函数映射练习
高一数学第二单元1:映射与函数(附答案)
高一(上)数学单元同步练习及期末试题(三)(第三单元 映射与函数)[重点难点]1. 了解映射的概念及表示方法,能识别集合A 与B 之间的一种对应是不是从集合A 到集合B 的映射;了解一一映射的概念。
2. 理解函数的概念,明确确定函数的三个要素;掌握函数的三种表示方法;理解函数的定义域、函数值和值域的意义,会求某些函数的定义域、函数值和简单函数的值域。
3. 理解函数的单调性和奇偶性的概念;掌握判断一些简单函数的单调性和奇偶性的方法,并能利用函数的性质简化函数图像的绘制过程。
4. 了解反函数的概念及互为反函数的函数图像间的关系;会求一些简单函数的反函数。
一、选择题1.已知集合P={40≤≤x x },Q={20≤≤y y },下列不表示从P 到Q 的映射是( )(A )f ∶x →y=21x (B )f ∶x →y=x 31 (C )f ∶x →y=x 32(D )f ∶x →y=x2.下列命题中正确的是( )(A)若M={整数},N={正奇数},则一定不能建立一个从集合M 到集合N 的映射(B)若集合A 是无限集,集合B 是有限集,则一定不能建立一个从集合A 到集合B 的映射 (C)若集合A={a},B={1,2},则从集合A 到集合B 只能建立一个映射 (D)若集合A={1,2},B={a},则从集合A 到集合B 只能建立一个映射3.集合A={x R x x ∈≠,1}⋃{x R x x ∈≠,2},集合B=(-∞,-1)⋃(1,2)⋃(2,+∞),则A 、B 之间的关系是( ) (A )A=B (B )A ⊆B (C )A ⊇B (D )A ⊂B 4.下列函数中图像完全相同的是( ) (A )y=x 与y=2x (B )y=xx 与0x y = (C )y=(x )2与y=x (D )y=)1)(1(11-+=-⋅+x x y x x 与 5.f(x)是一次函数且2f(1)+3f(2)=3,2f(-1)-f(0)=-1,则f(x)等于( )(A )9194+x (B )36x -9 (C )9194-x (D )9-36x 6.若f(x)=21x x+,则下列等式成立的是( )(A )f()()1x f x= (B )f(x 1)=-f(x)(C )f(x 1)=)(1x f (D ))(1)1(x f x f -= 7.函数y=2122--+-+x x xx的定义域是( ) (A )-21-≤≤x (B )-21≤≤x (C )x>2 (D )x 1≠ 8.函数y=122+-x x 的值域是( )(A )[0,+∞] (B )(0,+∞) (C )(-∞,+∞) (D )[1,+∞ ]9.下列四个命题(1)f(x)=x x -+-12有意义;(2)函数是其定义域到值域的映射;(3)函数y=2x(x N ∈)的图像是一直线;(4)函数y=⎪⎩⎪⎨⎧<-≥0,0,22x x x x 的图像是抛物线,其中正确的命题个数是( )(A )1 (B )2 (C )3 (D )410.已知g(x)=1-2x,f[g(x)]=)0(122≠-x xx ,则f(21)等于( ) (A )1 (B )3 (C )15 (D )3011.下列函数中值域是R +的是( )(A )y=132+-x x (B )y=2x+1(x>0) (C )y=x 2+x+1 (D )y=112-x12.若函数y=f(x)的定义域为(0,2),则函数y=f(-2x)的定义域是( ) (A )(0,2) (B )(-1,0) (C )(-4,0) (D )(0,4) 13.函数y=13+-+x x 的值域是( )(A)(0,2] (B)[-2,0] (C)[-2,2] (D)(-2,2) 14.下列函数中在(-∞,0)上单调递减的是( ) (A )y =1-x x (B )y=1-x 2(C )y=x 2+x (D )y=-x -115.设f(x)为定义在R 上的偶函数,且f(x)在[0,+∞)上为增函数,则f(-2),f(-π)、f(3)的大小顺序是( )(A )f(-π)>f(3)>f(-2) (B )f(-π)>f(-2)>f(3) (C )f(-π)<f(3)<f(-2) (D )f(-π)<f(-2)<f(3)16.函数y=xx ++-1912是( ) (A )奇函数 (B )偶函数(C )既是奇函数又是偶函数 (D )非奇非偶数17.函数y=4(x+3)2-4的图像可以看作由函数y=4(x-3)2+4的图象,经过下列的平移得到( ) (A )向右平移6,再向下平移8 (B )向左平移6,再向下平移8 (C )向右平移6,再向上平移8 (D )向左平移6,再向上平移818.若函数f(x)=x 2+bx+c 对任意的实数t,都有f(2+t)=f(2-t),那么( ) (A )f(2)<f(1)<f(4) (B )f(1)<f(2)<f(4) (C )f(2)<f(4)<f(1) (D )f(4)<f(2)<f(1)19.f(x)=x 5+ax 3+bx-8且f(-2)=0,则f(2)等于( ) (A )-16 (B )-18 (C )-10 (D )10 20.命题(1)y=R x d cx b ax ∈++(且x c d -≠)与y=)(cax R x a cx b dx ≠∈-+-且互为反函数;(2)函数y=f(x)的定义域为A ,值域为C ,若其存在反函数,则f 必是A 到C 上的一一映射;(3)偶函数一定没有反函数;(4)f(x)与f -1(x )有相同的单调性,其中正确命题的个数是( ) (A )1 (B )2 (C )3 (D )4 二、填空题1.若一次函数f(x)的定义域为[-3,2],值域为[2,7],那么f(x)= 。
映射与函数
f :A B
x f ( x)
这时称y是x在映射f 的作用下的象,x称作 y的原象。
映射的性质:
①映射的任意性;
②映射的唯一性; ③映射的方向性;
例1、判断下列对应是否构成映射?
aa bb cc (是) e f g
e f g
a b c d
( a是)
b c
e f g d (是)
a e ea b f fb c g gc d (不是) a (不是) d
(2)已知 A=B=R, x A, y B, f : x y ax b , 若集合 B 中的元素 5 和 10 分别对应 A 中的 5 和 20, 求 a, b 值。
(3)从集合 A a , b , c 到集合B x , y , 可以构成___Байду номын сангаас个不同的映射.
函数定义:设 A , B 是两个非空数集, 如果按照某种对应法则 f , 使对于集合 A中的任意一个元素 x ,在集合B中都 有唯一确定的元素 y 与之对应,则 称 f 为集合A上的函数。 记作 y f ( x), x A
⑥ y 2 x 与 s 2t
2
2
④ y x 与 y=
3
x
3
b c e f g
a e f b cg d (是)
注意: (1)就对应来说,一对一,多对一是映射。一 对多不是映射。 (2)集合A中的元素一定有象,且唯一。即 A是所有原象的集合 (3)集合B中的元素未必有原象( B中的元 素可以有剩余。
概念深化:判断下列对应是否构成映射?
(2) A R, B x | x 0, f : 取绝对值;
思考:x 的取值范围 A 叫做函数的定义域, 集合 B 的取值范围是否是函数的值域?
映射与函数习题
广州至慧教育学生姓名 就读年级映射;②“存在性”:对于集合A 中的任何一个元素,集合B 中都存在元素和它对应; ③“唯一性”:对于集合A 中的任何一个元素,在集合B 中和它对应的元素是唯一的.3.用映射定义函数(1).函数的定义:如果A 、B 都是非空数集,那末A 到B 的映射f :A →B 就叫做A →B 的函数。
记作:y=f (x ).(2)定义域:原象集合A 叫做函数y =f (x)的定义域。
(3)值域:象的集合C 叫做函数y =f (x)的值域。
)(B C定义:给定一个集合A到集合B的映射,且a∈A,b∈B。
如果元素a和元素b 对应,那么我们把元素b叫做元素a的象,元素a叫做元素b的原象。
给定映射f:A→B。
则集合A中任何一个元素在集合B中都有唯一的象,而集合B中的元素在集合A中不一定都有原象,也不一定只有一个原象。
问题1:下图中的(1)(2)所示的映射有什么特点?答:发现规律:(1)对于集合A中的不同元素,在集合B中有不同的象,我们把这样的映射称为单射。
(2)集合B中的每一个元素都有原象,我们把这样的映射称为满射。
定义:一般地,设A、B是两个集合。
f:A→B是集合A到集合B的映射,如果B的映射共有n m个。
【映射例题精解】例1在下列对应中、哪些是映射、那些映射是函数、那些不是?为什么?设A={1,2,3,4},B={3,5,7,9},对应关系是f(x)=2x+1,x属于A设A={1,4,9},B+{-1,1,-2,2,-3,3}对应关系是‘A中的元素开平方’设A=R,B=R,对应关系是f(x)=x的3次方,x属于A设A=R,B=R,对应关系是f(x)=2x的2次方+1,x属于A解析:1、是一一映射,且是函数2、不是映射(象是有且唯一)3、是一一映射,且是函数4、是映射,但不是函数,因为B中不是所有值在A中都有对应。
方案中有m种不同的方法,在第二类方案中有n种不同的方法.那么完成这件事共有N=m+n中不同的方法,这是分类加法计数原理;完成一件事需要两个步骤,做第一步有m种不同的方法,做第二步有n种不同的方法.那么完成这件事共有N=m×n种不同的方法例5已知:集合{,,}f a f b f c++=,M a b c→满足()()()0N=-,映射:f M N=,{1,0,1}那么映射:f M N→的个数是多少?思路提示:满足()()()0f a f b f c ++=,则只可能00001(1)0++=++-=,即()f a 、()f b 、()f c 中可以全部为0,或0,1,1-各取一个.解:∵(),(),()f a N f b N f c N ∈ ∈ ∈,且()()()0f a f b f c ++= ∴有00001(1)0++=++-=.当()()()0f a f b f c ===时,只有一个映射;例8.已知集合{04}P x x =≤≤,{02}Q y y =≤≤,下列不表示从P 到Q 的映射是() 答案:C提示:C 选项中2:3f x y x →=,则对于P 集合中的元素4,对应的元素83,不在集合Q 中,不符合映射的概念.例9.集合{3,4}A = ,{5,6,7}B = ,那么可建立从A 到B 的映射个数是__________,从B 到A 的映射个数是__________. 答案:9,8提示:从A 到B 可分两步进行:第一步A 中的元素3可有3种对应方法(可对应5或6或7),第二步A 中的元素4也有这3种对应方法.则不同的映射种数1339N =⨯=.反之从B 到A ,道理相同,有22228N =⨯⨯=种不同映射.3B 中的元素n n +2,则在映射f 下,象20的原象是()A.2B.3 C.4D.54.如果(x,y)在映射f 下的象是(x+y,x-y),那么(1,2)在映射下的原象是()A.(3,1)B.(21,23-)C.(23,21-)D.(-1,3)5.已知点(x ,y)在映射f 下的象是(2x -y ,2x +y),求(1)点(2,3)在映射f 下的像;(2)点(4,6)在映射f 下的原象.6.设集合A ={1,2,3,k},B ={4,7,a 4,a 2+3a},其中a,k ∈N,映射f:A →B ,使B 中元素y =3x +1与A 中元素x 对应,求a 及k 的值. 【综合练习】 一、选择题:1.下列对应是从集合A 到集合B 的映射的是()A .A =R ,B ={x |x >0且x ∈R},x ∈A ,f :x →|x | B .A =N ,B =N +,x ∈A ,f :x →|x -1|C .A ={x |x >0且x ∈R},B =R ,x ∈A ,f :x →x 2C .(-∞,0)∪(0,+∞)D .(-∞,0)∪(1,+∞)6.下列各组中,函数f (x )和g(x )的图象相同的是()A .f (x )=x ,g(x )=(x )2B .f (x )=1,g(x )=x 0C .f (x )=|x |,g(x )=2xD .f (x )=|x |,g(x )=⎩⎨⎧-∞∈-+∞∈)0,(,),0(,x x x x7.函数y =1122---x x 的定义域为()A .{x |-1≤x ≤1}B .{x |x ≤-1或x ≥1}C .{x |0≤x ≤1}D .{-1,1}8.已知函数f (x )的定义域为[0,1],则f (x 2)的定义域为()A .(-1,0)B .[-1,1]C .(0,1)D .[0,1]9.设函数f (x )对任意x 、y 满足f (x +y )=f (x )+f (y ),且f (2)=4,则f (-1)的值为()三、解答题:17.(1)若函数y =f (2x +1)的定义域为[1,2],求f (x )的定义域.(2)已知函数f (x )的定义域为[-21,23],求函数g (x )=f (3x )+f (3x)的定义域.18.(1)已f (x 1)=xx -1,求f (x )的解析式.(2)已知y =f (x )是一次函数,且有f [f (x )]=9x +8,求此一次函数的解析式. 19.求下列函数的值域:(1)y =-x 2+x ,x ∈[1,3] (2)y =11-+x x(3)y x =20.已知函数ϕ(x )=f (x )+g (x ),其中f (x )是x 的正比例函数,g (x )是x 的反比例函。
高一数学上册第一章函数及其表示知识点及练习题(含答案)
函数及其表示(一)知识梳理1.映射的概念设B A 、是两个非空集合,如果按照某种对应法则f ,对A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,则称f 是集合A 到集合B 的映射,记作f(x).2.函数的概念(1)函数的定义:设B A 、是两个非空的数集,如果按照某种对应法则f ,对A 中的 任意数 x ,在集合B 中都有 唯一确定 的数y 和它对应,则这样的对应关系叫做从A 到B 的一个函数,通常记为___y=f(x),x ∈A(2)函数的定义域、值域在函数A x x f y ∈=),(中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值, 对于的函数值的集合所有的集合构成值域。
