大一高等数学复习题(含答案)

合集下载

大一高等数学考卷及答案

大一高等数学考卷及答案

专业课原理概述部分一、选择题(每题1分,共5分)1.若函数f(x)在x=a处可导,则f'(a)等于()A.f(a)B.f(a+h)-f(a)/h(h趋于0)C.lim(f(a+h)-f(a))/h(h趋于0)D.f(a+h)-f(a)2.下列函数中,在x=0处连续但不可导的是()A.y=|x|B.y=x^2C.y=x^3D.y=1/x3.若函数f(x)在区间I上单调递增,则f'(x)在I上()A.必大于0B.必小于0C.可以为0D.不存在4.设函数f(x)在区间(a,b)内可导,且f'(x)>0,则f(x)在(a,b)内()A.单调递增B.单调递减C.有极值点D.无极值点5.设函数f(x)在x=a处连续,且lim(f(x)-f(a))/(x-a)=L,则f(x)在x=a处()A.可导,f'(a)=LB.可导,f'(a)不存在C.不可导D.无法确定二、判断题(每题1分,共5分)1.若函数f(x)在x=a处可导,则f(x)在x=a处一定连续。

()2.若函数f(x)在区间I上单调递增,则f'(x)在I上一定大于0。

()3.若函数f(x)在区间I上有极值点,则f'(x)在I上一定存在零点。

()4.若函数f(x)在区间I上连续,则f(x)在I上一定可积。

()5.若函数f(x)在区间I上可导,则f(x)在I上一定连续。

()三、填空题(每题1分,共5分)1.函数f(x)=x^3-3x在x=1处的导数为______。

2.函数f(x)=e^x在x=0处的导数为______。

3.函数f(x)=lnx在x=1处的导数为______。

4.函数f(x)=sinx在x=π/2处的导数为______。

5.函数f(x)=cosx在x=0处的导数为______。

四、简答题(每题2分,共10分)1.简述导数的定义。

2.简述连续与可导的关系。

3.简述罗尔定理。

4.简述拉格朗日中值定理。

大一期中高数复习题

大一期中高数复习题

大一期中高数复习题一、选择题(每题3分,共15分)1. 函数f(x)=x^2+3x-2的定义域是:A. RB. [0, +∞)C. (-∞, 0]D. (-∞, 0) ∪ [1, +∞)2. 已知函数f(x)=2x-1,求f(a+h)-f(a)的极限当h趋于0时的值是:A. 0B. 1C. 2D. -13. 函数f(x)=sin(x)在x=0处的导数是:A. 0B. 1C. -1D. 24. 若f(x)=x^3-2x^2+x-5,求f'(x)的值:A. 3x^2-4x+1B. 3x^2-4x+2C. 3x^2-4x+3D. 3x^2-4x+45. 曲线y=x^3-6x^2+9x在x=2处的切线斜率是:A. -3B. 0C. 3D. 6二、填空题(每题2分,共10分)1. 若f(x)=x^2+1,则f'(x)=________。

