浙教版八年级数学上册角三角形练习 .docx

合集下载

最新浙教版八年级数学上学期《三角形的初步认识》单元测试及答案解析.docx

最新浙教版八年级数学上学期《三角形的初步认识》单元测试及答案解析.docx

《第1章三角形的初步认识》一、填空题1.已知三角形的两边分别为4和9,则此三角形的第三边可能是()A.4 B.5 C.9 D.132.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于()A.50° B.30° C.20° D.15°3.如图所示,△ACB≌A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20° B.30° C.35° D.40°4.长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种5.尺规作图是指()A.用直尺规范作图B.用刻度尺和圆规作图C.用没有刻度的直尺和圆规作图D.直尺和圆规是作图工具6.如图,BE、CF都是△ABC的角平分线,且∠BDC=110°,则∠A=()A.50° B.40° C.70° D.35°7.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45° B.54° C.40° D.50°8.一副三角板如图叠放在一起,则图中∠α的度数为()A.75° B.60° C.65° D.55°9.如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△ADE的位置,连接EC,满足EC∥AB,则∠BAD的度数为()A.30° B.35° C.40° D.50°10.如图所示,△ABC与△BDE都是等边三角形,AB<BD.若△ABC不动,将△BDE绕点B旋转,则在旋转过程中,AE与CD的大小关系为()A.AE=CD B.AE>CD C.AE<CD D.无法确定二、认真填一填11.若三角形的两边长分别为3、4,且周长为整数,这样的三角形共有个.12.如图,在△ABC和△DEF中,已知:AC=DF,BC=EF,要使△ABC≌△DEF,还需要的条件可以是.(只填写一个条件)13.若△ABC≌△DEF,且∠A=110°,∠F=40°,则∠E= 度.14.在△ABC中,∠A:∠B:∠C=1:2:3,则∠A= ,∠C= .15.如图,在△ABC中,∠B=60°,∠C=40°,AD⊥BC于D,AE平分∠BAC;则∠DAE= .16.如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADC的面积为S1,△ACE的面积为S2,若S△ABC=6,则S1﹣S2的值为.17.如图,将纸片△ABC沿DE折叠,点A落在点P处,已知∠1+∠2=100°,则∠A的大小等于度.18.如图,△ABC中,∠BAC=100°,EF,MN分别为AB,AC的垂直平分线,如果BC=12cm,那么△FAN的周长为cm,∠FAN= .三、解答题19.如图,点A、C、D、B 四点共线,且AC=DB,∠A=∠B,∠E=∠F.求证:DE=CF.20.如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.21.如图,在△ABC中,∠B=40°,∠C=110°.(1)画出下列图形:①BC边上的高AD;②∠A的角平分线AE.(2)试求∠DAE的度数.22.作图,如图已知三角形ABC内一点P(1)过P点作线段EF∥AB,分别交BC,AC于点E,F(2)过P点作线段PD使PD⊥BC垂足为D点.23.如图,在△ABC中,AD平分∠BAC,AD的垂直平分线EF交BC的延长线于点F,连接AF,求证:∠CAF=∠B.24.如图,点D为锐角∠ABC内一点,点M在边BA上,点N在边BC上,且DM=DN,∠BMD+∠BND=180°.求证:BD平分∠ABC.25.如图,在长方形ABCD中,AB=8cm,BC=6cm,点E是CD的中点,动点P从A点出发,以每秒2cm的速度沿A→B→C→E运动,最终到达点E.若设点P运动的时间是t秒,那么当t取何值时,△APE的面积会等于10?26.(14分)课本拓展旧知新意:我们容易证明,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?1.尝试探究:(1)如图1,∠DBC与∠ECB分别为△ABC的两个外角,试探究∠A与∠DBC+∠ECB之间存在怎样的数量关系?为什么?2.初步应用:(2)如图2,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=130°,则∠2﹣∠C= ;(3)小明联想到了曾经解决的一个问题:如图3,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案.3拓展提升:(4)如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,∠P与∠A、∠D有何数量关系?为什么?(若需要利用上面的结论说明,可直接使用,不需说明理由)《第1章三角形的初步认识》参考答案与试题解析一、填空题1.已知三角形的两边分别为4和9,则此三角形的第三边可能是()A.4 B.5 C.9 D.13【考点】三角形三边关系.菁优网版权所有【分析】根据三角形的第三边大于两边之差,而小于两边之和求得第三边的取值范围,再进一步选择.【解答】解:根据三角形的三边关系,得第三边大于5,而小于13.故选C.【点评】本题考查了三角形的三边关系,即三角形的第三边大于两边之差,而小于两边之和,此题基础题,比较简单.2.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于()A.50° B.30° C.20° D.15°【考点】平行线的性质;三角形的外角性质.菁优网版权所有【专题】计算题.【分析】首先根据平行线的性质得到∠2的同位角∠4的度数,再根据三角形的外角的性质进行求解.【解答】解:根据平行线的性质,得∠4=∠2=50°.∴∠3=∠4﹣∠1=50°﹣30°=20°.故选:C.【点评】本题应用的知识点为:三角形的外角等于与它不相邻的两个内角的和.两直线平行,同位角相等.3.如图所示,△ACB≌A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20° B.30° C.35° D.40°【考点】全等三角形的性质.菁优网版权所有【分析】根据全等三角形性质求出∠ACB=∠A′CB′,都减去∠A′CB即可.【解答】解:∵△ACB≌A′CB′,∴∠ACB=∠A′CB′,∴∠ACB﹣∠A′CB=∠A′CB′﹣∠A′CB,∴∠ACA′=∠BCB′,∵∠BCB′=30°,∴∠ACA′=30°,故选B.【点评】本题考查了全等三角形性质的应用,注意:全等三角形的对应角相等.4.长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种【考点】三角形三边关系.菁优网版权所有【专题】常规题型.【分析】要把四条线段的所有组合列出来,再根据三角形的三边关系判断能组成三角形的组数.【解答】解:四根木条的所有组合:9,6,5和9,6,4和9,5,4和6,5,4;根据三角形的三边关系,得能组成三角形的有9,6,5和9,6,4和6,5,4.故选:C.【点评】本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边,两边之差小于第三边是解题的关键.5.尺规作图是指()A.用直尺规范作图B.用刻度尺和圆规作图C.用没有刻度的直尺和圆规作图D.直尺和圆规是作图工具【考点】作图—尺规作图的定义.菁优网版权所有【分析】根据尺规作图的定义作答.【解答】解:根据尺规作图的定义可知:尺规作图是指用没有刻度的直尺和圆规作图.故选C.【点评】尺规作图是指用没有刻度的直尺和圆规作图.6.如图,BE、CF都是△ABC的角平分线,且∠BDC=110°,则∠A=()A.50° B.40° C.70° D.35°【考点】三角形内角和定理;角平分线的定义.菁优网版权所有【分析】根据数据线的内角和定理以及角平分线的定义,可以证明.【解答】解:∵BE、CF都是△ABC的角平分线,∴∠A=180°﹣(∠ABC+∠ACB),=180°﹣2(∠DBC+∠BCD)∵∠BDC=180°﹣(∠DBC+∠BCD),∴∠A=180°﹣2(180°﹣∠BDC)∴∠BDC=90°+∠A,∴∠A=2(110°﹣90°)=40°.故选B.【点评】注意此题中的∠A和∠BDC之间的关系:∠BDC=90°+∠A.7.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45° B.54° C.40° D.50°【考点】平行线的性质;三角形内角和定理.菁优网版权所有【分析】根据三角形的内角和定理求出∠BAC,再根据角平分线的定义求出∠BAD,然后根据两直线平行,内错角相等可得∠ADE=∠BAD.【解答】解:∵∠B=46°,∠C=54°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣46°﹣54°=80°,∵AD平分∠BAC,∴∠BAD=∠BAC=×80°=40°,∵DE∥AB,∴∠ADE=∠BAD=40°.故选:C.【点评】本题考查了平行线的性质,三角形的内角和定理,角平分线的定义,熟记性质与概念是解题的关键.8.一副三角板如图叠放在一起,则图中∠α的度数为()A.75° B.60° C.65° D.55°【考点】三角形的外角性质;三角形内角和定理.菁优网版权所有【分析】因为三角板的度数为45°,60°,所以根据三角形内角和定理即可求解.【解答】解:如图,∵∠1=60°,∠2=45°,∴∠α=180°﹣45°﹣60°=75°,故选A.【点评】本题利用三角板度数的常识和三角形内角和定理,熟练掌握定理是解题的关键.9.如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△ADE的位置,连接EC,满足EC∥AB,则∠BAD的度数为()A.30° B.35° C.40° D.50°【考点】旋转的性质.菁优网版权所有【分析】根据两直线平行,内错角相等可得∠ACB=∠CAB,根据旋转的性质可得AC=AE,∠BAC=∠DAE,再根据等腰三角形两底角相等列式求出∠CAE,然后求出∠DAB=∠CAE,从而得解.【解答】解:∵CE∥AB,∴∠ACB=∠CAB=75°,∵△ABC绕点A逆时针旋转到△AED,∴AC=AE,∠BAC=∠DAE,∴∠CAE=180°﹣70°×2=40°,∵∠CAE+∠CAD=∠DAE,∠DAB+∠CAD=∠BAC,∴∠DAB=∠CAE=40°.故选C.【点评】本题考查了旋转的性质,平行线的性质,等腰三角形两底角相等的性质,熟记各性质并求出∠DAB=∠CAE是解题的关键.10.如图所示,△ABC与△BDE都是等边三角形,AB<BD.若△ABC不动,将△BDE绕点B旋转,则在旋转过程中,AE与CD的大小关系为()A.AE=CD B.AE>CD C.AE<CD D.无法确定【考点】全等三角形的判定与性质;等边三角形的性质.菁优网版权所有【分析】本题可通过证△ABE和△CBD全等,来得出AE=CD的结论.两三角形中,已知了AB=BC、BE=BD,因此关键是证得∠ABE=∠CBD;由于△ABC和△BED都是等边三角形,因此∠EBD=∠ABC=60°,即∠ABE=∠CBD=120°,由此可得证.【解答】解:∵△ABC与△BDE都是等边三角形,∴AB=BC,BE=BD,∠ABC=∠EBD=60°;∴∠ACB+∠CBE=∠EBD+∠CBE=120°,即:∠ABE=∠CBD=120°;∴△ABE≌△CBD;∴AE=CD.故选A.【点评】本题考查了全等三角形的判定与性质,等边三角形的性质,当出现两个等边三角形时,一般要利用等边三角形的边和角从中找到一对全等三角形.二、认真填一填11.若三角形的两边长分别为3、4,且周长为整数,这样的三角形共有 5 个.【考点】三角形三边关系;一元一次不等式组的整数解.菁优网版权所有【分析】设第三边的长为x,根据三角形的三边关系的定理可以确定x的取值范围,进而得到答案.【解答】解:设第三边的长为x,则4﹣3<x<4+3,所以1<x<7.∵x为整数,∴x可取2,3,4,5,6.故答案为5.【点评】此题主要考查了三角形的三边关系,关键是掌握三角形三边关系定理:三角形两边之和大于第三边.三角形的两边差小于第三边.12.如图,在△ABC和△DEF中,已知:AC=DF,BC=EF,要使△ABC≌△DEF,还需要的条件可以是AB=DE .(只填写一个条件)【考点】全等三角形的判定.菁优网版权所有【专题】开放型.【分析】根据“SSS”添加条件.【解答】解:若加上AB=DE,则可根据“SSS”判断△ABC≌△DEF.故答案为AB=DE.【点评】本题考查了全等三角形的判定:判定方法有“SSS”、“SAS”、“ASA”、“AAS”.13.若△ABC≌△DEF,且∠A=110°,∠F=40°,则∠E= 30 度.【考点】全等三角形的性质.菁优网版权所有【分析】根据全等三角形的性质得出∠D=∠A=110°,∠C=∠F=40°,进而得出答案.【解答】解:∵△ABC≌△DEF,∠A=110°,∠F=40°,∴∠D=∠A=110°,∠C=∠F=40°,∴∠DEF=180°﹣110°﹣40°=30°.故答案为:30;【点评】此题主要考查了全等三角形的性质,利用其性质得出对应角相等是解题关键.14.在△ABC中,∠A:∠B:∠C=1:2:3,则∠A= 30°.,∠C= 90°..【考点】三角形内角和定理.菁优网版权所有【分析】有三角形内角和180度,又知三角形内各角比,从而求出.【解答】解:由三角形内角和180°,又∵∠A:∠B:∠C=1:2:3,∴∠A=180°×=30°,∠C=180°×=90°.故填:30°,90°.【点评】本题考查三角形内角和定理,结合已知条件,从而很容易知道各角所占几分之几.而解得.15.如图,在△ABC中,∠B=60°,∠C=40°,AD⊥BC于D,AE平分∠BAC;则∠DAE= 10°.【考点】三角形内角和定理;三角形的外角性质.菁优网版权所有【分析】根据∠B=60°,∠C=40°可得∠BAC的度数,AE平分∠BAC,得到∠BAE和∠CAE 的度数,利用外角的性质可得∠AED的度数,再根据垂直定义,得到直角三角形,在直角△ABD中,可以求得∠DAE的度数.【解答】解:∵∠C=40°,∠B=60°,∴∠BAC=180°﹣40°﹣60°=80°,∵AE平分∠BAC,∴∠BAE=∠CAE=40°,∴∠AED=80°,∵AD⊥BC于D,∴∠ADC=90°,∴∠DAE=180°﹣80°﹣90°=10°,故答案为:10°.【点评】本题主要考查角平分线的定义和垂直的定义,外角性质,三角形内角和定理,综合利用各定理及性质是解答此题的关键.16.如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADC的面积为S1,△ACE的面积为S2,若S△ABC=6,则S1﹣S2的值为 1 .【考点】三角形的面积.菁优网版权所有【专题】压轴题.【分析】根据等底等高的三角形的面积相等求出△AEC的面积,再根据等高的三角形的面积的比等于底边的比求出△ACD的面积,然后根据S1﹣S2=S△ACD﹣S△ACE计算即可得解.【解答】解:∵BE=CE,∴S△ACE=S△ABC=×6=3,∵AD=2BD,∴S△ACD=S△ABC=×6=4,∴S1﹣S2=S△ACD﹣S△ACE=4﹣3=1.故答案为:1.【点评】本题考查了三角形的面积,主要利用了等底等高的三角形的面积相等,等高的三角形的面积的比等于底边的比,需熟记.17.如图,将纸片△ABC沿DE折叠,点A落在点P处,已知∠1+∠2=100°,则∠A的大小等于50 度.【考点】三角形内角和定理;翻折变换(折叠问题).菁优网版权所有【分析】根据已知求出∠ADP+∠AEP=360°﹣(∠1+∠2)=260°,根据折叠求出∠ADE+∠AED=×260°=130°,根据三角形内角和定理求出即可.【解答】解:∵∠1+∠2=100°,∴∠ADP+∠AEP=360°﹣(∠1+∠2)=260°,∵将纸片△ABC沿DE折叠,点A落在点P处,∴∠ADE=∠ADP,∠AED=∠AEP,∴∠ADE+∠AED=×260°=130°,∴∠A=180°﹣(∠ADE+∠AED)=50°,故答案为:50.【点评】本题考查了三角形的内角和定理和折叠的性质的应用,注意:三角形的内角和等于180°,题目比较好,难度适中.18.如图,△ABC中,∠BAC=100°,EF,MN分别为AB,AC的垂直平分线,如果BC=12cm,那么△FAN的周长为12 cm,∠FAN= 20°.【考点】线段垂直平分线的性质.菁优网版权所有【分析】由EF,MN分别为AB,AC的垂直平分线,可得AF=BF,AN=CN,即可得△FAN的周长等于BC;又由∠BAC=100°,求得∠BAF+∠CAN=∠B+∠C=180°﹣∠BAC=80°,继而求得答案.【解答】解:∵EF,MN分别为AB,AC的垂直平分线,∴AF=BF,AN=CN,∴△FAN的周长为:AF+FN+AN=BF+FN+CN=BC=12cm;∴∠BAF=∠B,∠CAN=∠C,∵△ABC中,∠BAC=100°,∴∠BAF+∠CAN=∠B+∠C=180°﹣∠BAC=80°,∴∠FAN=∠BAC﹣(∠BAF+∠CAN)=20°.故答案为:12,20°.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的判定与性质.此题难度不大,注意掌握数形结合思想与转化思想的应用.三、解答题19.如图,点A、C、D、B 四点共线,且AC=DB,∠A=∠B,∠E=∠F.求证:DE=CF.【考点】全等三角形的判定与性质.菁优网版权所有【专题】证明题.【分析】根据条件可以求出AD=BC,再证明△AED≌△BFC,由全等三角形的性质就可以得出结论.【解答】证明:∵AC=DB,∴AC+CD=DB+CD,即AD=BC,在△AED和△BFC中,∴△AED≌△BFC.∴DE=CF.【点评】本题考查了线段的数量关系,全等三角形的判定及性质的运用,解答时证明△AED≌△BFC是解答本题的关键.20.如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.【考点】全等三角形的判定.菁优网版权所有【专题】证明题.【分析】(1)根据题目所给条件可分析出△ABE≌△CDF,△AFD≌△CEB;(2)根据AB∥CD可得∠1=∠2,根据AF=CE可得AE=FC,然后再证明△ABE≌△CDF 即可.【解答】解:(1)△ABE≌△CDF,△AFD≌△CEB;(2)∵AB∥CD,∴∠1=∠2,∵AF=CE,∴AF+EF=CE+EF,即AE=FC,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS).【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.21.如图,在△ABC中,∠B=40°,∠C=110°.(1)画出下列图形:①BC边上的高AD;②∠A的角平分线AE.(2)试求∠DAE的度数.【考点】作图—复杂作图.菁优网版权所有【分析】(1)利用直角三角板一条直角边与BC重合,沿BC平移使另一直角边过A 画BC边上的高AD即可;再根据角平分线的做法作∠A的角平分线AE;(2)首先计算出∠BAE的度数,再计算出∠BAD的度数,利用角的和差关系可得答案.【解答】解:(1)如图所示:(2)在△ABC中,∠BAC=180°﹣11°﹣40°=30°,∵AE平分∠BAC,∴∠BAE=∠BAC=15°,在Rt△ADB中,∠BAD=90°﹣∠B=50°,∴∠DAE=∠DAB﹣∠BAE=35°.【点评】此题主要考查了复杂作图,以及角的计算,关键是正确画出图形.22.作图,如图已知三角形ABC内一点P(1)过P点作线段EF∥AB,分别交BC,AC于点E,F(2)过P点作线段PD使PD⊥BC垂足为D点.【考点】作图—基本作图.菁优网版权所有【分析】(1)根据过直线外一点作已知直线平行线的方法作图即可;(2)利用直角三角板,一条直角边与BC重合,沿BC平移,使另一条直角边过点P 画垂线即可.【解答】解:如图所示:.【点评】此题主要考查了基本作图,关键是掌握利用直尺做平行线的方法.23.如图,在△ABC中,AD平分∠BAC,AD的垂直平分线EF交BC的延长线于点F,连接AF,求证:∠CAF=∠B.【考点】线段垂直平分线的性质.菁优网版权所有【专题】证明题.【分析】EF垂直平分AD,则可得AF=DF,进而再转化为角之间的关系,通过角之间的平衡转化,最终得出结论.【解答】证明:∵EF垂直平分AD,∴AF=DF,∠ADF=∠DAF,∵∠ADF=∠B+∠BAD,∠DAF=∠CAF+∠CAD,又∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠CAF=∠B.【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.24.如图,点D为锐角∠ABC内一点,点M在边BA上,点N在边BC上,且DM=DN,∠BMD+∠BND=180°.求证:BD平分∠ABC.【考点】全等三角形的判定与性质;角平分线的性质.菁优网版权所有【专题】证明题.【分析】在AB上截取ME=BN,证得△BND≌△EMD,进而证得∠DBN=∠MED,BD=DE,从而证得BD平分∠ABC.【解答】解:如图所示:在AB上截取ME=BN,∵∠BMD+∠DME=180°,∠BMD+∠BND=180°,∴∠DME=∠BND,在△BND与△EMD中,,∴△BND≌△EMD(SAS),∴∠DBN=∠MED,BD=DE,∴∠MBD=∠MED,∴∠MBD=∠DBN,∴BD平分∠ABC.【点评】本题考查了三角形全等的判定和性质,等腰三角形的判定和性质.25.如图,在长方形ABCD中,AB=8cm,BC=6cm,点E是CD的中点,动点P从A点出发,以每秒2cm的速度沿A→B→C→E运动,最终到达点E.若设点P运动的时间是t秒,那么当t取何值时,△APE的面积会等于10?【考点】一元一次方程的应用;三角形的面积.菁优网版权所有【专题】几何动点问题.【分析】分为三种情况讨论,如图1,当点P在AB上,即0<t≤4时,根据三角形的面积公式建立方程求出其解即可;如图2,当点P在BC上,即4<t≤7时,由S△APE=S﹣S△PCE﹣S△PAB建立方程求出其解即可;如图3,当点P在EC上,即7<t≤9四边形AECB时,由S△APE==10建立方程求出其解即可.【解答】解:如图1,当点P在AB上,即0<t≤4时,∵四边形ABCD是矩形,∴AD=BC=6,AB=CD=8.∵AP=2t,∴S△APE=×2t×6=10,∴t=.如图2,当点P在BC上,即4<t≤7时,∵E是DC的中点,∴DE=CE=4.∵BP=2t﹣8,PC=6﹣(2t﹣8)=14﹣2t.∴S=(4+8)×6﹣×(2t﹣8)×8﹣(14﹣2t)×4=10,解得:t=7.5>7舍去;当点P在EC上,即7<t≤9时,PE=18﹣2t.∴S△APE=(18﹣2t)×6=10,解得:t=.总上所述,当t=或时△APE的面积会等于10.【点评】本题考查了矩形的性质的运用,三角形的面积公式的运用,梯形的面积公式的运用.解答时灵活运用三角形的面积公式求解是关键.26.课本拓展旧知新意:我们容易证明,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?1.尝试探究:(1)如图1,∠DBC与∠ECB分别为△ABC的两个外角,试探究∠A与∠DBC+∠ECB之间存在怎样的数量关系?为什么?2.初步应用:(2)如图2,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=130°,则∠2﹣∠C= 50°;(3)小明联想到了曾经解决的一个问题:如图3,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案∠P=90°﹣∠A .3拓展提升:(4)如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,∠P与∠A、∠D有何数量关系?为什么?(若需要利用上面的结论说明,可直接使用,不需说明理由)【考点】三角形的外角性质;三角形内角和定理.菁优网版权所有【专题】探究型.【分析】(1)根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠DBC+∠ECB ,再利用三角形内角和定理整理即可得解;(2)根据(1)的结论整理计算即可得解;(3)表示出∠DBC+∠ECB ,再根据角平分线的定义求出∠PBC+∠PCB ,然后利用三角形内角和定理列式整理即可得解;(4)延长BA 、CD 相交于点Q ,先用∠Q 表示出∠P ,再用(1)的结论整理即可得解.【解答】解:(1)∠DBC+∠ECB=180°﹣∠ABC+180°﹣∠ACB=360°﹣(∠ABC+∠ACB )=360°﹣(180°﹣∠A )=180°+∠A ;(2)∵∠1+∠2=∠180°+∠C ,∴130°+∠2=180°+∠C ,∴∠2﹣∠C=50°;(3)∠DBC+∠ECB=180°+∠A ,∵BP 、CP 分别平分外角∠DBC 、∠ECB ,∴∠PBC+∠PCB=(∠DBC+∠ECB )=(180°+∠A ),在△PBC 中,∠P=180°﹣(180°+∠A )=90°﹣∠A ;即∠P=90°﹣∠A ;故答案为:50°,∠P=90°﹣∠A ;(4)延长BA、CD于Q,则∠P=90°﹣∠Q,∴∠Q=180°﹣2∠P,∴∠BAD+∠CDA=180°+∠Q,=180°+180°﹣2∠P,=360°﹣2∠P.【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,角平分线的定义,熟记性质并读懂题目信息是解题的关键.。

