人教版高中数学必修4知识点总结
高中数学必修4三角函数知识点归纳总结【经典】
《三角函数》【知识网络】一、任意角的概念与弧度制1、将沿x 轴正向的射线,围绕原点旋转所形成的图形称作角. 逆时针旋转为正角,顺时针旋转为负角,不旋转为零角2、同终边的角可表示为{}()360k k Z ααβ︒=+∈gx 轴上角:{}()180k k Z αα=∈o gy 轴上角:{}()90180k k Z αα=+∈o o g3、第一象限角:{}()036090360k k k Z αα︒︒+<<+∈o g g第二象限角:{}()90360180360k k k Z αα︒︒+<<+∈o o g g第三象限角:{}()180360270360k k k Z αα︒︒+<<+∈oo g g第四象限角:{}()270360360360k k k Z αα︒︒+<<+∈oo g g4、区分第一象限角、锐角以及小于90o的角 第一象限角:{}()036090360k k k Z αα︒︒+<<+∈o g g锐角:{}090αα<<o小于90o的角:{}90αα<o5、若α为第二象限角,那么2α为第几象限角? ππαππk k 222+≤≤+ππαππk k +≤≤+224,24,0παπ≤≤=k ,2345,1παπ≤≤=k 所以2α在第一、三象限 6、弧度制:弧长等于半径时,所对的圆心角为1弧度的圆心角,记作1rad . 7、角度与弧度的转化:01745.01801≈=︒π815730.571801'︒=︒≈︒=π9、弧长与面积计算公式 弧长:l R α=⨯;面积:21122S l R R α=⨯=⨯,注意:这里的α均为弧度制.二、任意角的三角函数 1、正弦:sin y r α=;余弦cos x r α=;正切tan yxα= 其中(),x y 为角α终边上任意点坐标,r =2、三角函数值对应表:3、三角函数在各象限中的符号口诀:一全正,二正弦,三正切,四余弦.(简记为“全s t c ”)sin α tan α cos α 第一象限:0,0.>>y x sin >0,cos >0,tan >0, 第二象限:0,0.><y x sin >0,cos<0,tan<0,第三象限:0,0.<<y x sin <0,cos <0,tan >0, 第四象限:0,0.<>y x sin<0,cos>0,tan<0,4、三角函数线设任意角α的顶点在原点O ,始边与x 轴非负半轴重合,终边与单位圆相交与P (,)x y , 过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,它与角α的终边或其反向 延长线交于点T.由四个图看出:当角α的终边不在坐标轴上时,有向线段,OM x MP y ==,于是有sin 1y y y MP r α====, cos 1x xx OM r α====, tan y MP ATAT x OM OAα====.我们就分别称有向线段,,MP OM AT 为正弦线、余弦线、正切线。
数学必修四知识点(15篇)
数学必修四知识点(15篇)数学必修四知识点1平面向量戴氏航天学校老师总结加法与减法的代数运算:(1)若a=(x1,y1),b=(x2,y2)则ab=(x1+x2,y1+y2).向量加法与减法的几何表示:平行四边形法则、三角形法则。
戴氏航天学校老师总结向量加法有如下规律:+=+(交换律);+(+c)=(+)+c(结合律);两个向量共线的充要条件:(1)向量b与非零向量共线的充要条件是有且仅有一个实数,使得b=.(2)若=(),b=()则‖b.平面向量基本定理:若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,戴氏航天学校老师提醒有且只有一对实数,,使得=e1+e2 高考数学必修四学习方法养成良好的课前和课后学习习惯:在当前高中数学学习中,培养正确的学习习惯是一项重要的学习技能。
虽然有一种刻板印象的猜疑,但在高中数学学习真的是反复尝试和错误的。
学生们不得不预习课本。
我准备的数学教科书不是简单的阅读,而是一个例子,至少十分钟的思考。
在使用前不能通过学习知识解决问题的情况下,可以在教学内容中找到答案,然后在教材中考察问题的解决过程,掌握解决问题的思路。
同时,在课堂上安排笔记也是必要的。
在高中数学研究中,建议采用两种形式的笔记,一种是课堂速记,另一种是课后笔记。
这不仅提高了课堂记忆的吸收能力,而且有助于对笔记内容的查询。
高考数学必修四学习技巧养成良好的学习数学习惯多质疑、勤思考、好动手、重归纳、注意应用。
学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的'脑海中。
良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
及时了解、掌握常用的数学思想和方法中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。
有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。
高中人教版数学必修4课件:1.3公式二、公式三和公式四
诱导公式解决一些三角函数的化简、求值、 算素养.
证明问题.(难点)
自主 预习 探新 知
1.诱导公式二 终边关系
图示
角 π+α 与角 α 的终边 关于 原点 对称
公式
sin(π+α)= -sin α , cos(π+α)= -cos α ,
思考:(1)诱导公式中角 α 只能是锐角吗? (2)诱导公式一~四改变函数的名称吗?
[提示] (1)诱导公式中角 α 可以是任意角,要注意正切函数中要 求 α≠kπ+π2,k∈Z.
(2)诱导公式一~四都不改变函数名称.
1.下列说法中正确的是( ) A.公式二~四对任意角α都成立 B.由公式三知cos[-(α-β)]=-cos(α-β) C.在△ABC中,sin(A+B)=sin C D.以上说法均错误
105°+α-α-75°=180°
(2)
cosα-75°=-31,α为第四象限角
→
求sinα-75°
→ 用sin180°+α=-sin α求值
(1)A [sin(α-360°)-cos(180°-α)
=sin α+cos α=m,
sin(180°+α)cos(180°-α)=sin αcos α
=sin
(2)化简:
1+2sin 290°cos 430° sin 250°+cos 790° .
[解]
(1)原式=-sisninπ+α-αs-in cαos-αcsoins
α α
=--sinsiαnα-s-incαos-αscions αα=-1.
(2)原式=
1+2sin360°-70°cos360°+70° sin180°+70°+cos720°+70°
新教材 人教B版高中数学必修第四册全册各章知识点汇总及配套习题
人教B高中数学必修第四册全册各章知识点汇总第九章解三角形.................................................................................................................... - 1 - 第十章复数 ......................................................................................................................... - 12 - 第十一章立体几何初步...................................................................................................... - 19 -第九章解三角形知识体系题型探究利用正弦、余弦定理解三角形【例1】如图,在平面四边形ABCD中,AB=2,BD=5,AB⊥BC,∠BCD=2∠ABD ,△ABD 的面积为2.(1)求AD 的长; (2)求△CBD 的面积.[思路探究] (1)由面积公式求出sin ∠ABD ,进而得cos ∠ABD 的值,利用余弦定理可解;(2)由AB ⊥BC 可以求出sin ∠CBD 的大小,再由二倍角公式求出sin ∠BCD ,可判断△CBD 为等腰三角形,利用正弦定理求出CD 的大小,最后利用面积公式求解.[解] (1)由S △ABD =12AB ·BD ·sin ∠ABD =12×2×5×sin ∠ABD =2,可得sin ∠ABD =255,又∠ABD ∈⎝ ⎛⎭⎪⎫0,π2,所以cos ∠ABD =55. 在△ABD 中,由AD 2=AB 2+BD 2-2·AB ·BD ·cos ∠ABD , 可得AD 2=5,所以AD = 5.(2)由AB ⊥BC ,得∠ABD +∠CBD =π2, 所以sin ∠CBD =cos ∠ABD =55.又∠BCD =2∠ABD ,所以sin ∠BCD =2sin ∠ABD ·cos ∠ABD =45,∠BDC =π-∠CBD -∠BCD =π-⎝ ⎛⎭⎪⎫π2-∠ABD -2∠ABD =π2-∠ABD =∠CBD ,所以△CBD 为等腰三角形,即CB =CD . 在△CBD 中,由正弦定理知,BD sin ∠BCD =CDsin ∠CBD,得CD =BD ·sin ∠CBD sin ∠BCD=5×5545=54,所以S △CBD =12×54×54×45=58.利用正、余弦定理解三角形要注意以下几个方面(1)画图,把相关数据标注在三角形中,便于确定已知和所求. (2)明确解题过程中所使用的定理,有些题目两个定理都适用.(3)注意对三角形内角和定理、大边对大角的应用,避免出现增解或漏解的错误.(4)多边形中的边角计算问题通常化归到三角形中利用正、余弦定理求解.[跟进训练]1.如图所示,在△ABC 中,B =π3,AB =8,点D 在BC 边上,CD =2,cos ∠ADC =17.(1)求sin ∠BAD ; (2)求BD ,AC 的长. [解] (1)在△ADC 中, 因为cos ∠ADC =17,所以sin ∠ADC =437, 所以sin ∠BAD =sin(∠ADC -B ) =sin ∠ADC cos B -cos ∠ADC sin B =437×12-17×32=3314.(2)在△ABD 中,由正弦定理,得BD =AB sin ∠BADsin ∠ADB =8×3314437=3.在△ABC 中,由余弦定理,得AC 2=AB 2+BC 2-2AB ×BC ×cos B =82+52-2×8×5×12=49, 所以AC =7.三角变换与解三角形的综合问题【例2】 在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)·sin(A +B ),试判断△ABC 的形状.[解] ∵(a 2+b 2)sin(A -B )=(a 2-b 2)sin(A +B ), ∴b 2[sin(A +B )+sin(A -B )] =a 2[sin(A +B )-sin(A -B )], ∴2b 2sin A cos B =2a 2cos A sin B , 即a 2cos A sin B =b 2sin A cos B .法一:由正弦定理知a =2R sin A ,b =2R sin B , ∴sin 2A cos A sin B =sin 2B sin A cos B , 又sin A sin B ≠0,∴sin A cos A =sin B cos B , ∴sin 2A =sin 2B .在△ABC 中,0<2A <2π,0<2B <2π, ∴2A =2B 或2A =π-2B , ∴A =B 或A +B =π2.∴△ABC 为等腰三角形或直角三角形. 法二:由正弦定理、余弦定理,得a 2b ×b 2+c 2-a 22bc =b 2a ×a 2+c 2-b 22ac ,∴a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2),∴(a 2-b 2)(a 2+b 2-c 2)=0, ∴a 2-b 2=0或a 2+b 2-c 2=0. 即a =b 或a 2+b 2=c 2.∴△ABC 为等腰三角形或直角三角形.判定三角形形状的三个注意点(1)“角化边”后要注意用因式分解、配方等方法得出边的关系.(2)“边化角”后要注意用三角恒等变换、三角形内角和定理及诱导公式推出角的关系.(3)要特别注意“等腰直角三角形”与“等腰三角形或直角三角形”的区别.[跟进训练]2.在△ABC 中,若B =60°,2b =a +c ,试判断△ABC 的形状. [解] 法一:∵2b =a +c ,由正弦定理, 得2sin B =sin A +sin C . ∵B =60°,∴A +C =120°. ∴2sin 60°=sin(120°-C )+sin C . 展开整理得32sin C +12cos C =1. ∴sin(C +30°)=1. ∵0°<C <120°, ∴C +30°=90°. ∴C =60°,则A =60°. ∴△ABC 为等边三角形.法二:由余弦定理,得b 2=a 2+c 2-2ac cos B . ∵B =60°,b =a +c 2,∴⎝ ⎛⎭⎪⎫a +c 22=a 2+c 2-2ac cos 60°, 化简得(a -c )2=0. ∴a =c .又B =60°, ∴a =b =c .∴△ABC 为等边三角形.角度2 三角形边、角、面积的求解【例3】 △ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a =b cos C +c sin B .(1)求B ;(2)若b =2,求△ABC 的面积的最大值.[解] (1)由已知,根据正弦定理得sin A =sin B cos C +sin C sin B . 又A =π-(B +C ),∴sin[π-(B +C )]=sin(B +C ) =sin B cos C +sin C cos B , 即sin B cos C +cos B sin C =sin B cos C +sin C sin B , ∴cos B sin C =sin C sin B , ∵sin C ≠0,∴cos B =sin B 且B 为三角形内角, ∴B =π4.(2)S △ABC =12ac sin B =24ac , 由正弦定理知a =b sin A sin B =222×sin A =22sin A ,同理,c =22sin C ,∴S △ABC =24×22sin A ×22sin C =22sin A sin C =22sin A sin ⎝ ⎛⎭⎪⎫3π4-A=22sin A ⎝ ⎛⎭⎪⎫sin 3π4cos A -cos 3π4sin A=2(sin A cos A +sin 2A ) =sin 2A +1-cos 2A =2sin ⎝ ⎛⎭⎪⎫2A -π4+1,∴当2A -π4=π2,即A =3π8时,S △ABC 有最大值2+1.求解三角形中的边、角、面积的解题策略该类问题以三角形为载体,在已知条件中涉及了三角形的一些边角关系,由于正弦定理和余弦定理都是关于三角形的边角关系的等式,通过定理的运用能够实现边角互化,在边角互化时,经常用到三角函数中两角和与差的公式及倍角公式等.[跟进训练]3.在△ABC 中,a ,b ,c 分别是三个内角A ,B ,C 的对边,若a =2,C =π4,cos B 2=255,求△ABC 的面积S .[解] 因为cos B =2cos 2B 2-1=35, 故B 为锐角,所以sin B =45, 所以sin A =sin (π-B -C ) =sin ⎝ ⎛⎭⎪⎫B +π4=sin B cos π4+cos B sin π4 =7210. 由正弦定理, 得c =a sin C sin A =107,所以S △ABC =12ac sin B =12×2×107×45=87.正弦、余弦定理在实际中的应用【例4A 处发现在北偏东45°方向,相距12海里的B 处水面上,有蓝方一艘小艇正以每小时10海里的速度沿南偏东75°方向前进,若红方侦察艇以每小时14海里的速度,沿北偏东45°+α方向拦截蓝方的小艇,若要在最短的时间内拦截住,求红方侦察艇所需的时间和角α的正弦值.[思路探究] 假设经过x 小时后在C 处追上蓝方的小艇,作出示意图,把实际数据转化到三角形中,利用正、余弦定理求解.[解] 如图,设红方侦察艇经过x 小时后在C 处追上蓝方的小艇,则AC =14x 海里,BC =10x 海里,∠ABC =120°.根据余弦定理得(14x )2=122+(10x )2-240x cos 120°, 解得x =2⎝ ⎛⎭⎪⎫x =-34舍去.故AC =28海里,BC =20海里. 根据正弦定理得BC sin α=ACsin 120°, 解得sin α=20sin 120°28=5314.故红方侦察艇所需的时间为2小时,角α的正弦值为5314.应用解三角形知识解决实际问题四步曲(1)分析题意,准确理解题意,分清已知与所求,尤其要理解题中的有关名词、术语.(2)根据题意画出示意图,并将已知条件在图形中标出.