(3)函数的三要素: 定义域 、 值域 和 对应法则3.函数的三种表示法:图象法、列表法、解析法(1).图象法:就是用函数图象表示两个变量之间的关系;(2).列表法:就是列出表格来表示两个变量的函数关系;(3).解析法:就是把两个变量的函数关系,用等式来表示。
4.分段函数在自变量的不同变化范围中,对应法则用不同式子来表示的函数称为分段函数。
(二)考点分析考点1:判断两函数是否为同一个函数如果两个函数的定义域相同,并且对应关系完全一致,称这两个函数相等。
考点2:求函数解析式方法总结:(1)若已知函数的类型(如一次函数、二次函数),则用待定系数法;(2)若已知复合函数)]([x g f 的解析式,则可用换元法或配凑法;(3)若已知抽象函数的表达式,则常用解方程组消参的方法求出)(x f1.2函数及其表示练习题(2)一、选择题1. 判断下列各组中的两个函数是同一函数的为( ) ⑴3)5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+=x x y ,)1)(1(2-+=x x y ;⑶x x f =)(,2)(x x g =;⑷()f x =()F x = ⑸21)52()(-=x x f ,52)(2-=x x f .A. ⑴、⑵B. ⑵、⑶C. ⑷D. ⑶、⑸2. 函数()y f x =的图象与直线1x =的公共点数目是( )A. 1B. 0C. 0或1D. 1或23. 已知集合{}{}421,2,3,,4,7,,3A k B a a a ==+,且*,,a N x A y B ∈∈∈ 使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( )A. 2,3B. 3,4C. 3,5D. 2,54. 已知22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x 的值是( )A. 1B. 1或32C. 1,32或 D.5. 为了得到函数(2)y f x =-的图象,可以把函数(12)y f x =-的图象适当平移, 这个平移是( )A. 沿x 轴向右平移1个单位B. 沿x 轴向右平移12个单位 C. 沿x 轴向左平移1个单位 D. 沿x 轴向左平移12个单位 6. 设⎩⎨⎧<+≥-=)10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为( ) A. 10 B. 11 C. 12 D. 13二、填空题1. 设函数.)().0(1),0(121)(a a f x xx x x f >⎪⎪⎩⎪⎪⎨⎧<≥-=若则实数a 的取值范围是 . 2. 函数422--=x x y 的定义域 . 3. 若二次函数2y ax bx c =++的图象与x 轴交于(2,0),(4,0)A B -,且函数的最大值为9,则这个二次函数的表达式是 .4.函数0y =_____________________. 5. 函数1)(2-+=x x x f 的最小值是_________________.三、解答题1.求函数()f x =.2. 求函数12++=x x y 的值域.3. 12,x x 是关于x 的一元二次方程22(1)10x m x m --++=的两个实根,又2212y x x =+,求()y f m =的解析式及此函数的定义域.4. 已知函数2()23(0)f x ax ax b a =-+->在[1,3]有最大值5和最小值2,求a 、b 的值.参考答案(2)一、选择题 1. C 2. C 3. D 4. D∴2()3,12,f x x x x ===-<<而∴ x =5. D 平移前的“1122()2x x -=--”,平移后的“2x -”, 用“x ”代替了“12x -”,即1122x x -+→,左移 6. B [][](5)(11)(9)(15)(13)11f f f f f f f =====.二、 1.(),1-∞- 当10,()1,22a f a a a a ≥=-><-时,这是矛盾的; 当10,(),1a f a a a a<=><-时; 2. {}|2,2x x x ≠-≠且 240x -≠3. (2)(4)y x x =-+- 设(2)(4)y a x x =+-,对称轴1x =, 当1x =时,max 99,1y a a =-==-4. (),0-∞ 10,00x x x x -≠⎧⎪<⎨->⎪⎩ 5. 54- 22155()1()244f x x x x =+-=+-≥-. 三、 1. 解:∵10,10,1x x x +≠+≠≠-,∴定义域为{}|1x x ≠-2. 解: ∵221331(),244x x x ++=++≥∴y ≥,∴值域为)+∞ 3. 解:24(1)4(1)0,30m m m m ∆=--+≥≥≤得或,222121212()2y x x x x x x =+=+-224(1)2(1)4102m m m m =--+=-+∴2()4102,(03)f m m m m m =-+≤≥或.4. 解:对称轴1x =,[]1,3是()f x 的递增区间,max ()(3)5,335f x f a b ==-+=即min ()(1)2,32,f x f a b ==--+=即∴3231,.144a b a b a b -=⎧==⎨--=-⎩得。
函数的映射、图像及解析式
映射引入:初中所学的对应 1)、对于任何一个实数a ,数轴上都有唯一的一点P 和它对应; 2)、对于坐标平面内的任何一个点A ,都有唯一的一个有序实数对(x,y )和它对应;在集合的基础之上重点研究两个集合元素与元素之间的一种特殊的对应——映射。
【预习导引】1、 关于映射,下列说法错误的是 ( )A . A 集合中的每个元素在B 集合中都存在元素与之对应; B . “在B 集合中存在唯一元素和A 集合中元素对应”即A 中的元素不能对应B 集合中一个以上的元素; C . A 集合中可以有两个或两个以上的元素对应B 集合中的一个元素; D . B 集合中不可以有元素不被A 集合中的元素所对应; 2、 判断下列对应是否为A 集合到B 集合的映射和一一映射?(1)x x f A x R B R A →∈==:,,,; (2)1:,,,-→∈==+x x f A x N B N A ;(3){}{}22:,,,0,,22+-=→∈∈≥=∈≥=x x y x f A x Z y y y B Z x x x A ; (4)[][]()b a x a b y x f A x b a B A -+-=→∈==2:,,,,2,11)、引例:观察以下几个集合间的对应,讨论特征A BA B多对一 一对一 ③ ④A B A B⑤⑥定义1:一般地,设A、B是两个集合,若按照某种对应法则f ,对于集合A中的任何一个元素,在集合B中都有唯一的元素和它对应,则这样的对应叫做集合A到集合B的映射,记作f :A →B 。
(这种具有对应关系的元素也有自己的名称,引出象与原象的概念。
)定义2:给定一个映射f :A →B ,且a ∈A,b ∈B ,若元素a 与元素b 对应,则b 叫做a 的象,而a 叫做b 的原象。
(以②③④⑥具体说明谁是谁的象,谁是谁的原象)。
2、映射定义剖析:1)、映射是由三部分构成的一个整体:集合A 、集合B 、对应法则f ,这一点从映射的符号表示f :A →B 可看出,其中集合A 、B 可以是数集、点集或其他集合,可以是有限集也可以是无限集,但不能是空集。
2022版高中数学第二章函数的表示法映射提升训练含解析北师大版必修1
2022版高中数学北师大版必修1:函数的表示法映射基础过关练题组一函数的表示法1.(2020河北衡水冀州中学高一上第二次月考)已知函数f(x),g(x)由下列表格给出,则f[g(3)]= ()x 1 2 3 4f(x) 2 4 3 1g(x) 3 1 2 4A.4B.3C.2D.12.(2021山东烟台高一上期中)某高三学生于2020年9月第二个周末乘高铁赴济南参加全国高中数学联赛(山东赛区)的比赛活动.早上他乘出租车从家里出发,离开家不久,发现身份证忘在家里了,于是回到家取上身份证,然后乘出租车以更快的速度赶往高铁站,令x(单位:分钟)表示离开家的时间,y(单位:千米)表示离开家的距离,其中等待红绿灯及在家取身份证的时间忽略不计,下列图像中与上述事件吻合最好的是()3.如图,函数f(x)的图像是曲线OAB,其中点O、A、B的坐标分别为(0,0)、(1,2)、(3,1),则f[f(3)]的值等于.4.如图所示,有一块边长为a的正方形铁皮,将其四角各截去一个边长为x的小正方形,然后折成一个无盖的盒子,写出此盒子的体积V以x为自变量的函数解析式,并指明这个函数的定义域.题组二 函数解析式的求法5.(2021北京理工大学附中高一上期中)已知函数f (x )是一次函数,且f (x -1)=4x +3,则f (x )的解析式为( ) A.f (x )=4x -1 B.f (x )=4x +7 C.f (x )=4x +1 D.f (x )=4x +36.已知f (2x +1)=4x 2,则f (-3)= ( ) A.36 B.16 C.4D.-167.已知f (x )是一次函数,且2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )的解析式为 ( ) A.f (x )=2x +3 B.f (x )=3x +2 C.f (x )=3x -2 D.f (x )=2x -38.(2019河北辛集中学高一上第一次月考)已知f (x -1)=x 2,则f (x 2)= . 9.已知f (x -1x )=x 2+1x 2,则f (3)= .10.已知函数f (x )满足af (x )+f (-x )=bx ,其中a ≠±1,求函数f (x )的解析式. 题组三 分段函数问题的解法11.(2021四川成都实验外国语学校高一上第二次段考)已知f (x )={x (x +4),x ≥0,x (x -4),x <0,则f [f (-1)]的值为( )A.5B.15C.25D.4512.已知函数f (x )={x +1,x ∈[-1,0],x 2+1,x ∈(0,1],则下列函数图像正确的是( )13.已知函数f (x )={x 2(-1≤x ≤1),1(x >1或x <-1),则函数f (x )的值域为 .14.“水”这个曾经被人认为取之不尽用之不竭的资源,竟然到了严重制约我国经济发展,严重影响人民生活的程度.缺水每年给我国工业造成的损失达2000亿元,给我国农业造成的损失达1500亿元,严重缺水困扰全国三分之二的城市.为了节约用水,某市打算出台一项水费政策,规定当每季度每人用水量不超过5立方米时,每立方米水费1.2元;当超过5立方米而不超过6立方米时,超过部分的水费加收200%;当超过6立方米而不超过7立方米时,超过部分的水费加收400%.如果某人本季度实际用水量为x (x ≤7)立方米,那么本季度他应交的水费y (单位:元)与用水量x (单位:立方米)的函数关系式为 .15.已知函数f (x )=1+x -|x |4.(1)用分段函数的形式表示函数f (x ); (2)在平面直角坐标系中画出函数f (x )的图像;(3)在同一平面直角坐标系中,再画出函数g (x )=1x (x >0)的图像(不用列表),观察图像直接写出当x >0时,不等式f (x )>1x 的解集.16.(2021吉林榆树一中高一上期中)已知函数f (x )={x +1,x ≤-2,x 2+2x ,-2<x <2,2x -1,x ≥2.(1)求f (-5),f (-√3),f f -52的值;(2)若f (a )=3,求实数a 的值. 题组四 映射17.下列各个对应中,构成映射的是( )18.已知集合A ={1,2,3},B ={4,5,6},f :A →B 为集合A 到集合B 的一个函数,那么该函数的值域的不同情况的种数为 ( ) A.6B.7C.8D.2719.(2021江西南昌六校高一上期中联考)已知映射f :(x ,y )→(x +2y ,x -2y ),在映射f 下(1,-1)的原像是( ) A.0,12 B.(1,1) C.(-1,3) D.12,1能力提升练一、选择题1.(2019广东深圳中学高一上第一次段考,)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列叙述中正确的是( )A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.某城市机动车最高限速80千米/时,相同条件下,在该市用丙车比用乙车更省油D.甲车以80千米/时的速度行驶1小时,消耗10升汽油 2.()如图所示的图像表示的函数解析式为 ( )A.y =32|x -1|(0≤x ≤2)B.y =32-32|x -1|(0≤x ≤2) C.y =32-|x -1|(0≤x ≤2) D.y =1-|x -1|(0≤x ≤2)3.(2021江西景德镇一中高一上期中,)若f (x )对任意实数x 恒有2f (x )-f (-x )=3x +1,则f (x )= ( )A.x -1B.x +1C.2x +1D.3x +34.(2021辽宁抚顺一中高一上期中,)已知函数f (x )={3x -1x +3(x ≠-3),x (x =-3)的定义域与值域相同,则常数a =( ) A.3 B.-3 C.13D.-135.(2019福建莆田一中高一上月考,)定义运算:a*b ={x ,x ≥x ,x ,x <x ,则f (x )=x 2*|x |的图像是 ( )二、填空题6.(2021重庆西南大学附中高一上第二次月考,)已知函数g (√x +1)=2x +3,则g (3)= .7.()已知函数f (2x -1)=4x +3,若f (t )=11,则t =.8.(2019山东泰安一中高一上十月检测,)设函数f (x )={23x -1,x ≥0,1x,x <0,若f (a )>a ,则实数a 的取值范围是 . 三、解答题9.(2021河南南阳一中高一上第一次月考,)根据下列条件,求f (x )的解析式.(1)f [f (x )]=4x -3,其中f (x )为一次函数; (2)2f 1x+f (x )=x (x ≠0).10.()已知A ={a ,b ,c },B ={-1,0,1},映射f :A →B 满足f (a )+f (b )=f (c ),求映射f :A →B 的个数.