spss聚类分析树状图

合集下载

SPSS Statistics 19_聚类分析

SPSS Statistics 19_聚类分析

此外还有中间距离法(Median Clustering)、类内平均法(Within-Groups
Linkage)等
12
2 系统聚类

系统聚类

优点

聚类变量可以是分类或连续型变量; 既可以对变量聚类,也可以对数据点/记录聚类(市场细分一般都是对记录聚类); 一次运行即可得到完整的分类序列;
确定样品间相似的度量

距离度量 相似性度量

确定样本点的聚类数量

实际应用中,一般推荐4-6类(5% < 细分群体占比 < 35%)

对聚类结果进行描述和解释

验证细分方案的可接受性 描述各细分群体(交叉表分析) 市场定位(Positioning)
7
©确定目标消费群体 (Targeting) 2009 SPSS Inc.

分类变量:使用卡方(Chi-square)统计量作为距离指标 连续型变量:一般使用欧式平方距离进行距离度量
© 2009 SPSS Inc.
8
1 聚类分析

使用聚类分析时应关注的一些问题(续):

聚类方法的选择

系统聚类法(Hierarchical Clustering),也称分层聚类法 K-均值聚类法(K-means Clustering),也称快速聚类法 两步聚类法(TwoStep Clustering),一种较智能化的聚类方法
2 系统聚类练习

基本思路:综合考察城市的若干社会、经济发展指标(来源《中国城市统计 年鉴》),譬如

城市化程度 生活质量和收入水平 经济发展水平
采用系统聚类法对城市进行系统、科学的分类

用SPSS进行聚类分析(中文版)

用SPSS进行聚类分析(中文版)

选择聚类方法
根据数据类型和聚类目的选择 合适的聚类方法。常见的聚类 方法有层次聚类、K均值聚类 、DBSCAN聚类等。
层次聚类按照数据点之间的距 离进行层次式的聚类,可以生 成聚类树状图。
K均值聚类将数据点划分为K 个簇,使得每个数据点与其所 在簇的中心点之间的距离之和 最小。
DBSCAN聚类基于密度的聚类 方法,可以发现任意形状的簇 ,并去除噪声点。
03
根据实际需求和应用背景,对聚类结果进行解释和 应用。
03
CATALOGUE
K-means聚类分析
K-means聚类分析的原理
K-means聚类分析是一种无监督学 习方法,通过将数据划分为K个集群 ,使得同一集群内的数据点尽可能相 似,不同集群的数据点尽可能不同。
原理基于距离度量,将数据点分配给 最近的均值(即聚类中心),并不断 迭代更新聚类中心,直到聚类中心收 敛或达到预设的迭代次数。
K-means聚类分析的步骤
选择初始聚类中心
随机选择K个数据点作为初始聚类中心。
分配数据点到最近的聚类中心
根据距离度量,将每个数据点分配给最近的聚类中心。
更新聚类中心
重新计算每个集群的均值,将新的均值作为新的聚类中心。
迭代执行
重复步骤2和3,直到聚类中心收敛或达到预设的迭代次数。
K-means聚类分析的应用实例
系统聚类分析
系统聚类分析的原理
系统聚类分析是一种无监督的统计方法,通过将个体或群体按照其相似性或差异性进行分类,从而揭示数据内在的结构和模 式。
它基于个体间的距离或相似度进行分类,通过不断迭代和合并,最终形成若干个聚类,使得同一聚类内的个体尽可能相似, 不同聚类间的个体尽可能不同。
系统聚类分析的步骤

第七章SPSS聚类分析

第七章SPSS聚类分析

例如,学校里有些同学经常在一起,关系比较
密切,而他们与另一些同学却很少来往,关系比较 疏远。究其原因可能会发现,经常在一起的同学的 家庭情况、性格、学习成绩、课余爱好等方面有许 多共同之处,而关系比较疏远的同学在这些方面有 较大的差异性。为了研究家庭情况、性格、学习成 绩、课余爱好等是否会成为划分学生小群体的主要 决定因素,可以从有关这些方面的数据入手,进行 客观分组,然后比较所得的分组是否与实际相吻合。 对学生的客观分组就可采用聚类分析方法。
最近邻元素(Nearest Neighbor):个体与小类中每个 个体距离的最小值。 最远邻元素(Furthest Neighbor ):个体与小类中每 个个体距离的最大值。 组间联接(Between-groups linkage):个体与小类 中每个个体距离的平均值。 组内联接(Within-groups linkage):个体与小类中 每个个体距离以及小类内各个体间距离的平均值。 质心聚类法(Centroid clustering):个体与小类的重 心点的距离。重心点通常是由小类中所有样本在各变量上的 均值所确定的点。 离差平方和法(Ward’s method):聚类过程中使小类 内离差平方和增加最小的两小类应首先合并为一类。
• 例:下表是同一批客户对经常光顾的五座商场在购物环境和
服务质量两方面的平均得分,现希望根据这批数据将五座商
场分类。
编号
购物环境 服务质量
A商场
73
68
B商场
66
64
C商场
84
82
D商场
91
88
E商场
94
90
7.1.2 聚类分析中“亲疏程度”的度量方法
• 聚类分析中,个体之间的“亲疏程度”是极为重要 的,它将直接影响最终的聚类结果。对“亲疏”程 度的测度一般有两个角度:第一,个体间的相似程 度;第二,个体间的差异程度。衡量个体间的相似 程度通常可采用简单相关系数等,个体间的差异程 度通常通过某种距离来测度。