(3)将所求问题归结到一个或几个三角形中,通过合理运用正弦、余弦定理等有关知识正确求解.(4)检验解出的结果是否具有实际意义,对结果进行取舍,得出正确答案.[跟进训练]4.甲船在A 处,乙船在甲船正南方向距甲船20海里的B 处,乙船以每小时10海里的速度向正北方向行驶,而甲船同时以每小时8海里的速度由A 处向北偏西60°方向行驶,问经过多少小时后,甲、乙两船相距最近?[解] 设甲、乙两船经t 小时后相距最近且分别到达P ,Q 两处,因乙船到达A 处需2小时.①当0≤t <2时,如图①,在△APQ 中,AP =8t ,AQ =20-10t , 所以PQ =AQ 2+AP 2-2AQ ×AP ×cos 120° =(20-10t )2+(8t )2-2×(20-10t )×8t ×⎝ ⎛⎭⎪⎫-12=84t 2-240t +400 =221t 2-60t +100; ②当t =2时,PQ =8×2=16; ③当t >2时,如图②,在△APQ中,AP=8t,AQ=10t-20,∴PQ=AQ2+AP2-2AQ×AP×cos 60°=221t2-60t+100.综合①②③知,PQ=221t2-60t+100(t≥0).当且仅当t=3021=107时,PQ最小.所以甲、乙两船行驶107小时后,相距最近.[培优层·素养升华]【例题】△ABC的内角A,B,C的对边分别为a,b,c.设(sin B-sin C)2=sin2A-sin B sin C.(1)求A;(2)若2a+b=2c,求sin C.[思路探究](1)利用正弦定理结合余弦定理求解角A的大小;(2)根据(1)中的结论结合正弦定理化简题中的等量关系,利用两角差的正弦公式求解sin C.[解](1)由已知得sin2B+sin2C-sin2A=sin B sin C,故由正弦定理得b2+c2-a2=bc.由余弦定理得cos A=b2+c2-a22bc=12.因为0°<A<180°,所以A=60°.(2)由(1)知B=120°-C,由题设及正弦定理得2sin A+sin(120°-C)=2sin C,即62+32cos C+12sin C=2sin C,整理得cos(C+60°)=-2 2.因为0°<C<120°,所以sin(C+60°)=2 2,故sin C=sin(C+60°-60°)=sin(C+60°)cos 60°-cos(C+60°)sin 60°=6+2 4.本题考查正弦定理、余弦定理、两角和的余弦公式、两角差的正弦公式,综合性较强.综合应用正、余弦定理解三角形一直是高考的热点内容之一,着重考查直观想象、数学运算等学科素养.[素养提升练]△ABC的内角A,B,C的对边分别为a,b,c,已知a sin A-b sin B=4c sin C,cos A=-14,则bc=()A.6 B.5 C.4 D.3A[∵a sin A-b sin B=4c sin C,∴由正弦定理得a2-b2=4c2,即a2=4c2+b2.由余弦定理得cos A=b2+c2-a22bc=b2+c2-(4c2+b2)2bc=-3c22bc=-14,∴bc=6.]第十章 复数知识体系·题型探究复数的概念【例1】 32 (1)z ∈R ;(2)z 为虚数.[思路探究] 根据复数的分类列不等式组求解. [解] (1)因为一个复数是实数的充要条件是虚部为0,所以⎩⎨⎧x 2-3x -3>0,①log 2(x -3)=0, ②x -3>0,③由②得x =4,经验证满足①③式.所以当x =4时,z ∈R .(2)因为一个复数是虚数的充要条件是虚部不为0,所以⎩⎨⎧x 2-3x -3>0,①log 2(x -3)≠0, ②x -3>0,③由①得x >3+212或x <3-212. 由②得x ≠4,由③得x >3. 所以当x >3+212且x ≠4时,z 为虚数.1.正确确定复数的实、虚部是准确理解复数的有关概念(如实数、虚数、纯虚数、相等复数、共轭复数、复数的模)的前提.2.两复数相等的充要条件是复数问题转化为实数问题的依据. 3.求字母的范围时一定要关注实部与虚部自身有意义.[跟进训练]1.(1)若复数z 满足(3-4i)z =|4+3i|,则z 的虚部为( ) A .-4 B .-45 C .4 D .45(2)设复数z 满足i(z +1)=-3+2i(i 是虚数单位),则复数z 的实部是__________.(1)D (2)1 [(1)∵(3-4i)z =|4+3i|,∴z =|4+3i|3-4i =42+323-4i =5(3+4i )25=35+45i ,∴z 的虚部为45.故选D .(2)法一:设z =a +b i(a ,b ∈R ),则i(z +1)=i(a +b i +1)=-b +(a +1)i =-3+2i. 由复数相等的充要条件,得⎩⎨⎧ -b =-3,a +1=2,解得⎩⎨⎧a =1,b =3.故复数z 的实部是1.法二:由i(z +1)=-3+2i ,得z +1=-3+2ii =2+3i ,故z =1+3i ,即复数z 的实部是1.]复数的四则运算【例2】 (1)设i 是虚数单位,z -表示复数z 的共轭复数.若z =1+i ,则z i +i·z-=( )A .-2B .-2iC .2D .2i(2)设复数z 满足(z -2i)(2-i)=5,则z =( ) A .2+3i B .2-3i C .3+2i D .3-2i[思路探究] (1)先求出z 及zi ,结合复数运算法则求解. (2)利用方程思想求解并化简.(1)C (2)A [(1)∵z =1+i ,∴z -=1-i ,z i =1+i i =-i 2+i i =1-i ,∴z i +i·z -=1-i +i(1-i)=2.故选C .(2)由(z -2i)(2-i)=5,得z =2i +52-i =2i +5(2+i )(2-i )(2+i )=2i +2+i =2+3i.]复数加减乘运算可类比多项式的加减乘运算,注意把i 看作一个字母(i 2=-1),除法运算注意应用共轭的性质z 为实数.[跟进训练]2.(1)复数2+i1-2i 的共轭复数是( )A .-35iB .35i C .-i D .i(2)已知复数z 1=⎝ ⎛⎭⎪⎫12-32i (1+i)(i 为虚数单位),复数z 2的虚部为2,且z 1·z 2是实数,则z 2=________.(1)C (2)4+2i [(1)依题意知,2+i 1-2i =(2+i )(1+2i )(1-2i )(1+2i )=5i5=i ,∴其共轭复数为-i. (2)z 1=⎝ ⎛⎭⎪⎫12-32i (1+i)=2-i.设z 2=a +2i ,a ∈R , 则z 1·z 2=(2-i)·(a +2i) =(2a +2)+(4-a )i ,因为z 1·z 2∈R , 所以a =4. 所以z 2=4+2i.]复数的几何意义【例3】 (1)在复平面内,复数i1-i对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 (2)在复平面内,复数1-2i2+i对应的点的坐标为( ) A .(0,-1) B .(0,1) C .⎝ ⎛⎭⎪⎫45,-35D .⎝ ⎛⎭⎪⎫45,35[思路探究] 先把复数z 化为复数的标准形式,再写出其对应坐标. (1)B (2)A [(1)复数i 1-i =i (1+i )(1-i )(1+i )=-1+i 2=-12+12i. ∴复数对应点的坐标是⎝ ⎛⎭⎪⎫-12,12.∴复数i1-i在复平面内对应的点位于第二象限.故选B . (2)∵1-2i 2+i =(1-2i )(2-i )(2+i )(2-i )=-5i5=-i ,其对应的点为(0,-1),故选A .]1.复数的几何表示法复数z =a +b i(a ,b ∈R )可以用复平面内的点Z (a ,b )来表示.此类问题可建立复数的实部与虚部应满足的条件,通过解方程(组)或不等式(组)求解.2.复数的向量表示以原点为起点的向量表示的复数等于它的终点对应的复数;向量平移后,此向量表示的复数不变,但平移前后起点、终点对应的复数要改变.3.复数的加减法的几何意义实质上是平行四边形法则和三角形法则.由减法的几何意义知|z -z 1|表示复平面上两点Z 与Z 1之间的距离.4.复数形式的基本轨迹(1)|z -z 1|=r 表示复数对应的点的轨迹是以z 1对应的点为圆心,半径为r 的圆.(2)|z -z 1|=|z -z 2|表示以复数z 1,z 2的对应点为端点的线段的垂直平分线.[跟进训练]3.(1)已知复数z 对应的向量如图所示,则复数z +1所对应的向量正确的是( )(2)若i 为虚数单位,图中复平面内点Z 表示复数z ,则表示复数z1+i的点是( )A .EB .FC .GD .H(1)A (2)D [(1)由题图知,z =-2+i ,∴z +1=-2+i +1=-1+i ,故z +1对应的向量应为选项A .(2)由题图可得z =3+i ,所以z 1+i =3+i 1+i =(3+i )(1-i )(1+i )(1-i )=4-2i 2=2-i ,则其在复平面上对应的点为H (2,-1).]函数与方程思想【例4】 已知f (z )=|1+z |-z ,且f (-z )=10+3i ,求复数z .[思路探究] 设z =a +b i(a ,b ∈R ),则z -=a -b i ,由复数相等列方程组求解即可.[解] ∵f (z )=|1+z |-z -,∴f (-z )=|1-z |+z -. 设z =a +b i(a ,b ∈R ),则z -=a -b i.由f (-z )=10+3i ,得|1-(a +b i)|+a -b i =10+3i ,∴⎩⎨⎧(1-a )2+b 2+a =10,-b =3, 解方程组得⎩⎨⎧a =5,b =-3,∴复数z =5-3i.一般设出复数z 的代数形式,即z =x +y i(x ,y ∈R ),则涉及复数的分类、几何意义、模的运算、四则运算、共轭复数等问题,都可以转化为实数x ,y 应满足的方程(组),即复数问题实数化的思想是本章的主要思想方法.[跟进训练]4.满足z +5z 是实数,且z +3的实部与虚部是相反数的虚数z 是否存在?若存在,求出虚数z ;若不存在,请说明理由.[解] 设虚数z =x +y i(x ,y ∈R ,且y ≠0),则z +5z =x +y i +5x +y i =x +5x x 2+y 2+⎝ ⎛⎭⎪⎫y -5y x 2+y 2i ,z +3=(x +3)+y i.由已知,得⎩⎪⎨⎪⎧y -5y x 2+y2=0,x +3=-y ,因为y ≠0,所以⎩⎨⎧ x 2+y 2=5,x +y =-3,解得⎩⎨⎧ x =-1,y =-2或⎩⎨⎧x =-2,y =-1.所以存在虚数z =-1-2i 或z =-2-i 满足题设条件.[培优层·素养升华]【例1】 设z =i(2+i),则z =( ) A .1+2i B .-1+2i C .1-2iD .-1-2iD [∵z =i(2+i)=-1+2i ,∴z =-1-2i.] 【例2】 设有下面四个命题 p 1:若复数z 满足1z ∈R ,则z ∈R ;p 2:若复数z 满足z 2∈R ,则z ∈R ; p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=z 2; p 4:若复数z ∈R ,则z ∈R . 其中的真命题为( )A .p 1,p 3B .p 1,p 4C .p 2,p 3D .p 2,p 4B [设z =a +b i(a ,b ∈R ),z 1=a 1+b 1i(a 1,b 1∈R ),z 2=a 2+b 2i(a 2,b 2∈R ). 对于p 1,若1z ∈R ,即1a +b i =a -b i a 2+b 2∈R ,则b =0⇒z =a +b i =a ∈R ,所以p 1为真命题.对于p 2,若z 2∈R ,即(a +b i)2=a 2+2ab i -b 2∈R ,则ab =0. 当a =0,b ≠0时,z =a +b i =b i ∉R ,所以p 2为假命题.对于p 3,若z 1z 2∈R ,即(a 1+b 1i)(a 2+b 2i)=(a 1a 2-b 1b 2)+(a 1b 2+a 2b 1)i ∈R ,则a 1b 2+a 2b 1=0.而z 1=z 2,即a 1+b 1i =a 2-b 2i ⇔a 1=a 2,b 1=-b 2.因为a 1b 2+a 2b 1=0Da 1=a 2,b 1=-b 2,所以p 3为假命题.对于p 4,若z ∈R ,即a +b i ∈R ,则b =0⇒z =a -b i =a ∈R ,所以p 4为真命题.]高考对复数的考查较为基础,通常以选择题的形式考查复数的概念与四则运算,属容易题,重点体现数学运算、逻辑推理、直观想象等学科素养.[素养提升练] 1.设z =3-i1+2i,则|z |=( ) A .2 B . 3 C . 2 D .1C [∵z =3-i 1+2i =(3-i )(1-2i )(1+2i )(1-2i )=1-7i5,∴|z |=⎝ ⎛⎭⎪⎫152+⎝ ⎛⎭⎪⎫-752= 2.] 2.i 是虚数单位,则⎪⎪⎪⎪⎪⎪5-i 1+i 的值为________.13 [∵5-i 1+i =(5-i )(1-i )(1+i )(1-i )=2-3i ,∴⎪⎪⎪⎪⎪⎪5-i 1+i =|2-3i|=13.]第十一章 立体几何初步知识体系[提升层·题型探究]空间几何体的表面积与体积【例们将体积公式“V =kD 3”中的常数k 称为“立圆术”或“玉积率”,创用了求“玉积率”的独特方法“会玉术”,其中,D 为直径,类似地,对于等边圆柱(轴截面是正方形的圆柱叫做等边圆柱)、正方体也有类似的体积公式V =kD 3,其中,在等边圆柱中,D 表示底面圆的直径;在正方体中,D 表示棱长.假设运用此“会玉术”求得的球、等边圆柱、正方体的“玉积率”分别为k 1,k 2,k 3,那么,k 1∶k 2∶k 3=( )A .π4∶π6∶1B .π6∶π4∶2C .1∶3∶12πD .1∶32∶6πD [球中,V =43πR 3=43π⎝ ⎛⎭⎪⎫D 23=π6D 3=k 1D 3,所以k 1=π6;等边圆柱中,V =π⎝ ⎛⎭⎪⎫D 22·D =π4D 3=k 2D 3,所以k 2=π4;正方体中,V =D 3=k 3D 3,所以k 3=1, 所以k 1∶k 2∶k 3=π6∶π4∶1=1∶32∶6π.]记牢常见几何体的表面积、体积公式是解决此类问题的关键.涉及古代文化背景的题目,首先读懂题意,再按题意与所学的知识联系起来,将问题转化为我们熟悉的问题后再解决.[跟进训练]1.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有阳马,广五尺,褒七尺,高八尺,问积几何?”其意思为:“今有底面为矩形,一侧棱垂直于底面的四棱锥,它的底面长、宽分别为7尺和5尺,高为8尺,问它的体积是多少?”若以上的条件不变,则这个四棱锥的外接球的表面积为( )A .142π平方尺B .140π平方尺C .138π平方尺D .128π平方尺C [可以把该四棱锥补成一个长方体,长、宽分别为7尺和5尺,高为8尺,四棱锥的外接球就是长方体的外接球,其直径为72+52+82=138尺,所以表面积为4π×⎝⎛⎭⎪⎫13822=138π平方尺.] 与球有关的切、接问题【例2 [思路探究] 正四面体的内切球、外接球、棱切球的球心与正四面体的中心O 重合,则内切球的半径为点O 到各面的距离,外接球的半径为点O 到各顶点的距离,棱切球的半径为点O 到各棱的距离.[解] 由正四面体的对称性与球的对称性知正四面体的外接球、内切球、棱切球的球心都与正四面体的中心重合.如图所示,设正四面体A -BCD 的高为AG ,O 为正四面体的中心,连接CG 并延长交BD 于点E ,连接OC ,OE ,则外接球的半径R =OA =OC .由题意可得CE =3a 2,则CG =23CE =3a 3,EG =13CE =3a 6,所以AG =AC 2-CG 2=6a 3.所以OG =6a 3-R .在Rt △OCG 中,OC 2=OG 2+CG 2,即R 2=⎝ ⎛⎭⎪⎫6a 3-R 2+a 23,解得R =6a 4. 所以内切球的半径r =OG =6a 3-6a 4=6a 12.棱切球的半径为OE =EG 2+OG 2=a 212+a 224=2a 4.常见的几何体与球的切、接问题的解决方案如下:[跟进训练]2.(1)已知正方体的外接球的体积是32π3,那么正方体的棱长是( )A .2 2B .233C .423D .433(2)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D -ABC 体积的最大值为( )A.12 3 B.18 3 C.24 3 D.543(1)D(2)B[(1)根据球的体积,求得其半径r=2,再由r=3a2可得棱长a为43 3.(2)设等边△ABC的边长为x,则12x2sin 60°=93,解得x=6.设△ABC的外接圆半径为r,则r=23,所以球心到△ABC所在平面的距离d=42-(23)2=2,则点D到平面ABC的最大距离d1=d+4=6,所以三棱锥D-ABC体积的最大值V max=13S△ABC×6=13×93×6=18 3.]空间中的平行关系【例3】如图所示,四边形ABCD是平行四边形,PB⊥平面ABCD,MA∥PB,PB=2MA.