Nitrogen and phosphorus budgets of the North Atlantic Ocean and its watershed

合集下载

土壤碳氮磷生态化学计量特征及影响因素概述

土壤碳氮磷生态化学计量特征及影响因素概述

生态化学计量学从分子到全球尺度,以C、N、P 等化学元素平衡对生态交互影响为切入点,为生态学研究提供了新的思路,成为当前生态学研究的热点。

C、N、P 是土壤中重要的生源要素,对其生态化学计量特征的研究对土壤的保持、土地恢复及土壤C、N、P 循环具有重要的理论和实践意义。

1土壤生态化学计量学1.1生态化学计量学1986年,Reiners 结合化学计量学和生态学提出生态化学计量学基本理论,2000年,Elser 等首次明确生态化学计量学[1]。

它综合了生态学、生物学、物理学和分析化学等学科,成为研究生态作用和生态过程中多重化学元素(主要为C、N、P)平衡及能量平衡的新兴学科。

生态化学计量学在发展过程中与能量守恒定律、分子生物学中心法则以及生物进化自然选择等理论结合,在限制元素判断、植物个体生长、种群动态、群落演替、生态系统稳定性等方面的研究成果较丰富[2,3]。

1.2土壤生态化学计量特征及对土壤养分的指示作用1.2.1土壤生态化学计量特征土壤作为陆地生态系统的重要单元,其养分对植物生长、矿质代谢起关键作用,影响着植物群落的组成结构、生产力水平和生态系统稳定性。

土壤主要组分C、N、P 生态化学计量特征能揭示土壤养分的可获得性、养分循环及平衡机制,对于判断土壤养分之间的耦合关系和土壤质量有重要作用[4,5]。

从全球尺度看,0~10cm 土层C:N:P 计量比通常为186∶13∶1(摩尔比),有显著的稳定性,但比值在一定的范围内波动,存在着差异性[6,7]。

对我国土壤C、N、P 计量研究显示,C 和N 含量具有较大的空间变异性,但C:N 相对稳定,受气候的影响很小[8]。

不同生态系统的土壤C、N、P土壤碳氮磷生态化学计量特征及影响因素概述(哈尔滨师范大学生命科学与技术学院,黑龙江省水生生物多样性研究重点实验室黑龙江,哈尔滨150025)【摘要】土壤碳氮磷生态化学计量特征反映土壤养分贮存和供应能力及养分动态,对土壤生态系统修复与保护具有重要指导意义。

总磷和氨氮去除工艺流程

总磷和氨氮去除工艺流程

总磷和氨氮去除工艺流程英文回答:Phosphorus and ammonia nitrogen removal processes are essential in wastewater treatment to ensure the protection of water bodies and the environment. There are several techniques and technologies available for the removal of these contaminants, and I will discuss two commonly used processes: biological nutrient removal and chemical precipitation.Biological nutrient removal (BNR) is a widely used process that utilizes microorganisms to remove phosphorus and ammonia nitrogen from wastewater. This processtypically involves two stages: the anaerobic stage and the aerobic stage. In the anaerobic stage, phosphorus-accumulating organisms (PAOs) are utilized to take up phosphorus in the form of polyphosphate. These PAOs store the phosphorus within their cells. In the subsequent aerobic stage, nitrifying bacteria convert ammonia nitrogeninto nitrate through a process called nitrification. The nitrate is then further converted into nitrogen gas through denitrification by denitrifying bacteria. This process effectively removes both phosphorus and ammonia nitrogen from the wastewater.Chemical precipitation is another commonly used method for phosphorus and ammonia nitrogen removal. In this process, chemicals such as iron salts (e.g., ferric chloride) or aluminum salts (e.g., alum) are added to the wastewater. These chemicals react with phosphorus and ammonia nitrogen to form insoluble precipitates. The precipitates can then be separated from the wastewater through sedimentation or filtration. This method is particularly effective for phosphorus removal, as the precipitates formed are usually highly insoluble. However, it may not be as efficient for ammonia nitrogen removal, as the precipitates formed may still contain some soluble ammonia nitrogen.Both of these processes have their advantages and limitations. BNR is a biological process that can achievesimultaneous removal of phosphorus and ammonia nitrogen. It is cost-effective and environmentally friendly, as it does not require the addition of chemicals. However, it requires careful control and optimization of the operational conditions to ensure efficient nutrient removal. Chemical precipitation, on the other hand, is a simpler process that can achieve high phosphorus removal efficiency. It is relatively easy to operate and can be used as a standalone treatment or as a polishing step after biological treatment. However, it requires the addition of chemicals, which canbe costly and may generate sludge that needs to be properly disposed of.中文回答:总磷和氨氮去除工艺流程在废水处理中是非常重要的,以确保水体和环境的保护。

2018年2月3日雅思考试真题及答案

2018年2月3日雅思考试真题及答案

2018年2月3日雅思考试机经真题回忆+答案【听力】一、考试概述本场考试填空类题目为24 个,选择类16 个。

填空所占的比例仍是较大的,所以考生们一定要做好准备,尤其需要注意单词的拼写。

section 1:咨询——寻求车辆救援,填空10section 2:介绍——海岛旅游,选择6+填空4section 3:讨论——作家克里斯蒂的故事,选择6+配对4section 4:社科——经济学和信任的实验,填空10二、具体题目分析:section 1新旧情况:07148场景:咨询——寻求车辆救援题型:填空10参考答案:: wollowey2.address: flat 63.the number of car: rh139ys4.nx55jgy5.the type and the color of the car: metallic grey6.cannot walk very well7.present location: in a petrol station8.cross a bridge over a river9.transfer to a hotel10.length of time to get help: within 30 minutes(答案仅供参考)解析:考察的题型相对简单,但是部分单词的拼写还是需要注意的,如wollowey 需要注意“double l”和“nx55jgy”中j 和g 的顺序。

section 2新旧情况:09208场景:介绍——海岛旅游题型:选择6+填空4参考答案:11.where is the information board?a.at the reception in the villageinside the cottage c. on the beach12. which sport you must book in advance?b. watersking13. ticket include?a. shoesb. a map of cavec. safety helmet14. wildlife park be recommend for family/families outside traveling to safari park15.children are permitted to feed animals16.red kangaroo is larger than a person17.crocodiles live at least 50 years18-20. what can be most popular as tourists chose in inland region?c.buy some souvenirsd.visit emu farme.visit cheese productionf.**follow the natural trailsg.picking emu farm(答案仅供参考)解析:此次考察的场景较为熟悉,需要注意判定好题干信息,然后排除一些干扰信息。

生物同步脱氮除磷工艺流程,并分析

生物同步脱氮除磷工艺流程,并分析

生物同步脱氮除磷工艺流程,并分析生物同步脱氮除磷工艺是一种利用微生物处理废水中氮磷污染物的工艺。

The biological synchronous denitrification and dephosphorization process is a technique using microorganisms to treat nitrogen and phosphorus pollutants in wastewater.首先,废水经过初步处理后,进入生物反应器。

Firstly, after the preliminary treatment, the wastewater enters the biological reactor.然后,在生物反应器中,经过厌氧条件下的脱氮作用,一部分氮素被转化为氮气释放到大气中。

Then, in the biological reactor, under anaerobic conditions, some nitrogen is transformed into nitrogen gas and released into the atmosphere.在同一时间,另一部分废水中的氮素被转化为氮氧化物,并在需要氧气的氧化条件下被进一步处理。

At the same time, another portion of nitrogen in the wastewater is converted to nitrogen oxides and further treated under aerobic conditions requiring oxygen.除氮后,废水进一步进入磷的处理阶段。

After denitrification, the wastewater further enters the phosphorus treatment stage.在此阶段,废水中的磷会被吸附到生物污泥上,从而将磷从废水中去除。

洱海流域44种湿地植物的氮磷含量特征

洱海流域44种湿地植物的氮磷含量特征

洱海流域44种湿地植物的氮磷含量特征鲁静;周虹霞;田广宇;刘贵华【摘要】研究湿地植物中的氮和磷含量既能帮助了解其所处生境的营养状况,又能为湿地生态恢复提供指导.测定了洱海流域44种湿地植物干生物量中的氮、磷含量.结果表明洱海湿地植物中总氮和总磷平均含量为15.7 mg/g和3.3 mg/g,变化范围为6.4-34.3 mg/g和1.4-6.5 mg/g,明显高于其他地区;氮磷比范围为2.2-9.5,显示该地区磷过剩,氮是限制因子;不同功能群植物间的氮和磷含量有显著差异,总氮含量以沉水植物最高而挺水和漂浮/浮叶植物最低,而总磷含量则为湿生植物最高而沉水植物最低;植物的地上部分分别占有整株72%的生物量、82%的氮含量和75%的磷含量,表明收割湿地植物的地上部分可以高效去除湿地生态系统中的氮和磷.【期刊名称】《生态学报》【年(卷),期】2011(031)003【总页数】7页(P709-715)【关键词】总氮;总磷;营养限制;生态恢复;洱海流域【作者】鲁静;周虹霞;田广宇;刘贵华【作者单位】中国科学院水生植物与流域生态重点实验室,武汉植物园,武汉,430074;中国科学院研究生院,北京,100049;云南省环境科学研究院,昆明,650034;中国科学院水生植物与流域生态重点实验室,武汉植物园,武汉,430074;中国科学院水生植物与流域生态重点实验室,武汉植物园,武汉,430074【正文语种】中文氮和磷在水域生态系统中起着非常重要的作用,它们不仅是植物生长所必需的营养元素,也是水体富营养化的主要根源。

氮和磷是植物群落构建的重要营养盐,湿地生境中氮和磷含量的改变会导致物种间竞争能力和对环境胁迫的适应能力的变化,从而引发植物群落的改变,最终导致湿地生态系统结构和功能的变化[1-4]。

过去的20—30a间,围绕湖泊富营养化治理,各级政府投入了大量的人力与物力,但迄今为止收效甚微。

湿地作为氮、磷等源、汇的调节器,可以有效促进、延缓或遏制水环境的恶化趋势,湿地植被是湿地生态系统结构和功能的基础。

磷氮阻燃剂集合资料

磷氮阻燃剂集合资料

Combustion and thermal behaviors of the novel UV-cured intumescent flame retardant coatings containing phosphorus and nitrogen (WeiYi Xing)磷酸三(丙烯酰氧基乙基)酯(TAEP)与不同比例的异氰脲酸三缩水甘油酯丙烯酸酯(TGICA)共混以获得一系列可UV固化的膨胀型阻燃树脂。

在TAEP 和TGICA之间发现明显的协同效应。

在所有树脂中,样品TAEP2具有最高的LOI(44)值。

锥形量热计结果显示样品TAEP2具有最低的峰值放热速率(297KW / M2)。

通过(TGA)和实时傅里叶变换红外光谱(RT-FTIR)监测热降解。

建议降解机理,其中TAEP中的磷酸基团首先降解形成聚(磷酸),其进一步催化材料的降解以形成焦炭,从TGICA释放氮气挥发物,导致形成膨胀炭。

Combustion and Thermal Degradation Mechanism of a Novel Intumescent Flame Retardant for Epoxy Acrylate Containing Phosphorus and Nitrogen (Xiaodong Qian)磷酰氯与哌嗪和丙烯酸2-羟基乙酯(HEA)反应来合成新的含磷和氮的化合物(POPHA)。

