线P B 和平面PCE 所成角的正弦值为.319.某学校为鼓舞家校互动,与某手机通信商合作,为教师办理流量套餐.为认识该校教师手机流量使用状况,经过抽样,获得100 位教师近 2 年每人手机月均匀使用流量L(单位:M) 的数据,其频次散布直方图以下:图3若将每位教师的手机月均匀使用流量分别视为其手机月使用流量,并将频次视为概率,回答以下问题.(1)从该校教师中随机抽取 3 人,求这3人中至多有 1 人手机月使用流量不超出300 M 的概率;(2)现该通信商推出三款流量套餐,详情以下:套餐名称月套餐费/元月套餐流量/MA 20 300B 30 500C 38 700这三款套餐都有以下附带条款:套餐费月初一次性收取,手机使用流量一旦高出套餐流量,系统就自动帮用户充值200 M 流量,资费20 元;假如又高出充值流量,系统就再次自动帮用户充值200 M 流量,资费20 元,以此类推,假如当月流量有节余,系统将自动清零,无法转入次月使用.学校欲订购此中一款流量套餐,为教师支付月套餐费,并肩负系统自动充值的流量资费的75%,其他部分由教师个人肩负,问学校正购哪一款套餐最经济?说明原因.[解] (1)记“从该校随机抽取 1 位教师,该教师手机月使用流量不超出300 M ”为事件 D.依题意,P(D )=(0.000 8+0.002 2) ×100=0.3.X~这3 人中手机月使用流量不超出300 M 的人数为X,则中随机抽取 3 人,设从该校教师B(3,0.3),中随机抽取 3 人,至多有 1 人手机月使用流量不超出300 M 的概率为P(X=校教师因此从该0 03+C31×0.3 ×(1-0.3)2=0.343+0.441=0.784.0)+P(X=1)=C3×0.3 ×(1-0.3)(2)依题意,从该校随机抽取 1 位教师,该教师手机月使用流量L∈(300,500] 的概率为(0.002 5(0.000 8+0.000 2) ×100=0.1.+0.003 5) ×100=0.6,L∈(500,700] 的概率为X1 元,则X1 的全部可能取值为当学校正购A 套餐时,设为学校为1位教师肩负的月花费20,35,50,且P(X1=20)=0.3,P(X1=35)=0.6,P( X1=50)=0.1,因此X1 的散布列为X1 20 35 50P 0.3 0.6 0.1因此E(X1)=20×0.3+35×0.6+50×0.1=32(元).费X2元,则X2的全部可能取值为30,45,肩负的月花为当学校正购B 套餐时,设学校为1位教师且P(X2=30)=0.3+0.6=0.9,P(X2=45)=0.1,因此X2 的散布列为X2 30 45P 0.9 0.1因此E(X2)=30×0.9+45×0.1=31.5(元).为费X3 元,则X3 的全部可能取值为38,当学校正购C 套餐时,设学校为1位教师肩负的月花且P(X3=38)=1,因此E(X3)=38×1=38(元).因为E(X2)<E(X1)<E(X3),.济因此学校正购B 套餐最经(请在第22~23题中选一题作答,假如多做,则依据所做第一题计分)22.选修4-4:坐标系与参数方程在极坐标方程为ρ系中,圆C的极坐标2=4ρ(cos θ+sin θ)-3.若以极点O为原点,极轴所在成立平面直角坐标系.为x轴直线【导学号:07804230】(1)求圆C的参数方程;(2)在直角坐标系中,点P(x,y)是圆C上的动点,试求x+2y 的最大值,并求出此时点P 的.直角坐标2=4ρ(cos θ+sin θ)-3,[解] (1)因为ρ因此x2+y2-4x-4y+3=0,即(x-2)2+(y-2)2=5为方程,圆C 的直角坐标(θ为参数).x=2+5cos θy=2+5sin θC的参数方程为因此圆2+y2-4x-4y+3=0,整理得5y2+4(1-t)y+t2 (2)法一:设x+2y=t,得x=t-2y,代入x-4t+3=0 (*) ,则对于y 的方程必有实数根.因此Δ=16(1-t)2-20(t2-4t+3) ≥0,化简得t2-12t+11≤0,解得1≤t≤ 1 1,即x+2y 的最大值为11.将t=11 代入方程(*) 得y2-8y+16=0,解得y=4,代入x+2y=11,得x=3,故x+2y 的最大值为11时,点P 的直角坐标为(3,4).法二:由(1)可设点P(2+5cos θ,2+5sin θ),则x+2y=6+5cos θ+2 5sin θ=6+55 2 55 cos θ+ 5 sin θ,设s in α=5 2 5,则c os α=,因此x+2y=6+5sin(θ+α),5 5当sin(θ+α)=1时,(x+2y)max=11,π此时,θ+α=+2kπ,k∈Z,即θ=2 π-α+2kπk(∈Z),2因此sin θ=cos α=2 55,cos θ=sin α=5,故点P 的直角坐标为(3,4).523.选修4-5:不等式选讲已知函数f(x)=|x-2|+2,g(x)=m|x|(m∈R).(1)解对于x 的不等式f( x)>5;(2)若不等式f(x) ≥g(x)对随意x∈R恒成立,求m 的取值范围.[解] (1)由f(x)>5,得|x-2|>3,∴x-2<-3 或x-2>3,解得x<-1 或x>5.故原不等式的解集为{ x|x<-1 或x>5} .(2)由f(x) ≥g(x),得|x-2|+2≥m|x|对随意x∈R恒成立,当x=0时,不等式|x-2|+2≥0恒成立,|x-2|+2当x≠0时,问题等价于m≤对随意非零实数恒成立,|x||x-2|+2 |x-2+2|∵=1,∴m≤1,即m 的取值范围是(-∞,1].≥|x| |x|。
2019年高考数学(理科)二轮专题复习:第二部分 函数的图象与性质
π4 =
2 2.