SPSS教程-聚类分析-附实例操作

SPSS教程-聚类分析-附实例操作

各地区各行业工资水平的分析(2009年数据)小组成员:张艺伟、赵月、陈媛、邹莉、朱海龙、曾磊、胡瑛、候银萍1.研究背景及意义1.1 研究背景工资水平是指一定区域和一定时间内劳动者平均收入的高低程度。

生产决定分配,只有经济发展才能提供更多的可分配的社会产品,因此一个地区的工资水平在一定程度上反映了其经济发展的水平。

1.2 研究意义1. 通过多元统计分析方法,探究一个地区的工资水平与其经济发展水平之间的内在联系。

2. 将平均工资水平划分为3类,分析哪些地区、哪些行业的工资水平较高,可以为大学生就业提供宏观上的方向指引。

2.数据来源与描述2.1 数据来源——《中国劳动统计年鉴─2010》(URL:/Navi/YearBook.aspx?id=N2011010069&floor=1###)主编单位:国家统计局人口和就业统计司,人力资源和社会保障部规划财务司出版社:中国统计出版社简介:《中国劳动统计年鉴─2010》是一部全面反映中华人民共和国劳动经济情况的资料性年刊。

本刊收集了2009年全国和各省、自治区、直辖市、香港特别行政区、澳门特别行政区的有关劳动统计数据。

本书资料的取得形式主要有国家和部门的报表统计、行政记录和抽样调查。

2.2 数据描述本数据集记录了全国31个省市(港、澳、台除外)的工资状况,各省市分别记录了其23个主要行业的平均工资水平,这23个主要行业包括:企业、事业、机关、金融业、制造业、建筑业、房地产业、农林牧渔业等等,具体数据格式参见图-0。

图-03.分析方法及原理3.1 通过描述统计分析方法,判断哪些行业平均工资水平较高描述统计分析方法主要是从基本统计量(诸如均值、方差、标准差、极大/小值、偏度、峰度等)的计算和描述开始的,并辅助于SPSS提供的图形功能,能够把握数据的基本特征和整体的分布特征。

在本案例中,通过比较不同行业(诸如企业、事业、机关、建筑业、制造业……)工资的均值、极大/小值,可以从总体上判断哪些行业的平均工资水平较高,哪些行业的较低。

spss软件聚类分析怎么用,从输入数据到结果,树状图结果。整个操作怎么进行。需要基本思路。

spss软件聚类分析怎么用,从输入数据到结果,树状图结果。整个操作怎么进行。需要基本思路。

banner学习者请关注这里:实例系列教程问题:spss软件聚类分析怎么用,从输入数据到结果,树状图结果。

整个操作怎么进行。

需要基本思路。

_问题描述:具体操作步骤,以前从未接触过,请高手指导,十分感谢答案1:: excel表:整理一份excel数据表,第一列为材料或数据的名称,后几列为各项数值导入数据:打开SPSS,点击File——Open——DATA, 选择已经编辑好的excel表点击analyze——Classify——Hierarchical cluster analysis——数据导入variables,表头项导入label case by;选择Method 项,根据需要选择方法,点击Plots选择dendrogram(打对勾),其余各项根据自己需要选择要计算的统计量,点击ok即可。

答案2:: 基于SPSS的聚类分析的实用方法(层次聚类法和迭代聚类法)层次聚类法和迭代聚类法的主要区别在于:层次聚类法的聚类结果受奇异值的影响非常大,且聚类过程是单方向的,一旦某个样本进入某一类,就不可能从该类出来,再归入其他的类;迭代聚类法的聚类结果受奇异值和不合适的聚类变量的影响较小,对于不合适的初始聚类可以进行反复调整,但其缺点是聚类结果对初始聚类非常敏感,而且它也只能得到局部最优解.(一)层次聚类Analyze--; C1assify--;Hierachical Cluster在“C1uster”组中选择聚类类型:要进行变量聚类选择指定“Vanables”;要进行观测量聚类指定“Cases”。