2. 函数g(x)=x^3在x=-1处的导数为________。

3. 若f(x)=ln(x),则f'(x)=________。

4. 函数h(x)=e^x的导数是________。

5. 若f(x)=sin(x)+cos(x),则f'(x)=________。

三、计算题(每题10分,共20分)1. 求函数f(x)=x^3-6x^2+11x-6在区间[1,3]上的最大值和最小值。

2. 求曲线y=x^2-4x+7在x=2处的切线方程。

四、证明题(每题15分,共30分)1. 证明:若f(x)在[a,b]上连续,则f(x)在[a,b]上可积。

2. 证明:若函数f(x)在x=c处可导,则f(x)在x=c处连续。

五、应用题(每题10分,共10分)1. 某公司生产的产品成本函数为C(x)=5x+1000,其中x为生产量。

求该公司生产100件产品时的平均成本。

六、综合题(每题10分,共10分)1. 假设某函数f(x)满足f'(x)=2x+1,且f(0)=0,求f(x)的表达式。

大一高数期末考试复习题及标准答案

大一高数期末考试复习题及标准答案

大一高数期末考试复习题及答案————————————————————————————————作者:————————————————————————————————日期:一.填空题(共5小题,每小题4分,共计20分)1.21lim()xx x e x →-=.2.()()1200511xx x x e e dx --+-=⎰.3.设函数()y y x =由方程21x yt e dt x+-=⎰确定,则0x dydx==.4. 设()x f 可导,且1()()xtf t dt f x =⎰,1)0(=f ,则()=x f .5.微分方程044=+'+''y y y 的通解为 .二.选择题(共4小题,每小题4分,共计16分)1.设常数0>k ,则函数k e x x x f +-=ln )(在),0(∞+内零点的个数为( ).(A) 3个; (B) 2个; (C) 1个; (D) 0个. 2. 微分方程43cos2y y x ''+=的特解形式为( ).(A )cos2y A x *=; (B )cos2y Ax x *=;(C )cos2sin 2y Ax x Bx x *=+; (D )x A y 2sin *=. 3.下列结论不一定成立的是( ).(A )若[][]b a d c ,,⊆,则必有()()⎰⎰≤badcdxx f dx x f ;(B )若0)(≥x f 在[]b a ,上可积,则()0b af x dx ≥⎰;(C )若()x f 是周期为T 的连续函数,则对任意常数a 都有()()⎰⎰+=TT a adxx f dx x f 0;(D )若可积函数()x f 为奇函数,则()0x t f t dt⎰也为奇函数.4. 设()xx e ex f 11321++=, 则0=x 是)(x f 的( ).(A) 连续点; (B) 可去间断点;(C) 跳跃间断点; (D) 无穷间断点. 三.计算题(共5小题,每小题6分,共计30分) 1.计算定积分2230x x e dx-⎰.2.计算不定积分dx x xx ⎰5cos sin .本页满分36分 本页得分本页满分 12分 本页得分3.求摆线⎩⎨⎧-=-=),cos 1(),sin (t a y t t a x 在2π=t 处的切线的方程. 4. 设20()cos()xF x x t dt=-⎰,求)(x F '.5.设n n n n n x nn )2()3)(2)(1(Λ+++=,求n n x∞→lim .四.应用题(共3小题,每小题9分,共计27分) 1.求由曲线2-=x y 与该曲线过坐标原点的切线及x 轴所围图形的面积.2.设平面图形D 由222x y x +≤与y x ≥所确定,试求D 绕直线2=x旋转一周所生成的旋转体的体积.3. 设1,a >at a t f t-=)(在(,)-∞+∞内的驻点为 (). t a 问a 为何值时)(a t 最小? 并求最小值.五.证明题(7分)设函数()f x 在[0,1]上连续,在(0,1)内可导且1(0)=(1)0,()12f f f ==,试证明至少存在一点(0,1)ξ∈, 使得()=1.f ξ' 一.填空题(每小题4分,5题共20分):1. 21lim()x x x e x →-=21e .2.()()1200511xxx xe e dx --+-=⎰e 4.3.设函数()y y x =由方程21x yt e dt x+-=⎰确定,则0x dydx==1-e .4. 设()x f 可导,且1()()x tf t dt f x =⎰,1)0(=f ,则()=x f 221x e.5.微分方程044=+'+''y y y 的通解为xe x C C y 221)(-+=.二.选择题(每小题4分,4题共16分):本页满分 12分 本页得分本页满分15分 本页得分本页满分18分 本页得分本页满分7分 本页得分1.设常数0>k ,则函数ke x x xf +-=ln )( 在),0(∞+内零点的个数为( B ). (A) 3个; (B) 2个; (C) 1个; (D) 0个. 2. 微分方程x y y 2cos 34=+''的特解形式为 ( C )(A )cos2y A x *=; (B )cos2y Ax x *=; (C )cos2sin 2y Ax x Bx x *=+; (D )x A y 2sin *= 3.