(2)因为f(x)+f(-x)=ln( 1+x2 -x)+1+ln( 1+x2 +x)+1=ln(1+x2-x2)+2=2,
所以f(a)+f(-a)=2,所以f(-a)=-2.
答案:(1)
2 2
(2)-2
命题视角 函数的单调性与最值
【例 3-2】 (1)(2018·河南六市一模)若函数 f(x)=
因此M=3116,m=0,所以M-m=3116.
(2)因为f(x)在R上是偶函数,且在(-∞,0)上是增 函数,
所以f(x)在(0,+∞)上是减函数, 由f(32a-1)≥f(- 3)=f( 3), 所以32a-1≤ 3,则2a-1≤12,所以a≤34. 故a的最大值是34. 答案:(1)A (2)D
热点3 函数的性质及应用(高频考点) 1.函数的单调性 单调性是函数的一个局部性质,一个函数在不同的 区间上可以有不同的单调性,判断函数单调性常用定义 法、图象法及导数法. 温馨提醒:函数的多个单调区间若不连续,不能用 符号“∪”连接,可用“和”或“,”连接.
2.函数的奇偶性 函数的奇偶性是函数在定义域上的整体性质,偶函 数的图象关于y轴对称,在关于坐标原点对称的定义区间 上具有相反的单调性;奇函数的图象关于坐标原点对 称,在关于坐标原点对称的定义区间上具有相同的单调 性.
|x|-x12在{x|1≤|x|≤4,x∈R}上的最大值为 M,最小值
为 m,则 M-m=( )
31 A.16
B.2
9 C.4
11 D. 4
(2)(2018·佛山调研)已知函数f(x)是定义在R上的偶函
数,且在区间(-∞ ,0)上单调递增.若实数a满足f(32a-1)
≥f(- 3),则a的最大值是( )
中考数学二轮专题复习试卷:统计与概率(含答案)
中考数学二轮专题复习试卷:统计与概率(时间:120分钟 满分:120分)一、选择题(本大题共15个小题,每小题3分,共45分) 1.(四川遂宁)以下问题,不适合用全面调查的是( ) A.了解全班同学每周体育锻炼的时间 B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解全市中小学生每天的零花钱2.(山东菏泽)在我市举行的中学生春季田径运动会上,参加男子跳高的15名运动员的成绩如表所示:这些运动员跳高的中位数和众数分别是( )A.1.70,1.65B.1.70,1.70C.1.65,1.70D.3,4 3.(山东济宁)下列说法正确的是( ) A.中位数就是一组数据中最中间的一个数 B.8,9,9,10,10,11这组数据的众数是9 C.如果x 1,x 2,x 3,…,x n 的平均数是x,那么()12n x x (x x x x 0-+-+⋯+-=())D.一组数据的方差是这组数据的极差的平方4.(山东青岛)一个不透明的口袋里装有除颜色外都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了100次,其中有10次摸到白球.因此小亮估计口袋中的红球大约有( )个.A.45B.48C.50D.555.(四川内江)今年我市有近4万名考生参加中考,为了解这些考生的数学成绩,从中抽取1 000名考生的数学成绩进行统计分析,以下说法正确的是( ) A.这1 000名考生是总体的一个样本 B.近4万名考生是总体C.每位考生的数学成绩是个体D.1 000名学生是样本容量6.(重庆)为了比较甲乙两种水稻秧苗谁出苗更整齐,每种秧苗各随机抽出50株,分别量出每株长度,发现两组秧苗的平均长度一样,甲、乙的方差分别是 3.5、10.9,则下列说法正确的是( ) A.甲秧苗出苗更整齐 B.乙秧苗出苗更整齐C.甲、乙出苗一样整齐D.无法确定甲、乙出苗谁更整齐7.(浙江温州)小明对九(1)班全班同学“你最喜欢的球类项目是什么?(只选一项)”的问题进行了调查,把所得数据绘制成如图所示的扇形统计图,由图可知,该班同学最喜欢的球类项目是( )A.羽毛球B.乒乓球C.排球D.篮球8.(山东日照)如图是某学校全体教职工年龄的频数分布直方图(统计中采用“上限不在内”的原则,如年龄为36岁统计在36≤x<38小组,而不在34≤x<36小组),根据图形提供的信息,下列说法中错误的是( )A.该学校教职工总人数是50人B.年龄在40≤x<42小组的教职工人数占该学校全体教职工总人数的20%C.教职工年龄的中位数一定落在40≤x<42这一组D.教职工年龄的众数一定在38≤x<40这一组9.(陕西)我省某市五月份第二周连续七天的空气质量指数分别为:111、96、47、68、70、77、105,则这七天空气质量指数的平均数是( )A.71.8B.77C.82D.95.710.(山东枣庄)在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球为白球的概率是23,则黄球的个数为( )A.16B.12C.8D.411.(福建漳州)某日福建省九地市的最高气温统计如下表:针对这组数据,下列说法正确的是( )A.众数是30B.极差是1C.中位数是31D.平均数是2812.(山东泰安)某校开展“节约每一滴水”活动,为了了解开展活动一个月以来节约用水的情况,从八年级的400名同学中选出20名同学统计了各自家庭一个月的节水情况,见表:请你估计这400名同学的家庭一个月节约用水的总量大约是( )A.130 m3B.135 m3C.65 m3D.260 m313.(甘肃天水)一组数据:3,2,1,2,2的众数,中位数,方差分别是( )A.2,1,0.4B.2,2,0.4C.3,1,2 D.2,1,0.214.