指定参与分析的变量,将选定的变量通过按钮箭头转移到箭头按钮右侧的“Variable[s]:”矩形框中;将标识变量通过下面一个箭头按钮转移到按钮右侧的“Label Cases by:”下面的矩形框中。

如果不使用系统默认值,或由于参与分析的变量量纲不一致需要指定选择项,则应该根据需要有选择性地执行下述某些步骤。

1.确定聚类方法在主对话框中,点击“Methed”按钮,展开分层聚类分析的方法选择对话框,即“Hierachical Cluster Analysis:Method”。

基于SPSS用K-means聚类做聚类分析

基于SPSS用K-means聚类做聚类分析

作业2:城镇居民消费结构的K-means聚类模型
本次作业为基于IBM SPSS Statistics 24的K-means聚类运算
一、第一步:导入数据,点击文件下方的图标,选中”案例2-城镇居民消费结构“,点击打开,
二、分析数据
1、点击Spss界面的“分析”,然后依次点击“分类”、“K-均值聚类”,如下图
2、在弹出的界面中点击“选项”,勾选“ANOVA表”,如下图,再点击“继续”
3、在弹出的界面中点击“保存”,勾选“聚类成员”、“与聚类中心距离”,如下图所示,点击“继续”
4、最后在弹出的界面中,把“地区”放入“个案标注依据”,其余的放入“变量”中,如下图所示,点击“确定”。

三、结果展示
ANOVA。

SPSS聚类以及各种聚类分析详解

SPSS聚类以及各种聚类分析详解

精选可编辑ppt
3
精选可编辑ppt
4
数据标准化处理:
精选可编辑ppt
5
存储中间过程数据
精选可编辑ppt
6
数据标准 化处理, 并存储。
精选可编辑ppt
7
精选可编辑ppt
8
指定5类
精选可编辑ppt
9
精选可编辑ppt
收敛标准值 10
精选可编辑ppt
11
存储最终结果输出情况,在数据文件中(QCL-1、QCL-2)
(4)若选出的一对样品都出现在同一组中,则这对样 品就不用再分组了。
按上述四条原则反复进行,直到把所有样品都分类完毕, 最后以分类图形式表示
精选可编辑ppt
25
2、分类方法 例:设有7个样品,每个样品测得P个指标,数据如表
样品 指标
X1 X2 XP
X1 X2 X3 X4 X5 X6 X7
精选可编辑ppt
2)形成一个由小到大的分析系统。 3)把整个分类系统画成一张分类图
精选可编辑ppt
21
二、聚类统计量
首先定义一些分类统计指标 —— 刻画样或指标之间 的相似程度(这些统计指标称为聚类统计量)
在市场研究中,样品 —— 用作分类的事物
指标ቤተ መጻሕፍቲ ባይዱ—— 用来作为分类依据的变量。(如: 年龄、收入、销售量)
(一)相似系数(夹角余弦)
39
观测量概述表
精选可编辑ppt
40
聚类步骤,与图结合看!
精选可编辑ppt
41
4、5
精选可编辑ppt
42
精选可编辑ppt
43
聚类方法有系统聚类和逐步聚类,输入数据集可以是普 通数据集、相关矩阵(CORR过程产生)或协方差矩阵 (FACTOR等过程产生)。SAS提供的聚类过程有:

《SPSS数据分析与应用》第6章 聚类分析

《SPSS数据分析与应用》第6章 聚类分析
• 在这一步中样本4(客户编号为: K100390 ) 和 样 本 5 ( 客 户 编 号 为 : K100450 ) 相 似 度 达 到 阈 值 , 聚 为 一 类 。
• 当纵坐标为13时,15个样本被12个白色 间隙分隔为13类。
系统聚类的结果解读
冰柱图聚类进程(最后一步)
依次类推,直到将15个样本全部 聚为一类,在15个样本之间没有 白色间隙,表示系统聚类结束。
• 测度观测点之间“亲疏”程度的方法与K-means聚类相同。 • 观测点与小类、小类与小类之间“亲疏”程度的测度,常用的方法有以下几种:
(1)重心法 (2)最近邻元素法 (3)组间平均联接法 (4)组间平均联接法 (5)离差平方和法
系统聚类的基本操作
第一步:用SPSS打开数据文件“移动通信客户_样本15.sav”。 第二步:在菜单栏中选择【分析(A)】→【描述统计(E)】→【描述(D)】,在弹出的 “描述”对话框的左下 角勾选【将标准化值另存为变量(Z)】,将已有的 6 个连续性变量都选到【变量(V)】列表框中,单击【确定】 按钮。
第四步:在“K均值聚类分析”对话框中单击右上角的【迭代(I)】按钮,在弹出的“K-均值聚类分析:迭代” 对话框中将【最大迭代次数(M)】修改为“50”,【收敛准则(C)】暂时不做修改。单击【继续(C)】按钮, 回到“K 均值聚类分析” 对话框。
K-Means聚类的基本操作
第五步:在“K均值聚类分析”对话框中单击右上角的【保存 (S)】按钮,在弹出的“K-均值聚类:保存新 变量”对话框中勾选【聚类成员(C)】和【与聚类中心的距离(D)】。单击【继续(C)】按钮,回到“K均 值聚类分析”对话框。
第一,如何测度样本的“亲疏程度”; 第二,如何进行聚类
K-means聚类对“亲疏程度”的测度

