2014年谷城县适应性考试数学答案5.8
2014高中阶段招生模拟考试数学试题及答案
初中2014届高中阶段招生适应性考试数学试卷全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至6页。
全卷满分120分,考试时间共120分钟。
注意事项:1.答题前,考生务必将自己的姓名、座位号、报名号(考号)写在答题卡上,并将条形码贴在答题卡上对应的虚线框内。
同时在答题卡背面第3页顶端用2B铅笔涂好自己的座位号。
2.第Ⅰ卷每小题选出的答案不能答在试卷上,必须用2B铅笔在答题卡上把对应题目....的答案标号涂黑,如需改动,用橡皮擦擦净后,再选涂其它答案。
第Ⅱ卷必须用0.5mm黑色墨水签字笔书写在答题卡上的指定位置。
不在指定区域作答的将无效。
3.考试结束,监考人员只将答题卡收回。
第Ⅰ卷(选择题共30分)一、选择题(本大题共10个小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个选项符合题意)1.-2的相反数是()A.2 B.-12C.-2 D.122.一个正多边形的每个外角都等于30°,那么它是()A.正六边形B.正八边形C.正十边形D.正十二边形3.在函数y=1x-1中,自变量x的取值范围是()A.x≤1 B.x<1 C.x>1 D.x≥14.下列图形:①平行四边形;②菱形;③圆;④梯形;⑤等腰三角形;⑥直角三角形;⑦国旗上的五角星.这些图形中既是轴对称图形又是中心对称图形的有()A.1种B.2种C.3种D.4种5.小乐所在的九年级二班共有50名学生,一次体检测量了全班学生的身高,由此求得该班学生的平均身高是1.65米,而小乐的身高是1.66米,下列说法不正..确.的是()A.1.65米是该班学生身高的平均水平B.班上比小乐高的学生人数不会超过25人高中阶段招生适应性考试数学试题第 1 页(共6页)高中阶段招生适应性考试 数学试题 第 2 页(共6页)C .这组身高数据的中位数不一定是1.65米D .这组身高数据的众数不一定是1.65米6. 如图1,若正方形EFGH 由正方形ABCD 绕某点旋转得到,则可以作为旋转中心的是( )A .M 或O 或CB .E 或O 或C C .E 或O 或ND .M 或O 或N7.如图2,在长方形网格中,每个小长方形的长为2,宽为1,A 、B 两点在网格格点上,若点C 也在网格格点上,以A 、B 、C 为顶点的三角形面积为2,则满足条件的点C 个数是( )个.A .2B .3C .4D .58.如图3,△ABC 是等腰直角三角形,∠ACB =90°,AC =BC ,把△ABC 绕点A 按顺时针方向旋转45°后得到△AB C '',若AB =BC 在上述旋转过程中所扫过的部分面积是(即图中阴影部分)( )A .4πB .2πC .23πD .2π9.对于点A (x 1,y 1),B (x 2,y 2),定义一种运算: 1212()()A B x x y y ⊕=+++,例如A (-5,4),B (2,-3),(52)(43)2A B ⊕=-++-=-.若互不重合的四点C ,D ,E ,F 满足C D D E E F F D ⊕=⊕=⊕=⊕,则C ,D ,E ,F 四点( )A .在同一条抛物线上B .在同一个反比例函数图象上C .是同一个正方形的四个顶点D .在同一条直线上10. 如图4,已知点A (4,0),O 为坐标原点,P 是线段OA 上任意一点(不含端点O ,A ),过P 、O 两点的二次函数y 1和过P 、A 两点的二次函数y 2的图象开口均向下,它们的顶点分别为B 、C ,射线OB 与AC 相交于点D .当OD =AD =3时,这两个二次函数的最大值之和等于 ( )A .5B .435 C .3D .4图 1图2图3 图4高中阶段招生适应性考试 数学试题 第 3 页(共6页)第Ⅱ卷(非选择题 共90分)注意事项:1.请用0.5毫米的黑色签字笔在答题卡相应区域作答,超出答案区域的答案无效。
河南省2014届高三毕业班高考适应性测试数学理试题Word版含答案
2014年河南省普通高中毕业班高考适应性测试理科数学一、选择题:本大题共12小题,每小题5分。
1.复数z =43a ii ++为纯虚数,则实数a 的值为A .34B .-34C .43D .-432.命题“x ∀∈R ,x e -x +1≥0”的否定是A .x ∀∈R ,lnx +x +1<0B .x ∃∈R ,x e -x +1≥0C .x ∀∈R ,x e -x +1>0D .x ∃∈R ,x e -x +1<0 3.如右图,是一程序框图,若输出结果为511,则其中的“?”框内应填入A .11k >B .10k >C .9k ≤D .10k ≤4.从1,2,3,4,5,6,7,8,9中不放回地依次取2个数,事件A =“第一次取到的是奇数”,B =“第二次取到的是奇数”,则()P B A =A .15B .310C .25D .125.下列函数中,既是奇函数又在定义域内单调递减的函数为A .y =1xB .y =2x x e e --C .y =sinxD .y =lgx6.已知集合A ={}210A x x ax a =--->,且集合Z ∩C R A 中只含有一个元素,则实数a 的取值范围是A .(-3,-1)B .[-2,-1)C .(-3,-2]D .[-3,-1] 7.在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且(2)cos cos 0a c B b C ++=.角B 的值为A .6πB .3πC .23πD .56π8.给出下列四个结论:①二项式621()x x-的展开式中,常数项是-15;②由直线x =12,x =2,曲线y =1x及x 轴所围成的图形的面积是2 ln2;③已知随机变量ξ服从正态分布N (1,2σ),(4)0.79P ξ≤=,则(2)0.21P ξ≤-=;④设回归直线方程为2 2.5y x =-,当变量x 增加一个单位时,y 平均增加2个单位. 其中正确结论的个数为A .1B .2C .3D .49.在△ABC 中,|AB |=3,|AC |=2,AD uuu r =12AB uu u r +34AC uuur ,则直线AD 通过△ABC 的A .垂心B .外心C .重心D .内心 10.已知一个几何体的三视图及有关数据如右图所示,则该几何体的体积为 A .B.3 CD.311.已知圆22213x y a +=与双曲线2221x a b2y -=(a >0,b >0)的右支交于A ,B 两点,且直线AB 过双曲线的右焦点,则双曲线的离心率为ABC .2D . 312.已知函数0,(),0.x x f x x x ≤⎧=⎨>⎩+2,ln 若函数2()()y f x k x e =-+的零点恰有四个,则实数k 的值为A .eB .1eC .2eD .21e二、填空题:本大题共4小题,每小题5分.13.实数x ,y 满足条件40,220,00,x y x x y ≤⎧⎪≥⎨⎪≥≥⎩+--y +,则x -y 的最小值为______________14.已知数列{n a }的通项公式为n a =32,n n n n ,⎧⎨⎩-11-为偶数,为奇数.则其前10项和为____________.15.在平面直角坐标系xOy 中,F 是抛物线C :2x =2py (p >0)的焦点,M 是抛物线C 上位于第一象限内的任意一点,过M ,F ,O 三点的圆的圆心为Q ,点Q 到抛物线C 的准线的距离为.则抛物线C 的方程为___________16.已知四棱锥P -ABCD 的底面是边长为a的正方形,所有侧棱长相等且等于2a ,若其外接球的半径为R ,则aR等于____________ 三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知数列{n a }满足a 1=5,1n a +=81234n n a a --,n N *∈, n b =12n a -. (Ⅰ)求证:数列{n b }为等差数列,并求其通项公式;(Ⅱ)已知以数列{n b }的公差为周期的函数()f x =Asin (ωx +ϕ)[A >0,ω>0,ϕ∈(0,π)]在区间[0,12]上单调递减,求ϕ的取值范围.18.(本小题满分12分)如图,已知四棱锥P -ABCD ,底面ABCD 为菱形,PA ⊥平面ABCD ,∠ABC =60°,M ,N 分别是BC 、PC 的中点.(Ⅰ)证明:AM ⊥PD ; (Ⅱ)若H 为PD 上的动点,MH 与平面PAD 所成最大角的正M -AN -C 的余弦值. 19.(本小题满分12分)居住在同一个小区的甲、乙、丙三位教师家离学校都较远,每天早上要开车去学校上班,已知从该小区到学校有两条路线,走线路①堵车的概率为14,不堵车的概率为34;走线路②堵车的概率为p ,不堵车的概率为1-p .若甲、乙两人走线路①,丙老师因其他原因走线路②,且三人上班是否堵车相互之间没有影响.(Ⅰ)若三人中恰有一人被堵的概率为716,求走线路②堵车的概率;(Ⅱ)在(Ⅰ)的条件下,求三人中被堵的人数ξ的分布列和数学期望.20.(本小题满分12分)过点C (02221x a b2y +=(a >b >0)的离心率为12,椭圆与x 轴交于(),0A a 和(),0B a -两点,过点C 的直线l 与椭圆交于另一点D ,并与x 轴交于点P ,直线AC 与直线BD 交于点Q .(Ⅰ)当直线l 过椭圆的右焦点时,求线段CD 的长;(Ⅱ)当点P 异于点B 时,求证:OP uu u r ·OQ uuu r为定值.21.(本小题满分12分)函数()f x 的定义域为D ,若存在闭区间[a ,b]⊆D ,使得函数()f x 满足:(1)()f x 在[a ,b]内是单调函数;(2)()f x 在[a ,b]上的值域为[ka ,kb],则称区间[a ,b]为()y f x =的“和谐k 区间”.(Ⅰ)若函数()x f x e =存在“和谐k 区间”,求正整数k 的最小值;(Ⅱ)若函数2()(2)ln 2(0)2m g x x m x x m =-++≥存在“和谐2区间”,求实数m 的取值范围.请考生在第22、23、24三题中任选一题做答.如果多做。
2014年湖北省襄阳市谷城县中考适应性考试数学试题及答案
谷城县2014年中考适应性考试数学试题一、选择题(每小题3分,共计36分)( )1、2-的绝对值为:A 、2- B 、2 C 、21 D 、21- ( )2、如图所示,将含有30º角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35º,则∠2等于:A 、10º B 、20º C 、25º D 、30º12A B C DO第2题图第11题图第10题图第9题图( )3、下列计算正确的是:A 、532a a a =+ B 、2229)3(b a b a -=-C 、b a a b a 326=÷D 、2623)(b a b a =-( )4、将31024.1-⨯用小数表示为:A 、0.000124B 、0.00124C 、00124.0-D 、0.0124( )5、不等式组⎪⎩⎪⎨⎧-≤-++<133423x x x x 的解集在数轴上表示为:A 、B 、C 、D 、( )6、某班15名同学为灾区捐款,他们捐款数额统计如下:A 、众数是100B 、平均数是30C 、中位数是30D 、极差是20( )7、下列图案中既是轴对称又是中心对称图形的是:A 、B 、C 、D 、( )8、下列图形的主视图与其它三个不同的是:( )9、如图,菱形ABCD 的两条对角线相交于点O ,若AC=6,BD=4,则菱形ABCD 的周长是:A 、24B 、16C 、134D 、32( )10、如图所示,二次函数c bx ax y ++=2的图象中,王九同学得出了下面四条信息:①042>-ac b ;②1>c ;③02<-b a ;④0<++c b a ,其中错误的有:A 、1个B 、2个C 、3个D 、4个( )11、如图,四边形ABCD 是菱形,∠A=60º,AB=2,若扇形BEF 的半径也为2,圆心角为60º,则图中阴影部分的面积为:A 、2332-πB 、332-πC 、23-π D 、3-π ( )12、若关于x 的方程0412)1(22=++-+x k x k 有实数根,则k 的取值范围是: A 、0≤k B 、12-≠-≥k k 且C 、120-≠-≥≥k k 且D 、02≤≤-k二、填空题(每小题3分,共计15分)13、计算:31948-的结果是______________。
黄冈市2014届高三5月份适应性考试理数试题与答案
黄冈市2014年高三年级5月份模拟考试数学试题(理科)参考答案二、填空题11、20 12、11 13 14、6174 15、5 16 三、解答题17、解:(1)c o s xf (x )c o s x c o s s i n x s i n 1222332ππ-=-+c o i n x c o sx 111222222=+-x 122=. ……………………(3分) 所以当x k 222ππ=-+,即x k (k Z )4ππ=-+∈时,f (x )取得最大值,[f(x )]最大值,……………………(4分) f (x )的最小正周期T 22ππ==,(5分)故函数f (x )π. ……………………(6分)(2)由C f ()124=-,即i n C 1124=-,解得sin C =。