答案全解全析 第二章 函 数 §1 生活中的变量关系 §2 对函数的进一步认识 第2.2 函数的表示法 第2.3 映 射 基础过关练1.A2.C 5.B 6.B 7.C 11.D12.A17.D18.B19.A1.A 由题意,根据题表的对应关系,可得g (3)=2,所以f [g (3)]=f (2)=4,故选A .2.答案 C信息提取 ①y 表示离开家的距离,x 表示离开家的时间;②该学生先乘出租车,中途返回家,再乘出租车以更快的速度前行;③确定与上述事件吻合的图像.数学建模 本题为实际问题中的函数图像识别题,通过构建函数模型,分析两个变量间的变化情况,得出正确的函数图像.由题意可知,该高三学生行动的三个过程均为离开家的距离关于时间的一次函数,结合图像可得答案.解析 由题意,知该高三学生离开家,y 是x 的一次函数,且y 值均匀增加; 返回家的过程中,y 仍然是x 的一次函数,且y 值均匀减少;最后由家乘出租车以更快的速度赶往高铁站,y 仍然是x 的一次函数,且y 值增加的速度比刚开始快, 所以与事件吻合最好的图像为C,故选C . 3.答案 2解析 由题中图像知f (3)=1,∴f [f (3)]=f (1)=2.4.解析 由题意可知该盒子的底面是边长为(a -2x )的正方形,高为x , ∴此盒子的体积V =x (a -2x )2, 其中自变量x 应满足{x -2x >0,x >0,即0<x <x 2,∴此盒子的体积V 以x 为自变量的函数解析式为V =x (a -2x )2,定义域为(0,x2).5.B 因为f (x -1)=4x +3=4(x -1)+7,所以f (x )=4x +7.故选B .6.B 当2x +1=-3时,x =-2,因此f (-3)=4×(-2)2=16.故选B . 7.C 设f (x )=kx +b (k ≠0),由2f (2)-3f (1)=5,2f (0)-f (-1)=1, 得{2(2x +x )-3(x +x )=5,2(0+x )-(-x +x )=1, 解得{x =3,x =-2,所以f (x )=3x -2.故选C .8.答案 (x 2+1)2解析 令t =x -1得x =t +1,由f (x -1)=x 2得f (t )=(t +1)2,即f (x )=(x +1)2,于是f (x 2)=(x 2+1)2. 9.答案 11解析 令t =x -1x ,则x 2+1x 2=(x -1x )2+2=t 2+2,因此f (t )=t 2+2,从而f (3)=32+2=11. 10.解析 在原式中以-x 替换x ,得af (-x )+f (x )=-bx , 于是有{xx (x )+x (-x )=xx ,xx (-x )+x (x )=-xx ,消去f (-x ),得f (x )=xxx -1. 故f (x )的解析式为f (x )=xx -1x. 11.D f (-1)=-(-1-4)=5>0,所以f [f (-1)]=f (5)=5×(5+4)=45,故选D .12.A 当x =-1时,f (x )=0,即图像过点(-1,0),故D 错误;当x =0时,f (x )=1,即图像过点(0,1),故C 错误;当x =1时,f (x )=2,即图像过点(1,2),故B 错误.故选A.13.答案 [0,1]解析 由已知得函数f (x )的定义域为R,大致图像如图所示,由图像知,当-1≤x ≤1时,f (x )=x 2的值域为[0,1];当x >1或x <-1时,f (x )=1,所以f (x )的值域为[0,1]. 14.答案 y ={1.2x ,x ∈[0,5]3.6x -12,x ∈(5,6]6x -26.4,x ∈(6,7]解析 由题意可知: ①当x ∈[0,5]时,y =1.2x ;②当x ∈(5,6]时,y =1.2×5+(x -5)×1.2×(1+200%)=3.6x -12; ③当x ∈(6,7]时,y =1.2×5+1×1.2×(1+200%)+(x -6)×1.2×(1+400%) =6x -26.4.∴y ={1.2x ,x ∈[0,5],3.6x -12,x ∈(5,6],6x -26.4,x ∈(6,7].15.解析 (1)当x ≥0时,f (x )=1+x -x 4=1;当x <0时,f (x )=1+x +x 4=12x +1.所以f (x )={1,x ≥0,12x +1,x <0.(2)函数f (x )的图像如图所示.(3)函数g (x )=1x (x >0)的图像如图所示,当f (x )>1x 时,f (x )的图像在g (x )的图像的上方,所以由图像可知f (x )>1x 的解集是{x |x >1}.16.解析 (1)因为f (x )={x +1,x ≤-2,x 2+2x ,-2<x <2,2x -1,x ≥2,所以f (-5)=-5+1=-4,f (-√3)=(-√3)2+2×(-√3)=3-2√3,f -52=-52+1=-32,f [x (-52)]=f -32=(-32)2+2×-32=94-3=-34.(2)当a ≤-2时,f (a )=a +1=3,解得a =2,不符合题意,舍去; 当-2<a <2时,f (a )=a 2+2a =3, 即(a -1)(a +3)=0,解得a =1或a =-3(舍去),此时a =1; 当a ≥2时,f (a )=2a -1=3,即a =2. 综上所述,a =1或a =2. 思想方法对于分段函数的求值或求参问题,常常需要针对自变量的取值分类进行求解,即分段函数分段求,这体现了分类讨论思想.17.D 选项A 中,元素2没有像,不构成映射;选项B 中,元素2没有像,不构成映射;选项C 中,元素1有两个像,不构成映射;选项D 中,满足映射的定义,构成映射.18.B 由函数的定义知,此函数可以分为三类来进行研究:若函数是三对一的对应,则值域有{4},{5},{6}三种情况;若函数是二对一的对应,则值域有{4,5},{5,6},{4,6}三种情况;若函数是一对一的对应,则值域有{4,5,6}一种情况.综上可知,函数的值域的不同情况有7种.19.A 由{x +2x =1,x -2x =-1,解得{x =0,x =12,所以在映射f 下(1,-1)的原像是0,12.故选A . 能力提升练1.C2.B3.B4.A5.B一、选择题1.C 对于A 选项,由题图可知,当乙车速度大于40千米/时时,乙车每消耗1升汽油,行驶里程都超过5千米,故A 错误;对于B 选项,由题意可知,以相同速度行驶相同路程,燃油效率越高,耗油越少,故三辆车中甲车耗油最少,故B 错误;对于C 选项,当行驶速度不超过80千米/时时,在相同条件下,丙车的燃油效率高于乙车,则在该市用丙车比用乙车更省油,故C 正确;对于D 选项,甲车以80千米/时的速度行驶时,燃油效率为10千米/升,则行驶1小时,消耗了汽油80×1÷10=8(升),故D 错误. 故选C .2.B 当0≤x ≤1时,y =32x ,当1<x ≤2时,y =3-32x ,所以y =32-32|x -1|(0≤x ≤2). 3.B ∵f (x )对任意实数x 恒有2f (x )-f (-x )=3x +1①,∴2f (-x )-f (x )=-3x +1②, 由①②得,f (x )=x +1.故选B .4.A 显然f (x )={3x -1x +3(x ≠-3),x (x =-3)的定义域为R,故值域为R,y =3x -1x +3=3-10x +3的值域为{y ∈R|y ≠3},∴a =3,故选A .5.B 依题意得f (x )={x 2,x 2≥|x |,|x |,x 2<|x |.在同一平面直角坐标系中作出y =x 2与y =|x |的图像,如图所示.由图像知,当x ≤-1时,x 2≥|x |,f (x )=x 2; 当-1<x <1,且x ≠0时,x 2<|x |,f (x )=|x |; 当x =0时,x 2=|x |,f (x )=0; 当x ≥1时,x 2≥|x |,f (x )=x 2.因此,当x ≤-1或x ≥1时,图像为抛物线的一部分,当-1<x <1时,图像为折线段,故选B .二、填空题 6.答案 11解析 令√x +1=t ≥1,则x =(t -1)2,所以g (t )=2(t -1)2+3=2t 2-4t +5(t ≥1),所以g (x )=2x 2-4x +5(x ≥1),所以g (3)=2×32-4×3+5=11.7.答案 3解析 设2x -1=t ,则x =x +12,∴f (t )=2(t +1)+3=2t +5.∵f (t )=11,∴2t +5=11,解得t =3.8.答案 (-∞,-1)解析 当a ≥0时,由f (a )>a ,得f (a )=23a -1>a ,解得a <-3,与a ≥0矛盾,舍去;当a <0时,由f (a )>a ,得f (a )=1x >a ,由a <0去分母、移项,得a 2-1>0,即(a +1)(a -1)>0,解得a >1或a <-1,又因为a <0,所以a <-1.综上所述,实数a 的取值范围是(-∞,-1).三、解答题9.解析 (1)由题意,设f (x )=ax +b (a ≠0), 则f [f (x )]=af (x )+b =a (ax +b )+b =a 2x +ab +b =4x -3,由恒等式性质,得{x 2=4,xx +x =-3,解得{x =2,x =-1或{x =-2,x =3,∴函数f (x )的解析式为f (x )=2x -1或f (x )=-2x +3. (2)f (x )+2f1x=x ,将上式中的x 与1x互换,得f1x+2f (x )=1x ,于是得关于f (x )的方程组{x (x )+2x (1x )=x ,x (1x )+2x (x )=1x ,∴f (x )=23x -x3(x ≠0).10.解析 当A 中的三个元素都对应0时,f (a )+f (b )=0+0=0=f (c ),有1个映射;当A 中的三个元素对应B 中的两个元素时,满足f (a )+f (b )=f (c )的映射有4个,分别为1+0=1,0+1=1,(-1)+0=-1,0+(-1)=-1;当A 中的三个元素对应B 中的三个元素时,满足f (a )+f (b )=f (c )的映射有2个,分别是(-1)+1=0,1+(-1)=0.因此满足题设条件的映射有7个.。
高中数学映射的概念练习题(有答案)
高中数学映射的概念练习题(有答案)数学必修1(苏教版)2.1函数的概念和图象2.1.4映射的概念函数实质上是定义域A(非空数集)到其值域B(非空数集),按照某个对应法则f的一个对应,能否将函数的概念拓展为不是数集的对应?基础巩固1.设A={x|02},B={y|12},如图,能表示集合A到集合B的映射的是()解析:因为象集为{y|12},故A,B错,又根据映射的定义知C错.答案:D2.已知f:AB是集合A到B的映射,又A=B=R,对应法则f:xy=x2+2x-3,kB且k在A中没有原象,则k的取值范围是()A.(-,-4) B.(-1,3)C.[-4,+) D.(-,-1)(3,+)解析:∵y=x2+2x-3=(x+1)2-4-4,即象集为[-4,+)当k-4时,k就没有原象.答案:A3.已知集合M={(x,y)|x+y=1},映射f:MN,在f作用下(x,y)的象是(2x,2y),则集合N为()A.{(x,y)|x+y=2,x0,y0}B.{(x,y)|xy=1,x0,y0}C.{(x,y)|xy=2,x0,y0}D.{(x,y)|xy=2,x0,y0}解析:2x2y=2x+y=21=2.答案:D4.给出以下对应:(1)集合A={P|P是数轴上的点},集合B=R,对应关系f:数轴上的点与它所代表的实数对应;(2)集合A={P|P是平面直角坐标系中的点},集合B={(x,y)|xR,yR},对应关系f:平面直角坐标系中的点与它的坐标对应;(3)集合A={x|x是三角形},集合B={x|x是圆},对应关系f:每一个三角形都对应它的内切圆;(4)集合A={x|x是新华中学的班级},集合B={x|x是新华中学的学生},对应关系f:每一个班级都对应班里的学生.其中是从集合A到B的映射的是________(填序号).答案:(1)(2)(3)5.已知A=B=R,xA,yB,f:xy=ax+b,若55,且711,则当x20时,x=________.解析:由5a+b=5,7a+b=11a=3,b=-10,即y=3x-10.当y=20时,易得x=10.答案:106.从集合A={1,2,3,4}到B={5,6,7}可建立________个不同的映射.解析:1选象有3种选法,同样的,2,3,4都有3种选象的方法且互不影响.共有3333=81个不同映射.答案:817.已知M={正整数},P={正奇数},映射f:a(aM)b=2a -1,则在映射f下,M中的元素11对应着P中的元素________,P中的元素11对应着M中的元素________.解析:由题知a=11,b=21,即M中的元素11对应着P中的元素21;又b=11,代入b=2a-1,a=6,即P中的元素11对应着M中的元素6.答案:21 68.为确保信息安全,信息需加密传输,发送方由明文密文(加密),接收方由密文明文(解密),已知加密规则为:明文a,b,c,d对应密文a+2b,2b+c,2c+3d,4d.例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为________.解析:由题目的条件可以得到a+2b=14,2b+c=9,2c+3d =23,4d=28,a=6,b=4,c=1,d=7.答案:6,4,1,79.某次数学考试中,学号为i(14,且iN)的四位同学的考试成绩f(i){91,93,95,97,99},且满足f(1)f(3)f(4),则这四位同学考试成绩的所有可能情况有________种.解析:若f(1)f(3)f(4),则有5种可能,若f(1)f(2)=f(3)f(4),则有10种可能,故成绩可能状况为5+10=15种.答案:1510.设A={1,2,3,m},B={4,7,n4,n2+3n},f:xy=px +q是从集合A到集合B的一个映射,已知m,nN*,1的象是4,7的原象是2,试求p,m,q,n的值.解析:由题知p+q=4,2p+q=7,p=3,q=1,y=3x+1,33+1=n4,3m+1=n2+3n或33+1=n2+3n,3m+1=n4,∵m,nN*,n4=10,3m+1=n2+3n(舍去)或10=n2+3n,3m+1=n4. m=5,n=2.p=3,q=1,n=2,m=5.能力提升11.函数f(x)的定义域为A,若x1,x2A,且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数,例如函数f(x)=2x+1(xR)就是单函数.下列命题:①函数f(x)=x2(xR)就是单函数;②若f(x)为单函数,x1,x2A且x1x2,则f(x1)f(x2);③若f:AB为单函数,则对任意bB,它至多有一个原象.其中正确命题是__________(写出所有正确命题序号).答案:②③12.已知集合A为实数集R,集合B={y|y2},xA,yB,对应法则f:xy=x2-2x+2,那么f:AB是A到B的映射吗?如果不是,可以如何变换集合A或B(f不变)使之成为映射.解析:由于x2-2x+2=(x-1)2+11,即在f下,A中的元素变换成集合{y|y1}中的元素,现在已知的集合B={y|y2},所以A中的部分元素x(0,2)在B中无对应元素.所以f:AB不是A到B的映射.xKb 1. Com将B改为{y|y1},A与f不变,则f:AB成为A到B的一个映射.要练说,得练看。