通过以不同比例共混POPHA和HEA,获得一系列可UV固化的阻燃树脂。

将POPHA掺入HEA可显着提高HEA的阻燃性。

通过扫描电子显微镜(SEM)观察形成的炭的形态,证明POPHA的最有效量为20重量%。

Effect of a novel phosphorousenitrogen containing intumescent flame retardant on the fire retardancy and the thermal behaviour of poly(butylene terephthalate) (Feng Gao)笼状双环磷(PEPA)化合物和4,4'-二氨基二苯基甲烷(DDM)的反应分两个步骤制备新型含磷的膨胀型阻燃剂(P-N IFR)。

广西北部湾近岸海域氮生物地球化学过程及营养盐沉积记录

广西北部湾近岸海域氮生物地球化学过程及营养盐沉积记录

广西北部湾近岸海域氮生物地球化学过程及营养盐沉积记录摘要河口近岸区域作为连接陆地和海洋的重要过渡地带,承受着沿海城市发展和人类活动的巨大压力,更容易发生各类环境问题,如富营养化及赤潮爆发已经对沿岸生态系统和经济发展带来了严重的威胁。

了解营养盐的迁移转化和沉积历史对于缓解和防治近岸富营养化问题具有重要的科学意义。

本研究选取广西北部湾近岸海域作为研究对象,针对营养盐的收支平衡、氮的关键生物地球化学过程及营养盐的沉积记录开展了一系列研究,主要研究成果如下:(1) 本文研究了广西北部湾近岸海域表层水、上覆水和沉积物孔隙水中的营养盐浓度,发现营养盐的高值区都位于受河流输入和人类活动显著影响的区域,整体上营养盐都有着从河口向外湾逐渐降低的趋势,说明了陆源输入是营养盐的一个主要来源。

而夏季的营养盐浓度基本都显著高于冬季,这也与丰水期陆源的输入量大大高于枯水期密切相关。

另外,本文运用Fick第一扩散定律估算了沉积物-水界面的营养盐扩散通量,发现所有营养盐的扩散通量均为正值,表明营养盐是从沉积物扩散到上覆水体中的,是水体营养盐的一个内源。

低氧和高温可以促进沉积物-水界面的营养盐扩散过程。

(2)本研究通过实地调查和LOICZ箱式模型,估算了广西北部湾近岸海域氮、磷、硅的收支情况。

在季节尺度内,由于水通量和营养盐浓度的差异,营养盐通量的季节变化很大,丰水期的通量明显大于枯水期。

综合所有河口的收支结果表明,广西北部湾近岸海域是所有营养盐的汇。

海底地下水排放是最大的营养盐来源,其次为河流输入;外海交换是主要的营养盐输出途径。

(3)本文研究了广西北部湾近岸海域固氮作用的时空分布规律,运用乙炔还原法测定了研究区域表层水体的固氮速率。

固氮作用在夏季和冬季的平均速率分别为0.33±0.17 nmolN/L/h和0.23±0.11 nmolN/L/h,主要发生在高温、低硝酸盐、低氮磷比(N/P<16)的环境中。

化肥英语知识点总结

化肥英语知识点总结

化肥英语知识点总结Types of FertilizersThere are several types of fertilizers, each with its own specific nutrient content and application method.1. Nitrogen FertilizersNitrogen is an essential nutrient for plant growth, as it is a major component of chlorophyll, the pigment that gives plants their green color and is essential for photosynthesis. Nitrogen fertilizers can be classified into two main categories: organic and inorganic.Organic nitrogen fertilizers, such as manure and compost, are derived from natural sources and provide a slow-release form of nitrogen. They are beneficial for improving soil structure and fertility, as well as promoting the growth of beneficial microorganisms.Inorganic nitrogen fertilizers, such as urea and ammonium nitrate, are synthetic fertilizers that provide a quick-release form of nitrogen. They are often used for promoting rapid growth and increasing crop yields.2. Phosphorus FertilizersPhosphorus is important for root development, seed germination, and flowering in plants. Phosphorus fertilizers are available in various forms, including rock phosphate, superphosphate, and triple superphosphate. These fertilizers provide a slow-release form of phosphorus and are beneficial for improving soil fertility and promoting plant growth.3. Potassium FertilizersPotassium is essential for regulating water uptake, photosynthesis, and the uptake of other nutrients in plants. Potassium fertilizers, such as potassium chloride and potassium sulfate, provide a quick-release form of potassium and are used to promote overall plant health and increase crop yields.4. Compound FertilizersCompound fertilizers contain a combination of nitrogen, phosphorus, and potassium in varying proportions. They provide a balanced nutrient supply for plants and are often used to promote overall plant growth and development.Uses of FertilizersFertilizers are used to promote plant growth and increase crop yields in agricultural and horticultural settings. They are applied to the soil in various ways, including broadcasting, topdressing, and side-dressing, depending on the specific nutrient requirements of the plants.Fertilizers can also be applied as foliar sprays, where they are sprayed directly onto the leaves of the plants to provide a quick nutrient boost. This method is often used for correcting nutrient deficiencies and promoting rapid growth in plants.Impact on the EnvironmentWhile fertilizers are essential for promoting plant growth, they can also have negative impacts on the environment if not used properly. Excessive use of fertilizers can lead to nutrient runoff into water bodies, resulting in eutrophication and algal blooms. This can lead to a decrease in water quality and harm aquatic ecosystems.Fertilizers can also contribute to air pollution through the release of nitrogen oxides and ammonia into the atmosphere. These compounds can react with other pollutants to form smog and contribute to the formation of acid rain.To minimize the environmental impact of fertilizers, it is important to use them judiciously and in accordance with recommended application rates. Using slow-release fertilizers, implementing nutrient management plans, and practicing sustainable farming methods can help reduce the negative impacts of fertilizers on the environment.In conclusion, fertilizers are essential for promoting plant growth and increasing crop yields. There are several types of fertilizers, each with its own specific nutrient content and application method. When used properly, fertilizers can help improve soil fertility and promote overall plant health. However, it is important to use them judiciously to minimize their negative impacts on the environment.。

水体富营养化英文

水体富营养化英文
Deep aeration Taking artificial lake deep aeration and supplementing oxygen from time to time is conducive to inhibit the release of phosphorus from sediment.
Thank you !
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
Control method
Biological methods
Use aquatic life to absorb nitrogen and phosphorus in order to remove nitrogen and phosphorus in water.
For example, some countries try to purify the eutrophic water body with large aquatic plants , such as water hyacinth, reed , typha angustifolia and so on.
Mechanism
Excess nutrients(N、P)
Autotrophic organisms (especially blue-green algae and red algae) grow quickly
Fish and other aquatic life die
Other algae species gradually reduce Plankton and other small organisms die
Be decomposed by aerobic microorganism consume dissolved oxygen in water

同时含有氮磷钾三种营养元素的化肥的化学式

同时含有氮磷钾三种营养元素的化肥的化学式

同时含有氮磷钾三种营养元素的化肥的化学式1.化学式是NPK的化肥对作物的生长有着很大的促进作用。

The chemical formula NPK fertilizer has a significant promoting effect on the growth of crops.2.作物需要氮磷钾这三种营养元素来保持健康的生长。

Crops need the three nutrients of nitrogen, phosphorus, and potassium to maintain healthy growth.3.氮磷钾是植物生长必需的三种主要元素。

Nitrogen, phosphorus, and potassium are three essential elements for plant growth.4.化肥中的氮元素能够促进叶绿素的合成,提高作物的光合作用效率。

The nitrogen in fertilizers can promote the synthesis of chlorophyll and improve the efficiency of photosynthesis in crops.5.磷元素对植物的根系生长和花果结果具有重要作用。

Phosphorus is important for the root growth and flower and fruit production of plants.6.适量的钾元素有助于植物的抗病能力和抗逆境能力提升。

An appropriate amount of potassium helps to enhance the disease resistance and stress tolerance of plants.7.植物缺乏氮磷钾这三种养分元素会导致生长迟缓和疾病易感。

A lack of nitrogen, phosphorus, and potassium nutrients in plants can lead to slow growth and susceptibility to diseases.8.农作物的营养生长需要充分的氮元素来维持植物的氮平衡。

氮磷钾对植物生长的作文

氮磷钾对植物生长的作文

氮磷钾对植物生长的作文英文回答:Nitrogen, phosphorus, and potassium are essential nutrients for plant growth. They play different roles inthe development of plants and are required in varying amounts.Nitrogen is a key element in the formation of proteins, enzymes, and chlorophyll. It promotes leaf and stem growth, as well as overall plant vigor. Without sufficient nitrogen, plants may exhibit stunted growth and yellowing leaves. For example, when I was growing tomatoes in my garden, Inoticed that the plants that received a nitrogen-rich fertilizer grew taller and had greener leaves compared to those without nitrogen supplementation.Phosphorus is crucial for energy transfer and storagein plants. It is involved in the production of ATP, the energy currency of cells, as well as DNA and RNA synthesis.Phosphorus also aids in root development and flowering. Insufficient phosphorus can lead to poor root growth and reduced flower production. To illustrate, when I was cultivating roses, I applied a phosphorus-rich fertilizerto promote root growth, and as a result, the plants developed a strong root system and produced abundant blooms.Potassium, or potash, is important for overall plant health and disease resistance. It regulates water uptakeand retention, enhances photosynthesis, and improves the transportation of sugars and other nutrients within the plant. A deficiency in potassium can cause wilting, poorfruit development, and increased susceptibility to pestsand diseases. For instance, when I was growing strawberries, I observed that the plants that received potassium supplementation had healthier leaves, larger fruits, and were less prone to fungal infections.In conclusion, nitrogen, phosphorus, and potassium are essential for plant growth. Nitrogen promotes leaf and stem growth, phosphorus supports energy transfer and root development, and potassium enhances overall plant healthand disease resistance. By understanding the roles of these nutrients and providing plants with the appropriate amounts, we can optimize their growth and ensure healthy and productive gardens.中文回答:氮磷钾是植物生长所必需的营养元素。

脱氮除磷的原理及流程

脱氮除磷的原理及流程

脱氮除磷的原理及流程The process of removing nitrogen and phosphorus from wastewater, also known as denitrification and dephosphorization, is essential in reducing the environmental impact of sewage discharge. From a chemical and biological standpoint, these processes involve the conversion of nitrogen and phosphorus compounds into less harmful forms, thereby minimizing their contribution to water pollution.脱氮和除磷的过程是通过生物和化学手段将废水中的氮磷化合物转化为较少有害的形式,从而最大程度地减轻其对水污染的贡献。

Denitrification is the process of converting nitrate (NO3-) to nitrogen gas (N2) through the action of denitrifying bacteria. These microorganisms thrive in anaerobic conditions and utilize nitrate as an electron acceptor, facilitating its reduction to gaseous nitrogen. This process is crucial for reducing nitrate concentrations in wastewater and preventing eutrophication in receiving water bodies.脱氮是通过反硝化菌将硝酸盐转化为氮气的过程,这些微生物主要生存于厌氧条件下,利用硝酸盐作为电子受体,促进其还原为气态氮。