又C 为锐角,所以C 3π=. …………………………(8分)由13cosB =求得sin B =.因此s i n A s i n [(B C )]s i n (B C )π=-+=+ s i n B c o s C c o s B s i n C =+12⨯+⨯. …………………………(12分) 18、①解:令n=2,则f ()1124=令x n 1=得n f()f()n n 1112-+= …………(4分) ②nn a f ()f ()f ()f ()n n 1110-=++⋅⋅⋅++ n n a 122+⇒= n n a f ()f ()f ()f ()n n 1101-=++⋅⋅⋅++ nn a 14+⇒= ………… (8分) ③n nb b ()(n )a n n (n )n n n 22441616111624111===<=-≥---当2n ≥时nT ()n23211116122=+++⋅⋅⋅+ ()n (n )11116112231=+++⋅⋅⋅+⨯⨯- n S n1632=-=n n T S ∴≤ ………………(12分)19、解:(1)证:∵面ACC 1A 1⊥面ABC ,AB ⊥AC ∴AB ⊥面ACC 1A 1,即有AB ⊥CD ;又AC=A 1C ,D 为AA 1中点,则CD ⊥AA 1 ∴CD ⊥面ABB 1A 1 …… (6分)(2)∵A 1C=AC=a,AA 1=2a, ∴A 1C ⊥AC,A 1C ⊥平面ABC.如图所示以点C 为坐标系原点,CA 为x 轴,过C 点平行于AB 的直线为y 轴,CA 1为z 轴,建立空间直角坐标系C-xyz ,则有A(a,0,0),B(a,a,0),A 1(0,0,a), B 1(0,a,a) C 1(-a,0,a),设E (x ,y ,z),且101B E B B (),λλ=<<即有(x a ,y a ,z )(a ,,a )0λ--=- 所以E 点坐标为(()a ,a ,a )1λλ- 由条件易得面A 1C 1A 地一个法向量为n (,,)1010= 设平面EA 1C 1一个法向量为n (x ,y ,z)2=, 由21121n A C n A E ⎧⊥⎪⎨⊥⎪⎩ 可得a x ()a x a y ()a z 0110λλ-=⎧⎨-++-=⎩令y=1,则有n (,),21011λ=- …………(9分) 则n n co s n n1212132π⋅===,得1λ=- ………… (11分)所以,当BE BB 11=-时,二面角E —A 1C 1—A 的大小为3π …………(12分)20、解:(1)由题设知,“0ξ=”对应的事件为“在三次投篮中没有一次投中”,由对立事件和相互独立事件性质可知P ()(q )(q ).212011003ξ==--=,解得q .208= …………(3分) (2)根据题意P P ()(q )C (q )q ....ξ===--=⨯⨯⨯=11122221107520208024. …………(4分) P P ()q (q ).(.)..2221231025108001ξ===-=⨯-= ............(5分) P P ()(q )q (22)3124107508048ξ===-=⨯= …………(6分) P P ()q q q (q )q 41212251ξ===+- ......025080250208024=⨯+⨯⨯=. …………(7分)因此E (00032024300140485024363)ξ=⨯+⨯+⨯+⨯+⨯=. …………(8分) (3)用C 表示事件“该同学选择第一次在A 处投,以后都在B 处投,得分超过3分”,用D 表示事件“该同学选择都在B 处投,得分超过3分”,则P (C )P ()P ()P P (34)45048024072ξξ==+==+=+=. …………(9分)P (D )q C q (q )q (212)2222210820802080896=+-=+⨯⨯⨯=. …………(11分) 故P (D )> P (C ) ………… (12分)即该同学选择都在B 处投篮得分超过3分的概率大于该同学选择第一次在A 处投以后都在B 处投得分超过3分的概率。
2014届中考适应性考试数学试题及答案
2014年中考数学模拟试题一、选择题:(本大题共12个小题,每小题3分,共36分.在每个小题给出的四个选项中,只有一个是符合题目要求的,请将其序号在卡上涂黑作答。
) 1.若a 与2互为相反数,则2+a 等于( )A .0B .4C .25 D .232.如图,AE ∥BD ,︒=∠︒=∠40220 C ,则1∠的度数是( )A.︒110B.︒120C.︒130D.︒140 3.在“百度”搜索引擎输入“马航飞机失踪”,能搜索到与之相关的结果个数约为32300000,这个数用科学记数法表示为( ) A .3.23×108 B .3.23×107 C .32.3×106 D .0.323×1084.四中九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为( )A .4,5B .5,4C .4,4D .5,5 5. 下列三个函数:①2y x =+;②4y x=;③221y x x =-+.其图象既是轴对称图形,又是中心对称图形的个数有( )A .0B .1C .2D .3 6.下列各运算中,正确的是( )A. 6239)3(a a =- B. 624a a a =÷ C. 2523a a a =+ D. 4)2(22+=+a a7.下列四个命题:(1)对角线相等的梯形是等腰梯形;(2)对角线互相垂直且相等的四边形是正方形;(3)顺次连接矩形四边中点得到的四边形是菱形;(4)一组对边平行且一组对角相等的四边形是平行四边形.其中真命题的个数有 ( )A .1个B .2个C .3个D .4个8.将不等式组⎪⎩⎪⎨⎧-≤--<-x x xx 23421241的解集在数轴上表示出来,正确的是( )9.一个物体由多个完全相同的小正方体组成,它的三视图如图所示,那么组成这个物体的小正方体的个数为( )A.2个B.3个C.5个D.10个10. 若⊙O 1和⊙O 2的圆心距为3,两圆半径分别为r 1、r 2,且r 1、r 2是方程组的解,则两圆的位置关系( )A.外离B.外切C.相交D.内切11.若等腰三角形一腰上的高和另一腰的夹角为25°,则该三角形的一个底角为( )A. 32.5°B. 57.5°C. 32.5°或57.5D. 65°或57.5°12.如图是二次函数y=ax 2+bx+c 图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y 1),(2,y 2)是抛物线上两点,则y 1>y 2.其中说法正确的是( ) A . ①②B . ②③C . ②③④D . ①②④二、填空题(本大题共5道小题,每小题3分,共15分.把答案填在题中的横线上.)13.计算:212138-+= . 14. 随着国家抑制房价政策的出台,某楼盘房价连续两次下跌,由原来的每平方米5000元降至每平方米4050元,设每次降价的百分率相同,则降价百分率为 . 15.抛物线y =2x 2+3上有两点A (x 1,y 1)、B (x 2,y 2),且x 1≠x 2,y 1=y 2,当x=x 1+x 2时,y = . 16.在正方形ABCD 中,点E 是对角线BD 上一点,且AE BD 3=,则∠BAE= .17.如图,⊙O 与⊙O 1内切于点A ,⊙O 的弦BC 与⊙O 1相切于点D ,且BC ∥O 1O ,BC =4,则图中阴影部分的面积为_____ _. 三、解答题(9小题,共69分)18.(6分)已知222=-y x ,求x y x x y x y x 4)](2)()[(222÷-++-+的值.19.(6分)反比例函数xn y 7+=的图象的一支在第一象限, A (-1,a )、B (-3,b )均在这个函数的图象上.(1)图象的另一支位于什么象限?常数n 的取值范围是什么? (2)试比较a 、b 的大小;(3)作AC ⊥x 轴于点C ,若△AOC 的面积为5,求这个反比例函数的解析式.20.(6分)“六•一”快到了,质检部门从某超市经销的儿童玩具、童车和童装中共抽查了300件儿童用品。
谷城数学中考适应题及答案
谷城县初中毕业适合性考试数学试题(本试卷共4页,满分120分.考试时间120分钟.)★祝 考 试 顺 利★ 注意事项: 1.答卷前,考生务必将自己的姓名、考试号填写在试题卷和答题卡上,并将考试号条形码粘贴在答题卡上的指定位置.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试题卷上无效.3.非选择题(主观题)用0.5毫米的黑色签字笔直接答在答题卡上每题对应的答题区域内,答在试题卷上无效。
作图一律用2B 铅笔或0.5毫米黑色签字笔.4.考试结束后,请将本试题卷与答题卡一并上交.一、选择题:(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将其序号在答题卡上涂黑作答.1.21-的相反数是( ) D A. 2- B. 2 C. 21-D. 21 2.如图,将三角尺的直角顶点放在直线a 上,a∥b,∠1=50°,∠2=60°,则∠3的度数为( )CA. 50°B. 60°C. 70°D. 80°3.下列计算准确的是( )DA. 532x x x =+B. 632x x x =⋅C. 532)(x x = D. 235x x x =÷ 4.据科学家估计,地球的年龄大约是46亿年,46亿这个数用科学记数法表示为( )CA.4.6×108B. 46×108C. 4.6×108D. 0.46×10105.某不等式组的解集在数轴上表示如图,则这个不等式组可能是( B )A.23x x -⎧⎨⎩≥≤B.23x x -⎧⎨<⎩≥C.⎩⎨⎧<->32x xD.23x x >-⎧⎨⎩≤6.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示: 成绩(m )1.50 1.60 1.65 1.70 1.75 1.80 人数 1 2 4 3 3 2这些运动员跳高成绩的中位数和众数分别是( )CA.1.65 , 1.70 B.1.70 , 1.70 C.1.70 , 1.65 D.3 , 47.下列图形中,既是轴对称图形又是中心对称图形的是( )A8.下列四个几何体中,主视图与左视图相同的几何体有( )DA .1个B .2个C .3个D .4个9.已知关于x 的一元二次方程(a ﹣l )x 2﹣2x +l=0有两个不相等的实数根,则a 的取值范围是( )CA .a >2B .a <2C .a <2且a ≠lD .a <﹣210.在平面直角坐标系中,将抛物线24y x =-先向右平移2个单位,再向上平移2个单位,得到的抛物线解析式为( )BA .2(2)2y x =++B .2(2)2y x =--C .2(2)2y x =-+D .2(2)2y x =+-11.如图,已知菱形ABCD 的对角线AC .BD 的长分别为6cm 、8cm ,AE⊥BC 于点E ,则AE 的长是( )DA .B .C .D .12.如图,AB 是⊙O 的直径,弦BC=2cm ,∠ABC =60°.若动点P以2cm/s 的速度从B 点出发沿着B→A 的方向运动,点Q 从A 点出发沿着A →C 的方向运动,当点P 到达点A 时,点Q 也随之停止运动.设运动时间为t(s),当△APQ 是直角三角形时,t 的值为( ) C A.34 B. 33- C. 34或33- D. 34或33-或3 二、填空题:(本大题共5个小题,每小题3分,共15分)把答案填在答题卡的对应位置的横线上.13.计算(348227)3-÷ = . 6 14.一次函数y =m x +∣m -1∣的图象过点(0,2),且y 随x 的增大而增大,则m = .315.如图所示,小明和小龙玩转陀螺游戏,他们分别同时转动一个陀螺,当两个陀螺都停下来时,与桌面相接触的边上的数字都是奇数的概率是 .41 16.在△ABC 中,cosB=23,AB=8cm ,AC=5cm ,则△ABC 的面积= cm 2. 17.如图,AB 是⊙O 的直径,弦CD ⊥AB ,∠CDB =30°,CD =23,则阴影部分图形的面积为 .2π3三、解答题:(本大题共9个小题,共69分)解答应写出文字说明、证明过程或演算步骤,并且写在答题卡上每题对应的答题区域内.18.(本小题满分5分) 已知:x =5+3,y =5-3,求:)(y x y x y x y x +---+·)11(22yx -的值.19. (本小题满分6分)如图,在平面直角坐标系中,一次函数111+=x k y 的图象与y 轴交于点A,与x 轴交于点B,与反比例函数xk y 22=的图象分别交于点M、N,已知△AOB 的面积为1,点M的纵坐标为2.(1)求一次函数与反比例函数的解析式;(2)直接写出1y >2y 时,x 的取值范围.20.(本小题满分6分)A B D CO某中学举行数学知识竞赛,所有参赛学生分别设有一、二、三等奖和纪念奖,获奖情况已汇制成如图所示的两幅不完整的统计图,根据图中所给信息解答下列问题:(1)这次数学知识竞赛获得二等奖人数是多少?(2)请将条形统计图补充完整;(3)若给所有参赛学生每人发一张卡片,各自写自己名字,然后把卡片放入一个不透明的袋子内,摇匀后任意摸取一张卡片,求摸出的卡片上是写有一等奖学生名字的概率。
2014年山西中考数学适应性真题及详解