在线段PB上是否存在一点F,使平面AFC∥平面PMD?若存在,请确定点F的位置;若不存在,请说明理由.[思路探究]假设存在满足条件的点F,由于平面AFC∥平面PMD,且平面AFPM与平面AFC、平面PMD分别交于直线AF,PM,则必有AF∥PM,又PB =2MA,则点F是PB的中点.[解]当点F是PB的中点时,平面AFC∥平面PMD,证明如下:如图,连接AC和BD交于点O,连接FO,那么PF=12PB.∵四边形ABCD是平行四边形,∴O是BD的中点.∴OF∥PD.又OF⊄平面PMD,PD⊂平面PMD,∴OF∥平面PMD.又MA 12PB,∴PF MA.∴四边形AFPM是平行四边形.∴AF∥PM.又AF⊄平面PMD,PM⊂平面PMD,∴AF∥平面PMD.又AF∩OF=F,AF⊂平面AFC,OF⊂平面AFC.∴平面AFC∥平面PMD.空间中的平行关系主要是指空间中线与线、线与面及面与面的平行,其中三种关系相互渗透.在解决线面、面面平行问题时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而利用性质定理时,其顺序相反,且“高维”的性质定理就是“低维”的判定定理.特别注意,转化的方法由具体题目的条件决定,不能过于呆板僵化,要遵循规律而不局限于规律.3.如图,已知四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH,求证:AP∥GH.[证明]连接AC交BD于O,连接MO,因为四边形ABCD为平行四边形,所以O为AC的中点,又因为M为PC的中点,所以MO∥AP,又因为MO⊂平面BDM,P A⊄平面BDM,所以P A∥平面BDM,又因为P A⊂平面P AHG,平面P AHG∩平面BDM=GH,所以P A∥GH.空间中的垂直关系【例4】如图所示,在斜三棱柱A1B1C1-ABC中,底面是等腰三角形,AB=AC,侧面BB1C1C⊥底面ABC.(1)若D是BC的中点,求证:AD⊥CC1;(2)过侧面BB1C1C的对角线BC1的平面交侧棱于点M,若AM=MA1,求证:截面MBC1⊥侧面BB1C1C.[解](1)证明:因为AB=AC,D是BC的中点,所以AD⊥BC.因为底面ABC⊥侧面BB1C1C,底面ABC∩侧面BB1C1C=BC,所以AD⊥侧面BB1C1C.所以AD⊥CC1.(2)延长B1A1与BM的延长线交于点N,连接C1N.因为AM=MA1,所以NA1=A1B1.因为A1C1=A1N=A1B1,所以C1N⊥B1C1,所以C1N⊥侧面BB1C1C.因为C1N⊂截面MBC1,所以截面MBC 1⊥侧面BB 1C 1C .空间中的垂直关系包括线与线的垂直、线与面的垂直及面与面的垂直,三种垂直关系是本章学习的核心,学习时要突出三者间的互化意识.如在证明两平面垂直时一般从现有直线中寻找平面的垂线,若这样的垂线不存在,则可通过作辅助线来解决.如有面面垂直时,一般要用性质定理,在一个平面内作交线的垂线,使之转化为线面垂直,进一步转化为线线垂直.[跟进训练]4.如图,ABCD 是正方形,点P 在以BC 为直径的半圆弧上(P 不与B ,C 重合),E 为线段BC 的中点,现将正方形ABCD 沿BC 折起,使得平面ABCD ⊥平面BCP .(1)证明:BP ⊥平面DCP ;(2)若BC =2,当三棱锥D -BPC 的体积最大时,求E 到平面BDP 的距离.[解] (1)证明:因为平面ABCD ⊥平面BPC ,ABCD 是正方形,平面ABCD ∩平面BPC =BC ,所以DC ⊥平面BPC .因为BP ⊂平面BPC ,所以BP ⊥DC .因为点P 在以BC 为直径的半圆弧上,所以BP ⊥PC .又DC ∩PC =C ,所以BP ⊥平面DCP .(2)当点P 位于BC ︵的中点时,△BCP 的面积最大,三棱锥D -BPC 的体积也最大.因为BC =2,所以PE =1,所以△BEP 的面积为12×1×1=12,所以三棱锥D -BEP 的体积为13×12×2=13.因为BP ⊥平面DCP ,所以BP ⊥DP ,DP=(22)2-(2)2=6,△BDP的面积为12×2×6= 3.设E到平面BDP的距离为d,由于V D-BEP=V E-BDP,则13×3×d=13,得d=33,即E到平面BDP的距离为33.空间中的角的求解【例5】如图,在三棱锥S-ABC中,SA=SB=AC=BC=2,AB=23,SC =1.(1)画出二面角S-AB-C的平面角,并求它的度数;(2)求三棱锥S-ABC的体积.[解](1)取AB中点D,连接SD,CD,因为SA=SB=2,AC=BC=2,所以SD⊥AB,CD⊥AB,且SD⊂平面SAB,CD⊂平面CAB,所以∠SDC是二面角S-AB-C的平面角.在直角三角形SDA中,SD=SA2-AD2=22-(3)2=1,在直角三角形CDA中,CD =CA 2-AD 2=22-(3)2=1,所以SD =CD =SC =1,所以△SDC 是等边三角形,所以∠SDC =60°.(2)法一:因为SD ⊥AB ,CD ⊥AB ,SD ∩CD =D ,所以AB ⊥平面SDC ,又AB ⊂平面ABC ,所以平面ABC ⊥平面SDC ,且平面ABC ∩平面SDC =CD ,在平面SDC 内作SO ⊥DC 于O ,则SO ⊥平面ABC ,即SO 是三棱锥S -ABC 的高.在等边△SDC 中,SO =32,所以三棱锥S -ABC 的体积V S -ABC =13S △ABC ·SO =13×12×23×1×32=12.法二:因为SD ⊥AB ,CD ⊥AB ,SD ∩CD =D ,所以AB ⊥平面SDC .在等边△SDC 中,S △SDC =34SD 2=34,所以三棱锥S -ABC 的体积V S -ABC =V A -SDC +V B -SDC =13S △SDC ·AB =13×34×23=12.1.两条异面直线所成的角(1)一般通过平移(在所给图形内平移一条直线或平移两条直线)或补形(补形的目的仍是平移),把异面直线所成角转化为共面直线所成角来计算.(2)平移时经常利用某些特殊点(如中点)或中位线、成比例线段来实现,补形时经常把空间图形补成熟悉的或完整的几何体(如正方体、长方体、平行六面体等).2.直线和平面所成的角当直线为平面的斜线时,它是斜线与斜线在平面内的射影所成的角,通常在斜线上取一特殊点向平面作垂线找到这个锐角,然后通过解直角三角形加以求出.3.求解二面角的平面角的步骤一找(寻找现成的二面角的平面角);二作(若没有找到现成的,需要引出辅助线作出二面角的平面角);三求(有了二面角的平面角后,在三角形中求出该角相应的三角函数值).[跟进训练]5.在我国古代数学名著《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑ABCD 中,AB ⊥平面BCD ,且AB =BC =CD ,则异面直线AC 与BD 所成角的余弦值为( )A .12B .-12C .32D .-32A [如图,分别取BC ,CD ,AD ,BD 的中点M ,N ,P ,Q ,连接MN ,NP ,MP ,PQ ,MQ ,则MN ∥BD ,NP ∥AC ,所以∠PNM 即为异面直线AC 和BD 所成的角(或其补角).又由题意得PQ ⊥MQ ,PQ =12AB ,MQ =12CD .设AB =BC =CD =2,则PM = 2.又MN =12BD =2,NP =12AC =2,所以△PNM 为等边三角形,所以∠PNM =60°,所以异面直线AC 与BD 所成角为60°,其余弦值为12.][培优层·素养升华]【例题】 如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求点C到平面C1DE的距离.[思路探究](1)连接B1C,ME,可得四边形MNDE为平行四边形,进而得出MN∥DE,可证MN∥平面C1DE.(2)由已知可证DE⊥平面C1CE,过点C作CH⊥C1E于点H,则DE⊥CH,进而可证CH⊥平面C1DE,计算可得CH的长,从而得所求距离.[解](1)证明:如图所示,连接B1C,ME.因为M,E分别为BB1,BC的中点,所以ME∥B1C,且ME=12B1C.又因为N为A1D的中点,所以ND=12A1D.由题设知A1B1DC,可得B1C A1D,故ME ND,因此四边形MNDE为平行四边形,所以MN∥ED.又MN⊄平面C1DE,所以MN∥平面C1DE.(2)如图所示,过点C作C1E的垂线,垂足为H.由已知可得DE⊥BC,DE⊥C1C,所以DE⊥平面C1CE,故DE⊥CH.从而CH⊥平面C1DE,故CH的长即为点C到平面C1DE的距离.由已知可得CE=1,C1C=4,所以C1E=17,故CH=417 17.从而点C到平面C1DE的距离为417 17.本题属中档题,难度不大,考查了线面平行的证明及点面距离的计算,充分体现了直观想象、逻辑推理、数学运算等核心素养.[素养提升练]如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面P AD⊥平面ABCD,P A⊥PD,P A=PD,E,F分别为AD,PB的中点.(1)求证:PE⊥BC;(2)求证:平面P AB⊥平面PCD;(3)求证:EF∥平面PCD.[证明](1)因为P A=PD,E为AD的中点,所以PE⊥AD.因为底面ABCD为矩形,所以BC∥AD,所以PE⊥BC.(2)因为底面ABCD为矩形,所以AB⊥AD.又因为平面P AD⊥平面ABCD,平面P AD∩平面ABCD=AD,所以AB⊥平面P AD,所以AB⊥PD.又因为P A⊥PD,P A∩AB=A,所以PD⊥平面P AB.所以平面P AB⊥平面PCD.(3)如图,取PC的中点G,连接FG,DG.因为F,G分别为PB,PC的中点,所以FG∥BC,FG=12BC.因为四边形ABCD为矩形,且E为AD的中点,所以DE∥BC,DE=12BC.所以DE∥FG,DE=FG.所以四边形DEFG为平行四边形,所以EF∥DG.又因为EF⊄平面PCD,DG⊂平面PCD,所以EF∥平面PCD.。
高中数学必修4知识点
P xyA O M T高中数学必修4知识点⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角 2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z3、与角α终边相同的角的集合为{}360,k k ββα=⋅+∈Z4、已知α是第几象限角,确定 所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则 α原来是第几象限对应的标号即为 终边所落在的区域.5、长度等于半径长的弧所对的圆心角叫做1弧度.6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是.7、弧度制与角度制的换算公式:2360π=8、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为 C ,面积为S ,则 l r α=,2C r l =+,. 9、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()220r r x y =+>,则,10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.11、三角函数线:sin α=MP ,cos α=OM ,tan α=AT .12、同角三角函数的基本关系:()221sin cos 1αα+=()2222sin 1cos ,cos 1sin αααα=-=-; .13、三角函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-.()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.口诀:正弦与余弦互换,符号看象限.14、函数s i n y x =的图象上所有点向左(右)平移ϕ个单位长度,得到函数()sin y x ϕ=+的图象;再将函数()sin y x ϕ=+的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象. 函数s i n y x =的图象上所有点的横坐标伸长(缩短)到原来的 倍(纵坐标不变),得到函数sin y x ω=的图象;再将函数sin y x ω=的图象上所有点向左(右)平移 个单位长度,得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象. 函数()()s i n 0,0y x ωϕω=A +A >>的性质:①振幅:A ;②周期: ③频率: ④相位:x ωϕ+; ⑤初相:ϕ.函数()s i n y x ωϕ=A ++B ,当1x x =时,取得最小值为min y ;当2x x =时,取得最大值为max y ,则15、正弦函数、余弦函数和正切函数的图象与性质:sin y x =cos y x = tan y x =图象定义域 R R值域 []1,1-[]1,1-R最值 当 ()k ∈Z 时,max 1y =; 当 ()k ∈Z 时,min 1y =-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π2ππ奇偶性 奇函数偶函数奇函数单调性在 ()k ∈Z 上是增函数;在 ()k ∈Z 上是减函数. 在[]()2,2k k k πππ-∈Z 上是增函数; 在[]2,2k k πππ+()k ∈Z 上是减函数. 在 ()k ∈Z 上是增函数.对称性对称中心()(),0k k π∈Z 对称轴对称中心对称轴()x k k π=∈Z对称中心 无对称轴16、向量:既有大小,又有方向的量.数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量.平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 17、向量加法运算:⑴三角形法则的特点:首尾相连.⑵平行四边形法则的特点:共起点.⑶三角形不等式:a b a b a b -≤+≤+ . ⑷运算性质:①交换律:a bb a +=+;②结合律:()()a b c a b c ++=++;③00a a a +=+= .⑸坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y +=++ .18、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量.⑵坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y -=-- .baCBA设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y A B=--.19、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=;②当0λ>时,a λ 的方向与a 的方向相同;当0λ<时,a λ 的方向与a的方向相反;当0λ=时,0a λ=.⑵运算律:①()()a a λμλμ= ;②()a a a λμλμ+=+ ;③()a b a b λλλ+=+ .⑶坐标运算:设(),a x y = ,则()(),,a x y x y λλλλ==.20、向量共线定理:向量()0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ= .设()11,a x y = ,()22,b x y = ,其中0b ≠ ,则当且仅当12210x y x y -=时,向量a 、()0b b ≠ 共线. 21、平面向量基本定理:如果1e 、2e是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+.(不共线的向量1e 、2e作为这一平面内所有向量的一组基底)22、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP时,点P 的坐标是.23、平面向量的数量积:⑴()cos 0,0,0180a b a b a b θθ⋅=≠≠≤≤ .零向量与任一向量的数量积为0. ⑵性质:设a 和b都是非零向量,则①0a b a b ⊥⇔⋅=.②当a 与b同向时,a b a b ⋅=;当a 与b反向时,a b a b ⋅=- ;22a a a a ⋅== 或a a a =⋅ .③a b a b ⋅≤ .⑶运算律:①a b b a ⋅=⋅ ;②()()()a b a b a b λλλ⋅=⋅=⋅ ;③()a b c a c b c +⋅=⋅+⋅ .⑷坐标运算:设两个非零向量()11,a x y = ,()22,b x y = ,则 1212a b x x y y ⋅=+ .若(),a x y = ,则222a x y =+ ,或22a x y =+ . 设()11,a x y = ,()22,b x y = ,则 12120a b x x y y ⊥⇔+= . 设a 、b 都是非零向量,()11,a x y =,()22,b x y = ,θ是a 与b 的夹角,则.24、两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+; ⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-; ⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()()tan tan tan 1tan tan αβαβαβ-=-+; ⑹ ()()t a nt a n t a n1t a n t a n αβαβαβ+=+-.25、二倍角的正弦、余弦和正切公式:⑴sin 22sin cos ααα=.⑵2222cos2cos sin 2cos 112sin ααααα=-=-=- ⑶.26、()22sin cos sin αααϕA +B =A +B +,其中.。