初中生物氮磷钾对植物的作用

初中生物氮磷钾对植物的作用

初中生物氮磷钾对植物的作用Nitrogen, phosphorus, and potassium are three essential nutrients for plant growth. Nitrogen is crucial for leafy growth, phosphorus aids in root development, and potassium helps with overall plant health. These three elements play a vital role in various physiological processes within plants, influencing their growth, development, and overall productivity.氮、磷和钾是植物生长所必需的三种关键营养物质。

氮对叶子的生长至关重要,磷有助于根系的发育,钾则有助于植物的整体健康。

这三种元素在植物内部的各种生理过程中起着至关重要的作用,影响植物的生长、发育和整体生产力。

Nitrogen is a major component of amino acids, proteins, and chlorophyll, all of which are essential for plant growth and development. It is responsible for the lush green color of leaves and the overall healthy appearance of plants. Without sufficient nitrogen, plants may exhibit stunted growth, yellowing leaves, and reduced yields. Proper nitrogen levels in the soil are vital for ensuring healthy plant growth and high crop yields.氮是氨基酸、蛋白质和叶绿素的主要成分,这些都对植物的生长和发育至关重要。

火星陨石元素成分 磷

火星陨石元素成分 磷

火星陨石元素成分磷英文回答:Phosphorus is an important element found in Mars meteorites. It is a non-metallic element that belongs to the nitrogen group on the periodic table. Phosphorus is essential for life as it is a key component of DNA, RNA, and ATP, which are all crucial for cellular processes. In addition, phosphorus plays a vital role in energy transfer and storage in living organisms.Phosphorus can exist in several different forms, including white phosphorus, red phosphorus, and black phosphorus. White phosphorus is highly reactive and is known for its self-igniting properties. It is used in various applications such as matches, fireworks, and incendiary devices. Red phosphorus is less reactive and is commonly used in the production of safety matches and fertilizers. Black phosphorus is a stable form of phosphorus that has recently gained attention for itsunique electronic and optical properties.In Mars meteorites, phosphorus is typically found in the form of phosphate minerals, such as apatite. These minerals contain phosphorus, calcium, and other elements. The presence of phosphate minerals in Mars meteorites indicates that phosphorus was available on Mars and could have played a role in supporting life or its potential for life in the past.One example of a Mars meteorite that contains phosphorus is the Allan Hills 84001 meteorite. This meteorite was found in Antarctica in 1984 and is believed to have originated from Mars. Analysis of this meteorite revealed the presence of carbonate minerals, which are typically associated with the presence of liquid water. The presence of phosphorus in this meteorite further supports the hypothesis that Mars had the necessary ingredients for life to exist or have existed in the past.中文回答:磷是火星陨石中的一个重要元素。