SPSS软件聚类分析过程的图文解释及结果的全面分析

SPSS软件聚类分析过程的图文解释及结果的全面分析

SPSS聚类分析过程聚类的主要过程一般可分为如下四个步骤:1.数据预处理(标准化)2.构造关系矩阵(亲疏关系的描述)3.聚类(根据不同方法进行分类)4.确定最佳分类(类别数)SPSS软件聚类步骤1. 数据预处理(标准化)→Analyze →Classify →Hierachical Cluster Analysis →Method 然后从对话框中进行如下选择从Transform Values框中点击向下箭头,此为标准化方法,将出现如下可选项,从中选一即可:标准化方法解释:None:不进行标准化,这是系统默认值;Z Scores:标准化变换;Range –1 to 1:极差标准化变换(作用:变换后的数据均值为0,极差为1,且|x ij*|<1,消去了量纲的影响;在以后的分析计算中可以减少误差的产生。

);Range 0 to 1(极差正规化变换/ 规格化变换);2. 构造关系矩阵在SPSS中如何选择测度(相似性统计量):→Analyze →Classify →Hierachical Cluster Analysis →Method 然后从对话框中进行如下选择常用测度(选项说明):Euclidean distance:欧氏距离(二阶Minkowski距离),用途:聚类分析中用得最广泛的距离;Squared Eucidean distance:平方欧氏距离;Cosine:夹角余弦(相似性测度;Pearson correlation:皮尔逊相关系数;3. 选择聚类方法SPSS中如何选择系统聚类法常用系统聚类方法a)Between-groups linkage 组间平均距离连接法方法简述:合并两类的结果使所有的两两项对之间的平均距离最小。

(项对的两成员分属不同类)特点:非最大距离,也非最小距离b)Within-groups linkage 组内平均连接法方法简述:两类合并为一类后,合并后的类中所有项之间的平均距离最小C)Nearest neighbor 最近邻法(最短距离法)方法简述:用两类之间最远点的距离代表两类之间的距离,也称之为完全连接法d)Furthest neighbor 最远邻法(最长距离法)方法简述:用两类之间最远点的距离代表两类之间的距离,也称之为完全连接法e)Centroid clustering 重心聚类法方法简述:两类间的距离定义为两类重心之间的距离,对样品分类而言,每一类中心就是属于该类样品的均值特点:该距离随聚类地进行不断缩小。

spss统计分析及应用教程-第7章-聚类分析与判断分析解析

spss统计分析及应用教程-第7章-聚类分析与判断分析解析

1








d
ij
q
p
q q X ik X jk
k 1
按 q的 取 值 不 同 又 可 分 成 :
p
绝 对 距 离 (q 1)d ij 1 X ik X jk k 1
1







q

2)
d
ij
2

p
2 2 X ik X jk
k 1
切 比 雪 夫 距 离 ( q= ) dij
最近邻元素:也称作最近距离 法,以两类中最近的样品之间 的距离为类间距离。
最远邻元素:也称作最远距离 法,以两类中最远的样品之间 的距离为类间距离。
聚类方法〔M〕 质心聚类法:也称作重心法, 以两类中各样品的重心之间的 距离为类间距离。
中位数聚类法:也称作中位数法, 以两类中各样品的中位数之间 的距离为类间距离。
问题的力气。
试验一 系统聚类分析
❖ 预备学问 ❖ 系统聚类分析的定义与根本思想
系统聚类分析又称为层次聚类分析,其根本思想是依据样品或 变量之间的亲疏远近关系,将最相像的对象结合在一起,以逐 次聚合的方式,将样品或变量进展分类,直到最终全部的样品 或变量都聚成一类。系统聚类有两种形式:Q型聚类和R型聚类 。
在第15阶中,群集1是个案2,群集2是个案9,二者之间的距离测度系数为 0.134,“首次消逝阶群集”中群集1为8,群集2为1,表示参与本次聚类的 群集1,即个案2为类,不是个案,该类来源于第8阶聚类的结果。群集2也是 类,该类来源于第1阶聚类的结果,第15阶是两个类的合并,合并后的类将 在第23阶再次参与聚类分析。依次追踪,可以在聚类表中看出全部的聚类过 程。