下列结论不一定成立的是 ( A )(A) (A) 若[][]b a d c ,,⊆,则必有()()⎰⎰≤bad cdx x f dx x f ;(B) (B) 若0)(≥x f 在[]b a ,上可积,则()0baf x dx ≥⎰;(C) (C) 若()x f 是周期为T 的连续函数,则对任意常数a 都有()()⎰⎰+=TT a adxx f dx x f 0;(D) (D) 若可积函数()x f 为奇函数,则()0xt f t dt ⎰也为奇函数.4. 设()xx e ex f 11321++=, 则0=x 是)(x f 的( C ). (A) 连续点; (B) 可去间断点;(C) 跳跃间断点; (D) 无穷间断点. 三.计算题(每小题6分,5题共30分): 1.计算定积分⎰-2032dxe x x .解:⎰⎰⎰----===20202322121,2t t x tde dt te dx e x t x 则设 -------2⎥⎦⎤⎢⎣⎡--=⎰--200221dt e te t t -------2 2223210221----=--=ee e t --------22.计算不定积分dx x xx ⎰5cos sin .解:⎥⎦⎤⎢⎣⎡-==⎰⎰⎰x dx x x x xd dx x x x 4445cos cos 41)cos 1(41cos sin --------3 C x x x x x d x x x +--=+-=⎰tan 41tan 121cos 4tan )1(tan 41cos 43424 -----------33.求摆线⎩⎨⎧-=-=),cos 1(),sin (t a y t t a x 在2π=t 处的切线的方程. 解:切点为)),12((a a -π-------22π==t dx dy k 2)cos 1(sin π=-=t t a t a 1= -------2切线方程为 )12(--=-πa x a y 即ax y )22(π-+=. -------24. 设⎰-=xdtt x x F 02)cos()(,则=')(x F )cos()12(cos 222x x x x x ---. 5.设n n n n n x nn )2()3)(2)(1(Λ+++=,求nn x ∞→lim .解:)1ln(1ln 1∑=+=n i n n i n x ---------2 ⎰∑+=+==∞→∞→101)1ln(1)1ln(lim ln lim dxx n n i x n i n n n --------------2=12ln 211)1ln(101-=+-+⎰dx x xx x ------------2 故 n n x∞→lim =e e 412ln 2=- 四.应用题(每小题9分,3题共27分) 1.求由曲线2-=x y 与该曲线过坐标原点的切线及x 轴所围图形的面积.解:设切点为),00y x (,则过原点的切线方程为xx y 2210-=,由于点),00y x (在切线上,带入切线方程,解得切点为2,400==y x .-----3过原点和点)2,4(的切线方程为22xy =-----------------------------3面积dyy y s )222(22⎰-+==322-------------------3或322)2221(2212042=--+=⎰⎰dx x x xdx s2.设平面图形D由222x y x+≤与y x≥所确定,试求D绕直线2=x旋转一周所生成的旋转体的体积.解:法一:21VVV-=[][]⎰⎰⎰---=-----=12212122)1(12)2()11(2dyyydyydyyπππ-------6)314(21)1(31423-=⎥⎦⎤⎢⎣⎡--=ππππy--------3法二:V=⎰---12)2)(2(2dxxxxxπ⎰⎰----=1122)2(22)2(2dxxxdxxxxππ------------------ 5[]⎰--+--=12234222)22(ππdxxxxxxππππππππ32213421323414121)2(3222232-=-+=-⎥⎦⎤⎢⎣⎡⨯⨯+-=xx------------- 43. 设1,a>atatf t-=)(在(,)-∞+∞内的驻点为().t a问a为何值时)(at最小? 并求最小值.解:.lnlnln1)(ln)(aaataaatf t-==-='得由--------------- 3)(ln1lnln)(2eeaaaaat==-='得唯一驻点又由------------3.)(,0)(,;0)(,的极小值点为于是时当时当ateaateaatea eee=<'<>'>-----2 故.11ln1)(,)(eeeetatea ee-=-==最小值为的最小值点为--------------1五.证明题(7分)设函数()f x 在[0,1]上连续,在(0,1)内可导且1(0)=(1)0,()12f f f ==,试证明至少存在一点(0,1)ξ∈, 使得()=1.f ξ'证明:设()()F x f x x =-,()F x 在[0,1]上连续在(0,1)可导,因(0)=(1)=0f f ,有(0)(0)00,(1)(1)11F f F f =-==-=-,--------------- 2又由1()=12f ,知11111()=()-=1-=22222F f ,在1[1]2,上()F x 用零点定理, 根据11(1)()=-022F F <,--------------- 2可知在1(1)2,内至少存在一点η,使得1()=0(,1)(0,1)2F ηη∈⊂,,(0)=()=0F F η由ROLLE 中值定理得 至少存在一点(0,)(0,1)ξη∈⊂使得()=0F ξ'即()1=0f ξ'-,证毕. --------------3。