重庆笋溪河流域河岸带水体-土壤-植物的氮磷特征及影响因素

重庆笋溪河流域河岸带水体-土壤-植物的氮磷特征及影响因素

第36卷第2期2022年4月水土保持学报J o u r n a l o f S o i l a n d W a t e rC o n s e r v a t i o nV o l .36N o .2A pr .,2022收稿日期:2021-09-29资助项目:国家 十三五 重点研发计划项目(2017Y F C 0505306) 第一作者:孟海(1991 ),男,在读硕士研究生,主要从事土壤学研究㊂E -m a i l :166********@163.c o m 通信作者:王海燕(1972 ),女,博士,教授,主要从事土壤学㊁植物营养学研究㊂E -m a i l :h a i y a n w a n g 72@a l i yu n .c o m 重庆笋溪河流域河岸带水体-土壤-植物的氮磷特征及影响因素孟海,王海燕,侯文宁,赵晗,宁一泓(森林培育与保护教育部重点实验室,北京林业大学林学院,北京100083)摘要:为明晰重庆笋溪河流域河岸带水体㊁土壤和植物的氮磷特征及其影响因素,采用描述性统计㊁聚类分析㊁相关分析和冗余分析的方法,探讨三峡库尾小流域河岸带水体㊁土壤和植物的氮㊁磷含量特征㊁空间分布和各圈层氮磷的相关性及水体氮磷的影响因素㊂结果表明:(1)河岸带受河流区段影响,从上游到下游,水体氮磷与土壤全氮的含量先减小后增大,下游存在明显的农业氮输入,而土壤硝态氮㊁全磷和有效磷与植物氮磷的含量逐渐增加;(2)河岸带水体总氮与植物不同营养器官的氮含量均呈显著正相关(P <0.01),水体总磷与土壤全磷和有效磷均呈显著正相关(P <0.001),且土壤全磷㊁有效磷均与海拔呈显著负相关(P <0.001);(3)河岸带水体氮磷受土壤氮磷㊁植物氮磷和地形的影响,其中土壤氮磷为主导因子,且土壤20 40c m 有效磷㊁0 20c m 有效磷㊁20 40c m 全磷㊁0 20c m 全磷和0 20c m 硝态氮的置换检验均达到显著水平(P <0.05),变异解释率依次为25.11%,21.71%,11.14%,8.13%和3.05%㊂河流区段对河岸带水体㊁土壤和植物中的氮磷含量有影响,从上游到下游,氮磷含量逐渐积聚,而差异性减小;河岸带水体㊁土壤和植物中的氮㊁磷彼此间存在一定的相关性,同时受海拔㊁坡度和坡向的影响㊂耕地是造成流域下游农业面源污染的主要原因,需加强中下游河岸带植物防护和堤岸土壤保持的能力及优化河岸带的土地利用结构,为三峡库区小流域农业面源污染控制提供依据㊂关键词:河岸带;氮;磷;相关分析;冗余分析中图分类号:X 502 文献标识码:A 文章编号:1009-2242(2022)02-0275-08D O I :10.13870/j.c n k i .s t b c x b .2022.02.035N i t r o g e na n dP h o s p h o r u sC h a r a c t e r i s t i c s a n d I n f l u e n c i n g F a c t o r s i n W a t e r -S o i l -P l a n t S y s t e mi n t h eR i pa r i a nZ o n e o f t h e S u n x iR i v e rW a t e r s h e d ,C h o n g q i n gM E N G H a i ,WA N G H a i y a n ,HO U W e n n i n g ,Z HA O H a n ,N I N G Y i h o n g(K e y L a b o r a t o r y f o rS i l v i c u l t u r e a n dC o n s e r v a t i o no f M i n i s t r y o f Ed u c a t i o n ,C o l le g e of F o r e s t r y ,B e i j i ng F o r e s t r y U n i v e r s i t y ,B e i j i n g 100083)A b s t r a c t :I no r d e r t o c l a r i f y t h e c h a r a c t e r i s t i c so f n i t r o g e na n d p h o s p h o r u s a n d i n f l u e n c i n g fa c t o r s i nw a t e r -s o i l -p l a n t s y s t e mi nt h e r i p a r i a nz o n eo f t h eS u n x iR i v e rw a t e r s h e d ,C h o n g q i n g ,t h ed e s c r i p t i v es t a t i s t i c s ,c l u s t e r a n a l y s i s ,c o r r e l a t i o na n a l y s i s a n d r e d u n d a n c y a n a l y s i sw e r e c a r r i e do u t t o s t u d y t h e c h a r a c t e r i s t i c s o f n i t r o g e na n d p h o s p h o r u s c o n t e n t a n d s p a t i a l d i s t r ib u t i o n i nw a t e r ,s o i l a n d p l a n t s i n t h e r i p a r i a n z o n e o f t h e s m a l lw a t e r s h e d a t t h e e n do f t h eT h r e eG o r g e sR e s e r v o i r ,a sw e l l a s t o s t u d y t h ec o r r e l a t i o nb e t w e e nn i t r o -g e na nd p h o s p h o r u s i ne a c h s p h e r e a n d t h ef a c t o r s i n f l u e n c i ng n i t r o g e n a n d ph o s ph o r u s i nw a t e r .T h e r e s u l t s s h o w e d t h a t :(1)T h e r i p a r i a nz o n ew a sa f f e c t e db y t h er i v e rs e c t i o n .F r o m u ps t r e a mt od o w n s t r e a m ,t h e c o n t e n t o f n i t r o g e na n d p h o s p h o r u s i nw a t e r a n d s o i l t o t a l n i t r o ge nd e c r e a s e df i r s t a n d t h e n i n c r e a s e d ,w h i l e t h e c o n t e n t o f n i t r og e n a n d ph o s p h o r u si n t h e p l a n t ,s o i l n i t r a t e n i t r o g e n ,t o t a l a n d a v a i l a b l e p h o s p h o r u s g r a d u a l l y i n c r e a s e d .T h e r e e x i s t e da no b v i o u sa g r i c u l t u r a ln i t r o g e n i n p u t i nt h ed o w n s t r e a m.(2)T h et o t a ln i t r o ge n c o n t e n t i nw a t e rw a s s i g n if i c a n t l yp o s i t i v e l y r e l a t e d t o t h en i t r og e nc o n t e n t i nd i f f e r e n t v e g e t a t i v eo r ga n so f p l a n t (P <0.01).T o t a l p h o s p h o r u sc o n t e n t i n w a t e rw a ss i g n i f i c a n t l yp o s i t i v e l y re l a t e dt os o i l t o t a la n d a v a i l a b l e p h o s p h o r u sc o n t e n t (P <0.001),a n d b o t hs o i lt o t a la n da v a i l a b l e p h o s ph o r u sc o n t e n t w e r es i g n i f i c a n t l y n e g a t i v e l y r e l a t e d t o a l t i t u d e(P<0.001).(3)T h e c o n t e n t o f n i t r o g e n a n d p h o s p h o r u s i n r i p a r i-a nw a t e rw e r e a f f e c t e db y t h ec o n t e n to f s o i l n i t r o g e na n d p h o s p h o r u s,p l a n tn i t r o g e na n d p h o s p h o r u sa n d t o p o g r a p h y,a n d a m o n g t h e m,s o i l n i t r o g e n a n d p h o s p h o r u sw e r e t h e d o m i n a n t f a c t o r s.T h e p e r m u t a t i o n t e s t o f a v a i l a b l e p h o s p h o r u s a t s o i l d e p t ho f20 40c m,a v a i l a b l e p h o s p h o r u s a t0 20c m,t o t a l p h o s p h o r u s a t 20 40c m,t o t a l p h o s p h o r u s a t0 20c ma n dn i t r a t en i t r o g e na t0 20c m w e r e a l l s i g n i f i c a n t(P<0.05), w i t h t h e v a r i a t i o n i n t e r p r e t a t i o nr a t eo f25.11%,21.71%,11.14%,8.13%a n d3.05%,r e s p e c t i v e l y.T h e r i v e r s e c t i o nh a da n i m p a c to nt h ec o n t e n to fn i t r o g e na n d p h o s p h o r u s i nt h ew a t e r,s o i l a n d p l a n t s i nt h e r i p a r i a nz o n e.F r o m u p s t r e a m t od o w n s t r e a m,n i t r o g e na n d p h o s p h o r u s g r a d u a l l y a c c u m u l a t e d,b u tt h e d i f f e r e n c e d e c r e a s e d.N i t r o g e na n d p h o s p h o r u s i nw a t e r,s o i l a n d p l a n t sh a dac e r t a i nc o r r e l a t i o nw i t he a c h o t h e r,a n dw e r e a l s o a f f e c t e d b y a l t i t u d e,s l o p e a n d a s p e c t.C u l t i v a t e d l a n dw a s t h em a i n c a u s e o f a g r i c u l t u r a l n o n-p o i n t s o u r c e p o l l u t i o n i n t h e l o w e r r e a c h e s o f t h e r i v e r b a s i n.I tw a s n e c e s s a r y t o s t r e n g t h e n t h e a b i l i t y o f p l a n t p r o t e c t i o na n d s o i l c o n s e r v a t i o n i n t h em i d d l e a n d l o w e r r e a c h e s,a n d t o o p t i m i z e t h e l a n d u s e p a t t e r n i n t h er i p a r i a nz o n e,s oa st o p r o v i d eab a s i sf o ra g r i c u l t u r a ln o n-p o i n ts o u r c e p o l l u t i o nc o n t r o l i ns m a l l w a t e r s h e d s i n t h eT h r e eG o r g e sR e s e r v o i r a r e a.K e y w o r d s:r i p a r i a n z o n e;n i t r o g e n;p h o s p h o r u s;c o r r e l a t i o na n a l y s i s;r e d u n d a n c y a n a l y s i s河岸带是衔接 水 陆 生态系统的重要枢纽㊂其中,以河流为主的水体和受流水作用的土壤是该系统物质循环和能量交换的重要媒介[1],而植物在二者的交互作用和水文地理的影响下,表现出区域特有的植物群落特征[2]㊂根据我国农业面源污染问题的相关研究[3-4],流域内污染源的控制和削减是生态治理的关键㊂河岸带具有水陆横向交替㊁河水径向汇集和山川垂直分布的空间特性,将流域内的地形因子和氮㊁磷元素紧密地联系在一起,映射出重要的环境信息,对从流域源头控制农业面源污染物具有重要参考㊂目前,关于河岸带氮㊁磷的研究多集中在相对独立的水域或陆地生态系统,如对河流㊁湖泊等水体中单一营养元素的存在形态及分布状况[5-7],营养物质在水体 沉积物间的释放㊁迁移和转化[8],以及通过模型对陆地生态系统的土壤侵蚀㊁水土流失和营养物质运移过程进行模拟和估算等[9-10]㊂这些研究或侧重水体氮磷的迁移转化,或侧重估算整个陆源性氮㊁磷对水体的输入,但尚未从流域生态的视角去综合分析氮磷在一个时期内 水体 土壤 植物 中的分布状况㊂此外,流域的地形地貌以及河流上下游特征是引起土地利用方式和河岸带生境不同的主要因素[11-12],也将影响河岸带水体 土壤 植物体系的氮磷分布格局,需要进行量化分析㊂因此,在流域尺度上研究河岸带不同介质中氮磷的分布特征及影响因素,更能完整地反映整个流域内的氮磷特性,对于科学指导人类活动和合理防控流域面源污染具有重要的生态学意义㊂笋溪河位于重庆市江津区,其流域健康状况对三峡库尾地区的农业面源污染防控具有重要的参考价值[12]㊂三峡库区的氮磷污染负荷具有明显的时空差异性,且研究多集中于库区腹地的降雨径流㊁土地利用及其水土流失等某单一过程或单一尺度[13-14],库尾地区的研究相对较少㊂此外,库区景观格局变化对农业面源污染的影响机制需要进一步研究[11]㊂笋溪河流域河岸带受华蓥山脉断裂及川东褶皱带的影响,从上游到下游具有多个典型的地形地貌和相对固定的农业生产结构,土地利用类型相对稳定,表现出一定的生态适应性[15],对农业氮磷污染和水土流失防控具有直接现实性㊂因此,本研究以笋溪河干流河岸带为研究对象,在同一时期内采集水体㊁土壤和植物样品,分析水体㊁土壤和植物中的氮㊁磷含量特征及其影响因素,探讨氮磷在河岸带各圈层中的分布规律㊁相关性以及对环境因子的响应程度,以期为库区农业面源污染防控提供思路㊂1材料与方法1.1研究区概况笋溪河流域位于重庆市江津区(图1)㊂流域面积约1190k