人教版八年级数学上册《整式的乘法与因式分解》章节复习---《因式分解》

合集下载

+第十四章+《整式的乘法与因式分解》小结与复习+课件++2023-2024学年人教版八年级数学上册

+第十四章+《整式的乘法与因式分解》小结与复习+课件++2023-2024学年人教版八年级数学上册
(a+b)2 =__a_2+__2_a_b_+__b_2 ___
五、因式分解
1.因式分解的定定义 把一个多项式化为几个__整__式____的__乘__积____的形式,像
这样的式子变形叫做把这个多项式因式分解,也叫做
把这个多项式分解因式. 2.因式分解的方法
(1)提公因式法
步骤: 1.提公因式; 2.套用公式;
的一个因式;
注:单项式乘单项式,积为_单__项__式___.
2.单项式乘多项式: (1)单项式分别_乘__以___多项式的每一项;
(2)将所得的积_相__加_____. 注:单项式乘多项式,积为多项式,项 数与原多项式的项数__相__同____. 3.多项式乘多项式: 先用一个多项式的每一项分别乘另一个多 项式的每__一__项__,再把所得的积__相__加____.
(2)已知an-3·a2n+1=a10,求n的值; 解:n-3+2n+1=10,
n=4; (3) 3×27×9 = 32x-4,求x的值;
解:3×27×9 =3×33×32=32x-4,
2x-4=6;
x=5.
考点二 整式的运算
例2 计算:
(1)(-4x)·(2x2+3x-1);
(2)
2 3
ab2
ab a b 得的幂_相__乘__. (
= n
)Hale Waihona Puke nn ____________
二、整式的乘法 1.单项式乘单项式:
(1)将_单__项__式__的__系__数__相乘作为积的系数; (2)相同字母的因式,利用_同__底__数__幂__的乘法,
作为积的一个因式; (3)单独出现的字母,连同它的_指__数___,作为积

人教版八年级上册数学课件:第14章整式的乘法与因式分解单元复习

人教版八年级上册数学课件:第14章整式的乘法与因式分解单元复习
返回
数学
23.请认真观察图形,解答下列问题: (1)根据图中条件,用两种方法表示两个阴影图形的面积的和 (只需表示,不必化简); (2)由(1),你能得到怎样的等量关系?请用等式表示;
返回
数学
(3)如果图中的 a,b(a>b)满足 a2+b2=53,ab=14,求:
①a+b 的值;②a2-b2 的值.
返回
数学
17.若 xm=3,xn=5,则 x2m+n 的值为 45 .
返回
数学
9.【例 4】已知 a2+a-4=0,则代数式 a(a+1)的值是( A )
A.4
B.8
C.12
D.16
小结:用整体思想解决问题,a2+a=4.
返回
数学
18.已知 a+b=m,ab=-4,化简(a-2)(b-2)的结果是( D )
返回
谢谢观看
数学
解:原式=x2-4xy+4y2-(x2-y2)-2y2 =x2-4xy+4y2-x2+y2-2y2=-4xy+3y2. (1)当 x=1,y=-3 时, 原式=-4×1×(-3)+3×(-3)2=39. (2)当 4x-3y=0 时,原式=-y(4x-3y)=0. 小结:(1)先化简后直接代入求值;(2)对多项式进行变形后运 用整体思想代入求值.
返回
数学
解:(1)两个阴影图形的面积和可表示为 a2+b2,(a+b)2-2ab. (2)a2+b2=(a+b)2-2ab (3)①∵a2+b2=53,ab=14, ∴(a+b)2=a2+b2+2ab=53+2×14=81,∴a+b=±9. 又∵a>0,b>0,∴a+b=9. ②∵(a-b)2=a2+b2-2ab=53-2×14=25,∴a-b=±5. 又∵a>b>0,∴a-b=5, ∴a2-b2=(a+b)(a-b)=9×5=45.

整式的乘法与因式分解单元复习人教版八年级数学上册

整式的乘法与因式分解单元复习人教版八年级数学上册
整式的乘法与因式分解单元复习人教 版八年 级数学 上册
整式的乘法与因式分解单元复习人教 版八年 级数学 上册
(2)(a+1)(a+5)+4.
原式=a2+6a+5+4 =(a+3)2.
整式的乘法与因式分解单元复习人教 版八年 级数学 上册
整式的乘法与因式分解单元复习人教 版八年 级数学 上册
20. 求值:
整式的乘法与因式分解单元复习人教 版八年 级数学 上册
整式的乘法与因式分解单元复习人教 版八年 级数学 上册
4. 计算: (1)
原式=-3x3y3+2x2y4+
xy5.
整式的乘法与因式分解单元复习人教 版八年 级数学 上册
整式的乘法与因式分解单元复习人教 版八年 级数学 上册
(2)(-2ab)(3a2-2ab-4b2);
解:原式=x2+6x+9+x2-4-x2-2x-1 =x2+4x+4. 当x2+4x=0时, 原式=x2+4x+4=4.
整式的乘法与因式分解单元复习人教 版八年 级数学 上册
整式的乘法与因式分解单元复习人教 版八年 级数学 上册
19. 分解因式:
(1)(x-2y)2+8xy;
原式=x2-4xy+4y2+8xy =x2+4xy+4y2 =(x+2y)2.
(1)a3·a5= a8