大一第一学期期末高数试卷复习及答案(常见与经典)

大一第一学期期末高数试卷复习及答案(常见与经典)

广东技术师范学院期末考试试卷A 卷参考答案及评分标准高等数学(上)一、填空题(每小题3分,共30分)1. 如果函数)(x f y =的定义域为]1,0[,则)(ln x f 的定义域为],1[e .(3分)2.已知2)0('=f ,而且0)0(=f ,则=→x x f x )2(lim 0 4 .(3分) 3.已知22lim e x x kx x =⎪⎭⎫ ⎝⎛+∞→,则=k 1 .(3分)4.曲线x x y ln =在点)0,1(处的切线方程是 1-=x y .(3分)5.函数653)(2+--=x x x x f 的间断点个数为 2 .(3分)6.如果⎪⎪⎩⎪⎪⎨⎧>+=<=0,)1ln(0,0,sin )(x x x x k x x x x f 在0=x 处连续,则=k 1 .(3分)7.函数x e x f 2)(=的带有拉格朗日型余项的n 阶麦克劳林展式为:(3分))10()!1(2!2221)(112<<++++++=++θθn xn n nx n e x n x x x f . 8.函数)0,,()(2≠++=p r q p r qx px x f 是常数,且,则)(x f 在区间],[b a 上满足拉格朗日中值公式的ξ=2ba +.(3分)9.定积分()dx x x x 1011sin ⎰-+的值为61.(3分)10.设⎰+=C x F dx x f )()(,则⎰--dx e f e x x )(=C e F x +--)(.(3分)二.计算题(要求有计算过程,每小题5分,共40分) 11.求极限113lim 21-+--→x x x x .(5分) 解:)13)(1()13)(13(lim 113lim 2121++--++-+--=-+--→→x x x x x x x x x x x x ---------(3分)42)13)(1(2lim 1-=++-+-=→x x x x ----------------------------------(5分)12.求极限 n n n 2sin 2lim π∞→.(5分) 解:πππππ=⋅=∞→∞→nn n n n n 22sin lim 2sin 2lim ----------------------------(5分)13.求极限4020sin 1lim 2x tdt t x x ⎰+→(5分)解:21s i n 21lim 42sin 1lim sin 1lim 2240324040202=+=⋅+=+→→→⎰xx x x x x x x tdt t x x x x -------(5分)14.设x ey arctan =,求dy .(5分) 解:)(arctan arctan arctan x d e de dy x x ==-----------------------------------(2分)dx x x e x d x ex x )1(211arctan arctan +=+=----------------------------------(5分)15.求由方程y x e xy +=所确定的隐函数的导数dx dy.(5分)解:方程两边求关于x 的导数)()(dx dy x y xy dxd +=; )1(dx dye e x d y x y x +=++-------------(3分) 所以有 )(dx dy x y +=)1(dx dy e y x ++解得 )1()1(y x x y xy x y xy ex y e dx dy y x y x --=--=--=++------------------------(5分) 16.求由参数方程 ⎩⎨⎧==-t t e y e x 23 所确定的函数的二阶导数22dx y d .(5分)解:t t t t t dxdt dy e e e e e dx dy 2''3232)3()2(-=-===-------------------------------(2分)t t t t t e e e e e dt dx dx dy dt d dx dy dx d dx y d 32''22294334)3()32(=--=-=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=----------(5分)17.求不定积分⎰++dx x x x 2321)(arctan .(5分)解:⎰⎰⎰+++=++dx x x dx x x dx x x x 23222321)(arctan 11)(arctan ----------------(1分) =x d x dx x arctan )(arctan )111(32⎰⎰++----------------------------------(3分) =C x x x ++-4)(arctan 41arctan -----------------------------------------------(5分)18.求定积分dx e x ⎰+101.(5分)解:令2,1;1,0,2,1,12=====-==+t x t x tdt dx t x t x -----(1分)⎰⎰⎰==+212110122dt te tdt e dx e t t x --------------------------------------(2分)22122121)12(2)|2(2)|(2e e e e dt e te t t t -=--=-=⎰--------(5分)20.求函数x x y 12+=的单调区间、凹凸区间、极值点和拐点.(10分) 解:函数的定义域为),0()0,(+∞⋃-∞ 令01212232'=-=-=x x x x y ,得驻点3121=x -------------------------(1分) 当321>x 时,0'>y ,函数单调增加,当321<x 时,0'<y ,函数单调减少,所以函数的单调增加区间为),21[3+∞,单调减少区间为)0,(-∞和]21,0(3-----(4分)3121=x 为函数的极小值点------------------------------------------------------(5分)令0)1(222333''=+=+=x x x y ,得12-=x -------------------------------------(6分) 当0>x 或1-<x 时,0''>y ,曲线x x y 12+=为凹的,当01<<-x 时,0''<y曲线x x y 12+=为凸的, 所以曲线x x y 12+=的凹区间为 ]1,(--∞和),0(+∞,凸区间为)0,1[-------(8分)曲线的拐点为(-1,0)--------------------------------------------------------------(10分)四、证明题(6分)21.证明当0>>b a 时,b b a b a ab a -<<-ln . 证明:令x x f ln )(=,则)(x f 在区间],[a b 上连续,在区间),(a b 内可导,由拉格朗日中值定理有:)())(()()('a b b a f b f a f <<-=-ξξ----------(2分) 因为x x f 1)('=,所以有:)()(1ln ln a b b a b a <<-=-ξξ-----------(3分) 因为a b <<<ξ0,所以b a 111<<ξ, -------------------------------------------(4分) 又0>-b a ,所以b b a b a ab a )()(1-<-<-ξ 即:b b a b a ab a -<<-ln -------------------------------------------------------(6分) 五.应用题(8分)22.求由曲线x x e y e y -==,与直线1=x 所围成的平面图形面积及这个平面图形绕x 轴旋转所成旋转体体积.解:曲线x e y =与x e y -=的交点为(0,1),曲线x e y =与x e y -=和直线1=x 的交点分别为(1,e )和(1,1-e ),所围平面图形如图阴影部分,取x 为积分变量,其变化范围为[0,1],所求面积为dx e e S x x )(10--=⎰--------------------------------------------------------(2分)2(|)(110-+=+=--e e e e x x )-------------------------------------------------(4分)所求旋转体体积为))210102dx e dx e V x x -⎰⎰-=ππ-----------------------------------------------(6分) 2(2|)2121(221022-+=+=--e e e e x x ππ)-------------------------------------(8分)。