浙教版 八年级数学上册 第1章 三角形的初步认识 单元测试卷 (含解析)

浙教版 八年级数学上册 第1章  三角形的初步认识 单元测试卷 (含解析)

八年级(上)数学第1章三角形的初步认识单元测试卷一.选择题(共10小题)1.下面有四个图案,其中不是轴对称图形的是A.B.C.D.2.等腰三角形的一个内角是,则另外两个角的度数分别是A.B.C.或D.3.下列条件中不能判定两个直角三角形全等的是A.两个锐角分别对应相等B.两条直角边分别对应相等C.一条直角边和斜边分别对应相等D.一个锐角和一条斜边分别对应相等4.已知直角三角形的两边长分别为3和4,则斜边长为A.4B.5C.4或5D.5或5.用反证法证明“”时应先假设A.B.C.D.6.如图和△中,,再添两个条件不能够全等的是A.,B.,C.,D.,7.已知,如图,在中,,,是的平分线,,则图中等腰三角形一共有A.2个B.3个C.4个D.5个8.已知等腰三角形的两边长分别为、,且、满足,则此等腰三角形的周长是A.8B.11C.12D.11或139.将两个底边相等的等腰三角形按照如图所示的方式拼接在一起(隐藏互相重合的底边)的图形俗称为“筝形”.假如“筝形”下个定义,那么下面四种说法中,你认为最能够描述“筝形”特征的是A.有两组邻边相等的四边形称为“筝形”B.有两组对角分别相等的四边形称为“筝形”C.两条对角线互相垂直的四边形称为“筝形”D.以一条对角线所在直线为对称轴的四边形称为“筝形”10.如图,在等腰中,为的平分线,,,,则A.B.C.D.二.填空题(共8小题)11.已知等腰三角形的两边长分别是2和4,那么这个等腰三角形的周长是.12.已知在中,,,,那么.13.等腰,,平分交于,如果,则.14.如果在直角三角形中,一个锐角是另一个锐角的3倍,那么这个三角形中最小的一个角等于度.15.如图,直角中,,,当时,.16.如图,,,垂足分别是,,(若要用“”得到,则应添加的条件是.(写一种即可)17.如图,在中,度,如果过点画一条直线能把分割成两个等腰三角形,那么度.18.如图,是一个钢架结构,在角内部最多只能构造五根等长钢条,且满足,则的度数最大为度.三.解答题(共6小题)19.用反证法证明一个三角形中不能有两个角是直角.20.如图,中,,是中点,.求的长.21.如图,已知,平分.求证:是等腰三角形.22.如图,,是上的一点,且,,求证:.23.如图,在中,,是的平分线,,交于点.(1)求证:.(2)若,求的度数.24.如图,已知中,,,,、是边上的两个动点,其中点从点开始沿方向运动,且速度为每秒,点从点开始沿方向运动,且速度为每秒,它们同时出发,设出发的时间为秒.(1)出发2秒后,求的长;(2)当点在边上运动时,出发几秒钟后,能形成等腰三角形?(3)当点在边上运动时,求能使成为等腰三角形的运动时间.参考答案一.选择题(共10小题)1.下面有四个图案,其中不是轴对称图形的是A.B.C.D.解:、不是轴对称图形,故本选项符合题意;、是轴对称图形,故本选项不符合题意;、是轴对称图形,故本选项不符合题意;、是轴对称图形,故本选项不符合题意.故选:.2.等腰三角形的一个内角是,则另外两个角的度数分别是A.B.C.或D.解:,,①当底角时,则,;②当顶角时,,,;即其余两角的度数是,或,,故选:.3.下列条件中不能判定两个直角三角形全等的是A.两个锐角分别对应相等B.两条直角边分别对应相等C.一条直角边和斜边分别对应相等D.一个锐角和一条斜边分别对应相等解:、两个锐角对应相等,不能说明两三角形能够完全重合,符合题意;、可以利用边角边判定两三角形全等,不符合题意;、可以利用边角边或判定两三角形全等,不符合题意;、可以利用角角边判定两三角形全等,不符合题意.故选:.4.已知直角三角形的两边长分别为3和4,则斜边长为A.4B.5C.4或5D.5或解:直角三角形的两边长分别为3和4,①4是此直角三角形的斜边;②当4是此直角三角形的直角边时,斜边长为.综上所述,斜边长为4或5.故选:.5.用反证法证明“”时应先假设A.B.C.D.解:用反证法证明“”时,应先假设.故选:.6.如图和△中,,再添两个条件不能够全等的是A.,B.,C.,D.,解:选项,,,可利用判定△,同理选项,也可利用判定△,选项,,可利用判定△,选项,,,只能证明△,不能证明△.故选:.7.已知,如图,在中,,,是的平分线,,则图中等腰三角形一共有A.2个B.3个C.4个D.5个解:,是等腰三角形;,是等腰三角形;是的平分线,,,,是等腰三角形;和为等腰三角形;图中等腰三角形的个数有5个;故选:.8.已知等腰三角形的两边长分别为、,且、满足,则此等腰三角形的周长是A.8B.11C.12D.11或13解:解得:,当4为腰时,三边为3,3,5,由三角形三边关系定理可知,周长为:.当5为腰时,三边为5,5,3,符合三角形三边关系定理,周长为:.故选:.9.将两个底边相等的等腰三角形按照如图所示的方式拼接在一起(隐藏互相重合的底边)的图形俗称为“筝形”.假如“筝形”下个定义,那么下面四种说法中,你认为最能够描述“筝形”特征的是A.有两组邻边相等的四边形称为“筝形”B.有两组对角分别相等的四边形称为“筝形”C.两条对角线互相垂直的四边形称为“筝形”D.以一条对角线所在直线为对称轴的四边形称为“筝形”解:由题意:“筝形”的一条对角线是另一条对角线的垂直平分线,所以:“筝形”是轴对称图形,对称轴是对角线所在的直线.故选:.10.如图,在等腰中,为的平分线,,,,则A.B.C.D.解:在等腰中,为的平分线,,,,,,,,,,故选:.二.填空题(共8小题)11.已知等腰三角形的两边长分别是2和4,那么这个等腰三角形的周长是10.解:2是腰长时,三角形的三边分别为2、2、4,,不能组成三角形,2是底边时,三角形的三边分别为2、4、4,能组成三角形,周长.故答案为:10.12.已知在中,,,,那么.解:如图所示:可知为的一个直角边,在中,根据勾股定理有:,即,解得:.故答案为:.13.等腰,,平分交于,如果,则3.解:,平分,,故答案为:3.14.如果在直角三角形中,一个锐角是另一个锐角的3倍,那么这个三角形中最小的一个角等于22.5度.解:在直角三角形中,设最小的锐角的度数为,则另一个锐角的度数则为.则,即,解得,,即这个直角三角形中最小的一个角等于.故答案是:22.5.15.如图,直角中,,,当时,.解:设,,,,,,,,,,,故答案为:.16.如图,,,垂足分别是,,(若要用“”得到,则应添加的条件是或.(写一种即可)解:若添加,在和中,,;若添加,在和中,,.故答案为:或.17.如图,在中,度,如果过点画一条直线能把分割成两个等腰三角形,那么度.解:如图,设过点的直线与交于点,则与都是等腰三角形,度,,,,,,,故答案为.18.如图,是一个钢架结构,在角内部最多只能构造五根等长钢条,且满足,则的度数最大为150度.解:,,,,,,,,,最小为,的度数最大为,故答案为:150.三.解答题(共6小题)19.用反证法证明一个三角形中不能有两个角是直角.【解答】证明:假设三角形的三个内角、、中有两个直角,不妨设,则,这与三角形内角和为相矛盾,不成立;所以一个三角形中不能有两个直角.20.如图,中,,是中点,.求的长.解:,点是中点,,,,点是中点,.21.如图,已知,平分.求证:是等腰三角形.【解答】证明:,,平分,,,是等腰三角形.22.如图,,是上的一点,且,,求证:.【解答】证明:,.,和是直角三角形,而.23.如图,在中,,是的平分线,,交于点.(1)求证:.(2)若,求的度数.【解答】(1)证明:是的平分线,,,,,.(2)解:,,,,.24.如图,已知中,,,,、是边上的两个动点,其中点从点开始沿方向运动,且速度为每秒,点从点开始沿方向运动,且速度为每秒,它们同时出发,设出发的时间为秒.(1)出发2秒后,求的长;(2)当点在边上运动时,出发几秒钟后,能形成等腰三角形?(3)当点在边上运动时,求能使成为等腰三角形的运动时间.解:(1),,,;(2),,根据题意得:,解得:,即出发秒钟后,能形成等腰三角形;(3)①当时,如图1所示,则,,.,,,,,秒.②当时,如图2所示,则,秒.③当时,如图3所示,过点作于点,则,,,,秒.综上所述:当为11秒或12秒或13.2秒时,为等腰三角形.。

第1章 三角形的初步认识 浙教版八年级数学上册基础练习(含答案)

第1章 三角形的初步认识 浙教版八年级数学上册基础练习(含答案)

浙教版初中数学八年级上册第一章基础练习一、单选题1.如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是( )A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD2.如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF 的是( )A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE3.若一个三角形的两边长分别为5和8,则第三边长可能是( )A.14B.10C.3D.24.一把含45°角的三角尺和一把直尺按如图所示的方式摆放,若∠1=20°,则∠2的度数为( )A.15°B.20°C.25°D.40°5.如图,在△ABC与△DEF中,已有条件AB=DE,还需添加两个条件才能使△ABC≌△DEF,不能添加的一组条件是( )A.∠B=∠E,BC=EF B.BC=EF,AC=DFC.∠A=∠D,∠B=∠E D.∠A=∠D,BC=EF6.如图,下面是利用尺规作∠AOB的角平分线OC的作法:①以点O为圆心,任意长为半径作弧,交OA、OB于点D,E;②分别以点D,E为圆心,以大于1DE的长为半径作弧,两弧在∠AOB内部交于点C;2③作射线OC,则射线OC就是∠AOB的平分线.以上用尺规作角平分线时,用到的三角形全等的判定方法是( )A.SSS B.SAS C.ASA D.AAS7.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项中,正确的是( )A.B.C.D.8.下列命题中,是假命题的是( )A.相等的角是对顶角B.垂线段最短C.两直线平行,同旁内角互补D.两点确定一条直线9.如图,已知△ABC(AB<BC<AC),用尺规在AC上确定一点P,使PB+PC=AC,则下列选项中,一定符合要求的作图痕迹是( )A.B.C.D.10.如果一个三角形的两个内角都小于30°,那么这个三角形的形状是( )A.锐角三角形B.直角三角形C.钝角三角形D.不能确定11.下列命题错误的是( )A.经过三个点一定可以作圆B.经过切点且垂直于切线的直线必经过圆心C.同圆或等圆中,相等的圆心角所对的弧相等D.三角形的外心到三角形各顶点的距离相等二、填空题12.如图:AB∥CD,AE平分∠BAC,CE平分∠ACD,则∠1+∠2= .13.如图,直线a∥b,将三角尺的直角顶点放在直线b上,∠1=35°,则∠2= .14.如图,AB=CD,AD与BC交于点O,在不添加任何辅助线的前提下要使△AOB≌△COD,则需添加条件 .15.如图,在△ABC中,点D、E、F分别为BC、AD、CE的中点.若S△BFC=1,则S△ABC= .16.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC的长是 .17.如图,△ABC中,AC=8,BC=6,AB的垂直平分线MN交AC于点D,则△BCD的周长是 18.如图,在△ABC中,AB=AC,∠A=120°,BC=15cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为 cm.19.在△ABC中,若∠A:∠B:∠C=1:2:3,则∠B= .20.已知CD垂直平分AB,若AC=4cm,AD=5cm,则四边形ADBC的周长是 cm.21.在△ABC中,AB=AC,点D在BC上(不与点B,C重合).只需添加一个条件即可证明△ABD≌△ACD,这个条件可以是 (写出一个即可)三、解答题22.如图,△ABC中,AD平分∠BAC,P为AD延长线上一点,PE⊥BC于E,已知∠ACB=80°,∠B=24°,求∠P的度数.23.如图,AC=AB,AE=AD,B、E、D共线,∠1=∠2,求证:AE平分∠CED.24.已知:如图,AB=DC,AB∥DC,求证:AD=BC.25.如图,A,B两点分别位于一个假山的两端,小明想用绳子测量A、B间的距离:现在地上取一个可以直接到达A点和B点的点C,连接AC并延长到点D,使CD=AC,连接BC并延长到点E,使CE=CB;连接DE并测量出它的长度. DE=8m,求AB的长度.26.如图,在△ABC中,D是BC上一点,F是BA延长线上一点,连接DF交AC于点E,且∠B=42°,∠C=59°,∠DEC=47°,求∠F度数.27.已知,AC⊥CE,AC=CE,∠ABC=∠EDC=900,证明:BD=AB+ED.28.如图,在ΔABC中,AD是高,∠DAC=10°,AE是ΔABC外角∠MAC的平分线,交BC的延长线于点E,BF平分∠ABC交AE于点F,若∠ABC=46°,求∠AFB的度数。