(2)a5÷a3= a2

(3)(a3)5= a15

(4)(-4a5)3= -64a15 ;
(5)-5a2b·(-3ab2)=
15a3b3

人教版八年级数学上册14.整式的乘除与因式分解--复习课件

人教版八年级数学上册14.整式的乘除与因式分解--复习课件
不是完全平方式,不能进行分解
例2 把下列各式分解因式. (1)(a+b)2-4a2 ; (2)1-10x+25x2; (3)(m+n)2-6(m+n)+9
解:(1)(a+b)2-4a2=(a+b)2-(2a)2 =(a+b+2a)(a+b-2a) =(3a+b)(b-a)
(2)1-10x+25x2 =1-10x+(5x)2 =(1-5x)2 (3)(m+n)2-6(m+n)+9=(m+n-3)2.
5, 求(a
1 )2的值. a
(2)若x y2 2, x2 y2 1, 求xy的值.
(3)如果(m n)2 z m2 2mn n2 ,
则z应为多少?
(4)(x 3y 2z)(x 3y 2z)
(5)19992, (6)20012 19992
练习:计算下列各题。
(1)( 1 a6b4c) ((2a3c) 4
1、 205×195 2、 (3x+2) (3x-2) 3、(-x+2y) (-x-2y) 4 、 (x+y+z)(x+y-z)
(2)、完全平方公式
一般的,我们有:
(a b)2 a2 2ab b2;
(a b)2 a2 2ab b2 其中a, b既可以是数, 也可以是代数式.
即: (a b)2 a2 2ab b2
探索与创新题 例4 若9x2+kxy+36y2是完全平方式,则k= —
分析:完全平方式是形如:a2±2ab+b2即两数 的平方和与这两个数乘积的2倍的和(或差).
∵9x2+kxy+36y2=(3x)2+kxy+(6y)2 ∴±kxy=2·3x·6y=36xy ∴k=±36

人教版八年级上册数学《整式的乘法》整式的乘法与因式分解说课教学课件复习(单项式与单项式、多项式相乘)

人教版八年级上册数学《整式的乘法》整式的乘法与因式分解说课教学课件复习(单项式与单项式、多项式相乘)
问题探究:
如图(1)是某中学B楼和C楼之间的一个长和宽分别为米和米
的长方形绿地,如果它的长和宽分别增加米和米后变成了新的长方
形绿地如图(2).请你计算这块新长方形绿地的面积.




图(1)

图(2)

知识讲解
你能用不同的形式表示长方形
绿地的面积吗?








此时绿地面积:
方法1 =( + ) ( + )①
化为单项式乘单项式)
单项式与多项式的乘法法则
一般地,单项式与多项式相乘,就是用单项式
乘多项式的每一项,再把所得的积相加.
用字母表示如下:p(a+b+c)=pa+pb+pc
注意:(1)依据是乘法分配律;
(2)积的项数与多项式的项数相同.
例3
计算:
(1)
3a(5a b)
(2) - 7x y 2 x 3 y
=3ax3-2ax2+3bx2-2bx+3x-2
=3ax3+(-2a+3b)x2+(-2b+3)x-2.
∵积不含x2项,也不含x项,

a

2a 3b 0,



2b 3 0,
b

9
,
4
3
.
2
拓展练习
计算:
x2+5x+6
(1)(x+2)(x+3)=__________;
(2)单项式必须与多项式中每一项相乘,结果的项数与原多项式项数一致;
(3)单项式系数为负时,改变多项式每项的符号.