高中数学人教版必修4知识点汇总
1”作巧
妙的变形,
1. 3 诱导公式
1、诱导公式(五)
sin(
ห้องสมุดไป่ตู้) cos
2
cos(
) sin
2
2、诱导公式(六)
sin(
) cos
2
总结为一句话:函数正变余,符号看象限
小结:
①三角函数的简化过程图:
cos(
) sin
2
任意负角的 三角函数
公式一或三 任意正角的 三角函数
公式一或二或四 00~3600 间角 的三角函数
..
..
1.1 . 1 任意角
1.角的有关概念: ①角的定义:
角可以看成平面一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.
②角的名称:
始边 B
终边
③角的分类:
O
A
顶点
正角:按逆时针方向旋转形成的角
零角:射线没有任何旋转形成的角
负角:按顺时针方向旋转形成的角
④注意: ⑴在不引起混淆的情况下, “角α ”或“∠α ”可以简化成“α ”; ⑵零角的终边与始边重合,如果α是零角α =0 °; ⑶角的概念经过推广后,已包括正角、负角和零角. 2.象限角的概念: ①定义:若将角顶点与原点重合, 角的始边与 x 轴的非负半轴重合, 那么角的终边 ( 端点除外 ) 在第几象限,我们就说这个角是第几象限角.
tan cot
1(
k ,k
Z) ;
2
③对这些关系式不仅要牢固掌握,还要能灵活运用(正用、反用、变形用) ,如:
cos
1 sin2
,
2
sin
2
1 cos
,
cos
sin 等。
高中数学必修4知识点总结归纳(人教版最全)
高中数学必修4知识点汇总第一章:三角函数1、任意角①正角:按逆时针方向旋转形成的角 ②负角:按顺时针方向旋转形成的角 ③零角:不作任何旋转形成的角2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z 第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z 终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z3、与角α终边相同的角集合为{}360,k k ββα=⋅+∈Z4、已知α是第几象限角,确定()*n nα∈N 所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应的标号即为nα终边所落在区域.5、长度等于半径长的弧所对的圆心角叫做1弧度6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是lr α=.7、弧度制与角度制的换算公式:2360π=,1180π=,180157.3π⎛⎫=≈ ⎪⎝⎭.8、若扇形的圆心角为α(α为弧度制),半径为r ,弧长为l ,周长为C ,面积为S则αr l =,l r C +=2,22121r lr S α==9、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()0r r =>,则sin y r α=,cos x r α=,()tan 0yx xα=≠. 10、三角函数在各象限的符号:一全正,二正弦,三正切,四余弦.11、三角函数线:sin α=MP ,cos α=OM ,tan α=AT .12、同角三角函数的基本关系:()221sin cos 1αα+=;()sin 2tan cos ααα=; 13、三角函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=.()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2πα⎛⎫-= ⎪⎝⎭. ()6sin cos 2παα⎛⎫+=⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 口诀:正弦与余弦互换,符号看象限.14、要由sin y x =的图像得到sin()y A x φ=+的图像主要有下列两种方法:sin sin()sin()sin()y x y x y x y A x φωφωφ=−−−→=+−−−→=+−−−→=+相位周期振幅变换变换变换sin sin sin()sin()y x y x y x y x ωωφωφ=−−−→=−−−→=+−−−→=+周期相位振幅变换变换变换注:第二种φωω+→x x 的情况需要平移ωφ个单位 函数()()sin 0,0y x ωϕω=A +A >>的性质: ①振幅:A ;②周期:2πωT =;③频率:12f ωπ==T ; ④相位:x ωϕ+;⑤初相:ϕ.α) A α)(1)(2)15、正弦函数、余弦函数和正切函数的图象与性质:sin y x = cos y x = tan y x =图象定义域 R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=-()k ∈Z 时,min 1y =-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π 2ππ奇偶性奇函数 偶函数 奇函数单调性 在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数;在 32,222k k ππππ⎡⎤++⎢⎥⎣⎦ ()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+ ⎪⎝⎭()k ∈Z 上是增函数.对称性对称中心 ()(),0k k π∈Z 对称轴 ()2x k k ππ=+∈Z对称中心(),02k k ππ⎛⎫+∈Z⎪⎝⎭ 对称轴()x k k π=∈Z对称中心(),02k k π⎛⎫∈Z⎪⎝⎭无对称轴函 数 性质第二章:平面向量1、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量.有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量.单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 2、向量加法运算: ⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点.⑶三角形不等式:a b a b a b -≤+≤+.⑷运算性质:①交换律:a b b a +=+;②结合律:()()a b c a b c ++=++;③00a a a +=+=.⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y +=++. 3、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则),(AB 1212y y x x --=4、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=;②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=.⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③()a b a b λλλ+=+. ⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==.5、向量共线定理:向量()0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ=.baC BAa b C C -=A -AB =B设()11,a x y =,()22,b x y =,其中0b ≠,则当且仅当12210x y x y -=时,向量a 、()0b b ≠共线.6、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+.(不共线的向量1e 、2e 作为这一平面内所有向量的一组基底)7、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλλ++⎛⎫⎪++⎝⎭. 8、平面向量的数量积:⑴()cos 0,0,0180a b a b a b θθ⋅=≠≠≤≤.零向量与任一向量的数量积为0.⑵性质:设a 和b 都是非零向量,则①0a b a b ⊥⇔⋅=.②当a 与b 同向时,a b a b ⋅=;当a 与b 反向时,a b a b ⋅=-;22a a a a ⋅==或a a a =⋅.③a b a b ⋅≤. ⑶运算律:①a b b a ⋅=⋅;②()()()a b a b a b λλλ⋅=⋅=⋅;③()a b c a c b c +⋅=⋅+⋅. ⑷坐标运算:设两个非零向量()11,a x y =,()22,b x y =,则1212a b x x y y ⋅=+. 若(),a x y =,则222a x y =+,或2a x y =+ 设()11,a x y =,()22,b x y =,则12120a b x x y y ⊥⇔+=.设a 、b 都是非零向量,()11,a x y =,()22,b x y =,θ是a 与b 的夹角,则121cos a b a bx θ⋅==+.第三章:三角恒等变换1、两角和与差的正弦、余弦和正切公式: ⑴()cos cos cos sin sin αβαβαβ-=+; ⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-; ⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ--=+(()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=-(()()tan tan tan 1tan tan αβαβαβ+=+-).2、二倍角的正弦、余弦和正切公式: ⑴sin22sin cos ααα=.⑵2222cos2cos sin 2cos 112sin ααααα=-=-=- (2cos 21cos 2αα+=,21cos 2sin 2αα-=). ⑶22tan tan 21tan ααα=-.3、()sin cos αααϕA +B =+,其中tan ϕB =A.。
最新人教版高中数学必修4第一章《余弦函数、正切函数的图象与性质》(第2课时)
第二课时 正切函数的图象与性质⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠π2+k π,k ∈Z实数集Rπ 后加以应用,例如,y =|sin x |的周期是y =sin x 的周期的一半,而y =|tan x |与y =tan x 的周期却相同,均为π.【自主测试1】函数f (x )=tan ⎝⎛⎭⎪⎫x +π4的单调增区间为( )A .⎝⎛⎭⎪⎫k π-π2,k π+π2,k ∈Z B .(k π,(k +1)π),k ∈ZC .⎝⎛⎭⎪⎫k π-3π4,k π+π4,k ∈Z D .⎝⎛⎭⎪⎫k π-π4,k π+3π4,k ∈Z 解析:令k π-π2<x +π4<k π+π2(k ∈Z ),解得函数f (x )的单调增区间为k π-3π4<x <k π+π4(k ∈Z ).答案:C【自主测试2】函数y =11+tan x的定义域是__________.解析:要使函数y =11+tan x 有意义,则有⎩⎪⎨⎪⎧1+tan x ≠0,x ≠k π+π2 k ∈Z ,即x ≠k π-π4,且x ≠k π+π2(k ∈Z ).故函数y =11+tan x的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ∈R ,且x ≠k π-π4,且x ≠k π+π2,k ∈Z .答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ∈R ,且x ≠k π-π4,且x ≠k π+π2,k ∈Z1.正切函数与正弦函数、余弦函数的比较剖析:正切函数y =tan x ,x ≠k π+π2,k ∈Z ,其定义域不是R ,又正切函数与正弦函数、余弦函数对应法则不同,因此一些性质与正弦函数、余弦函数的性质有了较大的差别.如正弦函数、余弦函数是有界函数,而正切函数不是有界函数;正弦函数、余弦函数是连续函数,反映在图象上是连续无间断点,而正切函数在R 上不连续,它有无数条渐近线x =k π+π2,k ∈Z ,图象被这些渐近线分隔开来;正弦函数、余弦函数既有单调增区间又有单调减区间,而正切函数在每一个区间⎝⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )上都是增函数.它们也存在大量的共性:如均为周期函数,且对y =A tan(ωx +φ)(ω>0)而言,T =πω,y =tan x 是奇函数,它的图象既可以类似地用正切线的几何方法作图,又可以用类似于“五点法”的“三点两线法”作简图,这里三个点为(k π,0),⎝ ⎛⎭⎪⎫k π+π4,1,⎝ ⎛⎭⎪⎫k π-π4,-1,两线为直线x =k π+π2(k ∈Z ),直线x =k π-π2(k ∈Z ),作出这三个点和这两条渐近线,便可得到y =tan x 在一个周期上的简图.正弦函数、余弦函数与正切函数都是中心对称图形(注意正弦、余弦函数同时也是轴对称图形).2.教材中的“思考与讨论”正切函数在整个定义域内都是增函数吗?剖析:正切函数在整个定义域内不是增函数,可取特殊值来说明.例如取x 1=π4,x 2=2π3,显然x 1<x 2,但y 1=tan π4=1,y 2=tan 2π3=-3,y 1>y 2,不符合增函数的定义.题型一 求函数的定义域【例题1】求函数y =tan x +1+lg(1-tan x )的定义域.解:由题意得⎩⎪⎨⎪⎧tan x +1≥0,1-tan x >0,即-1≤tan x <1.在⎝ ⎛⎭⎪⎫-π2,π2内,满足上述不等式的x 的取值范围是⎣⎢⎡⎭⎪⎫-π4,π4.又因为y =tan x 的周期为π,所以所求x 的范围是⎣⎢⎡⎭⎪⎫k π-π4,k π+π4(k ∈Z ),即此函数的定义域为⎣⎢⎡⎭⎪⎫k π-π4,k π+π4(k ∈Z ). 反思求三角函数式的定义域,可转化为解三角函数的不等式,利用三角函数的图象直观地求得解集.题型二 求函数的值域或最值【例题2】(1)求y =tan 2x +4tan x -1的值域;(2)若x ∈⎣⎢⎡⎦⎥⎤π6,π3,y =k +tan ⎝ ⎛⎭⎪⎫π3-2x 的值总不大于零,求实数k 的取值范围. 分析:(1)设t =tan x ,则转化为关于t 的二次函数求最值.(2)由y ≤0得k ≤-tan ⎝ ⎛⎭⎪⎫π3-2x ,因此,只要求出tan ⎝ ⎛⎭⎪⎫π3-2x 的范围即可. 解:(1)设t =tan x ,则y =t 2+4t -1=(t +2)2-5≥-5,故y =tan 2x +4tan x -1的值域为[-5,+∞).(2)由y =k +tan ⎝ ⎛⎭⎪⎫π3-2x ≤0, 得k ≤-tan ⎝ ⎛⎭⎪⎫π3-2x =tan ⎝⎛⎭⎪⎫2x -π3. ∵x ∈⎣⎢⎡⎦⎥⎤π6,π3,∴2x -π3∈⎣⎢⎡⎦⎥⎤0,π3.由正切函数的单调性得0≤tan ⎝⎛⎭⎪⎫2x -π3≤ 3. 故要使k ≤tan ⎝⎛⎭⎪⎫2x -π3恒成立,只要k ≤0. 即实数k 的取值范围为(-∞,0].反思(1)与二次函数有关的三角函数问题,常常使用“换元法”. (2)解决恒成立问题常常使用“分离常数法”. 题型三 利用函数图象研究性质 【例题3】画出函数y =|tan x |的图象,并根据图象判断其奇偶性、单调区间、周期性. 分析:解决本题的关键是画出y =|tan x |的图象,由函数图象研究其性质. 解:y =|tan x |的图象如下图所示.由图可得,函数y =|tan x |是偶函数,单调递增区间为⎣⎢⎡⎭⎪⎫k π,π2+k π(k ∈Z ), 单调递减区间为⎝ ⎛⎦⎥⎤-π2+k π,k π(k ∈Z ),周期为π. 