八年级数学上1.1认识三角形同步练习题浙教版有答案

八年级数学上1.1认识三角形同步练习题浙教版有答案

适用精选文件资料分享八年级数学上 1.1 认识三角形同步练习题(浙教版有答案)浙教版八年级数学上册 1.1《认识三角形》同步练习题一、选择题1.(1) 必定可以把一个三角形分成两个面积相等的三角形的是 ( )A.三角形的中线 B .三角形的角均分线 C.三角形的高线 D.以上说法均不正确 2 .如图,在△ ABC中, D,E 分别是 BC上的两点,且BD=DE=EC,则图中面积相等的三角形有 ( ) A .4 对 B.5 对C.6对 D.7 对 ( 第 2 题) ( 第 3 题) 3.如图,在△ ABC中,AB>AC,AD是△ ABC的边 BC上的中线, BE是△ ABD的角均分线,有下列结论:①∠ ABE=∠ DBE;② BC=2BD=2CD;③△ ABD的周长等于△ACD的周长.此中正确的个数有( ) A.0 个 B .1 个 C.2 个 D.3个 4 .三角形的一个外角是锐角,则此三角形的形状是() A、锐角三角形 B 、钝角三角形 C、直角三角形 D、没法确立 5 .能将一个三角形分成面积相等的两个三角形的一条线段是()A.中线B.角均分线 C.高线 D.三角形的角均分线 6 .如图 5―12,已知∠ACB=90°, CD⊥ AB,垂足是 D,则图中与∠A 相等的角是 () A. ∠1 B.∠ 2 C.∠ B D.∠ 1、∠2和∠ B 7.以下命题中的真命题是() A 、锐角大于它的余角 B 、锐角大于它的补角 C、钝角大于它的补角 D、锐角与钝角之和等于平角二填空题 8 .直角三角形中两个锐角的差为 20o,则两个锐角的度数分别为 .9.在△ ABC中, AB=6,AC=10,那么 BC边的取值范围是 ____,周长的取值范围是 ______. 10 .把以下命题“对顶角相等”改写成:假如,那么 . 11 .一个等腰三角形两边的长分别是15cm和 7cm则它的周长是 __________. 12 .在△ ABC中,三边长分别为正整数a、b、c,且 c≥b≥a> 0,假如 b=4,则这样的三角形共有_________个. 13 .直角三角形中,两个锐角的差为 40°,则这两个锐角的度数分别为 ________.( 第 7 题) 14 .如图,在△ ABC中, AD是 BC边上的中线. (1)若 BC=6 cm,则 CD=3cm; (2) 若 CD=a,则 BC=2a; (3) 若 S△ABD =8 cm2,则 S△ACD= 8cm2. ( 第 8 题) 15 .(1) 如图,在锐角△ ABC 中, CD,BE分别是 AB,AC边上的高线,且 CD,BE交于点 P. 若∠A=70°,则∠ BPC=110°;若∠ BPC=100°,则∠ A=80°; (2) 在△ABC中,AD,CE分别是 BC,AB边上的高线,且 BC=5 cm,AD=3 cm,CE=4 cm,则 AB=154cm; (3) 在△ ABC中,AD是△ ABC的边 BC上的中线,已知 AB=7 cm,AC=5 cm,则△ ABD与△ ACD的周长之差为 2cm.三解答题 16 .如图,在△ ABC中,∠ BAD=∠ B,∠ CAD=40°,∠ACE =120°,请判断 AD是不是△ ABC的角均分线,并说明原由.( 第 1 题) 17.如图,在△ ABC中, D,E 分别是 BC,AD的中点,连结BE.若 S△ABC= 16 cm2,求 S△ABE. 18.如图,在△ ABC中,AB>AC,AD是 BC边上的中线,已知△ ABD与△ ACD的周长之差为8,求 AB-AC的值.18.已知在△ ABC中,∠ A=45°,高线 BD和高线 CE所在的直线交于点 H,求∠ BHC的度数. 19 .在△ ABC中,AB=AC,P 是 BC上任意一点. (1) 如图①,若 P 是 BC边上任意一点, PF⊥AB于点 F,PE⊥AC于点 E,BD为△ ABC的高线,请研究 PE,PF 与 BD之间的数目关系; ( 第 5 题) (2) 如图②,若 P 是 BC的延长线上一点,PF⊥AB 于点 F,PE⊥AC于点 E,CD是△ ABC的高线,请研究 PE,PF与 CD之间的数目关系.20.(1) 如图①所示,在△ ABC中,∠ ABC的平分线 BO与∠ ACB的均分线 CO交于点 O,尝试究∠A 与∠ BOC的数目关系; ( 第 6 题) (2) 如图②,在△ ABC中, D是边 AB延长线上一点, E 是边 AC延长线上一点,∠ CBD的均分线 BO与∠ BCE 的均分线 CO交于点 O.尝试究:①∠A与∠BOC的数目关系;②按角的大小来判断△BOC的形状.参照答案:一、 1.A 2.A 3.C 4.C5.A6.B7.A 二 8.3; 9 .;10.锐角(等腰锐角); 11 .;12.10; 13.和;14.3 ;2a;8;15.80°; 154;2 三、 16. 【解】 AD是△ ABC的角均分线.原由以下:∵∠ ACE+∠ ACB=180°,∠B+∠ BA C+∠ ACB=180°,∴∠B+∠BAC=∠ ACE=120°,即∠ B+∠ BAD+∠ CAD=120°. ∵∠ CAD=40°,∴∠ B+∠ BAD=12 0 °- 40°= 80°. 又∵∠ B=∠B AD,∴2∠BAD=80°,∴∠ BAD =40°,∴∠ BAD=∠ CAD,∴AD是△ ABC 的角均分线 17. 【解】∵D是 BC的中点,∴ S△ABD=S△ACD=12S△ABC=8 cm2. ∵E是 AD的中点,∴S△ABE=S△BDE=12S△ABD=4 cm2. 18. 【解】∵AD是 BC边上的中线,∴BD=CD. ∵C△AB D=AB+BD+AD,C△ACD=AC+CD+AD,∴AB=C△ABD-BD-AD,AC=C△ACD-CD-A D.∴AB-AC=(C△ABD- BD-AD)-(C△ACD- CD-A D)=C△ABD-C△ACD= 8.19.【解】 ( 1) 当△ ABC为锐角三角形时,如解图① . ∵BD, CE是△ABC的高线,∴∠ ADB=∠ BEH=90°. 又∵∠ A=45°,∴∠ ABD=45 °,∴∠ BHE=45°,∴∠ BHC=180°-∠ BHE=135°. (2)当△ ABC为钝角三角形时,如解图② .∵BD,CE是△ ABC的高线,∴∠ ADB=∠ BEH=90° .又∵∠ A=45°,∴∠ ABD=45°,∴∠ BHC =180°-∠ ABD-∠ BEH=45°.综上所述,可知∠ BHC=135°或45°. 20. 【解】(1) 连结 PA.∵S△ABC=S△APB+S△APC,∴12AC?BD=12AB?PF+12AC?PE. ∵AB= AC,∴ BD=PE+PF. (2) 连结PA.∵S△PAB=S△ABC+S△ACP,∴12AB?PF=12AB?CD+12AC?P E.∵AB= AC,∴ PF= CD+PE,即 PF-PE=CD. 6 【解】(1) ∵BO均分∠ABC, CO均分∠ ACB,∴∠ OBC=12∠ABC,∠OCB=12∠ACB,∴∠ OBC+∠ OCB=12( ∠ABC+∠ ACB).∵∠ ABC+∠ ACB=180°-∠A,∴∠ OBC+∠ OCB=90°- 12∠A. 又∵∠ OBC+∠ OCB=180°-∠BOC,∴180°-∠ BOC=90°- 12∠A,∴∠ BOC=90°+ 12∠A. (2) ①∵BO均分∠ CBD, CO均分∠ BCE,∴∠ CBO=12∠CBD,∠ BCO =12∠BCE,∴∠ CBO+∠BCO=12( ∠CBD+∠ BCE).∵∠ ABC+∠CBD=180°,∠ACB+∠ BCE=180°,∴∠ CBD+∠ BCE=360°-( ∠ABC+∠ ACB).∵∠ ABC+∠ ACB=180°-∠ A,∴∠ CBD+∠ BCE=180°+∠ A,∴∠ CBO+∠ BCO=12(180°+∠ A)=90°+ 12∠A.∵∠ BOC=180°- ( ∠CBO+∠ BCO),∴∠ BOC=180°- 90°- 12∠A=90°- 12∠A. ②∵∠ CBO=12∠CBD,∠ BCO=12∠BCE,且∠CBD<180°,∠ BCE <180°,∴∠ CBO<90°,∠ BCO<90°.又∵∠ BOC=90°-12∠A,∴∠ BOC<90°.∴∠ BOC,∠ CBO,∠ BCO都是锐角,∴△ BOC为锐角三角形.。

浙教版八上数学第一章 三角形的初步知识 单元练习卷(含答案)

浙教版八上数学第一章 三角形的初步知识 单元练习卷(含答案)

浙教版八上数学第一章一、单选题1.下列生活实例中,利用了“三角形稳定性”的是( )A.B.C.D.2.如图,△ABC≌△EBD,AB=4cm,BD=7cm,则CE的长度为( )A.1cm B.2cm C.3cm D.4cm3.如图,在△ABC中,∠C=90°,AD是∠A角平分线,DE⊥AB于点E,CD=2,BC=6,则BE=( )A.2B.22C.23D.64.如图,下面是利用尺规作∠AOB的角平分线OC的作法,在用尺规作角平分线过程中,用到的三角形全等的判定方法是( )作法:①以O为圆心,适当长为半径画弧,分别交OA,OB于点D,E;②分别以D,E为圆心,大于1DE的长为半径画弧,两弧在∠AOB内交于一点C;2③画射线OC,射线OC就是∠AOB的角平分线.A.ASA B.SAS C.SSS D.AAS5.如图,将△ABC绕点A逆时针旋转一定的角度,得到△ADE,且AD⊥BC.若∠CAE=45°,∠E=60°,则∠BAC的大小是( )A.60°B.65°C.75°D.95°6.如图,已知锐角∠AOB,根据以下要求作图.(1)在射线OA上取点C和点E,以点O为圆心,OC,OE的长为半径画弧,分别交射线OB于点D,F;(2)连接CF,DE交于点P.则下列结论错误的是( )A.CE=DFB.点P在∠AOB的平分线上C.PE=PFD.若∠AOB=60°,则∠CPD=120°7.三边长度都是整数的三角形称为整数边三角形,若一个三角形的最长边长为8,则满足条件的整数边三角形共有( )A.8个B.10个C.12个D.20个8.如图所示,在△ABC中,点O是∠BCA与∠ABC的平分线的交点,已知△ABC的面积是12,周长是8,则点O到边BC的距离OD是( )A.1B.2C.3D.49.如右图,将△ABC沿DE、HG、EF翻折,三个顶点均落在点O处,若∠1=129°,则∠2的度数为( )A.49°B.50°C.51°D.52°10.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90∘;②∠ADE=∠CDE;③DE=BE;④AD=AB+CD,四个结论中成立的是( )A.①②④B.①②③C.③④D.①③二、填空题11.已知三角形的三边长分别是2、7、x,且x为奇数,则x= .12.“两直线平行,同位角相等”是 命题(真、假).13.如图,在△ABC中,∠BDC=125°,如果∠ABC与∠ACB的平分线交于点D,那么∠A= 度.14.在△ABC中,BD平分∠ABC,如果AB=12,BC=8,△ABD的面积为24,则△CBD的面积为 15.如图,在Rt△ABC中,DE是斜边AB的垂直平分线,连接BD,若∠CBD=26°,则∠A= 度.16.如图,已知AD为△ABC的中线,AB=10cm,AC=7cm,△ACD的周长为20cm,则△ABD的周长为 cm.三、解答题17.如图,在△ABC中,∠ADB=∠ABD,∠DAC=∠DCA,∠BAD=32°,求∠BAC的度数.18.如图,AB=CB,BE=BF,∠1=∠2,证明:△ABE≌△CBF.19.如图,△ABC中,∠ABC=30°,∠ACB=50°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)∠BAC的度数为______,∠DAF的度数为______;(2)若△DAF的周长为20,求BC的长.20.如图,已知在△ABC中,AB=AC=10cm,BC=8cm,D为AB的中点.点P在线段BC上以3cm/s 的速度由点B出发向终点C运动,同时点Q在线段CA上以acm/s的速度由点C出发向终点A运动,设点P的运动时间为ts.(1)求CP的长;(用含t的式子表示)(2)若以C、P、Q为顶点的三角形和以B,D,P为顶点的三角形全等,且∠B和∠C是对应角,求t,a 的值.21.定义:在一个三角形中,如果有一个角是另一个角的1,我们称这两个角互为“和谐角”,这个2三角形叫做“和谐三角形” .例如:在△ABC中,如果∠A=70°,∠B=35°,那么∠A与∠B互为“和谐角”,△ABC为“和谐三角形”.问题1:如图1,△ABC中,∠ACB=90°,∠A=60°,点D是线段 A BB 上一点(不与A、B 重合),连接CD(1)如图1,△ABC 是“和谐三角形”吗?为什么?(2)如图1,若CD⊥AB,则△ACD、△BCD是“和谐三角形” 吗?为什么?(3)问题2:如图2,△ABC 中,∠ACB=60°,∠A=80°,点 D 是线段AB 上一点(不与A、B 重合),连接CD,若△ACD 是“和谐三角形”,求∠ACD 的度数.22.“转化”是数学中的一种重要思想,即把陌生的问题转化成熟悉的问题,把复杂的问题转化成简单的问题,把抽象的问题转化为具体的问题.(1)请你根据已经学过的知识求出下面星形图(1)中∠A+∠B+∠C+∠D+∠E的度数;(2)若对图(1)中星形截去一个角,如图(2),请你求出∠A+∠B+∠C+∠D+∠E+∠F的度数;(3)若再对图(2)中的角进一步截去,你能由题(2)中所得的方法或规律,猜想图3中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N的度数吗?只要写出结论,不需要写出解题过程)23.(1)阅读理解:问题:如图1,在四边形ABCD中,对角线BD平分∠ABC,∠A+∠C=180°.求证:DA=DC.思考:“角平分线+对角互补”可以通过“截长、补短”等构造全等去解决问题.方法1:在BC上截取BM=BA,连接DM,得到全等三角形,进而解决问题;方法2:延长BA到点N,使得BN=BC,连接DN,得到全等三角形,进而解决问题.结合图1,在方法1和方法2中任选一种,添加辅助线并完成证明.(2)问题解决:如图2,在(1)的条件下,连接AC,当∠DAC=60°时,探究线段AB,BC,BD之间的数量关系,并说明理由;(3)问题拓展:如图3,在四边形ABCD中,∠A+∠C=180°,DA=DC,过点D作DE⊥BC,垂足为点E,请直接写出线段AB、CE、BC之间的数量关系.答案解析部分1.【答案】B2.【答案】D3.【答案】C4.【答案】C5.【答案】C6.【答案】D7.【答案】C8.【答案】C9.【答案】C10.【答案】A11.【答案】712.【答案】真13.【答案】7014.【答案】1615.【答案】3216.【答案】2317.【答案】解:在三角形ABD中,(180°﹣32°)=74°,∠ADB=∠ABD=12在三角形ADC中,∠ADB=37°,∠DAC=∠DCA=12∴∠BAC=∠DAC+∠BAD=37°+32°=69°.18.【答案】证明:∵∠1=∠2,∴∠1+∠FBE=∠2+∠FBE,即∠ABE=∠CBF在△ABE与△CBF中,{AC=CB∠ABE=∠CBFBE=BF∴△ABE≌△CBF(SAS).19.【答案】(1)100°,20°;(2)20.20.【答案】(1)CP =(8﹣3t )cm(2)t =43,a =154或t =1,a =321.【答案】(1)解:ΔABC 是“和谐三角形”,理由如下:∵∠ACB =90°,∠A =60°,∴∠B =30°,∴∠B =12∠A ,∴ΔABC 是“和谐三角形”;(2)解:ΔACD 、ΔBCD 是“和谐三角形”,理由如下:∵∠ACB =90°,∠A =60°,∴∠B =30°,∵CD ⊥AB ,∴∠ADC =∠BDC =90°,∴∠ACD =30°,∠BCD =60°.在ΔACD 中,∵∠A =60°,∠ACD =30°,∴∠ACD =12∠A ,∴ΔACD 为和谐三角形”;在ΔBCD 中,∵∠BCD =60°,∠B =30°,∴∠B =12∠BCD ,∴ΔBCD 为和谐三角形”;(3)解:若ΔACD 是“和谐三角形”,由于点D 是线段AB 上一点(不与A 、B 重合),则∠ACD =12∠A 或∠ACD =12∠ADC .当∠ACD =12∠A 时,∠ACD =12∠A =40°;当∠ACD =12∠ADC 时,∠A +3∠ACD =180°,即3∠ACD =100°,∴∠ACD =100°3.综上,∠ACD 的度数为40°或100°3.22.【答案】(1)解:如图,∵∠1=∠2+∠D=∠B+∠E+∠D ,∠1+∠A+∠C=180°,∴∠A+∠B+∠C+∠D+∠E=180°(2)解:∵∠1=∠2+∠F=∠B+∠E+∠F ,∠1+∠A+∠C+∠D=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°(3)解:∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N=180×5+180=1080°.23.【答案】(1)解:方法1:在 BC 上截 BM =BA ,连接 DM ,如图.∵BD 平分 ∠ABC ,∴∠ABD =∠CBD .在 ΔABD 和 ΔMBD 中, {BD =BD∠ABD =∠MBD BA =BM ,∴ΔABD≌ΔMBD ,∴∠A =∠BMD , AD =MD .∵∠BMD +∠CMD =180° , ∠C +∠A =180° .∴∠C =∠CMD .∴DM =DC ,∴DA =DC .方法2:延长 BA 到点N ,使得 BN =BC ,连接 DN ,如图.∵BD 平分 ∠ABC ,∴∠NBD =∠CBD .在 ΔNBD 和 ΔCBD 中, {BD =BD∠NBD =∠CBD BN =BC ,∴ΔNBD≌ΔCBD .∴∠BND =∠C , ND =CD .∵∠NAD +∠BAD =180° ,∠C +∠BAD =180° .∴∠BND =∠NAD ,∴DN =DA ,∴DA =DC .(2)解: AB 、 BC 、 BD 之间的数量关系为: AB +BC =BD . (或者: BD ―CB =AB , BD ―AB =CB ).延长 CB 到点P ,使 BP =BA ,连接 AP ,如图2所示.由(1)可知 AD =CD ,∵∠DAC =60° .∴ΔADC 为等边三角形.∴AC =AD , ∠ADC =60° .∵∠BCD +∠BAD =180° ,∴∠ABC =360°―180°―60°=120° .∴∠PBA =180°―∠ABC =60° .∵BP =BA ,∴ΔABP 为等边三角形.∴∠PAB =60° , AB =AP .∵∠DAC =60° ,∴∠PAB +∠BAC =∠DAC +∠BAC ,即 ∠PAC =∠BAD .在 ΔPAC 和 ΔBAD 中, {PA =BA∠PAC =∠BAD AC =AD ,∴ΔPAC≌ΔBAD .∴PC =BD ,∵PC =BP +BC =AB +BC ,∴AB +BC =BD .(3)BC ―AB =2CE。

