2020-2021学年江苏省海安县七校八年级上学期期中联考数学试卷

合集下载

2020-2021学年第一学期八年级数学期中考试卷(及答案)共五套

2020-2021学年第一学期八年级数学期中考试卷(及答案)共五套

2020-2021学年第一学期期中考试试卷八年级数学一、选择题(本大题共10小题,每小题2分,共20分)1.下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的A .B .C .D .2.在平面直角坐标系中,点P (1,﹣2)的位置在A .第一象限B .第二象限C .第三象限D .第四象限3.等腰三角形两边长分别为2和4,则这个等腰三角形的周长为A .6B .8C .10D .8或104.今年10月环太湖中长跑中参赛选手达到21780人,这个数精确到千位表示约为( ) A .2.2×104B .22000C .2.1×104D .225.如图,在数轴上表示实数7+1的点可能是A .PB .QC .RD .S6.如图是跷跷板的示意图,支柱OC 与地面垂直,点O 是AB 的中点,AB 绕着点O 上下转动.当A 端落地时,∠OAC =20°,跷跷板上下可转动的最大角度(即∠A ′OA )是 A .80° B .60° C .40° D .20°7.如图,将一个三角形纸片ABC 沿过点B 的直线折叠,使点C 落在AB 边上的点E 处,折痕为BD ,则下列结论一定正确的是 A .AD =BDB .AE =ACC .ED +EB =DBD .AE +CB =AB8.由下列条件不能判定△ABC 为直角三角形的是A .a =,b =,c =B .∠A +∠B =∠C C .∠A :∠B :∠C =1:3:2D .(b +c )(b ﹣c )=a 29.如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC =6,DE =3,则△BCE 的面积等于A .6B .8C .9D .1810.如图,在四边形ABCD 中,AB =AC =BD ,AC 与BD 相交于H ,且AC ⊥BD .①ABPQ RS(第5题)ABCA 'B 'O(第6题)(第7题)∥CD ;②△ABD ≌△BAC ;③AB 2+CD 2=AD 2+CB 2;④∠ACB +∠BDA =135°.其中真命题的个数是A .1B .2C .3D .4二、填空题(本大题共8小题,每空2分,共16分) 11.81的算术平方根是 ▲ .12.在平面直角坐标系中,点P (-1,2)关于x 轴的对称点的坐标为 ▲ . 13.如图,在R t △ABC 中,CD 是斜边AB 上的中线,若AB =20,则CD = ▲ . 14.如图,△ABC 是边长为6的等边三角形,D 是BC 上一点,BD =2,DE ⊥BC 交AB 于点E ,则线段AE = ▲ .15.如图,三个正方形中,其中两个正方形的面积分别是100,36,则字母A 所代表的正方形的边长是 ▲ .16.如图,在△ABC 中,AB =AC ,∠B =66°,D ,E 分别为AB ,BC 上一点,AF ∥DE ,若∠BDE =30°,则∠F AC 的度数为 ▲ .17.如图,数轴上点A 、点B 表示的数分别中1和5,若点A 是线段BC 的中点,则点C 所表示的数是 ▲ .18.已知:如图,ΔABC 中,∠A =45°,AB =6,AC =24,点D 、E 、F 分别是三边AB 、BC 、CA 上的点,则ΔDEF 周长的最小值是 ▲ .AB CD E(第14题)AB CD(第13题)(第15题)ABCDH(第10题)(第9题)A BCF DE(第16题)(第17题)(第18题)FEDCBA三、解答题(本大题共9题,共64分) 19.(8分)(1)计算:()234272-+-; (2)已知:4x 2=20,求x 的值.20.(4分)如图,四边形ABCD 中,AB =BC ,AD =CD ,求证:∠A =∠C .CDBA21.(6分)如图,在△ABC 中,AD ⊥BC ,AB =10,BD =8,∠ACD =45°. (1)求线段AD 的长;(2)求△ABC 的周长.22.(6分)已知点A (1,2a -1),点B (-a ,a -3) . ①若点A 在第一、三象限角平分线上,求a 值.②若点B 到x 轴的距离是到y 轴距离的2倍,求点B 所在的象限.23.(8分)如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB ,在图③中已画出点A .按下列要求画图:(1)在图①中,以格点为顶点,AB 为一边画一个等腰三角形ABC ; (2)在图②中,以格点为顶点,AB 为一边画一个正方形;(3)在图③中,以点A 为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形,这个正方形的面积= .24.(8分)如图,在△ABC 中,AB =AC ,点D 、E 、F 分别在BC 、AB 、AC 边上,且BE =CF ,BD =CE .(1)求证:△DEF 是等腰三角形;(2)当∠A =40°时,求∠DEF 的度数.25.(8分)如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足P A=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值.26.(8分)如图,在Rt△ABC中,∠ACB=90°,AD、BE、CF分别是三边上的中线.(1)若AC=1,BC=.求证:AD2+CF2=BE2;(2)是否存在这样的Rt△ABC,使得它三边上的中线AD、BE、CF的长恰好是一组勾股数?请说明理由.(提示:满足关系a2+b2=c2的3个正整数a、b、c称为勾股数.)27.(8分)定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)如图1,在△ABC中,AB=AC,点D在AC边上,且AD=BD=BC,求∠A的大小;(2)在图1中过点C作一条线段CE,使BD,CE是△ABC的三等分线;在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(3)在△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC 边上,且AD=BD,DE=CE,请直接写出∠C所有可能的值.2020~2021学年度第一学期期中考试八年级数学试题一、选择题(共10小题,每小题3分,共30分) 1.下列图形中不是轴对称图形的是( )2.在平面直角坐标系中,点P (-3,2)在( ) A .第一象限B .第二象限C .第三象限D .第四象限 3.三角形中最大的内角不能小于( ) A .30°B .45°C .60°D .90°4.下列关于两个三角形全等的说法: ① 三个角对应相等的两个三角形全等 ② 三条边对应相等的两个三角形全等③ 有两边和它们的夹角对应相等的两个三角形全等 ④ 有两边和其中一边上的高对应相等的两个三角形全等 正确的说法个数是( ) A .1个 B .2个 C .3个 D .4个 5.在平面直角坐标系中,点P (2,-3)关于x 轴的对称点是( )A .(-2,3)B .(2,3)C .(-2,-3)D .(-3,2) 6.如图所示,∠A =28°,∠BFC =92°,∠B =∠C ,则∠BDC 的度数是( )A .85°B .75°C .64°D .60°7.如图,在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别是D 、E ,AD 、CE 交于点H .已知EH =EB =3,AE =5,则CH 的长是( ) A .1B .2C .53D .358.如图所示的正方形网格中,网格线的交点称为格点,已知A 、B 是两格点,如果C 也是图中的格点,且使得△ABC 为等腰三角形,则点C 的个数是( ) A .6个B .7个C .8个D .9个9.如图,AB =2,BC =AE =6,CE =CF =7,BF =8,四边形ABDE 与△CDF 面积的比值是( ) A .21B .32C .43 D .110.如图,在△ABC 中,BC 的垂直平分线DF 交△ABC 的外角平分线AD 于点D ,DE ⊥AB 于点E ,且AB >AC ,则( ) A .BC =AC +AEB .BE =AC +AEC .BC =AC +AD D .BE =AC +AD二、填空题(本大题共6个小题,每小题3分,共18分)11.若一个多边形的内角和是外角和的2倍,则它的边数是___________12.设△ABC 的三边长分别为a 、b 、c ,其中a 、b 满足|a +b -6|+(a -b +4)2=0,则第三边长c 的取值范围是_____________13.点M (-5,3)关于直线x =1的对称点的坐标是___________14.如图所示,在△FED 中,AD =FC ,∠A =∠F .如果用“SAS ”证明△ABC ≌△FED ,只需添加条件_____________即可15.在△ABC 中,高AD 、BE 所在的直线相交于点G ,若BG =AC ,则∠ABC 的度数是_____16.如图,在Rt △ABC 中,∠C =90°,BC =6,AC =8,一条线段PQ =AB =10,P 、Q 两点分别在AC 和过点A 且垂直于AC 的射线AX 上运动,如果以A 、P 、Q 为顶点的三角形与△ABC 全等,则AP =____________三、解答题(共8小题,共72分)17.(本题8分)解方程组:(1) ⎩⎨⎧=-=-32373y x y x(2) ⎩⎨⎧=-=+5342y x y x18.(本题8分)如图所示,在△ABC 中:(1) 画出BC 边上的高AD 和中线AE(2) 若∠B =30°,∠ACB =130°,求∠BAD 和∠CAD 的度数19.(本题8分)如图,点B 、E 、C 、F 在同一直线上,且AB =DE ,AC =DF ,BE =CF ,请将下面说明△ABC ≌△DEF 的过程和理由补充完整解:∵BE =CF (_____________)∴BE +EC =CF +EC即BC =EF在△ABC 和△DEF 中⎪⎩⎪⎨⎧===__________________BC DF AB )()(∴△ABC ≌△DEF (__________)20.(本题8分)如图所示,D是边AB的中点,△BCD的周长比△ACD的周长大3 cm,BC=8 cm,求边AC的长21.(本题8分)已知,如图所示,CE⊥AB与E,BF⊥AC与F,且BD=CD,求证:(1) △BDE≌△CDF(2) 点D在∠BAC的角平分线上22.(本题10分)如图,设△ABC和△CDE都是等边三角形,并且∠EBD=90°,求证:(1) △ACE≌△BCD(2) 求∠AEB的度数23.(本题10分)如图1,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F(1) 直接写出∠AFC的度数(2) 请你判断并写出FE与FD之间的数量关系(3) 如图2,在△ABC中,如果∠ACB不是直角,而(1)中的其它条件不变,试判断线段AE、CD 与AC之间的数量关系并说明理由24.(本题12分)如图1,直线AB分别与x轴、y轴交于A、B两点,OC平分∠AOB交AB于点C,点D为线段AB上一点,过点D作DE∥OC交y轴于点E.已知AO=m,BO=n,且m、n 满足(n-6)2+|n-2m|=0(1) 求A、B两点的坐标(2) 若点D为AB中点,求OE的长(3) 如图2,若点P(x,-2x+6)为直线AB在x轴下方的一点,点E是y轴的正半轴上一动点,以E为直角顶点作等腰直角△PEF,使点F在第一象限,且F点的横、纵坐标始终相等,求点P 的坐标2020-2021学年八年级(上)期中数学模拟试卷一.选择题(共12小题,满分36分,每小题3分)1.下面的图形中,是轴对称图形的是()A.B.C.D.2.下列因式分解结果正确的是()A.x2+3x+2=x(x+3)+2 B.4x2﹣9=(4x+3)(4x﹣3)C.x2﹣5x+6=(x﹣2)(x﹣3)D.a2﹣2a+1=(a+1)23.利用尺规进行作图,根据下列条件作三角形,画出的三角形不唯一的是()A.已知三条边B.已知两边和夹角C.已知两角和夹边D.已知三个角4.用尺规作图法作已知角∠AOB的平分线的步骤如下:①以点O为圆心,任意长为半径作弧,交OB于点D,交OA于点E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧在∠AOB的内部相交于点C;③作射线OC.则射线OC为∠AOB的平分线.由上述作法可得△OCD≌△OCE的依据是()A.SAS B.ASA C.AAS D.SSS5.已知一个三角形有两边相等,且周长为25,若量得一边为5,则另两边长分别为()A.10,10 B.5,10 C.12.5,12.5 D.5,156.若关于x的二次三项式x2+kx+b因式分解为(x﹣1)(x﹣3),则k+b的值为()A.﹣1 B.1 C.﹣3 D.37.如图,已知AB∥CF,E为DF的中点,若AB=8cm,CF=5cm,则BD为()A.2cm B.3cm C.4cm D.1cm8.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A.30°B.35°C.45°D.60°9.当x=1时,代数式x3+x+m的值是7,则当x=﹣1时,这个代数式的值是()A.7 B.3 C.1 D.﹣710.如图,△BDC′是将矩形纸片ABCD沿BD折叠得到的,BC′与AD交于点E,则图中共有全等三角形()A.2对B.3对C.4对D.5对11.已知AD∥BC,AB⊥AD,点E,点F分别在射线AD,射线BC上.若点E与点B关于AC 对称,点E与点F关于BD对称,AC与BD相交于点G,则()A.1+AB/AD=B.2BC=5CFC.∠AEB+22°=∠DEF D.4AB/BD =12.如图,Rt△ABC中,AD是∠BAC的平分线,DE⊥AB,垂足为E,若AB=10cm,AC=6cm,则BE的长度为()A.10cm B.6cm C.4cm D.2cm二.填空题(共6小题,满分18分,每小题3分)13.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为.14.如图,在△ABC中,AF平分∠BAC,AC的垂直平分线交BC于点E,∠B=70°,∠FAE=19°,则∠C= 度.15.已知:在△ABC中,AH⊥BC,垂足为点H,若AB+BH=CH,∠ABH=70°,则∠BAC= °.16.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=2,则EF= .17.矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部分△AEF的面积等于.18.我们将1×2×3×…×n记作n!(读作n的阶乘),如2!=1×2,3!=1×2×3,4!=1×2×3×4,若设S=1×1!+2×2!+3×3!+…+2016×2016!,则S除以2017的余数是.三.解答题(共7小题)19.因式分解:(1)9a2﹣4(2)ax2+2a2x+a320.如图,△ABC三个顶点的坐标分别为A(4,5)、B(1,0)、C(4,0).(1)画出△ABC关于y轴的对称图形△A1B1C1,并写出A1点的坐标;(2)在y轴上求作一点P,使△PAB的周长最小,并求出点P的坐标及△PAB的周长最小值.21.如图,已知:A、F、C、D在同一条直线上,BC=EF,AB=DE,AF=CD.求证:BC∥EF.22.若m2﹣2m n+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+()=0,即()2+()2=0.根据非负数的性质,∴m=n=阅读上述解答过程,解答下面的问题,设等腰三角形ABC的三边长a、b、c,且满足a2+b2﹣4a﹣6b+13=0,求△ABC的周长.23.如图,BC⊥CD,∠1=∠2=∠3,∠4=60°,∠5=∠6.(1)CO是△BCD的高吗?为什么?(2)求∠5、∠7的度数.24.如图,△ABC中,AB=AC,∠BAC=90°,点D是直线AB上的一动点(不和A、B重合),BE⊥CD于E,交直线AC于F.(1)点D在边AB上时,证明:AB=FA+BD;(2)点D在AB的延长线或反向延长线上时,(1)中的结论是否成立?若不成立,请画出图形并直接写出正确结论.25.如图,某学校(A点)与公路(直线L)的距离AB为300米,又与公路车站(D点)的距离AD为500米,现要在公路上建一个小商店(C点),使CA=CD,求商店与车站之间的距离CD的长.参考答案一.选择题1. D.2. C.3. D.4. D.5. A.6. A.7. B.8. B.9. B.10. C.11. A.12. C.二.填空题13. 4.14. 24.15. 75°或35°16. 4.17..18. 2016.三.解答题19.解:(1)9a2﹣4=(3a+2)(3a﹣2)(2)ax2+2a2x+a3=a(x+a)220.解:(1)如图所示,由图可知 A1(﹣4,5);(2)如图所示,点P即为所求点.设直线AB1的解析式为y=kx+b(k≠0),∵A(4,5),B1(﹣1,0),∴,解得,∴直线AB1的解析式为y=x+1,∴点P坐标(0,1),∴△PAB的周长最小值=AB1+AB=+=5+.21.证明:如图,∵AF=CD,∴AF+CF=CD+CF,即AC=DF.∴在△ABC与△DEF中,,∴△ABC≌△DEF(SSS),∴∠BCA=∠EFD,∴BC∥EF.22.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0,即(m﹣n)2+(n﹣4)2=0.根据非负数的性质,∴m=n=4,故答案为:n2﹣8n+16;m﹣n;n﹣4;4;已知等式变形得:(a﹣2)2+(b﹣3)2=0,所以a=2,b=3,第一种情况2,2,3,周长=7;第二种情况3,3,2,周长=8.23.解:(1)CO是△BCD的高.理由如下:∵BC⊥CD,∴∠DCB=90°,∴∠1=∠2=∠3=45°,∴△DCB是等腰直角三角形,∴CO是∠DCB的角平分线,∴CO⊥BD(等腰三角形三线合一);(2)∵在△ACD中,∠1=∠3=45°,∠4=60°,∴∠5=30°,又∵∠5=∠6,∴∠6=30°,∴在直角△AOB中,∠7=180°﹣90°﹣30°=60°.24.(本题满分8分)(1)证明:如图1,∵BE⊥CD,即∠BEC=90°,∠BAC=90°,∴∠F+∠FBA=90°,∠F+∠FCE=90°.∴∠FBA=∠FCE.……………………………………………………………(1分)∵∠FAB=180°﹣∠DAC=90°,∴∠FAB=∠DAC.∵AB=AC,∴△FAB≌△DAC.………………………………………………(2分)∴FA=DA.………………………………………………∴AB=AD+BD=FA+BD.………………………………………(4分)(2)如图2,当D在AB延长线上时,AF=AB+BD,…………(6分)理由是:同理得:△FAB≌△DAC,∴AF=AD=AB+BD;如图3,当D在AB反向延长线上时,BD=AB+AF,…………………(8分)理由是:同理得:△FAB≌△DAC,∴AF=AD,∴BD=AB+AD=AB+AF.25.解:∵AB⊥l于B,AB=300m,AD=500m.∴BD==400m.设CD=x米,则CB=(400﹣x)米,x2=(400﹣x)2+3002,x2=160000+x2﹣800x+3002,800x=250000,x=312.5m.答:商店与车站之间的距离为312.5米.2020-2021学年八年级(上)期中数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cmC.5cm,5cm,10cm D.6cm,7cm,14cm2.下列四个图案中,不是轴对称图案的是()A.B.C.D.3.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)4.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CADC.BE=DC D.AD=DE5.下列计算正确的是()A.a2+a2=2a4B.2a2×a3=2a6C.3a﹣2a=1 D.(a2)3=a6[来6.只用一种正六边形地砖密铺地板,则能围绕在正六边形的一个顶点处的正六边形地砖有()A.3块B.4块C.5块D.6块7.如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC ≌△DEF的是()A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE8.到三角形三个顶点的距离相等的点是三角形()的交点.A.三个内角平分线B.三边垂直平分线C.三条中线D.三条高9.如图,四边形ABCD中,F是CD上一点,E是BF上一点,连接AE、AC、DE.若AB=AC,AD=AE,∠BAC=∠DAE=70°,AE平分∠BAC,则下列结论中:①△ABE≌△ACD:②BE=EF;③∠BFD=110°;④AC垂直平分DE,正确的个数有()A.1个B.2个C.3个D.4个10.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6 个B.7 个C.8 个D.9个二.填空题(共6小题,满分18分,每小题3分)11.计算(2m2n2)2•3m2n3的结果是.12.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是.13.等腰三角形的一个外角是80°,则其底角是度.14.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是.15.如图,在Rt△ABC中,斜边AB的垂直平分线交边AB于点E,交边BC于点D,如果∠B=28°,那么∠CAD= 度.16.在等边三角形ABC中,AD是BC边上的高,E为AC的中点P为AD上一动点,若AD=12,则PC+PE的最小值为.三.解答题(共9小题,满分72分)17.(6分)计算:(1)(12a3﹣6a2+3a)÷3a;(2)(x﹣y)(x2+xy+y2).18.(6分)如图,∠A=50°,OB、OC为角平分线,求∠BOC.19.(8分)如图,方格图中每个小正方形的边长为1,点A,B,C都是格点.(1)画出△ABC关于直线BM对称的△A1B1C1;(2)写出AA1的长度.20.(8分)计算:(1)﹣(a2b)3+2a2b•(﹣3a2b)2(2)(a+2b﹣c)(a﹣2b+c)(3)已知6x﹣5y=10,求[(﹣2x+y)(﹣2x﹣y)﹣(2x﹣3y)2]÷4y的值.21.(8分)如图,点D,C在BF上,AB∥EF,∠A=∠E,BD=CF.求证:AB=EF.22.(8分)已知一个等腰三角形的三边长分别为2x﹣1、x+1、3x﹣2,求这个等腰三角形的周长.(1)完成部分解题过程,在以下解答过程的空白处填上适当的内容.解:①当2x﹣1=x+1时,解x= ,此时构成三角形(填“能”或“不能”).②当2x﹣1=3x﹣2时,解x= ,此时构成三角形(填“能”或“不能”).(2)请你根据(1)中两种情况的分类讨论,完成第三种情况的分析,若能构成等腰三角形,求出这个三角形的周长.24.(10分)已知,△ABC是等边三角形,过点C作CD∥AB,且CD=AB,连接BD交AC于点O(1)如图1,求证:AC垂直平分BD;(2)点M在BC的延长线上,点N在AC上,且MD=NM,连接BN.①如图2,点N在线段CO上,求∠NMD的度数;②如图3,点N在线段AO上,求证:NA=MC.25.(10分)已知△ABC是等边三角形,点D,E,F分别是边AB,BC,AC的中点,点M是射线EC上的一个动点,作等边△DMN,使△DMN与△ABC在BC边同侧,连接NF.(1)如图1,当点M与点C重合时,直接写出线段FN与线段EM的数量关系;(2)当点M在线段EC上(点M与点E,C不重合)时,在图2中依题意补全图形,并判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)连接DF,直线DM与直线AC相交于点G,若△DNF的面积是△GMC面积的9倍,AB=8,请直接写出线段CM的长.参考答案与试题解析一.选择题1.【解答】解:A、∵5+4=9,9=9,∴该三边不能组成三角形,故此选项错误;B、8+8=16, 16>15,∴该三边能组成三角形,故此选项正确;C、5+5=10,10=10,∴该三边不能组成三角形,故此选项错误;D、6+7=13,13<14,∴该三边不能组成三角形,故此选项错误;故选:B.2.【解答】解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.3.【解答】解:点M(1,2)关于y轴对称点的坐标为(﹣1,2).故选:A.4.【解答】解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选:D.5.【解答】解:A、应为a2+a2=2a2,故本选项错误;B、应为2a2×a3=2a5,故本选项错误;C、应为3a﹣2a=a,故本选项错误;D、(a2)3=a6,正确.故选:D.6.【解答】解:因为正六边形的内角为120°,所以360°÷120°=3,即每一个顶点周围的正六边形的个数为3.故选:A.7.【解答】解:A、添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故A选项正确.B、添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故B选项错误.C、添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项错误.D、添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故D选项错误.故选:A.8.【解答】解:到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点.故选:B.9.【解答】解:∵AB=AC,∠BAC=∠DAE,AE=AD,∴ABE≌△ACD,故①正确.∵ABE≌△ACD,∴∠AEB=∠ADC.∵∠AEB+∠AEF=180°,∴∠AEF+∠ADC=180°,∴∠BFD=180°﹣∠EAD=180°﹣70°=110°,故③正确.∵AE平分∠BAC,∴∠EAC=35°.又∵∠DAE=70°,∴AC平分∠EAD.又∵AE=AD,∴AC⊥EF,AC平分EF.∴AC是EF的垂直平分线,故④正确.由已知条件无法证明BE=EF,故②错误.故选:C.10.【解答】解:如图,分情况讨论:①AB为等腰△ABC的底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选:C.二.填空题(共6小题,满分18分,每小题3分)11.【解答】解:原式=4m4n4•3m2n3=12m6n7,故答案是:12m6n7.12.【解答】解:设多边形的边数为n,根据题意,得(n﹣2)•180=3×360,解得n=8.则这个多边形的边数是八.13.【解答】解:与80°角相邻的内角度数为100°;当100°角是底角时,100°+100°>180°,不符合三角形内角和定理,此种情况不成立;当100°角是顶角时,底角的度数=80°÷2=40°;故此等腰三角形的底角为40°.故填40.14.【解答】解:过O作OE⊥AB于E,OF⊥AC于F,连接OA,∵OB,OC分别平分∠ABC和∠ACB,OD⊥BC,∴OE=OD,OD=OF,即OE=OF=OD=4,∴△ABC的面积是:S△AOB+S△AOC+S△OBC=×AB×OE+×AC×OF+×BC×OD=×4×(AB+AC+BC)=×4×21=42,故答案为:42.15.【解答】解:在Rt△ABC中,∠B=28°,∴∠CAB=90°﹣28°=62°,∵DE垂直平分AB,∴AD=BD,∴∠DAB=∠B=28°,∴∠CAD=∠CAB﹣∠DAB=62°﹣28°=34°.故答案为:34.16.【解答】解:如图,连接BE,与AD交于点P,此时PE+PC最小,∵△ABC是等边三角形,AD⊥BC,∴PC=PB,∴PE+PC=PB+PE=BE,即BE就是PE+PC的最小值,∵AD=12,点E是边AC的中点,∴AD=BE=12,∴PE+PC的最小值是12.故答案为12,三.解答题(共9小题,满分72分)17.【解答】解:(1)(12a3﹣6a2+3a)÷3a;=12a3÷3a﹣6a2÷3a+3a÷3a=4a2﹣2a+1;(2)(x﹣y)(x2+xy+y2).=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3.18.【解答】解:∵OB、OC为角平分线,∴∠ABC=2∠OBC,∠ACB=2∠OCB,∵∠ABC+∠ACB=180°﹣∠A,∠OBC+∠OCB=180°﹣∠BOC,∴2∠OBC+2∠OCB=180°﹣∠A,∴180°﹣∠A=2(180°﹣∠BOC),∴∠BOC=90°+∠A=90°+×50°=115°.19.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)由图可知,点A与点A1之间10个格子,所以AA1的长度为10.20.【解答】解:(1)原式=﹣a6b3+2a2b•9a4b2=﹣a6b3+18a6b3=17a6b3(2)原式=[a+(2b﹣c)][a﹣(2b﹣c)]=a2﹣(2b﹣c)2=a2﹣(4b2﹣4bc+c2)=a2﹣4b2+4bc﹣c2(3)当6x﹣5y=10时,∴3x﹣2.5y=5原式=[4x2﹣y2﹣(4x2﹣12xy+9y2)]÷4y=(12xy﹣10y2)÷4y=3x﹣2.5y=522.【解答】解:(1)①当2x﹣1=x+1时,解x=2,此时3,3,4,能构成三角形.②当2x﹣1=3x﹣2时,解x=1,此时1,2,1不能构成三角形.故答案为2,能,1,不能;(2)③当x+1=3x﹣2,解得x=,此时2,,能构成三角形.23.【解答】解:接OA,OB后,可证∠OAP=∠OBP=90°,其依据是直径所对圆周角为直角;由此可证明直线PA,PB都是⊙O的切线,其依据是经过半径外端且垂直于这条半径的直线是圆的切线,证明过程如下:由作图可知OP为⊙C的直径,∴∠OAP=∠OBP=90°,即OA⊥PA、OB⊥PB,∵OA、OB是⊙O的半径,∴OP是⊙O的切线.故答案为:直径所对圆周角为直角,经过半径外端且垂直于这条半径的直线是圆的切线.2020-2021学年八年级(上)期中数学模拟试卷一.选择题(共6小题,满分18分,每小题3分)1.如果三角形的三个内角的度数比是2:3:4,则它是()A.锐角三角形B.钝角三角形C.直角三角形D.钝角或直角三角形2.下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cmC.5cm,5cm,10cm D.6cm,7cm,14cm3.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙4.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE 5.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2) C.(1,﹣2)D.(2,﹣1)6.如右图是三条两两相交的笔直公路,某物流公司现要修建一个货物中转站,使它到三条公路的距离相等,这个货物中转站可选的位置有()A.3个B.4个C.5个D.6个二.填空题(共8小题,满分24分,每小题3分)7.如图,点E在△ABC边BC的延长线上,CD平分∠ACE,若∠A=70°,∠DCA=65°,则∠B的度数是.8.(3分)如图,在△ABC中,∠B=40°,∠C=28°,点D在BA的延长线上,则∠CAD的大小为.9.若一个多边形的内角和比外角和大360°,则这个多边形的边数为.10.如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为度.11.在△ABC中,∠C=∠A=∠B,则∠A= 度.12.如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是(填上你认为适当的一个条件即可).13.已知点P(3,1)关于y轴的对称点Q的坐标是(a+b,﹣1﹣b),则ab的值为.14.在△ABC中,BC=9,AB的垂直平分线交BC与点M,AC的垂直平分线交BC于点N,则△AMN的周长= .三.解答题(共4小题,满分24分,每小题6分)15.(6分)等腰三角形一腰上的中线,分别将该三角形周长分成30cm 和33cm,试求该等腰三角形的底边长.16.(6分)如图,点F是△ABC的边BC延长线上一点.DF⊥AB,∠A=30°,∠F=40°,求∠ACF的度数.17.(6分)如图,已知AB=AD,AC=AE,∠1=∠2,求证:BC=DE.18.(6分)如图所示,已知在△ABC中,AB=AC,D为线段BC上一点,E为线段AC上一点,且AD=AE.(1)若∠ABC=60°,∠ADE=70°,求∠BAD与∠CDE的度数;(2)设∠BAD=α,∠CDE=β,试写出α、β之间的关系并加以证明.四.解答题(共3小题,满分21分,每小题7分)19.(7分)已知:如图,△ABC中,D是BC延长线上一点,E是CA 延长线上一点,F是AB上一点,连接EF.求证:∠ACD>∠E.20.(7分)一个多边形,它的内角和比外角和的4倍多180°,求这个多边形的边数.21.(7分)如图,在△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠C=40°,求∠BAD的度数;(2)若AC=5,DC=4,求△ABC的周长.五.解答题(共2小题,满分16分,每小题8分)22.(8分)如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有(请写序号,少选、错选均不得分).23.(8分)已知:如图1所示,等腰直角三角形ABC中,∠BAC=90°,AB=AC,直线MN经过点A,BD⊥MN于点D,CE⊥MN于点E.(1)试判断线段DE、BD、CE之间的数量关系,并说明理由;(2)当直线MN运动到如图2所示位置时,其余条件不变,判断线段DE、BD、CE之间的数量关系.六.解答题(共2小题,满分17分)24.(8分)如图1,P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA=CQ,连接PQ交AC于点D.(1)求证:PD=DQ;(2)如图2,过P作PE⊥AC于E,若AB=2,求DE的长.25.(9分)如图,△ABC中,∠ACB=90°,AC=BC,将△ABC绕点C 逆时针旋转角α.(0°<α<90°)得到△A1B1C1,连接BB1.设CB1交AB于D,A1B1分别交AB、AC于E、F.(1)在图中不再添加其它任何线段的情况下,请你找出一对全等的三角形,并加以说明(△ABC与△A1B1C1全等除外);(2)当△BB1D是等腰三角形时,求α.参考答案一.选择题1. A.2. B.3. B.4. D.5. A.6. B.二.填空题7.60°.8.68°.9. 6.10.37.11. 60.12.【解答】解:∵∠1=∠2,∴∠AEB=∠AEC,又 AE公共,∴当∠B=∠C时,△ABE≌△ACE(AAS);或BE=CE时,△ABE≌△ACE(SAS);或∠BAE=∠CAE时,△ABE≌△ACE(ASA).13. 214. 9三.解答题16.解:在△DFB中,∵DF⊥AB,∴∠FDB=90°,∵∠F=40°,∠FDB+∠F+∠B=180°,∴∠B=50°.在△ABC中,∵∠A=30°,∠B=50°,∴∠ACF=∠A+∠B=30°+50°=80°.18.解:(1)∵AB=AC,∴∠B=∠C=60°,∴∠BAC=60°,∵AD=AE,∴∠ADE=∠AED=70°,∴∠DAE=40°,∴∠BAD=∠BAC﹣∠DAE=20°,∵∠AED=∠CDE+∠C,∴∠CDE=70°﹣60°=10°.(2)结论:α=2β,理由是:设∠BAC=x°,∠DAE=y°,则α=x°﹣y°,∵∠ACB=∠ABC,∴∠ACB=,∵∠ADE=∠AED,∴∠AED=,∴β=∠AED﹣∠ACB=﹣==,∴α=2β;19.证明:∵∠ACD是△ABC的一个外角,∴∠ACD>∠BAC,∵∠BAC是△AEF的一个外角,∴∠BAC>∠E,∴∠ACD>∠E.20.解:根据题意,得(n﹣2)•180=1620,解得:n=11.则这个多边形的边数是11,内角和度数是1620度.21.(1)解:∵EF垂直平分AC,∴AE=CE,∴∠C=∠EAC=40°,∵AD⊥BC,BD=DE,∴AB=AE,∴∠B=∠BEA=2∠C=80°,∴∠BAD=90°﹣80°=10°;(2)由(1)知:AE=EC=AB,∵BD=DE,∴AB+BD=DE+AE=DE+CE=DC,∴C△ABC=AB+BC+AC=2DC+AC=2×4+5=13..25.解:(1)全等的三角形有:△CBD≌△CA1F或△AEF≌△B1ED或△ACD≌△B1CF;证明:∵∠ACB1+∠A1CF=∠ACB1+∠BCD=90°∴∠A1CF=∠BCD∵A1C=BC∴∠A1=∠CBD=45°∴△CBD≌△CA1F;∴CF=CD,∵CA=CB1,∴AF=B1D,∵∠A=∠EB1D,∠AEF=∠B1ED,∴△AEF≌△B1ED,∵AC=B1C,∠ACD=∠B1CF,∠A=∠CB1F,∴△ACD≌△≌△B1CF.(2)在△CBB1中。