人教版八年级数学上册课件:14章 整式的乘法与因式分解--知识点复习 (共53张PPT)

人教版八年级数学上册课件:14章   整式的乘法与因式分解--知识点复习 (共53张PPT)

A.(6a3+3a2)÷
1 2
a=12a2+6a
B.(6a3-4a2+2a)÷2a=3a2-2a
C.(9a7-3a3)÷(﹣
1 3
a3)=﹣27a4+9
C.( 14a2+a)÷(﹣12a)=﹣12 a-2
5.一个多项式与﹣2x2的积为﹣2x5+4x3﹣x2,则这个多项式

.
6.计算:⑴
(9x2y-6xy2)÷3xy;
2.已知M= a-1,N=a2- a(a为任意实数),则M,N的
大小关系为( A ) A. M<N B. M=N C. M>N D.不能确定
3.若x2+y2+ =2x+y,则y-x= .
3、am﹣n=am ÷ an(a≠0,m,n都
是正整数,并且m>n).
10
知识点一:幂的运算性质
巩固练习
1.(易错题)若(1-x)1-3x=1,则x的取值有( C )个.
A.0 B.1 C.2 D.3 4
2.若3x=4,9y=7,则3x-2y的值为 7 . 3.已知am=3,an=2,则a2m-n的值为 4.5 .
为( B ) A M<N
B M>N
C M=N D.不能确定
10.计算:(1)(x+1)(x+4); (2)(y-5)(y-6); (3)(m-3)(m+4)
(x+p)(x+q)
18
知识点二:整式的运算
知识回顾
单项式的除法法则: 系数、同底数幂分别相除 只在被除式里含有的字母
19Βιβλιοθήκη 知识点二:整式的运算2
重点难点
重点:运用整式的乘法法则和除法法则进行运算;因式分 解. 难点:应用整式的乘法和因式分解决问题.

人教版八年级数学上册作业课件 第十四章 整式的乘法与因式分解 章末复习(四) 整式的乘法与因式分解

人教版八年级数学上册作业课件 第十四章 整式的乘法与因式分解 章末复习(四) 整式的乘法与因式分解

17.已知a-b=5,ab=3,求代数式a3b-2a2b2+ab3的值. 解:a3b-2a2b2+ab3=ab(a2-2ab+b2)=ab(a-b)2.当a-b=5,ab=3 时,原式=3×52=75 18.已知x2-y2=12,x+y=3,求2x2-2xy的值. 解:∵x2-y2=12,∴(x+y)(x-y)=12. 又x+y=3,∴x-y=4.∴2x=7. ∴2x2-2xy=2x(x-y)=7×4=28
【核心素养】 19.【数形结合思想】数学活动课上,老师准备了若干个如图①所示 的三种纸片,A种纸片是边长为a的正方形,B种纸片是边长为b的正方形, C种纸片是长为b、宽为a的长方形,并用A种纸片一张,B种纸片一张,C 种纸片两张拼成如图②的大正方形.
(1)观察图②,请你写出下列三个代数式:(a+b)2,a2+b2,ab之间的等 量关系_(_a_+__b_)_2=__a_2_+__2_a_b_+__b_2_;
知识点二 整式的乘除运算 6.下列运算正确的是( D ) A.x·2x2y2=2x2y2 B.(a-2)2=a2-4
C.(-2a2)3÷(a2 )2=-16a D.(2a2-a)2÷a2=4a2-4a+1
7.(河北中考)墨迹覆盖了等式“x3 x=x2(x≠0)”中的运算符号,则覆盖 的是( D ) A.+ B.- C.× D.÷
(2)若要拼出一个面积为(a+2b)(a+b)的矩形,则需要A种纸片1张,B种:
①已知:a+b=5,a2+b2=11,求ab的值; ②已知(x-2 018)2+(x-2 020)2=20,求x-2 019的值.
解:(3)①∵a+b=5, ∴(a+b)2=25,即a2+b2+2ab=25. 又∵a2+b2=11,∴ab=7 ②设x-2 019=a,则x-2 018=a+1,x-2 020=a-1. ∵(x-2 018)2+(x-2 020)2=20, ∴(a+1)2+(a-1)2=20, 整理得a2=9,即(x-2 019)2=9. ∴x-2 019=±3