最新浙教版八年级数学上学期《三角形的初步认识》单元检测题及答案解析.docx

最新浙教版八年级数学上学期《三角形的初步认识》单元检测题及答案解析.docx

《第1章三角形的初步知识》一、选择题1.以下列各组线段为边,能组成三角形的是()A.2cm、2cm、4cm B.2cm、6cm、3cm C.8cm、6cm、3cm D.11cm、4cm、6cm2.下列说法:①三角对应相等的两个三角形全等;②三边对应相等的两个三角形全等;③两角与一边对应相等的两个三角形全等;④两边与一角对应相等的两个三角形全等.其中正确的有()A.1个B.2个C.3个D.4个3.如图,三角形的外角是()A.∠1 B.∠2 C.∠3 D.∠44.若三角形的一个外角小于和它相邻的内角,则这个三角形为()A.锐角三角形 B.直角三角形 C.钝角三角形 D.无法确定5.关于三角形的内角,下列判断不正确的是()A.至少有两个锐角B.最多有一个直角C.必有一个角大于60°D.至少有一个角不小于60°6.下列四组中一定是全等三角形的是()A.两条边对应相等的两个锐角三角形B.面积相等的两个钝角三角形C.斜边相等的两个直角三角形D.周长相等的两个等边三角形7.若AD是△ABC的中线,则下列结论错误的是()A.AD平分∠BAC B.BD=DC C.AD平分BC D.BC=2DC8.如果三角形的一个内角等于其它两个内角的差,这个三角形是()A.锐角三角形 B.钝角三角形 C.直角三角形 D.斜三角形9.如图,在△ABC中,BC边上的垂直平分线交AC于点D,已知AB=3,AC=7,BC=8,则△ABD的周长为()A.10 B.11 C.15 D.1210.已知一个三角形的三条高的交点不在这个三角形的内部,则这个三角形()A.必定是钝角三角形B.必定是直角三角形C.必定是锐角三角形D.不可能是锐角三角形二、填空题11.在△ABC中,AB=3,BC=7,则AC的长x的取值范围是;等腰三角形的两边长分别是3和7,则其周长为.12.如图,AD是△ABC的中线,△ABC的面积为100cm2,则△ABD的面积是cm2.13.一副三角板,如图所示叠放在一起,则图中∠α的度数是.14.如图,△ABC中,∠ABC的平分线与∠ACB的平分线相交于点O,若∠A=70°,则∠BOC= °.15.如图,△ABC中,高BD、CE相交于点H,若∠A:∠ABC:∠ACB=3:2:4,则∠BHC= .16.用直尺和圆规作一个角等于已知角的示意图如图所示,则说明∠A′O′B′=∠AOB的依据是(填SSS,SAS,AAS,ASA中的一种).三、解答题17.如图,在△ABC中,∠BAC是钝角,按要求完成下列画图,并用适当的符号在图中表示(可以不写作法,必须写出结论):①△ABC的角平分线AD②AC边上的高③AB边上的中线.18.尺规作图:已知线段a,b和∠α.求作:△ABC,使BC=a,AC=b,∠C=∠α(画出图形,保留作图痕迹,不写作法,写出结论)19.如图:已知△ABC中,AD⊥BC于D,AE为∠BAC的平分线,且∠B=35°,∠C=65°,求∠DAE的度数.20.如图,AB=AC,AD=AE,∠1=∠2,试说明△ABD与△ACE全等.21.如图,四边形ABCD的对角线AC与BD相交于O点,∠1=∠2,∠3=∠4.求证:OB=OD.22.如图.在△ABC和△DEF中,B、E、C、F在同一直线上,下面有四个条件.请你在其中选三个作为已知条件,余下的一个作为结论,写出一个正确的结沦,并说明理由.①AB=DE;②AC=DF;③∠ABC=∠DEF;④BE=CF.(填写序号即可)已知:;结沦:;理由:23.如图,点E、A、B、F在同一条直线上,AD与BC交于点O,已知∠CAE=∠DBF,AC=BD.说出∠CAD=∠DBC的理由.24.求作一点P,使点P到∠A两边的距离相等,且点P到点D和点E的距离相等.(保留作图痕迹)《第1章三角形的初步知识》参考答案与试题解析一、选择题1.以下列各组线段为边,能组成三角形的是()A.2cm、2cm、4cm B.2cm、6cm、3cm C.8cm、6cm、3cm D.11cm、4cm、6cm【考点】三角形三边关系.【分析】利用三角形三边关系判断即可,两边之和>第三边>两边之差.【解答】解:A、2+2=4,故不选;B、2+3=5<6,故不选;C、3+6=9>8>6﹣3=3,符合条件.D、4+6=10<11,故不选.综上,故选;C.【点评】利用三边关系判断时,常用两个较小边的和与较大的边比较大小.两个较小边的和>较大的边,则能组成三角形,否则,不可以.2.下列说法:①三角对应相等的两个三角形全等;②三边对应相等的两个三角形全等;③两角与一边对应相等的两个三角形全等;④两边与一角对应相等的两个三角形全等.其中正确的有()A.1个B.2个C.3个D.4个【考点】全等三角形的判定.【分析】根据三角形全等的判定方法分别对四个命题进行判断.【解答】解:三角对应相等的两个三角形不一定全等,所以①错误;三边对应相等的两个三角形全等,所以②正确;两角与一边对应相等的两个三角形全等,所以③正确;两边与它们的夹角对应相等的两个三角形全等,所以④错误.故选B.【点评】本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.3.如图,三角形的外角是()A.∠1 B.∠2 C.∠3 D.∠4【考点】三角形的外角性质.【分析】根据三角形外角的定义解答.【解答】解:根据三角形外角的定义可知,∠3是此三角形的外角.故选C.【点评】本题考查三角形外角的定义.分析时要严格按照定义进行,要看清是一条边的延长线与它邻边的夹角才是三角形的外角.4.若三角形的一个外角小于和它相邻的内角,则这个三角形为()A.锐角三角形 B.直角三角形 C.钝角三角形 D.无法确定【考点】三角形的外角性质.【分析】三角形的一个外角<与它相邻的内角,故内角>相邻外角;根据三角形外角与相邻的内角互补,故内角>90°,为钝角三角形.【解答】解:如图,∵∠1<∠B,∠1=180°﹣∠B,∴∠B>90°.∴△ABC是钝角三角形.故选:C.【点评】本题考查了三角形外角的性质.三角形的一边与另一边的延长线组成的角,叫做三角形的外角,可见外角与相邻的内角互补.5.关于三角形的内角,下列判断不正确的是()A.至少有两个锐角B.最多有一个直角C.必有一个角大于60°D.至少有一个角不小于60°【考点】三角形内角和定理.【分析】可以利用反证的方法来判定各个命题是否正确.【解答】解:根据三角形的内角和定理,不正确的是:必有一个角大于60°.因为当三角形是等边三角形时三个角都相等,都是60度.故选C.【点评】本题主要考查三角形的内角和定理,三角形的内角和是180度.6.下列四组中一定是全等三角形的是()A.两条边对应相等的两个锐角三角形B.面积相等的两个钝角三角形C.斜边相等的两个直角三角形D.周长相等的两个等边三角形【考点】全等三角形的判定.【分析】两边相等,面积相等,一边相等的直角三角形或者角相等的三角形都不能证明三角形全等.【解答】A、错误,两边相等,但锐角三角形的角不一定相等;B、错误,面积相等但边长不一定相等;C、错误,直角三角形全等的判别必须满足直角边相等;D、正确,等边三角形的三边一定相等,又周长相等,故两个三角形的边长分别对应相等.故选D.【点评】本题考查的全等三角形的判定;全等三角形的判别要求严格,条件缺一不可.做题时要结合已知与判定方法逐个验证排除.7.若AD是△ABC的中线,则下列结论错误的是()A.AD平分∠BAC B.BD=DC C.AD平分BC D.BC=2DC【考点】三角形的角平分线、中线和高.【分析】根据三角形的中线的概念:连接三角形的顶点和对边中点的线段叫做三角形的中线.【解答】解:A、AD平分∠BAC,则AD是△ABC的角平分线,故本选项错误;AD是△ABC的中线,则有BD=DC,AD平分BC,BC=2DC,故B、C、D正确.故选A.【点评】本题主要考查三角形的中线的概念,并能够正确运用几何式子表示是解本题的关键.8.如果三角形的一个内角等于其它两个内角的差,这个三角形是()A.锐角三角形 B.钝角三角形 C.直角三角形 D.斜三角形【考点】三角形内角和定理.【分析】三角形三个内角之和是180°,三角形的一个角等于其它两个角的差,列出两个方程,即可求出答案.【解答】解:设三角形的三个角分别为:α、β、γ,则由题意得:,解得:α=90°故这个三角形是直角三角形.故选C.【点评】本题考查的是三角形内家和定理,熟知三角形的内角和等于180°是解答此题的关键.9.如图,在△ABC中,BC边上的垂直平分线交AC于点D,已知AB=3,AC=7,BC=8,则△ABD的周长为()A.10 B.11 C.15 D.12【考点】线段垂直平分线的性质.【分析】要求△ABD的周长,现有AB=3,只要求出AD+BD即可,根据线段垂直平分线的性质得BD=CD,于是AD+BD=AC,答案可得.【解答】解:∵DE垂直且平分BC∴CD=BD.AD+BD=AD+CD=7∴△ABD的周长:AB+BD+AD=10.故选A【点评】本题考查的是线段垂直平分线的性质(垂直平分线上任意一点,和线段两端点的距离相等),难度一般.对线段进行等效转移是正确解答本题的关键.10.已知一个三角形的三条高的交点不在这个三角形的内部,则这个三角形()A.必定是钝角三角形B.必定是直角三角形C.必定是锐角三角形D.不可能是锐角三角形【考点】三角形的角平分线、中线和高.【分析】钝角三角形的三条高所在的直线的交点在三角形的外部;锐角三角形的三条高所在的直线的交点在三角形的内部;直角三角形的三条高所在的直线的交点是三角形的直角顶点.【解答】解:一个三角形的三条高的交点不在这个三角形的内部,则这个三角形不可能是锐角三角形.故选D.【点评】通过三角形的形状可以判断三角形高线的位置,反之,通过三条高线交点的位置可以判断三角形的形状.二、填空题11.在△ABC中,AB=3,BC=7,则AC的长x的取值范围是4<x<10 ;等腰三角形的两边长分别是3和7,则其周长为17 .【考点】等腰三角形的性质;三角形三边关系.【分析】(1)根据三角形的三边关系:三角形两边之和大于第三边,两边之差小于第三边,则第三边的长度应是大于两边的差,而小于两边的和,这样就可求出第三边长的范围.(2)因为边为3和7,没明确是底边还是腰,所以有两种情况,需要分类讨论.【解答】解:(1)根据三角形的三边关系,得AC的长x的取值范围是7﹣3<x<7+3,即4<x<10.(2)分两种情况:当3为底时,其它两边都为7,3、7、7可以构成三角形,周长为17;当3为腰时,其它两边为3和7,3+3=6<7,所以不能构成三角形,故舍去,所以等腰三角形的周长为17.故答案为:4<x<10;17.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.12.如图,AD是△ABC的中线,△ABC的面积为100cm2,则△ABD的面积是50 cm2.【考点】三角形的面积.【分析】根据等底等高的三角形面积相等可知,中线能把一个三角形分成两个面积相等部分.【解答】解:∵AD是△ABC的中线,△ABC的面积为100cm2,∴△ABD的面积是S△ABC=50cm2.【点评】本题考查了三角形的中线的性质,三角形的中线把一个三角形分成两个面积相等部分.13.一副三角板,如图所示叠放在一起,则图中∠α的度数是75°.【考点】三角形内角和定理.【分析】根据三角板的常数以及三角形的一个外角等于与它不相邻的两个内角的和求出∠1的度数,再根据直角等于90°计算即可得解.【解答】解:如图,∠1=45°﹣30°=15°,∠α=90°﹣∠1=90°﹣15°=75°.故答案为:75°【点评】本题考查了三角形的外角性质以及三角形内角和定理,熟知三角板的度数是解题的关键.14.如图,△ABC中,∠ABC的平分线与∠ACB的平分线相交于点O,若∠A=70°,则∠BOC= 125 °.【考点】三角形内角和定理.【分析】先求出∠ABC+∠ACB的度数,根据平分线的定义得出∠OBC=∠ABC,∠OCB=∠ACB,求出∠OBC+∠OCB的度数,根据三角形内角和定理求出即可.【解答】解:∵∠A=70°,∴∠ABC+∠ACB=180°﹣∠A=110°,∵BO、CO分别是△ABC的角∠ABC、∠ACB的平分线,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=55°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣55°=125°.故答案为:125.【点评】本题考查了三角形内角和定理,角平分线定义的应用,注意:三角形的内角和等于180°.15.如图,△ABC中,高BD、CE相交于点H,若∠A:∠ABC:∠ACB=3:2:4,则∠BHC= 120°.【考点】三角形内角和定理.【分析】先设∠A=3x,∠ABC=4x,∠ACB=5x,再结合三角形内角和等于180°,可得关于x的一元一次方程,求出x,从而可分别求出∠A,∠ABC,∠ACB,在△ABD中,利用三角形内角和定理,可求∠ABD,再利用三角形外角性质,可求出∠BHC.【解答】解:∵在△ABC中,∠A:∠ABC:∠ACB=3:2:4,故设∠A=3x,∠ABC=2x,∠ACB=4x.∵在△ABC中,∠A+∠ABC+∠ACB=180°,∴3x+2x+4x=180°,解得x=20°,∴∠A=3x=60°.∵BD,CE分别是边AC,AB上的高,∴∠ADB=90°,∠BEC=90°,∴在△ABD中,∠ABD=180°﹣∠ADB﹣∠A=180°﹣90°﹣60°=30°,∴∠BHC=∠ABD+∠BEC=30°+90°=120°.故答案为:120°【点评】本题考查了了三角形内角和定理、三角形外角的性质.三角形三个内角的和等于180°,三角形的外角等于与它不相邻的两个内角之和.16.用直尺和圆规作一个角等于已知角的示意图如图所示,则说明∠A′O′B′=∠AOB的依据是SSS (填SSS,SAS,AAS,ASA中的一种).【考点】全等三角形的判定;作图—基本作图.【专题】计算题;三角形.【分析】利用全等三角形的判定方法判断即可.【解答】解:用直尺和圆规作一个角等于已知角的示意图如图所示,则说明∠A′O′B′=∠AOB的依据是SSS,故答案为:SSS.【点评】此题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解本题的关键.三、解答题17.如图,在△ABC中,∠BAC是钝角,按要求完成下列画图,并用适当的符号在图中表示(可以不写作法,必须写出结论):①△ABC的角平分线AD②AC边上的高③AB边上的中线.【考点】作图—基本作图.【分析】①直接利用角平分线的作法得出AD;②直接利用垂线的作法得出BF即可;③首先得出AB的中点,进而得出答案.【解答】解:如图所示:①AD即为所求;②BF即为所求;③CE即为所求.【点评】此题主要考查了基本作图,正确掌握角平分线以及垂线的作法是解题关键.18.尺规作图:已知线段a,b和∠α.求作:△ABC,使BC=a,AC=b,∠C=∠α(画出图形,保留作图痕迹,不写作法,写出结论)【考点】作图—复杂作图.【分析】先作∠C=∠α,再在角的两边作AC=a,BC=b,连接即可.【解答】解.【点评】本题考查了三角形的一些基本画法.19.如图:已知△ABC中,AD⊥BC于D,AE为∠BAC的平分线,且∠B=35°,∠C=65°,求∠DAE的度数.【考点】三角形内角和定理;角平分线的定义.【专题】计算题.【分析】首先根据三角形的内角和定理和角平分线的定义求出∠EAC的度数,再根据三角形的内角和定理求出∠DAC的度数,进而求∠DAE的度数.【解答】解:∵∠B=35°,∠C=65°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣35°﹣65°=80°.∵AE为∠BAC的平分线,∴∠EAC=∠BAC=×80°=40°.∵AD⊥BC,∴∠ADC=90°,在△ADC中,∠DAC=180°﹣∠ADC﹣∠C=180°﹣90°﹣65°=25°,∴∠DAE=∠EAC﹣∠DAC=40°﹣25°=15°.【点评】本题考查了三角形的内角和定理、角平分线的定义、垂直的定义等知识.20.如图,AB=AC,AD=AE,∠1=∠2,试说明△ABD与△ACE全等.【考点】全等三角形的判定.【专题】证明题.【分析】由∠1=∠2,可得∠CAE=∠BAD,进而利用两边夹一角,证明全等.【解答】证明:∵∠1=∠2,∴∠CAE=∠BAD,∵AB=AC,AD=AE,∴△ABD≌△ACE.【点评】本题考查了全等三角形的判定;能够熟练掌握三角形的判定方法来证明三角形的全等问题,由∠1=∠2得∠CAE=∠BAD是解决本题的关键.21.如图,四边形ABCD的对角线AC与BD相交于O点,∠1=∠2,∠3=∠4.求证:OB=OD.【考点】全等三角形的判定与性质;等腰三角形的判定与性质.【专题】证明题.【分析】根据ASA证△ABC≌△ADC,推出AB=AD,根据等腰三角形的性质三线合一定理求出即可.【解答】证明:在△ABC和△ADC中,∵,∴△ABC≌△ADC(ASA),∴AB=AD,∴△ABD是等腰三角形,且∠1=∠2,∴OB=OD.【点评】本题考查了全等三角形的性质和判定和三线合一定理等知识点,注意:等腰三角形顶角的平分线平分底边.22.如图.在△ABC和△DEF中,B、E、C、F在同一直线上,下面有四个条件.请你在其中选三个作为已知条件,余下的一个作为结论,写出一个正确的结沦,并说明理由.①AB=DE;②AC=DF;③∠ABC=∠DEF;④BE=CF.(填写序号即可)已知:①②④;结沦:③;理由:【考点】全等三角形的判定与性质.【专题】证明题;开放型.【分析】本题考查的是全等三角形的判定,要根据全等三角形判定条件中的SAS,AAS,ASA,SSS等条件,来判断选择哪些条件可得出三角形全等,得出全等后又可得到什么等量关系.【解答】解:已知:①②④结论:③证明:∵BE=CF,∴BE+EC=CF+EC.∴BC=EF.△ABC和△DEF中,∴△ABC≌△DEF(SSS).∴∠ABC=∠DEF.【点评】本题考查了全等三角形的判定和性质,熟练掌握这些知识点是解题的关键.23.如图,点E、A、B、F在同一条直线上,AD与BC交于点O,已知∠CAE=∠DBF,AC=BD.说出∠CAD=∠DBC的理由.【考点】全等三角形的判定与性质.【专题】证明题.【分析】本题可通过全等三角形来证得.三角形CAB和DBA中,已知的条件有AC=BD,公共边AB,只要再证得这两组对应边的夹角相等即可得出三角形全等的结论,我们已知了∠CAE=∠DBF,那么他们的补角就应该相等,即∠CAB=∠DBA,这样就构成了两三角形全等的条件(SAS),就能得出两三角形全等了,也就得出∠CAD=∠DBC.【解答】证明:∵∠CAE=∠DBF(已知),∴∠CAB=∠DBA(等角的补角相等).在△ABC和△DBA中AC=BD(已知),∠CAB=∠DBA,AB=BA(公共边),∴△ABC≌△DBA(SAS).∴∠ABC=∠BAD(全等三角形的对应角相等).∴∠CAB﹣∠BAD=∠DBA﹣∠ABC.即:∠CAD=∠DBC.【点评】本题考查了全等三角形的判定和性质;此题证明角相等,可以通过全等三角形来证明,要注意利用此题中的图形条件,等角的补角相等.24.求作一点P,使点P到∠A两边的距离相等,且点P到点D和点E的距离相等.(保留作图痕迹)【考点】作图—复杂作图;角平分线的性质;线段垂直平分线的性质.【分析】先作出∠BAC的平分线AF,再作出线段DE的垂直平分线GH,则AF与GH 的交点P即为所求.【解答】解:如图所示,点P即为所求.【点评】本题主要考查了尺规作图中的复杂作图,解决问题的关键是掌握角平分线的作法以及线段垂直平分线的作法.。