2020~2021学年度第一学期八年级数学期中联考试题含答案

2020~2021学年度第一学期八年级数学期中联考试题含答案

2020~2021学年度第一学期期中联考八年级数学试题满分:150分考试时间:120分钟一、选择题(本大题共10小题,每小题4分,共40分)1.在平面直角坐标系中,点(-1,2)在()A.第一象限B.第二象限C.第三象限D.第四象限2.以下列各组线段的长为边,能组成三角形的是()A.1cm、2cm、3cm B.1dm、5cm、6cmC.1dm、3cm、3cm D.2cm、4cm、7cm3.下列语句不是命题的是()A.两点之间线段最短B.不平行的两条直线有一个交点C.同位角相等D.如果x与y互为相反数,那么x与y的和等于0吗4.已知点A ( x ,4)与点B (3,y )关于y 轴对称,那么x + y 的值是()A.1 B.﹣7 C.7 D.-15.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=x+k的图象大致是()A. B. C. D.6.电话卡上存有4元话费,通话时每分钟话费0.4元,则电话卡上的余额y(元)与通话时间t(分钟)之间的函数图象是图中的()7.两条直线y =k 1x +b 1和y =k 2x +b 2相交于点A (-2,3),则方程组⎩⎨⎧=+-=+-002211b y x k b y x k 的解是( )A. ⎩⎪⎨⎪⎧x =2y =3B .⎩⎪⎨⎪⎧x =3y =2C.⎩⎪⎨⎪⎧x =-2y =3D.⎩⎪⎨⎪⎧x =3y =-2 8.如图,在△ABC 中,AD 是BC 边上的中线,点E 是AD 中点,过点E 作垂线交BC 于点F ,已知BC =10,△ABD 的面积为12,则EF 的长为( ) A .1.2B .2.4C .3.6D .4.8A 2(第8题图) (第9题图)9. 如图,在△ABC 中,∠A =α.∠ABC 与∠ACD 的平分线交于点A 1,得∠A 1;∠A 1BC 与∠A 1CD 的平分线相交于点A 2,得∠A 2,…,∠A 6BC 与∠A 6CD 的平分线相交于点A 7,得∠A 7,则∠A 7=_______( ) A .α32B .α64C .α128D .α25610.在一次函数y=-x+3的图像上取点P ,作PA ⊥x 轴,垂足为A ;作PB ⊥y 轴,垂足为B ;且矩形OAPB 的面积为2,则这样的点P 共有_______个.A .1B .2C .3D .4二、填空题(本大题共4小题,每小题5分,共20分)11.等腰三角形的一边长为 4cm ,一边长为 8cm ,则其周长是 . 12.若函数y =x +3x -2有意义,则x 的取值范围是 . 13.“直角三角形有两个角是锐角”这个命题的逆命题是____________________,它是一个________命题(填“真”或“假”).14.已知三角形的三个顶点都在以下表格的交点上,其中A (3,3),B (3,5),请在表格中确定C 点的位置,使S △ABC =1.写出符合点C的坐标。

江苏省海安市区)2020-2021学年八年级上学期期中测试数学试题

江苏省海安市区)2020-2021学年八年级上学期期中测试数学试题
=30°,若 AC =2,则 PC 的长度是 ▲ .
三、解答题(本大题共 8 题,共 90 分)请在答.题.卡.指.定.区.域.内作答,解答时应写出文字说明、证明过
程或演算步骤
第 1 页共 2 页
19.计算 (12 分)(每小题 4 分)
(1) 2a3 b4 12a3b2
(2) (2m 3n)2 (2m n)(2m n)
13.如果一个等腰三角形的一个外角等于 50°,则该等腰三角形的底角的度数是 ▲ .
14.已知 a
1 a
3,则 a2
1 a2


.Leabharlann 15.已知:三角形的两边长分别为 3 和 a,则第三边的中线长 4,则 a 的取值范围是 ▲ .
16.如图,AD 平分∠BAC,∠ACD=138°,∠BCD=42°,则∠ADB 的度数为 ▲ .
(3)化简求值: x x2 y2 xy y x2 x3 y x2 y .其中 x=2,y=1
20.(10 分)(每小题 5 分)在实.数.范围内因式分解
(1) x2 2
(2) (x2 2x)(x2 2x 2) 1.
21.(8 分)如图,点 A,F,C,D 在一条直线上,AB∥DE,AB=DE,AF=DC. 求证:BC∥EF.
(第 3 题)
(第 4 题)
(第 6 题)
(第 8 题)
7.若 x2 2mx 1是完全平方式,则 m 的值为(▲)
A.2
B.1
C.±1
D. 1 2
8.如图,在△ABC 中,∠ABC 与∠ACB 的平分线交于点 O,过点 O 作 DE∥BC,分别交
AB、AC 于点 D、E.AB=9,AC=7,BC=4,则△ADE 的周长是(▲)