m2,属川东丘陵,海拔180~1700m,地势南高北低㊂河流自南向北流向,从四面山流出,途径四面山镇㊁傅家镇㊁蔡家镇㊁嘉坪镇㊁夹滩镇,并于支坪镇汇入綦江㊂流域温度和降水随海拔梯度变化明显,其年均气温13.7ħ,年平均降水量1522.3mm,属北半球亚热带季风性湿润气候区㊂河岸带土地利用以耕地和天然林地为主,土壤受红色砂岩层的张力和外营力冲蚀切割的作用,发育类型多样,基本呈酸性或微酸性㊂流域内植物种类丰富,具有典型的亚热带常绿阔叶林特征,河岸带主要是以慈竹(B a m b u s ae m e i e n s i s)等竹类植物为主㊂1.2样点选择与区段划分依据‘环境影响评价技术导则地表水环境“(H J672水土保持学报第36卷2.3 2018)㊁‘环境影响评价技术导则土壤环境“(H J964 2018)和‘生物多样性观测技术导则陆生维管植物“(H J 710.1 2014)[16-18],在兼顾笋溪河实际情况和可操作性的基础上,从河流的发源地四面山北麓开始布设河岸带样点,顺流而下至汇入綦江,共设置44个样点(图1)㊂样点间隔>3k m ,位置为28ʎ31'14ᵡ 28ʎ46'00ᵡN ,106ʎ17'22ᵡ 106ʎ30'00ᵡE ㊂于2021年5月下旬枯水期结束前,同步采集河岸带样点的水体㊁土壤及植物样品,并记录样点的地形环境,具体包含海拔㊁坡度和坡向3个定量因子,坡位和地形地貌2个定性因子㊂根据3个定量因子,在R 软件中进行样点的聚类分析,最终将笋溪河沿河流域分为上㊁中㊁下游(表1)㊂ 注:采样点n =44㊂图1 重庆市江津区高程㊁土地利用及采样点表1 笋溪河样点信息河段样点海拔/m坡度/(ʎ)坡向/(ʎ)坡位地形地貌类型上游1~13588.85ʃ185.9438.85ʃ4.0661~283下坡㊁沟谷低山中游14~31210.78ʃ25.7127.50ʃ4.6949~353下坡㊁沟谷低山㊁高丘㊁低丘下游32~44171.92ʃ4.5425.23ʃ3.0617~343下坡㊁沟谷低丘㊁河漫滩㊁冲积平原注:海拔与坡度的数据形式为均值ʃ标准差;坡向为范围;坡位与地形地貌类型基于H J 710.1 2014附录K [18]勘察;n =44㊂1.3 样品采集与测定河岸带样点附近,距离河岸3~5m 内的河流即为水质采样点,用聚乙烯瓶采集㊂现场测定水体p H ㊁温度㊁电导率和溶解氧,同时用聚乙烯瓶装好待测水样,滴加硫酸,调节p H 为2左右,低温保存于便携式冰箱,及时带回实验室,分析水体总氮(W T N )㊁硝酸盐(W N N )㊁总磷(W T P )和可溶性磷酸盐(W D P)[16]㊂在河岸带样点100m 范围内,沿河岸 S形随机布设5点采集0 20,20 40c m 的混合土样,其中新鲜土壤样品存于便携式冰箱,用于硝态氮(S N N )的测定;另一部分土样经风干㊁磨细过筛后测定全氮(S T N )㊁全磷(S T P )和有效磷(S A P ),其中S T N 1㊁S N N 1㊁S T P 1和S A P 1表示0 20c m 土壤养分,S T N 2㊁S N N 2㊁S T P 2和S A P 2表示20 40c m 土壤养分[17]㊂植物样品的采集基于河岸带土壤样点和竹林的聚群分布特征㊂在土壤样点附近,随机选取3~5株1年生幼竹(慈竹),分叶片(L )㊁分枝(B )和茎竿(S )采集混合样品,测定植物全氮(P N )和全磷(P P ),其中P L N ㊁P B N 和P S N 表示植物叶片氮㊁分枝氮和茎竿氮,P L P ㊁P B P 和P S P 表示植物叶片磷㊁分枝磷和茎竿磷[18]㊂1.4 统计方法采用E x c e l 2019和R4.1.1软件处理数据并绘制图表㊂其中,E x c e l 2019用于数据整理和描述性统计,R 软件进行聚类分析㊁相关分析和冗余分析及其蒙特卡罗(M o n t eC a r l o)置换检验㊂2 结果与分析2.1 河岸带水体㊁土壤和植物的氮磷含量特征笋溪河河岸带水体氮含量高,磷含量低,而氮变772第2期 孟海等:重庆笋溪河流域河岸带水体 土壤 植物的氮磷特征及影响因素异程度低于磷,且受河流区段的影响(表2)㊂从上游到下游,WT N ㊁WN N ㊁WT P 和WD P 的含量均呈先减后增㊁总体变大的现象㊂根据G B3838 2002[19],笋溪河上游WT N 均值为1.43m g /L ,中游为1.36m g /L ,属Ⅳ类水质,而下游为2.86m g /L ,属劣Ⅴ类水质;河流WT P 含量均值未超出地表Ⅱ类水质0.10m g/L 的限值㊂河流整体表现高氮低磷㊁下游氮磷积聚的特征㊂笋溪河上㊁中游WN N 的含量略小于WT N ,而WD P 在全河段WT P 含量中占比近半,说明水体氮的形态以硝酸盐为主,且上㊁中游表现明显,而水体中磷的形态组成相对稳定㊂同时,WT N 和WN N 从中等变异转为弱变异,WT P 和WD P 从强变异转为中等变异,且WT N ㊁WT P 和WD P 的变异系数均随河流下行而递减,WN N 则表现为先减后增㊁总体变小㊂说明随区段下行,样点数增大,水体氮㊁磷含量的差异逐渐减小㊂表2 笋溪河河岸带水体氮磷统计河段(样点)相关指标WT NWN NWT PWD P上游(1~13)范围/(m g㊃L -1)0.99~2.060.89~1.690.02~0.090~0.06均值ʃ标准差/(m g ㊃L -1)1.43ʃ0.331.25ʃ0.270.04ʃ0.020.02ʃ0.02变异系数/%22.7321.7650.4393.40中游(14~31)范围/(m g㊃L -1)0.98~1.910.92~1.50.01~0.070~0.03均值ʃ标准差/(m g㊃L -1)1.36ʃ0.271.18ʃ0.170.04ʃ0.020.02ʃ0.01变异系数/%20.2014.5550.3147.46下游(32~44)范围/(m g㊃L -1)2.57~3.671.33~2.360.04~0.100.02~0.07均值ʃ标准差/(m g㊃L -1)2.86ʃ0.321.50ʃ0.280.07ʃ0.020.04ʃ0.01变异系数/%11.2418.5824.6737.56注:变异系数(C V )ɤ20%,属弱变异;20%<C V<50%,属中等变异;C Vȡ50%,属强变异[20]㊂下同㊂ 河岸带土壤氮磷含量受河流区段影响呈现不同的变化规律(表3)㊂各河段样点土壤0 20c m 的S T N ㊁S N N ㊁S T P 和S A P 的含量均高于20 40c m ,河岸带土壤氮磷表层富集明显㊂S T N 含量的变化趋势与WT N 相同,表现出随河流区段下移先减后增,总体增大,而S N N ㊁S T P 和S A P 含量则逐渐递增,说明S T N 与WT N 存在较高的关联度,且下游河段土壤氮磷的含量较高㊂河岸带土壤氮磷含量变化的差异较大,其中S T N 和S T P 均为中等变异,S T N 在上游样点的变异性依次高于下游和中游,而S T P 除河段外,还受土层影响,其0 20c m 的变异随河段下移而减小,20 40c m 的变异则先增后减;S N N 的变异性在各河段均高于S T N ,而S A P 的变异性在上游小于S T P ,在中㊁下游大于S T P ㊂表3 笋溪河河岸带土壤氮磷统计河段(样点)土层深度/c m相关指标S T NS N NS T PS A P0-20范围0.34~1.131.29~6.720.11~0.331.74~2.42均值ʃ标准差0.76ʃ0.294.15ʃ1.770.21ʃ0.072.05ʃ0.22上游(1~13)变异系数/%37.5742.6934.0511.1820-40范围0.24~0.890.77~4.810.08~0.200.75~1.31均值ʃ标准差0.50ʃ0.222.86ʃ1.300.16ʃ0.040.96ʃ0.16变异系数/%43.1845.5126.3717.190-20范围0.28~0.861.52~14.970.13~0.462.06~9.61均值ʃ标准差0.60ʃ0.175.41ʃ3.810.28ʃ0.094.05ʃ1.96中游(14~31)变异系数/%27.7970.5032.2648.3820-40范围0.22~0.701.42~8.560.11~0.350.75~2.74均值ʃ标准差0.38ʃ0.123.36ʃ1.960.22ʃ0.061.77ʃ0.54变异系数/%32.5458.5228.9830.450-20范围0.32~1.042.00~15.140.22~0.523.84~16.38均值ʃ标准差0.78ʃ0.246.28ʃ3.270.37ʃ0.109.38ʃ4.05下游(32~44)变异系数/%30.5052.0227.9243.1820-40范围0.19~0.971.29~10.780.17~0.452.56~7.43均值ʃ标准差0.54ʃ0.214.19ʃ3.210.32ʃ0.094.59ʃ1.56变异系数/%39.0776.6928.6834.07 注:S T N 和S T P 含量单位为g /k g ;S N N 和S A P 含量单位为m g /k g㊂872水土保持学报 第36卷河岸带竹林的氮㊁磷营养特征受河流区段和自身营养器官的影响(表4)㊂从上游到下游P L N ㊁P B N ㊁P S N ㊁P B P 和P S P 含量逐渐增大,而P L P 含量逐渐减小;植物氮磷均表现出叶片>分枝>茎竿;P L N 和P L P 的变异均呈递减趋势;P B N 和P B P 的变异则先增后减,总体递减;P S N 和P S P 的变异先减后增,总体递减㊂表4 笋溪河河岸带竹林氮磷统计河段(样点)相关指标植物全氮P L NP B NP S N植物全磷P L PP B PP S P上游(1~13)范围/(g ㊃k g -1)15.48~36.825.93~17.131.53~5.741.30~3.860.63~2.320.26~1.47均值ʃ标准差/(g ㊃k g -1)22.9ʃ4.959.30ʃ3.073.04ʃ1.302.14ʃ0.681.39ʃ0.540.82ʃ0.37变异系数/%21.6233.0442.9431.6138.6244.78中游(14~31)范围/(g ㊃k g -1)18.36~36.306.04~19.272.20~9.981.22~2.590.50~2.730.45~1.41均值ʃ标准差/(g ㊃k g -1)25.64ʃ5.1711.65ʃ4.385.84ʃ2.001.83ʃ0.421.50ʃ0.590.93ʃ0.24变异系数/%20.1837.5634.3123.1039.2725.77下游(32~44)范围/(g ㊃k g -1)21.75~36.487.80~20.683.73~13.511.19~2.170.70~2.150.56~2.14均值ʃ标准差/(g ㊃k g -1)27.92ʃ3.9813.45ʃ3.628.21ʃ3.121.69ʃ0.321.52ʃ0.401.08ʃ0.42变异系数/%14.2526.8837.9918.7226.4238.792.2 河岸带水体㊁土壤和植物氮磷含量与地形的相关分析氮和磷是陆地生态系统中的限制性养分元素,广泛存在于无机界和有机体中㊂河岸带水体㊁土壤和植物中的氮磷在各圈层的物质循环中相互作用,存在一定的相关性,且受地形因素的影响㊂各河段的相关性分析存在多种因素的影响,为了减小误差,以下均为河岸带全河段的氮磷分析㊂河岸带水体㊁土壤和植物氮与地形的相关分析(表5)显示,WT N 与WN N ㊁S T N 1与S N N 1㊁S T N 2与S N N 2㊁P L N 与P B N 及P B N 与P S N 均呈显著正相关,说明氮在水体㊁土壤和植物不同营养器官中均有一定的存在形式,且通过含氮物质的迁移转化形成较强的正向相关性㊂此外,WT N 与S T N 2呈显著正相关(P <0.05),与P L N ㊁P B N 和P S N 呈显著正相关(P <0.01,P <0.01和P <0.001),与海拔呈显著负相关(P <0.05);W N N 与P L N 呈显著正相关(P <0.01)㊂表明水体与植物的氮相关性高于水体与土壤,水体总氮对海拔的响应强烈㊂S N N 1与P B N 和P S N ,S N N 2与P S N 均呈显著正相关,土壤硝态氮对植物分枝和茎竿有显著影响,且随土层深度增加影响减弱㊂地形对植物氮的影响较为明显,其中海拔与P L N ㊁P B N 和P S N 呈显著负相关(P <0.05,P <0.05和P <0.001),坡度与P S N 呈显著负相关(P <0.001)㊂表5 笋溪河河岸带水体㊁土壤和植物氮与地形的相关分析指标WT NWN N S T N 1S T N 2S N N 1S N N 2P L NP B NP S NWN N0.76***S T N 10.200.12S T N 20.30*0.200.66**S N N 10.2000.35*0.32*S N N 20.200.060.150.54***0.56***P L N 0.42**0.39**00.010.020.01P B N 0.39**0.280.070.170.38*0.240.57***P S N 0.53***0.220.040.230.36*0.36*0.34*0.62***A l t i t u d e -0.35*-0.1400-0.24-0.20-0.31*-0.41*-0.65***S l o pe -0.010.160.280.16-0.12-0.17-0.18-0.27-0.49***A s p e c t -0.19-0.15-0.190-0.010.06-0.12-0.01-0.26注:***表示P <0.001;**表示P <0.01;*表示P <0.05;n =44㊂下同㊂河岸带水体㊁土壤和植物中的磷具有一定的相关性,同时也响应海拔㊁坡度和坡向的变化(表6)㊂WT P 与WD P ㊁S T P 1与S A P 1㊁S T P 2与S A P 2㊁P L P与P B P 及P B P 与P S P 均呈显著正相关,说明含磷物质在水体㊁土壤和植物不同营养器官中的迁移转化过程表现出较强的正向相关性㊂同时,WT P 与S T P 1㊁S T P 2㊁S A P 1和S A P 2均呈显著正相关(P <0.001),WD P 与S A P 1和S A P 2均呈显著正相关(P <0.01),而水体与植物的磷相关性不显著(P >0.05),表明水体与土壤的磷相关性较高㊂土壤与植物间仅S A P 1和S A P 2与P S P 呈显著正相关(P <0.05),说明土壤有效磷对植物茎竿磷含量有显著影响㊂此外,海拔与WT P ㊁S T P 1㊁S T P 2㊁S A P 1㊁S A P 2和P S P 均呈显著负相关,而坡度和坡向分别与P S P 呈显著负相关(P <0.05),地形因素对植物茎竿磷含量的影响较大㊂972第2期 孟海等:重庆笋溪河流域河岸带水体 土壤 植物的氮磷特征及影响因素表6笋溪河河岸带水体㊁土壤和植物磷与地形的相关分析指标WT P WD P S T P1S T P2S A P1S A P2P L P P B P P S P WD P0.50***S T P10.52***0.20S T P20.57***0.250.95***S A P10.69***0.45**0.70***0.77***S A P20.67***0.42**0.67***0.75***0.96***P L P-0.12-0.17-0.11-0.15-0.14-0.18P B P0.190.140.210.160.180.160.52***P S P0.210.100.220.230.30*0.33*0.230.63***A l t i t u d e-0.32*-0.19-0.56***-0.59***-0.49***-0.52***0.29-0.20-0.35* S l o p e-0.04-0.15-0.32*-0.36*-0.18-0.230.30*-0.07-0.30* A s p e c t-0.250.07-0.21-0.24-0.24-0.27-0.01-0.08-0.38*2.3河岸带水体㊁土壤和植物氮磷含量与地形的冗余分析依据河岸带水文过程,以WT N㊁WN N㊁WT P和WD P为响应变量,土壤和植物的氮磷含量及地形因子为环境解释变量进行冗余分析(图2),结果显示,2个典范轴的解释比例分别为89.39%和7.23%,解释了笋溪河河岸带水体氮磷变异的96.62%,较好地反映土壤和植物中的氮磷及海拔㊁坡度和坡向对水体氮磷的影响㊂其中,S