反思(1)作函数y =|f (x )|的图象一般利用图象变换方法,具体步骤是: ①保留函数y =f (x )图象在x 轴上方的部分;②将函数y =f (x )图象在x 轴下方的部分沿x 轴向上翻折.(2)若函数为周期函数,可先研究其一个周期上的图象,再利用周期性,扩展到定义域上即可.题型四 易错辨析【例题4】若A ={x |tan x >0},B ={x |tan x +3tan 2x +23tan x -3≥0},试求A ∩B.错解:由tan x +3tan 2x +23tan x -3≥0,得⎩⎨⎧tan x ≥0,3tan 2x +23tan x -3≥0,即⎩⎨⎧tan x ≥0, 3tan x -3 tan x +3 ≥0,解得⎩⎪⎨⎪⎧tan x ≥0,tan x ≥33或tan x ≤- 3.所以tan x ≥33.所以B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪tan x ≥33. 所以A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪tan x ≥33. 由tan x ≥33,解得x ≥k π+π6,k ∈Z . 所以A ∩B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≥k π+π6,k ∈Z. 错因分析:误认为正切函数是R 上的增函数,而忽视了其周期性及定义域等性质,正切函数应该是在每一个开区间⎝⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )上是增函数. 正解:因为tan x +3tan 2x +23tan x -3≥0,所以⎩⎨⎧tan x ≥0,3tan 2x +23tan x -3≥0,解得tan x ≥33.所以B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ tan x ≥33.故A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪tan x ≥33.而正切函数在每一个开区间⎝⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )上是增函数, 所以tan x ≥33的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪k π+π6≤x <k π+π2,k ∈Z . 故A ∩B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪k π+π6≤x <k π+π2,k ∈Z.1.函数y =tan ⎝⎛⎭⎪⎫x +π4的定义域是( )A .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠-π4 B .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠π4C .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π-π4,k ∈ZD .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π+π4,k ∈Z答案:D2.下列函数中,以π为周期且在区间⎝⎛⎭⎪⎫0,π2上为增函数的是( )A .y =sin x2B .y =sin xC .y =-tan xD .y =-cos 2x 答案:D3.直线y =a (a 为常数)与正切曲线y =tan ωx (ω是常数且ω>0)相交,则相邻两交点间的距离是( )A .πB .2πωC .πω D .与a 的值有关 答案:C4.函数y =tan x ,x ∈⎣⎢⎡⎦⎥⎤0,π4的值域是__________.答案:[0,1]5.函数y =tan ⎝ ⎛⎭⎪⎫x 2+π3的单调增区间是__________. 解析:由题意得k π-π2<x 2+π3<k π+π2,k ∈Z ,解得2k π-5π3<x <2k π+π3,k ∈Z .答案:⎝⎛⎭⎪⎫2k π-5π3,2k π+π3,k ∈Z 6.不等式tan x ≥3的解集为__________.解析:如图所示.由图可知x ∈⎣⎢⎡⎭⎪⎫k π+π3,k π+π2(k ∈Z ). 答案:⎣⎢⎡⎭⎪⎫k π+π3,k π+π2(k ∈Z ) 7.若y =tan(2x +θ)的图象的一个对称中心为⎝ ⎛⎭⎪⎫π3,0,且-π2<θ<π2,求θ的值.解:∵y =tan α的对称中心为⎝⎛⎭⎪⎫k π2,0(k ∈Z ),∴2x +θ=k π2(k ∈Z ),代入x =π3得θ=k π2-2π3(k ∈Z ).又∵-π2<θ<π2,∴当k =1时,θ=-π6;当k =2时,θ=π3,∴θ=-π6或π3.。
高中数学必修4知识点(自编)
高中数学必修4知识点 第一章 三角函数1、角的概念的推广:平面内一条射线绕着端点从一个位置旋转到另一个位置所的图形。
按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成一个零角。
射线的起始位置称为始边,终止位置称为终边。
2、象限角的概念:在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。
如果角的终边在坐标轴上,就认为这个角不属于任何象限。
第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z 第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z 终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z 终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z3、终边相同的角的表示:与角α终边相同的角的集合为{}360,k k ββα=⋅+∈Z4、α与2α的终边关系:由“两等分各象限、一二三四”确定.如若α是第二象限角,则2α是第_____象限角。
5、长度等于半径长的弧所对的圆心角叫做1弧度.2360π= ,1180π=,1801rad 57.3π⎛⎫=≈ ⎪⎝⎭.6、弧长公式:||l R α=,扇形面积公式:211||22S lR R α==,1弧度(1rad)57.3≈ . 如已知扇形AOB 的周长是6cm ,该扇形的中心角是1弧度,求该扇形的面积。
7、任意角的三角函数的定义:设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()220r r x y =+>,则s i n y r α=,cos x r α=,()tan 0y x xα=≠. 8、三角函数线:sin α=MP ,cos α=OM ,tan α=AT .正切线起点始终为A(1,0) 若08πθ-<<,则sin ,cos ,tan θθθ的大小关系为_____9、三角函数在各象限的符号:(一全二正弦,三切四余弦)正切、余切余弦、正割-----+++++-+正弦、余割o o o x yx yxy10、特殊角的三角函数值:30° 45° 60° 0°90° 180° 270° 15°75°sin α2122 23 0 1 0 -1 624- 624+ cos α23 22 21 1 0 -1 0 624+ 624- tan α33 1 32-3 2+3 cot α31330 2+32-311、同角三角函数的基本关系式:(1)平方关系:222222sin cos 1,1tan sec ,1cot csc αααααα+=+=+= (2)倒数关系:sin αcsc α=1,cos αsec α=1,tan αcot α=1,(3)商数关系:sin cos tan ,cot cos sin αααααα==12、函数的诱导公式:()()1s i n 2s i n k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z .()()2s i n s i n παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3s i n s i n αα-=-,()cos cos αα-=,()tan tan αα-=-.TMA OPxy()()4s i n s i n παα-=,()cos cos παα-=-,()tan tan παα-=-. 口诀:函数名称不变,符号看象限.()5s i n c o s 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭.()6sin cos 2παα⎛⎫+= ⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 口诀:正弦与余弦互换,符号看象限.13、x y sin =的图象上所有点向左(右)平移ϕ个单位长度,得到函数()sin y x ϕ=+的图象;再将函数()sin y x ϕ=+的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象. 14、函数()()sin 0,0y x ωϕω=A +A >>的性质:①振幅:A ;②周期:2πωT =;③频率:12f ωπ==T ;④相位:x ωϕ+;⑤初相:ϕ. 15、五点法作正弦函数和余弦函数的图象:正弦函数sin y x =五个关键点: 、 、 、 、 。
(完整版)人教高中数学必修四第一章三角函数知识点归纳
三角函数一、随意角、弧度制及随意角的三角函数1.随意角(1)角的观点的推行①按旋转方向不一样分为正角、负角、零角.正角 : 按逆时针方向旋转形成的角随意角 负角: 按顺时针方向旋转形成的角零角 : 不作任何旋转形成的角②按终边地点不一样分为象限角和轴线角.角 的极点与原点重合,角的始边与 x 轴的非负半轴重合,终边落在第几象限,则称 为第几象限角.第一象限角的会合为 k 360ok 360o 90o , k第二象限角的会合为 k 360o 90o k 360o 180o , k第三象限角的会合为 k 360o 180o k 360o 270o , k第四象限角的会合为k 360o 270ok 360o360o , k终边在 x 轴上的角的会合为 k 180o , k终边在 y 轴上的角的会合为 k 180o 90o , k终边在座标轴上的角的会合为k 90o ,k(2)终边与角 α同样的角可写成 α+ k ·360 °(k ∈ Z).终边与角 同样的角的会合为k 360o, k(3)弧度制① 1 弧度的角:把长度等于半径长的弧所对的圆心角叫做1 弧度的角.②弧度与角度的换算: 360°= 2π弧度; 180°= π弧度.③ 半径为 r 的圆的圆心角所对弧的长为 l ,则角的弧度数的绝对值是lr④ 若扇形的圆心角为 为弧度制 ,半径为 r ,弧长为 l ,周长为 C ,面积为 S ,则 lr,C2r l ,S1 lr 1 r2 . 222 .随意角的三角函数定义设 α是一个随意角,角 α的终边上随意一点P(x , y),它与原点的距离为 r rx 2 y 2 ,那么角 α的正弦、余弦、rrx(三角函数值在各象限的符号规律归纳为:一全正、二正弦、三正切分别是: sin α= y , cos α= x , tan α= y.正切、四余弦)3.特别角的三角函数值角度030456090120135150180270360函数角 a 的弧度0π /6π/4π /3π /22π /33π /45π/6π3π /22πsina01/2√ 2/2√ 3/21√ 3/2√ 2/21/20-10 cosa1√ 3/2√ 2/21/20-1/2-√ 2/2-√ 3/2-101 tana0√ 3/31√ 3-√ 3-1-√ 3/300二、同角三角函数的基本关系与引诱公式A.基础梳理1.同角三角函数的基本关系(1)平方关系: sin2α+ cos2α= 1;(在利用同角三角函数的平方关系时,若开方,要特别注意判断符号)sin α(2)商数关系:=tanα.(3)倒数关系:tan cot 1cos α2.引诱公式公式一: sin( α+ 2kπ)=sin α, cos(α+ 2kπ)=cos_α,tan(2k )tan此中 k∈Z .公式二: sin( π+α)=- sin_α, cos( π+α)=- cos_α, tan( π+α)= tan α.公式三: sin( π-α)= sin α, cos( π-α)=- cos_α,tan tan.公式四: sin( -α)=- sin_α, cos(-α)= cos_α,tan tan .ππ公式五: sin -α= cos_α, cos-α= sin α.22ππ公式六: sin 2+α= cos_α, cos2+α=- sin_α.π口诀:奇变偶不变,符号看象限.此中的奇、偶是指π引诱公式可归纳为 k· ±α的各三角函数值的化简公式.的奇数22倍和偶数倍,变与不变是指函数名称的变化.假如奇数倍,则函数名称要变( 正弦变余弦,余弦变正弦 ) ;假如偶数倍,则函数名称不变,符号看象限是指:把πα当作锐角时,依据 k· ±α在哪个象限判断原三角函数值的符号,最后作为结....2...果符号.B. 方法与重点一个口诀1、引诱公式的记忆口诀为:奇变偶不变,符号看象限.2、四种方法在求值与化简时,常用方法有:sin α(1)弦切互化法:主要利用公式tan α=化成正、余弦.cos α(2)和积变换法:利用 (sin θ±cos θ)2=1 ±2sin θcos θ的关系进行变形、转变.( sin cos、sin cos、sin cos三个式子知一可求二)(3)巧用 “1”的变换: 1= sin 2θ+ cos 2θ= sinπ=tan 42(4)齐次式化切法:已知 tank ,则 a sinbcos a tan b ak bm sinn cos m tan n mk n三、三角函数的图像与性质学习目标:1 会求三角函数的定义域、值域2 会求三角函数的周期 :定义法,公式法,图像法(如y sin x 与 y cosx 的周期是)。
高中数学必修四知识点大全
知识点串讲必修四第一章:三角函数 1.1.1 任意角1、角的有关概念: ①角的定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. ②角的名称:③角的分类:2、象限角的概念:①定义:若将角顶点与原点重合,角的始边与x 轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角. 终边相同的角的表示:所有与角α终边相同的角,连同α在内,可构成一个集合S ={ β | β = α + k ·360 ° , k ∈Z },即任一与角α终边相同的角,都可以表示成角α与整个周角的和. 注意:⑴ k ∈Z ⑵ α是任一角;⑶ 终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差 360°的整数倍;⑷ 角α + k ·720 °与角α终边相同,但不能表示与角α终边相同的所有角. 3、写出终边在y 轴上的角的集合(用0°到360°的角表示) . 解:{α | α = 90°+ n ·180°,n ∈Z }.4、已知α角是第三象限角,则2α,2α各是第几象限角? 解:α 角属于第三象限,∴ k ·360°+180°<α<k ·360°+270°(k ∈Z ) 因此,2k ·360°+360°<2α<2k ·360°+540°(k ∈Z ) 即(2k +1)360°<2α<(2k +1)360°+180°(k ∈Z ) 故2α是第一、二象限或终边在y 轴的非负半轴上的角.又k ·180°+90°<2α<k ·180°+135°(k ∈Z) . 当k 为偶数时,令k =2n (n ∈Z ),则n ·360°+90°<2α<n ·360°+135°(n ∈Z ) ,当k 为奇数时,令k =2n +1 (n ∈Z ),则n ·360°+270°<2α<n ·360°+315°(n ∈Z) ,负角:按顺时针方向旋转形成的角 始边终边顶点AO B 正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角因此2α属于第二或第四象限角. 1。
高中数学必修4第一章三角函数的知识点
2
1,1
k
; 当 当 x 2 k k 时,
y m ax 1 ;当 x 2 k
R
倍(纵坐标
不变) ,得到函数 y sin x 的图象;再将函数 y sin x 的图象上所有点的纵坐标 伸长(缩短)到原来的 倍(横坐标不变) ,得到函数 y sin x 的图象. 函数 y sin x 的图象上所有点的横坐标伸长(缩短)到原来的
2
奇函数
偶函数
奇函数
2
, 2k
2
;③频率: f
1
2
;④相位: x ;⑤初相: .