人教版初二数学上册:整式的乘除与因式分解 全章复习与巩固(提高)知识讲解

人教版初二数学上册:整式的乘除与因式分解 全章复习与巩固(提高)知识讲解

整式的乘除与因式分解 全章复习与巩固(提高)【学习目标】1. 掌握正整数幂的运算性质,并能运用它们熟练地进行运算;掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算;2. 会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算;3. 掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法公式简化运算;4. 理解因式分解的意义,并感受分解因式与整式乘法是相反方向的运算,掌握提公因式法和公式法(直接运用公式不超过两次)这两种分解因式的基本方法,了解因式分解的一般步骤;能够熟练地运用这些方法进行多项式的因式分解. 【知识网络】【要点梳理】【高清课堂 整式的乘除与因式分解单元复习 知识要点】 要点一、幂的运算 1.同底数幂的乘法:(m n ,为正整数);同底数幂相乘,底数不变,指数相加.2.幂的乘方: (m n ,为正整数);幂的乘方,底数不变,指数相乘.3.积的乘方: (n 为正整数);积的乘方,等于各因数乘方的积.4.同底数幂的除法:(a ≠0, m n ,为正整数,并且m n >).同底数幂相除,底数不变,指数相减.5.零指数幂:()010.a a =≠即任何不等于零的数的零次方等于1.要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁. 要点二、整式的乘法和除法 1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式. 2.单项式乘以多项式单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式).3.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.要点诠释:运算时,要注意积的符号,多项式中的每一项前面的“+”“-”号是性质符号,单项式乘以多项式各项的结果,要用“+”连结,最后写成省略加号的代数和的形式.根据多项式的乘法,能得出一个应用比较广泛的公式:()()()2x a x b x a b x ab ++=+++.4.单项式相除把系数、相同字母的幂分别相除作为商的因式,对于只在被除式里出现的字母,则连同它的指数一起作为商的一个因式. 5.多项式除以单项式先把这个多项式的每一项分别除以单项式,再把所得的商相加. 即:()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++ 要点三、乘法公式1.平方差公式:22()()a b a b a b +-=-两个数的和与这两个数的差的积,等于这两个数的平方差.要点诠释:在这里,a b ,既可以是具体数字,也可以是单项式或多项式.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2. 完全平方公式:()2222a b a ab b +=++;2222)(b ab a b a +-=-两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.要点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍. 要点四、因式分解把一个多项式化成几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解的方法主要有: 提公因式法, 公式法, 分组分解法, 十字相乘法, 添、拆项法等.要点诠释:落实好方法的综合运用:首先提取公因式,然后考虑用公式;两项平方或立方,三项完全或十字; 四项以上想分组,分组分得要合适; 几种方法反复试,最后须是连乘式; 因式分解要彻底,一次一次又一次.【典型例题】类型一、幂的运算1、已知25mx=,求6155m x -的值.【思路点拨】由于已知2mx 的值,所以逆用幂的乘方把6mx变为23()m x,再代入计算.【答案与解析】 解:∵25mx=,∴62331115()55520555m m x x -=-=⨯-=. 【总结升华】本题培养了学生的整体思想和逆向思维能力.举一反三:【高清课堂 整式的乘除与因式分解单元复习 例1】【变式】(1)已知246122,9,5===a b c ,比较,,a b c 的大小.(2)比较3020103,9,27大小。

人教版八年级数学上册作业课件 第十四章整式的乘法与因式分解 因式分解 公式法 用完全平方公式分解因式

人教版八年级数学上册作业课件 第十四章整式的乘法与因式分解 因式分解 公式法 用完全平方公式分解因式
人教版
第十四章 整式的乘法与因式分解
14. 3 因式分解
14.3.2 公式法 第2课时 用完全平方公式分解因式
完全平方公式
1.(3分)下列式子中是完全平方式的是( D) A.a2+ab+b2 B.a2+2a+2 C.a2-2b+b2 D.a2+2a+1 2.(3分)已知x2-12xy+m是一个完全平方式,则m=__3_6_;已知x2+ kx+4是一个完全平方式,则k=__±__4_.
(3)请你模仿以上方法尝试对多项式(a2-2a-1)·(a2-2a+3)+4进行因 式分解.
解:设a2-2a=b, 原式=(b-1)(b+3)+4 =b2+2b-3+4 =(b+1)2 =(a2-2a+1)2 =[(a-1)2]2 =(a-1)4
(4)(x2+1)2-4x2. 解:原式=(x2+1+2x)(x2+1-2x) =(x+1)2(x-1)2
16.(10分)利用因式分解求值: (1)(x+y)(x2+3xy+y2)-5xy(x+y),其中x=6.6,y=-3.4; 解:原式=(x+y)(x2+3xy+y2-5xy)=(x+y)(x2+y2-2xy)=(x+y)(x-y)2, 当x=6.6,y=-3.4时,原式=3.2×102=320 (2)已知a(a+1)-(a2+2b)=-1,求a2-4ab+4b2-2a+4b+1的值. 解:原式=(a-2b)2-2(a-2b)+1=(a-2b-1)2.∵a(a+1)-(a2+2b)=a2+a -a2-2b=a-2b=-1,∴原式=(-1-1)2=4
(4)(m+n)2-6(m+n)+9. 解:原式=(m+n-3)2
先提公因式再用完全平方公式分解因式
7.(3分)(株洲中考)下列各选项中因式分解正确的是( D) A.x2-1=(x-1)2 B.a3-2a2+a=a2(a-2) C.-2y2+4y=-2y(y+2) D.m2n-2mn+n=n(m-1)2 8.(3分)(扬州中考)分解因式:a3-2a2+a=__a_(a_-__1_)_2_.