A P1与S A P2在R D A1轴的投影较长,土壤有效磷对水体的影响较大,海拔与坡度在R D A2轴的投影较长,对R D A2轴的贡献较大㊂WT N与WN N呈负相关,WT P与WD P呈正相关,且相关程度均较高,表明河岸带水体氮磷在与环境因子的回归关系中,总氮与硝酸盐间相互约束,存在限制行为,而总磷和可溶性磷酸盐相互促进,协同性较好㊂此外,WT N与S T N1㊁S T N2㊁S N N1㊁S N N2㊁P L N㊁P B N和P S N均呈正相关,而WN N与WT N相反,且二者均与S N N1和S N N2的相关程度较强,说明水体总氮㊁土壤氮和植物氮同向积聚增大,水体氮对土壤硝态氮响应强烈㊂WT P和WD P均与S T P1㊁S T P2㊁S A P1㊁S A P2㊁P B P和P S P呈正相关,且与P B P和P S P的相关程度较高,显示水体磷受植物分枝磷和茎竿磷影响较大㊂W T N和W N N对坡向的响应强烈,其后依次为海拔㊁坡度,而WT P和WD P对坡度的响应强烈,其次为海拔㊁坡向㊂M o n t eC a r l o置换检验进一步说明环境因子对响应变量的影响(表7)㊂土壤和植物中的氮磷与3个地形因子对水体氮磷变异的总可解释度为64.91% (R2=0.4197)㊂置换检验显示,S N N1㊁S T P1㊁S T P2㊁S A P1和S A P2对水体氮磷含量的变异均具有显著的影响(P<0.05,P<0.01,P<0.05,P<0.001和P<0.01),其中,S A P2对水体氮磷含量特征变异的解释度最大,为25.11%,其后依次为S A P1,S T P2,S T P1和S N N1,累计69.14%㊂表明土壤氮磷是水体氮磷变异的主导因素,且土壤磷的变异解释累计为66.09%,对水环境的影响较大,与相关分析的结果一致(表5)㊂此外,植物氮磷和地形因子对水体氮磷的变异也有一定解释力,但在置换检验中均未达到显著水平(P> 0.05),其中植物氮的变异解释累计为18.87%,水体与植物的磷相关性较强,与相关分析结果相同(表6);海拔对水体氮磷的影响较大,为8.09%㊂图2笋溪河河岸带水体氮磷与环境因子的冗余分析3讨论3.1河岸带水体㊁土壤和植物的氮磷状况在自然降水㊁土地利用㊁径流侵蚀及人为活动的影响下,河岸带水体㊁土壤和植物中的氮磷含量各异㊂水体通常对陆源性氮磷具有稀释消解的作用,而植物从环境中吸收氮磷,因此笋溪河河岸带水体氮磷的含量依次小于土壤和植物,并呈现上游小㊁下游大的氮磷空间分布特征,这与前人[12,21]的研究结果相同㊂笋溪河水质由氮含量决定,这与三峡库区其他流域水体高氮低磷的研究结果一致[22-23]㊂河岸带水体氮以硝酸盐形态为主,而可溶性磷酸盐含量在总磷中占比近半,这与王宏等[23]在长江沱江流域的研究结果相同,与黄河水环082水土保持学报第36卷境的研究结果不同[24]㊂同时,笋溪河河岸带土壤受流水作用和植物侵扰,氮磷含量相对贫乏,与李锐等[25]江津区河岸带和库区其他河流河岸带土壤氮磷含量相近[26]㊂河岸带竹林叶片氮磷的含量均值与四川盆地南麓的高山竹林叶片氮磷含量相近[27]㊂表7水体氮磷的冗余分析置换检验结果因子主成分R D A1R D A2置换检验F P变异解释/%S A P20.7211.4877.6650.006**25.11 S A P1-0.171-1.10113.1630.001***21.71 S T P20.332-0.2405.5840.017*11.14 P S N-0.089-0.0620.2290.8199.16 S T P1-0.427-0.7159.2310.002**8.13 A l t i t u d e0.181-0.1970.9730.3608.09 P B N0.1240.1800.0240.9925.07 P L N0.140-0.6770.0280.9934.64 S N N10.117-0.3864.0240.033*3.05 S T N20.263-0.2811.9800.1391.28 P L P-0.3540.9830.8350.4120.91 A s p e c t-0.011-0.0240.0200.9940.91 P S P0.0600.0680.0380.9770.85 S T N1-0.1481.1612.3200.1200.42 P B P0-0.4220.6180.4780.03 S N N2-0.0970.2821.1610.296-0.02 S l o p e0.130-0.0730.2010.826-0.48注:n=44㊂河岸带水体㊁土壤和植物中的氮磷含量受河流升降㊁径流冲刷和淹水状态变化的影响,在一个时期内表现出不同程度的变异性㊂重庆笋溪河流域受河流水文地理和三峡大坝调洪蓄水的影响,河岸带水体总磷的变异程度高于总氮,这与三峡库区部分河流氮磷变异特征相同[14,21]㊂随着河流区段下行,水体氮磷的变异均呈递减趋势,可能与下游河水流量相对充沛有关㊂河岸带上㊁下游土壤全氮的变异程度高于全磷,硝态氮的变异程度高于有效磷,同时受土层深度的影响,这与蔡雅梅等[28]河岸带土壤氮磷空间分布的部分研究结果一致㊂此外,水体和土壤中的氮磷变异高于植物氮磷,说明水体和土壤中的氮磷易受环境变化的影响,存在较高的流失风险,这与河岸带河水入渗土壤㊁氮磷在水体和土壤界面的吸附与交换有关㊂3.2河岸带水体、土壤和植物氮磷的影响因素河岸带作为水陆生态系统的过渡带,水体㊁土壤和植物中的氮磷通过各圈层的物质循环,具有一定的相关性,同时受到海拔㊁坡度和坡向的影响㊂笋溪河河岸带水体和土壤中的氮磷通常具有多种形态,且同一介质中的不同氮磷形态往往具有较高的相关性,这与徐兵兵等[29]水体氮磷形态研究的结果相同㊂氮磷是农业面源污染的限制性养分元素,其地球生物化学循环有所不同[30-31]㊂河岸带水文作用强烈,从笋溪河上游到下游,水体氮磷含量积聚增大;土壤受干湿交替和径流冲刷,氮素通过硝化㊁反硝化作用及生物消耗,变化较大,而主要来源于含磷矿物风化的磷,在与水体不断相互作用中含量趋于一致;植物受营养过程和季节周期影响,生长中不断从环境吸收氮磷营养物质,富集相对稳定㊂因此,笋溪河河岸带水体与植物间的氮相关性高于水体与土壤,而与土壤间的磷相关性高于植物,这与河岸带植物和土壤对水文响应的结果相同[1,32],也与冗余分析(图2和表7)的结果相似㊂笋溪河流域地形因子对河岸带水体㊁土壤和植物中氮磷的影响以负相关为主㊂其中,海拔对河岸带水体总磷㊁土壤全磷和有效磷均有显著影响,这可能是海拔对降水和温度具有调控作用,进而促进土壤微生物对磷的分解㊁释放,再通过地表径流和地下入渗与水体建立强相关㊂此外,坡度对河岸带植物分枝氮磷均有显著影响,而坡向对植物磷有显著影响,与坡度和坡向可以改变植物对光照㊁水分和养分物质的需求,进而对植物的营养过程产生限制作用的研究结果相同[33-34]㊂河岸带水文变化是驱动水体㊁土壤和植物氮磷循环的基础,水体氮磷的变化,反映了水体响应及适应环境变化的能力㊂笋溪河河岸带各圈层氮磷的相关分析(表5和表6)与冗余分析结果相近㊂其中,水体总氮与硝酸盐在相关分析时显著正相关,冗余分析时负相关;而水体总磷和可溶性磷酸盐在响应环境变量的2种分析中,结果表现相同,这与相关分析以统计为主,而环境因素考虑较少,冗余分析内部多元线性回归相互约束,考虑环境变量影响的方法有关㊂说明生态系统内部存在多种相互作用的机制,水生态系统的变化与水体氮磷总量及其形态组分高度相关[31,35],同时受土壤氮磷㊁植物氮磷和地形因子的影响㊂这与蔡雅梅等[28]在汾河河岸带氮磷的研究结果相似㊂基于冗余分析整体,M o n t eC a r l o检验表明,土壤氮磷是众多环境因子中影响水体氮磷的主体(表7),且土壤硝态氮㊁全磷和有效磷的变异解释进一步表明对水体氮磷的影响程度,这与前人[36]对河岸带水体与土壤氮磷物质的相关分析一致㊂检验显示,植物氮磷和地形因子对引起水体氮磷变化的解释相对较小,且不显著,与相关分析(表5和表6)近似㊂水体氮磷含量的变化是众多环境因子共同作用的㊂本研究只涉及土壤和植物氮磷及3个定量地形因子,后续研究需要将更多的定性因子进行转化放入定量分析中㊂182第2期孟海等:重庆笋溪河流域河岸带水体 土壤 植物的氮磷特征及影响因素4结论(1)笋溪河河岸带水体㊁土壤和植物的氮㊁磷含量受河流区段的影响均表现为上游小㊁下游大;与地表水环境质量标准对比,水体呈高氮㊁低磷的含量特征,上游和中游属Ⅳ类水质,下游属劣Ⅴ类水质,且水体氮以硝酸盐为主㊂应重点加强全河段氮污染物的削减和防控,并控制下游的陆源性氮输入㊂(2)笋溪河河岸带水体㊁土壤和植物中的氮㊁磷彼此间存在一定的相关性,且对海拔响应强烈㊂同时,土壤氮磷㊁植物氮磷和地形因子对水体氮磷的影响程度依次变小(R2=0.4197),土壤氮磷是水体氮磷变异的主导因素㊂(3)笋溪河河岸带水体氮磷对环境变量的响应存在较大差异㊂水体氮对植物氮的响应强烈,冗余分析置换检验中植物氮的总变异解释为18.87%,其中植物茎竿氮的解释最高,为9.16%;水体磷对土壤磷的响应强烈,土壤磷的总变异解释为66.09%,且20 40c m的土壤有效磷解释最大,为25.11%㊂参考文献:[1]韩路,王海珍,于军.河岸带生态学研究进展与展望[J].生态环境学报,2013,22(5):879-886.[2] Z h a n g ZY,W a nCY,Z h e n g ZW,e t a l.P l a n t c o m m u n i t yc h a r a c t e r i s t i c s a nd t he i r r e s p o n s e s t oe n v i r o n m e n t a lf a c t o r si n t h ew a t e r l e v e l f l u c t u a t i o n z o n e o f t h eT h r e eG o r g e sR e s-e r v o i r i nC h i n a[J].E n v i r o n m e n t a l S c i e n c e a n dP o l l u t i o nR e-s e a r c h I n t e r n a t i o n a l,2013,20(10):7080-7091. [3]虞慧怡,扈豪,曾贤刚.我国农业面源污染的时空分异研究[J].干旱区资源与环境,2015,29(9):1-6. [4]胡静锋.重庆市农业面源污染测算与空间特征解析[J].中国农业资源与区划,2017,38(1):135-144. [5] C o t t i n g h a m K L,E w i n g H A,G r e e rM L,e t a l.C y a-n o b a c t e r i aa s b i o l o g i c a ld r i v e r s o fl a k e n i t r o g e n a n dp h o s p h o r u s c y c l i n g[J].E c o s p h e r e,2015,6(1):1-19.[6]高可伟,朱元荣,孙福红,等.我国典型湖泊及其入湖河流氮磷水质协同控制探讨[J].湖泊科学,2021,33(5):1400-1414.[7] C a i L H,D e n g H Y,W e iH X,e t a l.R e s e a r c h f r a m e-w o r ka n dk e y i s s u e sf o rn o n-p o i n ts o u r c e p o l l u t i o ni na g r i c u l t u r e i n d u c e db y w a t e r-l o s sa n ds o i l-e r o s i o n[J].A d v a n c e d M a t e r i a l sR e s e a r c h,2013,2480:3855-3866.[8]金晓丹,吴昊,陈志明,等.长江河口水库沉积物磷形态㊁吸附和释放特性[J].环境科学,2015,36(2):448-456.[9]李子,张艳芳.基于I n V E S T模型的渭河流域干支流生态系统服务时空演变特征分析[J].水土保持学报,2021,35(4):178-185.[10] P r a s a n n a k u m a rV,V i j i t hH,A b i n o dS,e t a l.E s t i m a t i o no f s o i l e r o s i o n r i s kw i t h i n a s m a l lm o u n t a i n o u s s u b-w a t e r-s h e d i nK e r a l a,I n d i a,u s i n g R e v i s e d U n i v e r s a lS o i lL o s sE q u a t i o n(R U S L E)a n d g e o-i n f o r m a t i o nt e c h n o l o g y[J].G e o s c i e n c eF r o n t i e r s,2012,3(2):209-215.[11]陈雅如,肖文发.三峡库区土地利用与生态环境变化研究进展[J].生态科学,2017,36(6):213-221. [12]郑永林,王海燕,王一格,等.三峡库区笋溪河流域面源污染及其与土壤可蚀性k值的关系[J].应用与环境生物学报,2021,27(1):208-213.[13]李明龙,贾梦丹,孙天成,等.三峡库区非点源污染氮磷负荷时空变化及其来源解析[J].环境科学,2021,42(4):1839-1846.[14]李乐,刘常富.三峡库区面源污染研究进展[J].生态科学,2020,39(2):215-226.[15]陈影,陈苏,马鸿岳,等.河流河岸带自然生境恢复评价研究进展[J].生态科学,2021,40(4):223-228. [16]中华人民共和国生态环境部.H J2.3 2018环境影响评价技术导则地表水环境[S].北京:中国标准出版社,2021:1-50.[17]中华人民共和国生态环境部.H J964 2018环境影响评价技术导则土壤环境(试行)[S].北京:中国科学出版社,2021:1-21.[18]中华人民共和国生态环境部.H J710.1 2014生物多样性观测技术导则陆生维管植物[S].北京:中国科学出版社,2021:1-25.[19]中华人民共和国生态环境部.G B3838 2002地表水环境质量标准[S].北京:中国标准出版社,2021:1-3. [20]吴鹏,崔迎春,赵文君,等.喀斯特森林植被自然恢复过程中土壤化学计量特征[J].北京林业大学学报,2019,41(3):80-92.[21]龚小杰,王晓锋,刘婷婷,等.流域场镇发展下三峡水库典型入库河流水体碳㊁氮㊁磷时空特征及富营养化评价[J].湖泊科学,2020,32(1):111-123.[22] Z h uB,W a n g Z H,W a n g T,e t a l.N o n-p o i n t-s o u r c en i t r o g e na n d p h o s p h o r u s l o a d i n g s f r o mas m a l lw a t e r-s h e d i n t h eT h r e eG o r g e sR e s e r v o i r a r e a[J].J o u r n a l o fM o u n t a i nS c i e n c e,2012,9(1):10-15.[23]王宏,徐娅玲,张奇,等.沱江流域典型农业小流域氮和磷排放特征[J].环境科学,2020,41(10):4547-4554.[24]李家科,彭凯,郝改瑞,等.黄河流域非点源污染负荷定量化与控制研究进展[J].水资源保护,2021,37(1):90-102.[25]李锐,牛江波,杨超,等.长江上游江津段河岸带对陆源氮磷的拦截作用研究[J].西南大学学报(自然科学版),2017,39(10):11-19.[26] Q uH Y,J i aG M,L i uX,e t a l.S o i l e x t r a c e l l u l a r e n-z y m a t i cs t o i c h i o m e t r y a l o n g ah y d r o l o g i c g r a d i e n to fh i l l s l o p e r i p a r i a n z o n eo f fT h r e eG o r g e sR e s e r v o i r[J].S o i l S c i e n c eS o c i e t y o fA m e r i c aJ o u r n a l,2019,83(5):1575-1584.(下转第291页)282水土保持学报第36卷。

