三年级奥数讲义应用题还原问题(含解析)

合集下载

小学奥数趣味学习《还原问题》典型例题及解答

小学奥数趣味学习《还原问题》典型例题及解答

小学奥数趣味学习《还原问题》典型例题及解答还原问题是典型应用题之一,指已知某数经过四则运算的结果,要求出某数的应用题。

解题思路和方法:解这类问题应按题目所述顺序的逆序,施行所述运算的逆运算,就可列出算式。

简言之就是反其道而行之就能算出结果。

例题1:将一个数先加上6,然后乘6,再减去6,最后除以6,结果还是6,那么这个数是多少?解:1、本题考查的是一个量多次变换还原,关键是从最后的结果出发,根据加减乘除的逆运算进行解答。

2、由最后的结果出发,除以6商是6,那么之前就是6×6=36;减去6是36,那么之前是36+6=42;乘6是42,那么之前是42÷6=7;加上6是7,那么之前数7-6=1。

例题2:修路队修一条路,第一天修了全长的一半多20米,第二天修了余下的一半少15米,第三天修了50米,还剩30米没有修,这条路全长多少米?解:1、本题考查的是一半与整体关系还原,关键是抓住最后的数量,从后往前推理。

2、根据题意,如果第二天正好修了余下的一半,则剩下(30+50-15)=65(米),用65×2=130(米)就是第一天修完余下的长度;又因为第一天修了全长的一半多20米,如果第一天正好修了全长的一半时,则剩下的是130+20=150(米),这样得出剩下的长度的2倍就是全长,即150×2=300(米)。

例题3:甲、乙、丙三人各有连环画若干本,如果甲给乙、丙各5本,乙给甲、丙各10本,丙给甲、乙各15本后,那么三人所拥有的连环画一样多,都是35本,原来甲、乙、丙各有连环画多少本?解:1、本题考查的是多个量之间的还原关系,我们通常采用列表的方式倒推解决此类问题。

2、根据题意我们可以列表如下:3、最后每人都有35本,因为丙给甲、乙各15本,所以丙给甲、乙前,丙有35+15×2=65(本),甲、乙各有35-15=20(本)。

4、因为乙给甲、丙各10本,所以乙给甲、丙前,乙有20+10×2=40(本),甲有20-10=10(本),丙有65-10=55(本)。

三年级奥数拓展还原问题例题解析+练习

三年级奥数拓展还原问题例题解析+练习

还原问题还原问题,指的是给出一个数的运算过程及结果,再求这个数的问题。

例一、按要求填数。

练习1.2.例二、某数加上5, 乘以5, 减去5,除以5, 其结果等于5。

求这个数。

练习1、某数加上6,乘以6, 减去6,除以6, 最后结果等于6。

问这个数是几?2、一次数学考试后,李军问于昆数学考试得多少分。

于昆说:“用我得的分数减去8加上10,再除以7,最后乘以4,得52。

”小朋友,你知道于昆得多少分吗?例三、贝贝、欢欢和迎迎三人各有一些连环画,贝贝给欢欢3本,欢欢给迎迎5本后,三人的本数都是10本。

那么贝贝、欢欢和迎迎原来各有多少本?练习1、小松、小明、小航各有玻璃球若干个,如果小松给小明10个,小明给小航6个后,三人的个数都是25个,三人原来各有玻璃球多少个?432 -24 +15 ×8 88 +6 -10 ×2 ×4 40 -6 ÷2 +7 ÷62、甲、乙、丙三个组各有一些图书,如果甲组借给乙组13本后,乙组又送给丙组6本,这时三个组的图书本数同样多,都是45本。

原来乙组和丙组哪组的图书多,多几本?例四、甲乙丙三个小朋友各有年历卡若干张,如果甲给乙13张,乙给丙23张,丙给甲3张,那么他们每人各有30张。

原来3人各有年历卡多少张?例五、练习1、甲、乙、丙三人各有一些连环画,如果甲给乙9本,乙给丙11本,丙给甲16本,那么这时三人各有连环画25本。

他们原来各有连环画多少本?2、甲、乙、丙三辆载重量不同的货车拉运一批货物,如果甲车拉的货物给乙车6吨,乙车拉的货物给丙车11吨,丙车拉的货物给甲车7吨,则三辆车所拉的货物都是20吨。

问:甲、乙、丙三辆货车的载重量分别是多少吨?例六、小红、小青、小宁都喜爱画片。

如果小红给小青11张画片,小青给小宁20张画片,小宁给小红5张画片,那么他们三人的画片张数同样多。

已知他们三人共有画片150张,他们三人原来各有画片多少张?例七、练习1、三年级三个班共有学生156人,若从一班调5人到二班,从二班调8人到三班,从三班调4人到一班,这时每个班的人数正好相同。

三年级奥数:还原问题

三年级奥数:还原问题

盈亏问题〔一〕1、少先队员植树,如果每人植 5棵,那么剩下13棵,假设每人植7棵,那么差21棵,参加植树的少先队员有多少人?这批树有多少棵?2、分一堆苹果,每人分3个,还剩下2个苹果;每人分4个,还缺2个,问有几个人?一共有几个苹果?3、四年级同学搬砖,每人搬一块还剩20块,每人搬2块差30块,有多少个同学?有多少块砖?4、学校给新生安排宿舍,假设7人一间那么多5人,假设8人一间,那么最后一间只住2人,共有多少新生?宿舍多少间?5、学校招收一批学员,如果每班50人,那么还要招收45人,如果每班40人,那么最后一个班有人,问方案编几个班?共招收多少名学员?6、学校有一些图书,准备分给几个班级,如果每班分40本,还需再买20本,如35果每班分本,那么最后一个班可以分到45本,学校原来有图书多少本?准备分给几个班?7、解放军战士赶往某地搞洪抢险,如果每辆汽车坐35人,那么剩10人;如果每辆汽车坐40人,可剩一辆汽车。