高一数学第二章 函数基础练习题 新课标 人教版 试题
高一数学第二章 函数基础练习题一、知识结构1.映射:设A,B 是两个集合,如果按照某种对应法则f , ,这样的对应关系叫做从集合A 到集合B 的映射,记作 。
(答:对于集合A 中的任何一个元素,在集合B 中都有唯一的元素与它对应,f:A →B ) 2.象和原象:给定一个集合A 到B 的映射,且a ∈A ,b ∈B,如果元素a 和b 对应,那么元素b 叫做元素a 的 ,元素a 叫做元素b 的 。
(答:象,原象)3.一一映射:设A,B 是两个集合,f :A →B 是集合A 到集合B 的映射,如果在这个映射下,满 足 那么这个映射叫做A 到B 上的一一映射。
(答:对于集合A 中的不同元素,在集合B 中有不同的象,而且B 中每个元素都有原象,) 4.函数的三要素:① ,② ,③ 。
(答:定义域,对应法则,值域)5.两个函数当且仅当 和 对应法则(即解析式)都相同时,才称为相同的函数。
(答:定义域,对应法则(即解析式)) 6.请同学们就下列求函数三要素的方法配上适当的例题:⑴定义域:①根据函数解析式列不等式(组),常从以下几个方面考虑: ⑴分式的分母不等于0;⑵偶次根式被开方式大于等于0;⑶对数式的真数大于0,底数大于0且不等于1; ⑷指数为0时,底数不等于0。
②⑴已知()f x 的定义域,求[()]f g x 的定义域。
⑵已知[()]f g x 的定义域,求()f x 的定义域。
⑵值域: ①函数图象法(中学阶段所有初等函数极其复合);②反函数法;③判别式法;④换元法;⑤不等式法;⑥单调性法;⑦几何构造法。
⑶解析式:①待定系数法(已知函数类型求解析式);②已知()f x 求[()]f g x 或已知[()]f g x 求()f x ;③方程组法;④函数图象四大变换法。
7.若()f x 的定义域关于原点对称,且满足 (或 ),则函数()f x 叫做奇函数(或偶函数)。
(答:()()f x f x -=-,()()f x f x -=)8.①若()f x 的定义域关于原点对称,且满足()()f x f x -+= ,则为奇函数。
高数映射与函数例题
高数映射与函数例题高等数学中的映射与函数是重要的概念。
映射是指将一个集合中的元素对应到另一个集合中的元素的规则。
函数是一种特殊的映射,它满足每个自变量只有唯一的因变量对应。
下面我将给出一些关于映射与函数的例题,以帮助你更好地理解这个概念。
例题1,给定集合A={1, 2, 3, 4},集合B={a, b, c, d},写出一个映射f:A→B的规则。
解答,可以将每个元素1、2、3、4映射到集合B中的元素a、b、c、d。
例如,可以规定f(1)=a,f(2)=b,f(3)=c,f(4)=d。
例题2,已知函数f(x) = 2x + 1,求f(3)的值。
解答,将x=3代入函数f(x)中,得到f(3) = 2(3) + 1 = 7。
所以f(3)的值为7。
例题3,已知函数g(x) = x^2 + 3x,求g(-2)的值。
解答,将x=-2代入函数g(x)中,得到g(-2) = (-2)^2 + 3(-2) = 4 6 = -2。
所以g(-2)的值为-2。
例题4,已知函数h(x) = √x,求h(9)的值。
解答,将x=9代入函数h(x)中,得到h(9) = √9 = 3。
所以h(9)的值为3。
例题5,已知函数k(x) = |x|,求k(-5)的值。
解答,将x=-5代入函数k(x)中,得到k(-5) = |-5| = 5。
所以k(-5)的值为5。
通过以上例题,我们可以看到映射与函数的概念和运算方法。
映射是将一个集合中的元素对应到另一个集合中的元素,而函数是一种特殊的映射,满足每个自变量只有唯一的因变量对应。
在求函数值时,我们将给定的自变量代入函数表达式中,计算得到对应的因变量值。
希望以上例题能够帮助你理解映射与函数的概念和运算方法。
如果还有其他问题,请随时提问。
分段函数及映射练习
(有的可以是一些孤立的点).
(2)求分段函数的函数值时,关键是看自变量的取值属于哪 一个区间,就用哪一个区间的解析式. (3)分段函数是一个函数,而不是几个,各个定义域的并集
即为分段函数的定义域,各个值域的并集,即为分段函数的值
域.
2.理解映射概念时要注意的几点. (1)映射是函数的一种推广,两个集合 A,B,它们可以是数 集,也可以是点集或其他集合. (2)集合 A,B 及对应关系 f 是确定的,是一个系统. (3)集合 A 中的每一个元素,在集合 B 中都有唯一的元素和 它对应. (4)集合 A 中不同的元素,在集合 B 中对应的元素可以是同 一个,即可以多个元素对应一个元素,但不能一个元素对应多 个元素. (5)集合 B 中的元素在集合 A 中可以没有与之对应的,即集 合 B 中可以有“剩余”的元素.
应;②集合 A 中任一个元素在集合 B 中有唯一的元素与之对应.
(2)本题利用数图构建的对应关系直观地给出了集合间的
对应关系.利用映射的概念判断以上数图是否为映射,只需看 一看是否满足“一对一”或“多对一”的关系,且 P 中元素是 否有剩余.
【变式与拓展】 3.已知 A={x|0≤x≤4},B={y|0≤y≤2},映射 f:A→B(其 中 x∈A,y∈B)的对应法则可以是( ①f:x→y=x-2;
(3)集合 P 中的元素2 对应集合 M 中的元素3 和4,不唯一, 因此它也不是映射; (4)集合 P 中的元素1 对应集合 M 中的元素0.5 和 8,一对 多,也不是映射; (2)(5)是映射,符合映射的定义要求.
(1)判断一个对应关系 A→B 是否为映射,主要 的依据是:①集合 A 中的元素是否在集合 B 中都有元素与之对
f:(x,y)→(x-y,x+y),则与 A 中的元素(-4,3)对应的 B 中的 (-7,-1) . 元素为__________
函数及其表示知识点+练习题+答案
函数及其表示考纲知识梳理一、函数与映射的概念集合,可以不是数集,而函数中的两个集合必须是非空数集。
二、函数的其他有关概念〔1〕函数的定义域、值域在函数()y f x =,x A ∈中,x 叫做自变量,x 的取值围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值{()|}f x x A ∈的集合叫做函数的值域〔2〕一个函数的构成要素 定义域、值域和对应法则 〔3〕相等函数如果两个函数的定义域一样,并且对应关系完全一致,则这两个函数为相等函数。
注:假设两个函数的定义域与值域一样,是否为相等函数.〔不一定。
如果函数y=*和y=*+1,其定义域与值域完全一样,但不是相等函数;再如y=sin*与y=cos*,其定义域为R ,值域都为[-1,1],显然不是相等函数。
因此凑数两个函数是否相等,关键是看定义域和对应关系〕〔4〕函数的表示方法表示函数的常用方法有:解析法、图象法和列表法。
〔5〕分段函数假设函数在其定义域的不同子集上,因对应法则不同而分别用几个不同的式子来表示,这种函数称为分段函数。
分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个局部组成,但它表示的是个函数。
函数及其表示测试题1、设函数⎩⎨⎧<+≥+-=0,60,64)(2x x x x x x f 则不等式)1()(f x f >的解集是〔 A 〕A.),3()1,3(+∞⋃-B.),2()1,3(+∞⋃-C.),3()1,1(+∞⋃-D.)3,1()3,(⋃--∞解析由,函数先增后减再增当0≥x ,2)(≥x f 3)1(=f 令,3)(=x f 解得3,1==x x 。
当0<x ,3,36-==+x x故3)1()(=>f x f ,解得313><<-x x 或 2、试判断以下各组函数是否表示同一函数.〔1〕f 〔*〕=2x ,g 〔*〕=33x ;〔2〕f 〔*〕=x x ||,g 〔*〕=⎩⎨⎧<-≥;01,01x x〔3〕f 〔*〕=1212++n n x ,g 〔*〕=〔12-n x 〕2n -1〔n ∈N *〕;〔4〕f 〔*〕=x 1+x ,g 〔*〕=x x +2; 〔5〕f 〔*〕=*2-2*-1,g 〔t 〕=t 2-2t -1。
函数练习题及答案
函数练习题及答案映射与函数一、选择题1.下列对应是从集合A 到集合B 的映射的是 ( )A .A =R ,B ={x |x >0且x ↔R},x ↔A ,f :x →|x | B .A =N ,B =N +,x ↔A ,f :x →|x -1|C .A ={x |x >0且x ↔R},B =R ,x ↔A ,f :x →x2D .A =Q ,B =Q ,f :x →x1 2.已知映射f :A B ,其中集合A ={-3,-2,-1,1,2,3,4},集合B 中的元素都是A 中的元素在映射f 下的象,且对任意的a ↔A,在B 中和它对应的元素是|a|,则集合B 中的元素的个数是 ( ) A .4 B .5 C .6 D .7 3.设集合A 和B 都是自然数集合N ,映射f :A→B 把集合A 中的元素n 映射到集合B 中的元素2n +n ,则在映射f 下,象20的原象是 ( ) A .2 B .3 C .4 D .54.在x 克a %的盐水中,加入y 克b %的盐水,浓度变成c %(a ,b >0,a ≠b ),则x 与y 的函数关系式是( )A .y =b c a c --x B .y =c b a c --x C .y =c b c a --x D .y =ac cb --x 5.函数y=3232+-x x 的值域是 ( )A(-∞,-1 )∪(-1,+∞) B(-∞,1)∪(1,+∞) C(-∞,0 )∪(0,+∞) D(-∞,0)∪(1,+∞) 6.下列各组中,函数f (x )和g(x )的图象相同的是 ( ) A .f (x )=x ,g(x )=(x )2B .f (x )=1,g(x )=x 0C .f (x )=|x |,g(x )=2xD .f (x )=|x |,g(x )=⎩⎨⎧-∞∈-+∞∈)0,(,),0(,x x x x7.函数y =1122---x x 的定义域为( )A .{x |-1≤x ≤1}B .{x |x ≤-1或x ≥1}C .{x |0≤x ≤1}D .{-1,1}8.已知函数f (x )的定义域为[0,1],则f (x 2)的定义域为 ( ) A .(-1,0) B .[-1,1] C .(0,1) D .[0,1]9.设函数f (x )对任意x 、y 满足f (x +y )=f (x )+f (y ),且f (2)=4,则f (-1)的值为 ( ) A .-2B .±21 C .±1 D .210.函数y=2-x x 42+-的值域是( )A .[-2,2] B .[1,2]C .[0,2] D .[-2,2] 11.若函数y=x 2—x —4的定义域为[0,m ],值域为[254-,-4],则m 的取值范围是 ( )A .(]4,0 B .[23,4]C .[23 ,3]D .[23,+∞]12.已知函数f (x +1)=x +1,则函数f (x )的解析式为( )A .f (x )=x 2B .f (x )=x 2+1(x ≥1) C .f (x )=x 2-2x +2(x ≥1) D .f (x )=x 2-2x (x ≥1)二、填空题13.己知集合A ={1,2,3,k } ,B = {4,7,a 4,a 2+3a },且a ↔N*,x ↔A,y ↔B,使B 中元素y =3x +1和A 中的元素x 对应,则a =__ _, k =__ .1 14.设f (x -1)=3x -1,则f (x )=__ _______.15.已知函数f (x )=x 2-2x +2,那么f (1),f (-1),f (3)之间的大小关系为 . 三、解答题 16.(1)若函数y = f (2x +1)的定义域为[ 1,2 ],求f (x )的定义域.(2)已知函数f (x )的定义域为[-21,23],求函数g (x )=f (3x )+f (3x)的定义域.17.(1)已f (x 1)=xx-1,求f (x )的解析式.(换元法) (2)已知y =f (x )是一次函数,且有f [f (x )]=9x +8,求此一次函数的解析式.(待定系数法)18.求下列函数的值域:(1)y =-x 2+x ,x ↔[1,3 ] (2)y =11-+x x19.已知函数ϕ(x )=f (x )+g (x ),其中f (x )是x 的正比例函数,g (x )是x 的反比例函数,且ϕ(31)=16,ϕ(1)=8.(待定系数法) (1)求ϕ(x )的解析式,并指出定义域;(2)求ϕ(x )的值域.(重要不等式法,判别式法)20.如图,动点P 从单位正方形ABCD 顶点A 开始,顺次经B 、C 、D 绕边界一周,当x 表示点P 的行程,y 表示PA 之长时,求y 关于x 的解析式,并求f (25)的值.(分段函数)2函数的单调性一、选择题1.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+1C .y =x2D .y =2x 2+x +1 2.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于A .-7B .1C .17D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( )A .