浙教版八年级数学上《第1章三角形的初步知识》单元检测题含答案

浙教版八年级数学上《第1章三角形的初步知识》单元检测题含答案

上学期八年级数学(上册)第1章三角形的初步知识检测题(时间:100分钟满分:120分)题号 1 2 3 4 5 6 7 8 9 10答案一、选择题(共10小题每3分共30分)1、以长为5cm和3cm的线段为边,且第三边为偶数的三角形,可以作( )A.1个B.2个C.3个D.4个2、将三角形面积分成相等两部分的线是( )A.三角形的角平分线B. 三角形的三边垂直平分线C. 三角形的高线D. 三角形的中线3、如图,EDCBA∠+∠+∠+∠+∠等于()A.90°B.108°C.180°D.360°4、不是利用三角形稳定性的是()A.自行车的三角形车架B.三角形房架C.照相机的三角架D.矩形门框的斜拉条5、如图,点E,D分别在AB,AC上,若AB=AC,BE=CD,BD=EC,∠B=32°,∠A=41°,则∠BOC度数是()A.135°B.125°C.115°D.105°6、如图,在△ABC中,BD、CE分别是∠ABC和∠ACB的平分线,AM⊥CE于P,交BC于M,AN⊥BD 于Q,交BC于N,∠BAC=110°,AB=6,AC=5,MN=2,结论①AP=MP;②BC=9;③∠MAN=35°;④AM=AN.其中不正确的有()A. 4个B. 3个C. 2个D. 1个第5题图7、如图,所示某人将一块三角形的玻璃打碎成了四块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带( )去.A.第①块B.第②块C.第③块D.第④块 8、下列命题是真命题的是( )A.一个三角形中至少有两个锐角B. 若A ∠与B ∠是内错角, 则A B ∠=∠C.如果两个角有公共边,那么这两个角一定是邻补角D.如果3.14a b =π,那么a b = 9、如图,∠1=∠2,补充一个条件后仍不能判定△ABC ≌△ADC 是( ) A. AB =AD B. ∠B =∠D C. BC=DC D. ∠BAC =∠DAC10、如图,△ABC 的三边AB 、BC 、CA 的长分别为30、40、15,点P 是三条角平分线的交点,将△ABC 分成三个三角形,则APB S ∆︰BPC S ∆︰CPA S ∆等于( )A.1︰1︰1B. 6︰8︰3C.5︰8︰3D. 4︰5︰3二、填空题(共8小题 每题3分 共24分)11、在△ABC 中,AD 是BC 边上的中线,AB =5cm ,AD =3cm ,则AC 的取值范围是_____________; 12、如图,AB ∥CD ,∠1=42°,∠3=77°,则∠2的度数为( )第9题图第10题图13、如图,在四边形ABCD 中,AD =AD ,BC =DC ,E 是AC 上的点,则图中共有_______对全等三角形. 14、如图,△ABC 中,DH 是AC 的垂直平分线,交BC 于P ,MN 是AB 的垂直平分线,交BC 于点Q , 连接AP 、AQ ,已知∠BAC =72°,则∠PAQ = 度.15、如图,在△ABC 中,∠C =90°,AC=BC ,BD 平分∠CBA 交AC 于点D ,DE ⊥AB 于点E ,且△DEA 的周长为2022cm ,则AB = .16、如图,在△ABC 中,BC =6cm ,AC =2.5cm ,AB =4cm ,∠B =40°,∠C =55°,选择适当数据,画与△ABC 全等的三角形一共有 种选择方法.17、如果一个角的两边与另一个角的两边分别垂直,那么这两个角相等或互补,这个命题的题设 是 ,结论是 .18、如图,在△AB C 中, E 是边A B 上的点,CF ⊥AB 于F ,EG ⊥C B 于G ,若 △CAF ≌△CEF ≌△CEG ≌△BEG ,则∠ACB =______度. 三、解答题(共8题 共66分)19、(满分6分)已知∠α和线段a ,求作△ABC ,使∠A =∠α,∠C =90°,AB =a .第15题图第18题图第16题图第19题图20. (满分8分)将推理过程的理由填入括号内:如图,AB =CD ,AD =CB ,O 为BD 上任意一点,过O 点的直线分别交AD 、BC 的延长线于M 、N 点,试说明∠1=∠2.解:在△ABD 和△CDB 中,∴△ABD ≌△CDB ( ),∴∠ADB =∠CBD ( ), ∴ AD ∥BC ( ), ∴∠1=∠2( ). 21、(满分8分)如图,点A 、B 、E 、D 在同一直线上, 已知AF ∥DC ,AF =DC ,FE ∥CB .求证:AB DE =.22、(满分6分)如图,在△ABC 中,AF 平分∠BAC ,AC 的垂直平分线交BC 于点E ,∠B =72°,∠F AE =18°,则∠C = 度.23、(满分9分)如图,已知在△ABC 中,∠ACB =90°,CF ⊥AB 于F , 点G 为BC 的中点,E 为AB 上的点,GE 的延长线与CF 的延长线( ) ( ) ( )AB CD AD CB BD DB =⎧⎪=⎨⎪=⎩第21题图第22题图第20题图相交于D ,若CE =BE ,BC =2AC ,则AB =CD .请说明理由.24、(满分8分),如图已知AD 、A D ''分别是边BC 、B C ''上的中线,AB A B ''=,BC B C ''=,AD A D ''=,求证:C C '∠=∠.25、(满分8分)阅读以下材料:对于三个数a 、b 、c ,用}{M a b c ,,表示这三个数的平均数,用}{min a b c ,,表示这三个数中最小的数.例如:}{2121M 21233-++-==,,;}{min 2122-=-,,. 解决下列问题:(1)填空:如果}{M 211358312x x x x +---=-,,,则x 的值为 ; (2)如果}{}{M 3213min 3213a a a a +=+,,,,,求a 的值.26、(满分11分)如图,CD 是经过∠BCA 顶点C 的一条直线,且直线CD 经过∠BCA 的内部,点E ,F 在射线CD 上,已知CA =CB 且∠BEC =∠CF A =∠α.(1)如图1,若∠BCA =80°,∠α=100°,问AF BE EF -=,成立吗?说明理由.(2)将(1)中的已知条件改成∠BCA =∠β,∠α+∠β=180°(如图2),问AF BE EF -=仍成立吗?说明理由.第24题图答 案一、选择题(共10小题 每3分 共30分) 题号 1 2 3 4 5 6 7 8 9 10 答案BDCCDBCAAB11. 1<AC <11 12.∠2=35° 13.3对 14. 36° 15.2022cm 16.4 三、解答题(共8题 共66分)17.条件:一个角的两边与另一个角的两边分别垂直,结论:这两个角相等或互补 18.90° 19题,作法(1)作∠MAN =∠α, (2)在AM 上截取AB =a ,(3)过点B 作AN 的垂线,垂足为C ,△ABC 为所求作. 20.解:在△ABD 和△CDB 中,AB CDAD CBBD DB =⎧⎪=⎨⎪=⎩(已知)(已知)(公共边) 第19题图∴△ABD ≌△CDB (SSS ),∴∠ADB =∠CBD (全等三角形对应角相等), ∴ AD ∥BC (内错角相等两直线平行 ), ∴∠1=∠2( 两直线平行内错角相等). 21.证明:∵AF ∥DC (已知),∴ ∠A =∠D (两直线平行内错角相等).∵FE ∥CB (已知),∴∠1=∠2(两直线平行内错角相等)∵∠F =180-(∠A +∠1),∠C =180-(∠D +∠2)(三角形内角和定理) ∴∠F =∠C (等量代换) 在△AFE 和△DCB 中,A DAF DCF C ∠=∠⎧⎪=⎨⎪∠=∠⎩(已证),(已知),(已证), ∴△AFE ≌△DCB (ASA )∴AE =DB (全等三角形对应边相等). ∴AE -BE =DB -EB (等量减等量差相等). 即AB =DE .22.解:∵DE 是AC 的垂直平分线, ∴EA =EC , ∴∠EAC =∠C , ∴∠F AC =∠EAC +18°, ∵AF 平分∠BAC , ∴∠F AB =∠EAC +18°, ∵∠B +∠BAC +∠C =180°,∴72°+2(∠C +18°)+∠C =180°, 解得,∠C =24°,第21题图第22题图第20题图故答案为:24.23.证明:∵G 为BC 的中点(已知), ∴CG =BG (中点定义), ∵BC =2AC (已知), ∴AC =CG (等量代换) 在△ECG 和△EBG 中,CE BEEG EGCG BG =⎧⎪=⎨⎪=⎩(已知),(公共边),(已证), ∴△ECG ≌△EBG (SSS ).∴∠EGC =∠EGB (全等三角形对应角相等). ∵∠EGC +∠EGB =180°(平角定义)∴∠EGC =∠EGB =90°=∠ACB (等量代换)∵CF ⊥AB (已知),∵∠DFE =∠EGB =90°(垂直定义),∠1=∠2(对顶角相等), ∴∠D =∠B (三角形内角和定理) △ABC 和△CDG 中,B D ACB CGDAC CG ∠=∠⎧⎪∠=∠⎨⎪=⎩(已证),(已证),(已证), ∴△ABC ≌△CDG (AAS )∴AB =CD (全等三角形对应边相等).24.证明:∵AD 、A D ''分别是边BC 、B C ''上的中线(已知), ∴12BD BC =, 12B D BC ''''=(中点定义), ∵BC B C ''=(已知), ∴BD B D ''=(等量代换).ABD ∆和A B D '''∆中,第23题图AB A BBD B DAD A D ''=⎧⎪''=⎨⎪''=⎩(已知),(已证),(已知), ∴ABD ∆≌A B D '''∆(SSS )∴B B '∠=∠(全等三角形对应边相等).ABC ∆和A B C '''∆中, AB A B B BBC B C ''=⎧⎪'∠=∠⎨⎪''=⎩(已知),(已证),(已知), ∴ABC ∆≌A B C '''∆(SAS )∴C C '∠=∠(全等三角形对应边相等).25.(1)由题意,得2113583123x x x x +---=-+解方程,得2x = (2)由题意,得321333a a +++=,3213213a a a +++=+,321333a aa +++=解这三个方程,都得1a =.26.证明:(1)AF BE EF -=成立,理由如下: ∵∠BCA =80°(已知), ∴∠BCE +∠ACE =80°∵∠BEC =∠α=100°(已知), ∴∠BEF =180°-100°=80°(平角定义). ∴∠B +∠BCE =80°(三角形外角和定理) ∴∠B =∠ACE (等量代换). 在△BCE 和△CAF 中,B ACFBEC CFACB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩(已证),(已知),(已知),第24题图∴△BCE ≌△ CAF (AAS )∴BE =CF ,AF =EC (全等三角形对应边相等). ∴EF =CF -CE =BE -AF (等量代换). (2)AF BE EF -=成立,理由如下: ∵∠BCA =∠β, ∴∠BCE+∠ACE=∠β ∵∠BEC =∠α=180°-∠β, ∴∠BEF=180°-∠α=∠β. ∴∠B +∠BCE =∠β. ∴∠B =∠ACE在△BCE 和△CAF 中,B ACF BEC CFACB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩(已证),(已知),(已知),∴△BCE ≌△ CAF (AAS ) ∴BE =CF ,AF =EC ∴EF =CF -CE =BE -AF。