一共有多少辆汽车?多少个战士?8、学校分配宿舍,如果说每个房间住8人,那么多出4个房间,如果每个房间住5人,那么少 2个房间,问这批学生有多少人?9、用一根绳子测量树周长,绕 3周绳子还余84厘米,如果绕5周,绳子缺16厘米,绕这棵树一周需绳子多少厘米?10、同学们去划船,如果减少一条船,每条船正好坐9人,如果增加一条船,每条船正好坐 6 人,问全部有多少人?11、幼儿园的王阿姨分饼干,如果每人分8块,那么多出2块饼干;如果每人分10块,那么少12块。

问有几个小朋友,几块饼干?12、老师买来一些练习本分给优秀少先队员,如果每人分本,那么多出2本。

优秀少先队员有几人,买来多少本练习本?5本,那么多出14本;如果每人分7。

三年级奥数:还原问题

三年级奥数:还原问题

还原问题一、知识要点一些应用题,如果从条件分析解答不太容易,但如果从题目所求的问题入手进行思考分析,利用已知条件一步步倒着推理,就比较容易解决问题,这种倒过来思考问题的方法,就就是还原法。

用还原法解题,关键就是从最后一步结果出发,依照题意顺次逐步向前推理,每一步运算都就是原来运算的逆运算,即变加为减,变减为加,变乘为除,变除为乘,同时列式时要注意运算顺序,并正确使用括号。

二、经典例题例1、某数加上5,乘以5,减去5,除以5,其结果等于5,这个数就是多少?皮皮鲁不想再做小孩子,想快快长大,这时出现了一位白胡子老爷爷,她说可以帮助皮皮鲁实现愿望,而皮皮鲁不太相信。

她就问老爷爷多大年纪了?例2、老爷爷回答她说:“我的岁数加上5,然后除以6,接着乘以7,最后减去5,不多不少刚好100岁。

”您能帮皮皮鲁算出老爷爷今年多少岁不?皮皮鲁终于如愿以藏长大了,来到一家百货公司上班,她负责销售电视机。

当她上了两天班之后,经理来巡视了。

例3、皮皮鲁第一天卖出总数的一半少6台,第二天卖出余下的一半多10台,这时还剩18台。

经理问她这批彩电原本一共有多少台?体验训练1一个数减24加上15,再乘以8得432。

求这个数。

例4、妈给家里买了一些水果,第一天她们一家三口吃了全部的一半,第二天又吃了剩下的一半,第三天吃了剩下的一半还多一个,这时只剩下2个桃子。

问:小明妈妈买了多少个桃子。

例5、做一道加法算式题时,由于粗心,将个位上的5瞧作9,把十位上的8瞧作3,结果所得的与就是123,正确的答案就是多少?例6、小红、小青都喜欢画片。

如果小红给小青11张画片,小青给皮皮鲁20张画片,皮皮鲁给小红5张画片,那么她们三人的画片张数同样多。

已知她们三人共用画片150张,她们三人原来各有画片多少张?*例7、三堆棋子共96枚,小华先从第一堆里拿出与第二堆棋子数相等的棋子放入第二堆;再从第二堆棋子数相等的棋子放入第二堆;再从第二堆中拿出与第三堆棋子数相等的棋子放入第三堆;最后又从第三堆拿出与第一堆棋子数相等的棋子放入第一堆,这时,三堆棋子数正好相等,问三堆棋子数原来各有多少枚?三、课后作业1、一个数加上3,乘以4,减去2,除以9,结果等于2,这个数就是多少?2、一根电线,第一次用去全长的一半,第二次再用去余下的一半,这时还剩6米,这根电线原来长多少米?3、妈妈去商店购物,买第一件商品时用去所带钱数的一半,买第二件商品用去余下钱数的一半,这时妈妈身上还剩120元,妈妈原来身上一共带有多少钱?4、小红在做一道减法算式时,将减数十位上的8瞧成3,个位上的0瞧成6,这样减出的差就是61,正确的差应就是多少?5、3只笼子里共养鸡18只,如果从第1只笼子里取4只放进第2只笼子里,再从第2只笼子里取3只放到第3只笼子里,最后从第3只笼子里取2只放回第一只笼子里,三只笼子里的鸡就一样多了,求3只笼子里原来各养鸡多少只?。