函数 y s in x ,当 x x1 时,取得最小值为 y m in ;当 x x 2 时,取得最大值为
y m a x ,则
sin , co s
co s , tan
, tan
tan .
3、与角 终边相同的角的集合为 k 3 6 0 , k
sin , co s
co s
tan .
终边所落在的区域.
co s , co s sin , tan co t . 2 2 2 co s , co s sin , tan co t . 2 2 2
1 2
y m ax
y m in ,
(完整版)高中数学必修四向量知识点
向量知识点总结一、向量的概念(1)向量:既有大小,又有方向的量; (2)数量:只有大小,没有方向的量;(3)有向线段的三要素:起点、方向、长度; (4)零向量:长度为0的向量;(5)单位向量:长度等于1个单位的向量; (6)平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行; (7)相等向量:长度相等且方向相同的向量。
二、向量加法运算⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点.⑶三角形不等式:a b a b a b -≤+≤+r r rr r r .⑷运算性质:①交换律:a b b a +=+r rrr;②结合律:()()a b c a b c ++=++rrrr rr;③00a a a +=+=r r r r r 。
⑸坐标运算:设()11,a x y =r ,()22,b x y =r ,则()1212,a b x x y y +=++rr 。
三、向量减法运算⑴三角形法则的特点:共起点,连终点,方向指向被减向量;⑵坐标运算:设()11,a x y =r ,()22,b x y =r ,则()1212,a b x x y y -=--rr ,设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =--u u u r。
四、向量数乘运算⑴实数λ与向量a r 的积是一个向量的运算叫做向量的数乘,记作a λr; ①a a λλ=r r;②当0λ>时,a λr的方向与a r的方向相同;当0λ<时,a λr的方向与a r的方向相反;当0λ=时,0a λ=rr ;⑵运算律:①()()a a λμλμ=r r ;②()a a a λμλμ+=+r r r;③()a b a b λλλ+=+r r r r ;⑶坐标运算:设(),a x y =r ,则()(),,a x y x y λλλλ==r;b ra rC BAa b C C -=A -AB =B u u ur u u u r u u u r r r五、向量共线定理向量()0a a ≠rr r 与b r 共线,当且仅当有唯一一个实数λ,使b a λ=r r ;设()11,a x y =r ,()22,b x y =r ,其中0b ≠r r ,则当且仅当12210x y x y -=时,向量a r 、()0b b ≠r r r共线;六、平面向量基本定理如果1e u r 、2e u u r 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a r,有且只有一对实数1λ、2λ,使1122a e e λλ=+u r u u r r.(不共线的向量1e u r 、2e u u r 作为这一平面内所有向量的一组基底)七、分点坐标公式设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP u u u r u u u r时,点P 的坐标是1212,11x x y y λλλλ++⎛⎫⎪++⎝⎭; 八、平面向量的数量积⑴()cos 0,0,0180a b a b a b θθ⋅=≠≠≤≤o or r r r r r r r .零向量与任一向量的数量积为0;⑵性质:设a r 和b r 都是非零向量,则①0a b a b ⊥⇔⋅=r r r r .②当a r 与b r同向时,a b a b ⋅=r r r r ;当a r 与b r反向时,a b a b ⋅=-r r r r ;22a a a a ⋅==r r r r或a =r .③a b a b ⋅≤r r r r ; ⑶运算律:①a b b a ⋅=⋅r r r r ;②()()()a b a b a b λλλ⋅=⋅=⋅r r r r r r ;③()a b c a c b c +⋅=⋅+⋅r r r r r r r;⑷坐标运算:设两个非零向量()11,a x y =r ,()22,b x y =r ,则1212a b x x y y ⋅=+rr ,若(),a x y =r ,则222a x y =+r,或a =r设()11,a x y =r ,()22,b x y =r ,则12120a b x x y y ⊥⇔+=rr ;设a r、b r 都是非零向量,()11,a x y =r ,()22,b x y =r ,θ是a r 与b r 的夹角,则cos a ba b θ⋅==rr r r ;。
高中数学必修四第三章三角恒等变换
必修四 第三章:三角恒等变换【知识点梳理】:考点一:两角和、差的正、余弦、正切公式两角差的余弦:cos()cos cos sin sin αβαβαβ-=+ 两角和的余弦:()cos cos cos sin sin αβαβαβ+=- 两角和的正弦:()sin αβ+sin cos cos sin αβαβ=+ 两角差的正弦:()sin sin cos cos sin αβαβαβ-=- 两角和的正切:()tan tan tan 1tan tan αβαβαβ++=-两角差的正切:()tan tan tan 1tan tan αβαβαβ--=+注意:对于正切,,()222k k k k z πππαβπαπβπ+≠+≠+≠+∈.【典型例题讲解】:例题1.已知3sin ,5αα=-是第四象限角,求sin ,cos ,tan 444πππααα⎛⎫⎛⎫⎛⎫-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值.例题2.利用和、差角余弦公式求cos 75、cos15的值。
例题3.已知()sin αβ+=32,)sin(βα-=51,求βαtan tan 的值。
例题4.cos13计算sin43cos 43-sin13的值等于( )A .12B .33C .22D .32例题5.已知sin sin sin 0,cos cos cos 0,αβγαβγ++=++=求cos()βγ-的值.例题6.已知2tan()5αβ+=,1tan()44πβ-=,那么tan()4πα+的值是_____例题7.如图,在平面直角坐标系xoy 中,以ox 轴为始边做两个锐角,αβ,它们的终边分别与单位圆相交于A ,B 两点,已知A ,B 225(1) 求tan()αβ+的值; (2) 求2αβ+的值。
例题8.设ABC ∆中,tan A tan B Atan B +=,sin Acos A =,则此三角形是____三角形【巩固练习】练习1. 求值(1)sin 72cos 42cos72sin 42-; (2)cos 20cos70sin 20sin 70-;练习2.0sin 45cos15cos 225sin15⋅+⋅的值为(A ) -2 1(B ) -2 1(C )2 (D )2练习3.若tan 3α=,4tan 3β=,则tan()αβ-等于( ) A.3-B.13-C.3D.13练习4. 已知α,β为锐角,1tan 7α=,sin 10β=,求2αβ+.考点二:二倍角公式及其推论:在两角和的三角函数公式βαβαβαβα=+++中,当T C S ,,时,就可得到二倍角的三角函数公式222,,S C T ααα:()sin 2sin sin cos cos sin 2sin cos ααααααααα=+=+=;()22cos2cos cos cos sin sin cos sin ααααααααα=+=-=-;22222cos 2cos sin 1sin sin 12sin αααααα=-=--=-;22222cos2cos sin cos (1cos )2cos 1αααααα=-=--=-.()2tan tan 2tan tan 2tan 1tan tan 1tan ααααααααα+=+==--.注意:2,22k k ππαπαπ≠+≠+ ()k z ∈二倍角公式不仅限于2α是α的二倍的形式,其它如4α是2α的二倍,24αα是的二倍,332αα是的二倍等等,要熟悉这多种形 式的两个角相对二倍关系,才能熟练地应用二倍角公式,这是灵活运用这些公式的关键.二倍角公式的推论升幂公式:21cos 22cos αα+=, 21cos 22sin αα-=降幂公式:ααα2sin 21cos sin =; 22cos 1sin 2αα-=; 22cos 1cos 2αα+=.【典型例题讲解】例题l. ) A .2sin15cos15 B .22cos 15sin 15- C .22sin 151-D .22sin 15cos 15+例题2..已知1sin cos 5θθ+=,且432πθπ≤≤,则cos 2θ的值是 .例题3.化简0000cos10cos 20cos30cos 40••• 例题4.23sin 702cos 10-=-( )A .12B .2C .2D例题5.已知02x π<<,化简:2lg(cos tan 12sin ))]lg(1sin 2)24x x x x x π⋅+-+--+.例题6.若42x ππ<<,则函数3tan 2tan y x x =的最大值为 。
高中数学必修4知识点(完美版)
高中数学必修4知识点(完美版)高中数学必修4第一章三角函数角是指由两条射线(或直线)共同端点所组成的图形。
按照旋转方向,角可以分为正角、负角和零角。
其中,正角是按逆时针方向旋转形成的角,负角是按顺时针方向旋转形成的角,零角是不作任何旋转形成的角。
如果一个角的顶点与原点重合,角的始边与x轴的非负半轴重合,终边落在第几象限,就称这个角为第几象限角。
各象限角的集合可以表示为:第一象限角的集合为:α ∈ {α | k360° < α < k360° + 90°,k∈Z};第二象限角的集合为:α ∈ {α | αk360° + 90° < α < k360° + 180°,k∈Z};第三象限角的集合为:α ∈ {α | αk360° + 180° < α < αk360° + 270°,k∈Z};第四象限角的集合为:α ∈ {α | αk360° + 270° < α < αk360° + 360°,k∈Z};终边在x轴上的角的集合为:α ∈{α | α = k180°,k∈Z};终边在y轴上的角的集合为:α ∈ {α | α = k180° + 90°,k∈Z};终边在坐标轴上的角的集合为:α ∈ {α | α = k90°,k∈Z}。
根据终边所在的象限,可以将角分为四个象限。
第一象限角的终边落在第一象限,第二象限角的终边落在第二象限,以此类推。
在第一象限,角的值在0°到90°之间;在第二象限,角的值在90°到180°之间;在第三象限,角的值在180°到270°之间;在第四象限,角的值在270°到360°之间。
(完整版)高中数学必修4三角函数知识点归纳总结【经典】(最新整理)
cos
4、三角函数线
设任意角 的顶点在原点 O ,始边与 x 轴非负半轴重合,终边与单位圆相交与 P (x, y) , 过 P 作 x 轴的垂线,垂足为 M ;过点 A(1, 0) 作单位圆的切线,它与角 的终边或其反向
延长线交于点 T.
y
y
T
P
A
Mo
x
P A
oM x
(Ⅱ)T
(Ⅰ)
y T
y
M
A
o
x
MA
5、三角函数的图像与性质表格
函 性质 数
y sin x
y cos x
y tan x
图 像
定
义
R
域
值
1,1
域
当 x 2k k Z 时,
2
最
ymax 1;
值 当 x 2k k Z 时,
2
ymin 1.
R
1,1
当 x 2k k Z 时,
ymax 1;当 x 2k
sin
tan
第一象限:.x 0, y 0 sin 0,cos 0,tan 0,
第二象限:.x 0, y 0 sin 0,cos 0,tan 0,
第三象限:.x 0, y 0 sin 0,cos 0,tan 0,
第四象限:.x 0, y 0 sin 0,cos 0,tan 0,
弧度 0
2 3 5
2
6
4
3
2
3
4
6
9、弧长与面积计算公式
弧长: l R ;面积: S 1 l R 1 R2 ,注意:这里的 均为弧度制.