大一高数基础复习题

大一高数基础复习题

大一高数基础复习题一、选择题(每题2分,共10分)1. 函数f(x)=x^2+3x+2在点x=-1处的导数是:A. 1B. -1B. 2D. 32. 曲线y=x^3-2x^2+x在点(1,0)处的切线斜率是:A. -1B. 0C. 1D. 23. 若f(x)=sin(x)+cos(x),则f'(x)是:A. cos(x)-sin(x)B. cos(x)+sin(x)C. sin(x)-cos(x)D. sin(x)+cos(x)4. 曲线y=x^2与直线y=4x-5平行的切点坐标是:A. (1, -3)B. (2, 3)C. (5, 15)D. (5, 20)5. 函数f(x)=ln(x)在区间[1,e]上的最大值是:A. 0B. 1C. ln(e)D. ln(1)二、填空题(每题2分,共10分)6. 若函数f(x)=x^3-6x^2+11x-6,则f'(x)=______。

7. 若y=x^2-4x+3,则y的极小值点是______。

8. 函数f(x)=x^2-2x+3在区间[0,3]上的平均变化率是______。

9. 若曲线y=x^2+1在点(1,2)处的切线方程是y=2x,则该切线的斜率是______。

10. 若f(x)=x^2-4x+3,则f(x)的单调递增区间是______。

三、计算题(每题10分,共20分)11. 求函数f(x)=2x^3-6x^2+5x-7在点x=1处的导数,并说明该点是函数的极大值点还是极小值点。

12. 已知函数f(x)=x^3-3x^2+2x,求f(x)的单调区间,并求出f(x)的极值。

四、证明题(每题10分,共20分)13. 证明:对于任意实数x,函数f(x)=x^3-3x^2+2x+1的导数f'(x)恒大于0。

14. 证明:若函数f(x)在区间[a,b]上连续且可导,且f'(x)>0,则f(x)在[a,b]上单调递增。

五、应用题(每题15分,共30分)15. 某工厂生产一种产品,其生产成本函数为C(x)=x^2+100x+1000,其中x表示产品数量。

(完整版)大一高数试题及答案.doc,推荐文档

(完整版)大一高数试题及答案.doc,推荐文档

大一高数试题及答案一、填空题(每小题1分,共10分)1.函数 的定义域为______________________。

22111arcsin xx y -+-= 2.函数上点( 0,1 )处的切线方程是______________。

2e x y += 3.设f(X )在可导,且,则0x A (x)f'=hh x f h x f h )3()2(lim000--+→= _____________。