2014年山西中考数学适应性真题一.选择题(共8小题) 1. 5-的倒数是( ) A .15B .15-C .5D .5-2.下列运算正确的是( ) A .532x x x -=B .222()a b a b +=+C .336()mn mn =D .624p p p ÷=3.我们虽然把地球称为“水球”,但可利用淡水资源匮乏.我国淡水总量仅约为899000亿米,用科学记数法表示这个数为( )A .0.899×104亿米3B .8.99×105亿米3C .8.99×104亿米3D .89.9×104亿米34.一个空心的圆柱如图所示,那么它的主视图是( )A .B .C .D .5.已知两圆的半径分别为3cm 、4cm ,圆心距为8cm ,则两圆的位置关系是( ) A .外离 B .相切 C .相交 D .内含 6.下列说法正确的是( )A .随机掷一枚硬币,正面一定朝上,是必然事件B .数据2,2,3,3,8的众数是8C .某次抽奖活动获奖的概率为150,说明每买50张奖券一定有一次中奖 D .想了解赤峰市城镇居民人均年收入水平,宜采用抽样调查 7.解分式方程131(1)(2)x x x =--+的结果为( ) A .1 B .1- C .2- D .无解8.如图,等腰梯形ABCD 中,AD ∥BC ,以点C 为圆心,CD 为半径的弧与BC 交于点E ,四边形ABED 是平行四边形,AB=3,则扇形CDE (阴影部分)的面积是( )A .32πB .2π C .π D .3π二.填空题(共8小题)9.一个n 边形的内角和为1080°,则n= .11.化简22(1)2211a a a a +÷+++= . 12.如图,在菱形ABCD 中,BD 为对角线,E 、F 分别是DC .DB 的中点,若EF=6,则菱形ABCD 的周长是 .13.投掷一枚质地均匀的骰子两次,两次的点数相同的概率是 .14.存在两个变量x 与y ,y 是x 的函数,该函数同时满足两个条件:①图象经过(1,1)点;②当x >0时,y 随x 的增大而减小,这个函数的解析式是 (写出一个即可).15.某中学的学生自己动手整修操场,如果让初二学生单独工作,需要6小时完成;如果让初三学生单独工作,需要4小时完成.现在由初二、初三学生一起工作x 小时,完成了任务.根据题意,可列方程为 . 16.将分数67化为小数是,则小数点后第2012位上的数是 .三.解答题(共9小题) 1720sin 30(2)-︒+--;18.求不等式组3(2)41413x x x x --≥⎧⎪+⎨>-⎪⎩的整数解.19.如图所示,在△ABC 中,∠ABC=∠ACB .(1)尺规作图:过顶点A 作△ABC 的角平分线AD ;(不写作法,保留作图痕迹) (2)在AD 上任取一点E ,连接BE 、CE .求证:△ABE ≌△ACE .20.如图,王强同学在甲楼楼顶A处测得对面乙楼楼顶D处的仰角为30°,在甲楼楼底B处测得乙楼楼顶D处的仰角为45°,已知甲楼高26米,求乙楼的高度. 1.7)21.甲、乙两名运动员在相同的条件下各射靶10次,每次射靶的成绩情况如图所示:22.(2012赤峰)如图,点O 是线段AB 上的一点,OA=OC ,OD 平分∠AOC 交AC 于点D ,OF 平分∠COB ,CF ⊥OF 于点F .(1)求证:四边形CDOF 是矩形;(2)当∠AOC 多少度时,四边形CDOF 是正方形?并说明理由.23.(2012赤峰)如图,直线1l y x =:与双曲线ky x=相交于点A (a ,2),将直线l 1向上平移3个单位得到l 2,直线l 2与双曲线相交于B .C 两点(点B 在第一象限),交y 轴于D 点. (1)求双曲线ky x=的解析式; (2)求tan ∠DOB 的值.24.(2012赤峰)如图,AB 是⊙O 的弦,点D 是半径OA 上的动点(与点A .O 不重合),过点D 垂直于OA 的直线交⊙O 于点E 、F ,交AB 于点C .(1)点H 在直线EF 上,如果HC=HB ,那么HB 是⊙O 的切线吗?请说明理由;(2)连接AE 、AF ,如果 AF=FB,并且CF=16,FE=50,求AF 的长.25.(2012赤峰)如图,抛物线25y x bx =--与x 轴交于A .B 两点(点A 在点B 的左侧),与y 轴交于点C ,点C 与点F 关于抛物线的对称轴对称,直线AF 交y 轴于点E ,|OC|:|OA|=5:1. (1)求抛物线的解析式; (2)求直线AF 的解析式;(3)在直线AF 上是否存在点P ,使△CFP 是直角三角形?若存在,求出P 点坐标;若不存在,说明理由.26.(2012赤峰)阅读材料:(1)对于任意两个数a b 、的大小比较,有下面的方法: 当0a b ->时,一定有a b >; 当0a b -=时,一定有a b =;反过来也成立.因此,我们把这种比较两个数大小的方法叫做“求差法”.(2)对于比较两个正数a b 、的大小时,我们还可以用它们的平方进行比较: ∵22()()a b a b a b -=+-,0a b +> ∴(22a b -)与(a b -)的符号相同 当22a b ->0时,a b ->0,得a b > 当22a b -=0时,a b -=0,得a b = 当22a b -<0时,a b -<0,得a b <解决下列实际问题:(1)课堂上,老师让同学们制作几种几何体,张丽同学用了3张A4纸,7张B5纸;李明同学用了2张A4纸,8张B5纸.设每张A4纸的面积为x ,每张B5纸的面积为y ,且x >y ,张丽同学的用纸总面积为W 1,李明同学的用纸总面积为W 2.回答下列问题: ①W 1= (用x 、y 的式子表示) W 2= (用x 、y 的式子表示) ②请你分析谁用的纸面积最大.(2)如图1所示,要在燃气管道l 上修建一个泵站,分别向A .B 两镇供气,已知A .B 到l 的距离分别是3km 、4km (即AC=3km ,BE=4km ),AB=xkm ,现设计两种方案:方案一:如图2所示,AP ⊥l 于点P ,泵站修建在点P 处,该方案中管道长度a 1=AB+AP .方案二:如图3所示,点A ′与点A 关于l 对称,A ′B 与l 相交于点P ,泵站修建在点P 处,该方案中管道长度a 2=AP+BP .①在方案一中,a 1= km (用含x 的式子表示); ②在方案二中,a 2= km (用含x 的式子表示);③请你分析要使铺设的输气管道较短,应选择方案一还是方案二.解答:解:∵|﹣5|=5,5的倒数是,∴|﹣5|的倒数是.故选A.2、考点:完全平方公式;合并同类项;幂的乘方与积的乘方;同底数幂的除法。
谷城适应性考试数学试题参考答案
5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。
我们只说喜欢,就算喜欢也是偷偷摸摸的。
”6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。
”7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。
8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。
9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。
2015年谷城县中考适应性考试数学试题参考答案与评分标准评分说明:1.若有与参考答案不同的解法而解答过程正确者,请参照评分标准分步给分;2.学生在答题过程中省略某些非关键性步骤,可不扣分;学生在答题过程中省略了关键性步骤,后面解答正确者,可只扣省略关键性步骤分,不影响后面得分.一、选择题(共12个小题,每小题3分,共3 6分)B C D C A D B D D A B C二、填空题(共5个小题,每小题3分,共15分)13.22- 14. 23-=x 15. 41 16. 1-π 17. 5或6 三、解答题:(本大题共9个题,共6 9分)18.解:原式=13)1(33)1()1)(1()3(32-+---+⋅-+-x x x x x x x ………………………………………2分 =131)1(3---+x x x x =13-x . ………………………………………3分 ∴当13+=x 时,原式=3331133==-+.……………………………5分19.解:(1)把点A (1,4)的坐标分别代入反比例函数y =x k ,一次函数y =x +b 中, 得k =1×4,1+b ═4.解得k =4,b =3.………………………………………1分∴反比例函数的解析式是y =x4,一次函数解析式是y =x +3.……………2分 (2)当x =﹣4时,y =﹣1,即n=-1.∴B (﹣4,﹣1).当y =0时,x +3=0.x =﹣3.一次函数y =x +3与x 轴交点C 的坐标为(﹣3,0).3分∴S △AOB =S △AOC +S △BOC ==. ………………………………4分(3)∵B (﹣4,﹣1),A (1,4),∴根据图象可知:当x >1或﹣4<x <0时,一次函数值大于反比例函数值.……6分20.解:(1)3÷25%=12(个),×360°=30°.故投稿篇数为2所对应的扇形的圆心角的度数为30°.5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。
2014年适应性考试数学试题答案
2014年适应性数学试题注意事项:1.本卷共有4页,共有25小题,满分120分,考试时限120分钟.2.答题前,考生先将自己的姓名、准考证号填写在试卷和答题卡指定的位置,并认真核对条形码上的准考证号和姓名,在答题卡规定的位置贴好条形码.3.考生必须保持答题卡的整洁,考试结束后,请将本试卷和答题卡一并上交. 一、选择题:(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内.1.A .±3B .3C .-3D .92.如图,AB ∥CD ,E 在AB 上,F 在CD 上,EG ⊥GF ,若∠BEG=120°,A .20°B .30°C .40°D . 60° 3.下列计算正确的是:A 、a 2+a 3=a 5B 、a 6÷a 2=a 3C 、(a 2)3=a 6D 、2a 2×3a =6a 2 4. 如图,是一个旋转对称图形,要使它旋转后与自身重合,应将它绕中心逆时针方向旋转的度数至少为:A.30° B .60° C.120° D.180°5. 为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码的统计如下表所示,则这10双运动鞋尺码的众数和中位数分别为:A 、25.6 26B 、26 25.5C 、26 26D 、25.5 25.56.左下图是由若干个小正方形所搭成的几何体及从上面看这个几何体所看到的图形,那么从左边看这个几何体时, 所看到的几何图形是:7. 将图1所示的正六边形进行分割得到图2,再将图2中最小的某一个正六边形按同样的方式进行分割得到图3,再将图3中最小的某一个正六边形按同样的方式进行分割……,则第2014个图形中,共有_________个正六边形。
A .4027B .6040C .10066D .以上都不对从左面看(A) (D)(C) B CD8. 一条排水管的截面如图所示.已知排水管的截面圆半径10OB =,水面宽AB 是16,则截面水深CD 是:A. 3 B .4 C.5 D.6(7题) (8题) (9题)9. 如图,将长8cm ,宽4cm 的矩形纸片ABCD 折叠,使点A 与C 重合,则四边形AECF 的周长为:A .12 cmB .16 cmC .20 cmD .24 cm 10.如图,二次函数y=ax 2+bx+c 的图象与y 轴正半轴相交, 其顶点坐标为1,12⎛⎫⎪⎝⎭,下列结论:①ac <0;②a+b =0; ③a =4c -4;④方程ax 2+bx+c -2=0无实数根.其中正确的个数是: A . 4 B. 3 C. 2 D. 1二、填空题(共6小题,每小题3分,本大题满分18分)11.为做好房地产市场调控工作,同时为中低收入阶层提供基本住房保障,住建部通知,2014年全国将新开工保障房6000000套以上,将数字6000000用科学记数发表示为6×106。
2014年初三中考适应性考试数学试卷答案
- 1 - 2014年初三中考适应性考试数学试卷参考答案及评分标准一、选择题(本题有12小题,每小题4分,共48分)1. D2. C3. D4. B5. C6. A7. C8. D9. D 10. D 11. C 12. D二、填空题(本题有6小题,每小题4分,共24分)13. 2x ≠ 14.3(3)(3)a a +- 15. 1 16. 310 17. 点O 旋转了0453321802ππ•⨯=,平移了270391802ππ•=,所以共走了6π 18. 连结AM ,AN ,∵AC 是⊙o 的直径,∴∠AMC =900, ∠ANC =900, ∵AB =13,BM =5∴AM =12,∵CM =9∴AC =15, ∵△AMN ∽△ACD ∴AM :MN =CD :CA∴12:MN =13:15∴MN =13180三、解答题(本题有8小题,共78分,每题都必须写出解答过程)19. (本题8分) 解:(1)原式=a 2﹣4a +4+a 2+4a =2a 2+4, (4分)当3a =时,原式=2()2+4 =10; (6分)20.(本题8分)(1)证明:∵在△ABE 和△DCE 中∴△ABE ≌△DCE (AAS );………………………………………………………………4分(2)解:∵△ABE ≌△DCE ,∴BE=EC ,∴∠EBC=∠ECB ,∵∠EBC+∠ECB=∠AEB=50°,∴∠EBC=25°……………………………………………………………………………8分21.(本题8分)(1)500 (2 分) 图略,对应的人数为180,正确得 (4分)(2)360500100⨯=72° (6分) (3)∵)8021405.118011005.0(5001⨯+⨯+⨯+⨯=1.2>1 ∴本次调查中学生参加户外活动的平均时间符合要求. (8分)。