(山东淄博)假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚卵全部成功孵化,则三只雏鸟中恰有两只雌鸟的概率是( )1352A. B. C. D.688315.(辽宁铁岭)在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有( )A.16个B.15个C.13个D.12个二、填空题(本大题共6个小题,每小题3分,共18分)16.(浙江湖州)某市号召居民节约用水,为了解居民用水情况,随机抽查了20户家庭某月的用水量,结果如表,则这20户家庭这个月的平均用水量是_______t.17.(山东青岛)某校对甲、乙两名跳高运动员的近期跳高成绩进行统计分析,结果如下:,,,2===x1.69 m x1.69 m s0.000 6甲乙甲,则这两名运动员中________的成绩更稳定.2s0.003 15=乙18.(浙江宁波)如图是七(1)班学生参加课外兴趣小组人数的扇形统计图.如果参加外语兴趣小组的是12人,那么参加绘画兴趣小组的人数是______人.19.(湖南株州)市运会举行射击比赛,校射击队从甲、乙、丙、丁四人中选拔一人参赛.在选拔赛中,每人射击10次,计算他们10发成绩的平均数(环)及方差如表.请你根据表中数据选一人参加比赛,最合适的人选是_______.20.甲乙丙丁平均数8.28.08.08.2方差2.11.81.61.420.(湖南岳阳)如图所示的3×3方格形地面上,阴影部分是草地,其余部分是空地,一只自由飞翔的小鸟飞下来落在草地上的概率为______.21.(浙江温州)赵老师想了解本校“生活中的数学知识”大赛的成绩分布情况,随机抽取了100份试卷的成绩(满分为120分,成绩为整数),绘制成如图所示的统计图.由图可知,成绩不低于90分的共有________人.三、解答题(本大题共5个小题,共57分)22.(本小题满分10分)(浙江嘉兴)小敏为了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示优的扇形的圆心角度数;(3)请估计该市这一年(365天)达到优和良的总天数.23.(本小题满分10分)(宁夏)某校要从九年级(一)班和(二)班中各选取10名女同学组成礼仪队,选取的两班女生的身高如下:(单位:厘米)(一)班:168 167 170 165 168 166 171 168 167 170(二)班:165 167 169 170 165 168 170 171 168 167(1)补充完成下面的统计分析表(2)请选一个合适的统计量作为选择标准,说明哪一个班能被选取.24.(本小题满分10分)(浙江温州)一个不透明的袋中装有5个黄球,13个黑球和22个红球,它们除颜色外都相同.(1)求从袋中摸出一个球是黄球的概率;(2)现在袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后,使从袋中摸出一个球是黄球的概率不小于1.3问至少取出了多少黑球?25.(本小题满分12分)(四川雅安)某学校为了增强学生体质,决定开设以下体育课外活动项目:A.篮球B.乒乓球C.羽毛球D.足球.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图.请回答下列问题:(1)这次被调查的学生共有_____人;(2)请你将条形统计图(2) 补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率( 用树状图或列表法解答).26.(本小题满分15分)(浙江衢州)据衢州市国民经济和社会发展统计公报显示,衢州市新开工的住房有商品房、廉租房、经济适用房和公共租赁房四种类型.老王对这四种新开工的住房套数和比例进行了统计,并将统计结果绘制成下面两幅统计图,请你结合图中所给信息解答下列问题:(1)求经济适用房的套数,并补全频数分布直方图;(2)假如申请购买经济适用房的对象中共有950人符合购买条件,老王是其中之一.由于购买人数超过房子套数,购买者必须通过电脑摇号产生,如果对新开工的经济适用房进行电脑摇号,那么老王被摇中的概率是多少?(3)如果新开工廉租房建设的套数比增长10%,那么新开工廉租房有多少套?参考答案1.D2.A3.C4.A5.C6.A7.D8.D9.C10.D 11.A 12.A 13.B 14.B 15.D16.5.8 17.甲 18.5 19.丁 20.1321.2722.解:(1)∵扇形图中空气质量为良所占比例为64%,条形图中空气质量为良的天数为32天,∴被抽取的总天数为:32÷64%=50(天);(2)轻微污染天数是50-32-8-3-1=5天,表示优的圆心角度数为:850×360°=57.6°. 补全条形统计图,如图所示:(3)∵样本中优和良的天数分别为8和32天, ∴一年(365天)达到优和良的总天数:832365292().50+⨯=天 23.解:(1)一班的方差=110[(168-168)2+(167-168)2+(170-168)2+…+(170-168)2]=3.2; 二班的极差为171-165=6; 二班的中位数为168; 补全表格如下:(2)选择方差做标准,∵一班方差<二班方差, ∴一班可能被选取.24.解:(1)摸出一个球是黄球的概率:51P .513228==++(2)设取出x 个黑球.由题意,得:5x 1,403+≥ 解得:25x ,3≥∴x 的最小正整数解是x=9. 答:至少取出9个黑球. 25.解:(1)200 (2)C:60人(3) 所有情况如表所示:由上表可知, 所有结果为 12 种, 其中符合要求的只有2种, ∴P(恰好选中甲、乙)=21.126=26.解:(1)根据题意得:住房总数为1 500÷24%=6 250(套),则经济适用房的数量为6 250×7.6%=475(套),所以经济适用房共有475套.补全直方图(2)老王被摇中的概率为:4751.9502(3)廉租房共有6 250×8%=500(套). 500(1+10%)=550, 所以新开工廉租房550套.。