4.设曲线过(0,1),且其上任意点(x ,y )的切线斜率为2x ,则该曲线的方程是____________。

5._____________。

=-⎰dx xx41 6.__________。

=∞→xx x 1sinlim 7.设f(x,y)=sin(xy),则fx(x,y)=____________。

9.微分方程的阶数为____________。

22233)(3dx y d x dxy d + ∞ ∞10.设级数 ∑ an 发散,则级数 ∑ an _______________。

n=1 n=1000二、单项选择题。

(1~10每小题1分,11~20每小题2分,共30分)1.设函数则f[g(x)]= ( ) x x g xx f -==1)(,1)( ① ② ③ ④xx 11-x 11-x -112.是 ( )11sin +xx ①无穷大量 ②无穷小量 ③有界变量 ④无界变量3.下列说法正确的是 ( )①若f( X )在 X =Xo 连续, 则f( X )在X =Xo 可导 ②若f( X )在 X =Xo 不可导,则f( X )在X =Xo 不连续 ③若f( X )在 X =Xo 不可微,则f( X )在X =Xo 极限不存在 ④若f( X )在 X =Xo 不连续,则f( X )在X =Xo 不可导 4.若在区间(a,b)内恒有,则在0)(",0)('><x f x f (a,b)内曲线弧y=f(x)为 ( )①上升的凸弧 ②下降的凸弧 ③上升的凹弧 ④下降的凹弧5.设,则 ( ))(')('x G x F = ① F(X)+G(X) 为常数 ② F(X)-G(X) 为常数 ③ F(X)-G(X) =0 ④⎰⎰=dx x G dxddx x F dxd )()( 1 6.( )=⎰-dx x 11-1① 0 ② 1 ③ 2 ④ 3 7.方程2x+3y=1在空间表示的图形是 ( ) ①平行于xoy面的平面 ②平行于oz轴的平面 ③过oz轴的平面 ④直线8.设,则f(tx,ty)yx y x y x y x f tan),(233++==( )① ②),(y x tf),(2y x f t ③ ④ ),(3y x f t ),(12y x tan +1 ∞9.设an ≥0,且lim ───── =p,则级数 ∑an ( ) n→∞ a n=1 ①在p〉1时收敛,p〈1时发散 ②在p≥1时收敛,p〈1时发散 ③在p≤1时收敛,p〉1时发散 ④在p〈1时收敛,p〉1时发散10.方程 y'+3xy=6x2y 是 ( ) ①一阶线性非齐次微分方程 ②齐次微分方程③可分离变量的微分方程 ④二阶微分方程 (二)每小题2分,共20分11.下列函数中为偶函数的是 ( ) ①y=ex ②y=x3+1③y=x3cosx ④y=ln│x│12.设f(x)在(a,b)可导,a〈x1〈x2〈b,则至少有一点ζ∈(a,b)使( )①f(b)-f(a)=f'(ζ)(b-a) ②f(b)-f(a)=f'(ζ)(x2-x1) ③f(x2)-f(x1)=f'(ζ)(b-a) ④f(x2)-f(x1)=f'(ζ)(x2-x1)13.设f(X )在 X =Xo 的左右导数存在且相等是f(X )在 X =Xo 可导的 ( )①充分必要的条件 ②必要非充分的条件 ③必要且充分的条件④既非必要又非充分的条件d14.设2f(x)cosx=──[f(x)]2,则f(0)=1,则f(x)=()dx①cosx②2-cosx③1+sinx④1-sinx15.过点(1,2)且切线斜率为4x3的曲线方程为y=()①x4②x4+c③x4+1④x4-11 x16.lim───∫3tgt2dt=()x→0x3 01①0②1③──④∞3xy17.limxysin─────=()x→0x2+y2y→0①0②1③∞④sin118.对微分方程y"=f(y,y'),降阶的方法是()①设y'=p,则y"=p'dp②设y'=p,则y"=───dydp③设y'=p,则y"=p───dy1dp④设y'=p,则y"=─────pdy∞∞19.设幂级数 ∑ an xn 在xo (xo ≠0)收敛, 则 ∑ an xn 在│x│〈│xo│( )n=o n=o①绝对收敛 ②条件收敛 ③发散 ④收敛性与an 有关sinx20.设D域由y=x,y=x2所围成,则∫∫ ─────dσ= ( ) D x 1 1 sinx① ∫ dx ∫ ───── dy 0 x x__1 √y sinx② ∫ dy ∫ ─────dx 0 y x __1 √x sinx③ ∫ dx ∫ ─────dy 0 x x __1 √x sinx④ ∫ dy ∫ ─────dx 0 x x三、计算题(每小题5分,共45分)1.设求 y’ 。