河南省2014届普通高中毕业班高考适应性测试数学(理)试卷(扫描版)
2014年河南省普通高中毕业班高考适应性测试理科数学试题参考答案及评分标准(13) 1- (14)256 (15) y x 22= (16三、解答题 17.解:(Ⅰ)113436111113.812222242242234n n n n n n n n n n n n a a b b a a a a a a a a ++---=-=-=-==---------所以数列{}n b 为首项为111123b a ==-,公差为32的等差数列, ……………………………………4分故1397(1).326n n b n -=+-= ………………………………………………………………………………6分 (Ⅱ)由于函数()f x 的周期2T πω=,所以224332T πππω===, ……………………………………8分 又1423[0,],[,][,]23322x x ππππϕϕϕ∈∴+∈+⊂, ……………………………………………………10分所以,223.32πϕππϕ⎧⎪⎪⎨⎪+⎪⎩≥≤所以5[,].26ππϕ∈ …………………………………………………………………12分 18. 解:(Ⅰ)证明:由四边形ABCD 为菱形,60ABC ∠=,可得ABC ∆为正三角形.因为M 为BC 的中点,所以ABCDNMPOHSAM BC ⊥.…………………………………………………1分又BC ∥AD ,因此AM AD ⊥.因为PA ⊥平面ABCD ,AM ⊂平面ABCD ,所以PA AM ⊥. ………………3分 而PA AD A ⋂=,所以AM ⊥平面PAD .……………………………………4分 又PD ⊂平面PAD ,所以.AM PD ⊥…………………5分(Ⅱ)解法一:设2AB =,H 为PD 上任意一点,连接AH 、MH . 由(Ⅰ)可知:AM ⊥平面PAD .则MHA ∠为MH 与平面PAD 所成的角.…………………………………………6分 在Rt MAH ∆中,AM =所以当AH 最短时,MHA ∠最大,…………………………………… 7分即当AH PD ⊥时,MHA ∠最大,此时tan AM MHA AH ∠===因此AH=又2AD =,所以45ADH ∠=,于是2PA =.……………………………8分如图建立空间直角坐标系,则(0,0,2)P ,(0,2,0)D,M,1,0)B -,C ,1,0)2E .则1,1)2N 31(,1)2AN =,(3,0,0)AM =,设AC 的中点为E ,由(1)知BE 就是面PAC 的法向量,33(,0)2EB =-.设平面MAN 的法向量为(,,1)x y =n ,二面角MAN C --的平面角为θ.由0,0.AM AN ⎧⋅=⎪⇒⎨⋅=⎪⎩nn 0,0,2,1,(0,2,1).110.2x y z x y =⇒====++=n ………………………10分cos cos ,EB θ=<>=n二面角M AN C--的余弦值为………………………………………………………………12分 (Ⅱ)解法二:设2AB =,H 为PD 上任意一点,连接AH 、MH 由(Ⅰ)可知: AM ⊥平面PAD . 则MHA ∠为MH 与平面PAD 所成的角.……………………………………………………………6分在Rt MAH ∆中,AM= 所以当AH最短时,MHA∠最大,……………………………………………………………………7分即当AHPD ⊥时,MHA ∠最大,此时tan AM MHA AH ∠===因此AH =.又2AD =,所以45ADH ∠=,于是2PA =.………………………………8分因为PA ⊥平面ABCD ,PA ⊂平面PAC ,所以平面PAC ⊥平面ABCD .……………………………………………………………………………9分过M 作MO AC ⊥于O ,则由面面垂直的性质定理可知:MO ⊥平面PAC ,所以MO AN ⊥,过M 作MS AN ⊥于S ,连接OS ,AN ⊥平面MSO ,所以AN SO ⊥则MSO ∠为二面角M AN C--的平面角. ……………………………………………………………………………………………………10分 在Rt AOM ∆中,3sin30OM AM ==3cos302OA AM == 又N 是PC 的中点,在Rt ASO ∆中,3sin 45SO AO ==又SM ==…………………………………………………………………………11分在Rt MSO ∆中,cos SO MSO SM ==即二面角M AN C--的余弦值为515.…………………………………………………………………12分 19.解:(Ⅰ)由已知条件得.…………………………………………3分即31p=,则.答:p的值为, 即走线路②堵车的概率为5分(Ⅱ)ξ可能的取值为0,1,2,3 …………………………………………………………………………6分,.…………………………………8分ξ的分布列为:……………………10分答:三人中被堵的人数ξ的数学期望为分20.解:(Ⅰ)由已知得b=,12ca=,得2a=所以,椭圆22143x y+=.……………………3分椭圆的右焦点为(1,0)F,此时直线l的方程为y =+由223412.yx y ⎧=+⎪⎨+=⎪⎩解得1280,.5x x ==所以81655=.……………………………………………………6分(Ⅱ)当直线l 与x 轴垂直时与题意不符,所以直线l 与x 轴不垂直,即直线的斜率存在. 设直线l的方程为0y kx k k =+≠≠且…………………………………………………7分代入椭圆的方程,化简得2234)0k x ++=(,解得120,x x ==或代入直线l的方程,得12y ==或y所以,D的坐标为…………………………………………………………9分又直线AC的方程为12x+=,因(2,0)B -,2202BD y k x -==+所以直线BD的方程为2).y x =+联立解得2x y k ⎧=⎪⎨⎪=+⎩即(Q k +……………………………………………………10分 而P的坐标为(P所以(OP OQ ⋅=-(404k ⋅+=+=.所以OP OQ⋅为定值4. …………………………………………………………………………………12分21.解:(Ⅰ)由于函数()xf x e =为R 上的增函数,若()f x 在[,]a b 上的值域为[,]ka kb ,则必有(),(),f a ka f b kb ==所以,a b 为方程()f x kx =的两个不等根,……………………………………1分令()()()x v x f x kx e kx k *=-=-∈N ,则()x v x e k '=-,由()0xv x e k '=->知ln x k >,由()0xv x e k '=-<知0ln x k <<,所以函数()v x 在区间(,ln )k -∞单调递减,在区间(ln ,)k +∞上单调递增,所以()(ln )v x v k ≥,………………………………………………………………………3分由于()v x 在R 上有两个零点,所以ln (ln )ln (1ln )0kv k ek k k k =-=-<.所以k e >,又k 为正整数,所以k的最小值为3. ……………………………………………5分 (Ⅱ)由题意知函数()g x 的定义域为(0,)+∞,2222(1)(2)()2m mx x m x mx m g x mx x x x++---++'=-+==, 由于0,0x m >≥,所以20mx m x++>,由()0g x '>知函数()g x 在区间(1,)+∞上单调递增; 由()0g x '<知函数()g x 在区间(0,1)上单调递减. …………………………………………………7分由于函数()g x 存在“和谐2区间” [,]a b ,若[,](0,1]a b ⊂,则()2,()2.g a b g b a =⎧⎨=⎩即22()(2)ln 22,2()(2)ln 22.2m g a a m a a b m g b b m b b a ⎧=-++=⎪⎪⎨⎪=-++=⎪⎩两式相加得22(2)ln (2)ln 022m m a b m a m b +-+-+=, 由于[,](0,1]a b ⊂及m ≥,易知上式不成立. …………………………………………………8分若[,][1,)a b ⊂+∞,由()g x 在区间[1,)+∞上单调递增知,,a b 为方程()2f x x =的两个不等根,令2()()2(2)ln 2m h x f x x x m x =-=-+,则22(2)().m mx m h x mx x x +-+'=-=若0m =,则()2ln h x x =-在[1,)+∞单调递减,不可能有两个不同零点;……………………10分若0m >,2(2)()0mx m h x x-+'=>知,()h x在)+∞上单调递增;同样,由()0h x '<知,()h x在上单调递减. 函数2()(2)ln 2m h x x m x =-+在[1,)+∞上有两个不同零点,又(1)02mh =>,故有2(2)ln 02m m h m m +=⋅-+<,解之得20.1m e <<- 综上,所求实数m的取值范围为20.1m e <<-…………………………………………………12分 22.解:(Ⅰ)如图,连接OC ,∵OA OB = ,CA CB =,∴OC AB ⊥,∴AB是⊙O的切线. ………………………………4分 (Ⅱ)∵ ED 是直径,∴90ECD ∠=,Rt BCD ∆中,1tan 2CED ∠=, 1.2CD EC ∴=∵AB 是⊙O 的切线, ∴BCD E ∠=∠.又 ∵CBD EBC ∠=∠ ∴CBD ∆∽EBC ∆, ∴BD BC =CD EC =12. 设BD x =,2BC x =,又2BCBD BE =⋅, ∴ 2(2)x =x ·(12)x +.解得:120,4x x ==, ∵0BD x => , ∴4BD = .∴4610OA OB BD OD ==+=+=.…………………………………………………………6分23.解:(Ⅰ) 由2sin cos (0)a a ρθθ=>得22sin cos (0)a a ρθρθ=>,BC∴曲线C的直角坐标方程为2(0)y ax a =>.…………………………………………………………2分直线l的普通方程为2y x =-.…………………………………………………………………………4分(Ⅱ)将直线l 的参数方程代入曲线C 的直角坐标方程2(0)y ax a =>中,得28)4(8)0t a t a +++=, 设A B 、两点对应的参数分别为12t t ,, 则有112(8),4(8)t t a t t a ++⋅=+.………………………………………………………………6分∵2PA PB AB ⋅=, ∴21212()t t t t -=⋅, 即21212()5t t t t +=⋅.………………………………………………………………8分∴22)]20(8),340a a a a +=+++-=. 解之得:2a =或8a =- (舍去),∴a的值为2.……………………………………………………10分24.解:(Ⅰ)当3a =时,()46f x x +≥可化为236x x --+≥,236x x --+≥或236x x --≤. 由此可得3x ≥或3x -≤.故不等式()46f x x +≥的解集为{33}x x x -≥或≤.………………………………………………5分(Ⅱ)法一:(从去绝对值的角度考虑)由()0f x ≤,得25x a x --≤,此不等式化等价于,2250.a x x a x ⎧⎪⎨⎪-+⎩≥≤或,2(2)50.a x x a x ⎧<⎪⎨⎪--+⎩≤解之得,2.7a x a x ⎧⎪⎪⎨⎪⎪⎩≥≤或,2.3a x a x ⎧<⎪⎪⎨⎪-⎪⎩≤因为0a >,所以不等式组的解集为3a x x ⎧⎫-⎨⎬⎩⎭≤,由题设可得23a-=-,故6a =.……………………10分法二:(从等价转化角度考虑)由()0f x ≤,得25x a x --≤,此不等式化等价于525x x a x --≤≤,即为不等式组52,25.x x a x a x -⎧⎨--⎩≤≤ 解得,3.7a x a x ⎧-⎪⎪⎨⎪⎪⎩≤≤因为0a >,所以不等式组的解集为3a x x ⎧⎫-⎨⎬⎩⎭≤,由题设可得23a-=-,故6a =.……………………10分。
2014年中考适应性考试数学试题及答案
2014年中考适应性考试数学试题及答案2014年初中学业考试适应性训练数学试题考⽣注意:1、考试时间120分钟;全卷共三道⼤题,总分120分2、请将答案写在答题卡上,答在试卷上⽆效。
⼀、填空题(每题3分,满分30分)1. 前⼏年甲型H1N1流感在墨西哥爆发并在全球蔓延,研究表明甲型H1N1流感球形病毒细胞的直径约为0.00000156 m ,保留两个有效数字,⽤科学记数法表⽰这个数是 . 2、函数y=x 31-中,⾃变量x 的取值范围是。