SPSS19.0之聚类分析

SPSS19.0之聚类分析

1.1 系统聚类本次实验的系统聚类都是凝聚系统聚类,为了控制变量,都采用平方Euclidean距离。

1.1.1 最短距离聚类法最短距离法聚类步骤如下:1.规定样本间的距离,计算样本两两之间的距离,得到对称矩阵。

开始每个样品自成一类。

2.选择对称矩阵中的最小非零元素。

将两个样品之间最小距离记为D1,将这两个样品归并成为一类,记为G1。

3.计算G1与其他样品距离。

重复以上过程直到所有样品合并为一类。

我们在SPSS中实现最短距离分析非常简单。

单击“”-->“”-->“”。

将弹出如图1-1所示的对话框,设置相应的参数即可。

图1-1 最短距离法我们的数据已经做过标准化,在“转化值”-->“标准化”选项上选无。

在统计量的聚类成员中选择“无”,因为这是非监督分类,不需要指定最终分出的类个数。

在绘制中选择绘制“树状图”。

单击确定,得到以下结果。

聚类表阶群集组合系数首次出现阶群集下一阶群集1 群集 2 群集 1 群集 21 21 28 .211 0 0 102 12 24 .465 0 0 63 2 27 .491 0 0 54 13 20 .585 0 0 95 2 14 .645 3 0 66 2 12 .678 5 2 77 2 7 .702 6 0 88 2 25 .773 7 0 99 2 13 .916 8 4 1110 21 29 1.085 1 0 1211 2 18 1.106 9 0 12表1-2 聚类过程我们可以通过更加形象直观的树状图来观察整个聚类过程和聚类效果。

如图1-2所示,最短距离法组内距离小,但组间距离也较小。

分类特征不够明显,无法凸显各个省份的能源消耗的特点。

但是我们可以看到广东省能源消耗组成和其他省份特别不同,在其他方法中也显现出来。

12 2 21 1.115 11 10 13 13 2 17 1.360 12 0 14 14 2 26 1.564 13 0 15 15 2 22 1.627 14 0 16 16 2 5 1.649 15 0 17 17 2 8 1.877 16 0 18 18 2 16 3.027 17 0 19 19 2 30 3.543 18 0 20 20 2 11 4.930 19 0 21 21 2 4 5.024 20 0 22 22 2 10 6.445 21 0 24 23 1 9 8.262 0 0 26 24 2 15 10.093 22 0 25 25 2 23 10.096 24 0 26 26 1 2 10.189 23 25 27 27 1 6 11.387 26 0 28 28 1 3 13.153 27 0 29 2911932.36728图1-2 最短距离法聚类图1.1.2 组间联接聚类组间联接聚类法定义为两类之间的平均平方距离,即。

SPSS聚类的分析详解

SPSS聚类的分析详解

二、聚类统计量
首先定义一些分类统计指标 —— 刻画样或指标之 间的相似程度(这些统计指标称为聚类统计量) 在市场研究中,样品 —— 用作分类的事物 指标 —— 用来作为分类依据的变量。 (如:年龄、收入、销售量) (一)相似系数(夹角余弦) 一般式:假定每个样品包含有P项指标,若有几个样品 的调查数据
3、步骤:1)首先给出度量“相似”或“关系密切”的 统计指标
指标:(1)统计指标是相似系数。 根据相似性归为一类,否则为另一类。 (2)统计指标是样品(空间的点)之间的距离 将距离近的点归成一类,否则为另一类。 (3)相关系数
(4)关联系数 2)形成一个由小到大的分析系统。
3)把整个分类系统画成一张分类图
CLUSTER过程 开始每个观测值自成一类,然后求两两之间的距离, 将距离最近的两个观测值合成一类。这个过程一直 进行下去,每次减少一类,直到合成一类为止。 聚类方法有11种,可根据问题的性质选用,它们的 区别在于怎样计算两类之间的距离。
METHOD=指定方法
AVERAGE(平均法)、CENTROID(重心法)、 COMPLETE(最大距离法)、DENSITY(密度 法)、MEDIAM(中位数法)等
1
按就近原则将每个观测量选入一个类中,然后计算各个类的中 心位置,即均值,作为新的聚心。 3、使用计算出来的新聚心重新进行分类,分类完毕后继续计 算各类的中心位置,作为新的聚心,如此反复操作,直到两次 迭代计算的聚心之间距离的最大改变量小于初始聚类心间最小 距离的倍数时,或者到达迭代次数的上限时,停止迭代。
观测量概述表
聚类步骤,与图结合看!
4、5
聚类方法有系统聚类和逐步聚类,输入数据集可以是普 通数据集、相关矩阵(CORR过程产生)或协方差矩阵 (FACTOR等过程产生)。SAS提供的聚类过程有:

SPSS聚类分析具体操作步骤-spss如何聚类

SPSS聚类分析具体操作步骤-spss如何聚类
12
单击“方法”按钮弹出对话框
• 下拉框指定的是小类之间的距离计算方法7种供用 户选择
13
• 度量标准 计算样本距离的方法
14
点击“继续”接下来指定SPSS分析图形输出
属性图以树的形式展现 聚类分析的每一次合并 过程。冰柱图通过表格 中的冰柱显示。 可以指定并主图的输出 方向,纵向和横向
15
显示凝聚状态表,单击“统计量”
• 点间距离有很多定义方式。最简单的是欧式距离,还有其 他的距离。
• 当然还有一些和距离相反但起同样作用的概念,比如相似 性等,两点越相似度越大,就相当于距离越短。
• 由一个点组成的类是最基本的类;如果每一类都由一个点 组成,那么点间的距离就是类间距离。但是如果某一类包 含不止一个点,那么就要确定类间距离,
4
SPSS中聚类分析分类
(一)按分类对象 对变量的聚类称为R型聚类 对观测值聚类称为Q型聚类 这两种聚类在数学上是对称的,没有什么不同。
(二)按聚类的方法分类 分层聚类或系统聚类分析 快速聚类分析 两步聚类分析:新型的
5
事先不用确定分多少类:分层聚类
分层聚类或系统聚类(hierarchical cluster)。开始 时,有多少点就是多少类。
1
聚类分析概述
(一)概念 • (1)聚类分析是统计学中研究“物以类聚”的一种
方法,属多元统计分析方法.
– 例如:细分市场、消费行为划分
• 聚类分析是建立一种分类,是将一批样本(或变量) 按照在性质上的“亲疏”程度,在没有先验知识的 情况下自动进行分类的方法.其中:类内个体具有 较高的相似性,类间的差异性较大.
• 比如学生成绩数据就可以对学生按照理科或文科 成绩(或者综合考虑各科成绩)分类,