2020-2021学年八年级上学期数学期中考试卷附答案

2020-2021学年八年级上学期数学期中考试卷附答案

一.选择题〔本大题共10小题,每题3分,共30分〕1.〔3分〕以下图形中,是轴对称图形的是〔〕A、 B、C、D、2.〔3分〕假设一个多边形的内角和是1080度,那么这个多边形的边数为〔〕A、 6B、7C、8D、103.〔3分〕如图,∠1=∠2,那么不一定能使△ABD≌△ACD的条件是〔〕A、AB=ACB、BD=CDC、∠B=∠CD、∠BDA=∠CDA4.〔3分〕如图,在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,假设CD=3,点Q是线段AB上的一个动点,那么DQ 的最小值〔〕A、 5B、 4C、 3D、 25.〔3分〕为估计池塘两岸A、B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB间的距离不可能是〔〕A、5mB、15mC、20mD、28m6.〔3分〕如图,将△ABC沿DE、HG、EF翻折,三个顶点均落在点O处.假设∠1=129°,那么∠2的度数为〔〕A、49°B、50°C、51°D、52°7.〔3分〕如下图,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是〔〕A、SSSB、SASC、AASD、ASA8.〔3分〕如图,∠B=∠C=90°,E是BC的中点,DE平分线∠ADC,那么以下结论不正确是〔〕A、AE平分∠DAEB、AB∥CDC、△EBA≌△DCED、AB+CD=AD9.〔3分〕如图,由四个小正方形组成的田字格中,△ABC的顶点都是小正方形的顶点.在田字格上画与△ABC成轴对称的三角形,且顶点都是小正方形的顶点,那么这样的三角形〔不包含△ABC本身〕共有〔〕A、1个B、2个C、3个D、4个10.〔3分〕如下图的正方形网格中,网格线的交点称为格点.A、B 是两格点,如果C也是图中的格点,且使得△ABC为等腰直角三角形,那么点C的个数是〔〕A、 2B、 4C、 6D、8【二】填空题〔此题共6小题,每题3分,共18分〕11.〔3分〕等腰三角形一边长等于4,一边长等于9,它的周长是.12.〔3分〕如图,在△ABC中,AB=AC=16cm,AB的垂直平分线交AC于点D,如果BC=10cm,那么△BCD的周长是cm.13.〔3分〕如图△ABC中,AB=AD=DC,∠BAD=40°,那么∠C=.14.〔3分〕如图,在△ABC中,∠C=90°,∠A=15°,∠DBC=60°,BC=4,那么AD=.15.〔3分〕如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E、假设AB=5,AC=4,那么△ADE的周长是.16.〔3分〕如图,图①是一块边长为1,周长记为P1的正三角形纸板,沿图①的底边剪去一块边长为的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板〔即其边长为前一块被剪掉正三角形纸板边长的后,得图③、④,…,记第n〔n≥3〕块纸板的周长为Pn,那么周长Pn=.三.解答题〔此题共10题,共102分,解答应写文字说明,证明过程或演算步骤〕17.〔10分〕△ABC中,AB=AC,D是BC中点,DE⊥AB于E,DF ⊥AC于F,求证:DE=DF.18.〔10分〕如图,边长为1的正方形网格中,△ABC的顶点均在格点上,在所给的直角坐标系中解答以下问题〔1〕画出△ABC关于x轴对称的△A′B′C′,并写出A′、B′、C′三点的坐标;〔2〕在y轴上作出点P,使PA+PB的长最小.〔保留痕迹找出点P 即可〕〔3〕假设△ABC内有一点Q〔2m+n,3.5〕关于x轴对称后Q′〔2.5,n﹣m〕,求m,n的值.19.〔10分〕等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ,问△APQ是什么形状的三角形?试说明你的结论.20.〔10分〕如图,AB=AC=10,∠A=40°,AB的垂直平分线MN交AC于D,求:〔1〕∠CBD的度数;〔2〕假设△BCD的周长是m,求BC的长.21.〔10分〕如图,在平面直角坐标系中,在第一象限内,OM与OB是两坐标轴的夹角的三等分线点E是OM上一点,EC⊥X轴于C 点,ED⊥OB于D点,OD=8,OE=10〔1〕求证:∠ECD=∠EDC;〔2〕求证:OE垂直平分CD、22.〔10分〕如图,△ABC为等边三角形,点D,E分别在BC,AC 边上,且AE=CD,AD,BE相交于点P,BQ⊥AD于Q,PQ=3,PE=1.〔1〕求证:△ABE≌△CAD;〔2〕求AD的长.23.〔10分〕如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE、〔1〕求证:△DEF是等腰三角形;〔2〕当DE⊥EF,E是BC的中点时,试比较BD+CF与DF的大小.24.〔10分〕四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ABC= 120°,∠MBN=60°,∠MBN的两边分别交AD、CD于E、F.〔1〕当AE=CF时,如图1试猜想AE+CF与EF之间存在怎样的数量关系?请给予证明.〔2〕当AE≠CF,如图2的情况下,上问的结论分别是否仍然成立?假设成立,请给出证明;假设不成立,请说明理由.25.〔12分〕:在平面直角坐标系中,等腰Rt△ABC的顶点A、C在坐标轴上运动,且∠ACB=90°,AC=BC、〔1〕如图1,当A〔0,﹣2〕,C〔1,0〕,点B在第四象限时,那么点B的坐标为;〔2〕如图2,当点C在x轴正半轴上运动,点A在y轴正半轴上运动,点B在第四象限时,作BD⊥y轴于点D,试判断与哪一个是定值,并说明定值是多少?请证明你的结论.〔3〕如图3,当点C在y轴正半轴上运动,点A在x轴正半轴上运动,使点D恰为BC的中点,连接DE,求证:∠ADC=∠BDE、参考答案与试题解析一.选择题〔本大题共10小题,每题3分,共30分〕1.〔3分〕以下图形中,是轴对称图形的是〔〕A、 B、C、D、考点:轴对称图形.分析:根据轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线〔成轴〕对称,进而得出答案.解答:解:A、不是轴对称图形,故A错误;B、是轴对称图形,故B正确;C、不是轴对称图形,故C错误;D、不是轴对称图形,故D错误.应选:B、点评:此题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.〔3分〕假设一个多边形的内角和是1080度,那么这个多边形的边数为〔〕A、 6B、7C、8D、10考点:多边形内角与外角.分析:n边形的内角和是〔n﹣2〕•180°,如果多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.解答:解:根据n边形的内角和公式,得〔n﹣2〕•180=1080,解得n=8.∴这个多边形的边数是8.应选:C、点评:此题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.3.〔3分〕如图,∠1=∠2,那么不一定能使△ABD≌△ACD的条件是〔〕A、AB=ACB、BD=CDC、∠B=∠CD、∠BDA=∠CDA考点:全等三角形的判定.专题:压轴题.分析:利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.解答:解:A、∵∠1=∠2,AD为公共边,假设AB=AC,那么△ABD ≌△ACD〔SAS〕;故A不符合题意;B、∵∠1=∠2,AD为公共边,假设BD=CD,不符合全等三角形判定定理,不能判定△ABD≌△ACD;故B符合题意;C、∵∠1=∠2,AD为公共边,假设∠B=∠C,那么△ABD≌△ACD〔AAS〕;故C不符合题意;D、∵∠1=∠2,AD为公共边,假设∠BDA=∠CDA,那么△ABD≌△ACD 〔ASA〕;故D不符合题意.应选:B、点评:此题主要考查学生对全等三角形判定定理的理解和掌握,此题难度不大,属于基础题.4.〔3分〕如图,在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,假设CD=3,点Q是线段AB上的一个动点,那么DQ 的最小值〔〕A、 5B、 4C、 3D、 2考点:角平分线的性质;垂线段最短.分析:根据垂线段最短,过点D作DQ⊥AB于Q,此时DQ的值最小,再根据角平分线上的点到角的两边距离相等可得DQ=CD、解答:解:如图,过点D作DQ⊥AB于Q,由垂线段最短可得,此时DQ的值最小,∵∠C=90°,BD是∠ABC的平分线,∴DQ=CD=3.应选C、点评:此题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质并确定出DQ最短的情况是解题的关键.5.〔3分〕为估计池塘两岸A、B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB间的距离不可能是〔〕A、5mB、15mC、20mD、28m考点:三角形三边关系.专题:应用题.分析:首先根据三角形的三边关系定理求出AB的取值范围,然后再判断各选项是否正确.解答:解:∵PA、PB、AB能构成三角形,∴PA﹣PB<AB<PA+PB,即4m<AB<28m.应选D、点评:三角形的两边,那么第三边的范围是:大于的两边的差,而小于两边的和.6.〔3分〕如图,将△ABC沿DE、HG、EF翻折,三个顶点均落在点O处.假设∠1=129°,那么∠2的度数为〔〕A、49°B、50°C、51°D、52°考点:翻折变换〔折叠问题〕;三角形内角和定理.专题:计算题.分析:根据翻折的性质可知,∠DOE=∠A,∠HOG=∠B,∠EOF=∠C,又∠A+∠B+∠C=180°,可知∠1+∠2=180°,又∠1=129°,继而即可求出答案.解答:解:根据翻折的性质可知,∠DOE=∠A,∠HOG=∠B,∠EOF=∠C,又∵∠A+∠B+∠C=180°,∴∠DOE+∠HOG+∠EOF=180°,∴∠1+∠2=180°,又∵∠1=129°,∴∠2=51°.应选C、点评:此题考查翻折变换的知识,解答此题的关键是三角形折叠以后的图形和原图形全等,对应的角相等,同时注意三角形内角和定理的灵活运用.7.〔3分〕如下图,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是〔〕A、SSSB、SASC、AASD、ASA考点:全等三角形的应用.分析:根据图象,三角形有两角和它们的夹边是完整的,所以可以根据〝角边角〞画出.解答:解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用〝角边角〞定理作出完全一样的三角形.应选D、点评:此题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.8.〔3分〕如图,∠B=∠C=90°,E是BC的中点,DE平分线∠ADC,那么以下结论不正确是〔〕A、AE平分∠DAEB、AB∥CDC、△EBA≌△DCED、AB+CD=AD考点:全等三角形的判定与性质;平行线的判定.分析:由∠B=∠C=90°,直接得出选项B成立;作EF⊥AD垂足为点F,证得△DEF≌△DCE和△AFE≌△ABE,得出选项A、选项D成立;因为AB≠CD,AE≠DE,不可能得出选项C成立;由此得出结论即可.解答:解:∵∠B=∠C=90°,∴∠B+∠C=180°,∴AB∥CD,故B正确;如图,作EF⊥AD垂足为点F,∴∠DFE=90°,∴∠DFE=∠C,∵DE平分∠ADC,∴∠FDE=∠CDE,在△DEF和△DCE中;,∴△DEF≌△DCE〔AAS〕;∴CE=EF,DC=DF,∠CED=∠FED,又∵∠B=∠C=∠DFE=90°,AE=AE,在Rt△AFE和Rt△ABE中,,∴Rt△AFE≌Rt△ABE〔HL〕;∴AF=AB,∠FAE=∠BAE,∠AEF=∠AEB,∴AE平分∠DAB,故A正确;AD=AF+DF=AB+CD,故D正确;∠AED=∠FED+AEF=∠FEC+∠BEF=90°,即AE⊥DE、∵AB≠CD,AE≠DE,∴△EBA≌△DCE不可能成立.即C不正确;应选:C、点评:此题题综合考查了角平分线的性质、三角形全等的判定与性质等知识点.9.〔3分〕如图,由四个小正方形组成的田字格中,△ABC的顶点都是小正方形的顶点.在田字格上画与△ABC成轴对称的三角形,且顶点都是小正方形的顶点,那么这样的三角形〔不包含△ABC本身〕共有〔〕A、1个B、2个C、3个D、4个考点:轴对称的性质.分析:先把田字格图标上字母如图,确定对称轴找出符合条件的三角形,再计算个数.解答:解:△HEC关于CD对称;△FDB关于BE对称;△GED关于HF对称;关于AG对称的是它本身.所以共3个.应选C、点评:此题考查了轴对称的性质;确定对称轴然后找出成轴对称的三角形是解题的关键.10.〔3分〕如下图的正方形网格中,网格线的交点称为格点.A、B 是两格点,如果C也是图中的格点,且使得△ABC为等腰直角三角形,那么点C的个数是〔〕A、 2B、 4C、 6D、8考点:等腰直角三角形;勾股定理.专题:网格型.分析:根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC 底边;②AB为等腰△ABC其中的一条腰.解答:解:如上图:分情况讨论①AB为等腰直角△ABC底边时,符合条件的C点有2个;②AB为等腰直角△ABC其中的一条腰时,符合条件的C点有4个.应选:C、点评:此题考查了等腰三角形的判定;解答此题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.【二】填空题〔此题共6小题,每题3分,共18分〕11.〔3分〕等腰三角形一边长等于4,一边长等于9,它的周长是22.考点:等腰三角形的性质.分析:题目给出等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.解答:解:∵4+4=8<9,0<4<9+9=18∴腰的不应为4,而应为9∴等腰三角形的周长=4+9+9=22故填:22.点评:此题考查了等腰三角形的性质和三角形的三边关系;没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.12.〔3分〕如图,在△ABC中,AB=AC=16cm,AB的垂直平分线交AC于点D,如果BC=10cm,那么△BCD的周长是26 cm.考点:线段垂直平分线的性质;等腰三角形的性质.分析:连接BD,根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,然后求出△BCD的周长=BC+AC,代入数据计算即可得解.解答:解:如图,连接BD、∵DE是AB的垂直平分线,∴AD=BD,∴△BCD的周长=BC+BD+CD=BC+AD+CD=BC+AC,∵AC=16cm,BC=10cm,∴△BCD的周长=10+16=26cm.故答案为:26.点评:此题考查了线段垂直平分线上的点到两端点的距离相等的性质,熟记性质是解题的关键.13.〔3分〕如图△ABC中,AB=AD=DC,∠BAD=40°,那么∠C=35°.考点:等腰三角形的性质.分析:根据等腰三角形两底角相等求出∠B,根据等边对等角可得∠C=∠CAD,然后利用三角形的内角和定理列式进行计算即可得解.解答:解:∵AB=AD,∠BAD=40°,∴∠B=〔180°﹣∠BAD〕=〔180°﹣40°〕=70°,∵AD=DC,∴∠C=∠CAD,在△A BC中,∠BAC+∠B+∠C=180°,即40°+∠C+∠C+70°=180°,解得∠C=35°.故答案为:35°.点评:此题考查了等腰三角形两底角相等的性质,等边对等角的性质,熟记性质是解题的关键.14.〔3分〕如图,在△ABC中,∠C=90°,∠A=15°,∠DBC=60°,BC=4,那么AD=8.考点:含30度角的直角三角形;等腰三角形的判定与性质.分析:根据直角三角形两锐角互余求出∠BDC=30°,然后根据30°角所对的直角边等于斜边的一半求出BD,再求出∠ABC,然后求出∠ABD=15°,从而得到∠ABD=∠A,根据等角对等边可得AD=BD,从而得解.解答:解:∵∠DBC=60°,∠C=90°,∴∠BDC=90°﹣60°=30°,∴BD=2BC=2×4=8,∵∠C=90°,∠A=15°,∴∠ABC=90°﹣15°=75°,∴∠ABD=∠ABC﹣∠DBC=75°﹣60°=15°,∴∠ABD=∠A,∴AD=BD=8.故答案为:8.点评:此题考查了直角三角形30°角所对的直角边等于斜边的一半的性质,直角三角形两锐角互余的性质,等角对等边的性质,熟记性质是解题的关键.15.〔3分〕如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E、假设AB=5,AC=4,那么△ADE的周长是9.考点:等腰三角形的判定与性质;平行线的性质.专题:压轴题.分析:由在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,易证得△DOB与△EOC是等腰三角形,即DO=DB,EO=EC,继而可得△ADE的周长等于AB+AC,即可求得答案.解答:解:∵在△ABC中,∠B与∠C的平分线交于点O,∴∠DBO=∠CBO,∠ECO=∠BCO,∵DE∥BC,∴∠DOB=∠CBO,∠EOC=∠BCO,∴∠DBO=∠DOB,∠ECO=∠EOC,∴OD=BD,OE=CE,∵AB=5,AC=4,∴△ADE的周长为:AD+DE+AE=AD+DO+EO+AE=AD+DB+EC+AE=AB+AC=5+4=9.故答案为:9.点评:此题考查了等腰三角形的判定与性质、角平分线的定义以及平行线的性质.此题难度适中,注意证得△DOB与△EOC是等腰三角形是解此题的关键,注意掌握数形结合思想与转化思想的应用.16.〔3分〕如图,图①是一块边长为1,周长记为P1的正三角形纸板,沿图①的底边剪去一块边长为的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板〔即其边长为前一块被剪掉正三角形纸板边长的后,得图③、④,…,记第n〔n≥3〕块纸板的周长为Pn,那么周长Pn=3﹣.考点:规律型:图形的变化类;等边三角形的性质.分析:根据等边三角形的性质〔三边相等〕求出等边三角形的周长P1,P2,P3,P4,然后即可得到规律.解答:解:P1=1+1+1=3,P2=1+1+==3﹣,P3=1+1+×3==3﹣,P4=1+1+×2+×3==3﹣,…Pn=3﹣,故答案为:3﹣.点评:此题主要考查对等边三角形的性质的理解和掌握,此题是一个规律型的题目,题型较好.三.解答题〔此题共10题,共102分,解答应写文字说明,证明过程或演算步骤〕17.〔10分〕△ABC中,AB=AC,D是BC中点,DE⊥AB于E,DF ⊥AC于F,求证:DE=DF.考点:全等三角形的判定与性质;等腰三角形的性质.专题:证明题.分析:根据AB=AC,D是BC中点,DE⊥AB于E,DF⊥AC于F,利用角角边定理可证此题,解答:证明:∵AB=AC,D是BC中点,∴∠ABC=∠ACB,BD=DC、∵DE⊥AB于E,DF⊥AC于F,∴∠DEB=∠DFC=90°在△DEB和△DFC中,,∴△DEB≌△DFC〔AAS〕,∴DE=DF.点评:此题主要考查学生对全等三角形的判定与性质和等腰三角形的性质的理解和掌握,难度不大,是一道基础题.18.〔10分〕如图,边长为1的正方形网格中,△ABC的顶点均在格点上,在所给的直角坐标系中解答以下问题〔1〕画出△ABC关于x轴对称的△A′B′C′,并写出A′、B′、C′三点的坐标;〔2〕在y轴上作出点P,使PA+PB的长最小.〔保留痕迹找出点P 即可〕〔3〕假设△ABC内有一点Q〔2m+n,3.5〕关于x轴对称后Q′〔2.5,n﹣m〕,求m,n的值.考点:作图-轴对称变换;轴对称-最短路线问题.分析:〔1〕直接利用关于x轴对称点的性质得出各点坐标画出图形即可;〔2〕利用轴对称求最短路线的方法得出即可;〔3〕利用关于x轴对称点的性质得出横纵坐标关系得出答案.解答:解:〔1〕如下图:A′〔4,﹣4〕、B′〔1,﹣2〕、C′〔3,﹣2〕;〔2〕如下图:P点即为所求;〔3〕∵△ABC内有一点Q〔2m+n,3.5〕关于x轴对称后Q′〔2.5,n﹣m〕,∴,解得:.点评:此题主要考查了轴对称变换以及利用轴对称求最短路径问题,得出对应点位置是解题关键.19.〔10分〕等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ,问△APQ是什么形状的三角形?试说明你的结论.考点:等边三角形的判定;全等三角形的判定与性质.专题:探究型.分析:先证△ABP≌△ACQ得AP=AQ,再证∠PAQ=60°,从而得出△APQ是等边三角形.解答:解:△APQ为等边三角形.证明:∵△ABC为等边三角形,∴AB=AC、在△ABP与△ACQ中,∵,∴△ABP≌△ACQ〔SAS〕.∴AP=AQ,∠BAP=∠CAQ.∵∠BAC=∠BAP+∠PAC=60°,∴∠PAQ=∠CAQ+∠PAC=60°,∴△APQ是等边三角形.点评:考查了等边三角形的判定及全等三角形的判定方法.20.〔10分〕如图,AB=AC=10,∠A=40°,AB的垂直平分线MN交AC于D,求:〔1〕∠CBD的度数;〔2〕假设△BCD的周长是m,求BC的长.考点:线段垂直平分线的性质;等腰三角形的性质.分析:〔1〕由垂直平分线的性质可知DA=DB,可求得∠ABD=40°,再由AB=AC,可求得∠ABC,再利用角的和差可求得∠CBD;〔2〕由〔1〕可知AD=BD,可得BD+CD=AC=10,结合△BCD的周长可求得BC、解答:解:〔1〕∵AB的垂直平分线MN交AC于D,∴DA=DB,∴∠ABD=∠A=40°,∵AB=AC,∴∠ABC=∠ACB==70°,∴∠CBD=∠ABC﹣∠ABD=70°﹣40°=30°;〔2〕由〔1〕可知DA=DB,∴BD+DC=AD+DC=AC=10,∵△BCD的周长是m,∴BC=m﹣10.点评:此题主要考查线段垂直平分线的性质,掌握线段垂直平分线的点到线段两端点的距离相等是解题的关键.21.〔10分〕如图,在平面直角坐标系中,在第一象限内,OM与OB是两坐标轴的夹角的三等分线点E是OM上一点,EC⊥X轴于C 点,ED⊥OB于D点,OD=8,OE=10〔1〕求证:∠ECD=∠EDC;〔2〕求证:OE垂直平分CD、考点:角平分线的性质;全等三角形的判定与性质;等腰三角形的判定与性质.分析:〔1〕由角平分线的性质可得ED=EC,那么可得∠ECD=∠EDC;〔2〕由角平分线的性质可知ED=EC,在Rt△ODE中可求得DE=6,那么EC=6,在Rt△OEC中可求得OC=8=OD,可得点E、O都在线段CD的垂直平分线上,可知OE垂直平分CD、解答:证明:〔1〕∵OM与OB是两坐标轴的夹角的三等分线,∴OM平分∠BOC,∵EC⊥X轴于C点,ED⊥OB于D点,∴DE=CE,∴∠ECD=∠EDC;〔2〕在Rt△ODE中,OD=8,OE=10,由勾股定理可求得DE=6,由〔1〕可得EC=ED=6,在Rt△OCE中,OE=10,EC=6,由勾股定理可求得OC=8,∴OC=OD,∴点O、E都在线段CD的垂直平分线上,∴OE垂直平分CD、点评:此题主要考查角平分线的性质及等腰三角形的性质、线段垂直平分线的判定,由条件得到DE=CE且求得OC=OD=8是解题的关键,注意勾股定理的应用.22.〔10分〕如图,△ABC为等边三角形,点D,E分别在BC,AC 边上,且AE=CD,AD,BE相交于点P,BQ⊥AD于Q,PQ=3,PE=1.〔1〕求证:△ABE≌△CAD;〔2〕求AD的长.考点:全等三角形的判定与性质;等边三角形的性质.分析:〔1〕根据AE=CD,AB=AC,∠BAC=∠C即可求得△ABE≌△CAD;〔2〕由〔1〕得∠AEB=∠ADC,即可求得∠BPQ=∠C,即可求得BP 的长,即可解题.解答:解:〔1〕∵在△ABE和△CAD中,,∴△ABE≌△CAD,〔SAS〕〔2〕∵△ABE≌△CAD,∴AD=BE,∠AEB=∠ADC∵∠DAC+∠ADC+∠ACB=180°,∠DAC+∠AEB+∠APE=180°,∴∠ACB=∠APE=60°,∴∠BPQ=60°,∴∠PBQ=30°,∴BP=2PQ=6,∴AD=BE=BP+PE=6+1=7.点评:此题考查了全等三角形的判定,考查了全等三角形对应边、对应角相等的性质,此题中求证△ABE≌△CAD是解题的关键.23.〔10分〕如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE、〔1〕求证:△DEF是等腰三角形;〔2〕当DE⊥EF,E是BC的中点时,试比较BD+CF与DF的大小.考点:全等三角形的判定与性质;等腰三角形的判定与性质.分析:〔1〕根据AB=AC可得∠B=∠C,即可求证△BDE≌△CEF,即可解题;〔2〕根据E是BC的中点BD=CF=BE=CE,即可求得DF∥BC,即可解题.解答:〔1〕证明:∵AB=AC,[来源:]∴∠B=∠C,∵在△BDE和△CEF中,,∴△BDE≌△CEF,〔SAS〕∴DE=EF,∴△DEF是等腰三角形;〔2〕解:∵E是BC的中点,BE=CF,BD=CE、∴BD=CF=BE=CE,∴BD+CF=BC,∴∠BDE=∠CFE,∴∠ADF=∠AFD,∴DF∥BC,∵BC>DF,∴BD+CF>DF.点评:此题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,此题中求证△BDE≌△CEF是解题的关键.24.〔10分〕四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ABC= 120°,∠MBN=60°,∠MBN的两边分别交AD、CD于E、F.〔1〕当AE=CF时,如图1试猜想AE+CF与EF之间存在怎样的数量关系?请给予证明.〔2〕当AE≠CF,如图2的情况下,上问的结论分别是否仍然成立?假设成立,请给出证明;假设不成立,请说明理由.考点:全等三角形的判定与性质;等边三角形的判定与性质.分析:〔1〕作BQ⊥EF,易证△ABE≌△CBF和△BEF为等边三角形,可得∠ABE=30°和EF=BF,即可解题;〔2〕延长DA,使得AQ=CF,可证RT△BCF≌RT△BAQ,可得∠ABQ=∠CBF,CF=AQ,进而可以求证△BEF≌△BEQ得到QE=EF,即可解题.解答:解:〔1〕作BQ⊥EF,∵AE=CF,AB=BC,∴根据勾股定理可得:BF=BE,∵∠MBN=60°∴△BEF为等边三角形,∴EF=BF=BE,在RT△ABE和RT△CBF中,,∴RT△ABE≌RT△CBF〔HL〕,∴∠ABE=∠CBF,∵∠MBN=60°,∠ABC=120°,∴∠ABE=∠CBF=30°,∴BF=2CF,∴AE+CF=EF;〔2〕延长DA,使得AQ=CF,∵AQ=CF,AB=AC,∴根据勾股定理可得:BQ=BF,在RT△BCF和RT△BAQ中,,∴RT△BCF≌RT△BAQ〔HL〕,∴∠ABQ=∠CBF,CF=AQ,∴∠FBQ=∠ABC=120°,∴∠QBE=60°,在△BEF和△BEQ中,,∴△BEF≌△BEQ〔SAS〕,∴QE=EF,∴EF=QE=AE+AQ=AE+CF.点评:此题考查了全等三角形的判定,考查了全等三角形对应边相等、对应角相等的性质,此题中,〔1〕中求证RT△ABE≌RT△CBF,〔2〕中求证△BEF≌△BEQ是解题的关键.25.〔12分〕:在平面直角坐标系中,等腰Rt△ABC的顶点A、C在坐标轴上运动,且∠ACB=90°,AC=BC、〔1〕如图1,当A〔0,﹣2〕,C〔1,0〕,点B在第四象限时,那么点B的坐标为〔3,﹣1〕;〔2〕如图2,当点C在x轴正半轴上运动,点A在y轴正半轴上运动,点B在第四象限时,作BD⊥y轴于点D,试判断与哪一个是定值,并说明定值是多少?请证明你的结论.〔3〕如图3,当点C在y轴正半轴上运动,点A在x轴正半轴上运动,使点D恰为BC的中点,连接DE,求证:∠ADC=∠BDE、考点:全等三角形的判定与性质;坐标与图形性质;等腰直角三角形.分析:〔1〕作BD⊥CD,易证△OAC≌△DCB,即可解题;〔2〕作BE⊥OC,易证OAC≌△ECB,可求得OC=AO+BD,即可解题;〔3〕过点B作BG⊥BC交y轴于点G,易证△BCG≌△CAD,可得BG=BD,进而可以求证△DBE≌△GBE,可得∠BDE=∠BGE,即可解题.解答:解:〔1〕作BD⊥CD,∵∠OCA+∠DCB=90°,∠OAC+∠DCB=90°,∴∠OAC=∠DCB,∵在△OAC和△DCB中,,∴△OAC≌△DCB,〔AAS〕∴CD=OA=2,BD=OC=1,OD=3,∴B点坐标为〔3,﹣1〕;〔2〕作BE⊥OC,那么四边形ODBE为矩形,∵∠ACO+∠BC O=90°,∠ACO+∠OAC=90°,∴∠BCO=∠CAO,∵△OAC和△ECB中,,∴△OAC≌△ECB,〔AAS〕∴EC=OA,∵四边形ODBE为矩形,∴OE=BD,∵OC=OE+EC,∴OC=AO+BD,∴存在定值,且为1;〔3〕过点B作BG⊥BC交y轴于点G,∴∠CBG=∠ACD=90°,∵∠BCG+∠ACG=90°,∠ACO+∠DCO=90°,∴∠DCO=∠CAO.在△BCG和△CAD中,,∴△BCG≌△CAD〔ASA〕,∴BG=CD=BD、∵∠ABC=∠BAC=45°,∴∠EBG=∠DBE=45°,在△DBE和△GBE中,,∴△DBE≌△GBE〔SAS〕,∴∠BDE=∠BGE,∵∠BCG+∠BGE=90°,∠BCG+∠ADC=90°,∴∠BGE=∠ADC,∴∠ADB=∠CDE、点评:此题考查了全等三角形的判定,考查了全等三角形对应角、对应边相等的性质,此题中每一问都找出全等三角形并求证是解题的关键.。

2020年~2021年八年级第一学期期中考试数学试卷及答案

2020年~2021年八年级第一学期期中考试数学试卷及答案

2020年~2021年八年级第一学期期中考试数学试卷一 选择题(共12个小题,每小题3分,共36分)1.自新冠肺炎疫情发生以来,各地积极普及科学防控知识,下面是科学防控知识的图片,图片上有图案和文字说明,其中的图案是轴对称图形的是( )2.点A(-1,-2)关于x 轴对称的点的坐标是( ) A.(1,2) B.(1,-2) C.(-1,2) D.(-1,-2)3.如图1,墙上钉着三根木条a ,b ,c ,量得∠1=70°,∠2=100°,那么木条a ,b 所在直线所夹的锐角是( )A.5°B.10°C.30°D.70°4.已知三角形的三边长分别为3,x,5,若x 为正整数,则这样的三角形个数为( ) A.2 B.3 C.5 D.75.如图2,已知AB=AD ,那么添加下列一个条件后,仍无法判定△ABC≌△ADC 的是 ( )A.CB=CDB.∠BAC=∠DACC.∠BCA=∠DCAD.∠B=∠D=90°6.如图3,在△ABC 中,∠A=30°,∠ABC=50°,若△EDC≌△ABC,且点A ,C ,D 在同一条直线上,则∠BCE 的度数为( ) A .20° B.30° C.40° D.50°7.若正多边形的内角和是1260°,则该正多边形的一个外角为( ) A.30° B.40° C.45° D.60°8.如图4,△ABC 与△A 'B'C'关于MN 对称,P 为MN 上任一点(A ,P ,A'不共线),下列结论中不正确的是( )A.AP=A'PB.MN 垂直平分线段AA'C.△ABC 与△A 'B'C'面积相等D.直线AB ,A'B'的交点不一定在直线MN 上9.如图5,点O 在△ABC 内,且到三边的距离相等,若∠BOC=110°,则∠A 的度数为( )A.40°B.45°C.50°D.55°10.如图6,在△ABC 中,AB=AC ,AB 的垂直平分线交AB 于点D ,交BC 的延长线于点E ,交AC 于点F ,若AB+BC=6,则△BCF 的周长为( ) A.4.5 B.5 C.5.5 D.611.如图7,△ABC 的两条中线AM ,BN 相交于点O ,已知△ABO 的面积为4,△BOM 的面积为2,则四边形MCNO 的面积为( ) A.4 B.3 C.4.5 D.3.512.如图8,AB∥CD,AD∥B C ,AC 与BD 相交于点O ,AE⊥BD,CF⊥BD,垂足分别是E ,F ,则图中的全等三角形共有( ) A.5对 B.6对 C.7对 D.8对二 填空题(共5个小题,每小题3分,共15分)13.如图9,P 是∠AOB 的平分线OC 上一点,PD⊥OB,垂足为D ,若PD=2,则点P 到边OA 的距离是 .14.在△ABC 中,将∠B,∠C 按如图10所示方式折叠,点B ,C 均落于边BC 上点G 处,线段MN ,EF 为折痕.若∠A=82°,则∠MGE= .15.如图11,CE⊥AB,DF⊥AB,垂足分别为E ,F ,CE=DF ,AC=BD ,AB=10,EF=4,则BF= .16.如图12,过正六边形 ABCDEF 的顶点B 作一条射线与其内角∠BAF 的平分线相交于点P ,且∠APB=40°,则∠CBP 的度数为 .17.如图13,在△ABC 中,∠B=55°,∠C=30°,分别以点A 和点C 为圆心,大于21AC 的长为半径画弧,两弧相三 解答题(共7个小题,共69分)18.(8分)如图,在平面直角坐标系中,已知四边形ABCD 是轴对称图形,点A 的坐标为(-3,3).(1)画出四边形ABCD 的对称轴;(2)画出四边形ABCD 关于y 轴对称的四边形A 1B 1C 1D 1,并写出点A 1,C 1的坐标19.(9分)如图,在△ABC 中,DE 是边AC ,BC 上的点,AE 和BD 交于点F ,已知∠CAE=20°,∠C=40°,∠CBD=30°,(1)求∠AFB 的度数;(2)若∠BAF=2∠ABF,求∠BAF 的度数.20.(9分)如图,小明用五根宽度相同的木条拼成了一个五边形,已知AE∥CD,∠A=21∠C,∠B=120°.(1)∠D+∠E= 度;(2)求∠A 的度数;(3)要使这个五边形木架保持现在的稳定状态,小明至少还需钉上 根相同宽度的木条.21.(10分)如图,要测量河流AB 的长,可以在AB 线外任取一点D ,在AB 的延长线上任取一点E ,连接ED 和BD ,并且延长BD 到点G ,使DG=BD ;延长ED 到点F ,使FD=ED ;连接FG 并延长到点H ,使点H ,D ,A 在同一直线上,这样测量出线段HG 的长就是河流AB 的长,请说明这样做的理由.22.(10分)如图,在△ABC 中,(1)下列操作,作∠ABC 的平分线的正确顺序是 (填序号);①分别以点M ,N 为圆心,大于21MN 的长为半径作圆弧,在∠ABC 内,两弧交于点P ;②以点B 为圆心,适当长为半径作圆弧,交AB 于点M ,交BC 于点N ;③画射线BP ,交AC 于点D.(2)能说明∠ABD=∠CBD 的依据是 (填序号);①SS S ;②ASA;③AAS;④角平分线上的点到角两边的距离相等.(3)若AB=18,BC=12,S △ABC =120,过点D 作DE⊥AB 于点E ,求DE 的长.23.(11分)如图,在△ABC 中,边AB ,AC 的垂直平分线分别交BC 于点D ,E ,交AB ,AC 于点M ,N.(1)若BC=10,求△ADE 的周长;(2)设直线DM ,EN 交于点O ,连接OB ,OC.①试判断点O 是否在BC 的垂直平分线上,并说明理由;②若∠BAC=100°,则∠BOC 的度数为 .24.(12分)如图①,在△ABC 中,∠ACB=90°,AC=BC=10,直线DE 经过点C ,过点A ,B 分别作AD⊥DE,BE⊥DE,垂足分别为点D 和E ,AD=8,BE=6.(1)①求证:△ADC≌△CEB,②求DE 的长;(2)点M 以3个单位长度/秒的速度从点C 出发沿着边CA 向终点A 运动,点N 以8个单位长度/秒的速度从点B 出发沿着边BC 和CA 向终点A 运动,如图②所示,点M ,N 同时出发,运动时间为t 秒(t>0),当点N 到达终点时,两点同时停止运动.过点M 作MP⊥DE 于点P ,过点N 作NQ⊥DE 于点Q.①当点N 在线段CA 上时,线段CN 的长度为 ;②当△PCM 与△QCN 全等时,求t 的值.2020年~2021年八年级第一学期期中考试数学试卷参考答案1.D2.C3.B4.C5.C6.A7.B8.D9.A 10.D 11.A 12.C 13.2 14.82° 15.3 16.40° 17.65°18.解:(1)如图;(2)如图,A1(3,3),C1(3,-1).19.解:(1)∵∠AEB=∠C+∠CAE=40°+20°=60°,∴∠AFB=∠CBD+∠AEB=30°+60°=90°;(2)∵∠BAF=2∠ABF ,∠AFB=90°,∴3∠ABF=90°,∴∠ABF=30°,∴∠BAF=60°.20.解:(1)180;(2)这个五边形的内角和为(5-2)×180°=540°.设∠A=x °,则∠C=2x °.∵∠A+∠B+∠C+∠D+∠E=540°,∴x+120+2x+180=540,∴x=80,∴∠A=80°;(3)2.21.解:∵BD=DG ,∠BDE=∠GDF ,ED=DF ,∴△BED ≌△GFD (SAS ),∴BE=FG ,∠E=∠F.又∵ED=DF ,∠ADE=∠HDF ,∴△AED ≌△HFD (ASA ),∴AE=FH ,∴AB=HG. 即测量出线段HG 的长就是河流AB 的长.22.解:(1)②①③;(2)①;(3)过点D 作DF ⊥BC 于点F. ∵∠ABD=∠CBD ,DE ⊥AB ,DF ⊥BC ,∴DE=DF ,∴S △ABC =S △ABD +S △CBD =21×AB ×DE+21×BC ×DF=120,∴21×18×DE+21×12×DE=120,解得DE=8. 23.解:(1)∵DM ,EN 分别是AB ,AC 的垂直平分线,∴AD=BD ,AE=CE ,∴AD+DE+AE=BD+DE+CE=BC=10,即△ADE 的周长是10;(2)①点O 在BC 的垂直平分线上;理由:连接OA.∵DM ,EN 分别是AB ,AC 的垂直平分线,∴OA=OB ,OA=OC ,∴OB=OC ,∴点O 在BC 的垂直平分线上;②160°.(提示:∵OM ⊥AB ,∴∠AMO=∠BMO=90°.又∵OA=OB ,OM=OM ,∴△AOM ≌△BOM ,∴∠OAM=∠OBM.同理可得∠OAN=∠OCN. ∴∠BOC=360°-2∠BAC=160°)24.解:(1)①证明:∵AD ⊥DE ,BE ⊥DE ,∴∠ADC=∠CEB=90°. ∵∠ACB=90°,∴∠DAC+∠DCA=∠DCA+∠ECB=90°,∴∠DAC=∠ECB.又∵AC=BC ,∴△ADC ≌△CEB (AAS );②由①得△ADC ≌△CEB ,∴AD=CE=8,CD=BE=6,∴DE=CD+CE=6+8=14;(2)①8t-10;②分两种情况:当点N 在线段BC 上时,△PCM ≌△QNC ,∴CM=CN ,∴3t=10-8t ,解得t=1110;当点N 在线段CA 上时,△PCM ≌△QCN ,点M 与N 重合,CM=CN ,则3t=8t-10,解得t=2.综上所述,当△PCM 与△QCN 全等时,t 的值为1110或2.。