第14章 整式的乘法与因式分解 人教版八年级上册 第十四章 章末复习

第14章 整式的乘法与因式分解 人教版八年级上册 第十四章 章末复习

(3)xy2-x=__x_(y_+__1_)_(y_-__1_)__.
8.若x2+kx-10=(x-5)(x+2),则k的值为____-__3____.
9.已知m+3n=5,则2m+6n+2=___1_2____.
第十四章 章末复习
10.计算: (1)(2a+3b)(2a-b); (2)(12x3+6x2 )÷3x. 解:(1)原式=4a2-2ab+6ab-3b2
解:原式=x2-4-x2+x=x-4.
第十四章 章末复习
3.计算: (1)x3y·3y2=___3_x_3_y_3 ___; (2)2x(3x2-x)=__6_x_3-__2_x_2__; (3)8a5b3÷(-4a2b)=__-__2_a_3_b_2 __.
返回目录
第十四章 章末复习
4.计算: (1)2a2·ab2+ab·(-a2b); (2)(3x-4y)(x+2y); (3)(6m4-8m2n2)÷2m2.
返回目录
基础练习
返回目录
第十四章 章末复习
1.(2023吉林)下列各式运算结果为a5的是( B )
A.a2+a3
B.a2·a3
C.(a2)3
D.a10÷a2
2.(2023赤峰)下列运算正确的是( A )
A.(a2b3)2=a4b6
B.3ab-2ab=1
C.(-a)3·a=a4
D.(a+b)2=a2+b2
解:(1)原式=2a3b2-a3b2=a3b2. (2)原式=3x2+6xy-4xy-8y2=3x2+2xy-8y2. (3)原式=6m4÷2m2-8m2n2÷2m2=3m2-4n2.
返回目录
第十四章 章末复习
乘法公式 1.平方差公式:(a+b)(a-b)=a2-b2. 2.完全平方公式:(a±b)2=a2±2ab+b2.

人教版数学八年级上册 第十四章 整式乘除与因式分解 知识点归纳

人教版数学八年级上册 第十四章 整式乘除与因式分解 知识点归纳

第十四章 整式乘除与因式分解知识点归纳:一、幂的运算:1、同底数幂的乘法法则:n m n m a a a +=•(n m ,都是正整数)同底数幂相乘,底数不变,指数相加。

注意底数可以是多项式或单项式。

如:532)()()(b a b a b a +=+•+2、幂的乘方法则:mn n m a a =)((n m ,都是正整数)幂的乘方,底数不变,指数相乘。

如:10253)3(=-幂的乘方法则可以逆用:即m n n m mn a a a )()(== 如:23326)4()4(4==3、积的乘方法则:n n n b a ab =)((n 是正整数)。

积的乘方,等于各因数乘方的积。

如:(523)2z y x -=5101555253532)()()2(z y x z y x -=•••-4、同底数幂的除法法则:n m n m a a a -=÷(n m a ,,0≠都是正整数,且)n m同底数幂相除,底数不变,指数相减。

如:3334)()()(b a ab ab ab ==÷5、零指数;10=a ,即任何不等于零的数的零次方等于1。

二、单项式、多项式的乘法运算:6、单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

如:=•-xy z y x 3232 。

7、单项式乘以多项式,就是用单项式去乘多项式的每一项,再把所得的积相加,即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式)。

如:)(3)32(2y x y y x x +--=。

8、多项式与多项式相乘,用多项式的每一项乘以另一个多项式的每一项,再把所的的积相加。

9、平方差公式:22))((b a b a b a -=-+注意平方差公式展开只有两项公式特征:左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数。

右边是相同项的平方减去相反项的平方。

八年级数学人教版上册第14章整式的乘除与因式分解14.1.4整式的乘法(第1课时图文详解)

八年级数学人教版上册第14章整式的乘除与因式分解14.1.4整式的乘法(第1课时图文详解)

八年级上册第14章整式的乘除与因式分解
1.下列计算中,正确的是( B )
A.2a3·3a2=6a6
B.4x3·2x5=8x8
C.2x·2x5=4x5
D.5x3·4x4=9x7
2.下列运算正确的是( D )
A.x2·x3=x6
B.x2+x2=2x4
C.(-2x)2=-4x2
D.(-2x2)(-3x3)=6x5
八年级上册第14章整式的乘除与因式分解
第14章 整式的乘除与因式分解
八年级上册
八年级上册第14章整式的乘除与因式分解
14.1.4 整式的乘法
第1课时
八年级上册第14章整式的乘除与因式分解
1.探索并了解单项式与单项式、单项式与多项式相乘的法则, 并运用它们进行运算. 2.让学生主动参与到探索过程中去,逐步形成独立思考、主 动探索的习惯,培养思维的批判性、严密性和初步解决问题 的能力.
八年级上册第14章整式的乘除与因式分解
2.填空:
a4 26
(1)6 2
a9 28
9 x2 y4 4
1
八年级上册第14章整式的乘除与因式分解
光的速度约为3×105千米/秒,太阳光照射到地球上需 要的时间大约是5×102秒,你知道地球与太阳的距离约是 多少千米吗? 分析:距离=速度×时间,即(3×105)×(5×102); 怎样计算(3×105)×(5×102)? 地球与太阳的距离约是: (3×105)×(5×102)=(3 ×5)×(105×102) =15×107=1.5×108(千米)
八年级上册第14章整式的乘除与因式分解
2.单项式与多项式相乘的法则: 单项式与多项式相乘,只要将单项式分别乘以多 项式的每一项,再将所得的积相加即可.