SPSS19实战之聚类分析

SPSS19实战之聚类分析

SPSS19.0实战之聚类分析这篇文章与上一篇的回归分析是一次实习作业整理出来的。

所以参考文献一并放在该文最后。

CNBlOG网页排版太困难了,又不喜欢live writer……聚类分析是将物理或者抽象对象的集合分成相似的对象类的过程。

本次实验我将对同一批数据做两种不同的类型的聚类;它们分别是系统聚类和K-mean聚类。

其中系统聚类的聚类方法也采用3种不同方法,来考察对比它们之间的优劣。

由于没有样本数据,因此不能根据其数据做判别分析。

评价标准主要是观察各聚类方法的所得到的类组间距离和组内聚类的大小。

分析数据依然采用线性回归所使用的标准化后的能源消费数据。

1.1 系统聚类本次实验的系统聚类都是凝聚系统聚类,为了控制变量,都采用平方Euclidean距离。

1.1.1 最短距离聚类法最短距离法聚类步骤如下:1.规定样本间的距离,计算样本两两之间的距离,得到对称矩阵。

开始每个样品自成一类。

2.选择对称矩阵中的最小非零元素。

将两个样品之间最小距离记为D1,将这两个样品归并成为一类,记为G1。

3.计算G1与其他样品距离。

重复以上过程直到所有样品合并为一类。

我们在SPSS中实现最短距离分析非常简单。

单击“”-->“”-->“”。

将弹出如图1-1所示的对话框,设置相应的参数即可。

图1-1 最短距离法我们的数据已经做过标准化,在“转化值”-->“标准化”选项上选无。

在统计量的聚类成员中选择“无”,因为这是非监督分类,不需要指定最终分出的类个数。

在绘制中选择绘制“树状图”。

单击确定,得到以下结果。

1.表表1-1 数据汇总我们的数据经过预处理,所以缺失值个数为0.2. 由于相关矩阵过于庞大,无法在文档中贴出,得到的是一个非相似矩阵。

表1-2是样品聚类过程。

样品21和28在第一步合并为一类,它们之间的非相关系数最小,为0.211。

在下一次合并是第十步。

在第五步的时候,样品2、27、14组成一类,出现群集,样品个数为3。

聚类分析原理与SPSS实现

聚类分析原理与SPSS实现
K-means算法是一种迭代算法,它将数据集划分为K个聚类,通过不断迭代更新每个聚类的中心点,直到达到收敛或指定的 迭代次数。该算法简单、高效,适用于大规模数据集。
案例二:层次聚类分析
一种基于距离的聚类方法,能够揭示数据之间的层次结构。
层次聚类分析通过计算数据点之间的距离来构建聚类层次结构。根据距离度量方式的不同,可以分为 凝聚和分裂两种类型。凝聚层次聚类从单个聚类开始,逐渐将相近的聚类合并;分裂层次聚类则相反 ,从整个数据集开始,逐渐分裂成更小的聚类。
聚类分析的目标是将数据集中的对象按照某种相似性度量标准进 行分类,使得同一簇内的对象具有较高的相似性,不同簇的对象 具聚类
根据对象之间的距离进行聚类,常见的算法有Kmeans、层次聚类等。
基于密度的聚类
根据数据的密度分布进行聚类,将密度较高的区域 划分为同一簇,常见的算法有DBSCAN、OPTICS等 。
距离度量方式
选择合适的距离度量方式,如欧 氏距离、余弦相似度等,用于衡 量数据点之间的相似性。
聚类参数设置
根据聚类类型和数据特性,设置 合适的聚类参数,如簇的数量、 迭代次数等。
结果解读
聚类结果可视化
通过散点图、树状图等方式,将聚类结果进 行可视化展示,以便直观地了解各聚类的分 布和特点。
聚类结果评估
SPSS实现
外部评估指标:通过比较聚类结果与已知类别或 外部标准来评估聚类的质量,如调整兰德指数、 互信息等。
SPSS提供了多种聚类分析方法,包括K-means 聚类、层次聚类和DBSCAN等。通过SPSS软件 ,用户可以方便地实现聚类分析,并获得各种评 估指标和可视化结果,以帮助用户更好地理解和 解释聚类结果。
通过一些评估指标(如轮廓系数、Davies-Bouldin 指数等),对聚类结果进行评估,以检验其质量和 有效性。

教你怎么看聚类分析的树状图

教你怎么看聚类分析的树状图

教你怎么看聚类分析的树状图之吉白夕凡创作
简单讲一下:
有下面这样的一个树状图
现在我们开始切了
从右往左看,开始出现了2条横线,在此竖着切一刀,每一条线的左侧为1类
这样我们把样本划分为2类
第一类:中国
第二类:其他国家或者地区
继续往左走,在出现第三条横线的时候,竖着切一刀
这样我们就把样本划分为3类
第一类:中国
第二类:日本和菲律宾
第三类:其他
同理,在继续往左走,竖着切
下面我们将样天职为5类
第一类:中国
第二类:日本
第三类:菲律宾
第四类:中国香港和中国台湾
第五类:其他
你可以一直往左分,一直到1个样本一个群,看你自己的需求,分多少类,你自己做主。

SPSS作聚类分析-标准化

SPSS作聚类分析-标准化

•通过比较,可知离差平方和法(Ward’s method)分类 结果较好,将28各样本分为三类: 1.第一类包含6个元素:2、15、10、11、6、7 2.第二类包含10个元素:8、17、28、12、13、18、14、 20、21、22 3.第三类包含9个元素:3、16、23、24、4、27、5、25、 26 另有三个元素1、9、19为孤立点。 •从分类结果可以看出:1、9、19表示北京、上海、广 东三地农民属高消费生活水平;天津等第一类的农民生 活水平较高;安徽等第二类的农民生活水平为中等;陕 西等地的农民生活水平较低。
作用:变换后的数据均值为0,极差为1,且|xij*|<1, 消去了量纲的影响;在以后的分析计算中可以减 少误差的产生。
d) Maximum magnitude of 1
xij max x 1 i n ij * xij x ij 1 min x ij 1 i n 若 max xij 0 i 1, 2, , n j 1, 2, , m 若 max xij 0
以下我们结合实际例子分步进行讨论。
例、下表给出了1982年全国28个省、市、自治区农民家 庭收支情况,有六个指标,是利用调查资料进行聚类分 析,为经济发展决策提供依据。 (详见文件1982―农民生活消费聚类.sav‖) 1. 数据预处理(标准化) 1) 为什么要做数据变换 →指标变量的量纲不同或数量级相差很大,为了使这 些数据能放到一起加以比较,常需做变换。
1) 系统聚类法的产生 系统聚类法的聚类原则决定于样品间的距离(或相 似系数)及类间距离的定义,类间距离的不同定义就 产生了不同的系统聚类分析方法。 2) SPSS中如何选择系统聚类法 从Cluster Method框中 点击向下箭头,将出 现如左可选项,从中 选一即可。