八年级(上)期中数学试卷

八年级(上)期中数学试卷

2020-2021学年八年级(上)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)在以下节水、节能、回收、绿色食品四个标志中,是轴对称图形的是()A.B.C.D.2.(3分)一个三角形的两边长分别为3cm和8cm,则此三角形第三边长可能是()A.3cm B.5cm C.7cm D.11cm3.(3分)已知图中的两个三角形全等,则∠α的度数是()A.72°B.60°C.58°D.50°4.(3分)如图,直线m是五边形ABCDE的对称轴,其中∠A=130°,∠B=110°,那么∠BCD等于()A.40°B.50°C.60°D.70°5.(3分)如图,BE=CF,AB=DE,添加下列哪些条件可以推证△ABC≌△DEF()A.BC=EF B.AC=DF C.AC∥DF D.∠A=∠D 6.(3分)在△ABC中,∠A的相邻外角是70°,要使△ABC为等腰三角形,则∠B为()A.70°B.35°C.110°或35°D.110°7.(3分)若一个多边形的每个内角都为144°,则这个多边形是()A.七边形B.八边形C.九边形D.十边形8.(3分)如图,把矩形纸片ABCD沿对角线折叠,设重叠部分为△EBD,那么下列说法错误的是()A.△EBD是等腰三角形,EB=EDB.折叠后∠ABE和∠C′BD一定相等C.折叠后得到的图形是轴对称图形D.△EBA和△EDC′一定是全等三角形9.(3分)如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC 于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()A.4cm B.3cm C.2cm D.1cm10.(3分)如图,在△ABC中,∠BAC和∠ABC的平分线相交于点O,过点O作EF∥AB 交BC于F,交AC于E,过点O作OD⊥BC于D,下列四个结论:①∠AOB=90°+∠C;②AE+BF=EF;③当∠C=90°时,E,F分别是AC,BC的中点;④若OD=a,CE+CF=2b,则S△CEF=ab.其中正确的是()A.①②B.③④C.①②④D.①③④二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)在平面直角坐标系中,点(﹣3,5)关于x轴对称的点的坐标为.12.(3分)已知等腰三角形的两边长分别为5cm和8cm,则等腰三角形的周长为.13.(3分)如图,在△ABC中,已知D,E,F分别为BC,AD,CE的中点,且S△ABC=8cm2,则图中阴影部分△BEF的面积等于cm2.14.(3分)如图,则∠A+∠B+∠C+∠D+∠E+∠F的度数为.15.(3分)如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC的长是.16.(3分)如图,在平面直角坐标系中,直线l与x轴交于点B1,与y轴交点于D,且OB1=1,∠ODB1=60°,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长坐等三角形A3A2B3,…,则点A10的横坐标是.三、解答题(本大题共7题,共72分,解答应写出文字说明、证明过程或演算步骤.). 17.(8分)如图,已知∠AOB和两点M、N,试确定一点P,使得P到射线OA、OB的距离相等,并且到点M、N的距离也相等.(尺规作图:不写作法)18.(10分)如图,在平面直角坐标系中,Rt△ABC的三个顶点均在边长为1的正方形网格上.(1)画出△ABC关于y轴对称的图形△A′B′C′,并写出A′,B′,C′的坐标;(2)若点D在图中所给网格中的格点上,且以A,B,D为顶点的三角形为等腰直角三角形,请直接写出点D的坐标.19.(10分)如图,在△ABC中,AB=AC,AC的垂直平分线分别交AB、AC于点D、E(1)若∠A=40°,求∠DCB的度数;(2)若AE=5,△DCB的周长为16,求△ABC的周长.20.(10分)如图,AB=CD,AE⊥BC,DF⊥BC,CE=BF.求证:AB∥CD.21.(10分)如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于Q.(1)求证:△ADC≌△BEA;(2)若PQ=4,PE=1,求AD的长.22.(12分)两个三角形有两组边对应相等,并且其中一组相等的边所对的角也相等,如果这两个三角形不全等,我们称它们互为“伴生三角形”,相等的边所对的相等的角称为“伴生角”.如图,AB=A′B′,AC=A′C′,∠B=∠B',但△ABC和△A′B′C′不全等,则称△ABC和△A′B′C′互为“伴生三角形”,∠B与∠B'称为“伴生角”.(1)若某三角形的两个内角为30°和50°,请直接写出这个三角形的伴生三角形的三个内角的度数;(2)若互为伴生三角形的两个三角形都是等腰三角形,求伴生角的度数.23.(12分)如图,△ABC中∠ACB是钝角,点P在边BC的垂直平分线上.(1)如图1,若点P也在边AC的垂直平分线上,且∠ACB=110°,求∠APB的度数;(2)如图2,若点P也在∠BAC的外角平分线上,过点P作PH⊥AB于H,试找出线段AB、AH、AC之间的数量关系,并说明理由.。

2020-2021学年苏教版八年级上学期期中考试数学试题附解答

2020-2021学年苏教版八年级上学期期中考试数学试题附解答

AB C D2020-2021学年八年级上学期期中考试数学试题(考试时间:120分钟满分:150分)一、选择题(本大题共8题,每题3分,共24分)1.下列图形中,是轴对称图形的是(▲)2.下列各组数中,是勾股数...的是(▲)A.2,3,4 B.9,12,13 C.0.3,0.4,0.5 D.7,24,253.等腰三角形的周长为cm13,其中一边长为cm3,则该等腰三角形的底边为(▲)A.cm3 B.cm7 C.cm7或cm3 D.cm84.如图,已知AB=AD,那么添加下列一个条件后,仍无法..判定△ABC≌△ADC的是(▲)A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°第4题第7题第8题5.到三角形的三边距离相等的点是(▲)A.三条边的垂直平分线的交点 B.三条角平分线的交点C.三条高的交点 D.三条中线的交点6.已知△ABC(AC<BC),用尺规作图的方法在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是(▲)A B C D7.如图,在△ABC中,∠A=60°,AC=2,BD平分∠ABC,E、F分别为BC、BD上的动点,则CF+EF的最小值是(▲)A.2 B.3 C.2 D.58.如图,在△ABC 中,AB =5,AC =3,BC =7,AI 平分∠BAC ,CI 平分∠ACB ,将∠BAC 平移,使其顶点与点I 重合,则图中阴影部分的周长为( ▲ ) A .7 B .8 C .10 D .12二、填空题(本大题共10题,每题3分,共30分) 9.25的平方根是 ▲ .10.等腰△ABC 中,AB=AC ,∠A=40°,则∠B= ▲ °. 11.黑板上写着在正对着黑板的镜子里的像是 ▲ .12.若一个正数的两个不同的平方根为2a+1和3a-11,则a= ▲ .13.如图,以直角三角形各边向外作正方形,其中两个正方形的面积分别为225和144,则正 方形A 的面积为 ▲ .第12题 第13题 第14题 14.如图,△OAD ≌△OBC ,且∠O =70°,∠C =25°,则∠AEB = ▲ .15.王强同学用10块高度都是2cm 的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC =BC ,∠ACB =90°),点C 在DE 上,点A 和B 分别与木墙的顶端重合,则两堵木墙之间的距离为 ▲ cm .16.如图,△ABC 中,BD 为∠ABC 的平分线,DE ⊥AB 于点E ,AB=16,BC=12,△ABC 的面积为70,则DE= ▲ .第16题 第17题 第18题17.如图,在△ABC 中,AB =AC ,∠A =120°,AB 的垂直平分线交BC 于M ,交AB 于E ,AC 的垂直平分线交BC 于N ,交AC 于F ,若MN =2,则NF= ▲ .O ABCDEED ABC18.如图,在Rt △ABC 中,∠ABC=90°,点D 是AC 的中点,作∠ADB 的角平分线DE 交AB 于点E ,AE=6,DE=10,点P 在边BC 上,且△DEP 为等腰三角形,则BP 的长为 ▲ . 三、解答题 (本大题共10题,共96分) 19.(本题8分)计算 (1) ()3264812-+-- (2)20)31(64)14.3(-32--+---π20.(本题8分)求下列各式中x 的值 (1)2123x =; (2)3(3)8x -=-21.(本题8分)方格纸中每个小方格都的边长为1的正方形,我们把以格点连线为边的多边形称为“格点多边形”.(1)在图1中确定格点D ,并画出一个以A 、B 、C 、D 为顶点的四边形,使其为轴对称图形;(一种情况即可)(2)在图2中画一个格点正方形,使其面积等于10; (3)直接写出图3中△FGH 的面积是 ▲ .22.(本题8分)已知5x ﹣1的平方根是±3,2x+y+1的立方根是2,求2x ﹣y 的平方根.23.(本题10分)如图,点B 、F 、C 、E 存同一直线上,AC 、DF 相交于点G ,AB ⊥BE ,垂足为B ,DE ⊥BE ,垂足为E ,且AC=DF ,BF=CE . (1)求证:△ABC ≌△DEF ; (2)若∠A=63°,求∠AGF 的度数.24.(本题10分)如图,△ACB 与△ECD 都是等腰直角三角形,∠ACB =∠ECD =90º,点D 为AB 边上的一点,(1)求证:△ACE ≌△BCD ;(2)若AD =5,BD =12,求DE 的长.25.(本题10分)探索与应用.先填写下表,通过观察后再回答问题:(1)表格中x = ▲ ;y= ▲ ;(2)从表格中探究a 与a 数位的规律,并利用这个规律解决下面两个问题:①已知10≈3.16,则1000≈ ▲ ;②已知 3.24=1.8,若a =180,则a = ▲ ; (3)拓展:已知289.2123≈,若2289.03=x ,则x = ▲ . 26.(本题10分)数学实验室:制作4张全等的直角三角形纸片(如图1),把这4张纸片拼成以弦长c 为边长的正方形构成“弦图”(如图2)古代数学家利用“弦图”验证了勾股定理. 探索研究:(1)小明将“弦图”中的2个三角形进行了运动变换,得到图3,请利用图3证明勾股定理; 数学思考:(2)小芳认为用其它的方法改变“弦图”中某些三角形的位置,也可以证明勾股定理.请你想一种方法支持她的观点(先在备用图中补全图形,再予以证明).G27.(本题12分)已知:如图,△ABC 中,CD 平分∠ACB ,与AB 的垂直平分线DG 交于点D ,DE ⊥AC 于点E ,DF ⊥B C 交CB 的延长线于点F . (1)求证:AE =BF ;(2)若AE =7,BC =10,AB =26,判断△ABC 的形状,并证明;(3)设AB=c ,BC=a ,AC=b(b>a),若∠ACB=90°,且△ABC 的周长与面积都等于30,求CE 的长.28.(本题12分)已知:△ABC 中,边17==AC AB ,16=BC . (1)△ABC 的面积为 ▲ ;(2)已知点E 是BC 中点,以AB 为斜边..在△ABC 外构造ABD Rt ∆. ①如图1,求线段DE 长度的最大值; ②如图2,当BD AD =时,求∠BED 的度数.D D图1 图2参考答案一、选择题1.C2.D3.A4.C5.B6.D7.B8.A 二、填空题9.±5 10.70° 11.50281 12.2 13.81 14.120 15.20 16.5 17.1 18.2、5、8、18 三、解答题19.(1)-9 (4分) (2)3-2 (4分)2222122a b ab a b ab++⨯=++22122c ab c ab+⨯=+2142c ab +⨯221()42a b c ab +=+⨯20.(1)6x =± (4分) (2)1x = (4分) 21.(1)略 (2分) (2)略 (5分) (3)9 (8分) 22. x=2,y=3 (4分)2x-y=1 (6分) 2x-y 的平方根为±1(8分) 23.(1)略 (5分) (2)54°(10分) 24.(1)略 (5分) (2)13 (10分)25. (1)x =0.1,y =10,故答案为:0.1,10; (3分)(2)①=31.6,a =32400,故答案为:31.6,32400; (7分)(3)x =0.012,故答案为:0.012. (10分) 26.解:如图 3 所示图形的面积表示为:图形的面积也可表示: (2分)∴ a 2+ b 2+ ab = c 2+ ab (4分) ∴ a 2 + b 2 = c 2 (5分)(2)解:如图 4 所示大正方形的面积表示为:2()a b +大正方形的面积也可以表示为:(7分)∴即a 2+ b 2+ 2ab = c 2+ 2ab (9分) ∴a 2+ b 2= c2(10分)27.(1)略 (4分)(2)直角三角形 (求出CE=17得2分,共4分)......(3)CE=217(求出c=13得2分,共4分,猜出a=5,b=12,求出正确答案只得1分) 28. 解:(1)120(3分);(2)①如图1,取AB 中点F ,连接AE 、DF 、EF ,∵AB=AC ,BE=CE ,∴AE ⊥BC ,∴∠AEB=∠ADB=90°,∵AB=17,∴AF=EF=21AB=8.5(2分),∵DE ≤DF+EF=17,∴线段DE 长度的最大值为17(2分)(共4分,其他解法参照给分);(第28题答图1) (第28题答图2)②如图2,取AB 中点F ,连接AE 、DF 、EF ,同①可知DF=EF=AF ,∴∠FAE=∠FEA.设∠FAE=∠FEA=α,则∠BFE=∠FAE+∠FEA=2α,∵AD=BD ,∴DF ⊥AB ,∴∠BFD=90°,∴∠DFE=90°+2α,∴∠FED=2180DFE ∠- =45°-α,∴∠AED=∠FED+∠FEA =45°,∴∠BED=∠AEB-∠AED=45°.(共5分).注:本小题其他证法请参照给分,比如:①过点D 作AE 、BC 的垂线;②将△BDE 绕点D 逆时针旋转90°;③将△ADE 绕点D 顺时针旋转90°.。

2020-2021学年苏科版八年级数学上学期期中考试试题含答案

2020-2021学年苏科版八年级数学上学期期中考试试题含答案

2020-2021学年第一学期期中抽测八年级数学试题(考试时间:100分钟;满分140分)一、选择题(每小题4分,共32分)1.到三角形三个顶点的距离相等的点一定是( ).A .三边垂直平分线的交点B .三条高的交点C .三条中线的交点D .三条角平分线的交点2.下列各组线段能构成直角三角形的一组是( ).A .5cm ,9cm ,12cmB .7cm ,12cm ,13cmC .30cm ,40cm ,50cmD .3cm ,4cm ,6cm3.如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,FC AB ∥,若4AB =,3CF =,则BD 的长是( ).A .0.5B .1C .1.5D .24.如图,BD 是ABC △的角平分线,AE BD ⊥,垂足为F .若35ABC ∠=︒,50C ∠=︒,则CDE ∠的度数为( ).A .35︒B .40︒C .45︒D .50︒5.如图,在Rt ABC △中,90BAC ∠=︒,36B ∠=︒,AD 是斜边BC 上的中线,将ACD △沿AD 对折,使点C 落在点F 处,设DF 与AB 相交于点E ,则BED ∠等于( ).A .120︒B .108︒C .72︒D .36︒6.如图,在ABC △中,50B ∠=︒,CD AB ⊥于点D ,BCD ∠和BDC ∠的角平分线相交于点E ,F 为边AC 的中点,CD CF =,则ACD CED ∠+∠=( ).A .125︒B .145︒C .175︒D .190︒7.如图,D 为ABC △内一点,CD 平分ACB ∠,AE CD ⊥,垂足为点D ,交BC 于点E ,B BAE ∠=∠,若5BC =,3AC =,则AD 的长为( ).A .1B .1.5C .2D .2.58.“赵爽弦图”巧妙地利用面积关系证明了勾股定理.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b .若2()21a b +=,大正方形的面积为13,则小正方形的面积为( )A .3B .4C .5D .6二、填空题(每小题4分,共40分)9.若等腰三角形的一个底角为72︒,则这个等腰三角形的顶角为 ︒.10.直角三角形的斜边长是5,一条直角边长是3,则此三角形的周长是 .11.等腰三角形ABC 的周长为8cm ,其中腰长3AB cm =,则BC = cm .12.一个直角三角形的一条直角边长为9cm ,斜边比另一条直角边长1cm ,这个直角三角形的面积为 2cm .13.若等腰三角形顶角平分线等于底边的一半,则这个等腰三角形的底角为 ︒.14.如图,以ABC △的顶点B 为圆心,BA 长为半径画弧,交BC 边于点D ,连接AD .若40B ∠=︒,36C ∠=︒,则DAC ∠的大小为 ︒.15.如图,Rt ABC △中,90C ∠=︒,ABC ∠的平分线交AC 于点P ,PD AB ⊥,垂足为D ,若2PD =,则PC = .16.如图,ABC ADE △≌△,若35C ∠=︒,75D ∠=︒,25DAC ∠=︒,则BAD ∠= ︒.17.观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…,请你写出具有以上规律的第⑥组勾股数: .18.如图,在ABC △中,ABC ∠和ACB ∠的平分线相交于点O ,过点O 作EF BC ∥交AB 于点E ,交AC 于点F ,过点O 作OD AC ⊥于点D ,下列四个结论:①BE EF CF =-; ②1902BOC A ∠=︒+∠; ③点O 到ABC △各边的距离相等;③设OD m =,AE AF n +=,则12AEF S mn =△. 其中正确的结论是 .(填所有正确结论的序号)三、解答题(每小题6分,共24分)19.如图,在ABC △中,D 是AB 上一点,且DA DB DC ==.求证:ABC △是直角三角形.20.已知,如图,AB AE =,AB DE ∥,70ECB ∠=︒,110D ∠=︒. 求证:ABC EAD △≌△.21.如图,AB AC =,AB AC ⊥,AD AE ⊥,且ABD ACE ∠=∠. 求证:BD CE =.22.如图,ABC △中,AD BC ⊥,垂足为D .如果6AD =,9BD =,4CD =,那么BAC ∠是直角吗?证明你的结论.四、解答题(每小题8分,共32分)23.如图,三角形纸片ABC 中,90C ∠=︒,2AC BC ==,D 为BC 的中点,折叠三角形纸片使点A 与点D 重合,EF 为折痕,求AF 的长.24.如图,在ABC △中,AB AC =,点D 、E 分别在AB 、AC 上,BD CE =,BE 、CD 相交于点O .(1)求证:DBC ECB △≌△;(2)求证:OB OC =.25.如图,在ABC △中,AD 是高,E 、F 分别是AB 、AC 的中点.(1)求证:EF 垂直平分AD ;(2)若四边形AEDF 的周长为24,15AB =,求AC 的长.26.如图,在ABC △中,D 是BC 边上的一点,AB DB =,BE 平分ABC ∠,交AC 边于点E ,连接DE .(1)求证:ABE DBE △≌△;(2)若100A ∠=︒,50C ∠=︒,求AEB ∠的度数.五、解答题(12分)27.如图,四边形ABCD 中,AD BC ∥,点E 、F 分别在AD 、BC 上,AE CF =,过点A 、C 分别作EF 的垂线,垂足为G 、H .(1)求证:AGE CHF △≌△;(2)连接AC ,线段GH 与AC 是否互相平分?请说明理由.数学试卷参考答案与评分标准一、选择题(每小题4分)1.A 2.C 3.B 4.C 5.B 6.C 7.A 8.C二、填空题(每小题4分)9.36 10.12 11.2或3 12.180 13.45 14.34三、解答题19.∵DA DB =∴A ACD ∠=∠,同理B BCD ∠=∠又180A ACD B BCD ∠+∠+∠+∠=︒∴90ACD BCD ACB ∠+∠=∠=︒∴ABC △是直角三角形20.由70ECB ∠=︒得110ACB D ∠=︒=∠∵AB DE ∥∴CAB E ∠=∠又AB AE =∴()ABC EAD AAS △≌△.21.∵AB AC ⊥,AD AE ⊥.∴90BAE CAE ∠+∠=︒,90BAE BAD ∠+∠=︒.∴CAE BAD ∠=∠.又AB AC =,ABD ACE ∠=∠.∴()ABD ACE ASA △≌△.∴BD CE =.22.是直角.∵AD BC ⊥,∴90ADB ADC ∠=∠=︒∴222117AD BD AB +==,22252AD CD AC +==∵13BC BD CD =+=∴222169AB AC BC +==∴90BAC ∠=︒23.∵2BC =,D 为BC 的中点∴1CD =由题意,AF DF =∴2DF CF AC +==,2DF CF =-∴222DF CF CD =+,即22(2)1CF CF -=+ 解得34CF =. ∴54AF =. 24.(1)由AB AC =有DBC ECB ∠=∠又BD CE =,BC CB =∴()DBC ECB SAS △≌△(2)由DBC ECB △≌△∴DCB EBC ∠=∠,即OCB OBC ∠=∠∴OB OC =25.(1)在Rt ADB △中,E 为斜边AB 的中点∴ED EA =,同理FA FD =∴E 、F 在AD 的垂直平分线上,即EF 垂直平分AD(2)由15AB =,有7.5AE =,又四边形AEDF 的周长为24,有12AE AF +=, ∴ 4.5AF =,9AC =26.(1)证明:∵BE 平分ABC ∠,∴ABE DBE ∠=∠,又AB DB =,BE BE =,∴()ABE DBE SAS △≌△;(2)解:∵100A ∠=︒,50C ∠=︒,∴30ABC ∠=︒,∵BE 平分ABC ∠, ∴1152ABE DBE ABC ∠=∠=∠=︒, ∴1801801001565AEB A ABE ∠=-∠-∠=-︒-︒=︒︒︒.27.(1)由AD BC ∥,有DEF BFE ∠=∠又DEF AEG ∠=∠,BFE CFH ∠=∠∴AEG CFH ∠=∠又90AGE CHF ∠=∠=︒,AE CF =∴AGE CHF △≌△(2)线段GH 与AC 互相平分,设AC 与GH 交于点O , 由(1)AGE CHF △≌△,有AG CH =又AOG COH ∠=∠,90AGO CHO ∠=∠=︒∴AGO CHO △≌△∴OA OC =,OG OH =,即GH 与AC 互相平分。