最新浙教版八年级数学上册《直角三角形》同步练习题及答案解析(精品试题).docx

最新浙教版八年级数学上册《直角三角形》同步练习题及答案解析(精品试题).docx

浙教版八年级数学上册第二章特殊三角形2.6《直角三角形》同步练习题一、选择题1.如果三角形的三个内角之比为1∶2∶3,那么这个三角形是(C)A.锐角三角形B.钝角三角形C.直角三角形D.锐角三角形或钝角三角形2.如图,在△ABC中,∠C=90°,BD平分∠ABC,CD=3,则点D到AB的距离是(C) A.5 B.4 C.3 D.2(第2题) (第3题)3.如图,图中直角三角形的个数为(D)A. 6B. 7C. 8D. 94.如图,CD是等腰直角三角形AB C斜边AB上的中线,DE⊥BC于点E,则图中等腰直角三角形的个数是(C)A.3 B.4 C.5 D.6(第4题) (第5题)5.如图,在△ABC中,AB=AC,AD⊥BC于点D,E为AC的中点,AB=6,则DE 的长是(B)A.2 B.3 C.4 D.2.56.把等边△ABC的一边AB延长一倍到点D,连结CD,则△ADC是(B)A.等腰三角形B.直角三角形C.等边三角形D.不能确定7.如图,在△ABC中,AB=AC=6,BC=8,AE平分∠BAC交BC于点E,点D为AB的中点,连结DE,则△BDE的周长是(B)A.7+ 5 B.10C.4+2 5 D.12二填空题8.在△ABC中,∠A∶∠B∶∠C=5∶2∶3,则△ABC是______三角形.9. 直角三角形斜边上的高与中线分别为5 cm和6 cm,则它的面积是_____cm2. 10.如图,在△ABC中,∠C=90°,∠A=45°,则△ABC是_______直角三角形.11.(1)在Rt△ABC中,∠C=90°,∠A=45°,则∠B=________;(2)在Rt△ABC中,∠A=90°,∠B=30°,则∠C=_________.(第12题)12.如图,在Rt △ABC 中,∠ACB =90°.(1)CD 是斜边AB 上的高线,则∠ACD =_______,∠A =_____;(2)若E 是AB 的中点,则图中的等腰三角形有____;(3)若CE =3 cm ,则AB =______cm ; (4)若∠A -∠B =10°,则∠A =_______.(第13题)13.如图所示,在Rt △ABC 中,∠BAC =90°,AB =AC ,AD 是BC 边上的高线,则∠BAD 的度数是_____,∠C 的度数是_____.若BC =8 cm ,则BD =_____cm ,AD =____cm.三、解答题14.如图,在Rt △ABC 中,∠ACB =90°,CD 是AB 边上的中线,过点D 作DE ⊥BC 于点E ,F 是BD 的中点,连结EF.求证:CD =2EF.15.如图,在△ACB 中,∠ACB =90°,∠B =30°.求证:AC =12AB.(第16题)16.如图,在△ABC中,∠B=∠C,AD是∠BAC的平分线,点E,F分别是AB,AC的中点,问:DE,DF的长度有什么关系?并说明理由.(第17题)17.如图,在△ABC中,AB=AC,∠A=90°,CD平分∠ACB,E在AC上,且AE=AD,EF⊥CD交BC于点F,交CD于点O.求证:BF=2AD.18.如图,在等腰Rt△ABC中,P是斜边BC上的中点,以P为顶点的直角的两边分别与边AB,AC交于点E,F,连结EF.当∠EPF绕顶点P旋转时(点E不与点A,B重合),△PEF始终是等腰直角三角形,请你说明理由.(第18题)(第19题)19.如图,在△ABC中,∠ACB=90°,AC=BC,D为BC的中点,CE⊥AD于点E,BF∥AC交CE的延长线于点F.求证:AB垂直平分DF.参考答案:1.C 2.C 3.D 4.C 5.B 6.B 7.B8. 直角; 9. 30; 10. 等腰; 11. 45°, 60°; 12. ∠B,∠BCD, △ACE和△BCE,6,50°; 13. 45°,45°,4,414. 【解】在Rt△ABC中,∵∠ACB=90°,CD是AB边上的中线,∴CD=BD=AD.∵F是BD的中点,∴EF是BD上的中线.又∵DE⊥BC,∴EF=12BD=12CD,∴CD=2EF.15. 【解】作AB边上的中线CD.∵∠ACB=90°,∴BD=CD=AD=12 AB.又∵∠B=30°,∵∠ACB =90°,∴∠B +∠A =90°,∠ACD +∠BCD =90°,∴∠A =∠ACD =60°.∵∠ADC =∠B +∠BCD =60°,∴∠A =∠ACD =∠ADC ,∴△ACD 是等边三角形.∴AC =CD =12A B. 16. 【解】 DE =DF.理由如下:∵∠B =∠C ,∴AB =AC.又∵AD 平分∠BAC ,∴AD ⊥BC ,∴△ABD ,△ACD 都为直角三角形.∵E ,F 分别为AB ,AC 的中点,∴DE =12AB ,DF =12AC , ∴DE =DF.17. 【解】 连结DF ,过点D 作DG ⊥BC 于点G. ∵∠A =90°,AD =AE ,AB =AC ,∴∠ADE =∠AED =45°,∠B =∠A CB =45°,∴∠ADE =∠B ,∴DE ∥BC ,∵CD 平分∠ACB ,∴∠BCD =∠ACD ,∴∠EDC =∠ACD ,∴DE =EC.∵EF ⊥CD ,∴EF 垂直平分CD.∴FD =FC ,∴∠FDC =∠FCD.∴∠FDC =∠ACD ,∴DF ∥AC.∴∠DFB =∠ACB =45°.∴∠B =∠BFD =45°,∴BD =DF ,∠BDF =90°,∴△DBF 为等腰直角三角形.∵DG ⊥BF ,∴DG 为斜边BF 上的中线,∴DG =12BF. 又∵CD 平分∠ACB ,∠A =∠DGC =90°,∴AD =DG.∴AD =12BF ,即BF =2AD. 18. 【解】 连结PA.∵PA 是等腰Rt △ABC 底边上的中线,∴AP ⊥BC ,∠B =∠C =45°.∴∠PAB =∠PAC =45°.∴∠PAB =∠C.∵AP ⊥BC ,PE ⊥PF ,∴∠APE +∠APF =∠APF +∠CPF =90°,∴∠APE =∠CPF.∵PA 是Rt △ABC 斜边上的中线,∴PA =12BC =PC. 在△PAE 和△PCF 中,∵∠PAE =∠C ,PA =PC ,∠APE =∠CPF ,∴△PAE ≌△PCF(ASA),∴PE =PF.∴△PEF 始终是等腰直角三角形.19.【解】 ∵∠ACB =90°,A C =BC ,∴∠CAB =∠CBA =45°,∠CAD +∠CDE =90°.∵CE ⊥AD ,∴∠CED =90°.∴∠CDE +∠DCE =90°,∴∠CAD =∠DCE ,即∠CAD =∠BCF. ∵BF ∥AC ,∴∠CBF +∠ACB =180°,∴∠CBF =180°-∠ACB =90°.∴∠CBF =∠ACD =90°.在△ACD 和△CBF 中,∵⎩⎪⎨⎪⎧∠ACD =∠CBF ,AC =CB ,∠CAD =∠BCF ,∴△ACD ≌△CBF(ASA),∴CD =BF.∵D 为BC 的中点,∴CD =BD ,∴BD =BF.又∵∠CBF =90°,∴△DBF为等腰直角三角形.∵BF∥AC,∴∠ABF=∠CAB=∠DBA=45°,∴AB是等腰Rt△DBF的顶角平分线,∴AB垂直平分DF.。

浙教版八年级上册数学第1章《三角形的初步认识》单元测试卷(含答案)

浙教版八年级上册数学第1章《三角形的初步认识》单元测试卷(含答案)

浙教版八年级上册数学第1章《三角形的初步认识》单元测试卷满分120分姓名:___________班级:___________学号:___________一.选择题(共12小题,满分36分,每小题3分)1.下列长度线段能组成三角形的是()A.1cm,2cm,3cm B.4cm,5cm,10cmC.6cm,8cm,13cm D.5cm,5cm,10cm2.三角形的三条中线、三条角平分线、三条高都是()A.直线B.射线C.线段D.射线或线段3.如图,用三角板作△ABC的边AB上的高线,下列三角板的摆放位置正确的是()A.B.C.D.4.如图,在△ABC中,BO平分∠ABC,CO平分∠ACB,∠A=50°,则∠BOC=()A.50°B.65°C.105°D.115°5.如图,△ABC的中线AD、BE相交于点F,若△ABF的面积是4,则四边形FDCE的面积是()A.4 B.4.5 C.3.5 D.56.如图,已知△ABC,点D在BC的延长线上,∠ACD=140°,∠ABC=50°,则∠A的大小为()A.50°B.140°C.120°D.90°7.小明同学有一块玻璃的三角板,不小心掉到地上碎成了三块,现要去文具店买一块同样的三角板,最省事的是()A.带②去B.带①去C.带③去D.三块都带去8.如图,△ABC≌△DEF,BC=7,EC=4,则CF的长为()A.2 B.3 C.5 D.79.下列条件中,不能判定△ABC与△DEF一定全等的是()A.AB=DE,BC=EF,∠A=∠D=90°B.AB=DE,BC=EF,∠A=∠D=80°C.AB=DE,∠A=∠D=90°,∠B=∠E=40°D.BC=EF,∠A=∠D=80°,∠B=∠E=40°10.下列命题是真命题的是()A.如果a2=b2,那么a=b B.0的平方根是0C.如果∠A与∠B是内错角,那么∠A=∠B D.负数没有立方根11.有甲、乙、丙三人,甲说乙在说谎,乙说丙在说谎,丙说甲和乙都在说谎,则()A.甲说实话,乙和丙说谎B.乙说实话,甲和丙说谎C.丙说实话,甲和乙说谎D.甲、乙、丙都说谎12.如图,AD交BC于点O,∠BAD的角平分线与△OCD的外角∠OCE的角平分线交于点P,则∠P与∠B、∠D的数量关系为()A.∠P=B.∠P=C.∠P=90°+∠B+∠D D.∠P=90°﹣∠B+∠D二.填空题(共8小题,满分24分,每小题3分)13.命题“直角三角形的两个锐角互余”的逆命题是命题.(填“真”或“假”)14.如图,为了加固小板凳,用两枚钉子A,B将一根木条钉在它上面,这和做法的几何原理是利用了三角形的.15.已知三角形的两条边长分别为3cm和2cm,如果这个三角形的第三条边长为奇数,则这个三角形的周长为cm.16.如图,把两根钢条的中点连在一起,可以做到一个测量工件内槽宽的工具(长钳),在图中,要测量工件内槽宽AB,只要测就可以了.17.如图,四边形ABCD≌四边形A'B'C'D',则∠A的大小是.18.如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于P,连接AP并延长交BC于点D,则∠ADB=度.19.如图,已知:∠A=∠D,∠1=∠2,下列条件中:①∠E=∠B;②EF=BC;③AB=EF;④AF=CD.能使△ABC≌△DEF的有.(填序号)20.如图,直线a、b、c、d互不平行,以下结论正确的是.(只填序号)①∠1+∠2=∠5;②∠1+∠3=∠4;③∠1+∠2+∠3=∠6;④∠3+∠4=∠2+∠5.三.解答题(共8小题,满分60分)21.(6分)如图,已知线段AC,BD相交于点E,∠A=∠D,BE=CE,求证:△ABE≌△DCE.22.(6分)生活中的说理小明、小红、小丽三人中一个是班长,一个是学习委员,一个是生活委员.现在知道小红比生活委员年龄大,小明与学习委员不同岁,学习委员比小丽年龄小.请你猜一猜他们当中谁是班长,并说明理由.23.(6分)如图,已知:AD平分∠BAC,点F是AD反向延长线上的一点,EF⊥BC,∠1=40°,∠F=15°.求:∠B和∠C的度数.24.(7分)如图,AE,DE分别平分∠BAC和∠BDC,∠B=∠BDC=45°,∠C=51°,求∠E的度数.25.(8分)已知,已知△ABC的周长为33cm,AD是BC边上的中线,.(1)如图,当AC=10cm时,求BD的长.(2)若AC=12cm,能否求出DC的长?为什么?26.(8分)如图,在△ABC中,∠ABC=110°,∠A=40°.(1)作△ABC的角平分线BE(点E在AC上;用尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,求∠BEC的度数.27.(9分)如图①,在Rt△ABC中,∠C=90°,BC=9cm,AC=12cm,AB=15cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3cm/s,设运动时间为ts.(1)如图(1),当t=时,△APC的面积等于△ABC面积的一半;(2)如图(2),在△DEF中,∠E=90°,DE=4cm,DF=5cm,∠D=∠A.在△ABC 的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q的运动速度.28.(10分)如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠F AE的度数;(3)求证:CD=2BF+DE.参考答案一.选择题(共12小题,满分36分,每小题3分)1.解:A、1+2=3,不能构成三角形,故此选项错误;B、4+5=9<10,不能构成三角形,故此选项错误;C、6+8>13,能构成三角形,故此选项正确;D、5+5=10,不能构成三角形,故此选项错误.故选:C.2.解:三角形的三条中线、三条角平分线、三条高都是线段,故选:C.3.解:A,C,D都不是△ABC的边AB上的高,故选:B.4.解:∵∠A=50°,∴∠ABC+∠ACB=180°﹣∠A=180°﹣50=130°,∵BO平分∠ABC,CO平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=65°,在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣65°=115°.故选:D.5.解:∵△ABC的中线AD、BE相交于点F,∴BD=CD,点F为△ABC的重心,∴BF=2EF,AF=2FD,∴S△BFD=S△ABF=×4=2,S△AEF=S△ABF=×4=2,∵S△ABD=S△ACD=4+2=6,∴四边形FDCE的面积=6﹣2=4.故选:A.6.解:∵∠ACD=∠A+∠ABC,∴∠A=∠ACD﹣∠ABC,∵∠ACD=140°,∠ABC=50°,∴∠A=140°﹣50°=90°故选:D.7.解:带③去符合“角边角”可以配一块同样大小的三角板.故选:C.8.解:∵△ABC≌△DEF,∴EF=BC=7,∵EC=4,∴CF=3,故选:B.9.解:A、∵AB=DE,BC=EF,∠A=∠D=90°,∴根据HL证明Rt△ABC≌Rt△DEF,不符合题意;B、∵AB=DE,BC=EF,∠A=∠D=80°,根据ASS不能推出△ABC≌△DEF,故本选项符合题意;C、∵AB=DE,∠A=∠D=90°,∠B=∠E=40°,∴利用ASA能推出△ABC≌△DEF,故本选项不符合题意;D、∵BC=EF,∠A=∠D=80°,∠B=∠E=40°,∴利用AAS能推出△ABC≌△DEF,故本选项不符合题意;故选:B.10.解:A、如果a2=b2,那么a=±b,故原命题错误,是假命题;B、0的平方根是0,正确,是真命题,符合题意;C、内错角不一定相等,故原命题错误,是假命题;D、负数的立方根是负数,故原命题错误,是假命题,故选:B.11.解:A、若甲说的是实话,即乙说的是谎话,则丙没有说谎,即甲、乙都说谎是对的,与甲说的是实话相矛盾,故A不合题意;B、若乙说的是实话,即丙说的谎话,即甲、乙都说谎是错了,即甲,乙至少有一个说了实话,与乙说的是实话不矛盾,故B符合题意;C、若丙说的是实话,甲、乙都说谎是对的,那甲说的乙在说谎是对的,与丙说的是实话相矛盾,故C不合题意;D、若甲、乙、丙都说谎,与丙说的甲和乙都在说谎,相矛盾,故D不合题意;故选:B.12.解:设∠P AB=∠OAP=x,∠ECP=∠PCB=y,则有,①﹣2×②可得:∠B﹣2∠P=∠D﹣2∠D﹣180°,∴∠P=,故选:A.二.填空题(共8小题,满分24分,每小题3分)13.解:命题“直角三角形的两个锐角互余”的逆命题是两个锐角互余的三角形是直角三角形,逆命题是真命题;故答案为:真.14.解:为了加固小板凳,用两枚钉子A,B将一根木条钉在它上面,这和做法的几何原理是利用了三角形的稳定性.故答案为稳定性.15.解:设第三边长为x.根据三角形的三边关系,则有3﹣2<x<2+3,即1<x<5,因为第三边的长为奇数,所以x=3,所以周长=3+3+2=8.故答案为:8;16.解:答:只要测量A'B'.理由:连接AB,A'B',如图,∵点O分别是AC、BB'的中点,∴OA=OA',OB=OB'.在△AOB和△A'OB'中,OA=OA',∠AOB=∠A'OB'(对顶角相等),OB=OB',∴△AOB≌△A'OB'(SAS).∴A'B'=AB.答:需要测量A'B'的长度,即为工件内槽宽AB,故答案为:A'B'17.解:∵四边形ABCD≌四边形A'B'C'D',∴∠D=∠D′=130°,∴∠A=360°﹣75°﹣60°﹣130°=95°,故答案为:95°.18.解:∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°,又∵AD是∠BAC的平分线,∴∠CAD=∠BAD=∠CAB=30°,∴∠ADB=90°+30°=120°,故答案为:120;19.解:①∠E=∠B,不符合全等三角形的判定定理,不能推出△ABC≌△DEF,∴①错误;②EF=BC,符合全等三角形的判定定理,可以用AAS证明△ABC≌△DEF,∴②正确;③AB=EF,不符合全等三角形的判定定理,不能推出△ABC≌△DEF,∴③错误;④∵AF=CD,∴AF+FC=CD+FC,∴AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴④正确;故答案为:②④.20.解:由三角形外角的性质可知:∠5=∠1+∠2,∠4=∠1+∠3,∠6=∠4+∠2=∠3+∠5,∴∠6=∠1+∠2+∠3,故①②③正确,故答案为①②③.三.解答题(共8小题,满分60分)21.证明:∵在△ABE和△DCE中,,∴△ABE≌△DCE(AAS).22.解:小丽是班长,理由:由小明与学习委员不同岁,可得小明非学习委员,则是班长或者生活委员;由学习委员比小丽年龄小,可得小丽非学习委员,则是班长或者生活委员;由小红比生活委员年龄大,可得小红是学习委员,由年龄可以判断小丽是班长.23.解:∵EF⊥BC,∴∠DEF=90°,∵∠F=15°,∠ADE+∠F+∠DEF=180°,∴∠ADE=75°,∵AD平分∠BAC,∠1=40°,∴∠BAC=2∠DAC=2∠1=80°,∴∠DAC=40°,∵∠ADE+∠C+∠DAC=180°,∴∠C=180°﹣40°﹣75°=65°,∵∠B+∠C+∠BAC=180°,∴∠B=180°﹣65°﹣80°=35°.24.解:∵∠B=∠BDC=45°,∴AB∥CD,∵∠C=51°,∵AE,DE分别平分∠BAC和∠BDC,∴∠BAE=BAC=,∠EDB=BDC=,∵∠AFB=∠DFE,∴∠E=∠B+∠BAE﹣∠BDE=45°+﹣=48°.25.解:(1)∵,AC=10cm,∴AB=15cm.又∵△ABC的周长是33cm,∴BC=8cm.∵AD是BC边上的中线,∴.(2)不能,理由如下:∵,AC=12cm,∴AB=18cm.又∵△ABC的周长是33cm,∴BC=3cm.∵AC+BC=15<AB=18,∴不能构成三角形ABC,则不能求出DC的长.26.解:(1)如图,BE即为所求;(2)由(1)得,BE平分∠ABC,∵∠ABC=110°,∴,∵∠A=40°,∴∠AEB=180°﹣55°﹣40°=85°,∴∠BEC=180°﹣85°=95°.27.解:(1)①当点P在BC上时,如图①﹣1,若△APC的面积等于△ABC面积的一半;则CP=BC=cm,此时,点P移动的距离为AC+CP=12+=,移动的时间为:÷3=秒,②当点P在BA上时,如图①﹣2若△APC的面积等于△ABC面积的一半;则PD=BC,即点P为BA中点,此时,点P移动的距离为AC+CB+BP=12+9+=cm,移动的时间为:÷3=秒,故答案为:或;(2)△APQ≌△DEF,即,对应顶点为A与D,P与E,Q与F;①当点P在AC上,如图②﹣1所示:此时,AP=4,AQ=5,∴点Q移动的速度为5÷(4÷3)=cm/s,②当点P在AB上,如图②﹣2所示:此时,AP=4,AQ=5,即,点P移动的距离为9+12+15﹣4=32cm,点Q移动的距离为9+12+15﹣5=31cm,∴点Q移动的速度为31÷(32÷3)=cm/s,综上所述,两点运动过程中的某一时刻,恰好△APQ≌△DEF,点Q的运动速为cm/s 或cm/s.28.证明:(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS);(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CF A=90°,∴∠CAF=45°,∴∠F AE=∠F AC+∠CAE=45°+90°=135°;(3)延长BF到G,使得FG=FB,∵AF⊥BG,∴∠AFG=∠AFB=90°,在△AFB和△AFG中,,∴△AFB≌△AFG(SAS),∴AB=AG,∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,∵∠GCA=∠DCA=45°,在△CGA和△CDA中,,∴△CGA≌△CDA(AAS),∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.。

浙教版八年级数学上册第一章三角形的初步知识单元练习(附答案)

浙教版八年级数学上册第一章三角形的初步知识单元练习(附答案)