中考数学二轮专题复习1一 化归思想问题(含答案)
中考数学专题复习一 化归思想问题一、总体概述数学思想是数学内容的进一步提炼和概括,是对数学内容的种本质认识,数学方法是实施有关数学思想的一种方式、途径、手段,数学思想方法是数学发现、发明的关键和动力.抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识. 初中数学的主要数学思想是化归思想、分类讨论思想、数形结合思想等.本专题专门复习化归思想.所谓化归思想就是化未知为已知、化繁为简、化难为易.如将分式方程化为整式方程,将代数问题化为几何问题,将四边形问题转化为三角形问题等.实现这种转化的方法有:待定系数法、配方法、整体代人法以及化动为静、由抽象到具体等.二、典型例题【例题1】如图3-1-1,反比例函数y=-8x与一次函数y=-x+2的图象交于A 、B 两点. (1)求 A 、B 两点的坐标;(2)求△AOB 的面积.【例题2】解方程:22(1)5(1)20x x ---+=【例题3】如图 3-1-2,梯形 ABCD 中,AD ∥BC ,AB=CD ,对角线AC 、BD 相交于O 点,且AC ⊥BD ,AD=3,BC=5,求AC 的长.【例题4】已知△ABC 的三边为a ,b ,c ,且222a b c ab ac bc ++=++,试判断△ABC 的形状.【例题5】△ABC 中,BC =a ,AC =b ,AB =c .若90C ∠=︒,如图l ,根据勾股定理,则222a b c +=。
若△ABC 不是直角三角形,如图2和图3,请你类比勾股定理,试猜想22a b +与c2的关系,并证明你的结论.三、当堂达标一、选择题1.已知|x+y|+(x -2y )2=0,则()1221. . . .1112x x x x A B C D y y y y =-=-==⎧⎧⎧⎧⎨⎨⎨⎨=-=-==⎩⎩⎩⎩ 2.一次函数y=kx +b 的图象经过点A (0,-2)和B (-3,6)两点,那么该函数的表达式是( ) 8.2 6 .238.8 6 .23A y x B y x C y x D y x =-+=--=--=--3.设一个三角形的三边长为3,l -2m ,8,则m 的取值范围是( )A .0<m <12B. -5<m - 2 C .-2<m <5 D .-72<m <-l 4.已知11553x xy y x yx xy y +--=--,则的值为( ) A 、72 B 、-72 C 、27 D 、-275.若24(2)16x m x +-+是完全平方式,则m=( )A .6B .4C .0D .4或06.如果表示a 、b 为两个实数的点在数轴上的位置如图3-l -8所示,那么化简2||()a b a b -++的结果等于( ),A .2aB .2bC .-2aD .-2b二、填空题7.已知抛物线2y ax bx c =++的对称轴为直线x=2,且经过点(5,4)和点(1,4)则该抛物线的解析式为____________.8.用配方法把二次函数 y=x2+3x +l 写成 y=(x+m )2+n 的形式,则y=__________________-9.若分式293x x -+的值为零,则x=________ 10函数y=21x x +-中自变量x 的取值范围是_______. 11如果长度分别为5、3、x 的三条线段能组成一个三角形,那么x 的范围是_______.12、点(1,6)在双曲线y= k x上,则k=______. 三、解答题13.解下歹方程(组): 23664011(1)1x x x x x x -+=+-=----23⑴⑵x+1x215x y x y -=-⎧⎧⎨⎨-+=⎩⎩x+y=10⑶ ⑷2x-y=-114.已知2286250,x y x y ++++=求代数式224442y x x xy y x y --+++2x 的值。
2019届高考数学二轮复习第19练概率与统计的综合问题[中档大题规范练]课件(59张)(全国通用)
ξ
1
2
3
P
1 9
2 3
2 9
故 ξ 的数学期望 E(ξ)=1×19+2×23+3×29=199.
解答
6.在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影 响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种 心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理 暗示后的结果来评价两种心理暗示的作用.现有6名男志愿者A1,A2,A3, A4,A5,A6和4名女志愿者B1,B2,B3,B4,从中随机抽取5人接受甲种 心理暗示,另5人接受乙种心理暗示. (1)求接受甲种心理暗示的志愿者中包含A1但不包含B1的概率; 解 记接受甲种心理暗示的志愿者中包含A1但不包含B1的事件为M, 则 P(M)=CC51480=158.