3、如图所⽰,E 、F 是矩形ABCD 对⾓线AC 上的两点,试添加⼀个条件:_______________,使得△ADF ≌△CBE .4、把抛物线y=2x 2-3向右平移1个单位,再向上平移4个单位,则所得抛物线的解析式是 . 5、如图,Rt ABC △的斜边10AB cm =,3cos 5A =, 则_____.BC =6、从编号为1到10的10张卡⽚中任取1张,所得编号是 3的倍数的概率为 .7、过平⾏四边形 ABCD 对⾓线交点O 作直线m,分别交直线AB 于点E ,交直线CD 于点F ,若AB = 4,AE = 6 ,则DF 的长是 .8、分式112+-x x 的值为0 ,则 x 的值为 .9、已知圆锥的底⾯直径为4,母线长为6,则它的侧⾯展开图的圆⼼⾓为__ _____度 . 10.如图,有⼀系列有规律的点,它们分别是以O 为顶点,边长为正整数的正⽅形的顶点,A 1(0,1)、A 2(1,1)、A 3(1,0)、 A 4(2,0)、A 5(2,2)、A 6(0,2)、A7(0,3)、A 8(3,3)……,依此规律,点A 20的坐标为 . ⼆、选择题(每题3分,满分30分) 11、下列运算正确的是()A .236·a a a = B .11()22-=- C .164=± D .|6|6-=第5题图ABC12、在下列美丽的图案中,既是轴对称图形⼜是中⼼对称图形的个数是().(A )1个(B )2个(C )3个(D )4个 13、某班数学学习⼩组8名同学在⼀节数学课上发⾔的次数分别为 1、5、6、7、6、5、6、6则这组同学发⾔次数的众数和中位数分别是()A .6和6B .5和5C .6和5D .5和614、⼩明外出散步,从家⾛了20分钟后到达了⼀个离家900⽶的报亭,看了10分钟的报纸然后⽤了15分钟返回到家.则下列图象能表⽰⼩明离家距离与时间关系的是()15、如图,⼀个由若⼲个相同的⼩正⽅体堆积成的⼏何体,它的主视图、左视图和俯视图都是⽥字形,则⼩正⽅体的个数是()A .6B .6、7或8C .7 或8D .816、点P (-2,1)关于x 轴对称的点的坐标是()A .(-2,-1)B .(2,-1)C .(1,-2)D .(2,1)17、顺次连接对⾓线互相垂直的四边形的各边中点,所得图形⼀定是() A .直⾓梯形 B .矩形 C .菱形 D .正⽅形18.若x ,y 为实数,且1x ++1y -=0,则2011()x y的值是( ) A .0B .1C .-1D .-201119、某城市计划⽤两年时间增加全市绿化⾯积,若平均每年绿化⾯积⽐上⼀年增长20%,则两年后城市绿化⾯积是原来的()A1.2倍B1.4倍C1.44倍D1.8倍20、.如图,矩形ABCD 中,AB=3,AD=4,△ACE 为等腰直⾓三⾓形,∠AEC=90°,连接BE 交AD 、AC 分别于F 、N ,CM 平分∠ACB 交BN 于M ,下列结论:①AB=AF ;②AE=ME ;10 20 30 40 50 900 0 A .时间/分距离/⽶ 900 距离/⽶ 900 距离/⽶ 900 距离/⽶ 10 20 30 40 0 时间/分10 20 30 40 50 0 时间/分10 20 30 40 50 0 时间/分B .C .D .(第15题图)③BE ⊥DE ;④52=??CEN CMN S S ,其中正确的结论的个数有().A.1个B.2个C.3个D.4个(第20题图)三、解答题(满分60分) 21.(本⼩题满分5分)先化简,再选⼀个你喜欢的值代⼊求值。
2014年谷城县适应性考试数学答案5.8
2014年谷城县初中毕业适应性考试数学试题参考答案与评分标准评分说明:1.若有与参考答案不同的解法而解答过程正确者,请参照评分标准分步给分;2.学生在答题过程中省略某些非关键性步骤,可不扣分;学生在答题过程中省略了关键性步骤,后面解答正确者,可只扣省略关键性步骤分,不影响后面得分.一、选择题(共12个小题,每小题3分,共3 6分)B C D B D C B D C A BD二、填空题(共5个小题,每小题3分,共15分)13 14.35-=x 15.34 16.22 17.cm 或cm三、解答题:(本大题共9个题,共6 9分)18.解:原式=[+]•……………………………1分=•…………………………2分 =•………………………………………………3分 =. ……………………………………………………………………4分当a=5b=5=10552135351==-++.………6分 19.解:(1)过点A 作AD⊥x 轴,在Rt△AOD 中,∵tan∠AO E=OD AD =34,…………1分 设AD=4x ,OD=3x ,∵OA=5,在Rt△AOD 中,根据勾股定理,得AD=4,OD=3.∴A(3,4).……………………………………2分把A (3,4)代入反比例函数y=x m 中,解得:m=12. 则反比例函数的解析式为y=x12.……………………………………3分 (2)把点B 的坐标为(﹣6,n )代入y=x12中,解得n=﹣2. 则B 的坐标为(﹣6,﹣2). ……………………………………4分把A (3,4)和B (﹣6,﹣2)分别代入一次函数b kx y +=(k ≠0)中,得.解得.则一次函数的解析式为2+=x y .………5分∵点C 在x 轴上,令y =0,得x =﹣3.即OC=3.∴S △AOB =S △AOC +S △BOC =21×3×4+21×3×2=9. …………………………………6分 20.解:(1)学生的总数是:14+20+10+6=50(人), …………………………1分 参加绘画比赛的学生所占的比例是:×100%=12%; ………………2分(2)参加书法比赛的学生所占的比例是:1﹣12%﹣28%﹣40%=20%,……3分则扇形的圆心角的度数是:360×20%=72°; …………………………4分(3)参加演讲比赛的人数是:600×28%=168(人),…………………………5分参加唱歌比赛的人数是:600×40%=240(人).…………………………6分21.解:设鸡场的宽为x 米,则鸡场的长为(33-2x )米,…………………………1分 依题意,有 150)2233(=+-x x . ……………………………………………2分化简,得 01503522=+-x x .…………………………………………………3分 解方程,得 101=x ,2152=x . ……………………………………………4分 当10=x 时,=+-2233x 15<18,符合题意;当215=x 时,=+-2233x 20>18,不合题意,舍去.…………………………5分 所以鸡场的长和宽分别为15米和10米. …………………………………………6分22.解:依题意可得:∠AEB=30°,∠ACE=15°. …………………………………1分又∵∠AEB=∠ACE+∠CAE ,∴∠CAE=15°.即△ACE 为等腰三角形.∴AE=CE=100m . ……………………………………………………2分在Rt △AEF 中,∠AEF=60°,∴EF=AEcos60°=50m ,AF=AEsin60°=50m .4分 在Rt △BEF 中,∠BEF=30°,∴BF=EFtan30°=50×=m . ……………5分 ∴AB=AF ﹣BF=50﹣=≈58(米).(注:用勾股定理列方程解答正确者易可)答:塔高AB 大约为58米. ……………………………………………………6分23.(1)证明:∵用两块完全相同的且含60°角的直角三角板ABC 与AFE 按如图(1)所示位置放置,现将Rt △AEF 绕A 点按逆时针方向旋转角α(0°<α<90°),∴AB=AF ,∠BAM=∠FAN . ……………………………………1分在△ABM 和△AFN 中,,……………………………………2分∴△ABM ≌△AFN (ASA ).∴AM=AN . ……………………………………3分(2)解:当旋转角α=30°时,四边形ABPF 是菱形.理由:连接AP ,∵∠α=30°,∴∠FAN=30°.∴∠FAB=120°.………4分∵∠B=60°,∴AF ∥BP .∴∠F=∠FPC=60°.………5分∴∠FPC=∠B=60°.∴AB ∥FP .∴四边形ABPF 是平行四边形. ……………………………………………6分∵AB=AF ,∴平行四边形ABPF 是菱形.……………………………………7分24.解:(1)设y 与x 之间的函数关系式为b kx y +=,由函数图象,得 ,解得:∴y 与x 之间的函数关系式为y=﹣x +300.…………………………………2分(2)∵y=﹣x +300,∴当x =120时,y=180. …………………………………3分设甲品牌进货单价是a 元,则乙品牌的进货单价是2a 元,由题意,得120a+180×2a=7200,解得:a=15.∴乙品牌的进货单价是30元.答:甲、乙两种品牌的文具盒进货单价分别为15元,30元. …………5分(3)设甲品牌进货m 个,则乙品牌的进货(﹣m+300)个,由题意,得, ……………………………………………7分解得:180≤m ≤181. ………………………………………………………8分 ∵m 为整数,∴m=180,181.∴共有两种进货方案:方案1:甲品牌进货180个,则乙品牌的进货120个;方案2:甲品牌进货181个,则乙品牌的进货119个. ……………………9分 设两种品牌的文具盒全部售出后获得的利润为W 元,由题意,得W=4m+9(﹣m+300)=﹣5m+2700.∵k=﹣5<0,∴W 随m 的增大而减小,∴m=180时,W 最大=1800元.……10分 (注:直接计算得出结论正确易给分)25.解:(1)DE 与⊙O 相切.理由如下:连接OD,BD .∵AB 是直径, ∴∠ADB=∠BDC=90°.………………1分∵E 是BC 的中点,∴DE=BE=CE.∴∠EBD=∠EDB. …2分∵OD=OB,∴∠OBD=∠ODB.∴∠EDO=∠EBO=90°. (用三角形全等也可得到)∴DE 与⊙O 相切. ……………………………………………………………3分(2)由题意,可得OE 是△ABC 的中位线,∴AC=2OE.…………………………4分∵∠ABC=∠BDC=90°, ∠C=∠C,∴△ABC∽△BDC. ∴BC AC CD BC=,即BC 2=CD²AC . ……………………………………5分 ∵BC=2EB=2DE ,AC=2EO ,∴4DE 2=CD²2EO .即2DE 2=CD²EO .………………6分(3∵在Rt△BCD 中,BC=2DE=4,BD 2+CD 2=BC 2.∴(8分 9分10分 26.解:(1)根据题意,设抛物线的解析式为:k x a y ++=2)1(, …………1分∵点A (1,0),B (0,3)在抛物线上,∴.解得:a =﹣1,k =4, ……………………………………………2分∴抛物线的解析式为:4)1(2++-=x y . …………………………3分(2)①∵四边形OMPQ 为矩形,∴OM=PQ,即3t=﹣(t+1)2+4.……………4分整理得:t 2+5t ﹣3=0,解得t=.…………………………5分由于t=<0,故舍去. ∴当t=秒时,四边形OMPQ 为矩形.…………………………6分 ②Rt△AOB 中,OA=1,OB=3,∴tanA=3.若△AON 为等腰三角形,有三种情况:(I )若ON=AN ,如答图1所示:过点N 作ND⊥OA 于点D ,则D 为OA 中点, OD=OA=,∴t=.………7分(II )若ON=OA ,如答图2所示:过点N 作ND⊥OA 于点D ,设AD=x ,则ND=AD•tanA=3x ,OD=OA ﹣AD=x -1, 在Rt△NOD 中,由勾股定理得:OD 2+ND 2=ON 2.即2221)3()1(=+-x x .解得511=x ,02=x (舍去). ∴x =,OD=x -1=,∴t=. …………………………………………9分 (III )若OA=AN ,如答图3所示:过点N 作ND⊥OA 于点D ,设AD=x ,则ND=AD•tanA=3x .在Rt△AND 中,由勾股定理得:ND 2+AD 2=AN 2.即2221)3(=+x x ,解得1x =, 2x =﹣(舍去). ∴OD=x -1=1﹣,∴t=1﹣. ………………………………………11分综上所述,当t 为秒,秒,(1﹣)秒时,△AON 为等腰三角形.………12分谷城县教学研究室2014年5月8日。
湖北省黄冈中学2014届高三5月适应性考试 数学理A卷试题 Word版含答案