三年级还原问题应用题

三年级还原问题应用题

三年级还原问题应用题一、还原问题的概念还原问题是指已知一个数经过某些运算之后得到了一个结果,要求原来的数。

解答这类问题时,我们通常根据题意从后往前进行逆运算。

二、例题及解析1. 例题一个数加上5,再乘以3,然后减去6,最后除以2,结果等于12。

这个数是多少?2. 解析我们从最后的结果12开始,按照运算顺序逐步往前进行逆运算。

因为最后是除以2得到12,所以在除以2之前的数字是:公式。

之前是减去6得到24,那么在减去6之前的数字是:公式。

再往前是乘以3得到30,所以在乘以3之前的数是:公式。

最开始是加上5得到10,那么这个数就是:公式。

3. 另一个例题小明有一些弹珠,他先送给小红一半,又送给小刚剩下的一半多2颗,这时他还剩下5颗弹珠。

小明原来有多少颗弹珠?4. 解析我们从最后剩下的5颗弹珠开始分析。

因为送给小刚剩下的一半多2颗后剩下5颗,那么在送给小刚之前剩下的数量是:公式颗。

这14颗是送给小红一半后剩下的,所以小明原来有的弹珠数量是:公式颗。

三、练习题1. 题目一个数减去8,乘以4,再加上5,最后除以3,结果是13。

这个数是多少?2. 解析从结果13开始逆运算。

因为除以3得到13,所以除以3之前是:公式。

加上5得到39,那么加5之前是:公式。

乘以4得到34,所以乘4之前是:公式。

减去8得到8.5,这个数就是:公式。

2. 题目有一筐苹果,第一天吃了一半多2个,第二天吃了剩下的一半少1个,这时筐里还剩下8个苹果。

这筐苹果原来有多少个?3. 解析从剩下的8个苹果开始。

因为第二天吃了剩下的一半少1个剩下8个,所以第二天没吃之前剩下的数量是:公式个。

第一天吃了一半多2个剩下14个,那么这筐苹果原来的数量是:公式个。

三年级数学下册素材-还原问题【奥数拓展】(例题+分析)(含答案) 全国通用

三年级数学下册素材-还原问题【奥数拓展】(例题+分析)(含答案) 全国通用

还原问题【奥数拓展】应用题:还原问题学习:用画图法和列表法进行还原。

掌握:倒推法的解题思路以及方法,会运用倒推法解决问题。

诀窍1简单计算型例题1:丁丁写了一个数,他说这个数先加上3,再乘3,然后除以2,最后减去2,结果是10,问:原数是多少?【解析】分析时可以从最后的结果是10逐步倒着推,用逆运算进行还原,如果没减去2,此数是:10+2=12.如果没除以2,此数是:12×2=24.如果没乘3,此数是:24÷3=8.如果没加上3,此数是:8—3=5.综合算式(练习1:有一个数,如果用它加上6,然后乘6,再减去6,最后除以6,所得的商还是6,那么这个数是多少?例题2:笑笑老师带着37名同学到野外春游。

休息时,小强问:“笑笑老师您今年多少岁啦?”笑笑老师有趣地回答:“我的年龄乘2,减去16后,再除以2,加上8,结果恰好是我们今天参加活动的总人数。

”小朋友们,你知道笑笑老师今年多少岁吗?【解析】采用倒推法,我们可以从最后结果“参加活动的总人数”即37+1=38(人)倒着往前推。

这个数没加上8时应是多少?没除以2时应是多少?没减去16时应是多少?没乘以2时应是多少?这样依次逆推,就可以求出笑笑老师今年的岁数。

没加上8时应是:38—8=30;没除以2时应是:30×2=60;没减去16时应是:60+16=76;没乘以2时应是:76÷2=38,即【(38—8)×2+16】÷2=38(岁)答:笑笑老师今年38岁。

练习2:小智问小康:“你今年几岁?”小康回答说:“用我的年龄数减去8,乘7,加上6,除以5,正好等于4.请你算一算,我今年几岁?”例题3:一种有益的细菌种每小时可增长1倍。

现有一批这样的细菌,8小时候达到200万个。

当它们达到50万个时,经历了多长时间?【解析】首先要明确细菌的变化规律,每小时增长1倍也就是变为原来的2倍,即×2,那么倒推上一步,就需要÷2;已知第8小时涨了1倍后是200万个,所以第7小时是:200÷2=100(万个)。

三年级奥数:还原问题

三年级奥数:还原问题

还原问题一、知识要点一些应用题,如果从条件分析解答不太容易,但如果从题目所求的问题入手进行思考分析,利用已知条件一步步倒着推理,就比较容易解决问题,这种倒过来思考问题的方法,就是还原法。

用还原法解题,关键是从最后一步结果出发,依照题意顺次逐步向前推理,每一步运算都是原来运算的逆运算,即变加为减,变减为加,变乘为除,变除为乘,同时列式时要注意运算顺序,并正确使用括号。

二、经典例题例1、某数加上5,乘以5,减去5,除以5,其结果等于5,这个数是多少?皮皮鲁不想再做小孩子,想快快长大,这时出现了一位白胡子老爷爷,他说可以帮助皮皮鲁实现愿望,而皮皮鲁不太相信。