(3,8)B .(-7,-2)C .(-2,3)D .(0,5) 4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( )A .(0,21)B .( 21,+∞) C .(-2,+∞) D .(-∞,-1)∪(1,+∞)5.已知函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内( )A .至少有一实根B .至多有一实根C .没有实根D .必有唯一的实根6.已知函数f (x )=8+2x -x 2,如果g (x )=f ( 2-x 2),那么函数g (x ) ( )A .在区间(-1,0)上是减函数B .在区间(0,1)上是减函数C .在区间(-2,0)上是增函数D .在区间(0,2)上是增函数7.已知函数f (x )是R 上的增函数,A(0,-1)、B(3,1)是其图象上的两点,那么不等式 |f (x +1)|<1的解集的补集是 ( )A .(-1,2)B .(1,4)C .(-∞,-1)∪[4,+∞)D .(-∞,-1)∪[2,+∞)8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t )=f (5-t ),那么下列式子一定成立的是 ( )A .f (-1)<f (9)<f (13)B .f (13)<f (9)<f (-1)C .f (9)<f (-1)<f (13)D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D.),1[),,0[+∞+∞10.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是( ) A .a ≤3 B .a ≥-3 C .a ≤5 D .a ≥3 11.已知f (x )在区间(-∞,+∞)上是增函数,a 、b ↔R 且a +b ≤0,则下列不等式中正确的是( )A .f (a )+f (b )≤-f (a )+f (b )]B .f (a )+f (b )≤f (-a )+f (-b )C .f (a )+f (b )≥-f (a )+f (b )]D .f (a )+f (b )≥f (-a )+f (-b ) 12.定义在R 上的函数y =f (x )在(-∞,2)上是增函数,且y =f (x +2)图象的对称轴是x =0,则 ( )A .f (-1)<f (3)B .f (0)>f (3)C .f (-1)=f (-3)D .f (2)<f (3) 二、填空题13.函数y =(x -1)-2的减区间是___ _. 14.函数y =x -2x -1+2的值域为__ ___. 15、设()y f x =是R 上的减函数,则()3y fx =-的单调递减区间为 .16、函数f (x ) = ax 2+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是__ . 三、解答题3 17.f (x )是定义在( 0,+∞)上的增函数,且f (yx) = f (x )-f (y ) (1)求f (1)的值.(2)若f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .18.函数f (x )=-x 3+1在R 上是否具有单调性?如果具有单调性,它在R 上是增函数还是减函数?试证明你的结论. 19.试讨论函数f (x )=21x -在区间[-1,1]上的单调性.20.设函数f (x )=12+x -ax ,(a >0),试确定:当a 取什么值时,函数f (x )在0,+∞)上为单调函数.21.已知f (x )是定义在(-2,2)上的减函数,并且f (m -1)-f (1-2m )>0,求实数m 的取值范围.22.已知函数f (x )=x a x x ++22,x ↔[1,+∞]当a =21时,求函数f (x )的最小值;反函数一、选择题1.设函数f (x)=1-2x 1-(-1≤x ≤0),则函数y =f -1(x )的图象是 )B.- 2.函数y =1-1-x (x ≥1)的反函数是 ( )A .y =(x -1)2+1,x ↔RB .y =(x -1)2-1,x ↔RC .y =(x -1)2+1,x ≤1D.y =(x -1)2-1,x ≤13.若f (x -1)= x 2-2x +3 (x ≤1),则f -1(4)等于 ( )A .2B .1-2C .-2D .2-2 4.与函数y=f (x)的反函数图象关于原点对称的图象所对应的函数是 ( )A .y=-f (x )B .y= f -1(x )C .y =-f -1(x )D .y =-f -1(-x )45.设函数()[]()242,4f x x x =-∈,则()1f x -的定义域为( )A .[)4,-+∞B .[)0,+∞C .[]0,4D .[]0,126.若函数()y f x =的反函数是()y g x =,(),0f a b ab =≠,则()g b 等于 ( )A .aB .1a -C .bD .1b -7.已知函数()13ax f x x +=-的反函数就是()f x 本身,则a 的值为 ( ) A .3-B .1C .3D .1-8.若函数()f x 存在反函数,则方程()()f x c c =为常数 ( )A .有且只有一个实数根B .至少有一个实数根C .至多有一个实数根D .没有实数根9.函数f (x )=-22·12-x (x ≤-1)的反函数的定义域为 ( )A .(-∞,0]B .(-∞,+∞)C .(-1,1)D .(-∞,-1)∪(1,+∞) 10.若函数f (x )的图象经过点(0,-1),则函数f (x +4)的反函数的图象必经过点 ( )A .(-1,4)B .(-4,-1)C .(-1,-4)D .(1,-4)11.函数f(x)=x1(x≠0)的反函数f -1(x)= ( ) A .x(x≠0) B .x 1 (x≠0) C .-x(x≠0) D .-x 1(x≠0)12、点(2,1)既在函数f (x )=abx a +1的图象上,又在它的反函数的图象上,则适合条件的数组(a ,b )有( ) A .1组 B .2组 C .3组 D .4组二、填空题13.若函数f (x )存在反函数f -1(x ),则f -1[f (x )]=___ ; f [f -1(x )]=___ __. 14.已知函数y =f (x )的反函数为f -1(x )=x -1(x ≥0),那么函数f (x )的定义域为__ _. 15.设f (x )=x 2-1(x ≤-2),则f -1(4)=__ ________. 16.已知f (x )=f -1(x )=xm x ++12(x ≠-m ),则实数m = . 三、解答题17.(1)已知f (x ) = 4x -2x +1 ,求f -1(0)的值.(2)设函数y = f (x )满足 f (x -1) = x 2-2x +3 (x ≤ 0),求 f -1(x +1).18.判断下列函数是否有反函数,如有反函数,则求出它的反函数.(1)2()42()f x x x x R =-+∈;(2)2()42(2)f x x x x =-+≤.(3)1(0)1,,(0)x x y x x +>⎧=⎨-<⎩19.已知f (x )=13-+x ax 5(1)求y =f (x )的反函数 y = f -1(x )的值域;(2)若(2,7)是 y = f -1(x )的图象上一点,求y=f (x )的值域. 20.已知函数2(1)2(0)f x x x x +=+>,(1)求1()f x -及其1(1)f x -+; (2)求(1)y f x =+的反函数.21.己知()211x f x x -⎛⎫= ⎪+⎝⎭(x≥1),(1)求()f x 的反函数1()f x -,并求出反函数的定义域; (2)判断并证明1()f x -的单调性.22.给定实数a ,a ≠0,且a ≠1,设函数11--=ax x y ⎪⎭⎫⎝⎛≠∈a x R x 1,且.试证明:这个函数的图象关于直线y=x 成轴对称图形.指数与指数函数一、选择题1.化简[32)5(-]43的结果为( )A .5 B .5C .-5D .-52.化简46394369)()(a a ⋅的结果为( )A .a 16B .a8C .a4D .a 23.设函数的取值范围是则若0021,1)(,.0,,0,12)(x x f x x x x f x >⎪⎩⎪⎨⎧>≤-=-( )A .(-1,1)B .(-1,+∞)C .),0()2,(+∞⋃--∞D .),1()1,(+∞⋃--∞4.设5.1344.029.01)21(,8,4-===y y y ,则( )A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 25.当x ↔[-2,2)时,y =3-x-1的值域是( ) A .[-98,8] B .[-98,8]C .(91,9) D .[91,9] 6.在下列图象中,二次函数y =ax 2+bx +c 与函数y =(ab )x的图象可能是 ( )67.已知函数f (x )的定义域是(0,1),那么f (2x)的定义域是( ) A .(0,1)B .(21,1) C .(-∞,0)D .(0,+∞)8.若122-=xa,则xxxx a a a a --++33等于( )A .22-1 B .2-22 C .22+1 D . 2+1 9.设f (x )满足f (x )=f (4-x ),且当x >2 时f (x )是增函数,则a =f (1.10.9),b = f (0.91.1),c =)4(log 21f的大小关系是( )A .a >b >c B .b >a >c C .a >c >b D .c >b >a 10.若集合}1|{},2|{-====x y y P y y M x ,则M ∩P=( )A .}1|{>y yB .}1|{≥y yC .}0|{>y yD .}0|{≥y y11.S ={y |y =3x ,x↔R},T ={y |y =x 2-1,x ↔R},则S∩T 是( )A .S B .TC .∅D .有限集12.下列说法中,正确的是( )①任取x ↔R 都有3x>2x②当a >1时,任取x ↔R 都有a x>a -x③y =(3)-x是增函数 ④y =2|x |的最小值为1⑤在同一坐标系中,y =2x与y =2-x的图象对称于y 轴A .①②④B.④⑤C.②③④D.①⑤ 二、填空题13.计算:210319)41()2(4)21(----+-⋅- = .14.函数x a y =在]1,0[上的最大值与最小值的和为3,则=a . 15.函数y =121+x 的值域是_ _______. 16.不等式1622<-+x x 的解集是 .三、解答题17.已知函数f (x )=a x +b 的图象过点(1,3),它的反函数f -1(x )的图象过(2,0)点,确定f (x )的解析式. 18.已知,32121=+-x x 求3212323++++--x x x x 的值.19.求函数y =3322++-x x 的定义域、值域和单调区间.20.若函数y =a2x +b+1(a >0且a ≠1,b 为实数)的图象恒过定点(1,2),求b 的值.21.设0≤x ≤2,求函数y =1224221++⋅--a a xx 的最大值和最小值.22.设a 是实数,2()()21xf x a x R =-∈+,试证明:对于任意,()a f x 在R 上为增函数. 对数与对数函数一。
2.1.1(二)映射与函数学生版
第2课时 映射与函数一、基础过关1.设f :A→B 是从集合A 到集合B 的映射,则下面说法正确的是( ) A .A 中的每一个元素在B 中必有象B .B 中每一个元素在A 中必有原象C .A 中的一个元素在B 中可以有多个象D .A 中不同元素的象必不同2.设集合A ={x|0≤x≤6},B ={y|0≤y≤2}.从A 到B 的对应法则f 不是映射的是( )A .f :x→y=13xB .f :x→y=12x C .f :x→y=14x D .f :x→y=16x 3.在给定的映射f :(x ,y)→(2x+y ,xy),x ,y∈R 的条件下,点⎝ ⎛⎭⎪⎫16,-16的原象是( ) A.⎝ ⎛⎭⎪⎫16,136 B.⎝ ⎛⎭⎪⎫13,-12或⎝ ⎛⎭⎪⎫-14,23 C.⎝ ⎛⎭⎪⎫136,-16 D.⎝ ⎛⎭⎪⎫12,13或⎝ ⎛⎭⎪⎫-23,14 4.下列对应法则f 中,构成从集合P 到S 的映射的是( )A .P =R ,S =(-∞,0),x∈P,y∈S,f :x→y=|x|B .P =N ,S =N +,x∈P,y∈S,f :y =x 2C .P ={有理数},S ={数轴上的点},x∈P, f: x→数轴上表示x 的点D .P =R ,S ={y|y>0},x∈P,y∈S,f :x→y=1x 2 5.已知A ={x|0≤x≤4},B ={y|0≤y≤2},从A 到B 的对应法则分别是:(1)f :x→y=12x , (2)f :x→y=x -2,(3)f :x→y=x ;(4)f :x→y=|x -2|.其中能构成 一 一 映射的是__________________.6.根据下列所给的对应关系,回答问题.①A=N +,B =Z ,f :x→y=3x +1,x∈A,y∈B;②A=N ,B =N +,f :x→y=|x -1|,x∈A,y∈B;③A={x|x 为高一(2)班的同学},B ={x|x 为身高},f :每个同学对应自己的身高;④A=R ,B =R ,f :x→y=1x +|x|,x∈A,y∈B. 上述四个对应关系中,是映射的是____________,是函数的是_____________.7.设f :A→B 是集合A 到集合B 的映射,其中A ={正实数},B =R ,f :x→x 2-2x -1,求A 中元素1+2的象和B中元素-1的原象.8.下列对应是否是从A 到B 的映射,能否构成函数?(1)A =R ,B =R ,f :x→y=1x +1;(2)A={0,1,2,9},B={0,1,4,9,64}, f:a→b=(a-1)2.(3)A=[0,+∞),B=R,f:x→y2=x;(4)A={x|x是平面M内的矩形},B={x|x是平面M内的圆},f:作矩形的外接圆.二、能力提升9.区间[0,m]在映射f:x→2x+m所得的象集区间为[a,b],若区间[a,b]的长度比区间[0,m]的长度大5,则m等于 ( )A.5 B.10 C.2.5 D.110.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a,b,c,d对应密文a+2b,2b+c,2c+3d,4d,例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为( )A.4,6,1,7 B.7,6,1,4C.6,4,1,7 D.1,6,4,711.设A=Z,B={x|x=2n+1,n∈Z},C=R,且从A到B的映射是x→2x-1,从B到C的映射是y→12y+1,则经过两次映射,A中元素1在C中的象为________.12.A=B=R,x∈A,y∈B,f:x→y=ax+b是从A到B的映射,若B中元素 1和8在A中对应的元素分别为3和10,求A中元素5在f下对应的B中元素.三、探究与拓展13.已知A={a,b,c},B={-2,0,2},映射f:A→B满足f(a)+f(b)=f(c).求满足条件的映射的个数.。