脱氮除磷的工艺流程

脱氮除磷的工艺流程

脱氮除磷的工艺流程英文回答:The process of denitrification and phosphorus removal involves several steps to effectively reduce the levels of nitrogen and phosphorus in wastewater. Let me explain the process in detail.Firstly, denitrification is the process of converting nitrate (NO3-) into nitrogen gas (N2) under anaerobic conditions. This is achieved through the use ofdenitrifying bacteria, which can convert nitrate into nitrogen gas as they metabolize organic matter. The bacteria require an environment without oxygen to carry out this process. One common method to create an anaerobic environment is by using anoxic tanks, where the oxygen levels are kept low or completely eliminated.In these anoxic tanks, organic carbon sources such as methanol or ethanol are added to provide a food source forthe denitrifying bacteria. The bacteria use the organic carbon as an energy source and convert the nitrate into nitrogen gas. This helps in reducing the levels of nitrogen in the wastewater.Now, let's talk about phosphorus removal. Phosphorus is typically present in wastewater as phosphate (PO43-). There are several methods used for phosphorus removal, but one common method is chemical precipitation. In this process, chemicals such as aluminum sulfate (alum) or ferricchloride are added to the wastewater. These chemicals react with the phosphate ions, forming insoluble precipitatesthat can be easily separated from the water.Once the chemicals are added, the wastewater is mixed to ensure proper contact between the chemicals and the phosphate ions. The precipitates are then settled orfiltered out of the water using sedimentation tanks or filtration systems. This helps in removing phosphorus from the wastewater.It is important to note that both denitrification andphosphorus removal processes are often used in wastewater treatment plants to meet regulatory standards for nitrogen and phosphorus levels in effluent. These processes can be customized based on the specific requirements of the wastewater treatment plant and the quality of the incoming wastewater.中文回答:脱氮除磷的工艺流程涉及多个步骤,以有效降低废水中的氮和磷含量。

(英文版) nyt 1977-2010 水溶肥料 总氮、磷、钾含量的测定

(英文版) nyt 1977-2010 水溶肥料 总氮、磷、钾含量的测定

(英文版) nyt 1977-2010 水溶肥料总氮、磷、钾含量的测定To determine the total nitrogen, phosphorus, and potassium content of water-soluble fertilizers from the years 1977 to 2010, you can follow these steps:1. Collect representative samples of the water-soluble fertilizer products from the specified time period (1977-2010). Ensure that the samples are obtained from different batches or sources to account for any variations.2. Prepare the samples by homogenizing them thoroughly to ensure a representative composition. This can be done by mixing and grinding the samples together until a uniform consistency is achieved.3. Analyze the total nitrogen content using a suitable method such as Kjeldahl digestion or combustion analysis. These methods involve converting the nitrogen in the sample into an easily measurable form, such as ammonia or nitrogen gas. The resulting compound can then be quantified usingtitration or spectroscopic techniques.4. Determine the total phosphorus content by digesting the sample with appropriate acid solutions and converting the phosphorus into a soluble form. The phosphorus concentration can then be measured using colorimetric or spectrophotometric methods.5. Measure the total potassium content by extracting the sample with a suitable solvent or extracting solution. The extracted potassium can then be quantified using flame photometry or atomic absorption spectroscopy.6. Perform quality control measures throughout the analysis process, including the use of certified reference materials, calibration standards, and replicate analyses to ensure accuracy and precision.7. Record and report the results of the total nitrogen, phosphorus, and potassium content for each sample, along with any relevant information such as the date of analysis and sample source.Please note that specific laboratory protocols and methods may vary depending on the equipment and resources available. It is important to consult relevant scientific literature or seek guidance from experienced analysts to ensure accurate and reliable measurements.。

Microbial Community Function

Microbial Community Function

Microbial Community Function Microbial Community Function Microorganisms, despite their microscopic size, play a monumental role in shaping the world around us. They exist in complex and diverse communities, interacting with each other and their environment in waysthat influence everything from global nutrient cycles to human health. Understanding the function of these microbial communities is crucial to appreciating the intricate web of life on Earth and harnessing their potential for various applications. One of the most fundamental functions of microbial communities is their contribution to global biogeochemical cycles. Microbes arethe primary drivers of nutrient transformations, such as the cycling of carbon, nitrogen, and phosphorus. For example, photosynthetic microbes like cyanobacteria play a critical role in fixing atmospheric carbon dioxide into organic compounds, thereby influencing global carbon budgets. Nitrogen-fixing bacteria convert atmospheric nitrogen into a form usable by plants, fueling primary productivity in ecosystems. Similarly, microbes mediate the breakdown of organic matter, releasing nutrients back into the environment and driving decomposition processes. These intricate microbial interactions form the foundation of life on Earth, ensuringthe continuous flow of essential elements through ecosystems. Microbial communities also play a pivotal role in shaping the health and function of various organisms, including humans. The human gut, for instance, is home to trillions of bacteria, collectively known as the gut microbiota. This complex ecosystem contributes to numerous aspects of human health, including digestion, immune system development, and even mental well-being. The gut microbiota helps break down complex carbohydrates, synthesizes essential vitamins, and outcompetesharmful pathogens. Disruptions to the gut microbiota, such as through antibiotic use or dietary changes, can have significant consequences for human health,leading to various ailments including inflammatory bowel disease, obesity, and autoimmune disorders. Beyond the human gut, microbial communities areintricately linked to the health of other organisms. In plants, root-associated microbes enhance nutrient uptake, promote growth, and protect against pathogens. Coral reefs rely on a diverse microbial community for nutrient cycling and resilience against environmental stressors. Understanding these complexinteractions is crucial for developing strategies to protect and manage thesevital ecosystems. The functional diversity of microbial communities also extends to various biotechnological applications. Microbes are harnessed for a wide range of industrial processes, including food production, bioremediation, and the production of biofuels and pharmaceuticals. For example, fermentation processes rely on microbial communities to produce yogurt, cheese, and alcoholic beverages. In bioremediation, microbes are employed to degrade pollutants and detoxify contaminated environments. Furthermore, the ability of microbes to produce diverse bioactive compounds makes them a valuable resource for drug discovery and development. The study of microbial communities has been revolutionized by advances in sequencing technologies and bioinformatics tools. Metagenomics, the study of the collective genetic material of a microbial community, allows us to delve into the functional potential of these complex ecosystems. By analyzing the genes present in a community, we can infer the metabolic pathways, nutrientcycling capabilities, and potential interactions among community members. This information provides insights into the ecological roles of these microbes andtheir contributions to various processes. However, the study of microbial community function faces ongoing challenges. Many microbes remain unculturable in laboratory settings, limiting our understanding of their individual roles and interactions. Additionally, the complexity of microbial communities, with thousands of species coexisting and interacting, makes it difficult to disentangle the specific contributions of each member. Furthermore, environmental factors can significantly influence microbial community composition and function, requiring sophisticated experimental approaches to unravel these intricate relationships. Despite these challenges, the field of microbial ecology is rapidly advancing. Researchers are developing novel culturing techniques, employing advanced imaging technologies to visualize microbial interactions in real-time, and utilizing sophisticated computational models to simulate community dynamics. These advancements are providing unprecedented insights into the functional intricacies of microbial communities, paving the way for novel applications in diverse fields, including medicine, agriculture, and environmental management. Understanding the function of microbial communities is crucial to appreciating theinterconnectedness of life on Earth. These microscopic communities, through their metabolic activities and interactions, shape the environment, influence the health of various organisms, and provide a vast reservoir of biotechnological potential. Continued research in this field is essential for harnessing the power of microbes to address global challenges and improve human well-being.。