湖北省黄冈中学2014届高三适应性考试数学(理工类)试题本试卷共6页,共22题,其中第15、16题为选考题.满分150分.考试用时120分钟.★祝考试顺利★命题:张卫兵 审稿:尚厚家 张淑春 校对:郭旭 张智注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.用统一提供的2B 铅笔将答题卡上试卷类型A 后的方框涂黑.2.选择题的作答:每小题选出答案后,用统一提供的2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.答在试题卷、草稿纸上无效.3.填空题和解答题的作答:用统一提供的签字笔将答案直接答在答题卡上对应的答题区域内.答在试题卷、草稿纸上无效.4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用统一提供的2B 铅笔涂黑.考生应根据自己选做的题目准确填涂题号,不得多选.答题答在答题卡上对应的答题区域内,答在试题卷、草稿纸上无效.5.考生必须保持答题卡的整洁.考试结束后,请将本试题卷和答题卡一并上交.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数720146i 8i +(其中i 是虚数单位)的共轭复数在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2.已知条件:p 2log (1)1x -<;条件:q |2|1x -<,则p是q成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件 3.a 为如图所示的程序框图中输出的结果,则化简 cos()a πθ-的结果是( )A .cos θB .cos θ-C .sin θD .sin θ-4.在长为5cm 的线段AB 上任取一点C ,以,AC BC 为邻边作一矩形,则矩形面积小于24cm 的概率为( )3题图A .15B .25C .35D .455.在△ABC 中,3AB =,2AC =,12BD BC =,则AD BD ⋅=( ) A .52- B .52 C .54- D .546.甲、乙两人进行乒乓球比赛,先赢3局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次不同视为不同情形)共有( ) A .10种 B .15种 C .20种 D .30种 7.设函数()n f x =,其中n 是集合{1,2,3}的非空真子集的个数,则()f x 的展开式中常数项是( )A .52- B .160- C .160 D .208.如图是函数5cos(2)6y x π=-在一个周期内的图象,则阴影 部分的面积是( ) A .34 B .54 C .32D.329.函数e x y m =+(其中e 是自然对数的底数)的图象上存在 点(,)x y 满足条件:2e x y x y x ⎧⎪⎨⎪⎩≤≤≥,则实数m 的取值范围是( )A .2[1,2e e ]--B .2[2e ,1]--C .22[2e ,2e e ]--D .2[2e ,0]- 10.定义函数348,12,2()1(), 2.22x x f x x f x ⎧--⎪⎪=⎨⎪>⎪⎩≤≤,则函数()()6g x xf x =-在区间[1,2](n n*)∈N 内的所有零点的和为( )A .nB .2nC .3(21)4n -D .3(21)2n -二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号.......的位置上.答错位置,书写不清,模棱两可均不得分. (一)必考题(11—14题)11.函数1ln(1)y x=+的定义域为12.一个几何体的三视图如图所示,则此几何体的体积是8题图13.已知222(1)(1)(1)4x y z ++++-=,则23x y z ++的最大值是14.已知双曲线22221(0,0)x y a b a b-=>>中,虚轴12,A A 是左、右顶点,F 是右焦点,B 是的上端点.若在线段BF 上(不含端点)存在不构成同的两点(1,2)i P i =,使得△12(1,2)i PA A i =心率以12A A 为斜边的直角三角形,则双曲线离e 的取值范围是(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B 铅笔涂黑.如果全选,则按第15题作答结果计分.) 15.(选修4-1:几何证明选讲)如图,PB 为△ABC 外接圆O 的切线,BD 平分PBC ∠,交圆O于D ,,,C D P 共线.若AB BD ⊥,PC PB ⊥,1PD =,则圆O 的半径是 16.(选修4-4:坐标系与参数方程)在直角坐标系xOy 中,曲线1C 的参数方程是11x t ty t t ⎧=-⎪⎪⎨⎪=+⎪⎩,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是sin()13πρθ+=,则两曲线交点间的距离是三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知函数1()2sin cos()2f x x x ϕ=--(02πϕ<<)的图像过点(,1)3π. PABO 15题图CD 14题图(Ⅰ)求ϕ的值;(Ⅱ)求函数()f x 的单调递增区间.18.(本小题满分12分)在某校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A 处每投进一球得3分,在B 处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次.某同学在A 处的命中率0.25,在B 处的命中率为0.8,该同学选择先在A 处投一球,以后都在B 处投,用X 表示该同学投篮训练结束后所得的总分. (Ⅰ)求该同学投篮3次的概率;(Ⅱ)求随机变量X 的数学期望EX .19.(本小题满分12分)已知在等比数列{}n a 中,213121,1a a a a =+-=,数列{}n b 满足321()23n n b b b b a n n*+++⋅⋅⋅+=∈N . (Ⅰ)求数列{}n b 的通项公式;(Ⅱ)设数列{}n b 的前n 项和为n S ,若*n ∀∈N ,n n S a λ>恒成立,求λ的取值范围.20.(本小题满分12分)如图1,AD 是直角△ABC 斜边上的高,沿AD 把△ABC 的两部分折成直二面角 (如图2),DF AC ⊥于F . (Ⅰ)证明:BF AC ⊥;(Ⅱ)设DCF θ∠=,AB 与平面BDF 所成的角为α,二面角B FA D --的大小为β,求证:tan tan cos αθβ=;(Ⅲ)设AB AC =,E 为AB 的中点,在线段DC 上是否存在一点P ,使得DE ∥平面PBF ?若存在,求DPPC的值;若不存在,请说明理由.21.(本小题满分13分)动圆E 过点(1,0)F ,且与直线1x =-相切,圆心E 的轨迹是曲线C . (Ⅰ)求曲线C 的方程;(Ⅱ)过点(4,2)Q 的任意一条不过点(4,4)P 的直线与曲线C 交于,A B 两点,直线AB 与直线4y x =+交于点M ,记直线,,PA PB PM 的斜率分别为123,,k k k ,问是否存在实数λ,使得123k k k λ+=恒成立?若存在,求出λ的值,若不存在,说明理由.图2BCAD F EPD图1ACB22.(本小题满分14分)已知()(1)e x f x x a =--(其中e 是自然对数的底数). (Ⅰ)若x ∀∈R ,()0f x ≤恒成立,求a 的取值范围; (Ⅱ)若数列{}n x 满足1ln(e 1)ln n x n n x x +=--,且11x =,证明:(ⅰ)数列{}n x 的各项为正且单调递减; (ⅱ)12n nx >.湖北省黄冈中学2014届高三适应性考试数学(理工类)答案及评分标准一、A 卷答案BCABC CBBDD B 卷答案BACBD CBDAD 以下是A 卷答案1.720146i 8i 6i 8+=--,共轭复数为86i -+,对应的点位于第二象限,选B.2.2log (1)101213x x x -<⇒<-<⇒<<;|2|112113x x x -<⇒-<-<⇒<<.选C.3. 由程序框图知,12,1;1,2;,3;2,4,2a i a i a i a i ===-=====,直到2014i =,故2a =,cos()cos(2)cos a πθπθθ-=-=,选A.4.设AC x =,则(5)4x x -<,解得1x <或4x >,又05x ≤≤,所以01x <≤或45x <≤,于是所求的概率为25,选B. 5.由12BD BC =得,D 是BC 的中点,所以1()2AD AB AC =+. 22111115()()()()222244AD BD AB AC BC AB AC AC AB AC AB ⋅=+⋅=+⋅-=-=-,选C.6.两人比赛局数为3局、4局或5局.当局数为3时,情况为甲或乙连赢3局,共2种;当局数为4时,若甲胜,则甲第4局胜,且前3局胜2局,有23C 3=种情况,同理乙胜也有3种情况,共6种;当局数为5时,前四局甲、乙各胜两局,最后一局赢的人获胜,有242C 12=种情况.故总共有20种情况,选C.7.3226n =-=,所以6()f x=,其展开式通项是66C (rr r -6626(1)2C r r r r --=-⋅,故3r =时,通项是常数项3336(1)C 2160-⋅=-,选B.8.函数的周期T π=,2623πππ+=.阴影部分面积为: 22363600665515155cos(2)cos(2)sin(2)|sin(2)|6626264x dx x dx x x ππππππππππ---=---=⎰⎰.选B.9.当e x y m =+的图象与e y x =相切时,设切点为00(,e )x x ,则切线斜率为0x e .由0x e e =得01[0,2]x =∈.所以当e x y m =+的图象与e y x =相切于(1,e)时,m 的值最大.此时0m =. 当e x y m =+过原点时,1m =-.此时e 1x y =-的图象与直线2x =的交点为2(2,e 1)-在点(2,2)的上方.故当e x y m =+图象过点(2,2)时,m 的值最小,此时22e m =-.综上所述,2[2e ,0]m ∈-,选D. 10. ()()60g x xf x =-=⇒6()f x x=. 作出函数()f x 在[1,2]上的图象,它是顺次连接点3(1,0),(,4),(2,0)2的两条线段;再作函数在(2,4]上的图象,它是前一段图象横坐标伸长为原来的两倍,纵坐标缩为原来的12得到的,即为顺次连接点(2,0),(3,2),(4,0)的两条线段;再作函数在(4,8]上的图象,它是顺次连接点(4,0),(6,1),(8,0)的两条线段;……;如此下去,可得函数()f x 的图象.而反比例函数6y x=的图象正好过点3(,4),(3,2),(6,1)2,….所以函数的零点从小到大依次构成首项为32,公式为2的等比数列,该数列记为{}k a ,则1322k k a -=⋅.又1232223222k n n k n k k n --+⋅⇒⇒-+⇒≤≥≥≤,故函数的[1,2]n 上有n 个零点,它们的和为3(12)32(21)122n n -=--,选D.xx11.111011x x x+>⇒>-⇒<-或0x >;2101x x -⇒-≥≤≤1.故所求定义域为(0,1]. 12. 几何体是一个半球和一个圆台的组合体,体积为 32214121243(2244)2333V πππ=⋅⋅+⋅+⋅+=. 13.由柯西不等式得,23(1)2(1)3(1)x y z x y z ++=++++-等号当且仅当111023y z x +-+==>,且222(1)(1)(1)4x y z ++++-=,即x y z =时成立,故所求的最大值为14.以12A A 为直径的圆与线段BF 有两个不同的交点,所以圆的半径大于点O 到BF 的距离,且小于OB 的长.故a a b ><,解得e <15. 连接AD ,则AD 是圆的直径,于是90ACD ∠=.PB 为ABC ∆外接圆O 的切线PDB BAD BCD ⇒∠=∠=∠, BD 平分PBC ∠PBD DBC ⇒∠=∠,又90BCD CBD PBD ∠+∠+∠=,∴30BCD CBD PBD ∠=∠=∠=.∴30BAD ∠=∴22BD PD ==,24AD BD ==,∴圆O 的半径是2. 16.1C 的一般方程为224y x -=.曲线2C的直角坐标方程为20y -=.由22420y x y ⎧-=⎪⎨-=⎪⎩得交点坐标为4)-,它们之间的距离为三、17.(Ⅰ)12sin cos()1cos()3323πππϕϕ--=⇒-, ………………………………3分 ∵02336ππππϕϕ<<⇒-<-<,∴366πππϕϕ-=-⇒=.…………………………………6分(Ⅱ)111()2sin cos()2sin sin )6222f x x x x x x π=--=+-2cos sin x x x =+…8分1cos21222x x -+-sin(2)6x π=-, ……………………………………10分 ∴当222,262k x k k πππππ--+∈Z ≤≤时,即在区间[,]()63k k k ππππ-+∈Z 上()f x单调递P ABO15题图CD增. …………………………………………………………………12分 18.(Ⅰ)10.80.250.8P =-⨯=.……………………………………………………………4分 (Ⅱ)(0)0.750.20.20.03P X ==⨯⨯=; 12(2)0.75C (0.20.8)0.24P X ==⨯⨯=;(3)0.250.20.20.01P X ==⨯⨯=; (4)0.750.80.80.48P X ==⨯⨯=;(5)0.250.80.250.20.80.24P X ==⨯+⨯⨯=.…………………………………………………9分随机变量X 的分布列为∴00.0320.2430.0140.4850.24 3.63EX =⨯+⨯+⨯+⨯+⨯=.……………………………12分19.(Ⅰ)设公比为q ,则21222n n q q q a -=⇒=⇒=.111b a ==.……………………………………………………………………………………2分2n ≥时,122212222n n n n nn n n b a a b n n-----=-=-=⇒=⋅. ∴21,12,2n n n b n n -=⎧=⎨⋅⎩≥………………………………………………………………………5分 (Ⅱ)012122322n n S n -=+⋅+⋅++⋅,1212222322n n S n -=+⋅+⋅++⋅,两式相减得:1221112222(1)21n n n n S n n ---=-----+⋅=-⋅+.