他就问老爷爷多大年纪了?例2、老爷爷回答他说:“我的岁数加上5,然后除以6,接着乘以7,最后减去5,不多不少刚好100岁。

”你能帮皮皮鲁算出老爷爷今年多少岁吗?皮皮鲁终于如愿以藏长大了,来到一家百货公司上班,他负责销售电视机。

当他上了两天班之后,经理来巡视了。

例3、皮皮鲁第一天卖出总数的一半少6台,第二天卖出余下的一半多10台,这时还剩18台。

经理问她这批彩电原本一共有多少台?体验训练1一个数减24加上15,再乘以8得432。

求这个数。

例4、妈给家里买了一些水果,第一天他们一家三口吃了全部的一半,第二天又吃了剩下的一半,第三天吃了剩下的一半还多一个,这时只剩下2个桃子。

问:小明妈妈买了多少个桃子。

例5、做一道加法算式题时,由于粗心,将个位上的5看作9,把十位上的8看作3,结果所得的和是123,正确的答案是多少?例6、小红、小青都喜欢画片。

如果小红给小青11张画片,小青给皮皮鲁20张画片,皮皮鲁给小红5张画片,那么他们三人的画片张数同样多。

已知他们三人共用画片150张,他们三人原来各有画片多少张?*例7、三堆棋子共96枚,小华先从第一堆里拿出和第二堆棋子数相等的棋子放入第二堆;再从第二堆棋子数相等的棋子放入第二堆;再从第二堆中拿出与第三堆棋子数相等的棋子放入第三堆;最后又从第三堆拿出与第一堆棋子数相等的棋子放入第一堆,这时,三堆棋子数正好相等,问三堆棋子数原来各有多少枚?三、课后作业1、一个数加上3,乘以4,减去2,除以9,结果等于2,这个数是多少?2、一根电线,第一次用去全长的一半,第二次再用去余下的一半,这时还剩6米,这根电线原来长多少米?3、妈妈去商店购物,买第一件商品时用去所带钱数的一半,买第二件商品用去余下钱数的一半,这时妈妈身上还剩120元,妈妈原来身上一共带有多少钱?4、小红在做一道减法算式时,将减数十位上的8看成3,个位上的0看成6,这样减出的差是61,正确的差应是多少?5、3只笼子里共养鸡18只,如果从第1只笼子里取4只放进第2只笼子里,再从第2只笼子里取3只放到第3只笼子里,最后从第3只笼子里取2只放回第一只笼子里,三只笼子里的鸡就一样多了,求3只笼子里原来各养鸡多少只?三年级奥林匹克数学专题讲解——植树问题理论A 篇同学们,你们有没有注意学校道路旁边的树?它们是每隔几米植一棵?下面有这样一个问题:植树节那天,王老师出了这样一道题:“一条路长1000米,在路的一边从头到尾每隔5米种一棵树,一共可以种多少棵树?如果这条路是一条环湖大道呢?”像上面这样研究总长度、树距、段数、树的棵数等之间的关系的问题,通常称之为“植树问题”。

三年级奥数第30讲 还原问题

三年级奥数第30讲 还原问题

第30讲:“还原”解题专题简析:“一个数加上3,乘3,再减去3,最后除以3,结果还是3,这个数是几呢”像这样已知一个数的变化过程和最后的结果,求原来的数,这类问题我们通常把它叫做还原问题。

解答还原问题一般采用倒推法,简单说就是倒过来想。

解答还原问题,我们可以根据题意从结果出发,按它变化的相反方向一步步倒着推,直到问题解决。

同时可利用线段图、表格来帮助我们理解题意。

【例题1】小芳问爷爷现在多大年纪。

爷爷说:“把我的年龄加上25再除以4,减去15后乘10,正好是100岁。

”爷爷现在多少岁?【习题一】1、小明问爷爷今年多大年纪。

爷爷说:“把我的年龄加上18,除以4,再减去20,然后用9乘,恰好是27岁。

”爷爷今年多少岁?2、牧童正在草地上放羊,一位旅行者问牧童:“你这群羊有多少只?”牧童回答:“把我的羊的只数除以6,乘3,加上2,再乘2,正好等于100。

请你算算我有多少只羊?”3、四年级的小红与小英正在玩扑克牌游戏。

小红手中的牌“J”代表11,“Q”代表12,“K”代表13,小红叫小英从她手中任意抽一张牌,把代表这张牌的数先减去6,再加上9,然后除以3,最后乘以2.小英按照小红说的依次计算,最后把得数10告诉了小红。

请问小英抽到的是哪张牌?【例题2】甲、乙、丙三人各有一些连环画,甲给乙3本连环画、乙给丙5本连环画后,三个人连环画的本数同样多。

原来乙比丙多多少本连环画?【习题二】1、小松、小明、小航各有玻璃球若干个。

如果小松给小明10个玻璃球、小明给小航6个玻璃球后,三人玻璃球的个数同样多。

小明原来比小航多多少个玻璃球?2、甲、乙、丙三个组各有一些图书。

如果甲组借给乙组13本图书后,乙组又送给丙组6本图书,这时三个组图书的本数同样多。

原来乙组和丙组哪个组的图书多?多几本?3、甲、乙、丙三个小朋友各有年历卡若干张。

如果甲给乙13张年历卡,乙给丙23张年历卡,丙给甲3张年历卡,那么他们每人各有30张年历卡。

小学三年级还原问题的奥数常考题型

小学三年级还原问题的奥数常考题型

小学三年级还原问题的奥数常考题型
小学三年级还原问题的奥数常考题型
摘要:奥数一直都是小学生学习的重点,父母想尽办法要提高孩子的数学成绩,为大家提供了小学三年级奥数常考知识点:还原问题,希望对大家有所帮助。

题型:还原问题难度:
牛老师带着37名同学到野外春游.休息时,小强问:"牛老师您今年多少岁啦?"牛老师有趣地回答:"我的.年龄乘以2,减去16后,再除以2,加上8,结果恰好是我们今天参加活动的总人数."小朋友们,你知道牛老师今年多少岁吗?
【答案解析】
采用倒推法,我们可以从最后的结果"参加活动的总人数"即38倒着往前推.这个数没加上8时应是多少?没除以2时应是多少?没减去16时应是多少?没乘以2时应是多少?这样依次逆推,就可以求出牛老师今年的岁数.没加上8时应是:38-8=30;没除以2时应是:30×2=60;没减去16时应是:60+16=76;没乘以2时应是:76÷2=38,即[(38-8)×2+16]÷2=38(岁).
结尾:以上小学频道为大家提供了小学三年级奥数常考知识点:还原问题,一定要掌握哦!。

小学奥数还原问题经典例题讲解

小学奥数还原问题经典例题讲解

小学奥数还原问题经典例题讲解: 还原问题已知一个数,经过某些运算之后,得到了一个新数,求原来的数是多少的应用问题,它的解法常常是以新数为基础,按运算顺序倒推回去,解出原数,这种方法叫做逆推法或还原法,这种问题就是还原问题.还原问题又叫做逆推运算问题.解这类问题利用加减互为逆运算和乘除互为逆运算的道理,根据题意的叙述顺序由后向前逆推计算.在计算过程中采用相反的运算,逐步逆推.在解题过程中注意两个相反:一是运算次序与原来相反;二是运算方法与原来相反。