江苏省南通市海安县八校联考八年级(上)期中数学试卷

江苏省南通市海安县八校联考八年级(上)期中数学试卷

八年级(上)期中数学试卷题号一二三四总分得分一、选择题(本大题共10小题,共20.0分)1.如图,下列图案是几种名车的标志,其中是轴对称图形的图案共有( )A. 1个B. 2个C. 3个D. 4个2.下列运算中正确的是( )A. (a2)3=a5B. a2⋅a3=a5C. a6÷a2=a3D. a5+a5=2a103.下列计算中可采用平方差公式的是( )A. (x+y)(x−z)B. (−x+2y)(x+2y)C. (−3x−y)(3x+y)D. (2a+3b)(2b−3a)4.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于( )A. 90∘B. 135∘C. 270∘D. 315∘5.点(-2,5)关于x轴对称的点的坐标是( )A. (2,−5)B. (−2,−5)C. (2,5)D. (5,−2)6.若a+b=10,ab=11,则代数式a2﹣ab+b2的值是( )A. 89B. −89C. 67D. −677.已知等腰三角形两边a,b,满足a2+b2-4a-10b+29=0,则此等腰三角形的周长为( )A. 9B. 10C. 12D. 9或128.如图,E是等边△ABC中AC边上的点,∠1=∠2,BE=CD,则△ADE的形状是( )A. 等腰三角形B. 等边三角形C. 不等边三角形D. 不能确定形状9.如果等腰三角形的一腰上的高与另一腰的夹角为30°,则该等腰三角形顶角的度数是( )A. 60∘B. 120∘C. 60∘或120∘D. 90∘10.如图,D为∠BAC的外角平分线上一点并且满足BD=CD,∠DBC=∠DCB,过D作DE⊥AC于E,DF⊥AB交BA的延长线于F,则下列结论:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共8小题,共24.0分)11.如图,点B,E,C,F在同一条直线上,AB=DE,∠B=∠DEF.要使△ABC≌△DEF,则需要再添加的一个条件是______.(写出一个即可)12.如果二次三项式x2+mx+25是一个完全平方式,则m=______.13.若a m=3,a n=2,则a m-2n的值为______.14.如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD的长为______.15.如图,在等腰中,AB=27,AB的垂直平分线交AB于点D,交AC于点E,若的周长为50,则底边BC的长为_________.16.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是______.17.如图,AB=12,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动______分钟后△CAP与△PQB全等.18.如图,边长为4的等边三角形ABC中,E是对称轴AD上的一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF,则在点E运动过程中,DF的最小值是______.三、计算题(本大题共2小题,共16.0分)19.计算(1)(-2x2y)3(3xy2)2-12x3y3(-5x5y4)(2)(-15x4y2+12x3y3-6x2y3)÷(-3x2y)(3)4(a-b)2-(2a+b)(-b+2a)(4)利用整式乘法公式计算:(a-b-3)(a-b+3).20.若(x2+px-13)(x2-3x+q)的积中不含x项与x3项,求p、q的值;四、解答题(本大题共6小题,共40.0分)21.已知:如图所示,(1)作出△ABC关于y轴对称的△A′B′C′,并写出△A′B′C′三个顶点的坐标.(2)在x轴上画出点P,使PA+PC最小.22.将4个数a,b,c,d排成2行、2列,两边各加一条竖直线记成abcd,定义abcd=ad-bc,上述记号就叫做2阶行列式.若x+11−x1−xx+1=8,求x的值.23.如图,A、C、F、B在同一直线上,AC=BF,AE=BD,且AE∥BD.求证:EF∥CD.24.如图,在△ABC中,AB=AC,AD=DE=EB,BC=BD,求∠A的度数.25.在一次数学课上,周老师在屏幕上出示了一个例题:在△ABC中,D,E分别是AB,AC上的一点,BE与CD交于点O,画出图形(如图),给出下列四个条件:①∠DBO=∠ECO;②∠BDO=∠CEO;③BD=CE;④OB=OC.(1)要求同学从这四个等式中选出两个作为已知条件,可判定△ABC是等腰三角形.请你用序号在横线上写出所有情形.答:______;(4分)(2)选择第(1)题中的一种情形,说明是△ABC等腰三角形的理由,并写出解题过程.解:我选择______.(6分)26.如图,等边△ABC的边长为6,点P从点B出发沿射线BA移动,同时,点Q从点C出发沿线段AC的延长线移动,已知点P、Q移动的速度相同,PQ与直线BC相交于点D.(1)如图①,当点P为AB的中点时,求CD的长;(2)如图②,过点P作直线BC的垂线,垂足为E,当点P、Q在移动的过程中,线段BE、DE、CD中是否存在长度保持不变的线段?请说明理由.答案和解析1.【答案】C【解析】解:根据轴对称图形的概念可得轴对称图形有第二、三、四个图形是轴对称图形,故选:C.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴求解即可.此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.【答案】B【解析】解:A、(a2)3=a6,故本选项错误;B、a2•a3=a5,故本选项正确;C、a6÷a2=a4,故本选项错误;D、a5+a5=2a5,故本选项错误.故选:B.利用同底数幂的除法与乘方,幂的乘方与积的乘方及合并同类项的法则求解即可.本题主要考查了同底数幂的除法与乘方,幂的乘方与积的乘方及合并同类项,解题的关键是熟记同底数幂的除法与乘方,幂的乘方与积的乘方及合并同类项的法则.3.【答案】B【解析】解:可采用平方差公式计算的为(-x+2y)(x+2y)=4y2-x2.故选:B.利用平方差公式的结构特征判断即可得到结果.此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.4.【答案】C【解析】解:∵四边形的内角和为360°,直角三角形中两个锐角和为90°∴∠1+∠2=360°-(∠A+∠B)=360°-90°=270°.故选:C.根据四边形内角和为360°可得∠1+∠2+∠A+∠B=360°,再根据直角三角形的性质可得∠A+∠B=90°,进而可得∠1+∠2的和.考查了多边形内角与外角,三角形内角和定理,本题是一道根据四边形内角和为360°和直角三角形的性质求解的综合题,有利于锻炼学生综合运用所学知识的能力.5.【答案】B【解析】解:点(-2,5)关于x轴对称的点的坐标是(-2,-5).故选:B.关于x轴对称点的横坐标相同,纵坐标互为相反数.本题主要考查的是关于坐标轴对称的点的坐标特点,明确关于x轴对称点的横坐标相同,纵坐标互为相反数;关于y轴对称点的纵坐标相同,横坐标互为相反数是解题的关键.6.【答案】C【解析】【分析】此题考查了完全平方公式的运用,熟练掌握完全平方公式的结构特征是解本题的关键.把a+b=10两边平方,利用完全平方公式化简,将ab=11代入求出a2+b2的值,代入原式计算即可得到结果.【解答】解:把a+b=10两边平方得:(a+b)2=a2+b2+2ab=100,把ab=11代入得:a2+b2=78,∴原式=78-11=67,故选:C.7.【答案】C【解析】解:∵a2+b2-4a-10b+29=0,∴(a2-4a+4)+(b2-10b+25)=0,∴(a-2)2+(b-5)2=0,∴a=2,b=5,∴当腰为5时,等腰三角形的周长为5+5+2=12,当腰为2时,2+2<5,构不成三角形.故选:C.先运用分组分解法进行因式分解,求出a,b的值,再代入求值即可.此题考查了配方法的应用,三角形三边关系及等腰三角形的性质,解题的关键熟练掌握完全平方公式.8.【答案】B【解析】【分析】此题主要考查学生对等边三角形的判定及三角形的全等等知识点的掌握.先证得△ABE≌△ACD,可得AE=AD,∠BAE=∠CAD=60°,即可证明△ADE是等边三角形.【解答】解:∵△ABC为等边三角形,∴AB=AC,∵∠1=∠2,BE=CD,∴△ABE≌△ACD,∴AE=AD,∠BAE=∠CAD=60°,∴△ADE是等边三角形.故选B.9.【答案】C【解析】解:当高在内部时,顶角=90°-30°=60°;当高在外部时,得到顶角的外角=90°-30°=60°,则顶角=120°.故选:C.由于已知条件没有明确这条高在三角形内部还是外部两种情况进行分析.本题考查等腰三角形的性质,三角形内角和定理及三角形外角性质的运用;分类讨论的应用是正确解答本题的关键.10.【答案】D【解析】【分析】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,熟记性质并准确识图判断出全等的三角形是解题的关键,难点在于需要二次证明三角形全等.根据角平分线上的点到角的两边距离相等可得DE=DF,再利用“HL”证明Rt△CDE和Rt△BDF全等,根据全等三角形对应边相等可得CE=AF,利用“HL”证明Rt△ADE和Rt△ADF全等,根据全等三角形对应边相等可得AE=AF,然后求出CE=AB+AE;根据全等三角形对应角相等可得∠DBF=∠DCE,利用“8字型”证明∠BDC=∠BAC;∠DAE=∠CBD,再根据全等三角形对应角相等可得∠DAE=∠DAF,然后求出∠DAF=∠CBD.【解答解:∵AD平分∠CAF,DE⊥AC,DF⊥AB,∴DE=DF,在Rt△CDE和Rt△BDF中,,∴Rt△CDE≌Rt△BDF(HL),故①正确;∴CE=AF,在Rt△ADE和Rt△ADF中,,∴Rt△ADE≌Rt△ADF(HL),∴AE=AF,∴CE=AB+AF=AB+AE,故②正确;∵Rt△CDE≌Rt△BDF,∴∠DBF=∠DCE,∵∠AOB=∠COD,(设AC交BD于O),∴∠BDC=∠BAC,故③正确;∠DAE=∠CBD,∵Rt△ADE≌Rt△ADF,∴∠DAE=∠DAF,∴∠DAF=∠CBD,故④正确;综上所述,正确的结论有①②③④共4个.故选D.11.【答案】∠A=∠D(或BC=EF或∠ACB=∠F)【解析】解:可添加条件∠A=∠D,理由:∵在△ABC和△DEF中,,∴△ABC≌△DEF(ASA);可添加条件BC=EF,理由:∵在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);可添加条件∠ACB=∠F,理由:∵在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);故答案为:∠A=∠D(或BC=EF或∠ACB=∠F).若添加条件∠A=∠D,可利用ASA定理证明△ABC≌△DEF.若添加条件BC=EF,则利用SAS定理证明△ABC≌△DEF.若添加条件∠ACB=∠F,则利用AAS定理证明△ABC≌△DEF.本题考查三角形全等的判定方法,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.12.【答案】±10【解析】解:∵x2+mx+25=x2+mx+52,∴mx=±2×5×x,解得m=±10.故答案为:±10.先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m的值.本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.13.【答案】34【解析】解:a m-2n=3÷4=.故答案为:.根据同底数幂的除法法则和幂的乘方的运算法则求解.本题考查了同底数幂的除法和幂的乘方的知识,掌握运算法则是解答本题的关键.14.【答案】2【解析】解:过P作PE⊥OB,交OB与点E,∵∠AOP=∠BOP,PD⊥OA,PE⊥OB,∴PD=PE,∵PC∥OA,∴∠CPO=∠POD,又∠AOP=∠BOP=15°,∴∠CPO=∠BOP=15°,又∠ECP为△OCP的外角,∴∠ECP=∠COP+∠CPO=30°,在直角三角形CEP中,∠ECP=30°,PC=4,∴PE=PC=2,则PD=PE=2.故答案为:2.过P作PE垂直与OB,由∠AOP=∠BOP,PD垂直于OA,利用角平分线定理得到PE=PD,由PC与OA平行,根据两直线平行得到一对内错角相等,又OP为角平分线得到一对角相等,等量代换可得∠COP=∠CPO,又∠ECP为三角形COP的外角,利用三角形外角的性质求出∠ECP=30°,在直角三角形ECP中,由30°角所对的直角边等于斜边的一半,由斜边PC的长求出PE的长,即为PD的长.此题考查了含30°角直角三角形的性质,角平分线定理,平行线的性质,以及三角形的外角性质,熟练掌握性质及定理是解本题的关键.同时注意辅助线的作法.15.【答案】23【解析】解:∵DE垂直且平分AB,∴BE=AE.由BE+CE=AC=AB=27,∴BC=50-27=23.要求底边BC的长,现有△BCE的周长为50,只要求出BE+AE即可,因为DE 垂直且平分AB,故BE=AE.可推出AC=BE+EC=AB.易求出BC的长.本题考查的知识点为线段垂直平分线的性质以及等腰三角形的性质;对线段进行有效的等量代换是解答本题的关键.16.【答案】42【解析】解:过O作OE⊥AB于E,OF⊥AC于F,连接OA,∵OB,OC分别平分∠ABC和∠ACB,OD⊥BC,∴OE=OD,OD=OF,即OE=OF=OD=4,∴△ABC的面积是:S△AOB+S△AOC+S△OBC=×AB×OE+×AC×OF+×BC×OD=×4×(AB+AC+BC)=×4×21=42,故答案为:42.过O作OE⊥AB于E,OF⊥AC于F,连接OA,根据角平分线性质求出OE=OD=OF=4,根据△ABC的面积等于△ACO的面积、△BCO的面积、△ABO 的面积的和,即可求出答案.本题考查了角平分线性质,三角形的面积,主要考查学生运用定理进行推理的能力.17.【答案】4【解析】解:∵CA⊥AB于A,DB⊥AB于B,∴∠A=∠B=90°,设运动x分钟后△CAP与△PQB全等;则BP=xm,BQ=2xm,则AP=(12-x)m,分两种情况:①若BP=AC,则x=4,AP=12-4=8,BQ=8,AP=BQ,∴△CAP≌△PBQ;②若BP=AP,则12-x=x,解得:x=6,BQ=12≠AC,此时△CAP与△PQB不全等;综上所述:运动4分钟后△CAP与△PQB全等;故答案为:4.设运动x分钟后△CAP与△PQB全等;则BP=xm,BQ=2xm,则AP=(12-x)m,分两种情况:①若BP=AC,则x=4,此时AP=BQ,△CAP≌△PBQ;②若BP=AP,则12-x=x,得出x=6,BQ=12≠AC,即可得出结果.本题考查了直角三角形全等的判定方法、解方程等知识;本题难度适中,需要进行分类讨论.18.【答案】1【解析】解:如图,取AC的中点G,连接EG,∵旋转角为60°,∴∠ECD+∠DCF=60°,又∵∠ECD+∠GCE=∠ACB=60°,∴∠DCF=∠GCE,∵AD是等边△ABC的对称轴,∴CD=BC,∴CD=CG,又∵CE旋转到CF,∴CE=CF,在△DCF和△GCE中,,∴△DCF≌△GCE(SAS),∴DF=EG,根据垂线段最短,EG⊥AD时,EG最短,即DF最短,此时∵∠CAD=×60°=30°,AG=AC=×4=2,∴EG=AG=×2=1,∴DF=1.故答案为:1.取AC的中点G,连接EG,根据等边三角形的性质可得CD=CG,再求出∠DCF=∠GCE,根据旋转的性质可得CE=CF,然后利用“边角边”证明△DCF和△GCE全等,再根据全等三角形对应边相等可得DF=EG,然后根据垂线段最短可得EG⊥AD时最短,再根据∠CAD=30°求解即可.本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.19.【答案】(1)(-2x2y)3(3xy2)2-12x3y3(-5x5y4)=-8x6y3•9x2y4-12x3y3•(-5x5y4)=-72x8y7+60x8y7=-12x8y7;(2)(-15x4y2+12x3y3-6x2y3)÷(-3x2y)=5x2y-4xy2+2y2;(3)4(a-b)2-(2a+b)(-b+2a)=4(a2-2ab+b2)-(4a2-b2)=4a2-8ab+4b2-4a2+b2=5b2-8ab;(4)(a-b-3)(a-b+3)=(a-b)2-32=a2+b2-2ab-9.【解析】(1)先算乘方,再算乘法,最后合并同类项即可;(2)根据多项式除以单项式法则求出即可;(3)先算乘法,再合并同类项即可;(4)先根据平方差公式进行计算,再根据完全平方公式求出即可.本题考查了整式的混合运算,能灵活运用整式的运算法则进行化简是解此题的关键.20.【答案】解:(x2+px-13)(x2-3x+q)=x4+(p-3)x3+(q-3p-13)x2+(qp+1)x+q,∵积中不含x项与x3项,∴p-3=0,qp+1=0,∴p=3,q=-13.【解析】利用多项式乘多项式法则及合并同类项法则化简式子,找出x项与x3令其系数等于0求解.本题主要考查了多项式乘多项式,解题的关键是熟练掌握多项式乘多项式法则及合并同类项法则.21.【答案】解:(1)分别作A、B、C的对称点,A′、B′、C′,由三点的位置可知:A′(-1,2),B′(-3,1),C′(-4,3)(2)先找出C点关于x轴对称的点C″(4,-3),连接C″A交x轴于点P,(或找出A点关于x轴对称的点A″(1,-2),连接A″C交x轴于点P)则P点即为所求点.【解析】(1)根据轴对称的性质分别作出A、B、C三点关于y轴的对称点A′、B′、C′,分别连接各点即可;(2)先找出C先找出C点关于x轴对称的点C″(4,-3),连接C″A交x轴于点P,则点p即为所求点.本题考查的是最短路线问题及轴对称的性质,解答此题的关键是熟知两点之间线段最短的知识.22.【答案】解:根据题意化简得:(x+1)2-(1-x)2=8,整理得:x2+2x+1-(1-2x+x2)-8=0,即4x=8,解得:x=2.【解析】首先根据2阶行列式的运算法则列出关于x的方程,然后利用多项式乘多项式的法则展开得到关于x的一元一次方程最后这个一元一次方程即可.本题主要考查的是多项式乘多项式,解一元一次方程,根据二阶行列式的运算法则列出方程是解题的关键.23.【答案】证明:∵AE∥BD,∴∠A=∠B,∵AC=BF,∴AC+CF=BF+CF,∴BC=AF,在△EAF和△DBC中∵AE=BD∠A=∠BBC=AF,∴△EAF≌△DBC(SAS),∴∠EFA=∠BCD,∴EF∥CD.【解析】根据平行线性质得出∠A=∠B,求出BC=AF,根据SAS证△EAF≌△DBC,推出∠EFA=∠BCD,根据平行线的判定推出即可.本题考查了全等三角形的性质和判定,平行线的性质和判定,主要考查学生的推理能力,题目比较典型,难度适中.24.【答案】解:∵DE=EB∴设∠BDE=∠ABD=x,∴∠AED=∠BDE+∠ABD=2x,∵AD=DE,∴∠AED=∠A=2x,∴∠BDC=∠A+∠ABD=3x,∵BD=BC,∴∠C=∠BDC=3x,∵AB=AC,∴∠ABC=∠C=3x,在△ABC中,3x+3x+2x=180°,解得x=22.5°,∴∠A=2x=22.5°×2=45°.【解析】根据同一个三角形中等边对等角的性质,设∠ABD=x,结合三角形外角的性质,则可用x的代数式表示∠A、∠ABC、∠C,再在△ABC中,运用三角形的内角和为180°,可求∠A的度数.本题主要考查了等腰三角形的性质,解题时注意:求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件.25.【答案】①③,①④,②③和②④①④【解析】解:(1)①③,①④,②③和②④;(2)以①④为条件,理由:∵OB=OC,∴∠OBC=∠OCB.又∵∠DBO=∠ECO,∴∠DBO+∠OBC=∠ECO+∠OCB,即∠ABC=∠ACB,∴AB=AC,∴△ABC是等腰三角形.故答案为:①③,①④,②③和②④;①④.(1)要证△ABC是等腰三角形,就要证∠ABC=∠ACB,根据已知条件即可找到证明∠ABC=∠ACB的组合;(2)可利用△DOB与△EOC全等,得出OC=OB,再得出∠OCB与∠OBC相等,就能证明∠ABC与∠ACB相等.此题主要考查利用等角对等边来判定等腰三角形;题目对学生的要求比较高,利用等量加等量和相等是正确解答本题的关键.26.【答案】解:(1)如图,过P点作PF∥AC交BC于F,∵点P和点Q同时出发,且速度相同,∴BP=CQ,∵PF∥AQ,∴∠PFB=∠ACB=60°,∠DPF=∠CQD,又∵AB=AC,∴∠B=∠ACB,∴∠B=∠PFB,∴BP=PF,∴PF=CQ,又∠PDF=∠QDC,∴△PFD≌△QCD,且△PBF是等边三角形∴DF=CD=12CF,BF=PB∵P是AB的中点,即PB=12AB=3,∴BF=3∴CD=12CF=32;(2)分两种情况讨论,得ED为定值,是不变的线段如图,如果点P在线段AB上,过点P作PF∥AC交BC于F,由(1)证得△PFD≌△QCD,且△PBF是等边三角形∴FD=12FC,EF=12BF∴ED=FD+EF=12FC+12BF=12BC=3∴ED为定值同理,如图,若P在BA的延长线上,作PM∥AC的延长线于M,∴∠PMC=∠ACB,又∵AB=AC,∴∠B=∠ACB=60°,∴∠B=∠PMC=60°,∴PM=PB,且PE⊥BC∴BE=EM=12BM,△PBM是等边三角形∴PM=PB=CQ∵PM∥AC∴∠PMB=∠QCM,∠MPD=∠CQD且PM=CQ∴△PMD≌△QCD(ASA),∴CD=DM=12CM,∴DE=EM-DM=12BM-12CM=12(BM-CM)=12BC=3综上所述,线段ED的长度保持不变.【解析】(1)过P点作PF∥AC交BC于F,由题意可证△BPF是等边三角形,△PFD≌△QCD,即可求CD的长;(2)分点P在线段AB上,点P在线段BA的延长线上两种情况讨论,利用全等三角形的性质和判定可得DE的长度不变.本题考查了全等三角形的性质和判定,等边三角形的性质,添加恰当的辅助线构造全等三角形是本题的关键.。

2021-2022学年江苏省南通市海安市八校联考八年级(上)期中数学试卷(附详解)

2021-2022学年江苏省南通市海安市八校联考八年级(上)期中数学试卷(附详解)