人教版初中八年级教学上册--整式的乘法以及因式分解单元总结复习计划以及归纳

人教版初中八年级教学上册--整式的乘法以及因式分解单元总结复习计划以及归纳

(整式的乘法 同底数幂的乘积 a m a n a mn(m,n 为正整数)注意点:(1)一定清楚底数、指数、幂这三个基本观点的涵义。

2)前提一定是同底数,指数才能够相加3)底能够是一个详细的数或字母,也能够是一个单项式或多项式, 4)指数都是正整数(5)三个或三个以上的同底数幂相乘,即a manapamnpm n p 为正整数) ,,6)不要与整式加法相混杂。

7)这个公式是可逆的a mn a m a n(m,n 为正整数)34 aa________种类一:x·x=x·x=a a 3________;3xn 4·x·x=222522y2nyn1 ;m-n 2n+111m-14-n52种类二:(1)已知·xx,且·=y,求m n的值。

=2m n(2) 若2 ·8=2,则n=2(34 4种类三:(1)、(-)(-)-)(2)、-a·(-a)·(-a)3620112012(3)、(x-y)(y-x)(y-x)(4)、(-2)(-2)a b2c种类四:已知2=3,2=6,=12,尝试究a、b、c之间的关系;1(幂的乘方(a m)n a mn(m,n为正整数)注意点:(1)幂的底数a能够是详细的数也能够是多项式。

2)不要和同底数幂的乘法法例相混杂3)公式的可逆性:a mamnmn为正整数);am nanm amnmn为正整数))(())(,(4)公式的扩展:(am pamnpmnp为正整数),,[(ab)m]n(a b)mn(m,n,为正整数)种类一:(a33(x m)3;(a2)3an;[ (23;[(23;a]=a+b种类二:【例1】若5x2,5y3,求52x3y【例2】若10n 4,10m5,求102n103m,的值;【例3】已知a 355,b 444,c 533,试比较a,b,c的大小;积的乘方ab n a n b n(n为正整数)注意点:(1)注意与前二个法例的差别:(2)积的乘方推行到3个以上因式的积的乘方a1a2a3a m n1na2n a3a m n(n为正整数)3)每个因式能够是单项式,多项式,或许其余代数式4)每个因式都要乘方,而后将所得的幂相乘5)公式的可逆性:a n b n ab n(n为正整数)幂的乘方,积的乘方的可逆性:a mn=(a m)n=(a n)m种类一:(ab)3 ________;(2a2b)3________;(5a3b2)2________mmn种类二:【例1】当ab= ,m=5,n=3, 求(ab) 的值。

人教版八年级上册数学《整式的乘法》整式的乘法与因式分解说课复习(单项式与单项式相乘)

人教版八年级上册数学《整式的乘法》整式的乘法与因式分解说课复习(单项式与单项式相乘)

(2) (- 4x) (2x2+3x-1)
解:原式=(- 4x) •2x2+(- 4x)•3x+(- 4x)•(-1) = - 8x3- 12x2+4x
(3) ab ( ab2 - 2ab)
解:原式= a2b3–2 a2b2 单项式与多项式相乘时,分两个阶段: ①按乘法分配律把乘积写成单项式与单项式乘积的代数和的形式; ②单项式的乘法运算。
(7)-5a3b2c·3a2b=-15a5b3c (8)a3b·(-4a3b)=-4a6b2 (9)(-4x2y)·(-xy)=4x3y2 (10)2a3b4(-3ab3c2)=-6a4b7c2 (11)-2a3·3a2=-6a5 (12)4x3y2·18x4y6=72x7y8
2.计算:(-a)2 ·a3 ·(-2b)3 -(-2ab)2 ·(-3a)3b
谢 谢 观 看!
4.若n为正整数,x3n=2,2x2n ·x4n+x4n ·x5n的值。
解:2x2n ·x4n+x4n ·x5n =2x6n+x9n =2(x3n)2+(x3n)3 =2×22+23 =8+8 =16
∴原式的值等于16。
5 已知1 (x2 y3 )m • (2xyn1)2 x4 • y9 , 4
情境引入 x
mx
1 8
x
x
3x 4
1 8
x
mx
第一幅的面积是 x(mx)
这是两个单项式相乘, 结果可以表达得更简
第二幅的面积是 (mx)( 3 x ) 单些吗?
4
光的速度约为3×105千米/秒,太阳光照射到
地球上需要的时间大约是5×102秒,你知道地
球与太阳的距离约是多少千米吗?