2
2
二、任意角的三角函数
1、正弦: sin y ;余弦 cos x ;正切 tan y
高中数学教材必修4知识点
高中数学必修4知识点汇总目录第一章三角函数 (3)§1.1.1任意角 (3)§1.1.2弧度制 (3)§1.2.1任意角的三角函数 (3)§1.2.2同角三角函数的基本关系式 (4)§1.3三角函数的诱导公式 (4)§1.4.1正弦、余弦函数的图象和性质 (5)§1.4.2正切函数的图象与性质 (5)§1.5函数()ϕω+=xAy sin的图象 (7)第三章三角恒等变换 (9)§3.1.1两角差的余弦公式 (9)§3.1.2两角和与差的正弦、余弦、正切公式 (9)§3.1.3二倍角的正弦、余弦、正切公式 (9)§3.2简单的三角恒等变换 (10)第二章平面向量 (10)§2.1.1向量的物理背景与概念 (10)§2.1.2向量的几何表示 (10)§2.1.3相等向量与共线向量 (10)§2.2.1向量加法运算及其几何意义 (10)§2.2.2向量减法运算及其几何意义 (11)§2.2.3向量数乘运算及其几何意义 (11)§2.3.1平面向量基本定理 (11)§2.3.2平面向量的正交分解及坐标表示 (11)§2.3.3平面向量的坐标运算 (11)§2.3.4平面向量共线的坐标表示 (12)§2.4.1平面向量数量积的物理背景及其含义 (12)§2.4.2平面向量数量积的坐标表示、模、夹角 (12)§2.5.1平面几何中的向量方法 (14)§2.5.2向量在物理中的应用举例 (14)1、直线的方向向量和平面的法向量 (14)2、用向量方法判定空间中的平行关系 (15)5、利用法向量求空间距离 (17)6、三垂线定理及其逆定理 (18)7、三余弦定理 (19)8、面积射影定理 (19)9、一个结论 (19)高中数学必修4知识点总结第一章 三角函数 §1.1.1任意角1、 正角、负角、零角、象限角的概念.2、 与角α终边相同的角的集合:{}Z k k ∈+=,2παββ.§1.1.2弧度制1、 把长度等于半径长的弧所对的圆心角叫做1弧度的角.2、 r l =α.3、弧长公式:R Rn l απ==180. 4、扇形面积公式:lR R n S 213602==π. §1.2.1任意角的三角函数1、 设α是一个任意角,它的终边与单位圆交于点()y x P ,,那么:xyx y ===αααtan ,cos ,sin 2、 设点(),A x y为角α终边上任意一点,那么:(设r =sin y r α=,cos x r α=,tan yxα=,cot x y α=3、 αsin ,αcos ,αtan 在四个象限的符号和三角函数线的画法.正弦线:MP; 余弦线:OM; 正切线:AT 4、 特殊角0°,30°,45°,60°,90°,180°,270等的三角函数值.§1.2.2同角三角函数的基本关系式1、 平方关系:1cos sin 22=+αα.2、 商数关系:αααcos sin tan =. 3、 倒数关系:tan cot 1αα=§1.3三角函数的诱导公式(概括为“奇变偶不变,符号看象限”Z k ∈)1、 诱导公式一: ()()().tan 2tan ,cos 2cos ,sin 2sin απααπααπα=+=+=+k k k (其中:Z k ∈)2、 诱导公式二: ()()().tan tan ,cos cos ,sin sin ααπααπααπ=+-=+-=+3、诱导公式三: ()()().tan tan ,cos cos ,sin sin αααααα-=-=--=-4、诱导公式四: ()()().tan tan ,cos cos ,sin sin ααπααπααπ-=--=-=-5、诱导公式五: .sin 2cos ,cos 2sin ααπααπ=⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-6、诱导公式六: .sin 2cos ,cos 2sin ααπααπ-=⎪⎭⎫⎝⎛+=⎪⎭⎫⎝⎛+§1.4.1正弦、余弦函数的图象和性质1、记住正弦、余弦函数图象:2、能够对照图象讲出正弦、余弦函数的相关性质:定义域、值域、最大最小值、对称轴、对称中心、奇偶性、单调性、周期性. 3、会用五点法作图.sin y x =在[0,2]x π∈上的五个关键点为: 30010-12022ππππ(,)(,,)(,,)(,,)(,,).§1.4.2正切函数的图象与性质1、记住正切函数的图象:2、记住余切函数的图象3、能够对照图象讲出正切函数的相关性质:定义域、值域、对称中心、奇偶性、单调性、周期性.周期函数定义:对于函数()x f ,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有()()x f T x f =+,那么函数()x f 就叫做周期函数,非零常数T 叫做这个函数的周期.图表归纳:正弦、余弦、正切函数的图像及其性质x y sin =x y cos = x y tan =图象定义域 RR},2|{Z k k x x ∈+≠ππ值域[-1,1][-1,1]R最值max min 2,122,12x k k Z y x k k Z y ππππ=+∈==-∈=-时,时,max min 2,12,1x k k Z y x k k Z y πππ=∈==+∈=-时,时,无周期性 π2=Tπ2=Tπ=T奇偶性奇偶奇单调性Z k ∈ 在[2,2]22k k ππππ-+上单调递增在3[2,2]22k k ππππ++上单调递减 在[2,2]k k πππ-上单调递增 在[2,2]k k πππ+上单调递减在(,)22k k ππππ-+上单调递增 对称性 Z k ∈ 对称轴方程:2x k ππ=+ 对称中心(,0)k π对称轴方程:x k π= 对称中心(,0)2k ππ+无对称轴 对称中心,0)(2k π§1.5函数()ϕω+=x A y sin 的图象1、对于函数:()()sin 0,0y A x B A ωφω=++>>有:振幅A ,周期2T πω=,初相ϕ,相位ϕω+x ,频率πω21==Tf .2、能够讲出函数x y sin =的图象与()sin y A x B ωϕ=++的图象之间的平移伸缩变换关系.① 先平移后伸缩:sin y x = 平移||ϕ个单位 ()sin y x ϕ=+(左加右减) 横坐标不变()sin y A x ϕ=+纵坐标变为原来的A 倍 纵坐标不变 ()sin y A x ωϕ=+横坐标变为原来的1||ω倍平移||B 个单位 ()sin y A x B ωϕ=++(上加下减)② 先伸缩后平移:sin y x = 横坐标不变 sin y A x =纵坐标变为原来的A 倍 纵坐标不变 sin y A x ω=横坐标变为原来的1||ω倍()sin y A x ωϕ=+(左加右减)平移||B 个单位 ()sin y A x B ωϕ=++(上加下减)3、三角函数的周期,对称轴和对称中心函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0)的周期2||T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A ≠0)的周期||T πω=. 对于sin()y A x ωϕ=+和cos()y A x ωϕ=+来说,对称中心与零点相联系,对称轴与最值点联系. 求函数sin()y A x ωϕ=+图像的对称轴与对称中心,只需令()2x k k Z πωϕπ+=+∈与()x k k Z ωϕπ+=∈解出x 即可.余弦函数可与正弦函数类比可得. 4、由图像确定三角函数的解析式 利用图像特征:max min 2y y A -=,max min2y y B +=. ω要根据周期来求,ϕ要用图像的关键点来求.第三章 三角恒等变换 §3.1.1两角差的余弦公式记住15°的三角函数值:§3.1.2两角和与差的正弦、余弦、正切公式1、()βαβαβαsin cos cos sin sin +=+2、()βαβαβαsin cos cos sin sin -=-3、()βαβαβαsin sin cos cos cos -=+4、()βαβαβαsin sin cos cos cos +=-5、()tan tan 1tan tan tan αβαβαβ+-+=. 6、()tan tan 1tan tan tan αβαβαβ-+-=.§3.1.3二倍角的正弦、余弦、正切公式1、αααcos sin 22sin =, 变形: 12sin cos sin 2ααα=.2、ααα22sin cos 2cos -=1cos 22-=α α2sin 21-=.变形如下:升幂公式:221cos 22cos 1cos 22sin αααα⎧+=⎪⎨-=⎪⎩ 降幂公式:221cos (1cos 2)21sin (1cos 2)2αααα=+=-⎧⎪⎨⎪⎩3、ααα2tan 1tan 22tan -=.4、sin 21cos 2tan 1cos 2sin 2ααααα-==+ §3.2简单的三角恒等变换1、 注意正切化弦、平方降次.2、辅助角公式)sin(cos sin 22ϕ++=+=x b a x b x a y(其中辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ=). 第二章 平面向量 §2.1.1向量的物理背景与概念1、 了解四种常见向量:力、位移、速度、加速度.2、 既有大小又有方向的量叫做向量.§2.1.2向量的几何表示1、 带有方向的线段叫做有向线段,有向线段包含三个要素:起点、方向、长度.2、 向量AB 的大小,也就是向量AB 的长度(或称模),记作AB u u u r;长度为零的向量叫做零向量;长度等于1个单位的向量叫做单位向量.3、 方向相同或相反的非零向量叫做平行向量(或共线向量).规定:零向量与任意向量平行.§2.1.3相等向量与共线向量1、 长度相等且方向相同的向量叫做相等向量.§2.2.1向量加法运算及其几何意义1、 三角形加法法则和平行四边形加法法则.2、b a +≤b a +.§2.2.2向量减法运算及其几何意义1、 与a 长度相等方向相反的向量叫做a 的相反向量.2、 三角形减法法则和平行四边形减法法则.§2.2.3向量数乘运算及其几何意义1、 规定:实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘.记作:a λ,它的长度和方向规定如下: ⑴a a λλ=,⑵当0>λ时, a λ的方向与a 的方向相同;当0<λ时, a λ的方向与a 的方向相反. 2、 平面向量共线定理:向量()0≠a a 与b 共线,当且仅当有唯一一个实数λ,使a b λ=.§2.3.1平面向量基本定理1、 平面向量基本定理:如果21,e e 是同一平面内的两个不共线向量,那么对于这一平面内任一向量a ,有且只有一对实数21,λλ,使2211e e a λλ+=.§2.3.2平面向量的正交分解及坐标表示1、 ()y x j y i x a ,=+=.§2.3.3平面向量的坐标运算1、 设()()2211,,,y x b y x a ==,则: ⑴()2121,y y x x b a ++=+,⑵()2121,y y x x b a --=-,⑶()11,y x λλλ=, ⑷1221//y x y x b a =⇔. 2、 设()()2211,,,y x B y x A ,则: ()1212,y y x x --=.§2.3.4平面向量共线的坐标表示1、设()()()332211,,,,,y x C y x B y x A ,则⑴线段AB 中点坐标为()222121,y y x x ++, ⑵△ABC 的重心坐标为()33321321,y y y x x x ++++.§2.4.1平面向量数量积的物理背景及其含义1、 θb a =⋅.2、 a 在b θ.3、 2=.4、 =.5、 0=⋅⇔⊥b a b a .§2.4.2平面向量数量积的坐标表示、模、夹角1、 设()()2211,,,y x y x ==,则:⑴2121y y x x +=⋅2121y x +=⑶121200a b a b x x y y ⊥⇔⋅=⇔+=r r r r⑷1221//0a b a b x y x y λ⇔=⇔-=r r r r2、 设()()2211,,,y x B y x A ,则:()()212212y y x x -+-=.3两向量的夹角公式cos a ba bθ⋅==r r r r4点的平移公式平移前的点为(,)P x y (原坐标),平移后的对应点为(,)P x y '''(新坐标),平移向量为(,)PP h k '=u u u r,则.x x hy y k '=+⎧⎨'=+⎩函数()y f x =的图像按向量(,)a h k =r平移后的图像的解析式为().y k f x h -=-§2.5.1平面几何中的向量方法 §2.5.2向量在物理中的应用举例知识链接:空间向量空间向量的许多知识可由平面向量的知识类比而得.下面对空间向量在立体几何中证明,求值的应用进行总结归纳.1、直线的方向向量和平面的法向量⑴.直线的方向向量:若A 、B 是直线l 上的任意两点,则AB u u u r 为直线l 的一个方向向量;与AB u u u r平行的任意非零向量也是直线l 的方向向量. ⑵.平面的法向量:若向量n r所在直线垂直于平面α,则称这个向量垂直于平面α,记作n α⊥r ,如果n α⊥r ,那么向量n r叫做平面α的法向量.⑶.平面的法向量的求法(待定系数法): ①建立适当的坐标系.②设平面α的法向量为(,,)n x y z =r.③求出平面内两个不共线向量的坐标123123(,,),(,,)a a a a b b b b ==r u r.④根据法向量定义建立方程组0n a n b ⎧⋅=⎪⎨⋅=⎪⎩r r r r .⑤解方程组,取其中一组解,即得平面α的法向量.(如图)2、用向量方法判定空间中的平行关系⑴线线平行设直线12,l l 的方向向量分别是a b r r 、,则要证明1l ∥2l ,只需证明a r ∥b r ,即()a kb k R =∈r r. 即:两直线平行或重合两直线的方向向量共线.⑵线面平行①(法一)设直线l 的方向向量是a r ,平面α的法向量是u r,则要证明l ∥α,只需证明a u ⊥r r ,即0a u ⋅=r r.即:直线与平面平行直线的方向向量与该平面的法向量垂直且直线在平面外②(法二)要证明一条直线和一个平面平行,也可以在平面内找一个向量与已知直线的方向向量是共线向量即可. ⑶面面平行若平面α的法向量为u r ,平面β的法向量为v r ,要证α∥β,只需证u r ∥v r,即证u v λ=r r .即:两平面平行或重合两平面的法向量共线.3、用向量方法判定空间的垂直关系⑴线线垂直设直线12,l l 的方向向量分别是a b r r、,则要证明12l l ⊥,只需证明a b ⊥r r ,即0a b ⋅=r r . 即:两直线垂直两直线的方向向量垂直.⑵线面垂直①(法一)设直线l 的方向向量是a r ,平面α的法向量是u r ,则要证明l α⊥,只需证明a r ∥u r,即a u λ=r r .