氮磷钾化肥市场研究报告:行业现状、前景和竞争态势分析

氮磷钾化肥市场研究报告:行业现状、前景和竞争态势分析

氮磷钾化肥市场研究报告:行业现状、前景和竞争态势分析Nitrogen, phosphorus, and potassium are the three primary nutrients essential for plant growth, and as a result, the fertilizer market for these nutrients is a crucial aspect of the agricultural industry. This report aims to analyze the current state, future prospects, and competitive landscape of the nitrogen, phosphorus, and potassium (NPK) fertilizer market.The NPK fertilizer market is currently experiencing steady growth due to the increasing demand for high agricultural productivity. With a growing global population and expanding food requirements, the need for efficient and sustainable farming practices has become paramount. As a result, the demand for NPK fertilizers, which play a vital role in providing essential nutrients to the soil, is expected to rise in the coming years.In terms of the current state of the market, several factors impact the industry. One of the significant influences is the shift towards environmentally friendly and sustainable agricultural practices. This shift has led to a rise in the demand for organic and bio-based NPK fertilizers. Additionally, the increasing adoption ofprecision agriculture techniques and the introduction of innovative formulations and technologies are shaping the market dynamics.Furthermore, the competitive landscape of the NPK fertilizer market is characterized by the presence of numerous key players. Companies are focusing on research and development to introduce advanced fertilizers that cater to specific crop and soil requirements. Moreover, strategic collaborations, mergers, and acquisitions are prevalent in the market as companies strive to expand their product portfolios and geographical presence.Looking ahead, the future prospects of the NPK fertilizer market appear promising. The growing emphasis on sustainable agriculture, coupled with technological advancements, is expected to drive market growth. Furthermore, the rising trend of urban farming and the increasing adoption of NPK fertilizers in horticulture and floriculture sectors are likely to create new opportunities for market expansion.Overall, the NPK fertilizer market presents a favorable outlook, driven by the increasing demand for food production, the focus on sustainable farming practices, and ongoing innovations within theindustry. As the market continues to evolve, companies need to adapt to changing consumer preferences, environmental regulations, and technological advancements to maintain a competitive edge in the dynamic landscape.氮、磷和钾是植物生长所必需的三种主要营养素,因此,这些养分的化肥市场对农业行业至关重要。

氮族元素知识点总结图英文

氮族元素知识点总结图英文

氮族元素知识点总结图英文The nitrogen family, also known as group 15 elements, is a group of elements in the periodic table that includes nitrogen, phosphorus, arsenic, antimony, and bismuth. These elements share similar chemical properties due to their similar electron configurations and outer shell valence electrons. In this knowledge points summary, we will explore the key characteristics, properties, uses, and applications of the nitrogen family elements.1. Nitrogen (N):- Atomic number: 7- Electron configuration: 1s2 2s2 2p3- Physical properties: Nitrogen is a colorless, odorless, and tasteless gas at room temperature and pressure. It is the most abundant element in Earth's atmosphere, making up 78% of the air we breathe.- Chemical properties: Nitrogen is relatively inert and does not readily react with other elements. It forms various compounds, such as ammonia, nitric acid, and organic nitrogen compounds, which are essential for life and various industrial processes.- Uses and applications: Nitrogen is widely used to produce ammonia for fertilizers, as a protective gas in food packaging, in the production of electronic components, and as a coolant in cryopreservation.2. Phosphorus (P):- Atomic number: 15- Electron configuration: 1s2 2s2 2p6 3s2 3p3- Physical properties: Phosphorus exists in several allotropic forms, including white phosphorus, red phosphorus, and black phosphorus. White phosphorus is a highly reactive and toxic substance, while red phosphorus is more stable and less toxic.- Chemical properties: Phosphorus readily forms compounds with other elements, such as phosphates, phosphides, and phosphorus oxyacids. These compounds are crucial for biological processes, such as DNA and RNA structure, energy storage (ATP), and bone formation.- Uses and applications: Phosphorus compounds are used in fertilizers, detergents, toothpaste, flame retardants, and in the production of steel, matches, and electronic components.3. Arsenic (As):- Atomic number: 33- Electron configuration: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p3- Physical properties: Arsenic is a gray, metallic-looking solid that is poisonous in its pure form. It occurs in various minerals and is typically found in combination with other elements.- Chemical properties: Arsenic forms a wide range of compounds, including arsenides, arsenates, and arsenic oxides. Some of these compounds have toxic effects on humans and animals, while others have industrial applications, such as in semiconductor manufacturing and wood preservation.- Uses and applications: Arsenic and its compounds have been used historically in pesticides, herbicides, and medicinal preparations. However, due to its toxicity, the use of arsenic has been significantly restricted in modern times.4. Antimony (Sb):- Atomic number: 51- Electron configuration: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p3- Physical properties: Antimony is a lustrous gray metalloid that is found in nature in various forms, including pure antimony, stibnite, and antimony oxides. It has a relatively low melting point and is used in alloys to increase hardness and strength.- Chemical properties: Antimony forms compounds with oxidation states of +3 and +5, such as antimony trioxide and antimony pentoxide. These compounds have flame-retardant properties and are used in the production of plastics, textiles, and electronics.- Uses and applications: Antimony and its compounds are used in flame retardants, lead-acid batteries, solder alloys, and semiconductor materials. It also has limited applications in medicine, such as in the treatment of parasitic infections.5. Bismuth (Bi):- Atomic number: 83- Electron configuration: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d106p3- Physical properties: Bismuth is a dense, brittle metal with a silvery-white color. It has a low thermal conductivity and expands when it solidifies, making it useful in certain applications, such as in alloys and casting materials.- Chemical properties: Bismuth forms compounds with a +3 oxidation state, such as bismuth subsalicylate and bismuth oxychloride. These compounds have medicinal and cosmetic uses, such as in the treatment of gastrointestinal disorders and in the production of pearlescent pigments.- Uses and applications: Bismuth and its compounds are used in pharmaceuticals, cosmetics, alloys, and as a replacement for lead in certain applications due to its non-toxic nature. It also has limited applications in nuclear reactors and as a catalyst in organic synthesis.In conclusion, the nitrogen family elements share common characteristics such as similar electron configurations, but they exhibit diverse physical and chemical properties, as well as a wide range of uses and applications. From the essential role of nitrogen in life processes to the toxic effects of arsenic and the versatile applications of bismuth, the elements of this group have significant impacts on various aspects of our daily lives. Understanding the properties and applications of the nitrogen family elements is essential for appreciating their importance in chemistry, industry, and medicine.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Introduction Nitrogen (N) is a key element of many biogeochemical processes and can be a limiting element of aquatic and terrestrial ecosystem processes (Schlesinger 1991; Vitousek & Howarth 1991). However, about 99% of global N exists as stable atmospheric N 2 (Mackenzie et al. 1993) and thus is unavailable to ecosystems unless it is converted into a reactive N species (reactive N = NH 3 , NH + , organic N, NO, NO 2, HNO 3, NO 3, N 2 0 5, HNO 4 , HNO 2, NO2 , and NO 3 ). Once created, one species of reactive N can be converted into other species of reactive N by a variety of chemical and microbial processes. In addition, reactive N species are very mobile via atmospheric and hydrologic pathways. After formation, reactive N can only be converted back to unreactive N 2 by denitrification, an anaerobic process which only occurs
Received 22 March 1996; accepted 22 March 1996
Abstract. Anthropogenic food and energy production extensively mobilize reactive nitrogen (N) in the watershed of the North Atlantic Ocean (NAO). There is wide spread N distribution by both hydrologic and atmospheric processes within the watershed of the NAO, resulting in reactive N accumulation in terrestrial systems. Net denitrification in most estuaries and continental shelves exceeds the amount of N supplied to the shelves by rivers and requires a supply of nitrate from the open ocean. Thus riverine N is only transported to the open ocean in a few areas with the flow from a few major rivers (e.g., Amazon). Atmospheric N deposition to the open ocean has increased and may increase the productivity of the surface ocean. In addition, as a consequence of increased Fe deposition to the open ocean (due in part to anthropogenic processes), the rate of biological N-fixation may have increased resulting in N accumulation in the ocean. Phosphorus (P) is also mobilized by anthropogenic processes (primarily food production). Relative to N, more of the P is transported across the shelf to the open ocean from both estuaries and major rivers. There are several consequences of the increased availability of N and P that are unique to each element. However, the control on primary productivity in both coastal and open ocean ecosystems is dependent on a complex and poorly understood interaction between N and P mobilization and availability.
Biogeochemistry35: 3-25, 1996. ( 1996 Kluwer Academic Publishers. Printedin the Netherlands.
ogen and phosphorus budgets of the North Atlantic Ocean and its watershed
4 at significant rates in specific types of ecosystems. Reactive N accumulates in the environment if the denitrification rate is less than the rate of N-fixation. In the absence of humans, natural processes create reactive N by biological N-fixation and lightning. Biological N-fixation occurs in specific microbes when atmospheric N2 is converted to NH3 by the enzyme nitrogenase. Lightning produces NO by the reaction of N2 and 02 at high temperatures. The former process is about two orders of magnitude greater than the latter on a global basis (Galloway et al. 1995). Human intervention in the N cycle has increased the formation rate of reactive N by fertilizer production, legume and rice cultivation, and combustion of fossil fuels. Results from several recent analyses of the global N cycle (Mackenzie et al. 1993; Ayres et al. 1994; Galloway et al. 1995) generally agree that anthropogenic activities mobilize about 10 Tmol N yr- l (Tmol = 1012 moles) and that human activities mobilize N at rates equal to natural terrestrial processes. There is significant distribution of anthropogenic N by hydrologic and atmospheric transport. Combustion of fossil fuels injects reactive N (NO) directly into the atmosphere. Fertilizer and cultivation N increase the productivity of agricultural landscapes. However, on average, no more than 50% of the applied N fertilizer is removed by crop harvest; the remainder is lost to the atmosphere or hydrosphere, or stored in the soil (Howarth et al. this volume). In addition, N fixed in crops has a short residence time; it is quickly transformed into human or animal waste, which also results in significant inputs to the atmosphere and hydrosphere (Howarth et al. this volume). If the N introduced into the environment by fossil fuel combustion, fertilizer production and cultivation is not denitrified, then reactive N accumulates in downwind or downstream ecosystems. The mobilization, distribution and accumulation of anthropogenic N impacts a number of physical and ecosystem processes. As discussed in Howarth et al. (this volume), Nixon et al. (this volume), and Michaels et al. (this volume), increased availability of reactive N increases forest productivity, and as a consequence stores atmospheric CO2, contributes to forest decline (if soil is N-saturated) and climate change, and results in shifts in community structure and ecosystem function. It also increases coastal eutrophication in estuaries (including their wetlands), and results in increased N supply to oligotrophic mid-ocean gyres with concomitant affects on the ecology of the upper ocean. In addition to being important to ecosystems, reactive N also affects atmospheric chemistry (Prospero et al. this volume). High levels of NOx (NO + NO 2 ) play an important role in the photochemical production of 03 (Moxim et al. 1994). NH 3 is a major source of alkalinity in the atmosphere and a source of acidity in soils (Schlesinger 1991). Although N 2 0 is not viewed as a reactive form of N in the troposphere, it adsorbs IR
相关文档
最新文档