∴1n =时,11S =;2n ≥时,012122322n n S n -=+⋅+⋅++⋅,1212222322n n S n -=+⋅+⋅++⋅,两式相减得:1221112222(1)21n n n n S n n ---=-----+⋅=-⋅+.∴*n ∀∈N ,有1(1)21n n S n -=-⋅+.……………………………………………………………7分 nn n nS S a a λλ>⇒<,记n n n S c a =,则111(1)211122n n n n n c n ----⋅+==-+, ∴11111(1)10222n n n n nc c n n +--=+---=->, ∴数列{}n c 递增,其最小值为11c =.故1λ<.…………………………………………………………………12分20.(Ⅰ)∵,AD DB AD DC ⊥⊥,∴BDC ∠是二面角B DAC --的平面角.又∵二面角B DA C --是直二面角,∴BD DC ⊥,∴BD ⊥平面ADC ,∴BD AC ⊥,又DF AC ⊥,∴AC ⊥平面BDF ,∴BF AC ⊥.…………………………………4分 (Ⅱ)由(Ⅰ)tan AF ABF BF αα∠=⇒=,cos DFBFD BFββ∠=⇒=. 又tan AFADF DCF DFθθ∠=∠=⇒=,∴tan cos tan AFBFθβα==.………………………8分(Ⅲ)连接CE 交BF 于点M ,连接PM ,则PM ∥DE . ∵AB AC =,∴AD DC =,∴F 为AC 的中点, 而E 为AB 的中点,∴M 为ABC ∆的重心, ∴12EM MC =,∴12DP PC =. 即在线段DC 上是否存在一点P ,使得DE ∥PBF , 此时12DP PC =.………………………………………………………………12分21. (Ⅰ)点E 到A 的距离与到直线1x =-的距离相等,所以曲线C 是以A 为焦点的抛物线.设为22y px =,则122pp =⇒=,故曲线C 的方程为24y x =.…………………………………………4分(Ⅱ)设直线AB 的斜率为k ,则直线AB 的方程为2(4)y k x -=-.由2(4)4y k x y x -=-⎧⎨=+⎩得4282(,)11k k M k k +---.图2B CADFEP M∴382421142341k k k k k k --+-==+--.………………………6分 设1122(,),(,)A x y B x y .由22(4)4y k x y x-=-⎧⎨=⎩得,2222(844)161640k x k k x k k --++-+=. ∴2212122284416164,k k k k x x x x k k-+-++==.………………………………………………8分 ∴121212121244(4)2(4)24444y y k x k x k k x x x x ------+=+=+---- 121212122(8)1122()2444()16x x k k x x x x x x +-=-+=----++ 2222228442(8)216164844416k k k k k k k k k k -+-=--+-+-⋅+ 423k +=……………………………………………………………………………11分 ∴1232k k k +=,即2λ=.………………………………………………………………………13分22.(Ⅰ)()(1)e e e x x x f x x x '=--=-.在(,0)-∞上,()0f x '>,()f x 单调递增;在(0,)+∞上,()0f x '<,()f x 单调递减;∴max ()(0)10f x f a ==-≤.∴1a ≥.………………………………………………………4分(Ⅱ)(ⅰ)用数学归纳法证明0n x >.当1n =时,110x =>,结论成立;若n k =时结论成立,即0k x >. 令()e 1x g x x =--,则()e 1x g x '=-,在(0,)+∞上()0g x '>,()g x 递增. 而(0)0g =,∴在(0,)+∞上()0g x >,∴e 1x x ->. 于是,由e 10ln(e 1)ln 0k k x x k k x x ->>⇒-->,即10k x +>,1n k =+时结论成立. 由数学归纳原理,*,0n n x ∀∈>N .又由(Ⅰ)知0x >时,e 1(1)e 10e x xx x x ---<⇒<.∴1e 1ln(e 1)ln ln ln e n nn x x x n n n n x x x x +-=--=<=,数列{}n x 单调递减.……………………9分 (ⅱ)我们先证明112n n x x +>.① 2222111ln(e 1)ln e 1e (e )2e 10222n n n n n x x x x x n n n n n n x x x x x x +>⇔-->⇔->⇔-⋅->.② 令2()e 12e x x h x x =--,则2()2e 2e 2e 2e (e 1)x x x x x h x x x '=--=--,在(0,)+∞上,()0h x '>,()h x 递增.而(0)0h =,∴在(0,)+∞上,()0h x >.故②成立,从而①成立. 由于112x >,所以 1212111112222n n n n n x x x x --->>>>=.………………………………14分。
2014适应性测试数学理科答案
2014年河南省普通高中毕业班高考适应性测试理科数学试题参考答案及评分标准(13) 1- (14)256 (15) y x 22= (16)4三、解答题17.解:(Ⅰ)113436111113.812222242242234n n n n nn n n n n n n a a b b a a a a a a a a ++---=-=-=-==---------所以数列{}n b 为首项为111123b a ==-,公差为32的等差数列, ……………………………………4分 故1397(1).326n n b n -=+-= ………………………………………………………………………………6分 (Ⅱ)由于函数()f x 的周期2T πω=,所以224332T πππω===, ……………………………………8分 又1423[0,],[,][,]23322x x ππππϕϕϕ∈∴+∈+⊂, ……………………………………………………10分所以,223.32πϕππϕ⎧⎪⎪⎨⎪+⎪⎩≥≤所以5[,].26ππϕ∈ …………………………………………………………………12分18. 解:(Ⅰ)证明:由四边形ABCD 为菱形,60ABC∠= ,可得ABC ∆为正三角形.因为M 为BC 的中点,所以AM BC ⊥.…………………………………………………1分 又BC ∥AD ,因此AM AD ⊥.因为PA ⊥平面ABCD ,AM ⊂平面ABCD ,所以PA AM ⊥. ………………3分 而PA AD A ⋂=, 所以AM ⊥平面PAD .……………………………………4分又PD ⊂平面PAD ,所以.AM PD ⊥…………………5分(Ⅱ)解法一:设2AB =,H 为PD 上任意一点,连接AH 、MH . 由(Ⅰ)可知:AM ⊥平面PAD .A BCDNMPOHS则MHA ∠为MH 与平面PAD 所成的角.…………………………………………6分 在Rt MAH ∆中,AM=所以当AH 最短时,MHA ∠最大,……………………………………7分 即当A H P D ⊥时,M H A ∠最大,此时tan 2AM MHA AH AH ∠===因此AH=又2AD =,所以45ADH ∠= ,于是2PA =.……………………………8分如图建立空间直角坐标系,则(0,0,2)P ,(0,2,0)D,M,1,0)B -,C ,1,0)22E .则1(,,1)22N 1(,1)22AN =,AM = ,设AC 的中点为E ,由(1)知BE 就是面PAC的法向量,3(,0)22EB =- .设平面MAN 的法向量为(,,1)x y =n ,二面角M AN C --的平面角为θ.由0,0.AM AN ⎧⋅=⎪⇒⎨⋅=⎪⎩ nn 0,0,2,1,(0,2,1).110.22x y z x y =⇒====++=⎩n ………………………10分cos cos ,5EB θ=<>== n二面角MAN C --的余弦值为5………………………………………………………………12分(Ⅱ)解法二:设2AB =,H 为PD 上任意一点,连接AH 、MH由(Ⅰ)可知:AM ⊥平面PAD .则MHA ∠为MH 与平面PAD 所成的角.……………………………………………………………6分 在Rt MAH ∆中,AM=所以当AH 最短时,MHA ∠最大,……………………………………………………………………7分即当AHPD ⊥时,MHA ∠最大,此时tan 2AM MHA AH AH ∠===因此AH=又2AD =,所以45ADH ∠= ,于是2PA =.………………………………8分因为PA ⊥平面ABCD ,PA ⊂平面PAC ,所以平面PAC ⊥平面ABCD .……………………………………………………………………………9分 过M 作MO AC ⊥于O ,则由面面垂直的性质定理可知:MO ⊥平面PAC ,所以MO AN ⊥,过M 作MS AN ⊥于S ,连接OS ,AN ⊥平面MSO ,所以AN SO ⊥则MSO ∠为二面角M AN C --的平面角. ……………………………………………………………………………………………………10分 在Rt AOM ∆中,sin 302OM AM ==3cos302OA AM == 又N 是PC 的中点,在Rt ASO ∆中,sin 454SO AO ==又4SM ==…………………………………………………………………………11分 在Rt MSO ∆中,cos 5SO MSO SM ==即二面角M AN C --的余弦值为515.…………………………………………………………………12分 19.解:.…………………………………………3分即31p =,则. 答:p 的值为………………………………………………………5分 (Ⅱ)ξ可能的取值为0,1,2,3 …………………………………………………………………………6分, .…………………………………8分 ξ的分布列为:……………………10分12分20.解:(Ⅰ)由已知得b=12ca=,得2a=所以,椭圆22143x y+=.……………………3分椭圆的右焦点为(1,0)F,此时直线l的方程为y=+由223412.yx y⎧=+⎪⎨+=⎪⎩解得1280,.5x x==所以1281655CD x=-==.……………………………………………………6分(Ⅱ)当直线l与x轴垂直时与题意不符,所以直线l与x轴不垂直,即直线的斜率存在.设直线l的方程为02y kx k k=+≠≠且…………………………………………………7分代入椭圆的方程,化简得2234)k x++=(,解得1220,.34x xk-==+或代入直线l的方程,得21224).34kyk-==+或y所以,D的坐标为2(,34k-+224)).34kk-+…………………………………………………………9分又直线AC的方程为12x+=,因(2,0)B-,222BDykx-==+所以直线BD的方程为22).y x=+联立解得2xy k⎧=⎪⎨⎪=+⎩即4(Q k+……………………………………………………10分而P的坐标为(P k -所以(,0)OP OQ k ⋅=-(404k ⋅+=+=.所以OP OQ ⋅为定值4. …………………………………………………………………………………12分 21.解:(Ⅰ)由于函数()xf x e =为R 上的增函数,若()f x 在[,]a b 上的值域为[,]ka kb ,则必有(),(),f a ka f b kb ==所以,a b 为方程()f x kx =的两个不等根,……………………………………1分令()()()xv x f x kx e kx k *=-=-∈N ,则()xv x e k '=-,由()0xv x e k '=->知ln x k >, 由()0xv x e k '=-<知0ln x k <<,所以函数()v x 在区间(,ln )k -∞单调递减,在区间(ln ,)k +∞上单调递增,所以()(ln )v x v k ≥,………………………………………………………………………3分由于()v x 在R 上有两个零点,所以ln (ln )ln (1ln )0kv k ek k k k =-=-<.所以k e >,又k 为正整数,所以k 的最小值为3. ……………………………………………5分 (Ⅱ)由题意知函数()g x 的定义域为(0,)+∞,2222(1)(2)()2m mx x m x mx m g x mx x x x++---++'=-+==, 由于0,0x m >≥,所以20mx m x++>,由()0g x '>知函数()g x 在区间(1,)+∞上单调递增; 由()0g x '<知函数()g x 在区间(0,1)上单调递减. …………………………………………………7分由于函数()g x 存在“和谐2区间” [,]a b ,若[,](0,1]a b ⊂,则()2,()2.g a b g b a =⎧⎨=⎩即22()(2)ln 22,2()(2)ln 22.2m g a a m a a b m g b b m b b a ⎧=-++=⎪⎪⎨⎪=-++=⎪⎩两式相加得22(2)ln (2)ln 022m m a b m a m b +-+-+=, 由于[,](0,1]a b ⊂及0m ≥,易知上式不成立. …………………………………………………8分 若[,][1,)a b ⊂+∞,由()g x 在区间[1,)+∞上单调递增知,,a b 为方程()2f x x =的两个不等根,令2()()2(2)ln 2m h x f x x x m x =-=-+,则22(2)().m mx m h x mx x x +-+'=-= 若0m =,则()2ln h x x =-在[1,)+∞单调递减,不可能有两个不同零点;……………………10分若0m >,2(2)()0mx m h x x-+'=>知,()h x在)+∞上单调递增;同样,由()0h x '<知,()h x在上单调递减. 