人教版八年级上《第14章整式的乘法与因式分解》

人教版八年级上《第14章整式的乘法与因式分解》

人教版八年级上《第14章整式的乘法与因式分解》一、整式的乘法在代数学中,我们经常会遇到整式的乘法运算。

整式是由字母和数字通过加、减、乘、幂运算连接而成的代数式。

整式的乘法运算是指两个整式相乘的操作。

整式的乘法运算遵循以下几个乘法法则:1.同底数幂相乘法则:对于同一个底数的两个幂相乘,可以将底数保持不变,指数相加。

例如,a^m * a^n =a^(m+n)。

2.非零常数乘幂法则:非零常数与任何非零幂相乘,仍然保持底数不变,指数相加。

例如,k * a^n = k * a^n。

3.乘法交换律:整式的乘法满足交换律,即a * b = b *a。

4.乘法结合律:整式的乘法满足结合律,即a * (b * c)= (a * b) * c。

通过上述乘法法则,我们可以简化整式的乘法运算,使计算变得更加简单明了。

二、整式的因式分解在代数学中,整式的因式分解是将一个整式分解成一系列整数乘积的运算。

因式分解在计算中具有重要作用,它可以帮助我们简化运算、求解方程等。

整式的因式分解有以下几种常见的方法:1.公因式提取法:当一个整式可以被一个公因式整除时,我们可以将公因式提取出来,然后将整式进行因式分解。

例如,对于整式3a + 6b,我们可以将公因式3提取出来得到3(a + 2b)。

2.差平方公式:对于形如a^2 - b2的整式,可以通过差平方公式进行因式分解。

差平方公式为:a2 - b^2 = (a + b)(a - b)。

3.完全平方公式:对于形如a^2 + 2ab + b2的整式,可以通过完全平方公式进行因式分解。

完全平方公式为:a2 + 2ab + b^2 = (a + b)^2。

4.求和差公式:对于形如a^3 + b3或a3 - b3的整式,可以通过求和差公式进行因式分解。

求和差公式为:a3 + b^3 = (a + b)(a^2 - ab + b2),a3 - b^3 = (a - b)(a^2 + ab + b^2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因式分解 复习练习题
一、知识点:
1、 因式分解:
(1) 把一个多项式写成几个整式的积的形式叫做多项式的因式分解。

(2) 多项式的乘法与多项式因式分解的区别
简单地说:乘法是积.化和.,因式分解是和.化积.。

(3)因式分解的方法:
①提公因式法; ②运用公式法。

2、因式分解的应用:
(1)提公因式法:如果多项式的各项含有公因式,那么就可以把这个公因式提出来。

把多项式化成公因式与另一个多项式的积的形式,这种分解因式方法叫做提公因式法。

(2)公因式:多项式ab +ac +ad 的各项ab 、ac 、ad 都含有相同的因式a ,a 称为多项式各项的公因式。

(3)用提公因式法时的注意点:
① 公因式要提尽,考虑的顺序是,先系数,再单独字母,最后多项式。

如: 4a 2(a-2b)-18ab(a-2b)=2a(a-2b)(2a-9b);
② 当多项式的第一项的系数为负数时,把“-”号作为公因式的负号写在括号外,使
括号内的第一项的系数为正。

如:-2m 3+8m 2-12m= -2.
m(m 2-4m+6); ③ 提公因式后,另一个多项式的求法是用原多项式除以公因式。

(4)运用公式法的公式:
① 平方差公式:a 2-b 2=(a+b)(a-b)
② 完全平方公式: a 2+2ab+b 2=(a+b)2 a 2-2ab+b 2=(a-b)2
(5)因式分解的步骤和要求:把一个多项式分解因式时,应先提公因式...
,注意公因式要提尽..
,然后再应用公式,如果是二项式考虑用平方差公式,如果是三项式考虑用完全平方公式,直到把每一个因式都分解到不能再分解为止。