浙教版八年级数学上册第一章三角形的初步知识单元练习(附答案)一、单选题(每题3分,共30分)(共10题;共30分)1.已知三角形的三边分别为2、a、4,那么a的取值范围是A.1<a<5B.2<a<6C.3<a<7D.4<a<62.下列命题中,真命题是()A.若AB̂=2 CD̂,则AB=2CDB.平分弦的直径垂直于弦,且平分弦所对的两条弧C.直径所对的圆周角是直角D.同一条弧所对的圆心角等于它所对圆周角的一半3.下列语句是命题的是()⑴两点之间,线段最短;(2)如果两个角的和是90度,那么这两个角互余. (3)请画出两条互相平行的直线;(4)过直线外一点作已知直线的垂线;A.(1)(2)B.(3)(4)C.(2)(3)D.(1)(4)4.如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为()A.3B.4C.5D.65.已知图中的两个三角形全等,则⑴α等于()A.72°B.60°C.58°D.48°6.在RtΔABC中,∠C=90°,∠BAC的角平分线AD交BC于点D,CD=2,则点D到AB的距离是()A.1B.2C.3 D.47.如图,在△ABC中,AD⊥BC于D,CE⊥AB于E,AD与CE交于点F.请你添加一个适当的条件,使△AEF⑴ △CEB.下列添加的条件错误的是()A.EF=EB B.EA=EC C.AF=CB D.∠AFE=∠B8.三角形的两边长分别为3和5,则周长C的范围是()A.6<C<15B.6<C<16C.11<C<13D.10<C<169.如图,在ΔABC中,AC=4,BC边上的垂直平分线DE分别交BC、AB于点D、E,若ΔAEC的周长是11,则AB=()A.28B.18C.10D.710.如图,在⑴ABC中,⑴B=30°,BC的垂直平分线交AB于E,垂足为D,如果CE=12,则ED的长为()A.3B.4C.5D.6二、解答题(共8题;共66分)11.如图,D在AB上,E在AC上,AB=AC,⑴B=⑴C.求证:AD=AE.12.如图,点C,F在线段BE上,BF=EC,⑴1=⑴2,请你添加一个条件,使⑴ABC⑴⑴DEF,并加以证明.(不再添加辅助线和字母)13.如图,点A、C、D、B在同一条直线上,且AC=BD,⑴A=⑴B,⑴E=⑴F.求证:⑴ADE⑴⑴BCF;14.如图,在矩形ABCD中,E是BC边上的点,AE=BC,DF⑴AE,垂足为F,连结DE.(1)求证:⑴ABE⑴⑴DFA;(2)若AD=10,AB=6,求DE的长.15.如图,已知AB⑴CD,CN是⑴BCE的平分线.(1)若CM平分⑴BCD,求⑴MCN的度数;(2)若CM在⑴BCD的内部,且CM⑴CN于C,求证:CM平分⑴BCD;(3)在(2)的条件下,连结BM、BN,且BM⑴BN,⑴MBN绕着B点旋转,⑴BMC+⑴BNC是否发生变化?若不变,求其值;若变化,求其变化范围.16.如图,在等腰直角三角形ABC中,⑴BAC=90°,已知A(1,0),B(0,3),M为边BC的中点。

浙教版八年级数学上册角三角形练习

浙教版八年级数学上册角三角形练习

直角三角形练习1、填空题:(1)在△ABC 中,若∠A=∠B+∠C ,则△ABC 是 。

(2)在△ABC 中,∠C=90°,∠A =2∠B ,则∠A= ,∠B= 。

(3)在△ABC 中,若∠A ∶∠B ∶∠C=1∶2∶3,则△ABC 是 三角形。

(4)直角三角形两锐角之差是12度,则较大的一个锐角是 度。

(5)已知:如图,∠BAC=90°,∠C=30°, AD⊥BC 于D ,DE⊥AB 于E ,BE=1,BC= 。

(6)在△ABC 中,如果∠A+∠B=∠C,且AC=21AB ,则∠B= 。

2选择题:(1)如果三角形的一个角等于其他两个角的差,那么这个三角形是( )A 、锐角三角形B 、直角三角形C 、钝角三角形D 、以上都错(2)如果三角形的三个内角的比是3∶4∶7,那么这个三角形是( )A 、锐角三角形B 、直角三角形C 、钝角三角形D 、锐角三角形或钝角三角形(3)用两个完全相同的直角三角板,不能拼成下列图形的是( )A .平行四边形B .矩形C .等腰三角形D .梯形 (4).如图,EA⊥AB,BC⊥AB,AB=AE=2BC ,D 为AB 的中点, 有以下判断:①DE=AC;②DE⊥AC;③∠CAB=30°; ④∠EAF=∠ADE;其中正确结论的个数是( )A 、1B 、2C 、3D 、43、解答题:(1)已知等腰三角形一腰上的高与底边成45°角,若腰长为2cm ,求它的面积。

(2)在△ABC 中,∠B=∠C ,D 、E 分别是BC 、AC 的中点,AB=6,求DE 的 长。

(3)下面是小明同学在学了等腰三角形后所做的一道题,题目是这样的:“已知△ABC 是等腰三角形,BC 边上的高恰好等于BC 边长的一半,求∠BAC 的度数。

”解:如图,∵AD ⊥BC ,AD=21BC=BD=CD , ∴∠BAD=∠B=∠C=∠CAD=45°,∴∠BAC=90°你认为小明的解答正确吗?若不正确,请你将它补充完整。

浙教版数学初二上册第1章《三角形的初步知识》测试题(Word版)

浙教版数学初二上册第1章《三角形的初步知识》测试题(Word版)

浙教版数学初二上册第1章《三角形的初步知识》测试题(Word版)第1 章测试题一、选择题(每题4 分,共32 分)1.以下图形中,能说明∠1>∠2 的是(D)2.以下各组线段中,能组成三角形的是(C)A. a=6.3,b=6.3,c=12.6B. a=1,b=2,c=3C. a=2.5,b=3,c=5D. a=5,b=7,c=153.如图①,在△ABC 中,D,E 区分是AB,AC 的中点,把△ADE 沿线段DE 向下折叠,使点A 落在BC 上的点A′处,失掉图②,那么以下四个结论中,不一定成立的是(C)(第3 题)A. DB=DAB. ∠B+∠C+∠1=180°C. BA=CAD. △ADE≌△A′DE(第4 题)4.如图,∠ABC=∠DCB=70°,∠ABD=40°,AB=DC,那么∠BAC=(B) A. 70° B. 80°C. 100°D. 90°5.以下命题中,属于假命题的是(B)A. 定义都是真命题B. 单项式-247x y的系数是-4C. 假定|x-1|+(y-3)2=0,那么x=1,y=3D. 线段垂直平分线上的恣意一点到线段两端的距离相等6.以下条件中,不能判别△ABC≌△DEF 的是(A)A. ∠A=∠E,BA=EF,AC=FDB. ∠B=∠E,BC=EF,高AH=DGC. ∠C =∠F =90°,∠A =60°,∠E =30°,AC =DFD. ∠A =∠D ,AB =DE ,AC =DF7.如图,△ABC 的三边 AB ,BC ,CA 的长区分是 100,110,120,其三条角平分线将 △ABC 分为三个三角形,那么 S △AOB ∶S △BOC ∶S △COA =(C )A. 1∶1∶1B. 9∶10∶11C. 10∶11∶12D. 11∶12∶13(第 7 题)【解】 应用角平分线的性质定理可得△AOB ,△BOC ,△COA 区分以 AB ,BC ,AC 为底时,高相等,那么它们的面积之比等于底之比.8.定义运算符号〝*〞的意义为:a *b =a b ab+ (其中 a ,b 均不为 0).下面有两个结论:① 运算〝*〞满足交流律;②运算〝*〞满足结合律.其中(A )A. 只要①正确B. 只要②正确C. ①和②都正确D. ①和②都不正确【解】 ∵a *b =a b ab +,b *a =b a ba+ ∴a *b =b *a ,即①正确.∵(a *b )*c =a b ab +*c =a b c ab a b c ab+++⋅=a b abc ac bc +++ a *(b *c )=a *b c bc +=b c a bc b c a bc+++⋅=abc b c ab ac +++ a *b )*c ≠a *(b *c ),即②不正确.二、填空题(每题 4 分,共 24 分)9.把命题〝互为倒数的两数之积为 1〞改成〝假设……那么……〞的方式:假设两个那么这两个数的积为李叔叔家的凳子坏了,于是他给凳子加了两根木条,这样凳子就比拟结实了,他所运用的数学原理是三角形的动摇性,(,(第11 题))11.如图,∠A=50°,∠ABO=28°,∠ACO=32°,那么∠BDC=78°,∠BOC=110°.12.如图,在△ABC 中,AD 为BC 边上的中线,DE⊥AB 于点E,DF⊥AC 于点F,AB=3,AC=4,DF=1.5,那么DE= 2 .【解】∵AD 是中线,∴S△ABD=S△ACD,∴AB·DE=ACꞏDF,∴DE=2.,(第12 题)),(第13 题)) 13.如图,在△ABC 中,∠B=90°,∠A=40°,AC 的垂直平分线MN 与AB 交于点D,那么∠BCD=10°.【解】∵MN 是AC 的中垂线,∴∠ACD=∠A=40°.又∵∠B=90°,∴∠ACB=50°,∴∠BCD=∠ACB-∠ACD=50°-40°=10°.14.如图,在△ABC 中,AD 是∠A 的外角平分线,P 是AD 上异于点A 的恣意一点,设PB=m,PC=n,AB=c,AC=b,那么m+n>b+c(填〝>〞〝<〞或〝=〞).,(第14 题)),(第14 题解)) 【解】如解图,在BA 的延伸线上取点E,使AE=AC,连结ED,EP.∵AD 是∠A 的外角平分线,∴∠CAP=∠EAP.⎪⎧AE=AC,在△ACP 和△AEP 中,∵⎨∠CAP=∠EAP,⎩⎪AP=AP,∴△ACP≌△AEP(SAS).∴PC=PE.在△PBE 中,PB+PE>AB+AE,即PB+PC>AB+AC.∵PB=m,PC=n,AB=c,AC=b,∴m+n>b+c.三、解答题(共44 分)15.(8 分)如图,线段a,b,h(h<b),求作△ABC,使BC=a,AB=b,BC 边上的高线长为h.(第15 题)【解】作法如下:①作直线PQ,在直线PQ 上恣意取一点D,作DM⊥PQ.②在DM 上截取线段DA=h.③以点A 为圆心,b 为半径画弧交射线DP 于点B,连结AB.④以点B 为圆心,a 为半径画弧区分交射线BP 和射线BQ 于点C1 和C2,连结AC1,AC2. 那么△ABC1 和△ABC2即为所求作的三角形(如解图).(第15 题解)16.(10 分)如图,AB=AE,BC=ED,∠B=∠E,F 为CD 的中点.求证:AF⊥CD.(第16 题)【解】连结AC,AD.在△ABC 和△AED 中,⎪⎧AB=AE,∵⎨∠B=∠E,⎩⎪BC=ED,∴△ABC≌△AED(SAS).∴AC=AD.∵F 是CD 的中点,∴CF=DF.⎪⎧AC=AD,在△ACF 和△ADF 中,∵⎨CF=DF,⎩⎪AF=AF,∴△ACF≌△ADF(SSS).∴∠AFC=∠AFD.∵∠AFC+∠AFD=180°,∴∠AFC=90°,∴AF⊥CD.17.(12 分)如图,AD 是一段斜坡,AB 是水平线,现为了测斜坡上一点D 的铅直高度(即垂线段DB 的长度),小亮在点D 处立上一竹竿CD,并保证CD=AB,CD⊥AD,然后在竿顶C 处垂下一根细绳(细绳末端挂一重锤,以使细绳与水平线垂直),细绳与斜坡AD 交于点E,此时他测得CE=8 m,AE=6 m,求BD 的长度.(第17 题)【解】延伸CE 交AB 于点F.∵∠A+∠1=90°,∠C+∠2=90°,∠1=∠2,∴∠A=∠C.在△ABD 和△CDE 中,⎪⎧∠A=∠C,ABD=∠CDE=90°,⎩⎪CE=AD,∴△ABD≌△CDE(AAS).∴AD=CE=8 m.∴BD=DE=AD-AE=2 m.18.(14 分)如图,在△ABC 中,∠ACB=90°,AC=BC,直线MN 经过点C,且AD⊥MN 于点D,BE⊥MN 于点E.(1)当直线MN 绕点C 旋转到图①的位置时,求证:DE=AD+BE.(2)当直线MN 绕点C 旋转到图②的位置时,求证:DE=AD-BE.(3)当直线MN 绕点C 旋转到图③的位置时,试问:DE,AD,BE 具有怎样的等量关系?请直接写出这个等量关系.(第18 题)【解】(1)∵∠ACB=90°,∴∠ACD+∠ECB=90°.∵AD⊥MN,BE⊥MN,∴∠ADC=∠BEC=90°,∴∠DAC+∠ACD=90°,∴∠DAC=∠ECB.⎪⎧∠DAC=∠ECB,在△ADC 和△CEB 中,∵⎨∠ADC=∠CEB,⎩⎪AC=CB,∴△ADC≌△CEB(AAS),∴AD=CE,DC=EB. ∵DE=CE+CD,∴DE=AD+BE. (2)同(1)可证,∠DAC=∠ECB. 又∵∠ADC=∠BEC=90°,AC=CB,∴△ADC≌△CEB(AAS),∴AD=CE,CD=BE. ∵DE=CE-CD,∴DE=AD-BE.(3)DE=BE-AD.。

浙教版数学八年级上册 第2章《特殊三角形》 测试题(Word版)

浙教版数学八年级上册 第2章《特殊三角形》 测试题(Word版)

浙教版数学八年级上册第2章《特殊三角形》测试题(Word 版)A. 32B. 16C. 8D. 6(第6题)【解】∵△A1B1A2 是等边三角形,∴A1A2=A1B1,∠B1A1A2=60°.∵∠MON=30°,∴∠OB1A1=∠B1A1A2-∠MON=30°,∴A1B1=OA1=1,∴A1A2=1,∴OA2=2.同理,A2B2=2,A3B3=4,A4B4=8,A5B5=16,A6B6=32,∴△A6B6A7 的边长为32.7.在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别为a,b,c,正放置的四个正方形的面积依次为S1,S2,S3,S4,则S1+S2+S3+S4=(C)(第7题) A. a+b B. b+cC. a+cD. a+b+c【解】∵∠ACB+∠BAC=90°,∠ACB+∠DCE=90°,∴∠BAC=∠DCE.又∵∠ABC=∠CDE=90°,AC=CE,∴△ABC≌△CDE(AAS),∴AB=CD.同理可证得△PQM≌△MFN,∴PQ=MF.∵CD2+DE2=AB2+DE2=a,MF2+FN2=PQ2+FN2=c,又∵S1=AB2,S2=DE2,S3=PQ2,S4=FN2,∴S1+S2+S3+S4=AB2+DE2+PQ2+FN2=a+c.( D ) 8.如图,在下列三角形中,若AB=AC,则能被一条直线分成两个小等腰三角形的是A. ①②③B.①②④C. ②③④D.①③④(第8 题)【解】①作∠ABC 的平分线与AC 交于点D,则△ABD 和△BCD 为等腰三角形.②不能分成两个小的等腰三角形.③作∠BAC 的平分线与BC 交于点D,则△ABD 和△ACD 为等腰三角形.④过点A 作∠BAD=36°交BC 于点D,则△ABD 和△ACD 为等腰三角形.二、填空题(每小题4 分,共24 分)9.已知在Rt△ABC 中,∠C=90°,∠A=37°,则∠B=53°.10.若等腰三角形的两边长分别为4 和8,则周长为20 .11.命题“等腰三角形两腰上的高相等”的逆命题是如果一个三角形两边上的高相,那么这个三角形是等腰三角形,这个逆命题是真命题.12.如图,在Rt△ABC 中,∠B=90°,直线DE 与AC,BC 分别交于D,E 两点.若∠DEC=∠A,则△EDC 是直角三角形.【解】∵∠B=90°,∴∠A+∠C=90°.又∵∠DEC=∠A,∴∠DEC+∠C=90°,∴△EDC 是直角三角形.,(第 12 题)) ,(第 13 题))13.如图,在 Rt △ABC 中,∠C =30°,以直角顶点 A 为圆心,AB 长为半径画弧交 BC 于点 D ,过点 D 作 DE ⊥AC 于点 E .若 DE =a ,则△ABC 的周长用含 a 的代数式表示为(6+ 2 3)a .【解】 ∵∠BAC =90°,DE ⊥AC ,∠C =30°,∴BC =2AB ,CD =2DE =2a ,∠B =60°. ∵AB =AD ,∴∠BDA =∠B =60°,∴∠DAC =∠BDA -∠C =30°=∠C .∴AD =CD =2a .∴AB =AD =2a .∴BC =4a .∴AC 22BC AB -22(4)(2)a a - 2 3.∴△ABC 的周长=AB +BC +AC =2a +4a +3=(6+3a .(第14题) 14.如图,已知等腰直角三角形 ABC 的直角边长为 1,以 Rt △ABC 的斜边 AC 为直角 边,画第二个等腰直角三角形 ACD ,再以 Rt △ACD 的斜边 AD 为直角边,画第三个等腰直 角三角形 ADE ……依此类推,直到第五个等腰直角三角形 AFG ,则由这五个等腰直角三角 形所构成的图形的面积为15.5 .AB =BC =1,∠ABC =90°, ∴CA DC .∴ABC S ∆=12 AB ·BC =12×1×1=12,ACD S∆=12 AC ·CD =121.同理,S △ADE =2,S △AEF =4,S △AFG=8.∴图形总面积=12+1+2+4+8=1152三、解答题(共 44 分)15.(8 分)如图,在△ABC 中,∠ACB =90°,E 是 BC 延长线上一点,D 为 AC 边上一 点,AE =BD ,且 CE =CD .求证:BC =AC .(第15题)【解】 ∵∠ACB =90°, ∴∠ACE =90°.⎪⎧BD =AE , 在 Rt △BCD 和 Rt △ACE 中,∵⎨ ⎩⎪CD =CE ,∴Rt △BCD ≌Rt △ACE (HL ).∴BC =AC .16.(10 分)如图,在△ABC 中,AB =AC ,点 E 在 CA 的延长线上,∠E =∠AFE ,请判 断 EF 与 BC 的位置关系,并说明理由.(第16题)【解】 EF ⊥BC .理由如下:过点 A 作 AD ⊥BC 于点 D ,延长 EF 交 BC 于点 G . ∵AB =AC ,AD ⊥BC ,∴∠BAC =2∠CAD .又∵∠BAC=∠E+∠AFE,∠E=∠AFE,∴∠BAC=2∠E.∴∠CAD=∠E.∴AD∥EF.又∵∠ADC=90°,∴∠EGC=90°,即EF⊥BC. 17.(12 分)一牧童在A 处牧马,牧童的家在B 处,A,B 处距河岸的距离分别是AC=500 m,BD=700 m,且C,D 两地间的距离也为500 m,天黑前牧童从点A 将马牵到河边去饮水,再赶回家,为了使所走的路程最短.(1)牧童应将马赶到河边的什么地点?请你在图中画出来.(2)问:他至少要走多少路?(第17题)【解】(1)如解图①,作点A 关于河岸的对称点A′,连结BA′交河岸于点P,此时PB+PA=PB+PA′=BA′,所走的路程最短,故牧童应将马赶到河边的点P 处.(第17 题解)(2)如解图②,过点A′作A′B′⊥BD 交BD 的延长线于点B′.易知四边形A′B′DC 是长方形,∴B′A′=CD=500,B′D=A′C=AC=500.在Rt△BB′A′中,BB′=BD+DB′=1200,A′B′=500,∴BA′=12019+5002=1300(m).答:他至少要走1300 m.18.(14 分)如图,D 为等腰直角三角形ABC 内的一点,∠CAD=∠CBD=15°,E 为AD 延长线上的一点,且CE=CA.(第18 题)(1)求证:DE 平分∠BDC.(2)若点M 在线段DE 上,且DC=DM.求证:EM=BD.【解】(1)在等腰直角三角形ABC 中,∵∠CAD=∠CBD=15°,∴∠BAD=∠ABD=45°-15°=30°,∴AD=BD.又∵AC=BC,DC=DC,∴△ADC≌△BDC(SSS).∴∠DCA=∠DCB=45°.∵∠BDE=∠ABD+∠BAD=30°+30°=60°,∠EDC=∠DAC+∠DCA=15°+45°=60°,∴∠BDE=∠EDC,∴DE 平分∠BDC.(2)连结MC.∵DC=DM,且∠MDC=60°,∴△MDC 是等边三角形,∴CM=CD,∠DMC=∠MDC=60°,∴∠EMC=∠ADC=120°.又∵CE=CA,∴∠CEM=∠CAD. ∴△EMC≌△ADC(AAS).∴EM=AD.∴EM=BD.。