挑砖【例】有26块砖,兄弟2人争着去挑,弟弟抢在前面,刚摆好砖,哥哥赶来了。

哥哥看弟弟挑得太多,就拿来一半给自己。

弟弟觉得自己能行,又从哥哥那里拿来一半。

哥哥不让,弟弟只好给哥哥5块,这样哥哥比弟弟多挑2块。

问最初弟弟准备挑多少块?【分析】我们得先算出最后哥哥、弟弟各挑多少块。

只要解一个“和差问题"就知道:哥哥挑“(26+2)-2 = 14”块,弟弟挑"26-14=12"块。

提示:解还原问题所作的相应的“逆运算”是指:加法用减法还原,减法用加法还原,乘法用除法还原,除法用乘法还原,并且原来是加(减)几,还原时应为减(加)几,原来是乘(除)以几,还原时应为除(乘)以几。

对于一些比较复杂的还原问题,要学会列表,借助表格倒推,既能理清数量关系,又便于验算。

例】某人去银行取款,第一次取了存款的一半多50元,第二次取了余下的一半多100元。

这时他的存折上还剩1250元。

他原有存款多少元?【分析】从上面那个“重新包装”的事例中,我们应受到启发:要想还原,就得反过来做(倒推)。

由"第二次取余下的一半多100元"可知,"余下的一半少100元”是1250元,从而“余下的一半”是1250+100=1350(元)余下的钱(余下一半钱的2倍)是:1350乂2=2700(元)用同样道理可算出"存款的一半"和"原有存款"。

三年级奥数-用还原法解题讲义和练习

三年级奥数-用还原法解题讲义和练习

用还原法解题讲义用还原法解题,一般用倒退法,简单说,就是倒过来想。

根据题意,从结果出发,按它变化的相反方向一步步倒着推想。

例1:一个数减24加上15,再乘以8得432,求这个数。

分析:我们从最后结果432出发倒着推理。

最后乘以8得432,要还原就应该除以8,即:432÷8=54;加上15,要还原就应该减15,即:54-15=39;减24,要还原就应该加上24,即:39+24=63。

列式如下:432÷8-15+24=63答:这个数是63。

例2:甲、乙、丙三人各有一些连环画,甲给乙3本,乙给丙5本后,三个人的本数同样多,乙原来比丙多多少本?分析:根据“乙给丙5本后,三个人的本数同样多”可知乙比丙多2个5本:5×2=10本;而这10本中有3本是甲给乙的,要还给甲3本,乙就只比丙多10-3=7本。

列式如下:5×2=10本10-3=7本答:乙原来比丙多7本。

例3:李奶奶卖鸡蛋,她上午卖出总数的一半多10个,下午又卖出剩下的一半多10个,最后还剩65个鸡蛋没有卖出。

李奶奶原来有多少个鸡蛋?线段图:余下的一半多10个总数的一半多10个剩下65个分析:从图中可以看出,剩下的65个鸡蛋加上10个就等于余下的一半。

余下的个数=(65+10)×2=150(个)。

而余下的150个加上10个就等于总数的一半,总数=(150+10)×2=320(个)。

列式如下:余下的个数=(65+10)×2=150(个)总数=(150+10)×2=320(个)。

答:李奶奶原来有320个鸡蛋。

例4:小红、小青、小宁都喜爱画片。

如果小红给小青11张画片,小青给小宁20张画片,小宁给小红5张画片,那么他们三人的画片张数同样多。

已知他们三人共有画片150张,他们三人原来各有画片多少张?分析:根据“三人共有画片150张”,可知平均每人有150÷3=50张。

再对照体重条件,把各人的画片还原。

(完整版)三年级数奥还原问题

(完整版)三年级数奥还原问题

三年级数奥第二十一讲还原问题(一)姓名一个数,经过一系列运算,可以得到一个新的数.反过来,从最后得到的数,倒推回去,可以得出原来的数。

这种求原来的数的问题,称为还原问题。

还原问题的解法就是倒推法,必要的时候还需要借助图的表示等使解法更清楚。

例1 某数先加上3,再乘以3,然后除以2,最后减去2,结果是10,问原数是多少?试一试一个数扩大3倍后,再增加100,然后缩小一半,再减少36,最后得到50,求原数?例2 一个人沿着大堤走了全长的一半后,又走了剩下路程的一半,还剩下1千米,问:大堤全长多少千米?试一试将一根绳子一半一半地剪下去,剪了4次,第4次剩下的绳子正好一米。

这根绳子原来多少长?例3 甲在加工一堆零件,第一天加工了这堆零件的一半又10个,第二天又加工了剩下的一半又10个,还剩下25个没有加工,问:这批零件有多少个?试一试小朋友们分一堆苹果,先把一半再加3个给年龄较小的,然后再把其余的一半加2个分给年龄较大的,最后还剩4个苹果.问,这堆苹果原来有多少个?练习二十一1.某数加上11,减去12,乘以13,除以14,其结果等于26,这个数是多少?2。

某数加上6,乘以6,减去6,其结果等于36,求这个数。

3。

在125×□÷3×8—1=1999中,□内应填入什么数?4.小乐爷爷今年的年龄数减去15后,除以4,再减去6之后,乘以10,恰好是100。

问:小乐爷爷今年多少岁?5。

粮库内有一批面粉,第一次运出总数的一半多3吨,第二次运出剩下的一半少7吨,还剩4吨。

问:粮库里原有面粉多少吨?6。

有一筐梨,甲取一半又一个,乙取余下的一半又一个,丙再取余下的一半又一个,这时筐里只剩下一个梨.这筐梨共值8。

80元,那么每个梨值多少钱?桔子。

问:树上原来有桔子多少个?8.某人去银行取款,第1次取了存款的一半还多5元,第二次取了余下的一半还多10元,这时存折上还剩125元。

问:此人原有存款多少元?挑战竞赛1、我国习惯用℃作温度的单位(摄氏温度),而有些国家习惯用oF作温度的单位(华氏温度),它们之间的换算方法是:华氏温度减去32,再乘以5,再除以9,就是摄氏温度的数值。