spss样本聚类案例分析

spss样本聚类案例分析

原数据名称总人口从业人员土地面积耕地面积财政收入粮食产量龙固镇58089.0029906.005302.002670.004435.0026564.00杨屯頸56235.0024033.004100.002040.001874.0028327.00大屯镇82418.0035558.007380.003793.005370.0037803.00沛城镇84487.0052675.006600.005161.006085.0050950.00胡寨镇37952.0020190.004594.002727.001779.0032305.00魏庙镇53677.0031875.005200.003706.001974.0029220.00五段镇45860.0021148.004700.002800.002099.0042762.00张庄镇90950.0042858.0011200.006800.001695.0035511.00张寨镇89017.0038344.0010634.006847.003028.004739.00敬安镇63200.0031940.009600.005003.002638.0026260.00河口镇58895.0029580.008257.005324.001655.0010821.00栖山頸63711.0026292.008951.006386.002203.00494.00鹿楼镇71143.0035285.0012540.005991.002250.0040500.00朱寨镇60112.0025776.007900.004482.001449.0033611.00安国镇85083.0051974.0013329.005634.004313.0033911.00------------1・1样本聚类(Q聚类)JJU .00 Ib^.UU Jbbll.UU 30方0D 4739.00.00.00至统嶷类分析:统才蛍.00.00.00.00 ◎无迥)' •单一方买⑤鬆类»(Bj:最小惑数勉:[缝绫II取希II帮助I聚类表通过系数做出其散点图群集成员案例群集数使用平均联接(组间)的树状图重新调整距离聚类合并1.2变量聚类(R 聚类)近似矩阵案例矩阵文件输入总人口从业人 员土地面积耕地面 积 财政收 入粮食产 量总人口 1.000 .857 .698 .714 .512 .043 从业人.8571.000.597.570.643.277员土地面.698.5971.000.856.044-.147积耕地面.714.570.8561.000 -.001-.335积21M8.C0 U70J.C0 2EO3.C0 GEODCO羽丸d 31940 2^60CO 26292 CO劇a 标皿35265 CO®EXal|N):5776 CO 引97」CO卡方血 0计砲• |転瓦ndzn 距阉O 二分卷回:咖SUB忝统蟹凭分析:力链厂沱屯<3丄)I 卿符弓也丄刼碇到01全距归4255B.C011ZOD.CO 咖 3427G2.C01SK.C0 2S511.CO[齢]躺般|/总人口 少丛业人员 少土地面枳 炉辭地而枳细 Q...方法妙财政收.512 .643 .044 001 1.000 .342 入粮食产.043 .277 -147 335 .342 1.000 量聚类表群集成员案例粮您产蜀财政收入耕地面枳土地面枳从业人员总人口使用平均联接(纽间)的树状图2. K—均值聚类原数据描述统计量:均值聚类分析:…冈星H 初始聚类中心(!)ffl gNOVA 表(A)■■“ ••“ ••“ •■“ •••• •■“ ・•••••••••••••••••••••••••• •••• •••• IN极小值 极大值均值 标准差身髙月平均增长19.3411.03 1.88422. 5634率2体重月平均增长19.4950. 30 5. 6363 11. 718率14胸围月平均增长19.1611.81 1.49582. 7933率9坐髙月平均增长19.1411.27 1. 71112. 8070率9有效的N (列表19状态)66153049J714212-.12513K3-.046697卅K 均佰垦艮分・・・区)|E 标准©O[竝]确用|缺失值@按列表排除个案也)O按对排除个案Q输出结果:初始聚类中心迭代历史记录4a.由于聚类中心内没有改动或改动较小而达到收敛。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

spss 聚类分析树状图
借助主成分得分对河南省各市进行聚类分析。

在进行聚类分析时,指标越多就会使样品间的共性显示得越少,太多的指标会使计算出的样品间的距离偏大,从而不利于样品间相似性的综合和聚类分析的进行,往往达不到所想要的分类效果。

SPSS 软件可以在不知道最终类别个数的情况下,画出完整的聚类分析谱系图,因此下面用SPSS 软件对河南省18 个市进行聚类分析。

在spss 中打开数据,选择分析→分类→系统聚类:
变量选择f1,f2 得分,聚类选择个案,勾选输出统计量和绘图;
点击设置统计量,默认选择即可
点击选择分类方法,这里选择了离差平方和法;
点击绘制,勾选树状图,这个是我们输入查看谱系图的依据:
确定查看谱系图,分析聚类结果,改用不同的分类方法,得到谱系图进行综合分析;
由于方法众多,这里选取最为常用较结合实际的离差平方和法进行分析,。

相关文档
最新文档