映射与函数·映射·习题
映射与函数·映射·习题1-3-1下列命题中正确的是 [ ]A.若M={整数},N={正奇数},则一定不能建立一个从集M到集N的映射B.若集A是无限集,集B是有限集,则一定不能建立一个从集A到集B的映射C.若集合A={a},B={1,2},则从集A到集B只能建立一个映射D.若集合A={1,2},B={a},则从集A到集B只能建立一个映射1-3-2对于从集合A到集合B的映射,下面说法错误的是[ ]A.A中的每一个元素在B中都有象B.A中的两个不同元素在B中的象必不相同C.B中的元素在A中可以没有原象D.B中的某一元素在A中的原象可能不止一个1-3-3下列从集合P到Q的各对应关系f中,是映射的是[ ]A.P={1},Q={1,2,3},f:x→y,y>xD.P={0|0≤x≤2},Q={y|0≤y≤1},f:x→y=(x-2)21-3-4集合A有n个元素,集合B有m个元素,则由A到B的映射:A→B 的个数是 [ ]1-3-5 已知(x,y)在映射f的作用下的象是(x+y,x-y),则在f的作用下,(1,2)的原象是______.的同一映射,则A应满足的条件是______.(1)求4的象;(3)集B的任一元素y是否有两个或两个以上的原象?1-3-8设集合M={x|1≤x≤9,x∈N},F ={(a,b,c,d)|a,b,c,d∈M}.定义F到Z的映射f:(a,b,c,d)→ab-cd若u,v,x,y都是M中的元素,且满足f:(u,v,x,y)→39,(u,y,x,v)→66求x,y,u,v.习题参考答案1-3-1 D 1-3-2 B 1-3-3 B 1-3-4 DB中任一元素y在集A中只有惟一的一个原象。
1-3-8由题意得uv-xy=39 (i)uy-xv=66 (ii)(i)+(ii)得(u-x)(v+y)=3·5·7 (iii)(ii)-(i)得(y-v)(u+x)=3·3·3 (iv)由于0<u-x<9,v+y≤18,0<y-v<9,u+x≤18,所以由(iii)、(iv)可得u-x=7,v+y=15,y-v=3,u+x=9,解得u=8,v=6,x=1,y=9。
映射及映射法及例题
映射及映射法及例题知识、方法、技能1.映射的定义设A ,B 是两个集合,如果按照某种对应法则f ,对于集合A 中的任何一个元素,在集合B 中都有惟一的元素和它对应,这样的对应叫做从集合A 到集合B 的映射,记作.:B A f →(1)映射是特殊的对应,映射中的集合A ,B 可以是数集,也可以是点集或其他集合,这两个集合有先后次序,从A 到B 的映射与从B 到A 的映射是截然不同的.(2)原象和象是不能互换的,互换后就不是原来的映射了.(3)映射包括集合A 和集合B ,以及集合A 到B 的对应法则f ,三者缺一不可.(4)对于一个从集合A 到集合B 的映射来说,A 中的每一个元素必有惟一的,但B 中的每一个元素都不一定都有原象.如有,也不一定只有一个.2.一一映射一般地,设A 、B 是两个集合,.:B A f →是集合A 到集合B 的映射,如果在这个映射下,对于集合A 中的不同元素,在集合B 中有不同的象,而且B 中每一个元素都有原象,那么个这个映射叫做A 到B 上的一一映射.3.逆映射如果f 是A 与B 之间的一一对应,那么可得B 到A 的一个映射g :任给B b ∈,规定 a b g =)(,其中a 是b 在f 下的原象,称这个映射g 是f 的逆映射,并将g 记为f —1.显然有(f —1)—1= f ,即如果f 是A 与B 之间的一一对应,则f —1是B 与A 之间的一一对应,并且f —1的逆映射是f .事实上,f —1是B 到A 的映射,对于B 中的不同元素b 1和b 2,由于它们在f 下的原象不同,所以b 1和b 2在f —1下的像不同,所以f —1是1-1的.任给b a f A a =∈)(,设,则a b f=-)(1.这说明A 中每个元素a 在f —1都有原象.因此,f —1是映射上的.这样即得f —1是B 到A 上的1-1映射,即f —1是B 与A 之间一一对应.从而f —1有逆映射.:B A h →由于任给b a h A a =∈)(,设,其中b 是a 在f—1下的原象,即f —1(b)=a ,所以, f(a)=b ,从而f h a f b a h ===得),()(,这即是f —1的逆映射是f .赛题精讲Ⅰ映射关映射的高中数学竞赛题是常见题型之一,请看下述试题.例1:设集合},,,,|),,,{(},,110|{M d c b a d c b a F x x x M ∈=∈≤≤=集合Z 映射f :F →Z.使得v u y x v x y u y x v u cd ab d c b a ff f ,,,,66),,,(,39),,,(.),,,(求已知→→-→的值.【思路分析】应从cd ab d c b a f -→),,,(入手,列方程组来解之.【略解】由f 的定义和已知数据,得⎩⎨⎧∈=-=-).,,,(66,39M y x v u xv uy xy uv 将两式相加,相减并分别分解因式,得.27))((,105))((=+-=-+x u v y x u v y显然,},110|{,,,,0,0Z ∈≤≤∈≥-≥-x x x v u y x v y x u 在的条件下,,110≤-≤v u ,21)(,15)(,105|)(,2210,221]11105[21=+=++≤+≤≤+≤+v y v y v y v y v y 可见但即 对应可知.5)(,7)(21=-=-x u x u同理,由.9)(,3)(223,221]1127[,11021=+=+≤+≤≤+≤+≤-≤x u x u x u x u v y 又有知 对应地,.3)(,9)(21=-=-v y v y 于是有以下两种可能: (Ⅰ)⎪⎪⎩⎪⎪⎨⎧=-=+=-=+;3,9,7,15v y x u x u x y (Ⅱ)⎪⎪⎩⎪⎪⎨⎧=-=+=-=+.3,9,5,21v y x u x u v y 由(Ⅰ)解出x =1,y=9,u =8,v =6;由(Ⅱ)解出y=12,它已超出集合M 中元素的范围.因此,(Ⅱ)无解.【评述】在解此类问题时,估计x u v y x u v y +--+,,,的可能值是关键,其中,对它们的取值范围的讨论十分重要.例2:已知集合}.0|),{(}333|),{(><<=xy y x x y y x A 和集合求一个A 与B 的一一对应f ,并写出其逆映射.【略解】从已知集合A ,B 看出,它们分别是坐标平面上两直线所夹角形区域内的点的集合(如图Ⅰ-1-2-1).集合A 为直线x y x y 333==和所夹角内点的集合,集合B 则是第一、三象限内点的集合.所要求的对应实际上可使A 区域拓展成B 区域,并要没有“折叠”与“漏洞”.先用极坐标表示集合A 和B :},36,,0|)sin ,cos {(πθπρρθρθρ<<∈≠=R A图Ⅰ-1-2-1}.20,,0|)sin ,cos {(πϕρρϕρϕρ<<∈≠=R B令).6(3),sin ,cos ()sin ,cos (πθϕϕρϕρθρθρ-=→f 在这个映射下,极径ρ没有改变,辐角之间是一次函数23πθϕ-=,因而ϕθ和之间是一一对应,其中),3,6(ππθ∈ ).2,0(πϕ∈所以,映射f 是A 与B 的一一对应. 逆映射极易写,从略.【评述】本题中将下角坐标问题化为极坐标问题,颇具特色.应注意理解掌握.Ⅱ映射法应用映射知识往往能巧妙地解决有关集合的一些问题.例3:设X={1,2,…,100},对X 的任一非空子集M ,M 中的最大数与最小数的和称为M 的特征,记为).(M m 求X 的所有非空子集的特征的平均数.【略解】设.}|101{,:,X A a a A A A f X A ≠≠⊂∈-=''→⊂令 于是A A f '→:是X 的非空子集的全体(子集组成的集),Y 到X 自身的满射,记X 的非空子集为A 1,A 2,…,A n (其中n=2100-1),则特征的平均数为.))()((21)(111∑∑=='+=ni i i n i i A m A m n A m n 由于A 中的最大数与A ′中的最小数的和为101,A 中最小数与A ′中的最大数的和也为101,故,202)()(='i i A m A m 从而特征平均数为 .10120221=⋅⋅n n如果A ,B 都是有限集合,它们的元素个数分别记为).(),(B card A card 对于映射B A f →:来说,如果f 是单射,则有)()(B card A card ≤;如果f 是满射,则有)()(B card A card ≥;如果f 是双射,则有)()(B card A card =.这在计算集合A 的元素的个数时,有着重要的应用.即当)(A card 比较难求时,我们就找另一个集合B ,建立一一对应B A f →:,把B 的个数数清,就有)()(B card A card =.这是我们解某些题时常用的方法.请看下述两例.例4:把△ABC 的各边n 等分,过各分点分别作各边的平行线,得到一些由三角形的边和这些平行线所组成的平行四边形,试计算这些平等四边形的个数.【略解】如图Ⅰ-1-2-2所示,我们由对称性,先考虑边不行于BC 的小平行四边形.把AB 边和AC 边各延长一等分,分别到B ′,C ′,连接 B ′C ′.将A ′B ′的n 条平行线分别延长,与B ′C ′相交,连同B ′,C ′共有n+2个分点,从B ′至C ′依次记为1,2,…,n+2.图中所示的小平行四边形所在四条线分别交B ′C ′于i ,j ,k ,l .记A={边不平行于BC 的小平行四边形},}.21|),,,{(+≤<<<≤=n l k j i l k j i B把小平行四边形的四条边延长且交C B ''边于四点的过程定义为一个映射:B A f →:. 下面我们证明f 是A 与B 的一一对应,事实上,不同的小平行四边形至少有一条边不相同,那么交于C B ''的四点亦不全同.所以,四点组),,,(l k j i 亦不相同,从而f 是A 到B 的1-1的映射.任给一个四点组21),,,,(+≤<<<≤n l k j i l k j i ,过i ,j 点作AB 的平行线,过k ,l 作AC 的平行线,必交出一个边不平行于BC 的小平行四边形,所以,映射f 是A 到B 的满射. 总之f 是A 与B 的一一对应,于是有.)()(42+==n C B card A card加上边不平行于AB 和AC 的两类小平行四边形,得到所有平行四边形的总数是.342+n C例5:在一个6×6的棋盘上,已经摆好了一些1×2的骨牌,每一个骨牌都恰好覆盖两上相邻的格子,证明:如果还有14个格子没有被覆盖,则至少能再放进一个骨牌.【思路分析】还有14个空格,说明已经摆好了11块骨牌,如果已经摆好的骨牌是12块,图Ⅰ-1-2-3所示的摆法就说明不能再放入骨牌.所以,有14个空格这一条件是完全必要的.我们要证明当还有14个空格时,能再放入一个骨牌,只要能证明必有两个相邻的空格就够了.如果这种 情况不发生,则每个空格的四周都有骨牌,由于正方形是对称的,当我们选定一个方向时,空格和骨牌就有了某种对应关系,即可建立空格到骨牌的一种映射,通过对空格集合与骨牌集合之间的数量关系,可以得到空格分布的一个很有趣的结论,从而也就证明了我们的命题.【略解】我们考虑下面5×6个方格中的空.如果棋盘第一行(即最上方的一行)中的空格数多于3个时,则必有两空格相邻,这时问题就得到解决.现设第一行中的空格数最多是3个,则有11314)(=-≥X card ,另一方面全部的骨牌数为11,即.11)(=Y card 所以必有),()(Y card X card =事实上这是一个一一映射,这时,将发生一个很有趣的现象:最下面一行全是空格,当然可以放入一个骨牌.【评述】这个题目的证明是颇具有特色的,从内容上讲,这个题目具有一定的综合性,既有覆盖与结构,又有计数与映射,尤其是利用映射来计数,在数学竞赛中还较少见.当然这个题目也可以用其他的方法来解决.例如,用抽屉原则以及用分组的方法来讨论其中两行的结构,也能比较容易地解决这个问题,请读者作为练习.例6:设N={1,2,3,…},论证是否存一个函数N N f →:使得2)1(=f ,n n f n f f +=)())((对一切N ∈n 成立,)1()(+<n f n f 格,即除去第一行后的方格中的空格.对每一个这样的空格,考察它上方的与之相邻的方格中的情况.(1)如果上方的这个方格是空格,则问题得到解决.(2)如果上方的这个方格被骨牌所占,这又有三种情况.(i )骨牌是横放的,且与之相邻的下方的另一个方格也是空格,则这时有两空格相邻,即问题得到解决;(ii )骨牌是横放的,与之相邻的下方的另一个方格不是空格,即被骨牌所覆盖; (iii )骨牌是竖放的.现在假设仅发生(2)中的(ii )和(iii )时,我们记X 为下面5×6个方格中的空格集合,Y 为上面5×6个方格中的骨牌集合,作映射Y X →:ϕ,由于每个空格(X 中的)上方都有骨牌(Y 中的),且不同的空格对应于不同的骨牌.所以,这个映射是单射,于是有 )()(Y card X card ≤,对一切N ∈n 成立.【解法1】存在,首先有一条链.1→2→3→5→8→13→21→… ①链上每一个数n 的后继是)(n f ,f 满足n n f n f f +=)())(( ②即每个数是它产面两个数的和,这种链称为f 链.对于①中的数m>n ,由①递增易知有n m n f m f -≥-)()( ③我们证明自然数集N 可以分析为若干条f 链,并且对任意自然数m>n ,③成立(从而)()1(n f n f >+),并且每两条链无公共元素).方法是用归纳法构造链(参见单壿著《数学竞赛研究教程》江苏教育出版社)设已有若干条f 链,满足③,而k+1是第一个不在已有链中出现的数,定义1)()1(+=+k f k f ④这链中其余的数由②逐一确定.对于m>n ,如果m 、n 同属于新链,③显然成立,设m 、n 中恰有一个属于新链.若m 属于新链,在m=k+1时,,1)(1)()()(n m n k n f k f n f m f -=+-≥-+=-设对于m ,③成立,则n m f m n m n f m m f n f m f f -≥+-≥-+=-)()()()())(([由②易知)(2m f m ≥]. 即对新链上一切m ,③成立.若n 属于新链,在n=k+1时,.11)()()()(n m k m k f m f n f m f -=--≥--=-设对于n ,③成立,在m>n 时,m 不为原有链的链首。