小学数学3年级培优奥数讲义 第25讲 还原解题(含解析)

小学数学3年级培优奥数讲义 第25讲  还原解题(含解析)

第25讲还原解题学习目标学习了解加、减、乘、除运算的变化规律;利用逆运算这些规律来解决一些较简单的问题;通过学生解决问题的过程,激发学生的创新思维,培养学生学习的主动性和坚韧不拔、勇于探索的意志品质。

知识梳理一、还原问题已知某个数经过加、减、乘、除运算后所得的结果,要求原数,这类问题叫做还原问题,还原问题又叫逆运算问题。

解决这类问题通常运用倒推法。

二、解题策略遇到比较复杂的还原问题,可以借助画图和列表来解决这些问题。

典例分析例1、小刚的奶奶今年年龄减去7后,缩小9倍,再加上2之后,扩大10倍,恰好是100岁。

小刚的奶奶今年多少岁?例2、一个数的3倍加上6,再减去9,最后乘上2,结果得60。

这个数是多少?例3、某商场出售洗衣机,上午售出总数的一半多10台,下午售出剩下的一半多20台,还剩95台。

这个商场原来有洗衣机多少台?例4、粮库内有一批大米,第一次运出总数的一半多3吨,第二次运出剩下的一半多5吨,还剩下4吨。

粮库原有大米多少吨?例5、小明、小强和小勇三个人共有故事书60本。

如果小强向小明借3本后,又借给小勇5本,结果三个人有的故事书的本数正好相等。

这三个人原来各有故事书多少本?例6、甲、乙、丙三个小朋友共有贺年卡90张。

如果甲给乙3张后,乙又送给丙5张,那么三个人的贺年卡张数刚好相同。

问三人原来各有贺年卡多少张?例7、甲乙两桶油各有若干千克,如果要从甲桶中倒出和乙桶同样多的油放入乙桶,再从乙桶倒出和甲桶同样多的油放入甲桶,这时两桶油恰好都是36千克。

问两桶油原来各有多少千克?例8、王亮和李强各有画片若干张,如果王亮拿出和李强同样多的画片送给李强,李强再拿出和王亮同样多的画片给王亮,这时两个人都有24张。

问王亮和李强原来各有画片多少张?例9、两只猴子拿26个桃,甲猴眼急手快,抢先得到,乙看甲猴拿得太多,就抢去一半;甲猴不服,又从乙猴那儿抢走一半;乙猴不服,甲猴就还给乙猴5个,这时乙猴比甲猴多5个。

关于还原类应用题的三年级奥数试题详解

关于还原类应用题的三年级奥数试题详解

关于还原类应用题的三年级奥数试题详解
关于还原类应用题的三年级奥数试题详解
仓库里有一批大米.第一天售出的'重量比总数的一半少12吨.第二天售出的重量比剩下的一半少12吨,结果还剩下19吨.这个仓库原有大米多少吨?
考点:逆推问题.
分析:此题应用逆推法,从后向前推算,即可得出.
解答:解:[(78-12)×2-12]×2,
=[132-12]×2,
=240(吨).
答:这个仓库原有大米240吨.
点评:还原问题是逆解应用题.一般根据加减法或乘除法的互逆运算关系,由题目所叙述的顺序倒过来思考,从最后一个已知条件出发,逆推而上,求得结果.。

三年级奥数还原问题

三年级奥数还原问题

还原问题(二)1、一条水渠,第一周修了全长的一半少150米,第二周修了剩下的一半多150米,最后剩下350米。

问这条水渠长多少米?2、甲乙丙三堆煤共36吨,如果从甲堆煤取出3吨给乙堆,再从乙堆取出5吨给丙堆,那么三堆煤的吨数就相等。

乙堆煤原有多少吨?3、计算一道加法算式,小红把十位上的5看成3,把个位上的1看成7,结果得到的和是196。

正确的答案是多少?4、小宇做一道减法算式,把被减数十位上的6看成9,减数个位上的9看成6,最后所得的差是355。

这道题的正确答案是多少?5、甲乙两个车站共停了45辆汽车,如果从甲站开到乙站6辆,又从乙站开出9辆,这时乙站停的汽车辆数是甲站的2倍。

原来甲乙两站个停车多少辆?6、一个数减去2487,小明在计算时错把被减数百位和十位上的数交换了,结果得8439,正确的结果是多少?参考答案:1、[(350+150)×2-150] ×2=17002、36÷3+5-3=143、196+20-6=2104、355-(90-60)-(9-6)=3225、(45-9)÷(1+2)=1212+6=1845-18=276、8439+2487=1092610296-2487=78092、文化用品店新到一批日记本,上一周售出本数比总数一多12本,还有19本。

问这批日记本有多少本?三年级归总问题(7--------28)1、购买20千克每千克5元的杨梅的钱,可以购买每千克2元的橘子多少千克?2、购买30千克每千克4元的猕猴桃的钱,可以买每千克3元的苹果多少千克?3、一些零件25人做27小时可以完成,如果让15人来做,多少小时完成?4、4、一些砖20人做25小时可以完成,如果让10人来做,多少小时完成?5、小豪家的书架有五层,每层放36本书,现在要空出一层放碟片,把这些书放入4层中,每层比原来多放几本?6、小丽家的书架有7层,每层放30本书,现在要空出一层放杂物,把这些书放入6层中,每层比原来多放几本?7、一辆汽车从甲城去乙城每小时60千米,7小时到达。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