如:
-2x 5y+4x 3y 3-2xy 5=-2xy(x 4-2x 2y 2+y 4)=-2xy(x 2-y 2)(x 2+y 2)=-2xy(x+y)(x-y)(x 2+y 2
) 二、举例:
例1:分解因式:
(1)(a+b)2-2(a+b) (2)a(x -y)+b(y -x)+c(x -y)
(3)(x+2)2-9 (4)4(a+b)2-9(a -b)2
(5) 80a 2(a +b)-45b 2(a +b) (6)(x 2-2xy)2+2y 2(x 2-2xy)+y 4
(7)(m +n)2-4(m +n)+4 (8)x 4-81
(9) (x +y)2-4(x 2-y 2)+4(x -y)2 (10)16a 4-8a 2+1
(11)(x 2+4)2-16x 2 (12)1242
2---y y x
例2:计算:
(1)20042-4008×2005+20052 (2)9.92-9.9×0.2+0.01
(3) 222001
20031001- (4)(1-221)(1-231)(1-241)…(1-291)(1-2101)
例3:观察下列算式回答问题:
32-1=8×1 52-1=24=8×3 72-1=48=8×6 92-1=80=8×10 ………
问:根据上述的式子,你发现了什么?你能用数学式子来说明你的结论是正确的吗?
例4:解答题:
(1)已知x 2-y 2=-1 , x+y=
2
1,求x -y 的值。

(2)已知a +b=7,ab=6,求a 2b +ab 2的值。

(3)已知x +y=4,xy=2,求2x 3y +4x 2y 2+2xy 3的值。

(4)已知:4m+n=90,2m -3n=10,求(m+2n)2-(3m -n)2的值。

(5)已知a 2-2a+b 2+4b+5=0,求(a+b)2005的值。

(6)已知m 、n 为自然数,且m(m -n)-n (n -m)=7,求m 、n 的值。

(7)已知a 、b 、c 分别为三角形的三条边,求证:0bc 2c b a 222<---
(8)若a 、b 、c 为△ABC 的三边,且满足a 2+b 2+c 2=ab +ac +bc ,试判断△ABC 的形状。

三、作业:
1、分解因式:
(1)-5a 2+25a ;
(2)3a 2-9ab ;
(3)25x 2-16y 2;
(4)x 2+4xy +4y 2.
(5)x 2y 2-1; (6)25x 2+20xy +4y 2;
(7)x 3-25x ;
(8)4x 3y +4x 2y 2+xy 3;
(9)3x 2+6xy +3 y 2; (10)(x -y)2+4xy ;
(11)(a+b)2+2(a+b)+1; (12)(x 2+y 2) 2-4x 2y 2
(13)4x 4-4x 3+x 2; (14)ab +a +b +1;
(15)()()()2x —22—2—x 1—x ;(16)()2222
2b a 9—b ab a ++。

2、 试说明不论x 、y 取什么有理数,多项式x 2+y 2-2x+2y+3的值总是正数.
【参考答案】
举例:
例1.(1)()(2)a b a b ++-;(2)()()x y a b c --+;(3)(5)(1)x x +-;(4)(5)(5)a b a b ---;
(5)5()(43)(43)a b a b a b ++-;(6)4()x y -;(7)2(2)m n +-;
(8)2(9)(3)(3)x x x ++-;(9)2(3)x y -;(10)22(21)(21)a a +-;(11)4(2)x -;
(12)(21)(21)x y x y ++--。

例2.(1)1;(2)97;(3)18;(4)1120。

例3. 解:(1)n=1时,(2×1+1)2﹣1=8×1;
n=2时,(2×2+1)2﹣1=24=8×(1+2);
n=3时,(2×3+1)2﹣1=48=8×(1+2+3);
n=4时,(2×4+1)2﹣1=80=8×(1+2+3+4);

n=n 时,(2n +1)2﹣1=8×(1+2+3+…+n ).
即发现的规律为:(2n +1)2﹣1=8×(1+2+3+…+n );
(2)∵左边=(2n +1)2﹣1=4n 2+4n +1﹣1=4n 2+4n ,
右边=8×(1+2+3+…+n )=8×=4n (n +1)=4n 2+4n ,
∴左边=右边,
即(2n +1)2﹣1=8×(1+2+3+…+n ).
例4.(1)-2;(2)42;(3)64;(4)-900;(5)-1;(6)
(7)略;(8)等边三角形。

作业:
1.(1)5(5)a a --;(2)3(3)a a b -;(3)(54)(54)x y x y +-;(4)2(2)x y +;(5)
(1)(1)xy xy +-;(6)2(52)x y +;(7)(5)(5)x x x +-;(8)2(2)xy x y +;(9)23()x y +;
(10)2()x y +;(11)2(1)a b ++;(12)22()()x y x y +-;(13)22(21)x x -;(14)
(1)(1)a b ++;(15)(2)(3)x x ---;(16)222(4)()a ab b a b ++-。

2.原式22(1)(1)10x y =-+++>,故为正数。

相关文档
最新文档