映射练习题
映射之迟辟智美创作一、选择题1.下列表格中的x 与y 能构成函数的是( )x 非负数 非正数 y1-1ABC D2.区间[0,m]在映射f :x→2x+m 所得的象集区间为[a ,b],若区间[a ,b]的长度比区间[0,m]的长度年夜5,则m=( )A .5 B . 10C .D . 13.从集合M={0,1,2}到集合N={1,2,3,4}的分歧映射的个数是( )A .81个B . 64个C . 24个D . 12个4.已知函数①;②y=x 2﹣4x+1(x≤0);③y=lgx ;④那么是从界说域到值域的一一映射的有( )A .①②③B . ①③④C . ②③④D . ①②④5.已知映射f :A→B ,其中A=B=R ,对应法则f :x→y=﹣x 2+2x ,对实数k ∈B 在集合A 中存在两个分歧的原像,则k 的取值范围是( )A .k >1B .k ≤1 C . k <1D .k ≥1 6.若f :A→B 能构成映射,则下列说法正确的有( )(1)A 中的任意一元素在B 中都必需有像且唯一; (2)A 中的多个元素可以在B 中有相同的像;x 奇数 0 偶数 y1-1x 有理数 无理数 y1-1x 自然数 整数 有理数 y1-1(3)B 中的多个元素可以在A 中有相同的原像; (4)像的集合就是集合B .A .1个 B . 2个C . 3个D . 4个7.已知(x ,y )在映射f 下的象是,那么(﹣5,2)在f下的原象是( )A .(-10,4)B .(-6,-4)C .(-3,-7)D .(-23,-27)8.若点(x ,y )在映射f 下的象是点(x+y ,x ﹣y ),则在映射f 下点(2,1)的象是( )A .(3,1)B .(23,21) C .(23,-21)D .(1,3)9.设f :x→|x|是集合A 到集合B 的映射.若A={﹣3,0,3},则A∩B=( )A .{0,3} B . {0}C . {3}D . {﹣3,0}10.给定映射f :(x ,y )→(x+2y ,2x ﹣y ),在影射f 下(3,1)的原象为( )A .(1,3)B .(3,1)C .(1,1)D .(21,21)二、填空题11.设A 到B 的映射f 1:x→2x+1,B 到C 的映射f 2:y→y 2﹣1,则A 到C 的映射f 3:.12.已知函数f (x )与g (x )分别由下表给出:且f (g (x ))=2,则x=.13.(1)A=R,B={y|y>0},f:x→y=|x|.(2)A={x|x≥2,x∈N*},B={y|y≥0,y∈N},f:x→y=x2﹣2x+2.(3)A={x|x>0},B={y|y∈R},f:A到B的映射.14.集合A={正整数},集合n∈Z},f:合A到集合B15.已知A={1,2,3},B={4,5},则以A为界说域,B为值域的函数共有个.16.在平面直角坐标系中,四边形ABCD在映射f:(x,y)→(x-1,2y)作用下的象集为四边形A′B′C′D′,若ABCD的面积S=1,则A'B′C′D′的面积S'=.17.集合A、B都是实数集R,已知映射:f:A→B,把集合A中的元素x映射到集合B中的元素x3﹣x+1,则在映射f作用下,集合B 中的元素1与集合A中所能对应的元素所组成的集合是.18.设f是从集合A={1,2}到集合B={1,2,3,4}的映射,则满足f (1)+f(2)=4的所有映射的个数为.19.给定映射f:(x,y)→(2x+y,xy。
复合映射练习题
复合映射练习题一、基本概念回顾复合映射是在数学中的一个重要概念,也是解决问题的重要工具。
在开始解答复合映射练习题之前,我们先来回顾一下基本概念。
在数学中,给定两个集合A和B,称函数f:A→B为从集合A到集合B的映射。
对于任意的a∈A,函数f将其映射到集合B中的唯一元素f(a),表示为f(a)=b,其中b∈B。
如果有另一个函数g:B→C,我们可以构造出一个新的函数h:A→C,即复合映射。
复合映射的定义如下:对于任意的a∈A,我们有h(a)=g(f(a))。
二、复合映射的性质复合映射具有一些重要的性质,下面我们来介绍这些性质。
性质1:复合映射的结合律对于三个函数f:A→B,g:B→C和h:C→D,我们有(h∘g)∘f=h∘(g∘f)。
这个性质告诉我们,在进行多个函数的复合映射时,先进行哪个函数的复合不影响最终的结果。
性质2:复合映射的单位元对于任何函数f:A→B,都有f∘11=11∘f=f,其中11表示集合A上的恒等映射,11表示集合B上的恒等映射。
这个性质说明,将任何函数与恒等映射复合,结果仍然是原函数。
三、复合映射练习题现在,我们来解答一些复合映射的练习题,以加深对该概念的理解。
题目1:已知函数f:ℝ→ℝ,f(x)=2x+1,函数g:ℝ→ℝ,g(x)=x^2,请计算复合函数h(x)=g(f(x))。
解答:首先,我们将函数f和函数g的定义代入h(x)的定义中,得到h(x)=g(f(x))=g(2x+1)=(2x+1)^2=4x^2+4x+1。
因此,复合函数h(x)=4x^2+4x+1。
题目2:设函数f:ℝ→ℝ为奇函数,函数g:ℝ→ℝ为偶函数,请判断复合函数h(x)=f(g(x))的奇偶性。
解答:由于f为奇函数,我们有f(-x)=-f(x),由g为偶函数,我们有g(-x)=g(x)。
将函数g的定义代入h(x)的定义中,得到h(x)=f(g(x))=f(g(-x))=-f(g(x))。
因此,复合函数h(x)为奇函数。
映射与函数习题
广州至慧教育之阳早格格创做教死姓名便读年级授课日期教研院考查【知识面回瞅】普遍天,设A、B是二个非空的数集,如果按某种对付应规则f,对付于集中A中的每一个(任性性)元素x,正在集中B中皆有(存留性)唯一(唯一性)的元素y战它对付应,那样的对付应喊干集中A到集中B的一个函数(三性缺一没有成)函数的真量:修坐正在二个非空数集上的特殊对付应那种“特殊对付应”有何特性:1).不妨是“一对付一” 2).不妨是“多对付一” 3).没有克没有及“一对付多” 4). A中没有克没有及有结余元素5).B中不妨有结余元素推断二个函数相共:只瞅定义域战对付应规则普遍天,设A、B是二个集中,如果按某一个决定的对付应闭系f,使对付于集中A中的每一个元素x,正在集中B中皆有唯一决定的元素y与之对付应,那么便称对付应f:A→B为从集中A到集中B的一个映射(mapping).思索:映射与函数辨别与通联?函数——修坐正在二个非空数集上的特殊对付应映射——修坐正在二个非空集中上的特殊对付应1)函数是特殊的映射,是数集到数集的映射.2)映射是函数观念的扩展,映射纷歧定是函数.3)映射与函数皆是特殊的对付应思索:映射有“三性”:①“有序性”:映射是有目标的,A 到B 的映射与B 到A 的映射往往没有是共一个映射;②“存留性”:对付于集中A 中的所有一个元素,集中B 中皆存留元素战它对付应;③“唯一性”:对付于集中A 中的所有一个元素,正在集中B中战它对付应的元素是唯一的.(1).函数的定义:如果A 、B 皆利害空数集,那终A 到B 的映射f:A → B 便喊干A → B 的函数.记做:y=f (x).(2)定义域:本象集中A 喊干函数y=f (x)的定义域.(3)值域:象的集中C 喊干函数y=f (x)的值域.定义:给定一个集中A 到集中B 的映射,且a ∈A , b ∈B.如果元素a 战元素b 对付应,那么咱们把元素b 喊干元素a的象,元素a 喊干元素b 的本象.给定映射f :A→B.则集中A 中所有一个元素正在集中B 中皆有唯一的象,而集中B 中的元素正在集中A 中纷歧定皆有)(B C本象,也纷歧定惟有一个本象.问题1:下图中的(1)(2)所示的映射有什么特性?问:创造逆序:(1)对付于集中A 中的分歧元素,正在集中B 中有分歧的象,咱们把那样的映射称为单射.(2)集中B 中的每一个元素皆有本象,咱们把那样的映射称为谦射.定义:普遍天,设A 、B 是二个集中.f :A→B 是集中A 到集中B 的映射,A 的分歧元素,正在集中B 中有分歧的象,且B 中每一个元素皆有本象,那么那个映射喊干A 到B 上的一一映射.注意:1A 到B 是映射,B到A 也是映射.2)映射战一一映射之间的充要闭系,映射是一一映射的需要而没有充分条件3)一一映射: A 战B 中元素个数相等. 例21)A={0,1,2,4,9},B={0,1,4,9,64},对付应规则 f :问:是映射,没有是一一映射.出.)2)A={0,1,4,9,16},B={-1,0,1,2,3,4},对付应规则 f :供仄圆根?问:没有是映射.3)A=Z,B=N*,对付应规则f:供千万于值?问:没有是映射.4)A={11,16,20,21},B={6,2,4,0},对付应规则f:供被7除的余数问:是映射,且是一一映射.例3:已知集中A=R,B={(x,y)|x,y∈R},f是从A到B的映射f:x→(x+1,x2) .B中的对付应元素(2)(2,1)正在A中的对付应元素可得其正在B中的对付应解:(1)将,2)(2)由题意得:x+1=2x2=1 ∴x=1 即(2,1)正在A中的对付应元素为1例4:设集中A={a、b},B={c、d、e}(1)可修坐从A到B的映射个数.(2)可修坐从B到A的映射个数.问:9,8(不妨试着绘图瞅瞅)小结:如果集中A中有m个元素,集中B中有n个元素,那么从集中A到集中B的映射公有nm个.【映射例题粗解】例1正在下列对付应中、哪些是映射、那些映射是函数、那些没有是?为什么?设A={1,2,3,4},B={3,5,7,9},对付应闭系是f(x)=2x+1,x属于A设A={1,4,9},B+{-1,1,-2,2,-3,3}对付应闭系是‘A中的元素启仄圆’设A=R,B=R,对付应闭系是f(x)=x的3次圆,x属于A设A=R,B=R,对付应闭系是f(x)=2x的2次圆+1,x属于A 剖析:1、是一一映射,且是函数2、没有是映射(象是有且唯一)3、是一一映射,且是函数4、是映射,但是没有是函数,果为B中没有是所有值正在A中皆有对付应.例2设A={a,b,c},B={0,1},请写出二个从A到B的映射从A到B的映射公有2^3=8个:(a,b,c)→(0,0,0);(a,b,c)→(0,0,1);(a,b,c)→(0,1,0);(a,b,c)→(1,0,0);(a,b,c)→(0,1,1);(a,b,c)→(1,0,1);(a,b,c)→(1,1,0);(a,b,c)→(1,1,1).例3假设集中m={0 -1 1} n={-2 -1 0 1 2} 映射f:M→N 谦脚条件“对付任性的x属于M ,x+f(x) 是奇数”,那样的映射有____个①当x=-1时,x+f(x)=-1+f(-1)恒为奇数,相称于题目中的节造条件“使对付任性的x属于M,皆有x+f(x)是奇数”f(-1)=-2,0,2②当x=0时,x+f(x)=f(0),根据题目中的节造条件“使对付任性的x属于M,皆有x+f(x)是奇数”可知f(0)只可等于-1战1③当x=1时,x+f(x)=1+f(1)恒为奇数f(1)=-2,0,2综上①②③可知,惟有第②种情况有节造,所以那样的映射公有3×2×3=18个例4 设集中A={-1,0,1} B={2,3,4,5,6 } 从A到B的映射f谦脚条件:对付每个X∈A 有f(X)+X为奇数那么那样的映射f的个数是几?映射不妨多对付一,要让f(X)+X=奇数,当X=-1战1时,只可从B中与奇数,有3,5二种大概,当X=0从B中与奇数有2 4 6三种,则一公有2×2×3=12个以去您教了分步与分类便很佳明白啦,完毕一件事有二类分歧的规划,正在第一类规划中有m种分歧的要领,正在第二类规划中有n种分歧的要领.那么完毕那件事公有N=m+n中分歧的要领,那是分类加法计数本理;完毕一件事需要二个步调,干第一步有m种分歧的要领,干第二步有n种分歧的要领.那么完毕那件事公有N=m×n种分歧的要领脚例5已知:集解:∴例6给出下列四个对付应:①②③④其形成映射的是()有①②①④①③④③④例7有恒创造的()例8)4,对例9.数是____________________.3种对付应要领(可对付应5或者6或者7),也有那3例10解:∵∴又【课堂训练】1.设f:A→B是集中A到集中B的映射,则粗确的是()A.A中每一元素正在B中必有象B.B中每一元素正在A中必有本象C.B中每一元素正在A中的本象是唯一的D.A中的分歧元素的象必分歧2.集中A={3,4},B={5,6,7},那么可修坐从A到B的映射个数是_______,从B到A的映射个数是__________.3.设集中A战B皆是自然数集N,映射f:A→B把集中A中的元素n影射到集中Bf下,象20的本象是()A.2 B.3 C4.如果(x,y)正在映射f 下的象是(x+y,x-y),那么(1,2)正在映射下的本象是 ( )A.(3,1)B.(21,23-)C. (23,21-)D.(-1,3)5.已知面(x ,y)正在映射f 下的象是(2x -y ,2x +y), 供(1)面(2,3)正在映射f 下的像;(2)面(4,6)正在映射f 下的本象.6.设集中A ={1,2,3,k},B ={4,7,a4,a2+3a},其中a,k ∈N,映射f:A→B ,使B 中元素y =3x +1与A 中元素x 对付应,供a 及k 的值.【概括训练】一、采用题:1.