还原问题一、还原问题已知一个数,经过某些运算之后,得到了一个新数,求原来的数是多少的应用问题,它的解法常常是以新数为基础,按运算顺序倒推回去,解出原数,这种方法叫做逆推法或还原法,这种问题就是还原问题.还原问题又叫做逆推运算问题.解这类问题利用加减互为逆运算和乘除互为逆运算的道理,根据题意的叙述顺序由后向前逆推计算.在计算过程中采用相反的运算,逐步逆推.二、解还原问题的方法在解题过程中注意两个相反:一是运算次序与原来相反;二是运算方法与原来相反.方法:倒推法。

口诀:加减互逆,乘除互逆,要求原数,逆推新数.关键:从最后结果出发,逐步向前一步一步推理,每一步运算都是原来运算的逆运算,即变加为减,变减为加,变乘为除,变除为乘.列式时还要注意运算顺序,正确使用括号方框箭头法【例 1】小淘气进入一座高楼的电梯,他乘电梯上升3层,下降5层又上升7层,下降9层,这时他位于第23层,他是在第几层进入电梯的?+-+-=层【分析】23975327【例 2】学学做了这样一道题:一个数加上3,减去5,乘4,除以6得16,求这个数.小朋友,你知道答案吗?【分析】根据题意,一个数,经过加法、减法、乘法、除法的变化,得到结果16,应用逆推法,由结果10,根据加、减法与乘、除法的互逆运算,倒着往前计算.Array 16×6=96,96÷4=24,24+5=29,29-3=26综合算式为:16×6÷4+5-3=96÷4+5-3=24+5-3=29-3=26所以这个数为26.【例 3】一个数减16加上24,再除以7得36,求这个数.你知道这个数是几吗? 【分析】36×7-24+16=244.【例 4】 某数先加上3,再乘以3,然后除以2,最后减去2,结果是10,问:原数是多少?【分析】 综合算式,原数是5.【例 5】有一个数,如果用它加上6,然后乘以6,再减去6,最后除以6,所得的商还是6,那么这个数是 。

【分析】将最终结果进行逆推,得: 666661()⨯+÷-=【例 6】一个数减16加上24,再除以7得36,求这个数.你知道这个数是几吗? 【分析】3672416244⨯-+=.【例 7】学学和思思在游玩时,遇到一位小神仙,他们问这位神仙:“你一定不到100岁吧!”谁知这位神仙摇摇头说:“你们算算吧!把我的年龄加上75,再除以5,然后减去15,再乘以10,恰好是2000岁.”小朋友,你知道这位神仙现在有多少岁吗? 【分析】根据题意,一个数,经过加法、除法、减法、乘法的变化,得到结果2000,应用逆推法,由结果2000,根据加、减法与乘、除法的互逆运算,倒着往前计算.200010200÷=,20015215+=,21551075⨯=,1075751000-=。

综合算式为:(20001015)5751000÷+⨯-= 这位神仙现在的年龄是1000岁。

【例 8】科学课上,老师说:“土星直径比地球直径的9倍多4800千米,土星直径除以24等于水星直径,水星直径加上2000千米是火星直径,火星直径除以2减去()1022335+⨯÷-==200010-15÷5+75500千米等于月亮的直径,月亮直径是3000千米.”请你算一算,地球的直径是多少?【分析】 先求土星直径:〔(3000+500)×2-2000〕×24=120000(千米)再求地球直径:(120000—4800)÷9=12800(千米),即:地球的直径是12800千米.【例 9】一个数的四分之一减去5,结果等于5,则这个数等于_____。

【分析】 方法一:倒推计算知道,一个数的四分之一是10,所以这个数是104=40⨯。

方法二:令这个数为x ,则1554-=x ,所以40=x 。

【例 10】 假设有一种计算器,它由A 、B 、C 、D 四种装置组成,将一个数输入一种装置后会自动输出另一个数。

各装置的运算程序如下: 装置A :将输入的数加上6之后输出;装置B :将输入的数除以2之后输出;装置C :将输入的数减去5之后输出;装置D :将输入的数乘以3之后输出。

这些装置可以连接,如在装置A 后连接装置B ,就记作:A →B 。

例如:输人1后,经过A →B ,输出3.5。

(1)若经过A →B →C →D ,输出120,则输入的数是多少?(2)若经过B →D →A →C ,输出13,则输入的数是多少?【分析】 方法一:逆向考虑。

(1)输入到D 的数为120÷3=40,输入到C 的数为40+5=45,输入到B 的数为45×2=90,所以输入到A 的数是90-6=84。

(2)输入到C 的数是13+5=18,输入到A 的数是18-6=12,输入到D 的数是12÷3=4,所以输入到B 的数是4×2=8。

方法二:(1)设输入的数是x ,则(653=1202x +⎛⎫-⨯ ⎪⎝⎭解得,x =84。

(2)设输入的数是y ,则365=132y ⨯+-,解得y =8线段图法 【例 11】 一根电线剪了3次,每次都剪去剩下的一半多1米,最后剩下5米。

这根电线原来有多长?【分析】 还原思想:(51)212+⨯=米 (121)226+⨯=米(261)254+⨯=米【例 12】 小明吃糖,第一次吃了4颗糖,第二次吃了余下糖的一半少1颗,这时还剩下5颗糖没吃.问:原来共有多少颗糖?【分析】 根据题意如下图所示:第一次吃后余下(51)28-⨯=(颗),所以共有8412+=(颗).【例 13】 一条绳子,第一次剪去全长的一半多1米,第二次剪去余下的一半少1米,这时还剩下3米,问:这条绳子原来长多少米?根据题意如下图所示:所以这条绳子的原长是[(31)21]210-⨯+⨯=(米)【例 14】 一捆电线,第一次用去全长的一半多3米,第二次用去余下的一半少10米,第三次用去15米,最后还剩下6米。