大一高等数学试题及答案

大一高等数学试题及答案

大一高等数学试题及答案一、选择题(每题2分,共20分)1. 下列函数中,不是周期函数的是()。

A. y = sin(x)B. y = cos(x)C. y = e^xD. y = tan(x)2. 函数f(x) = x^2 + 3x - 2的零点个数是()。

A. 0B. 1C. 2D. 33. 极限lim(x→0) (sin(x)/x)的值是()。

A. 0B. 1C. 2D. 无穷大4. 曲线y = x^3 - 2x^2 + 3在x = 1处的切线斜率是()。

A. -1B. 0C. 1D. 25. 以下哪个不是微分方程dy/dx = y/x的解()。

A. y = x^2B. y = x^3C. y = x^(-1)D. y = x6. 定积分∫(0,1) x^2 dx的值是()。

A. 1/3B. 1/4C. 1/2D. 17. 函数f(x) = ln(x)在区间[1, e]上的值域是()。

A. [0, 1]B. [1, e]C. [0, e]D. [1, 2]8. 以下哪个是复合函数f(g(x))的导数()。

A. f'(g(x)) * g'(x)B. f(g(x)) * g'(x)C. f'(x) * g'(x)D. f(x) * g'(x)9. 以下哪个是泰勒级数展开的公式()。

A. f(x) = ∑[n=0 to ∞] (f^(n)(a) / n!) * (x - a)^nB. f(x) = ∑[n=1 to ∞] (f^(n)(a) / n!) * (x - a)^nC. f(x) = ∑[n=0 to ∞] (f^(n)(a) / (n+1)!) * (x - a)^nD. f(x) = ∑[n=1 to ∞] (f^(n)(a) / (n+1)!) * (x - a)^n10. 以下哪个是拉格朗日中值定理的条件()。

A. f(x) 在区间[a, b]上连续B. f(x) 在区间(a, b)上可导C. f(x) 在区间[a, b]上可导D. f(x) 在区间(a, b)上连续且可导答案:1-5 C B B C A 6-10 B A A D D二、填空题(每题2分,共10分)1. 若f(x) = x^3 - 4x^2 + 5x - 6,则f'(x) = __________。