下列对付应是从集中A 到集中B 的映射的是()A .A=R ,B={x|x >0且x ∈R},x ∈A ,f :x→|x|B .A=N ,B=N +,x ∈A ,f :x→|x -1|C .A={x|x >0且x ∈R},B=R ,x ∈A ,f :x→x2D .A=Q ,B=Q ,f :x→x1 2.已知映射f:A B ,其中集中A ={-3,-2,-1,1,2,3,4},集中B 中的元素皆是A 中的元素正在映射f 下的象,且对付任性的a ∈A ,正在B 中战它对付应的元素是|a|,则集中B 中的元素的个数是()A .4B .5C .6D .73.设集中A 战B 皆是自然数集中N ,映射f :A→B 把集中A 中的元素n 映射到集中B 中的元素2n +n ,则正在映射f 下,象20的本象是( ) A .2 B .3C .4D .54.正在x克a%的盐火中,加进y克b%的盐火,浓度形成,与y的函数闭系式是()A..C.5.函数A.(-∞,-1 )∪(-1,+∞) B.(-∞,1)∪(1,+∞)C.(-∞,0 )∪(0,+∞) D.(-∞,0)∪(1,+∞)6.下列各组中,函数f(x)战g(x)的图象相共的是()A.f(x)=x,.f(x)=1,g(x)=x0C.f(x)=|x|,D.f(x)=|x|,7.函数A.{x|-1≤x≤1} B.{x|x≤-1或者x≥1}C.{x|0≤x≤1}D.{-1,1}8.已知函数f(x)的定义域为[0,1],则f(x2)的定义域为()A.(-1,0) B.[-1,1]C.(0,1) D.[0,1]9.设函数f(x)对付任性x、y谦脚f(x+y)=f(x)+f(y),且f(2)=4,则f(-1)的值为()A.-2 B.C.±1 D.210.函数y=2A.[-2,2] B.[1,2] C.[0,2]D.[11.若函数y=x2—x—4的定义域为[0,m],值域为-4],则m的与值范畴是()B.4] C.[,3]AD.∞]12.已知函数1)=x+1,则函数f(x)的剖析式为()A.f(x)=x2B.f(x)=x2+1(x≥1)D.f(x)=x2-2x+2(x≥1)C.f(x)=x2-2x(x≥1)二、挖空题:13.己知集中A ={1,2,3,k} ,B = {4,7,a4,a2+3a},且a∈N*,x∈A,y∈B,使B 中元素y=3x +1战A中的元素x对付应,则a=___,k =__.14.若集中M={-1,0,1} ,N={-2,-1,0,1,2},从M到N的映射谦脚:对付每个x∈M,恒使x+f(x) 是奇数,则映射f有____个.15.设f(x-1)=3x-1,则f(x)=_________.16.已知函数f(x)=x2-2x+2,那么f(1),f(-1),之间的大小闭系为.三、解问题:17.(1)若函数y= f(2x+1)的定义域为[ 1,2 ],供f (x)的定义域.(2)已知函数f(x)的定义域为,供函数g(x)=f(3x)+的定义域.18.(1)已f(x)的剖析式.(2)已知y=f(x)是一次函数,且有f[f(x)]=9x+8,供此一次函数的剖析式.19.供下列函数的值域:(1)y=-x2+x,x∈[1,3 ](2)(320+g(x),其中f(x)是x的正比率函数,g(x)是x.(2的值域.21.如图,动面P从单位正圆形ABCD顶面A启初,逆次经B、C、D绕鸿沟一周,当x表示面P的路程,y表示PA之万古,供y闭于x的剖析式,并供的值.22.季节性拆束当季节将要光临时,代价呈降高趋势,设某拆束启初时定价为10元,而且每周(7天)涨价2元,5周后启初脆持20元的代价稳固出卖;10周后当季节将要往日时,仄衡每周削价2元,曲到16周终,该拆束已没有再出卖.(1)试修坐代价P与周次t之间的函数闭系式.(2)若此拆束每件进价Q与周次t之间的闭系为Q=-0.125(t-8)2+12,t∈[0,16],t∈N*,试问该拆束第几周每件出卖成本L最大?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
映射函数课时作业(七)一、选择题1.下列四组函数中,表示同一函数的是( ) A .y =x -1与y =(x -1)2 B .y =x -1与y =x -1x -1C .y =4lg x 与y =2lg x 2D .y =lg x -2与y =lg x100解析:∵y =x -1与y =(x -1)2=|x -1|的对应法则不同,故不是同一函数;y =x -1(x ≥1)与y =x -1x -1(x >1)的定义域不同,∴它们不是同一函数;又y =4lg x (x >0)与y =2lg x 2(x ≠0)的定义域不同,因此它们也不是同一函数,而y =lg x -2(x >0)与y =lg x100=lg x -2(x >0)有相同的定义域、值域与对应法则,故它们是同一函数.答案:D2.函数y =1x -3+lg(x +2)的定义域是( )A .(2,3)∪(3,+∞)B .(-2,+∞)C .(-2,3)∪(3,+∞)D .(2,+∞)解析:由⎩⎪⎨⎪⎧x +2>0x -3≠0得x >-2且x ≠3.答案:C3.设函数f (x )=⎩⎨⎧x , x ≥0,-x , x <0,若f (a )+f (-1)=2,则a =( )A .-3B .±3C .-1D .±1解析:若a ≥0,则a +1=2,得a =1;若a <0,则-a +1=2,得a =-1.故选D.答案:D4.已知函数 f (x )=⎩⎪⎨⎪⎧2x +1,x <1,x 2+ax ,x ≥1,若f [f (0)]=4a ,则实数a 等于( )A.12B.45 C .2 D .9解析:∵f (0)=20+1=2,∴f [f (0)]=f (2)=22+2a =4a .∴a =2.故选C. 答案:C5.若函数y =mx -1mx 2+4mx +3的定义域为R ,则实数m 的取值范围是( )A .(0,34]B .(0,34)C .[0,34]D .[0,34)解析:∵y =mx -1mx 2+4mx +3的定义域为R ,∴mx 2+4mx +3恒大于0.当m =0,∴mx 2+4mx +3=3满足题意. 当m >0时,Δ=16m 2-12m <0,解得0<m <34,综上,0≤m <34,即m ∈[0,34).答案:D6.“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到达终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点……,用s 1、s 2分别表示乌龟和兔子所行的路程,t 为时间,则下图与故事情节相吻合的是( )解析:根据故事的描述,B 图与事实较吻合. 答案:B 二、填空题7.已知(x ,y )在映射f 作用下的象是(x +y ,xy ). (1)(-2,3)在f 作用下的象为________.(2)若在f 作用下的象是(2,-3),则它的原象为________. 解析:(1)-2+3=1,-2×3=-6 因此(-2,3)在f 作用下的象为(1,-6).(2)∵⎩⎪⎨⎪⎧x +y =2,xy =-3.解这个方程组得⎩⎪⎨⎪⎧ x 1=3,y 1=-1,或⎩⎪⎨⎪⎧x 2=-1,y 2=3. ∴(2,-3)在f 作用下的原象是(3,-1)和(-1,3). 答案:(1)(1,-6) (2)(3,-1)或(-1,3)8.(2012年福建省四地六校期中联考)已知函数f (x )=⎩⎪⎨⎪⎧3x(x ≤0)log 2x (x >0),则f [f (12)]=________.解析:∵f (12)=-1,f (-1)=13,∴f [f (12)]=13.答案:139.(2010年江苏高考)已知函数 f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥01,x <0,则满足不等式f (1-x 2)>f (2x )的x的取值范围是________.解析:当x <-1时有1>1,∴无解. 当-1≤x <0时,有(1-x 2)2+1>1,∴x ≠±1, ∴-1<x <0.当0≤x ≤1时,有(1-x 2)2+1>(2x )2+1, ∴0≤x <2-1.当x >1时有1>(2x )2+1,∴无解. 综上:-1<x <2-1. 故填:(-1,2-1). 答案:(-1,2-1) 三、解答题10.求下列关于x 的函数的定义域和值域: (1)y =1-x -x ; (2)y =log 2(-x 2+2x ); (3)x 0 1 2 3 4 5 y234567解:(1)要使函数有意义,则⎩⎪⎨⎪⎧1-x ≥0,x ≥0∴0≤x ≤1,函数的定义域为[0,1].∵函数y =1-x -x 为减函数, ∴函数的值域为[-1,1].(2)要使函数有意义,则-x 2+2x >0,∴0<x <2. ∴函数的定义域为(0,2).又∵当x ∈(0,2)时,-x 2+2x ∈(0,1], ∴log 2(-x 2+2x )∈(-∞,0]. 即函数的值域为(-∞,0]. (3)函数定义域为{0,1,2,3,4,5}, 函数值域为{2,3,4,5,6,7}.11.已知函数 f (x )=2x -1,g (x )=⎩⎪⎨⎪⎧x 2(x ≥0),-1 (x <0),求f [g (x )]和g [f (x )]的解析式.解:当x ≥0时,g (x )=x 2, f [g (x )]=2x 2-1,当x <0时,g (x )=-1, f [g (x )]=-2-1=-3,∴f [g (x )]=⎩⎪⎨⎪⎧ 2x 2-1 ,-3(x ≥0),(x <0).∵当2x -1≥0,即x ≥12时,g [f (x )]=(2x -1)2,当2x -1<0,即x <12时,g [f (x )]=-1,∴g [f (x )]=⎩⎪⎨⎪⎧(2x -1)2,-1,(x ≥12),(x <12).12.某公司招聘员工,连续招聘三天,应聘人数和录用人数符合函数关系y =⎩⎪⎨⎪⎧4x ,1≤x ≤10,2x +10,10<x ≤100,1.5x ,x >100,其中,x 是录用人数,y 是应聘人数.若第一天录用9人,第二天的应聘人数为60人,第三天未被录用的人数为120人.求这三天参加应聘的总人数和录用的总人数.解:由1<9<10,得第一天应聘人数为4×9=36(人). 由4x =60,得x =15∉[1,10];由2x +10=60,得x =25∈(10,100];由1.5x =60,得x =40<100. 所以第二天录用人数为25人.设第三天录用x 人,则第三天的应聘人数为120+x . 由4x =120+x ,得x =40∉[1,10]; 由2x +10=120+x ,得x =100∉(10,100]; 由1.5x =120+x ,得x =240>100.所以第三天录用240人,应聘人数为360人.综上,这三天参加应聘的总人数为36+60+360=456人,录用的总人数为9+25+240=274人.[热点预测]13.如右图,在平面直角坐标系xOy 中,A (1,0),B (1,1),C (0,1),映射f 将xOy 平面上的点P (x ,y )对应到另一个平面直角坐标系uO ′v 上的点P ′(2xy ,x 2-y 2),则当点P 沿着折线A -B -C 运动时,在映射f 的作用下,动点P ′的轨迹是( )解析:点P 在AB 上运动时,x =1,P ′(2y,1-y 2),u =2y ,v =1-y 2,从而u 2=4-4v ,是抛物线的一部分,而u 可以取2,从而选A.答案:A 【备选题】A .f (x )=4-x 2x,x ∈[-2,0)∪(0,2]B .f (x )=x 2-4x ,x ∈(-∞,-2]∪[2,+∞)C .f (x )=-x 2-4x ,x ∈(-∞,-2]∪[2,+∞)D .f (x )=-4-x 2x,x ∈[-2,0)∪(0,2]x ⊗2=(x -2)2=|x -2|, ∴f (x )=4-x 2|x -2|-2.又其定义域为{x |-2≤x <0或0<x ≤2}, ∴f (x )=-4-x 2x ,x ∈[-2,0)∪(0,2].答案:D2.某地一年内的气温Q (t )(单位:℃)与时间t (月份)之间的关系如图所示,已知该年的平均气温为10℃.令C (t )表示时间段[0,t ]的平均气温,C (t )与t 之间的函数关系用下列图象表示,则正确的应该是( )解析:C (t )表示时间段[0,t ]的平均气温,所以起点和Q (t )气温一样;又已知该年的平均气温为10℃,所以t =12时,C (12)=10℃;t =6时,C (6)接近0,再由C (t )在[6,12]上逐渐上升,再慢慢下降至10℃知选A.答案:A3.对于实数x ,y 定义新运算x *y =ax +by +1,其中a 、b 是常数,等式右边是通常的加法和乘法运算,若3] .解析:由题意,得⎩⎪⎨⎪⎧ 3a +5b +1=15,4a +7b +1=28,解得⎩⎪⎨⎪⎧a =-37,b =25,∴1]答案:-114.设函数f (x )(x ∈N )表示x 除以2的余数,函数g (x )(x ∈N )表示x 除以3的余数,则对任意的x ∈N ,给出以下式子:①f (x )≠g (x );②g (2x )=2g (x );③f (2x )=0;④f (x )+f (x +3)=1. 其中正确的式子编号是________.(写出所有符合要求的式子编号)解析:当x 是6的倍数时,可知f (x )=g (x )=0,所以①不正确;容易得到当x =2时,g (2x )=g (4)=1,而2g (x )=2g (2)=4,所以g (2x )≠2g (x ),故②错误;当x ∈N 时,2x 一定是偶数,所以f (2x )=0正确;当x ∈N 时,x 和x +3中必有一个为奇数、一个为偶数,所以f (x )和f (x +3)中有一个为0、一个为1,所以f (x )+f (x +3)=1正确.答案:③④5.如图①是某公共汽车线路收支差额y 元与乘客量x 的图象.(1)试说明图①上点A 、点B 以及射线AB 上的点的实际意义;(2)由于目前本条线路亏损,公司有关人员提出了两种扭亏为赢的建议,如图②③所示.你能根据图象,说明这两种建议的意义吗?(3)图①、图②中的票价是多少元?图③中的票价是多少元? (4)此问题中直线斜率的实际意义是什么?解:(1)点A 表示无人乘车时收入差额为-20元,点B 表示有10人乘车时收入差额0元,线段AB 上的点表示亏损,AB 延长线上的点表示赢利.(2)图②的建议是降低成本,票价不变,图③的建议是增加票价. (3)图①②中的票价是2元.图③中的票价是4元. (4)斜率表示票价.。