解答
(2)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列与期望E(X).
解答
考点三 概率与统计的综合问题
方法技巧 对于将统计图表和随机变量相结合的综合问题,首先要正确 处理图表数据,明确随机变量的意义,然后判断随机变量分布的类型, 求出分布列.
7.(2018·桂林模拟)甲、乙两名运动员互不 影响地进行四次射击训练,根据以往的数 据统计,他们射击成绩均不低于8环(成绩 环数以整数计),且甲、乙射击成绩(环数) 的分布列如右: (1)求p,q的值;
的数据估计 μ 和 σ(精确到 0.01).
附:若随机变量 Z 服从正态分布 N(μ,σ2),则 P(μ-3σ<Z<μ+3σ)=0.997 4,0.997 416
≈0.959 2, 0.008≈0.09.
解答
模板体验
模板答题规范练
典例 (12分)某校工会对全校教职工每天收看世界杯足球赛比赛的时间 作了一次调查,得到如下频数分布表:
中考数学二轮专题复习-圆的性质及有关计算及答案详解
中考数学二轮专题复习-圆的性质及有关计算一、单选题1.如图,点A、B、C在⊙O上,∠CAB=70°,则∠BOC等于()A.100°B.110°C.130°D.140°2.如图,⊙O的半径为5,弦AB=6,P是弦AB上的一个动点(不与A、B重合),下列符合条件的OP的值可以是()A.3.1B.4.2C.5.3D.6.43.如图,AB是⊙O的直径,CD是弦,若∠BCD=34°,则∠ABD等于()A.66°B.34°C.56°D.68°4.如图,点A,B,C在上,是等边三角形,则的大小为()A.60°B.40°C.30°D.20°5.已知为圆的直径,为圆周上一点,,.则的度数为()A.10°B.15°C.20°D.30°6.如图,AB是⊙O的直径,CD⊥AB于点E,连结CO并延长,交弦AD于点F.若AB=10,BE=2,则OF的长度是()A.B.3C.D.7.如图,是⊙O的弦,且,点是弧中点,点是优弧上的一点,,则圆心到弦的距离等于()A.B.C.D.8.如图,A,B,C是某社区的三栋楼,若在AC中点D处建一个5G基站,其覆盖半径为300 m,则这三栋楼中在该5G基站覆盖范围内的是()A.A,B,C都不在B.只有BC.只有A,C D.A,B,C9.如图,四边形ABCD内接于,若,则的度数为()A.50°B.100°C.130°D.150°10.如图,两个等圆⊙O1和⊙O2相交于A、B两点,且⊙O1经过⊙O2的圆心,则∠O1AB的度数为()A.45°B.30°C.20°D.15°11.如图,AB是⊙O的直径,点C,D为⊙O上的点.若∠D=120°,则∠CAB的度数为()A.30°B.40°C.50°D.60°12.如图,四个边长为2的小正方形拼成一个大正方形,A、B、O是小正方形顶点,⊙O的半径为2,P是⊙O上的点,且位于右上方的小正方形内,则∠APB等于()A.30°B.45°C.60°D.90°13.如图,点C,D是劣弧上两点,CD∥AB,∠CAB=45°,若AB=6,CD=2,则所在圆的半径长为()A.B.C.2 D.14.如图,在正方形ABCD中,点E是边BC的中点,连接AE、DE,分别交BD、AC于点P、Q,过点P作PF⊥AE交CB的延长线于F,下列结论:①∠AED+∠EAC+∠EDB=90°,②AP=FP,③AE=AO,④若四边形OPEQ的面积为4,则该正方形ABCD的面积为36,⑤CE•EF=EQ•DE.其中正确的结论有()A.5个B.4个C.3个D.2个15.如图,点P是等边三角形ABC外接圆⊙O上的点,在以下判断中,不正确的是()A.当弦PB最长时,△APC是等腰三角形B.当△APC是等腰三角形时,PO⊥ACC.当PO⊥AC时,∠ACP=30°D.当∠ACP=30°时,△BPC是直角三角形16.如图所示,半径为R的⊙O的弦AC=BD,AC,BD交于点E,F为上一点,连结AF,BF,AB,AD,有下列结论:①AE=BE;②若AC⊥BD,则AD=R;③若AC⊥BD,=,AB=,则BF+CE=1.其中正确的是()A.①②B.①③C.②③D.①②③17.如图,AB为⊙O的直径,点C为⊙O上一点,连接CO,作AD OC,若CO=,AC=2,则AD=()A.3B.C.D.18.如图,在△ABC中,(1)作AB和BC的垂直平分线交于点O;(2)以点O为圆心,OA长为半径作圆;(3)⊙O分别与AB和BC的垂直平分线交于点M,N;(4)连接AM,AN,CM,其中AN与CM交于点P.根据以上作图过程及所作图形,下列四个结论:①=2 ;②AB=2AM;③点P是△ABC的内心;④∠MON+2∠MPN=360°.其中正确结论的个数是()A.1B.2C.3D.419.如图,已知正方形ABCD的边长为4,点M和N分别从B、C同时出发,以相同的速度沿BC、CD向终点C、D运动,连接AM、BN,交于点P,连接PC,则PC长的最小值为()A.2 -2B.2C.3 -1D.220.如图,AB是⊙o直径,M,N是上两点,C是上任一点,∠ACB角平分线交⊙o 于点D,∠BAC的平分线交CD于点E,当点C从M运动到N时,C、E两点的运动路径长之比为()A.B.C.D.二、填空题21.如图,在⊙O中,点A在上,∠BOC=100°,则∠BAC=.22.如图,在⊙O中,A,B,C是⊙O上三点,如果∠AOB=70º,那么∠C的度数为.23.如图,四边形是的内接四边形,对角线是的直径,,,则的半径长为.24.如图,CD是⊙O的直径,AB是弦,CD⊥AB于点E,若OA=5,AB=8,则AD的长为.25.如图,在⊙O中,OC⊥AB,∠ADC=32°,则∠OBA的度数是26.如图所示,草坪边上有互相垂直的小路m,n,垂足为E,草坪内有一个圆形花坛,花坛边缘有A,B,C三棵小树。
矩阵与变换二阶矩阵平面逆变换等二轮复习专题练习(一)含答案新人教版高中数学名师一点通
7.设 是把坐标平面上的点的横坐标伸长到 倍,纵坐标伸长到 倍的伸压变换.