②(法二)设直线l 的方向向量是a r ,平面α内的两个相交向量分别为m n u r u u r 、,若0,.0a m l a n α⎧⋅=⎪⊥⎨⋅=⎪⎩r u rr r则 即:直线与平面垂直直线的方向向量与平面的法向量共线直线的方向向量与平面内两条不共线直线的方向向量都垂直.⑶面面垂直若平面α的法向量为u r,平面β的法向量为v r ,要证αβ⊥,只需证u v ⊥r r ,即证0u v ⋅=r r .即:两平面垂直两平面的法向量垂直.4、利用向量求空间角⑴求异面直线所成的角已知,a b 为两异面直线,A ,C 与B ,D 分别是,a b 上的任意两点,,a b 所成的角为θ,则cos .AC BDAC BDθ⋅=u u u r u u u r u u u r u u u r⑵求直线和平面所成的角①定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角②求法:设直线l 的方向向量为a r ,平面α的法向量为u r ,直线与平面所成的角为θ,a r 与u r的夹角为ϕ, 则θ为ϕ的余角或ϕ的补角 的余角.即有:cos s .in a ua uϕθ⋅==r r r⑶求二面角①定义:平面内的一条直线把平面分为两个部分,其中的每一部分叫做半平面;从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面二面角的平面角是指在二面角βα--l 的棱上任取一点O ,分别在两个半平面内作射线l BO l AO ⊥⊥,,则AOB ∠为二面角βα--l 的平面角.如图:②求法:设二面角l αβ--的两个半平面的法向量分别为m n u r r 、,再设m n u r r 、的夹角为ϕ,二面角l αβ--的平面角为θ,则二面角θ为m n u r r、的夹角ϕ或其补角.πϕ- 根据具体图形确定θ是锐角或是钝角:OAOBl◆如果θ是锐角,则cos cos m nm nθϕ⋅==u r r u r r ,即arccos m nm nθ⋅=u r r u r r ;◆ 如果θ是钝角,则cos cos m nm nθϕ⋅=-=-u r r u r r ,即arccos m n m n θ⎛⎫⋅ ⎪=- ⎪⎝⎭u r r u r r .5、利用法向量求空间距离⑴点Q 到直线l 距离若Q 为直线l 外的一点,P 在直线l 上,a r为直线l 的方向向量,b r =PQ uuu r ,则点Q 到直线l 距离为h =⑵点A 到平面α的距离若点P 为平面α外一点,点M 为平面α内任一点,平面α的法向量为n r ,则P 到平面α的距离就等于MP u u u r在法向量n r 方向上的投影的绝对值.即cos ,d MP n MP =u u u r r u u u u rn MP MP n MP ⋅=⋅r u u u r u u u r r u u u rn MPn⋅=r u u u r r ⑶直线a 与平面α之间的距离当一条直线和一个平面平行时,直线上的各点到平面的距离相等.由此可知,直线到平面的距离可转化为求直线上任一点到平面的距离,即转化为点面距离.即.n MPd n⋅=r u u u r r⑷两平行平面,β之间的距离利用两平行平面间的距离处处相等,可将两平行平面间的距离转化为求点面距离.即.n MP d n⋅=r u u u r r⑸异面直线间的距离设向量n r 与两异面直线,a b 都垂直,,,M a P b ∈∈则两异面直线,a b 间的距离d 就是MP u u u r在向量nr 方向上投影的绝对值.即.n MPd n⋅=r u u u r r6、三垂线定理及其逆定理⑴三垂线定理:在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直推理模式:,,PO O PA A a PA a a OA αααα⊥∈⎫⎪=⇒⊥⎬⎪⊂⊥⎭I概括为:垂直于射影就垂直于斜线.⑵三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直推理模式:,,PO O PA A a AO a a AP αααα⊥∈⎫⎪=⇒⊥⎬⎪⊂⊥⎭I概括为:垂直于斜线就垂直于射影.7、三余弦定理设AC 是平面α内的任一条直线,AD 是α的一条斜线AB 在α内的射影,且BD ⊥AD ,垂足为D.设AB 与α (AD)所成的角为1θ, AD 与AC 所成的角为2θ, AB 与AC 所成的角为θ.则12cos cos cos θθθ=.8、 面积射影定理已知平面β内一个多边形的面积为()S S 原,它在平面α内的射影图形的面积为()S S '射,平面α与平面β所成的二面角的大小为锐二面角θ,则'cos =.S S S S θ=射原9、一个结论长度为l 的线段在三条两两互相垂直的直线上的射影长分别为123l l l 、、,夹角分别为123θθθ、、,则有 2222123l l l l =++222123cos cos cos 1θθθ⇔++= 222123sin sin sin 2θθθ⇔++=.(立体几何中长方体对角线长的公式是其特例).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修4知识点总结第一章三角函数正角:按逆时针方向旋转形成的角1任意角’负角:按顺时针方向旋转形成的角'零角:不作任何旋转形成的角2、角〉的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称:-为第几象限角.第一象限角的集合为 Q k 360Q G <k 360「+90〔kw Z ) 第二象限角的集合为 Q k 36^ +90 <k 360十180°," Z> 第三象限角的集合为 Q k 360,+180Qa ck 360 +270,k^ Z ) 第四象限角的集合为 G k 360’+270*a vk 360 +360,k 7) 终边在x 轴上的角的集合为=k 180,k Z )终边在y 轴上的角的集合为{叫口 =k 180 +90,k = Z ) 终边在坐标轴上的角的集合为 {a a = k 90, k € Z}3、 与角a 终边相同的角的集合为 (P|P =k 360° +a ,k € Zl4、 长度等于半径长的弧所对的圆心角叫做 1弧度.5、 半径为r 的圆的圆心角口所对弧的长为I ,则角a 的弧度数的绝对值是|叫=-.r6、 弧度制与角度制的换算公式: -360 , 1,18057.3 .180I 兀丿« (。
为弧度制),半径为r ,弧长为I ,周长为C ,面积为S ,则I = r 。
, C = 2r + 1 ,S 」lr =丄卜2 2:-的终边上任意一点P 的坐标是x, y ,它与原点的距离是r r = x 2 y 20,贝U sin = — , cos : =- , tan : = — x = 0 .r r x9、 三角函数在各象限的符号:第一象限全为正,第二象限正弦为正, 第三象限正切为正,第四象限余弦为正.7、若扇形的圆心角为8、设〉是一个任意大小的角, y 」L10、三角函数线:sin -■ ■M'-1, cos,一门划,tan :- = -.11 、角三角函数的基本关系.2 A 2 2 A . 2sin= 1 -cos : ,cos 1 -sin :2 屯 tan : sin :二tan : cos : ,cos : cos :12、函数的诱导公式:1 sin 2k 二:-si n : , cos2 k 二:-cos : , tan 2k 二:-ta n :£ i k 匕, 2 sin 二:--sin : , cos 二:--cos : , tan 二 :-ta n :.3 sin - -sin : , cos -cos : , tan - -tan :. -sin : , cos 二-:--cos , tan 二-: --tan :口诀:函数名称不变,符号看象限口诀:正弦与余弦互换,符号看象限 申个单位长度,得到函数 y = sin (x + ® )的图象;再将函数1 、y =sin x 亠"]的图象上所有点的横坐标伸长(缩短)到原来的一倍(纵坐标不变),得到函数 y 二sin 「X 川⑺!的图象;再将函数 y 二sin 的图象上所有点的纵坐标伸长(缩短)到原来的丄倍(横坐标不变),得到函数y=_-lsin •,x S 的图象.一 一 1 一 、②数y =sinx 的图象上所有点的横坐标伸长(缩短)至U 原来的倍(纵坐标不变),得到函数coy 二sin 「x 的图象;再将函数 y 二sin 「x 的图象上所有点向左(右)平移y =s in 「X ]的图象;再将函数 y =si n 「x 亠门]的图象上所有点的纵坐标伸长(缩短)到原来的x 倍(横坐标不变),得到函数ysini/x 」']的图象.14、函数 y 二 U-sin -X 亠"I - ; >0^ 0 的性质:①振幅:_ 2_.1 ■ i二;②周期:一二——:③频率:f 二一:④相位:;⑤初相::-2-函数y in 「x -三,当x 二花时,取得最小值为 y mm ;当时,取得最大值为 y max ,则sin二tan :-4 sin 二5 sin=cos : , cos I -:12丿二 COS 、£ , (JI cos l 213、①的图象上所有点向左(右)平移—个单位长度,得到函数1 - 1— 2 y max _y min ,—,乂y max y min ,15、正弦函数、余弦函数和正切函数的图象与性质:第二章平面向量16、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量.单位向量:长度等于1个单位的向量.平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 17、向量加法运算:⑴三角形法则的特点:首尾相连. ②结合律:a b 1 = a b c :③ a 0 a =a . 丄-T彳彳屮⑸坐标运算:设a = x 1,y 1 ,b = X 2, y 2 ,贝U aX i X 2, y y .18、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量. 一H44⑵坐标运算:设a hy, b h[X 2,y 2,则 a-b=:必 - x ?, % - y ?.一 一 _设二、2两点的坐标分别为 %,% , x>, y 2,则-J = X | x 2y 厂y 2 . 19、向量数乘运算:⑴实数■与向量a 的积是一个向量的运算叫做向量的数乘,记作■ a .①九a =i 引扌1 ;②当/ > 0时,■ a 的方向与a 的方向相同;当:■ 0时,■ a 的方向与a 的方向相反;当,=o 时,,a=o . ⑵运算律:①’A a = -[ a :②泸.化L 禺=■ a 」a :③ ⑶坐标运算:设 a = x, y ,贝U - a - • x, y - x, y .20、 向量共线定理:向量 a a^0与b 共线,当且仅当有唯一一个实数 ■,使b a .设a =% , b = x 2,y 2,其中b = 0,则当且仅当x°2 - 乂2力=0时,向量a 、b b = 0共线.T421、 平面向量基本定理:如果ei 、e>是同一平面内的两个不共线向量,那么对于这一平面内的任意向量 a ,有且只有一对实数'1、、2,使a 二…2e 2 .(不共线的向量 q 、e 2作为这一平面内所有向量的一组基 底)—H —I22、 分点坐标公式:设点P 是线段?^2上的一点,?1、的坐标分别是 X 1,y 1 , X 2,y 2,当P 卫2⑵平行四边形法则的特点:共起点. ⑶三角形不等式:⑷运算性质:①交换律: a b = b a ;时,点P 的坐标是T +必,力+小2 \ (当九/时,就为中点公式。
)I 1 +丸 1 +九丿 23、平面向量的数量积:⑴;b =:aib'cos 日(2 ^0,b 工0,0'兰日兰180^ ).零向量与任一向量的数量积为 0 .⑵性质:设a 和b 都是非零向量,则①a 丄b= ab=0.②当a 与b 同向时,a .b =囲曲;当a 与b 反 向时,a b =—卸b ; a a =扌=i#或a=va a .③a 科童将询.⑶运算律:① a b =b a •、②-a b = • a b 鳥一b :③ a b a c ■ b c .一、-、J■> d 4⑷坐标运算:设两个非零向量 a =捲,% , b = x 2, y 2 ,则a ・b =%^2 - y 1y 2. 若 a = (x, y ),贝 U %2=x 2+y 2 , 或 牙=J x 2 + y 2第三章三角恒等变换24、两角和与差的正弦、余弦和正切公式:⑴ cos 匚--cos : cos : sin : sin : •,⑵ cos : - - cos : cos - - sin : sin :;⑶ si n: - -si n j cos ?-cos : si n : ;(4) sin : : =si n : cos : COSJS in :;⑹ tan 「」an:tan〔1 -tan 。
tan P25、二倍角的正弦、余弦和正切公式:■ ■ 2 2 2 ⑴sin2: =2sin 二cos 「. =■ 1 -sin2: =sin 二 1cos -2sin 二 cos : = (sin 二cos 「) ⑵ cos2: = cos : -sin 2 : =2cos 2 : -1 =1 -2sin 2:2「 2:-= 升幕公式 1 cos : = 2cos ,1-cos : = 2si n — 2 2量向射零y 非1+ 是X2者X14b mb 」丄耳 4a 设L7aX1-Hb贝角夹的■4.b与4a是c O T S =⑸ tan :----tan : -tan : 1 tan :(tan : - tan :二 tan : -1 tan : tan :);(tan : tan :二 tan 〔 T T 1 - tan : tan :).=降幕公式 cos 2’空以,sin 2-los 2 X-bird t a -a 11 - COS a sin a 1 - COS atan — = ±訂 ---------- == ---------- = -----------2 \ 1 十 COS a 1 + COS a Sin a27、合一变形二•把两个三角函数的和或差化为 "一个三角函数,一个角,一次方”的y = Asin ( x 川⑺)• B形式。
丄sin - 2cos 〉= \ .-_2/2sin i ::£ 亠门 i ,其中 tan 「二二•A28、三角变换是运算化简的过程中运用较多的变换,提高三角变换能力,要学会创设条件,灵活运用三角 公式,掌握运算,化简的方法和技能•常用的数学思想方法技巧如下:(1 )角的变换:在三角化简,求值,证明中,表达式中往往出现较多的相异角,可根据角与角之间的和差,倍半,互补,互余的关系,运用角的变换,沟通条件与结论中角的差异,使问题获解,对角的变形如: ①2 是〉的二倍;4是2-的二倍;:-是二的二倍;,是二的二倍;2 2 4O O O O O O3011② 15 =45 -30 =60 -45;问:sin ; COS 一2 1212③ :-)-- :);4 2 4'⑤ 2 -(一八“)(:-)>)一(才一:);等等(2) 函数名称变换:三角变形中,常常需要变函数名称为同名函数。
如在三角函数中正余弦是基础,通常化切为弦,变异名为同名。