2021-2022学年江苏省南通市海安市八校联考八年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.下列图形中,不是轴对称图形的是()A. ①⑤B. ②⑤C. ④⑤D. ①②2.下列运算中正确的是()A. (x3)2=x5B. 2x2+3x2=5x4C. (−3x3y)2=9x6y2D. 6x3÷(−3x2)=2x3.下列各组能使x2−4x+m=(x−2)(x+n)成立的是()A. m=−4,n=−2B. m=4,n=−2C. m=−4,n=2D. m=4,n=24.如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A. 1组B. 2组C. 3组D. 4组5.已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是()A. 作∠APB的平分线PC交AB于点CB. 过点P作PC⊥AB于点C且AC=BCC. 取AB中点C,连接PCD. 过点P作PC⊥AB,垂足为C6.如图,∠DAE=∠ADE=15°,DE//AB,DF⊥AB,若AE=8,则DF等于()A. 5B. 4C. 3D. 27.关于等腰三角形,以下说法正确的是()A. 有一个角为40°的等腰三角形一定是锐角三角形B. 等腰三角形两边上的中线一定相等C. 两个等腰三角形中,若一腰以及该腰上的高对应相等,则这两个等腰三角形全等D. 等腰三角形两底角的平分线的交点到三边距离相等8.如图,甲、乙、丙、丁四位同学给出了四种表示最大长方形面积的方法:①(2a+b)(m+n);②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2am+2an+bm+bn.你认为其中正确的个数有()A. 1个B. 2个C. 3个D. 4个9.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交MN的长为半径画弧,两弧交于AB、AC于点M和N,再分别以M、N为圆心,大于12点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.A. 1B. 2C. 3D. 410.如图,在△ABC中,∠BAC=45°,CD⊥AB于点D,AE⊥BC于点E,AE与CD交于点F,连接BF,DE,下列结论中:①AF=BC;②∠DEB=45°,③AE==1,正确的CE+2BD,④若∠CAE=30°,则AF+BFAC有()A. ①②③B. ①②④C. ①③④D. ①②③④二、填空题(本大题共8小题,共30.0分)11.(3.14−π)0=______.12.已知点A(a+2b,1),B(−2,b),若点A,B关于x轴对称,则ab=______.13.当k=________时,多项式x−1与2−kx的乘积不含一次项.14.已知2m=a,32n=b,m,n为正整数,则24m+10n=______.15.等腰三角形两腰上的高所在直线的夹角是70°,则它的顶角的度数是______.16.如图示,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,AD=8,DE=5,则△CDB的面积等于______.17.如图,点I为△ABC的三个内角的角平分线的交点,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为______.18.如图,在平面直角坐标系中,等边三角形ABC的顶点B、C的坐标分别为(2,0),(6,0),点N从A点出发沿AC向C点运动,连接ON交AB于点M.当边AB恰平分线段ON时,则AN=______.AM三、计算题(本大题共1小题,共12.0分)19.计算:(1)(3x2y)3⋅(−2xy3z)÷(−9x7y5);(2)(21x4y3−35x3y2+7x2y2)÷(−7x2y);(3)[(x+y)2−y(2x+y)−8x]÷2x.四、解答题(本大题共7小题,共78.0分)20.(1)解不等式:(3x+4)(3x−4)<9(x−1)(x+2);(2)已知一个多项式除以单项式3a所得的商式为2a2+3a−4,余式为5a+9,求这个多项式.21.如图,AC⊥CB,DB⊥CB,垂足分别为C,B,AB=DC.求证:∠ABD=∠ACD.22.如图,在四边形ABCD中,AD//BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.(1)求证:△ADE≌△BFE;(2)连接EG,判断EG与DF的位置关系并说明理由.23.定义:到一个三角形三个顶点的距离相等的点叫做该三角形的外心.(1)如图,小海同学在作△ABC的外心时,只作出两边BC,AC的垂直平分线得到交点O,就认定点O是△ABC的外心,你觉得有道理吗?为什么?(2)在(1)的条件下,试探索∠BOC与∠BAC之间的数量关系.24.如图,Rt△ABC中,AB=AC,∠BAC=90°,O为BC中点.(1)若点M、N分别在线段AB、AC上移动,且在移动过程中保持AN=BM,试判断△OMN的形状,并证明你的结论.(2)若点M、N分别在线段BA、AC的延长线上移动,且在移动过程中保持AN=BM,则(1)中的结论还成立吗?若成立,证明你的结论;若不成立,请说明理由.25.在△ABC中,AB=AC,将线段BC绕点B逆时针旋转60°得到线段BD.(1)如图1,若∠BAC=40°,则∠ABD=______;(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;(3)在(2)条件下,连接DE,若∠DEC=45°,设∠BAC=α(0°<α<60°),求α的值.26.如图,在△ABC中,AB=AC,∠BAC=90°,点D是边BC上的动点,连接AD,点C关于直线AD的对称点为点E,射线BE与射线AD交于点F.(1)在图中,依题意补全图形,并求证:∠ABF=∠AEB;(2)记∠DAC=α(α<45°),求∠AFB的大小;(3)若AB=BD,猜想BE和AD的数量关系,并证明.答案和解析1.【答案】A【解析】解:①不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.符合题意;②有一条对称轴,是轴对称图形,不符合题意;③有三条对称轴,是轴对称图形,不符合题意;④有一条对称轴,是轴对称图形,不符合题意;⑤不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.符合题意.故轴对称图形有:①⑤.故选:A.根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此作答.本题考查了轴对称与轴对称图形的概念.轴对称的关键是寻找对称轴,两边图象折叠后可重合.2.【答案】C【解析】解:A.(x3)2=x6,故此选项不合题意;B.2x2+3x2=5x2,故此选项不合题意;C.(−3x3y)2=9x6y2,故此选项符合题意;D.6x3÷(−3x2)=−2x,故此选项不合题意;故选:C.直接利用幂的乘方运算法则以及合并同类项法则、积的乘方运算法则、整式的除法运算法则分别化简,进而判断即可.此题主要考查了幂的乘方运算以及合并同类项、积的乘方运算、整式的除法运算,正确掌握相关运算法则是解题关键.3.【答案】B【解析】解:由于(x−2)(x+n)=x2+(n−2)x−2n=x2−4x+m,则n−2=−4,m=−2n;解得n=−2,m=4.故选:B.此题可以先将(x−2)(x+n)展开再与x2−4x+m对照,根据对应项的系数相等列式求解即可得到m、n的值.本题考查了多项式的乘法,只需使等式两边对应项相等即可,较为简单.4.【答案】C【解析】解:第①组满足SSS,能证明△ABC≌△DEF.第②组满足SAS,能证明△ABC≌△DEF.第③组满足ASA,能证明△ABC≌△DEF.第④组只是SSA,不能证明△ABC≌△DEF.所以有3组能证明△ABC≌△DEF.故符合条件的有3组.故选:C.要使△ABC≌△DEF的条件必须满足SSS、SAS、ASA、AAS,可据此进行判断.本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.5.【答案】B【解析】【分析】利用作图方法即判断三角形全等的方法判断即可得出结论.此题主要考查了基本作图,全等三角形的判定,线段垂直平分线的判定,熟练掌握全等三角形的判断方法是解本题的关键.【解答】解:A、利用SAS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;C、利用SSS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB 的垂直平分线上,符合题意;D、利用HL判断出△PCA≌△PCB,∴CA=CB,∴点P在线段AB的垂直平分线上,符合题意,B、过线段外一点作已知线段的垂线,不能保证也平分此条线段,不符合题意;故选:B.6.【答案】B【解析】【分析】本题主要考查三角形的外角性质,直角三角形30°角所对的直角边等于斜边的一半的性质,平行线的性质和角平分线上的点到角的两边的距离相等的性质,熟练掌握性质是解题的关键.过D作DG⊥AC于G,根据三角形的一个外角等于和它不相邻的两个内角的和求出∠DEG=30°,再根据直角三角形30°角所对的直角边等于斜边的一半求出DG的长度是4,又DE//AB,所以∠BAD=∠ADE,所以∠BAD=∠CAD,所以AD是∠BAC的平分线,根据角平分线上的点到角的两边的距离相等,得DF=DG.【解答】解:如图,过D作DG⊥AC于G,∵∠DAE=∠ADE=15°,∴∠DEG=∠DAE+∠ADE=15°+15°=30°,DE=AE=8,则DG=12DE=12×8=4,∵DE//AB,∴∠BAD=∠ADE,∴∠BAD=∠CAD,∵DF⊥AB,DG⊥AC,∴DF=DG=4.故选:B.7.【答案】D【解析】解:A:如果40°的角是底角,则顶角等于100°,故三角形是钝角三角形,此选项错误;B、当两条中线为两腰上的中线时,可知两条中线相等,当两条中线一条为腰上的中线,一条为底边上的中线时,则这两条中线不一定相等,∴等腰三角形的两条中线不一定相等,此选项错误;C、若两个等腰三角形的腰相等,腰上的高也相等.则这两个等腰三角形不一定全等,故此选项错误;D、等腰三角形两底角的平分线的交点到三边距离相等,故此选项正确;故选:D.根据全等三角形的判定定理,等腰三角形的性质,三角形的内角和判断即可.本题考查了全等三角形的判定,等腰三角形的性质,三角形的内角和,熟练掌握各知识点是解题的关键.8.【答案】D【解析】【分析】本题考查了多项式乘多项式:多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.利用矩形的面积公式得到最大长方形面积为(2a+b)(m+n),然后利用多项式乘多项式对四种表示方法表示方法进行判断.【解答】解:最大长方形面积为(2a+b)(m+n)=2a(m+n)+b(m+n)=m(2a+b)+n(2a+b)=2am+2an+bm+bn.故选D.9.【答案】D【解析】【分析】本题考查了角平分线的性质、线段垂直平分线的性质以及作图−基本作图.解题时,需要熟悉等腰三角形的判定与性质.①根据作图的过程可以判定AD是∠BAC的角平分线;②利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC的度数;③利用等角对等边可以证得△ADB的等腰三角形,由等腰三角形的“三线合一”的性质可以证明点D在AB的中垂线上;④利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.【解答】解:①根据作图的过程可知,AD是∠BAC的平分线.故①正确;②如图,∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°.又∵AD是∠BAC的平分线,∴∠1=∠2=1∠CAB=30°,2∴∠3=90°−∠2=60°,即∠ADC=60°.故②正确;③∵∠1=∠B=30°,∴AD=BD,∴点D在AB的中垂线上.故③正确;④∵如图,在直角△ACD中,∠2=30°,∴CD=1AD,2∴BC=CD+BD=12AD+AD=32AD,S△DAC=12AC⋅CD=14AC⋅AD.∴S△ABC=12AC⋅BC=12AC⋅32AD=34AC⋅AD,∴S△DAC:S△ABC=14AC⋅AD:34AC⋅AD=1:3.故④正确.综上所述,正确的结论是:①②③④,共有4个.故选:D.10.【答案】B【解析】解:∵AE⊥BC,∴∠AEC=∠ADC=∠CDB=90°,∵∠AFD=∠CFE,∴∠DAF=∠DCB,在△ADF和△CDB中,{∠DAF=∠DCB AD=DC∠ADF=∠CDB,∴△ADF≌△CDB(ASA),∵AF=BC,DF=DB,故①正确,∴∠DFB=∠DBF=45°,取BF的中点O,连接OD、OE.∵∠BDF=∠BEF=90°,∴OE=OF=OB=OD,∴E、F、D、B四点共圆,∴∠DEB=∠DFB=45°,故②正确,如图1中,作DM⊥AE于M,DN⊥BC于N,易证△DMF≌△DNB,四边形DMEN是正方形,∴MF=BN,EM=EN,∴EF+EB=EM−FM+EN+NB=2EM=2DN,∵AE−CE=BC+EF−EC=EF+BE=2DN<2BD,∴AE−CE<2BD,即AE<EC+2BD,故③错误,如图2中,延长FE到H,使得FH=FB.连接HC、BH.∵∠CAE=30°,∠CAD=45°,∠ADF=90°,∴∠DAF=15°,∠AFD=75°,∵∠DFB=45°,∴∠AFB=120°,∴∠BFH=60°,∵FH=BF,∴△BFH是等边三角形,∴BF=BH,∵BC⊥FH,∴FE=EH,∴CF=CH,∴∠CFH=∠CHF=∠AFD=75°,∴∠ACH=75°,∴∠ACH=∠AHC=75°,∴AC=AH,∵AF+FB=AF+FH=AH,∴AF+BF=AC,=1,故④正确,∴AF+BFAC故选:B.①②只要证明△ADF≌△CDB即可解决问题.③如图1中,作DM⊥AE于M,DN⊥BC于N,易证△DMF≌△DNB,四边形DMEN是正方形,想办法证明AE−CE=BC+EF−EC=EF+BE=2DN<2BD,即可.④如图2中,延长FE到H,使得FH=FB.连接HC、BH.想办法证明△BFH是等边三角形,AC=AH即可解决问题.本题属于几何综合题,考查全等三角形的判定和性质、等腰直角三角形的判定和性质、等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造特殊三角形解决问题,属于中考选择题中的压轴题.11.【答案】1【解析】解:(3.14−π)0=1.故答案为:1.根据任何非0数的0次幂等于1解答.本题主要考查了零指数幂,任何非0数的0次幂等于1.12.【答案】0【解析】解:∵点A(a +2b,1),B(−2,b),点A ,B 关于x 轴对称,∴{a +2b =−2b =−1, 解得:{a =0b =−1, 则ab =0.故答案为:0.根据关于x 轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数,得出关于a ,b 的方程组,进而得出答案.此题主要考查了关于x 轴对称点的性质,正确记忆横纵坐标的符号关系是解题关键.13.【答案】−2【解析】【分析】本题主要考查多项式与多项式的乘法,运算法则需要熟练掌握,不含某一项就让这一项的系数等于0是解题的关键.先根据多项式的乘法法则展开,再根据题意,一次项的系数等于0列式求解即可.【解答】解:(x −1)(2−kx)=−kx 2+(2+k)x −2,∵不含一次项,∴2+k =0,解得k =−2.故答案为−2.14.【答案】a 4b 2【解析】解:∵2m=a,32n=b,∴25n=b,∴24m+10n=(2m)4⋅210n=(2m)4⋅(25n)2=a4b2.故答案为:a4b2.对已知条件进行整理,再把所求的式子进行整理,代入相应的值运算即可.本题主要考查同底数幂的乘法,幂的乘方,解答的关键是对相应的法则的掌握与应用.15.【答案】70°或110°【解析】解:①如图,当∠BAC是钝角时,由题意:AB=AC,∠AEH=∠ADH=90°,∠EHD=70°,∴∠BAC=∠EAD=360°−90°−90°−70°=110°.②当∠A是锐角时,由题意:AB=AC,∠CDA=∠BEA=90°,∠CHE=70°,∴∠DHE=110°,∴∠A=360°−90°−90°−110°=70°,故答案为110°或70°.分两种情形画出图形分别求解即可解决问题.本题考查等腰三角形的性质,四边形内角和定理等知识,解题的关键是用分类讨论的思想思考问题,属于中考常考题型.16.【答案】92【解析】解:∵∠ACB=90°,∴∠BCE+∠ECA=90°,∵AD⊥CE于D,∴∠CAD+∠ECA=90°,∴∠CAD=∠BCE.又∠ADC=∠CEB=90°,AC=BC,∴△ACD≌△CBE,∴BE=CD,CE=AD=8,∴BE=CD=CE−DE=8−5=3,∴S△CDB =12CD⋅BE=12×3×3=92.故答案为:92.根据AAS可以证明△ACD≌△CBE,则BE=CD,CE=AD,从而求解.本题考查等腰直角三角形的性质、全等三角形的判定和性质、三角形的面积等知识,解题的关键是正确寻找全等三角形解决问题.17.【答案】4【解析】解:连接AI、BI,∵点I为△ABC的内心,∴AI平分∠CAB,∴∠CAI=∠BAI,由平移得:AC//DI,∴∠CAI=∠AID,∴∠BAI=∠AID,∴AD=DI,同理可得:BE=EI,∴△DIE的周长=DE+DI+EI=DE+AD+BE=AB=4,即图中阴影部分的周长为4,故答案为:4.连接AI、BI,因为三角形的内心是角平分线的交点,所以AI是∠CAB的平分线,由平行的性质和等角对等边可得:AD=DI,同理BE=EI,所以图中阴影部分的周长就是边AB 的长.本题考查了三角形内心的定义、平移的性质及角平分线的定义等知识,熟练掌握三角形的内心是角平分线的交点是关键.18.【答案】23【解析】解:∵B、C的坐标分别为(2,0),(6,0),∴OB=2,BC=4.如图,过点N作NE//AB交BC于点E.∵边AB恰平分线段ON时,∴点M是ON的中点,∴BM是△ONE的中位线,∴OB=BE=2,BM=12EN.∴BE=12BC,∴EN是△ABC的中位线,∴EN=12AB,AN=12AC,又∵△ABC是等边三角形,∴AB=AC,∴AM=34AB,AN=12AB,∴ANAM =12AB34AB=23.故答案是:23.如图,过点N作NE//AB交BC于点E.易证BM是△ONE的中位线,EN是△ABC的中位线.所以利用三角形中位线定理和等边三角形的性质得到:BM=14AB,AN=12AB,易求ANAM的值.本题考查了三角形中位线定理,等边三角形的性质以及坐标与图形性质.解题时,注意辅助线的作法.19.【答案】解:(1)原式=27x6y3⋅(−2xy3z)÷(−9x7y5)=27×2×19x6+1−7y3+3−5z=6yz;(2)原式=−21x4y3÷7x2y+35x3y2÷7x2y−7x2y2÷7x2y=−3x2y2+5xy−y;(3)原式=(x2+2xy+y2−2xy−y2−8x)÷2x=(x2−8x)÷2x=x−4.2【解析】(1)先利用积的乘方与幂的乘方计算乘方,然后再算乘除;(2)利用多项式除以单项式的运算法则进行计算;(3)先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.本题考查整式的混合运算,掌握幂的乘方(a m)n=a mn,积的乘方(ab)n=a n b n运算法则,多项式除以单项式的运算法则以及完全平方公式(a±b)2=a2±2ab+b2的结构是解题关键.20.【答案】解:(1)(3x+4)(3x−4)<9(x−1)(x+2),化简,得9x2−16<9x2+9x−18,整理得,9x>2,;解得x>29(2)由题意可得(2a2+3a−4)×3a+(5a+9)=6a3+9a2−12a+5a+9=6a3+9a2−7a+9,∴这个多项式是6a3+9a2−7a+9.【解析】(1)先利用平方差、多项式乘以多项式乘法的运算法则进行运算,然后整理后再求解即可;(2)根据除法商与余数的关系,可知所求多项式为(2a2+3a−4)×3a+(5a+9),再进步化简计算即可.本题考查一元一次不等式的解,多项式乘多项式运算,熟练掌握一元一次不等式的解法,多项式乘多项式运算方法是解题的关键.21.【答案】证明:∵AC⊥CB,DB⊥CB,∴△ACB与△DBC均为直角三角形,在Rt△ACB与Rt△DBC中,{AB=DCCB=BC,∴Rt△ACB≌Rt△DBC(HL),∴∠ABC=∠DCB,∴∠ACB−∠DCB=∠DBC−∠ABC,即:∠ABD=∠ACD.【解析】只需证明△ACB与△DBC全等即可.本题考查全等全角三角形的判定与性质,是基础题.注意本题是对两个直角三角形全等的判定,熟悉“HL”定理是解答的关键.22.【答案】(1)证明:∵AD//BC,∴∠ADE=∠BFE,∵E为AB的中点,∴AE=BE,在△ADE和△BFE中,{∠ADE=∠BFE ∠AED=∠BEF AE=BE,∴△ADE≌△BFE(AAS);(2)解:EG与DF的位置关系是EG垂直平分DF,理由为:连接EG,∵∠GDF=∠ADE,∠ADE=∠BFE,∴∠GDF=∠BFE,由(1)△ADE≌△BFE得:DE=FE,即GE为DF上的中线,∴GE垂直平分DF.【解析】(1)由AD与BC平行,利用两直线平行内错角相等,得到一对角相等,再由一对对顶角相等及E为AB中点得到一对边相等,利用AAS即可得出△ADE≌△BFE;(2)∠GDF=∠ADE,以及(1)得出的∠ADE=∠BFE,等量代换得到∠GDF=∠BFE,利用等角对等边得到GF=GD,即三角形GDF为等腰三角形,再由(1)得到DE=FE,即GE 为底边上的中线,利用三线合一即可得到GE与DF垂直.此题考查了全等三角形的判定与性质,平行线的性质,以及等腰三角形的判定与性质,熟练掌握判定与性质是解本题的关键.23.【答案】(1)解:定点O是△ABC的外心有道理.理由:连接OA、OB、OC,∵BC,AC的垂直平分线得到交点O∴OB=OC,OC=OA,∴OA=OB=OC,∴点O是△ABC的外心;(2)解:结论:∠BOC=2∠BAC.理由:连接AO并延长至M点,∵OA=OB=OC,∴∠OAB=∠OBA、∠OAC=∠OCA,则∠BOM=2∠BAO、∠COM=2∠CAO,∵∠BAC=∠BAO+∠CAO,∴∠BOC=∠BOM+∠COM=2∠BAO+2∠CAO=2(∠BAO+∠CAO)=2∠BAC.【解析】(1)利用线段的垂直平分线的性质证明即可;(2)利用等腰三角形的性质以及三角形的外角的性质解决问题即可.本题考查作图−复杂作图,线段的垂直平分线的性质,三角形的外接圆与外心等知识,解题的关键是掌握线段的垂直平分线的性质,属于中考常考题型.24.【答案】(1)解:结论:△OMN是等腰直角三角形,理由如下:连接AO,∵AC=AB,OC=OB,∠CAB=90°,∴OA=OC,∠BAO=∠C=45°,∠AOC=90°,∵AN=BM,∴CN=AM,在△AOM和△CON中,{OA=OC∠BAO=∠C AM=CN,∴△AOM≌△CON(SAS),∴OM=ON,∠MOA=∠NOC,∴∠MOA+∠AON=∠NOC+∠AOM,∴∠NOM=∠AOC=90°,∴△OMN是等腰直角三角形;(2)结论:成立,△OMN还是等腰直角三角形,理由如下:连接OA,由(1)可知,OA=OB,∠BAO=∠C=45°,∠AOC=90°,∴∠MAO=∠NCO=135°,∵AN=BM,∴CN=AM,在△AOM和△CON中,{OA=OC∠OAM=∠OCN AM=CN,∴△AOM≌△CON(SAS),∴OM=ON,∠MOA=∠NOC,∴∠MOA+∠MOC=∠NOC+∠MOC,∴∠NOM=∠AOC=90°,∴△OMN是等腰直角三角形.【解析】(1)由“SAS”可证△AOM≌△CON,可得OM=ON,∠MOA=∠NOC,可得结论;(2)由“SAS”可证△AOM≌△CON,可得OM=ON,∠MOA=∠NOC,可得结论.本题考查了全等三角形的性质和判定,等腰三角形的性质,等腰直角三角形性质等知识点的应用,灵活运用这些性质解决问题是解题的关键.25.【答案】10°【解析】解:(1)如图1中,∵AB=AC,∠A=40°,∴∠ABC=∠C=70°,∵∠DBC=60°,∴∠ABD=∠ABC−∠DBC=70°−60°=10°.故答案为10°.(2)结论:△ABE是等边三角形,理由:连接AD,CD,ED,∵线段BC绕B逆时针旋转60°得到线段BD,则BC=BD,∠DBC=60°,∵∠ABE=60°,∴∠ABD=∠EBC,且△BCD为等边三角形,在△ABD与△ACD中{AB=AC AD=AD BD=CD,∴△ABD≌△ACD(SSS),∴∠ADB=∠ADC=150°,∵∠BCE=150°,∴∠ADB=∠BCE,在△ABD和△EBC中,{∠ABD=∠EBC BD=BC∠ADB=∠BCE,∴△ABD≌△EBC(AAS),∴AB=BE,∵∠ABE=60°,∴△ABE是等边三角形.(3)如图2中,由(2)可知,∠BCD=60°,∵∠BCE=150°,∴∠DCE=90°,∵∠DEC=45°,∴∠CDE=∠DEC=45°,∴CD=CE=CB,∴∠CBE=∠CEB=15°,∵∠BAD=∠DAC=∠BEC,∴∠BAD=∠DAC=15°,∴∠BAC=30°.(1)根据等腰三角形的性质求出∠ABC,根据∠ABD=∠ABC−∠DBC计算即可.(2)于△ABD≌△ACD(SSS),推出∠ADB=∠ADC=150°,再证明△ABD≌△EBC(AAS),推出AB=BE即可解决问题.(3)只要证明△DEC是等腰直角三角形,即可推出BC=CE,∠CBE=∠CEB=15°本题考查了全等三角形的性质和判定,等边三角形的性质和判定,等腰直角三角形的判定和性质的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的性质是全等三角形的对应边相等,对应角相等,解题的关键是学会添加常用辅助线构造全等三角形解决问题,属于中考压轴题.26.【答案】解:(1)补全图形,如图1所示:连接CE,AE,由题意可知,∵点C关于直线AD的对称点为点E,AF垂直平分CE,∴AC=AE,∵AB=AC,∴AB=AE,∴∠ABF=∠AEB;(2)如图1,由题意可知,∠EAF=∠CAD=α,∴∠BAE=90°−2α.在△ABE中,∠BAE+∠ABF+∠AEB=180°,∴∠ABF=∠AEB=45°+α.∵∠AEB=∠EAF+∠AFB,∠EAF=α,∴∠AFB=45°;(3)结论:AD=BE.证明:如图2,连接DE,CE,AE,在△ABC中,AB=AC,∠ACB=∠ABC=45°,在△ABD中,AB=BD,∠BAD=∠BDA=67.5°,∴∠CAF=22.5°,由(2)可知,∠ABE=∠ABC+∠CBF=45°+α,∠ABC=45°,∴∠CBF=α=22.5°.∴∠CAF=∠CBF.∵点C关于直线AD的对称点为点E,∴ED=DC.∴∠EDF=∠FDC=∠BDA=67.5°.∴∠BDE=45°.∴∠BDE=∠ACB.∴△BED≌△ADC(ASA).∴AD=BE.【解析】(1)根据轴对称即可得出结论;(2)先判断出AE=AC,再表示出∠BAE,即可得出结论;(3)结论:AD=BE.如图2,连接DE,CE,AE,构造全等三角形△BED≌△ADC(ASA),结合全等三角形的对应边相等推知该结论.此题是三角形综合题,主要考查了轴对称的性质,直角三角形的判定和性质,等边三角形的判定和性质以及全等三角形的判定与性质,解答过程中,通过作辅助线推知相关线段间的数量关系是解题的关键.。