(1)求矩阵 的特征值及相应的特征向量;
(2)求逆矩阵 以及椭圆 在 的作用下的新曲线的方程.
8.已知二阶矩阵 有特征值 及其对应的一个特征向量 ,特征值 及其对应的一个特征向量 ,求矩阵 的逆矩阵 .
2.已知线性方程组的增广矩阵为 ,若该线性方程组无解,则 .
评卷人
得分
二、解答题
3.在平面直角坐标系xOy中,直线 在矩阵 对应的变换下得到的直线过ቤተ መጻሕፍቲ ባይዱ ,求实数 的值.
4.已知矩阵 = ,求 的特征值 , 及对应的特征向量 .
5.已知矩阵 的一个特征值为3,求另一个特征值及其对应的一个特征 向量.[来
高中数学专题复习
《矩阵与变换二阶矩阵平面逆变换等》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
评卷人
得分
一、填空题
1.若矩阵 有特征值 ,它们所对应的特征向量分别为 和 ,则矩阵 =______________.
【参考答案】***试卷处理标记,请不要删除
评卷人
得分
一、填空题
1.
2.2
评卷人
得分
二、解答题
3.选修4—2:矩阵与变换
本小题主要考查二阶矩阵的变换等基础知识,考查运算求解能力.满分10分.
解:设变换T: ,则 ,即 …………………………5分
代入直线 ,得 .
将点 代入上式,得k 4.……………………………………………………………10分
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大题规范练(一)解答题:解答应写出文字说明、证明过程或演算步骤. 1.(本题满分12分)已知函数f (x )=sin x +cos x . (1)当f (x )=2时,求sin ⎝⎛⎭⎪⎫2x +π3的值; (2)若g (x )=f (2x ),求函数g (x )在⎣⎢⎡⎦⎥⎤0,π2上的值域.解:(1)依题意,sin x +cos x =2⇒(sin x +cos x )2=2⇒sin 2x =1, ∴cos 2x =0,∴sin ⎝ ⎛⎭⎪⎫2x +π3=sin 2x cos π3+cos 2x sin π3=12.(2)g (x )=f (2x )=sin 2x +cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π4,∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴2x +π4∈⎣⎢⎡⎦⎥⎤π4,5π4,∴sin ⎝ ⎛⎭⎪⎫2x +π4∈⎣⎢⎡⎦⎥⎤-22,1. ∴函数g (x )在⎣⎢⎡⎦⎥⎤0,π2上的值域为[-1,2].2.(本题满分12分)A 药店计划从甲、乙两家药厂选择一家购买100件某种中药材,为此A 药店从这两家药厂提供的100件该种中药材中各随机抽取10件,以抽取的10件中药材的质量(单位:克)作为样本,样本数据的茎叶图如图所示.已知A 药店根据中药材的质量的稳定性选择药厂.(1)根据样本数据,A 药店应选择哪家药厂购买中药材?(不必说明理由)(2)若将抽取的样本分布近似看成总体分布,药店与所选药厂商定中药材的购买价格如下表:(ⅰ)估计A(ⅱ)若A 药店所购买的100件中药材的总费用不超过7 000元,求a 的最大值. 解:(1)A 药店应选择乙药厂购买中药材.(2)(ⅰ)从乙药厂所抽取的10件中药材的质量的平均值为x -=110×(7+9+11+12+12+17+18+21+21+22)=15(克),故A 药店所购买的100件中药材的总质量的估计值为100×15=1 500(克). (ⅱ)由题知乙药厂所提供的每件中药材的质量n <15的概率为510=0.5,15≤n ≤20的概率为210=0.2,n >20的概率为310=0.3,则A 药店所购买的100件中药材的总费用为100×(50×0.5+0.2a +100×0.3). 依题意得100×(50×0.5+0.2a +100×0.3)≤7 000, 解得a ≤75, 所以a 的最大值为75.3.(本题满分12分)如图,在四棱锥P ABCD 中,PC =AD =CD =12AB=2,AB ∥DC ,AD ⊥CD ,PC ⊥平面ABCD .(1)求证:BC ⊥平面PAC ;(2)若M 为线段PA 的中点,且过C ,D ,M 三点的平面与线段PB 交于点N ,确定点N 的位置,说明理由;并求三棱锥A CMN 的高.解:(1)在直角梯形ABCD 中,AC =AD 2+DC 2=22,BC = (AB -CD )2+AD 2=22,所以AC 2+BC 2=AB 2,即AC ⊥BC .又PC ⊥平面ABCD ,所以PC ⊥BC .又AC ∩PC =C ,故BC ⊥平面PAC . (2)取N 为PB 的中点(图略).因为M 为PA 的中点,N 为PB 的中点,所以MN ∥AB ,且MN =12AB =2.又AB ∥CD ,所以MN ∥CD ,所以M ,N ,C ,D 四点共面, 所以点N 为过C ,D ,M 三点的平面与线段PB 的交点.