函数2()(2)ln 2m h x x m x =-+在[1,)+∞上有两个不同零点,又(1)02mh =>,故有2(2)ln 02m m h m m +=⋅-+<,解之得20.1m e <<- 综上,所求实数m 的取值范围为20.1m e <<-…………………………………………………12分 22.解:(Ⅰ)如图,连接OC ,∵OA OB = ,CA CB =,∴OC AB ⊥,∴AB 是⊙O 的切线. ………………………………4分 (Ⅱ)∵ ED 是直径,∴90ECD ∠= ,Rt BCD ∆中,1tan 2CED ∠=, 1.2CD EC∴= ∵AB 是⊙O 的切线,∴BCD E ∠=∠.又 ∵CBD EBC ∠=∠ ∴CBD ∆∽EBC ∆, ∴BD BC =CD EC =12. 设BD x =,2BC x =,又2BCBD BE =⋅, ∴ 2(2)x =x ·(12)x +.解得:120,4xx ==, ∵0BD x => , ∴4BD = .∴4610OA OB BD OD ==+=+=. …………………………………………………………6分 23.解:(Ⅰ) 由2sin cos (0)a a ρθθ=>得22sin cos (0)a a ρθρθ=>,∴曲线C 的直角坐标方程为2(0)y ax a =>.…………………………………………………………2分 直线l 的普通方程为2y x =-.…………………………………………………………………………4分 (Ⅱ)将直线l 的参数方程代入曲线C 的直角坐标方程2(0)y ax a =>中,得28)4(8)0t a t a +++=, 设A B 、两点对应的参数分别为12t t ,,则有12128),4(8)t t a t t a +=+⋅=+.………………………………………………………………6分∵2PA PB AB ⋅=,B∴21212()t t t t -=⋅, 即21212()5t t t t +=⋅.………………………………………………………………8分∴22)]20(8),340a a a a +=+++-=.解之得:2a =或8a =- (舍去),∴a 的值为2.……………………………………………………10分 24.解:(Ⅰ)当3a =时,()46f x x +≥可化为236x x --+≥,236x x --+≥或236x x --≤. 由此可得3x ≥或3x -≤.故不等式()46f x x +≥的解集为{33}x x x -≥或≤.………………………………………………5分 (Ⅱ)法一:(从去绝对值的角度考虑)由()0f x ≤,得25x a x --≤,此不等式化等价于,2250.a x x a x ⎧⎪⎨⎪-+⎩≥≤或,2(2)50.a x x a x ⎧<⎪⎨⎪--+⎩≤ 解之得,2.7a x a x ⎧⎪⎪⎨⎪⎪⎩≥≤或,2.3a x a x ⎧<⎪⎪⎨⎪-⎪⎩≤因为0a >,所以不等式组的解集为3a x x ⎧⎫-⎨⎬⎩⎭≤,由题设可得23a-=-,故6a =.……………………10分 法二:(从等价转化角度考虑)由()0f x ≤,得25x a x --≤,此不等式化等价于525x x a x --≤≤,即为不等式组52,25.x x a x a x -⎧⎨--⎩≤≤ 解得,3.7a x a x ⎧-⎪⎪⎨⎪⎪⎩≤≤因为0a >,所以不等式组的解集为3a x x ⎧⎫-⎨⎬⎩⎭≤,由题设可得23a-=-,故6a =.……………………10分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年谷城县初中毕业适应性考试
数学试题参考答案与评分标准
评分说明:1.若有与参考答案不同的解法而解答过程正确者,请参照评分标准分步给分;
2.学生在答题过程中省略某些非关键性步骤,可不扣分;学生在答题过程中省
略了关键性步骤,后面解答正确者,可只扣省略关键性步骤分,不影响后面
得分.
一、选择题(共12个小题,每小题3分,共3 6分)
B C D B D C B D C A BD
二、填空题(共5个小题,每小题3分,共15分)
13 14.35-=x 15.34 16.22 17.cm 或cm
三、解答题:(本大题共9个题,共6 9分)
18.解:原式=[+]•
……………………………1分=•
…………………………2分 =•………………………………………………3分 =. ……………………………………………………………………4分
当a=5b=5=10
5521
35351
==-++.………6分 19.解:(1)过点A 作AD⊥x 轴,在Rt△AOD 中,∵tan∠AO E=
OD AD =34,…………1分 设AD=4x ,OD=3x ,∵OA=5,
在Rt△AOD 中,根据勾股定理,得AD=4,OD=3.
∴A(3,4).……………………………………2分
把A (3,4)代入反比例函数y=
x m 中,解得:m=12. 则反比例函数的解析式为y=x
12.……………………………………3分 (2)把点B 的坐标为(﹣6,n )代入y=x
12中,解得n=﹣2. 则B 的坐标为(﹣6,﹣2). ……………………………………4分
把A (3,4)和B (﹣6,﹣2)分别代入一次函数b kx y +=(k ≠0)中,
得.解得.则一次函数的解析式为2+=x y .………5分
∵点C 在x 轴上,令y =0,得x =﹣3.即OC=3.
∴S △AOB =S △AOC +S △BOC =21×3×4+2
1×3×2=9. …………………………………6分 20.解:(1)学生的总数是:14+20+10+6=50(人), …………………………1分 参加绘画比赛的学生所占的比例是:×100%=12%; ………………2分
(2)参加书法比赛的学生所占的比例是:1﹣12%﹣28%﹣40%=20%,……3分
则扇形的圆心角的度数是:360×20%=72°; …………………………4分
(3)参加演讲比赛的人数是:600×28%=168(人),…………………………5分
参加唱歌比赛的人数是:600×40%=240(人).…………………………6分
21.解:设鸡场的宽为x 米,则鸡场的长为(33-2x )米,…………………………1分 依题意,有 150)2233(=+-x x . ……………………………………………2分
化简,得 01503522
=+-x x .…………………………………………………3分 解方程,得 101=x ,2
152=
x . ……………………………………………4分 当10=x 时,=+-2233x 15<18,符合题意;
当215=x 时,=+-2233x 20>18,不合题意,舍去.…………………………5分 所以鸡场的长和宽分别为15米和10米. …………………………………………6分
22.解:依题意可得:∠AEB=30°,∠ACE=15°. …………………………………1分
又∵∠AEB=∠ACE+∠CAE ,∴∠CAE=15°.即△ACE 为等腰三角形.
∴AE=CE=100m . ……………………………………………………2分
在Rt △AEF 中,∠AEF=60°,∴EF=AEcos60°=50m ,AF=AEsin60°=50
m .4分 在Rt △BEF 中,∠BEF=30°,∴BF=EFtan30°=50×=m . ……………5分 ∴AB=AF ﹣BF=50﹣=≈58(米).
(注:用勾股定理列方程解答正确者易可)
答:塔高AB 大约为58米. ……………………………………………………6分
23.(1)证明:∵用两块完全相同的且含60°角的直角三角板ABC 与AFE 按如图(1)所示
位置放置,现将Rt △AEF 绕A 点按逆时针方向旋转角α(0°<α<90°),
∴AB=AF ,∠BAM=∠FAN . ……………………………………1分
在△ABM 和△AFN 中,,……………………………………2分
∴△ABM ≌△AFN (ASA ).∴AM=AN . ……………………………………3分
(2)解:当旋转角α=30°时,四边形ABPF 是菱形.
理由:连接AP ,
∵∠α=30°,∴∠FAN=30°.∴∠FAB=120°.………4分
∵∠B=60°,∴AF ∥BP .∴∠F=∠FPC=60°.………5分
∴∠FPC=∠B=60°.∴AB ∥FP .
∴四边形ABPF 是平行四边形. ……………………………………………6分
∵AB=AF ,∴平行四边形ABPF 是菱形.……………………………………7分
24.解:(1)设y 与x 之间的函数关系式为b kx y +=,
由函数图象,得 ,解得:
∴y 与x 之间的函数关系式为y=﹣x +300.…………………………………2分
(2)∵y=﹣x +300,∴当x =120时,y=180. …………………………………3分
设甲品牌进货单价是a 元,则乙品牌的进货单价是2a 元,由题意,得
120a+180×2a=7200,解得:a=15.∴乙品牌的进货单价是30元.
答:甲、乙两种品牌的文具盒进货单价分别为15元,30元. …………5分
(3)设甲品牌进货m 个,则乙品牌的进货(﹣m+300)个,由题意,得
, ……………………………………………7分
解得:180≤m ≤181. ………………………………………………………8分 ∵m 为整数,∴m=180,181.∴共有两种进货方案:
方案1:甲品牌进货180个,则乙品牌的进货120个;
方案2:甲品牌进货181个,则乙品牌的进货119个. ……………………9分 设两种品牌的文具盒全部售出后获得的利润为W 元,由题意,得
W=4m+9(﹣m+300)=﹣5m+2700.
∵k=﹣5<0,∴W 随m 的增大而减小,∴m=180时,W 最大=1800元.……10分 (注:直接计算得出结论正确易给分)
25.解:(1)DE 与⊙O 相切.理由如下:
连接OD,BD .
∵AB 是直径, ∴∠ADB=∠BDC=90°.………………1分
∵E 是BC 的中点,∴DE=BE=CE.∴∠EBD=∠EDB. …2分
∵OD=OB,∴∠OBD=∠ODB.∴∠EDO=∠EBO=90°. (用三角形全等也可得到)
∴DE 与⊙O 相切. ……………………………………………………………3分
(2)由题意,可得OE 是△ABC 的中位线,∴AC=2OE.…………………………4分
∵∠ABC=∠BDC=90°, ∠C=∠C,∴△ABC∽△BDC. ∴BC AC CD BC
=,即BC 2=CD²AC . ……………………………………5分 ∵BC=2EB=2DE ,AC=2EO ,∴4DE 2=CD²2EO .即2DE 2=CD²EO .………………6分
(3∵在Rt△BCD 中,BC=2DE=4,BD 2+CD 2=BC 2.∴(
8分 9分
10分 26.解:(1)根据题意,设抛物线的解析式为:k x a y ++=2)1(, …………1分
∵点A (1,0),B (0,3)在抛物线上,∴.
解得:a =﹣1,k =4, ……………………………………………2分
∴抛物线的解析式为:4)1(2++-=x y . …………………………3分
(2)①∵四边形OMPQ 为矩形,∴OM=PQ,即3t=﹣(t+1)2+4.……………4分
整理得:t 2+5t ﹣3=0,解得t=
.…………………………5分
由于t=
<0,故舍去. ∴当t=秒时,四边形OMPQ 为矩形.…………………………6分 ②Rt△AOB 中,OA=1,OB=3,∴tanA=3.
若△AON 为等腰三角形,有三种情况:
(I )若ON=AN ,如答图1所示:
过点N 作ND⊥OA 于点D ,
则D 为OA 中点, OD=OA=,∴t=.………7分
(II )若ON=OA ,如答图2所示:
过点N 作ND⊥OA 于点D ,设AD=x ,则ND=AD•tanA=3x ,OD=OA ﹣AD=x -1, 在Rt△NOD 中,由勾股定理得:OD 2+ND 2=ON 2.
即2221)3()1(=+-x x .解得5
11=x ,02=x (舍去). ∴x =,OD=x -1=,∴t=. …………………………………………9分 (III )若OA=AN ,如答图3所示:
过点N 作ND⊥OA 于点D ,设AD=x ,则ND=AD•tanA=3x .
在Rt△AND 中,由勾股定理得:ND 2+AD 2=AN 2.
即2221)3(=+x x ,解得1x =
, 2x =﹣(舍去). ∴OD=x -1=1﹣,∴t=1﹣. ………………………………………11分
综上所述,当t 为秒,秒,(1﹣
)秒时,△AON 为等腰三角形.………12分
谷城县教学研究室
2014年5月8日。