2020~2021学年度第一学期期中考试八年级数学试卷

2020~2021学年度第一学期期中考试八年级数学试卷

2020~2021学年第一学期期中考试八年级数学试卷注意事项:1.本试卷考试时间为100分钟,试卷满分120分.考试形式闭卷.2.答题前,务必将自己的学校、班级、姓名、准考证号填写在试卷相应位置.3.解答本试卷所有试题不得使用计算器.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在题后括号内)1.下列倡导节约的图案中,属于轴对称图形的是……………………………………【▲】A B C D2. 8A.2B.2 C.4 D.83.下列长度的三条线段能组成直角三角形的是……………………………………【▲】A.3,4,5 B.2,3,4 C.4,6,7 D.5,11,124.等腰三角形一边长为6,另一边长为2,则此三角形的周长为…………………【▲】A.10或14 B.10 C.14 D.185.如图,△ABC≌△ADE,点E在BC边上,∠AED=80°,则∠CAE的度数为【▲】A.80°B.60°C.40°D.20°6.如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=5,CF=3,则BD的长是…………………………………………………………………………………【▲】A.0.5 B.1 C.2 D.1.57.如图,∠ACD是△ABC的外角,CE平分∠ACB,交AB于E,CF平分∠ACD,且EF∥BC 交AC、CF于M、F,若EM=3,则CE2+CF2的值为……………………………【▲】A.36B.9C. 6D.188.如图,在△ABC中,∠C=90°,点O是∠CAB、∠ACB平分线的交点,且BC=4cm,AB=5cm,则点O到边AB的距离为……………………………………………………………【▲】A.1cm B.2cm C.3cm D.4cm二、填空题(本大题共有10小题,每小题2分,共20分.不需写出解答过程,请将答案直接写在题中横线上)9.等边三角形是一个轴对称图形,它有▲条对称轴.第5题图第6题图第7题图ADM FAED E FA10.如果一个正数的两个平方根分别为3m +4和2-m ,则这个数是 ▲ .11.如图,已知∠ABC =∠DCB ,增加下列条件:①AB =CD ;②AC =DB ;③∠A =∠D ;④∠ABO =∠DCO .能判定△ABC ≌△DCB 的是 ▲ .(填正确答案的序号)12.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB 是一个任意角,在边OA ,OB 上分别取OM =ON ,移动角尺,使角尺两边相同的刻度分别与M ,N 重合.过角尺顶点C 的射线OC 即是∠AOB 的平分线.这种做法的依据是 ▲ .13.等腰三角形一腰上的高与另一腰的夹角为20°,则这个等腰三角形底角是 ▲ °.14.如图,已知△ABC 是等边三角形,点B 、C 、D 、F 在同一直线上,CD =CE ,DF =DG ,则∠F = ▲ °.15.如图,在△ABC 中,ED ∥BC ,∠ABC 和∠ACB 的平分线分别交ED 于点G 、F ,若BE =3,CD =4,ED =6,则FG 的长为 ▲ .16.如图是由9个小等边三角形构成的图形,其中已有两个被涂黑,若再涂黑一个,则整个被涂黑的图案构成轴对称图形的方法有 ▲ 种.17.如图,在△ABC 中,AB 的垂直平分线EF 交BC 于点E ,交AB 于点F ,D 是线段CE的中点,AD ⊥BC 于点D .若∠B =36°,BC =8,则AB 的长为 ▲ .18. 如图,长方形ABCD 中,∠A =∠ABC =∠BCD =∠D =90°,AB =CD =5,AD =BC =13,点E 为射线AD 上的一个动点,若△ABE 与△A ′BE 关于直线BE 对称,当△A ′BC 为直角三角形时,AE 的长为 ▲ .三、解答题(本大题共有9小题,共76分.请在答题区域内作答,解答时应写出必要的文字说明、推理过程或演算步骤)19.(本题满分8分) 求下列各等式中x 的值:(1)(x+3)2-21=0; (2)29+(x-5)3=2.(此处答题无效)第8题图 第11题图 第12题图 O C A A D B CO A B C D E F A B C D E A′′第17题图 第18题图 A B D E F G 第14题图 第15题图 第16题图 G F A B DE20.(本题满分6分)如图,AD ⊥AB ,DE ⊥AE ,BC ⊥AE ,垂足分别为A 、E 、C ,且AD =AB .求证:△AED ≌△BCA .(此处答题无效)21.(本题满分8分)如图,点E 、F 分别为线段AC 上的两个点,且DE ⊥AC 于点E ,BF⊥AC 于点F ,若AB =CD ,AE =CF ,BD 交AC 于点M . 求证:(1)AB ∥CD ;(2)点M 是线段EF 的中点.(此处答题无效)22. (本题满分8分)如图,AB =AC 、点D 、E 分别在AB 、AC 上,且AD =AE ,BE 、CD 交于点O . 求证:AO 垂直平分BC .(此处答题无效)23.(本题满分8分)如图,在△ABC 中,AD 平分∠BAC ,点E 在AC 的垂直平分线上.(1) 若AB =5,BC =7,求△ABE 的周长; (2) 若∠B =57°,∠DAE =15°,求∠C 的度数.(此处答题无效)24.(本题满分8分)如图,在△ABC 中,AB =AC ,AD ⊥BC ,BE ⊥AC ,垂足分别为D 、E ,且AB =2AE ,求∠EDC 的度数.(此处答题无效) A B C D E M A B C E D F A B C OAB CD E E B A25.(本题满分8分)苏科版《数学》八年级上册第35页第2题,介绍了应用构造全等三角形的方法测量了池塘两端A 、B 两点的距离.星期天,爱动脑筋的小刚同学用下面的方法也能够测量出家门前池塘两端A 、B 两点的距离. 他是这样做的:选定一个点P ,连接P A 、PB ,在P A 上取一点C ,恰好有P A =14m ,PB =13m ,PC =5m , BC =12m ,他立即确定池塘两端A 、B 两点的距离为15m . 小刚同学测量的结果正确吗?为什么?(此处答题无效)26.(本题满分10分)如图,Rt △ABC 中,∠A =90°.(1) 利用圆规和直尺,在图中∠A 的内部找一个点P ,使点P 到AB 、AC 的距离相等,且PB =PC .(不写作法,保留作图痕迹)(2)若BC 的垂直平分线交直线AB 于点E ,AC =12、AB =8.求AE 的长.(此处答题无效)27.(本题满分12分)问题探究 如图1,在△ABC 中,点D 是BC 的中点,DE ⊥DF ,DE 交AB 于点E ,DF 交AC 于点F ,连接EF .①BE 、CF 与EF 之间的关系为:BE +CF ▲ EF ;(填“>”、“=”或“<”)②若∠A =90°,探索线段BE 、CF 、EF 之间的等量关系,并加以证明.问题解决 如图2,在四边形ABDC 中,∠B +∠C =180°,DB =DC ,∠BDC =130°,以D为顶点作∠EDF =65°,∠EDF 的两边分别交AB 、AC 于E 、F 两点,连接EF ,探索线段BE 、CF 、EF 之间的数量关系,并加以证明.(此处答题无效)AC图1 备用图 图2A DBC E F A ED F A B CD E F八年级数学期中试卷答案及评分说明一、选择题1~4 BBAC 5~8 DCAA二、填空题9.3 10.25 11.①③④ 12.根据“SSS”证得△COM≌△CON,得到∠AOC=∠BOC 13. 70或35 14.15° 15. 1 16.3 17.8 18. 1或25三、解答题19. (1) ∵(x+3)2-21=0,(x+3)2=21,∴x+3=x=,∴x-3或x-3;……4分(2) ∵29+(x-5)3=2,(x-5)3=-27,∴x-5=-3,∴x=2. ……4分20.∵DE⊥AE,BC⊥AE,∴∠ACB=∠E=90°,即∠B+∠BAC=90°.又∵AD⊥AB,∴∠DAC+∠BAC=90°,∴∠DAC=∠B,……2分∴在△AED与△BCA中,∠ACB=∠E,∠B=∠DAC,AB=AD,……4分∴△AED≌△BCA. ……6分21. (1)∵AE=CF,∴AE+EF=CF+ EF,即AF=CE,……1分在Rt△AFB和Rt△CED中,AB=CD,AF=CE,∴Rt△AFB≌△Rt CED,……3分∴∠A=∠C,……4分∴AB∥CD……5分;(2)由(1)得:Rt△AFB≌△Rt CED,∴BF=DE,……6分在Rt△BFM和Rt△DEM中,∠BFM=∠DEM=90°,∠BMF=∠DME,BF=DE,∴△BFM≌△DEM,…7分∴ME=MF,即点M是线段EF的中点.……8分(其他解法参照给分)22. ∵AB=AC、∴点O在线段BC的垂直平分线上……1分∵在△ABE与△ACD中,AE=AD,∠A=∠A,AC=AB,∴△ABE≌△ACD,∴∠ABE=∠ACD,......4分∵ AB=AC,∴∠ABC=∠ACB,∴∠OBC=∠OCB,∴BO=CO,∴点O在线段BC的垂直平分线上 (7)分∴AO垂直平分BC ……8分(其他解法参照给分)23. (1)∵点E在AC的垂直平分线上,∴EA=EC,∴△ABE的周长为AB+BE+AE=AB+BE+EC=AB+BC=12 (3)分(2) 由(1)得:EA=EC,∴∠EAC=∠C,∴∠DAC=∠C+15°,∵ AD平分∠BAC,∴∠DAB=∠DAC=∠C+15°,∵∠B+∠BAC+∠C=180°,∴ 57°+∠C+15°+∠C+15°+∠C=180°,解得∠C=31°.……8分(其他解法参照给分)24.取AB的中点F,连接EF. ……1分∵BE⊥AC,即∠AEB=90°,∴EF=12AB=AF,又∵AB=2AE,∴AE=AF=EF,即△AEF是等边三角形,∴∠BAC=60°. ……3分∵AB=AC,∴△ABC是等边三角形,∴∠ABC=60°.∵BE⊥AC,∴∠CBE=12∠ABC=30°,BD=CD. (5)分∵BE⊥AC,即∠AEC=90°,∴ED=12BC=BD,∴∠CBE=∠BED=30°,∴∠EDC=∠CBE+∠BED =60° (8)(其他方法参照给分)F ED C B A25.小刚同学测量的结果是正确的. ……1分理由如下:∵PC=5m ,PB=13m ,BC=12m ,∴PC 2+CB 2=PB 2,∴△PBC 是直角三角形,且∠PCB =90°,4分 ∴∠ACB=90°,在Rt △ABC 中,AB 2= AC 2+CB 2,AC=PA-PC=9m ,BC=12m ,∴AB=15m ,……7分 因此,小刚同学测量的结果是正确的. ……8分26.(1)如图,点P 即为所求PE A B C;……3分(2)AE=x ,连接EC .……4分 ∵ EF 垂直平分线段BC ,∴EB=EC=AE+AB=8+x ,……5分 在Rt △ACE 中,AE 2+AC 2=EC 2,……7分 ∴x 2+122=(x+8)2,解得x=5,……9分 ∴ AE=5,即AE 的长为5. ……10分27. 问题探究 ①>……2分②线段BE 、CF 、EF 之间的等量关系为:BE 2+CF 2=EF 2.……3分证明:∵∠A=90°,∴∠B+∠ACB=90°,延长ED 到点G ,使DG=ED ,连结GF ,GC ,∵ED ⊥DF ,∴EF=GF ,∵D 是BC 的中点,∴BD=CD ,在△BDE 和△CDG 中,ED =GD ,∠BDE =∠GDC ,BD =CD ,△DBE ≌△DCG ,……4分EF=GF ,∴BE=CG ,∠B=∠GCD ,∴AB ∥CG ,∴∠GCD+∠ACB=90°,即∠GCF=90°,∴Rt △CFG 中,CF 2+GC 2=GF 2,∴BE 2+CF 2=EF 2;……7分(2)线段BE 、CF 、EF 之间的数量关系为:EF=BE+CF. ……7分理由:延长AC 到G ,使CG=BE ,∵∠B+∠ACD=180°,∠ACD+∠DCG=180°,∴∠B=∠DCG ,在△DBE 和△DCG 中,BE =GC ,∠B =∠DCG ,BD =CD ,∴△DBE ≌△DCG ,∴DE=DG ,∠BDE=∠CDG , (9)∵∠BDC=130°,∠EDF=65°,∴∠BDE+∠CDF=65°,∴∠CDG+∠CDF=65°,∴∠EDF=∠GDF,在△EDF和△GDF中,DE=DG,∠EDF=∠GDF,DF=DF,∴△EDF≌△GDF,∴EF=GF,……11分∵GF=CG+CF,∴GF=BE+CF,∴EF=BE+CF.……12分如图,Rt△ABC中,AB=AC=3,点D是AB上一点,以CD为边作等边△CDE,使A、E位于BC异侧.当D 点从A点运动到B点,E点运动的路径长为 3。

2020-2021学年八年级数学上学期期中联考含答案

2020-2021学年八年级数学上学期期中联考含答案

一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案写在相应的位置上)题号 1 2 3 4 5 6 7 8答案1.下面所给的交通标志图中是轴对称图形的是()2题图2. 小明不慎将一块三角形的玻璃摔碎成如图1所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带()A、第1块B、第2 块C、第3 块D、第4块3. 直角三角形的两条边分别是6和8,这第三条边的长度是()A、6B、8C、10D、以上答案都不对4. 已知△ABC的三边长分别为5,13,12,则△ABC的面积为()A、30 B 、6 C、78 D 、不能确定5. 已知:如图所示,△ABC与△ABD中,∠C=∠D=90°,要使△ABC≌△ABD,并用“HL”判定成立,还需要加的条件是()A、∠BAC=∠BADB、BC=BD或AC=ADC 、∠ABC=∠ABD D 、AB 为公共边6. 如图,把一张正方形纸片按如图对折两次后,再挖去一个小圆孔,那么展开后的图形应为 ( )7.等腰三角形一腰上的高与另一腰的夹角为45°,则这个等腰三角形的底角为 ( )A 、67°B 、67.5°C 、22.5°D 、67.5°或22.5°8. 如图,直线L1、L2相交于点A ,点B 是直线外一点,在直线L1 、L2上找一点C ,使△ABC 为一个等腰三角形.满足条件的点C 有 ( ) A 、2个 B 、4个 C 、6个 D 、8个二、填空题 (本大题共12小题,每小题2分,共24分.) 9. 点P 在线段AB 的垂直平分线上,PA =7,则PB= . 10. 我国国旗上的每一个五角星的对称轴有 条.11. 等腰三角形的周长为10cm ,其中一边长为3cm ,则底边长为 cm. 12. 如图一扇窗户打开,用窗钩AB 可将其固定,这里所运用的几何原理是_ 。

2020-2021第一学期八年级数学期中测试-参考答案

2020-2021第一学期八年级数学期中测试-参考答案

2020-2021学年第一学期第二次教学质量自查八年级数学 (参考答案)二、填空题( 本大题共7个小题,每小题4分,共28分)11. (1,2) . 12. 4∠x∠14 .13. 4 3 14. 125°15∠A=∠C(或其它合理答案).16. 6 17. ①②③18.(6分)解:∵∠A=20°,∠B=60°∴∠ACB=180°-∠A-∠B=100°∵CE是∠ACB的平分线∴∠ECB=50°∵CD⊥AB ∠B=60°∴∠BCD=30°∴∠ECD=∠ECB-∠BCD=20°19.(6分)解:在AC和AD的交点记为点O∵AD⊥AC,BC⊥BD∴∠DAC=∠CBD=90°∴在△AOD和△BOC中∠OAD=∠OBC∠AOD=∠BOCAD=BC∴△AOD≌△BOC(AAS)∴AO=BO,CO=DO∴BD=AC20.(6分)解:可选①AB=DC和③∠B=∠C证明△ABE≌△DCE(AAS)可得:AE=DE进而有:△AED是等腰三角形注:选其它的合理即可21.(8分)解:(1)(4分)∵DE、FG分别为AB、AC的垂直平分线∴∠BAD=∠ABD∠FAC=∠ACF∵∠BAC=110°∴∠ABD+∠ACF=70°∴∠BAD+∠FAC=70°∴∠DAF=∠BAC-∠BAD-∠FAC=40°(2)(4分)∵DE、FG分别为AB、AC的垂直平分线∴BD=ADAF=CF∴BC=BD+DF+FC=10cm∴C△DAF=DA+AF+FD=10cm22.(8分)解:图上:23.(8分)证明:延长AD于点H,令DH=AD∵D是BC的中点,所以BD=CD∴△BDH≌△ADC(∠BDH=∠ADC(SAS))∴∠BHE=∠BEH, ∠BHE=∠DAC ∠BEH=∠AEF(对顶角)∴∠AEF=∠FAE∴AF=EF24.(10分)图略解:(1):S△ABC=4.5(3)坐标:略25.(10分)解:(1)说明:找到AO=BO,∠AOB=∠BOC=90°通过△BFM和△AFO的度数相等,可得到∠OBE=∠OAF进而有△AFO和△BEO全等,即有OE=OF(2)成立,通过角的度数计算就可得到∠BAM=∠CBE,有:∠BAO=∠CBO=45°所以有:∠FAO=∠EBO,因为∠AOF=∠BOE=90°(AO=BO)即有△AFO≌△BEO 即证OE=OF。

2020-2021学年苏教版八年级第一学期期中考试数学试题附解析

2020-2021学年苏教版八年级第一学期期中考试数学试题附解析

2020-2021学年八年级第一学期期中考试数学试题一、选择题:(本大题共有8小题,每小题2分,共16分,在每小题所给的四个选项中,只有一项是正确的)1.以下四个汽车车标中,不是轴对称图形的是A. B. C. D. 2.如图,已知AC =BD ,添加下列一个条件后,仍无法判定△ABC ≌△BAD 的是 A. CB=DA B.∠BAC =∠DBA C.∠ABC =∠BAD D.∠C =∠D =90° 3.下列四组线段中,能构成直角三角形的是A.2cm 、4cm 、5cmB.15cm 、20cm 、25cmC.0.2cm 、0.3cm 、0.4cmD.lcm 、2cm 、2.5cm 4.若一个三角形三个内角度数的比为1:2:3,那么这个三角形是A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形 5.根据下列已知条件,能唯一画出△ABC 的是A. AB=3, BC=4, CA=8B.AB =4,BC =3,∠A =30°C.∠A =60°,∠B =45”,AB =4D.∠C =90°,AB =6 6.下列命题中真命题的是A.等腰三角形底边上的高是该等腰三角形的对称轴B.三角形各边的垂直平分线交于一点,这点到三角形的三个顶点的距离相等C.三角形的任何一个外角都不会小于90°D.等腰直角三角形的三条角平分线交于一点,这点刚好是这个三角形的直角顶点7.《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺,问折高者几何?意思如下:一根竹子,原高一丈(一丈=10尺),一阵风将它折断,竹稍恰好抵地,抵地处离竹子底部6尺远,则折断处离地面的高度是多少?设折断处离地面的高度为x 尺,则根据题意可列方程为 A.()22106x x -=- B.()222106x x -=-C.()22106x x -=+ D.()222106x x -=+8.如图,已知△ABC 中AB=AC ,∠BAC=90°,且它的顶点D 是BC 的中点,两边DE 、DF 分别交AB 、AC 于点D 、F ,给出以下四个结论:①AE=CF ;②S 四边形AEDF =21S △ABC ;③△EDF 是等腰直角 三角形;④BE 2+CF 2=EF 2。

2020-2021学年度第一学期期中考试八年级数学试卷及答案

2020-2021学年度第一学期期中考试八年级数学试卷及答案

1、算术平方根和立方根都等于本身的数是 , 81的算数平方根是2、已知01a <<,化简21a a --=3、要使式子1x 2-+3x 1- 有意义的X 取值范围是4、菱形有一个内角是120度,有一条对角线长为6 cm ,此菱形的边长是5、一个多边形内角和是540°,那么从一个顶点引出的对角线的条数是6、 如图,GMN ABC ∆∆经过平移后到的位置,BC 上一点D 也同时平移到点H 的位置,若,cm 8AB =_______DAC ,_______GM ,25HGN 0=∠==∠则。

7、如图矩形ABCD 的对角线AC 、BD 相交于点0,过点0的直线交AB 、CD 于E 、F ,AB=6,BC=10,则图中阴影部分的面积为8、如图P 是正方形ABCD 内一点,将△ABP 绕点B 顺时针方向旋转900 能与△CBP ′重合,若PB=3,则PP ′=ˊ(7题图)(8题图) 二、精心选一选 ,慧眼识金。

(每题3分,共24分)9、在下列各数中是无理数的有( ) -0.333…, 4, 5, π-, 3.1415, 2.010010001…(相邻两个1之间0的个数逐渐增加)A 1个B 2个C 3个D 4题号 9 10 11 12 13 14 15 16 答案个10、下列说法正确的是( )A.064.0-的立方根是0.4B.9-的平方根是3±C. 16的立方根是316D. 0.01的立方根是0.000001 11、. 如图:Rt △ABC 中,∠ACB=900,CD 是高,AC=4cm ,BC=3cm ,则CD=( )A. 5cmB.512cmC. 125cmD.34cm12、在菱形ABCD 中,==∠AC :BC ,120ADC 0则( )A 、2:3 B 、3:3 C 、2:1 D 、1:313、以下列各组数为边长,能组成直角三角形的是( )A.8、15、7B. 8、10、6C. 5、8、10D. 8、39、3814、下列四个图形中,不能通过基本图形平移得到的是( )15、如图,以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A 处,则点A 表示的数是( )A 、211 B 、1.4 C 、3D 、2(15题图)16、如图正方形ABCD 的顶点C 在直线a 上,且点B 、D 到a 的距离分别是1、2则这个正方形的边长为 ( ) (16题图)C B DA(11题)图 DCB A -11 A 2A 、1B 、2C 、4D 、5 三、用心做一作,马到成功!(17题20分,18题6分,共26分) 17、计算:(每题5分,共20分)(1)200420032323)()(+- (2)()()131381672-++-(3)40)52(2-+. (4)2101.036813-+- 18、(6分)规律探求,观察522-=58=524⨯=252,即522-=252;1033-=1027=1039⨯=3103,即1033-=3103 (1)猜想2655-等于什么,并通过计算验证你的猜想; (2)写出符合这一规律的一般等式。

2020-2021学年八年级上学期期中数学试题769

2020-2021学年八年级上学期期中数学试题769

江苏省南通市海安市八校联考2020-2021学年八年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知三角形的两边长分别为3和4,则第三边长x 的范围是( )A .3<x<4B .1<x<7C .1<x<5D .无法确定 2.计算()32x x -⋅的结果是( )A .5xB . 5x -C . 6xD . 6x - 3.点P (a ,b )与点Q (-2,-3)关于x 轴对称,则a +b =( )A .-5B .5C .1D .-14.已知图中的两个三角形全等,则∠1等于( )A .72°B .60°C .50°D .58° 5.如图,在△ABC 中,BC 的垂直平分线分别交AC ,BC 于点D ,E ,若△ABC 的周长为24,CE =4,则△ABD 的周长为( )A .16B .18C .20D .246.下列两个多项式相乘,不能用平方差公式的是( )A .(-5a+2b)(5a+2b)B . (-5a+2b)(-5a-2b)C . (-5a-2b)(5a-2b)D . (5a+2b)(-5a-2b)7.用一条长为18cm 的细绳围成一个等腰三角形,若其中有一边的长为5cm ,则该等腰三角形的腰长为( )cmA .5B .6.5C .5或6.5D .6.5或8 8.在直角坐标系中,已知A (3,3),在x 轴、y 轴上确定一点P ,使△AOP 为等腰三角形,则符合条件的点P 共有( )A .4个B .7个C .8个D .10个 9.如图,OP 平分∠AOB ,PA ⊥OA 、PB ⊥OB ,垂足分别为A 、B ,下列结论成立的是()①PA=PB;②PO平分∠APB;③OA=OB;④AB垂直平分OPA.①③B.①②③C.②③D.①②③④10.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第1个三角形数,3是第2个三角形数,6是第3个三角形数,…,依此类推,那么第11个三角形数是多少,2016是第几个三角形数,则选()A.55,63 B.66,63 C.55,64 D.66,64二、填空题11.若n边形的内角和是它的外角和的2倍,则n= .y=,则3x y-=_____.12.若35x=,31513.若(x-2)(x+3)=x2+px+q,则p+q=____________.14.如果9x2-axy+4y2是完全平方式,则a的值是____.15.如图,在ΔABC中,AD⊥BC,AE平分∠BAC,若∠1=40°,∠2=25°,则∠B=_____.16.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,CD是斜边AB上的高,AD=3,则线段BD的长为___.17.a,b,c为ΔABC的三边,化简|a-b-c|-|a+b-c|+2a结果是____.18.如图,在正方形ABCD中,AB=2,延长BC到点E,使CE=1,连接DE,动点P 从点A出发以每秒1个单位的速度沿AB-BC-CD-DA向终点A运动,设点P的运动时间为t秒,当△ABP和△DCE全等时,t的值____.三、解答题19.计算或化简:(1)()2019201840.25⨯- (2)()221x y +-(3)()()3434(23)(32)x x x x +--+-(4)23243211(0.25)(0.5)26a b a b a b a b --÷ 20.如图所示,在平面直角坐标系中,A (-1,5)、B (-1,0)、C (-3,6).(1)直接写出△ABC 的面积;(2)在图形中作出△ABC 关于x 轴的对称图形△A 1B 1C 1,并直接写出△A 1B 1C 1的三个顶点的坐标:A 1( ),B 1( ),C 1( ).21.如图,已知△ABC ,∠C = 90°,AC BC <.D 为BC 上一点,且到A ,B 两点的距离相等.(1)用直尺和圆规,作出点D 的位置(不写作法,保留作图痕迹);(2)连结AD ,若∠B = 35°,求∠CAD 的度数.22.已知:如图,AB=AC ,PB=PC ,PD ⊥AB ,PE ⊥AC ,垂足分别为D 、E .证明:PD=PE .23.如图1,已知ABC ∆中,点D 在AB 边上,DE BC ∥交边AC 于点E ,且DE 平分ADC ∠.(1)求证:DB DC =;(2)如图2,在BC 边上取点F ,使60DFC ︒∠=,若7BC =,2BF =,求DF 的长。