因为BC ⊥平面PAC ,N 为PB 的中点,所以点N 到平面PAC 的距离d =12BC = 2.又S △ACM =12S △ACP =12×12×AC ×PC =2,所以V N ACM =13×2×2=23.由题意可知,在直角三角形PCA 中,PA =AC 2+PC 2=23,CM =3, 在直角三角形PCB 中,PB =BC 2+PC 2=23,CN =3,所以S △CMN = 2. 设三棱锥A CMN 的高为h ,V N ACM =V A CMN =13×2×h =23,解得h =2,故三棱锥A CMN 的高为 2.选考题:共10分.请考生在第4、5题中任选一题作答.如果多做,则按所做的第一题计分.4.(本题满分10分)[选修4-4:坐标系与参数方程] 在直角坐标系xOy 中,圆C 的参数方程为⎩⎪⎨⎪⎧x =1+cos t ,y =sin t(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系.(1)求圆C 的极坐标方程;(2)直线l 的极坐标方程是2ρsin ⎝ ⎛⎭⎪⎫α+π4=22,曲线C 1的极坐标方程为θ=α0,其中α0满足tan α0=2,曲线C 1与圆C 的交点为O ,P ,与直线l 的交点为Q ,求线段PQ 的长.解:(1)圆C 的普通方程为(x -1)2+y 2=1,又x =ρcos θ,y =ρsin θ,所以圆C 的极坐标方程为ρ=2cos θ.(2)设(ρ1,θ1)为点P 的极坐标,则有⎩⎪⎨⎪⎧ρ1=2cos θ1,tan θ1=2,解得⎩⎪⎨⎪⎧ρ1=255,tan θ1=2.设(ρ2,θ2)为点Q 的极坐标,则有⎩⎪⎨⎪⎧2ρ2⎝ ⎛⎭⎪⎫sin θ2cos π4+cos θ2sin π4=22,tan θ2=2,解得⎩⎪⎨⎪⎧ρ2=253,tan θ2=2.由于θ1=θ2,所以|PQ |=|ρ1-ρ2|=4515,所以线段PQ 的长为4515.5.(本题满分10分)[选修4-5:不等式选讲] 已知函数f (x )=|2x -1|.(1)求不等式f (x )+|x +1|<2的解集;(2)若函数g (x )=f (x )+f (x -1)的最小值为a ,且m +n =a (m >0,n >0),求4m +1n的最小值.解:(1)f (x )+|x +1|=|2x -1|+|x +1|=⎩⎪⎨⎪⎧-3x ,x ≤-1,-x +2,-1<x <12,3x ,x ≥12. 当x ≤-1时,-3x <2,得x >-23,无解;当-1<x <12时,-x +2<2,得x >0,即0<x <12;当x ≥12时,3x <2,得x <23,即12≤x <23.综上,不等式的解集为⎝ ⎛⎭⎪⎫0,23.(2)由条件得g (x )=|2x -1|+|2x -3|≥|(2x -1)-(2x -3)|=2,当且仅当x ∈⎣⎢⎡⎦⎥⎤12,32时,其最小值a =2,即m +n =2.又4m +1n =12(m +n )⎝ ⎛⎭⎪⎫4m +1n =12⎝ ⎛⎭⎪⎫5+4n m +m n ≥12⎝⎛⎭⎪⎫5+24n m ×m n =92, 所以4m +1n 的最小值为92,当且仅当m =43,n =23时等号成立.大题规范练(二)解答题:解答应写出文字说明、证明过程或演算步骤.1.(本题满分12分)设公差不为零的等差数列{a n }的前5项和为55,且a 2,a 6+a 7,a 4-9成等比数列.(1)求数列{a n }的通项公式;(2)设b n =1(a n -6)(a n -4),数列{b n }的前n 项和为S n ,求证:S n <12.解:(1)设等差数列{a n }的首项为a 1,公差为d , 则⎩⎪⎨⎪⎧5a 1+5×42d =55,(a 1+5d +a 1+6d )2=(a 1+d )(a 1+3d -9) ⇒⎩⎪⎨⎪⎧a 1=7,d =2或⎩⎪⎨⎪⎧a 1=11,d =0(舍去).故数列{a n }的通项公式为a n =7+2(n -1),即a n =2n +5. (2)证明:由a n =2n +5,得b n =1(a n -6)(a n -4)=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1.所以S n =b 1+b 2+…+b n =12⎣⎢⎡⎝ ⎛⎭⎪⎫1-13+⎦⎥⎤⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=12⎝ ⎛⎭⎪⎫1-12n +1<12.2.(本题满分12分)某大学生在开学季准备销售一种文具盒进行试创业,在一个开学季内,每售出1盒该产品获得利润30元,未售出的产品,每盒亏损10元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示.该同学为这个开学季购进了160盒该产品,以x (单位:盒,100≤x ≤200)表示这个开学季内的市场需求量,y (单位:元)表示这个开学季内经销该产品的利润.