浙教版数学八年级上册课时训练 第一章 三角形 1.1 认识三角形(1)(Word版,解析版)

浙教版数学八年级上册课时训练 第一章 三角形 1.1 认识三角形(1)(Word版,解析版)

第 1 页1.1 认识三角形〔1〕三角形的内角和及三边关系1.以下长度的三根小木棒能构成三角形的是〔 D 〕A.2cm ,3cm ,5cmB.7cm ,4cm ,2cmC.3cm ,4cm ,8cmD.3cm ,3cm ,4cm2.在△ABC 中,假设∠A=95°,∠B=40°,那么∠C 的度数为〔 C 〕 A.35° B.40° C.45° D.50°3.假如一个三角形的三个内角的度数比是 2∶3∶4,那么它是〔 A 〕A.锐角三角形B.钝角三角形C.直角三角形D.钝角或直角三角形4.假设一个三角形的两边长分别为 3 和 7,那么第三边长可能是〔 A 〕 A.6 B.3 C.2 D.115.如下图,∠1=55°,∠3=108°,那么∠2 的度数为〔 B 〕A.52°B.53°C.54°D.55°6.如下图,在△ABC 中,∠B =45°,∠C=72°,那么∠1 的度数为 117° .7.如下图, AE ∥BD ,∠1=130°,∠2=30°,那么∠C= 20° .【解析】∵AE∥BD,∠1=130°,∴∠C BD=∠1=130°.∵∠2=30°,∠BDC=∠2,∴∠BDC=30°.在△BCD 中,∠CBD=130°,∠BDC=30°,∴∠C =180°-130°-30°=20°.8.一个三角形的两边长分别为 3 和 8,周长是偶数,那么第三边的边长是 7 或 9 .9.如下图,在△ABC 中,∠A=40°,∠B∶∠C=1∶6,求∠B 的度数.【解析】∵∠B∶∠C=1∶6,∴设∠B=x,那么∠C=6x.∵∠A+∠B+∠C=180°,∴40°+x+6x=180°,解得 x=20°.∴∠B 的度数为 20°.10.三角形的三条边长为互不相等的整数,且有两边长分别为7 和9,另一条边长为偶数.〔1〕请写出一个符合上述条件的三角形的第三边长.〔2〕假设符合上述条件的三角形共有a 个,求a 的值.【解析】两边长分别为9 和7,设第三边长为x,那么9-7<x<7+9,即2<x<16.〔1〕第三边长是4.〔答案不唯一〕〔2〕∵2<x<16,且x 是偶数,∴x的值为4,6,8,10,12,14,共六个.∴a=6.11.在△ABC中,假设∠A=60°+∠B+∠C,那么∠A的度数为〔 C 〕 A.30° B.60° C.120°D.140°12.假设一个三角形的三条边长分别为3,2a-1,6,那么整数a 的值可能是〔 B 〕 A.2,3 B.3,4 C.2,3,4 D.3,4,513.如下图,平面上直线a,b 分别经过线段OK 的两端点,那么直线a,b 相交所成锐角的度数为 30° .14.假如三角形的三边长分别为a,b,5,其中a,b 为正整数,且a≤b≤5,那么所有满足条件的三角形共有 9 个.【解析】∵三角形的三边长a,b,5 都是整数,且a≤b≤5,∴a+b>5.∴当b=5 时,a=1 或2 或3 或4 或5,共5 种情况;当b=4 时,a=2 或3 或4,共3 种情况;当b=3 时,a=3,共1 种情况.∴满足条件的三角形共有9个.故答案为:9.15.如下图,在△BCD中,BC=4,BD=5.〔1〕求线段CD 的取值范围.〔2〕假设AE∥BD,∠A=55°,∠BDE=125°,求∠C 的度数.【解析】〔1〕∵在△BCD中,BC=4,BD=5,∴1<CD<9.〔2〕∵AE∥BD,∠B DE=125°,∴∠AEC=55°.∵∠A=55°,∴∠C =180°-55°-55°=70°.16.在△ABC 中,∠A+∠B=∠C ,∠B =2∠A.〔1〕求∠A,∠B,∠C 的度数.〔2〕按角分类,△ABC 属于什么三角形?【解析】〔1〕由题意得02180A B C B A A B C ∠+∠=∠⎧⎪∠=∠⎨⎪∠+∠+∠=⎩解得000306090A B C ⎧∠=⎪∠=⎨⎪∠=⎩〔2〕按角分类,△ABC 属于直角三角形.17.三角形三边长分别为 a ,b ,c ,其中 a ,b 满足〔a-6〕2+|b-8|=0,求这个三角形最长边 c 的取值 范围.【解析】∵〔a-6〕2+|b-8|=0,∴a-6=0,b-8=0.∴a=6,b=8.∵这个三角形的最长边为 c ,∴c>b,即 c>8.又由三角形的三边关系得 b-a <c <a+b ,∴8<c <14.18.小刚准备用一段长 50m 的篱笆围成一个三角形形状的场地,用于饲养鸡,该三角形第一条边长为 a(m),由于条件限制,第二条边长只能比第一条边长的 3 倍少 2m.(1)用含 a 的代数式表示第三条边长.〔2〕第一条边长能否为 10m ?为什么?〔3〕假设第一条边长最短,且三条边长均为整数,求三条边长.【解析】〔1〕∵第二条边长为〔3a-2〕m ,∴第三条边长为 50-a-〔3a-2〕=〔52-4a 〕m.〔2〕当 a=10 时,三条边长分别为 10m ,28m ,12m ,∵10+12<28,∴不能构成三角形,即第一条边长不能为 10m.(3)由题意得325243252452432aa aa aa a a a a a⎧⎪-⎪⎪-⎨⎪+--⎪+--⎪⎩解得274<a<9.∵三边长均为整数,∴a=7 或8.∴三边长分别为7m,19m,24m 或8m,22m,20m.。

浙教版八年级上第一章三角形的初步知识复习同步练习含答案

浙教版八年级上第一章三角形的初步知识复习同步练习含答案

第4题第一章 三角形的初步知识的复习 (巩固练习)姓名 班级第一部分1、下列各组长度的线段能构成三角形的是( )A 、1.5cm 3.9cm 2.3cmB 、3.5cm 7.1cm 3.6cmC 、6cm 1cm 6cmD 、4cm 10cm 4cm2.如图,PD ⊥AB ,PE ⊥AC ,垂足分别为D 、E ,且P A 平分∠BAC ,则△APD 与△APE 全等的理由不是( )A 、SASB 、AASC 、SSSD 、ASA3.如图,∠BAC =90°,AD ⊥BC ,则图中互余的角有( ) A.2对 B.3对 C.4对 D.5对4如图,在△ABC 中,AD 是角平分线,AE 是高,已知∠BAC =2∠B ,∠B =2∠DAE ,那么 ∠ACB 为( )A. 80°B. 72°C. 48°D. 36° 5. 如图,∠1=∠2,∠C =∠B ,下列结论中不正确的是( ) A. △DAB ≌△DAC ; B. △DEA ≌△DF A; C. CD =DE D. ∠AED =∠AFD6.一个三角形的两边长分别是2cm 和9cm ,第三边的长是一个奇数,则第三边长为( ) A 、5cm B 、7cm C 、9cm D 、11cm7、一个三角形的两个内角分别为55°和65°,这个三角形的外角不可能是( ) A 、115° B 、120° C 、125° D 、130° 8.在△ABC 和△DEF 中,条件:①AB =DE ;②BC =EF ;③AC =DF ;④∠A =∠D ;⑤∠B =∠E ;⑥∠C =∠F ;则下列各组给出的条件不第3题AE BCDP第2题FE D CA第10能保证△ABC ≌△DEF 的是( )A. ①②③B. ①②⑤C.①③⑤D.②⑤⑥9.在⊿ABC 中,三边长分别为a 、b 、c ,且a >b >c ,若b =8,c =3,则a 的取值范围是( )A.3<a <8B.5<a <11C.6<a <10D.8<a <11 10.如图,在△ABC 中,AB =AC ,AD 是BC 边上的高,点E 、F 是AD 上的 点,若△ABC 的面积为242cm ,则图中阴影部分的面积为( ) A 、4cm ² B 、8cm² C 、12cm² D 、16cm²第二部分11、如图,CD 是线段AB 的垂直平分线,则∠CAD =∠CBD .请说明理由:解:∵ CD 是线段AB 的垂直平分线( ),∴AC = , =BD ( ). 在 和 中,=BC ,AD = ,CD = ( ),∴≌ ( ).∴ ∠CAD =∠CBD ().12、如图,在△ABC 中,∠B =42o ,∠C =72 o ,AD 是△ABC 的角平分线, ①∠BAC 等于多少度?简要说明理由. ②∠ADC 等于多少度?简要说明理由.13、如图,在△ABC中,D是边BC上一点,AD平分∠BAC,在AB上截取AE=AC,连结DE,已知DE=2 cm,BD=3 cm,求线段BC的长.14、如图,△ABC的两条高AD、BE相交于点H,且AD=BD,试说明下列结论成立的理由。

浙教版八上全等三角形练习试题[含答案解析]

浙教版八上全等三角形练习试题[含答案解析]

全等三角形练习题一、选择题1.如图所示,△ABC≌△DEC,∠ACB=60°,∠BCD=100°,点A恰好落在线段ED上,则∠B的度数为().A.50° B.60° C.55° D.65°2.如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是().A.∠A=∠C B.AD=CB C.BE=DF D.AD∥BC 3.在下列各组条件中,不能说明△ABC≌△DEF的是()A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF 4.如图所示,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则三个结论:①AS=AR;②QP∥AR;③△BPR ≌△QPS中()A.全部正确 B.仅①和③正确 C.仅①正确 D.仅①和②正确5.如图所示,△ABC是不等边三角形,DE=BC,以D、E 为两个顶点作位置不同的三角形,使所作三角形与△ABC 全等,这样的三角形最多可以画出()个.A.2 B.4 C.6 D.86.已知:如图,在△ABC中,D为BC的中点,AD⊥BC,E 为AD上一点,∠ABC=60°,∠ECD=40°,则∠ABE=()A.10° B.15° C.20° D.25°7.如图,已知AB=AC,AE=AF,BE与CF交于点D,则对于下列结论:①△ABE≌△ACF;②△BDF≌△CDE;③D在∠BAC的平分线上.其中正确的是()A.① B.② C.①和② D.①②③8.用直尺和圆规作已知角的平分线的示意图如图,则说明∠CAD=∠DAB的依据是( )A.SSS B.SAS C.ASA D.AAS9.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.其中正确的结论的个数是()A.2个 B.3个 C. 4个 D.5个10.已知:如图,BD为△ABC的角平分线,且BD=BC,E 为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF.其中正确的是().A.①②③ B.①③④ C.①②④ D.①②③④二、填空题11.如图所示的方格中,∠1+∠2+∠3=______度.12.已知△ABC的边AB=3,AC=5,那么边BC上的中线AD 的范围为___.13.如图,AB∥CF,E为DF的中点,AB=10,CF=6,则BD=______.14.已知,如图,AD=AC,BD=BC,O为AB上一点,那么,图中共有对全等三角形.15.如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是.16.如图所示,AB=AC ,AD=AE ,∠BAC=∠DAE ,∠1=25°,∠2=30°,则∠3= .17.如图,已知△ABC 中,∠ABC=45°,F 是高AD 和BE 的交点,CD=4,则线段DF 的长度为 .18.如图,已知△ABC 中,AB=AC ,∠BAC=90°,直角∠EPF 的顶点P 是BC 中点,两边PE 、PF 分别交AB 、AC 于点E 、F ,给出以下四个结论:①AE=CF ;②△EPF 是等腰直角三角形;③AEPF S 四边形=ABC 1S 2; ④BE+CF=EF .⑤当∠EPF 在△ABC 内绕顶点P 旋转时(点E 不与A 、B 重合).上述结论中始终正确的有 (填序号).19.如图,在△ACD和△ABE中,CD与BE交于点O,下列三个说明:①AB=AC,②CE=BD,③∠B=∠C,请用其中两个作为条件,余下一个作为结论,编一道数学问题,并写出解答过程.解:条件:(填序号)结论:(填序号)m]理由:.20.(2015秋•东平县期中)如图,E点为△ABC的边AC 中点,CN∥AB,过E点作直线交AB于M点,交CN于N点.若MB=6cm,CN=2cm,则AB= cm.三、解答题21.如图,正方形ABCD中,点E、F分别是边BC、CD上的点,且BE=CF求证:(1)AE=BF(2)AE⊥BF22.如图,四边形ABCD是正方形,点G是BC边上任意一点,DE⊥AG于点E,点F在线段AG上,且BF∥DE.(1)猜想线段DE、BF、EF之间的数量关系,并说明理由;(2)若正方形ABCD的边长为2,将△ABF绕点A逆时针旋转90°,点F的对应点为,请补全图形,并求出E、两点间的距离.23.如图,已知AB=AC,∠B = ∠C,请说明: BE=CD。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直角三角形练习
1、填空题:
(1)在△ABC 中,若∠A=∠B+∠C ,则△ABC 是 。

(2)在△ABC 中,∠C=90°,∠A =2∠B ,则∠A= ,∠B= 。

(3)在△ABC 中,若∠A ∶∠B ∶∠C=1∶2∶3,则△ABC 是 三角形。

(4)直角三角形两锐角之差是12度,则较大的一个锐角是 度。

(5)已知:如图,∠BAC=90°,∠C=30°, AD⊥BC 于D ,DE⊥AB 于E ,BE=1,BC= 。

(6)在△ABC 中,如果∠A+∠B=∠C,且AC=
2
1AB ,则∠B= 。

2选择题:
(1)如果三角形的一个角等于其他两个角的差,那么这个三角形是( )
A 、锐角三角形
B 、直角三角形
C 、钝角三角形
D 、以上都错
(2)如果三角形的三个内角的比是3∶4∶7,那么这个三角形是( )
A 、锐角三角形
B 、直角三角形
C 、钝角三角形
D 、锐角三角形或钝角三角形
(3)用两个完全相同的直角三角板,不能拼成下列图形的是( )
A .平行四边形
B .矩形
C .等腰三角形
D .梯形 (4).如图,EA⊥AB,BC⊥AB,AB=AE=2BC ,D 为AB 的中点, 有以下判断:①DE=AC;②DE⊥AC;③∠CAB=30°; ④∠EAF=∠ADE;其中正确结论的个数
是( )
A 、1
B 、2
C 、3
D 、4
3、解答题:
(1)已知等腰三角形一腰上的高与底边成45°角,若腰长为2cm ,求它的面积。

(2)在△ABC 中,∠B=∠C ,D 、E 分别是BC 、AC 的中点,AB=6,求DE 的 长。

(3)下面是小明同学在学了等腰三角形后所做的一道题,题目是这样的:“已知△ABC 是等腰三角形,BC 边上的高恰好等于BC 边长的一半,求∠BAC 的度数。


解:如图,∵AD ⊥BC ,AD=2
1BC=BD=CD , ∴∠BAD=∠B=∠C=∠CAD=45°,
∴∠BAC=90°
你认为小明的解答正确吗?若不正确,请你将它补充完整。

(4)在一个直角三角形中,如果有一个锐角为30度,且斜边与较小直角边的和为18cm ,求斜边的长。

(5)如图,△ABC 和△ABD 中,∠C=∠D=Rt∠,E 是BC 边上的中线。

请你说明CE=DE 的理由。

(6)已知CD ∥AE ,∠1=∠2,∠3=∠4,判断ABC 是否是直角三角形,说明理由。

(7)在直角三角形ABC 中,∠ACB=90度,CD ⊥AB ,CE 为AB 边上的中线,且∠BCD=3
∠DCA ,求证:DR=DC 。

初中数学试卷
鼎尚图文**整理制作。

相关文档
最新文档