2020年江苏省南通市海安市八校联考七年级(上)期中数学试卷

2020年江苏省南通市海安市八校联考七年级(上)期中数学试卷

期中数学试卷题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.4的相反数是()A. -4B. 4C.D.2.在下列各数-(+3),-22,(-2)2,(-1)2020,-|-5|中,负数有()A. 2个B. 3个C. 4个D. 5个3.国家体育场“鸟巢”建筑面积达258000平方米,258000用科学记数法表示应为()A. 2.58×103B. 25.8×104C. 2.58×105D. 258×1034.如果x=y,那么根据等式的性质下列变形正确的是()A. x+y=0B. x=yC. 2-x=2-yD. x+7=y-75.下列各式中是一元一次方程的是()A. x2+1=5B. =3C. -=1D. x-56.已知下列各式:abc,2πR,x+3y,0,,其中单项式的个数有()A. 2个B. 3个C. 4个D. 5个7.下列说法正确的个数为()①若a<0,则|a|=-a;②若|a|=-a,则a<0;③-a表示负数;④若a<0;则a3=-a3A. 1个B. 2个C. 3个D. 4个8.下列各式中,去括号或添括号正确的是()A. a2-(2a-b+c)=a2-2a-b+cB. -2x-t-a+1=-(2x-t)+(a-1)C. 3x-[5x-(2x-1)]=3x-5x-2x+1D. a-3x+2y-1=a+(-3x+2y-1)9.已知代数式-5a m+2b6和-ab3n是同类项,则m+n的值是()A. -3B. -1C. -2D. 110.一只小球落在数轴上从原点出发,第一次从向左跳1个单位到p1,第二次从p1向右跳2个单位到p2,第三次从p2向左跳3个单位到p3,第四次从p3向右跳4个单位到p4…,若小球按以上规律跳了2n次时,它落在数轴上的点p2n所表示的数是()A. nB. 2nC. n-1D. 2n-1二、填空题(本大题共8小题,共28.0分)11.已知|2x-3|=1,则x的值为______ .12.任意写一个含有字母a、b且常数项为-9的三次三项式______.13.当x=______时,代数式2x+1与5x-8的值相等.14.设m、n为整数,十位数字是m,个位数字是n的两位整数是______.15.已知关于x的方程ax+14=2x+a的解是3,则式子a2+2(a-3)=______.16.如果a-b=3,ab=-1,则代数式3ab-a+b-2的值是______ .17.一架飞机在两城之间飞行,顺风需5小时30分,逆风需6小时.已知风速为24千米/小时,求飞机在无风时的速度.设飞机飞行无风时的速度为x千米/小时.则列方程为______.18.按如图所示的程序流程计算,若开始输入的值为x=3,则最后输出的结果是______ .三、计算题(本大题共1小题,共8.0分)19.有理数a、b、c在数轴上的位置如图所示,化简代数式|a-b|+|a+b|-|c-a|.四、解答题(本大题共7小题,共84.0分)20.计算与化简(1)-3+12×(-+);(2)-32+(-1)2019÷(-)2-(0.25-)×6(3)3(x2-3x)-2(1-4x)-2x2(4)5x2y-2xy-4(x2y-xy)21.解方程:(1)7+2x=12-2x.(2)x-3=-x-422.已知x2-2y-5=0,求3(x2-2xy)-(x2-6xy)-4y的值.23.已知A=2x2-5x-1,B=x2-5x-3.(1)计算2A-B;(2)通过计算比较A与B的大小.24.几个人共同种一批树苗,如果每人种8棵,则剩下6棵树苗未种;如果每人种10棵,则缺8棵树苗.求参与种树的人数.25.a※b是新规定的这样一种运算法则:a※b=a2+2ab,例如3※(-2)=32+2×3×(-2)=-3(1)试求(-2)※3的值(2)若1※x=3,求x的值(3)若(-2)※x=-2+x,求x的值.26.定义:若A,B,C为数轴上三点,若点C到点A的距离是点C到点B的距离2倍,我们就称点C是【A,B】的美好点.例如:如图1,点A表示的数为-1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的美好点;又如,表示0的点D 到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的美好点,但点D是【B,A】的美好点.如图2,M,N为数轴上两点,点M所表示的数为-7,点N所表示的数为2.(1)点E,F,G表示的数分别是-3,6.5,11,其中是【M,N】美好点的是______;写出【N,M】美好点H所表示的数是______.(2)现有一只电子蚂蚁P从点N开始出发,以2个单位每秒的速度向左运动.当t为何值时,P,M和N中恰有一个点为其余两点的美好点?答案和解析1.【答案】A【解析】解:根据相反数的含义,可得4的相反数是:-4.故选:A.根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“-”,据此解答即可.此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“-”.2.【答案】B【解析】解:-(+3)=-3,-22=-4,(-2)2=4,(-1)2020=1,-|-5|=-5,则负数有3个,故选:B.各项利用乘方的意义计算得到结果,即可作出判断.此题考查了有理数的乘方,正数与负数,相反数,以及绝对值,熟练掌握各自的性质是解本题的关键.3.【答案】C【解析】解:258000=2.58×105.故选C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于258000有6位,所以可以确定n=6-1=5.此题考查科学记数法表示较大的数的方法,准确确定n值是关键.4.【答案】C【解析】解:A、∵x=y,∴x-y=0,而x+y不一定等于0,如2=2,2+2=4,故本选项不符合题意;B、∵x=y,∴x=y,不一定x=y,故本选项不符合题意;C、∵x=y,∴-x=-y,∴2-x=2-y,故本选项符合题意;D、∵x=y,∴x+7=y+7,x+7和y-7不一定相等,故本选项不符合题意;故选:C.根据等式的性质逐个判断即可.本题考查了等式的性质,能熟记等式的性质的内容是解此题的关键.5.【答案】C【解析】解:A、最高次数是2,故不是一元一次方程,故错误;B、不是整式方程,故错误;C、含一个未知数,是一元一次方程,故正确;D、不是等式,错误.故选:C.只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0),高于一次的项系数是0.本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.6.【答案】B【解析】解:在abc,2πR,x+3y,0,中,其中单项式有abc,2πR,0,共3个;故选:B.根据单项式的定义进行解答即可.此题考查了单项式,掌握单项式的定义即数字与字母的积叫做单项式,(单独的一个数或一个字母也叫单项式)是解题的关键.7.【答案】A【解析】解:①若a<0,则|a|=-a;根据绝对值的性质可知①正确;②若|a|=-a,则a≤0,根据绝对值的性质可知②不正确;③当a是正数时,-a表示负数,当a是负数时,-a表示正数,当a是0时,-a表示0,故③不正确;④若a<0;则(-a)3=-a3,根据有理数的乘方可知④不正确.综上正确的是①.故选:A.通过特殊值法、绝对值及相反数的意义,逐一判断得到正确结论.本题考查了有理数的相反数和绝对值.理解绝对值、相反数的意义是解决本题的关键.8.【答案】D【解析】解:A、a2-(2a-b+c)=a2-2a+b-c,错误;B、-2x-t-a+1=-(2x+t)-(a-1),错误;C、3x-[5x-(2x-1)]=3x-5x+2x-1,错误;D、a-3x+2y-1=a+(-3x+2y-1),正确;故选:D.根据去括号和添括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.本题考查去括号和添括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.添括号时,若括号前是“+”,添括号后,括号里的各项都不改变符号;若括号前是“-”,添括号后,括号里的各项都改变符号.9.【答案】D【解析】解:∵-5a m+2b6和-ab3n是同类项,∴m=-1,n=2,∴m+n=1.故选:D.根据同类项的定义:所含字母相同,并且相同字母的指数也相同,可求得m,n的值,继而可求得m+n.本题考查了同类项,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.10.【答案】A【解析】解:由题意可得P1表示的数-1,P2表示的数是1,P3表示的数-2,P4表示的数2,则可得P6表示的数3,P8表示的数为4,∴点p2n所表示的数是n,故选:A.由题意可得由题意可得P1表示的数-1,P2表示的数是1,P3表示的数-2,P4表示的数2,则可得P6表示的数3,P8表示的数为4,即可求解.此题考查数字的变化规律,数轴的认识,找出其中的变化规律是解题的关键.11.【答案】2或1【解析】解:|2x-3|=1,2x-3=±1,2x-3=1或2x-3=-1,x1=2,x2=1.故答案为:2或1.由绝对值的性质,即可推出2x-3=±1,于是得x1=2,x2=1.本题主要考查了含绝对值符号的一元一次方程.关键是得到2x-3=±1.12.【答案】ab2+a-9(答案不唯一)【解析】【分析】直接利用多项式的次数与项数的定义得出答案.此题主要考查了多项式的次数与项数,正确把握相关定义是解题关键.【解答】解:由题意可得,写一个含有字母a、b且常数项为-9的三次三项式为:ab2+a-9(答案不唯一).故答案为:ab2+a-9(答案不唯一).13.【答案】3【解析】解:根据题意得:2x+1=5x-8,∴2x-5x=-8-1,∴-3x=-9,∴x=3,故答案为:3.根据题意得出方程2x+1=5x-8,求出方程的解即可.本题考查了解一元一次方程和一元一次方程的应用等知识点,关键是根据题意得出方程,题型较好,难度不大.14.【答案】10m+n【解析】解:由题意得:10×m+n=10m+n,故答案为:10m+n.用十位数字×10+个位数字即可得到此两位数.此题主要考查了列代数式,此题比较简单,再表示一个两位数时,用十位数字×10+个位数字;表示三位数时:百位数字×100十位数字×10+个位数字.15.【答案】2【解析】解:∵关于x的方程ax+14=2x+a的解是3,∴3a+14=2×3+a,解得a=-4,∴a2+2(a-3)=(-4)2+2(-4-3)=16-14=2.故答案为:2.先把x=3代入方程求出a的值,然后代入代数式进行计算即可求解.本题考查了一元一次方程的解,方程的解就是使方程左右两边相等的未知数的值,代入求出a的值是解题的关键.16.【答案】-8【解析】解:∵a-b=3,ab=-1,∴3ab-a+b-2,=3×(-1)-3-2,=-3-3-2,=-8.故答案为:-8.把已知条件直接代入所求代数式进行计算即可得解.本题考查了代数式求值,整体思想的利用是解题的关键.17.【答案】5.5•(x+24)=6•(x-24)【解析】解:设飞机在无风时的飞行速度为x千米/时,则飞机顺风飞行的速度为(x+24)千米/时,逆风飞行的速度为(x -24)千米/时,根据题意得:5.5•(x+24)=6(x-24).故答案为:5.5•(x+24)=6(x-24).先表示出飞机顺风飞行的速度和逆风飞行的速度,然后根据速度公式,利用路程相等列方程.本题考查了由实际问题抽象出一元一次方程:审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程.本题的关键是表示出飞机顺风飞行的速度和逆风飞行的速度.18.【答案】231【解析】解:∵x=3,∴=6,∵6<100,∴当x=6时,=21<100,∴当x=21时,=231,则最后输出的结果是231,故答案为:231.根据程序可知,输入x,计算出的值,若≤100,然后再把作为x,输入,再计算的值,直到>100,再输出.此题考查的知识点是代数式求值,解答本题的关键就是弄清楚题图给出的计算程序.19.【答案】解:根据题意得:a<b<0<c,∴a-b<0,a+b<0,c-a>0,则原式=b-a-a-b-c+a=-a-c.【解析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.20.【答案】解:(1)原式=-3+(4-3+2)=-3+3=0;(2)原式=-9-1×4-(-)×6=-9-4+=-12;(3)原式=3x2-9x-2+8x-2x2=x2-x-2;(4)原式=5 x2y-2xy-4x2y+2xy=x2y.【解析】(1)原式利用乘法分配律计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值;(3)原式去括号合并即可得到结果;(4)原式去括号合并即可得到结果.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.21.【答案】解:(1)移项,得:2x+2x=12-7,合并同类项,得:4x=5,系数化为1,得:x=;(2)去分母得:x+=-4+3,移项合并得:=-1,解得:x=-.【解析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.22.【答案】解:3(x2-2xy)-(x2-6xy)-4y,=3x2-6xy-x2+6xy-4y,=2x2-4y;∵x2-2y-5=0,∴x2-2y=5,原式=2(x2-2y)=2×5=10.【解析】首先去括号,合并同类项,化简后,再根据条件可得x2-2y=5,再代入求值即可.此题主要考查了整式的化简求值,关键是正确把整式进行化简.23.【答案】解:(1)2A-B=2(2x2-5x-1)-(x2-5x-3)=4x2-10x-2-x2+5x+3=3x2-5x+1;(2)A-B=2x2-5x-1-(x2-5x-3)=2x2-5x-1-x2+5x+3=x2+2,∵x2≥0,∴x2+2>0∴A-B>0∴A>B.【解析】(1)直接利用整式的加减运算法则计算得出答案;(2)直接利用整式的加减运算法则计算得出答案.此题主要考查了整式的加减运算,正确合并同类项是解题关键.24.【答案】解:设x人参与种树,依题意,得:8x+6=10x-8,解得:x=7.答:共7人参与种树.【解析】设x人参与种树,根据树苗的棵树不变,即可得出关于x的一元一次方程,解之即可得出结论.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.25.【答案】解:(1)(-2)※3=(-2)2+2×(-2)×3=4-12=-8;(2)∵1※x=3,∴12+2x=3,∴2x=3-1,∴x=1;(3)-2※x=-2+x,(-2)2+2×(-2)x=-2+x,4-4x=-2+x,-4x-x=-2-4,-5x=-6,x=.【解析】(1)根据规定的运算法则求解即可.(2)(3)将规定的运算法则代入,然后对等式进行整理从而求得未知数的值即可.此题考查学生对代数式求值的掌握情况.26.【答案】解:(1)G;-4或-16;(2)根据美好点的定义,P,M和N中恰有一个点为其余两点的美好点分6种情况,第一情况:当P为【M,N】的美好点,点P在M,N之间,如图1,当MP=2PN时,PN=3,点P对应的数为2-3=-1,因此t=1.5秒;第二种情况,当P为【N,M】的美好点,点P在M,N之间,如图2当2PM=PN时,NP=6,点P对应的数为2-6=-4,因此t=3秒;第三种情况,P为【N,M】的美好点,点P在M左侧,如图3,当PN=2MN时,NP=18,点P对应的数为2-18=-16,因此t=9秒;第四种情况,M为【P,N】的美好点,点P在M左侧,如图4,当MP=2MN时,NP=27,点P对应的数为2-27=-25,因此t=13.5秒;第五种情况,M为【N,P】的美好点,点P在M左侧,如图5,当MN=2MP时,NP=13.5,点P对应的数为2-13.5=-11.5,因此t=6.75秒;第六种情况,M为【N,P】的美好点,点P在M,N左侧,如图6,当MN=2MP时,NP=4.5,点P对应的数为2-4.5=-2.5,因此t=2.25秒;综上所述,t的值为:1.5,2.25,3,6.75,9,13.5.【解析】【分析】本题考查实数与数轴、点是【M,N】的美好点的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考创新题目.(1)根据美好点的定义,结合图2,直观考察点E,F,G到点M,N的距离,只有点G符合条件.结合图2,根据美好点的定义,在数轴上寻找到点N的距离是到点M的距离2倍的点,在点的移动过程中注意到两个点的距离的变化;(2)根据没好点的定义,P,M和N中恰有一个点为其余两点的美好点分6种情况,须区分各种情况分别确定P点的位置,进而可确定t的值.【解答】解:(1)根据美好点的定义,结合图2,直观考察点E,F,G到点M,N的距离,只有点G符合条件,结合图2,根据美好点的定义,在数轴上寻找到点N的距离是到点M的距离2倍的点,点N的右侧不存在满足条件的点,点M和N之间靠近点M一侧应该有满足条件的点,进而可以确定-4符合条件.点M的左侧距离点M的距离等于点M和点N的距离的点符合条件,进而可得符合条件的点是-16.故答案为G;-4或-16.(2)见答案.第11页,共11页。

海安八年级上数学期中试卷

海安八年级上数学期中试卷

一、选择题(每题4分,共20分)1. 下列数中,属于有理数的是()A. √9B. √-16C. πD. 0.1010010001……2. 已知a、b是相反数,且a > b,则下列不等式中正确的是()A. a > 0B. b > 0C. a < bD. a + b = 03. 下列函数中,定义域为实数集R的是()A. y = √xB. y = 1/xC. y = |x|D. y = √(x - 1)4. 已知一次函数y = kx + b的图象经过点(1,2)和(3,-1),则k的值为()A. 1B. -1C. 2D. -25. 在△ABC中,若∠A = 45°,∠B = 60°,则∠C的度数为()A. 45°B. 60°C. 75°D. 90°二、填空题(每题4分,共20分)6. 计算:-5 + 3 - 2 + 4 = _______7. 已知a = -3,b = 2,则a² - b² = _______8. 若x² - 2x + 1 = 0,则x的值为 _______9. 已知一次函数y = kx + b的图象与x轴的交点为(2,0),则b的值为_______10. 在△ABC中,若AB = 6cm,AC = 8cm,BC = 10cm,则△ABC是 _______三角形。

三、解答题(每题10分,共40分)11. (1)已知数列{an}的前三项分别为1,-1,1,求该数列的通项公式。

(2)已知数列{bn}的通项公式为bn = 3n - 2,求第10项bn的值。

12. 已知一次函数y = kx + b的图象经过点(-2,3)和(1,-1),求该函数的解析式。

13. 已知等腰三角形ABC中,AB = AC,AD是BC边上的高,若∠BAC = 40°,求∠ADB的度数。

14. 已知一次函数y = kx + b的图象与x轴的交点为(-1,0),与y轴的交点为(0,-3),求该函数的解析式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.在△ABC中,∠A=100°,∠ABC和∠ACB的平分线相交于点D,则∠BDC的度数是( )
A.150°B.135°C.140°D.120°
8.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠E=35°,则∠BAC的度数为()
A.40°B.45°C.60°D.70°
9.等腰△ABC中,AB=AC,BD是腰AC上的高线,∠DBC=15°,若BD=5,则AC等于( )
A.5B.10C.2.5D.15
10.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和等边三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下结论正确的有()个:
2.C.
【解析】
试题解析:A. ,故该选项错误;
B. ,故该选项错误;
C. ,故该选项正确;
D. ,故该选项错误.
故选C.
考点:1积的乘方与幂的乘方;2.合并同类项;3.同底数幂的乘方;4.同底数幂的除法.
3.A.
【解析】
试题解析:原式=
=
= .
故选A.
考点:有理数的乘方.
4.C
【分析】
由图形可知AC=AC,结合全等三角形的判定方法逐项判断即可.
∵∠ABC,∠ACB的平分线相交于点D,
∴∠1=∠2,∠3=∠4,
∵∠1+∠3+∠BDC=180°,∠1+∠2+∠3+∠4+∠A=180°,
∴2∠1+2∠3+∠A=180°,
∴2(180°-∠BDC)+∠A=180°,
∴∠BDC=90°+ ∠A,
∵∠A=100°,
∴∠BDC=90°+ ×100°=90°+50°=140°.
24.如图,三角形ABC是边长为6的等边三角形,P是AC边上任意一点(与A、C两点不重合).Q是CB延长线上一点,且始终满足条件BQ=AP,过P作PE⊥AB于E,连接PQ交AB于D.
(1)如图(1)当∠CQP=30°时.求AP的长.
(2)如图(2),当P在任意位置时,求证:DE= AB.
25.如图,在直角坐标系 中,直线AB交轴于A(2,0),交轴负半轴于B(0,-10),C为x轴正半轴上一点,且OC=5OA.
21.已知:如图,AB=CD,∠A=∠D,点M是AD的中点.求证:∠ABC=∠DCB.
22.已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,
求证:DE=DF.
23.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE
(1)求证:CE=CF;
(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?
A.- B. C.- D.
4.如图,已知 ,那么添加下列一个条件后,仍无法判定 的是()
A. B. C. D.
5.如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为( )
A.35°B.40°C.45°D.50°
6.已知a+b=3,ab=2,则a2+b2的值为()
A.3B.4C.5D.6
三、解答题
17.计算题
(1)
(2)
18.因式分解:x2+3x(x-3)-9
19.先化简,再求值: ,其中 , .
20.如图所示,在所给正方形网格图中完成下列各题:(用直尺画图,保留痕迹)
(1)求出格点△ABC(顶点均在格点上)的面积;
(2)画出格点△ABC关于直线DE对称的 ;
(3)在DE上画出点Q,使△QAB的周长最小.
5.A
【解析】
∵AB=AD, ∴∠ADB=∠B=70°.
∵AD=DC,
∴ 35°.
故选A.
6.C
【解析】
试题分析:根据完全平方公式得出a2+b2=(a+b)2﹣2ab,代入求出即可.∵a+b=3,ab=2,
∴a2+b2=(a+b)2﹣2ab=32﹣2×2=5.
考点:完全平方公式
7.C.
【解析】
试题解析:如图,
2020-2021学年江苏省海安县七校八年级上学期期中联考数学试卷
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.下列交通标志图案是轴对称图形的是( )
A. B. C. D.
2.下列计算正确的是( )
A.
B.
C.
D.
3.计算: ×(-1.5)2015的结果是( )
①PQ∥AE ②AP=BQ ③∠AOB=60° ④CP="CQ" ⑤连接OC,则OC平分∠AOE
A.2个B.3个C.4个D.5个
二、填空题
11.计算:-24x2y4÷(-3x2y)·3x3=________________________.
12.分解因式:16x4-1=___________________________.
13.一个三角形的两边分别是3厘米和9厘米,第三边长是一个偶数,则此三角形的周长为__________厘米.
14.若点(a,-4)关于y轴对称的点的坐标为(-3,b),则b 的值为_______________
15.若 ,则 ________
16.若等腰三角形一腰上的高与另一腰的夹角为30°,则这个等腰三角形的底角是
(1)求△ABC的面积.
(2)延长BA到P(自己补全图形),使得PA=AB,过点P作PM⊥OC于M,求P点的坐标.
(3)如图,D是第三象限内一动点,直线BE⊥CD于E,OF⊥OD交BE延长线于F.当D点运动时, 的大小是否发生变化?若改变,请说明理由;若不变,求出这个比值.
参考答案
1.B
【详解】
A图形中三角形和三角形内部图案的对称轴不一致,所以不是轴对称图形;B为轴对称图形,对称轴为过长方形两宽中点的直线;C外圈的正方形是轴对称图形,但是内部图案不是轴对称图形,所以也不是;D图形中圆内的两个箭头不是轴对称图象,而是中心对称图形,所以也不是轴对称图形.故选B.
【详解】
解:在△ABC和△ADC中
∵AB=AD,AC=AC,
A、添加 ,根据 ,能判定 ,故A选项不符合题意;
B、添加 ,根据 能判定,故B选项不符合题意;
C.添加 时,不能判定 ,故C选项符合题意;
D、添加 ,根据 ,能判定 ,故D选项不符合题意;
故选:C.
【点睛】
本题考查了全等三角形的判定,掌握全等三角形的判定方法是解题关键,即SSS、SAS、ASA、AAS和HL.
故选C.
考点:1.三角形内角和定理;2.三角形的外角性质.
相关文档
最新文档