(1)根据直方图估计这个开学季内市场需求量x 的众数和平均数; (2)将y 表示为x 的函数;(3)根据直方图估计利润y 不少于4 000元的概率.解:(1)由频率分布直方图得,这个开学季内市场需求量x 的众数是150盒, 需求量在[100,120)内的频率为0.005 0×20=0.1, 需求量在[120,140)内的频率为0.010 0×20=0.2, 需求量在[140,160)内的频率为0.015 0×20=0.3, 需求量在[160,180)内的频率为0.012 5×20=0.25, 需求量在[180,200]内的频率为0.007 5×20=0.15.则平均数x =110×0.1+130×0.2+150×0.3+170×0.25+190×0.15=153(盒). (2)因为每售出1盒该产品获得利润30元,未售出的产品,每盒亏损10元, 所以当100≤x <160时,y =30x -10×(160-x )=40x -1 600, 当160≤x ≤200时,y =160×30=4 800,所以y =⎩⎪⎨⎪⎧40x -1 600,100≤x <160,4 800,160≤x ≤200.(3)因为利润y 不少于4 000元,所以当100≤x <160时,由40x -1 600≥4 000,解得160>x ≥140.当160≤x ≤200时,y =4 800>4 000恒成立,所以200≥x ≥140时,利润y 不少于4 000元.所以由(1)知利润y 不少于4 000元的概率P =1-0.1-0.2=0.7.3.(本题满分12分)如图所示,在四棱锥P ABCD 中,底面ABCD 为菱形,E 为AC 与BD 的交点,PA ⊥平面ABCD ,M 为PA 中点,N 为BC 中点,连接MN .(1)证明:直线MN ∥平面PCD ;(2)若点Q 为PC 中点,∠BAD =120°,PA =3,AB =1,求三棱锥A QCD 的体积. 解:(1)取PD 中点R ,连接MR ,RC (图略),∵MR ∥AD ,NC ∥AD ,MR =12AD ,NC =12AD ,∴MR ∥NC ,MR =NC ,∴四边形MNCR 为平行四边形,∴MN ∥RC ,又RC ⊂平面PCD ,MN ⊄平面PCD , ∴直线MN ∥平面PCD .(2)由已知条件得AC =AD =CD =1,∴S △ACD =34, ∴V A QCD =V Q ACD =13×S △ACD ×12PA =18.选考题:共10分.请考生在第4、5题中任选一题作答.如果多做,则按所做的第一题计分.4.(本题满分10分)[选修4-4:坐标系与参数方程]在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2-35t ,y =-2+45t(t 为参数).以坐标原点为极点,以x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρcos θ=tan θ.(1)求曲线C 1的普通方程与曲线C 2的直角坐标方程;(2)若C 1与C 2交于A ,B 两点,点P 的极坐标为⎝ ⎛⎭⎪⎫22,-π4,求1|PA |+1|PB |的值. 解:(1)由曲线C 1的参数方程消去参数t 可得,曲线C 1的普通方程为4x +3y -2=0; 由x =ρcos θ,y =ρsin θ可得,曲线C 2的直角坐标方程为y =x 2.(2)由点P 的极坐标为⎝ ⎛⎭⎪⎫22,-π4可得点P 的直角坐标为(2,-2).曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2-35t ,y =-2+45t(t 为参数),代入y =x 2得9t 2-80t +150=0,设t 1,t 2是点A ,B 对应的参数,则t 1+t 2=809,t 1t 2=503>0.∴1|PA |+1|PB |=|PA |+|PB ||PA |·|PB |=|t 1+t 2||t 1t 2|=815. 5.(本题满分10分)[选修4-5:不等式选讲]已知函数f (x )=|2x -1|+|x +1|,g (x )=|x -a |+|x +a |. (1)解不等式f (x )>9;(2)∀x 1∈R ,∃x 2∈R ,使得f (x 1)=g (x 2),求实数a 的取值范围.解:(1)f (x )=⎩⎪⎨⎪⎧3x ,x ≥12,2-x ,-1<x <12,-3x ,x ≤-1.f (x )>9等价于⎩⎪⎨⎪⎧x ≥12,3x >9或⎩⎪⎨⎪⎧-1<x <12,2-x >9或⎩⎪⎨⎪⎧x ≤-1,-3x >9.综上,原不等式的解集为{x |x >3或x <-3}. (2)∵|x -a |+|x +a |≥2|a |.由(1)知f (x )≥f ⎝ ⎛⎭⎪⎫12=32,所以2|a |≤32,所以实数a 的取值范围是⎣⎢⎡⎦⎥⎤-34,34.。