这捆电线原来有多少米?【分析】 根据题意如下图所示:还原思想:(61510)222+-⨯=米(223)250+⨯=米【例 15】 一群蚂蚁搬家,原存一堆食物.第一天运出总数的一半少12克.第二天运出剩下的一半少12克,结果窝里还剩下43克.问蚂蚁家原有食物多少克?【分析】 (倒推法)如果第二天再多运出12克,就是剩下的一半,所以第一天运出后,剩下的一半重量是43-12=3l(克);第一天运出后剩下的重31×2=62(克).那么,一半的重量是62-12=50(克),原有食物50×2=100(克).即 [(43-12)×2-12]×2=100(克).【例 16】 学学看到太上老君正在用一根绳子拴宝葫芦,第一次用去全长的一半还多2米,第二次用去余下的一半少10米,第三次用去15米,最后还剩9米,那么这根绳子原来有多少米呢?【分析】 根据题意,画图倒推分析: 15+9=24(米)(24-10)×2=28(米)(28+2)×2=60(米)所以,这根绳子全长60米106153【例 17】一根金丝用于制作工艺品,第一次用去2米,又用去余下的一半;第二次用去2米,又用去余下的一半.最后还剩2米,求金丝原有多少米?【分析】第二次中没用余下的一半时,有金丝224⨯=(米)第二次中没用2米时,有金丝426+=(米)第一次中没用余下一半时,有金丝6212⨯=(米)第一次中没用2米时,即原有金丝12214+=(米)【例 18】一筐苹果,第一次卖出这筐苹果总个数的四分之一又6个(假如苹果有36个,它的四分之一是9个,它的三分之一就是12个),第二次又卖出余下的三分之一又4个,第三次卖出余下的二分之一又3个,最后剩下4个,这筐苹果原来有多少个?【分析】由后往前逆推,第三次有:(43)214+⨯=个,第二次有:(144)2327+÷⨯=个,原来有:+÷⨯=个。

(276)3444【例 19】有一堆棋子,把它四等分后剩下一枚,取走三份又一枚;剩下的再四等分又剩一枚,再取走三份又一枚;剩下的再四等分又剩一枚.问:原来至少有多少枚棋子?【分析】棋子最少的情况是最后一次四等分时每份为1枚.由此逆推,得到第三次分之前有⨯(枚).⨯=(枚),第一次分之前有214+1=85⨯+=(枚),第二次分之前有54+1211415所以原来至少有85枚棋子.【例 20】一群小猴分桃子,第一只猴子拿走其中的一半又半个,第二只小猴又拿走余下的一半又半个,第三只小猴拿走最后剩下的一半又半个,正好全部拿完。

小猴一共分掉了个桃子。

【分析】由后往前逆推,最后一个猴子拿走剩下的一半又半个,恰好分完,所以最后一个猴子拿走的应该是一个桃子,即第二个猴子拿过之后,剩下1个桃子,所以第二个猴子应该拿了2个桃子,即第一个猴子取后应该剩下3个桃子,所以第一个猴子应该拿了4个桃子,所以一共分掉了1247++=(个)桃子。

【例 21】 一只猴吃63只桃,第一天吃了一半加半只,以后每天吃前一天剩下的一半再加半只,则 _________ 天后桃子被吃完。

【分析】 通过画表格的方式,可知答案是6.【例 22】 乒乓球从高空落下,到达地面后弹起的高度是落下高度的一半,如果乒乓球从8米的高度落下,那么弹起后再落下,则弹起第_______次时它的弹起高度不足1米。

【分析】 弹起第一次时变为4米,弹起第二次时变为2米,弹起第三次时变化为1米,第4次弹起时不足1米,所以弹起第4次时不足1米。

【例 23】 盒子里有若干个球。

小明每次拿出盒中的一半再放回一个球。

这样共操作了7次,袋中还有3个球。

袋中原有( )个球。

【分析】 倒退法:如,第7次操作前,还剩()3124-⨯=个球。

【例 24】 有一个培养某种微生物的容器,这个容器的特点是:往里面放入微生物,再把容器封住,每过一个夜晚,容器里的微生物就会增加一倍,但是,若在白天揭开盖子,容器内的微生物就会正好减少16个。

小丽在实验的当天往容器里放入一些微生物,心急的她在第二、三、四天斗开封看了看,到第五天,当她又启封查看时,惊讶地发现微生物都没了。

请问:小丽开始往容器里放了 个微生物?【分析】 还原倒推:0←16←8←24←12←28←14←30←15所以原来容器内放了15个微生物.【例 25】 货场原有煤若干吨。

第一次运出原有煤的一半,第二次运进450吨,第三次又运出现有煤的一半又50吨,结果剩余煤的2倍是1200吨。

货场原有煤多少吨?【分析】 这道题由于原有煤的总吨数是未知的,所以要想顺解是很不容易的,我们先看图4,然后再分析。

100663410643结合上面的线段图,用倒推法进行分析:(1)剩余煤的吨数是:(吨)(2)现有煤的一半是:(吨)(3)现有煤的吨数是:(吨)(4)原有煤的一半是:(吨)(5)原有煤的吨数是:(吨) 答:货场原来有煤1700吨。

相关文档
最新文档