大学大一高数试题及答案

大学大一高数试题及答案

大学大一高数试题及答案一、选择题(每题5分,共20分)1. 设函数f(x)=x^2-4x+3,若f(a)=0,则a的值为()。

A. 1B. 3C. -1D. 2答案:B2. 极限lim(x→0) (sin x)/x的值为()。

A. 0B. 1C. ∞D. -1答案:B3. 若函数f(x)在点x=a处可导,则()。

A. f(x)在x=a处连续B. f(x)在x=a处不可导C. f(x)在x=a处不连续D. f(x)在x=a处的导数为0答案:A4. 设数列{a_n}满足a_1=1,a_{n+1}=2a_n+1,n∈N*,则a_3的值为()。

A. 5B. 7C. 9D. 11答案:C二、填空题(每题5分,共20分)1. 计算定积分∫(0到1) x^2 dx的值为______。

答案:1/32. 若矩阵A=\[\begin{pmatrix}1 & 2\\3 & 4\end{pmatrix}\],则A 的行列式det(A)为______。

答案:-23. 设函数f(x)=x^3-6x^2+11x-6,f'(x)=3x^2-12x+11,则f'(1)的值为______。

答案:24. 函数y=ln(x)的反函数为______。

答案:e^y三、解答题(每题10分,共60分)1. 求函数f(x)=x^3-3x^2+4x-12在x=2处的切线方程。

答案:首先计算f'(x)=3x^2-6x+4,代入x=2得到f'(2)=6,然后计算f(2)=0,所以切线方程为y-0=6(x-2),即y=6x-12。

2. 计算级数∑(1到∞) (1/n^2)的和。

答案:该级数为π^2/6。

3. 已知函数f(x)=x^3-3x^2+2,求f(x)的极值点。

答案:首先求导f'(x)=3x^2-6x,令f'(x)=0,解得x=0或x=2。

然后计算二阶导数f''(x)=6x-6,代入x=0和x=2,得到f''(0)<0,f''(2)>0,所以x=0是极大值点,x=2是极小值点。

大一高等数学期末考试试卷及复习资料详解

大一高等数学期末考试试卷及复习资料详解

大一高等数学期末考试试卷及复习资料详解大一高等数学期末考试试卷(一)一、选择题(共12分)1.(3分)若/3= 2XXV0,为连续函数,则d的值为().a+ x,x>0(A)I (B) 2 (C)3 (D)-I2.(3分)已知厂⑶=2,则Ii y "7⑶的值为().λ→0 2hOOl (B) 3 (C)-I (D)I23.(3分)定积分∫>Λ∕1-COS23Xdx的值为()•■⑷ 0 (B)-2 (C)I (D) 24.(3分)若/⑴在“勺处不连续,则/3在该点处()・(A)必不可导(B)—定可导(C)可能可导(D)必无极限二、填空题(共12分)1.(3分)平面上过点(0,1),且在任意一点(Λ∙,y)处的切线斜率为3疋的曲线方程为_________________________ .2.( 3 分)∫ ι(x2+x4 Sin XyIX = _______ 1-3.(3 分)IilnX2 Sin丄= ・.r→υX4.(3分)y = 2√ -3√的极大值为________________ —2 (6分)设尸冕,求*JT + 1三、计算题(共42分)1.(6 分)求Iim史S.∙*→υ Sin 3x^3.(6分)求不定积分JXIn(I+十)厶.x .v<ι4.(6 分)求J /(X-1)JΛ∖其中/(x)= < l + cosχ,e' +l,x> 1.5.(6分)设函数y = f(x)由方程JO e,M + [cos∕d∕ = 0所确定,求dy.6.( 6 分)设 f f{x)dx = Sin + C,求j + 3)dx.7.(6 分)求极限IinJI÷-Γn→30k 2/7 7四、解答题(共28分)1.(7 分)设,Γ(lnx) = l+x,且/(0) = 1,求32.(7分)求由曲线y = cosx[-^-<x<^及X轴所围成图形绕着X轴旋I 2 2)转一周所得旋转体的体积.3.(7分)求曲线y = x3-3√÷24x-19在拐点处的切线方程•4.(7分)求函数y = x + √∏7在[-5,1]上的最小值和最大值.五、证明题(6分)设厂(X)在区间[“]上连续,证明i a f^dx = ¥ [/(“) + f(b)]+1 [(X - a)(x - b)fj)dx.(二)一、填空题(每小题3分,共18分)1.设函数/(χ)= 2χ2~1 ,则"1是心)的第_________ 类间断点.X -3x + 23.=∙v→∞V X)4・ 曲线 V 在点(扣)处的切线方程 为 ・5 .函数J = 2X 3-3X 2在[-1,4]上的最大值 _________________ ,最小值 __________ .二、 单项选择题(每小题4分,共20分)1.数列&”}有界是它收敛的( )•(A)必要但非充分条件; (C)充分必要条件; 2.下列各式正确的是((B)充分但非必要条件; (D)无关条件.)・(A) je-χdx=e"x+C i(B) J In X(IX = _ + C ; (C)JI 2∕x=2hl (l 2x)+C ;(D) f —5—JX = Inlllx+ C ・' ,J XInX3-设/(x)在RM 上,广(x)>O 且厂(x)>0,则曲线y = f(x)在[“问上•6.∣∙arctanx J l +x 2(IX(小沿X轴正向上升且为凹(B)沿兀轴正向下降且为凹的;的;(D)沿X轴正向下降且为凸(C)沿兀轴正向上升且为凸的;的.则/(x)在兀=0处的导? :( )•4. 设/(*)=XInX ’⑷等于1;(C)等于O ;(D)不存在•5.已知Ihn/(x)= 2,以下结论正确的是()•G)函数在工=1处有定义且/(1)=2 ; (B)函数在;V = I处的某去心邻域内有定义;(C)函数在2 1处的左侧某邻域内有定义;(D)函数在21处的右侧某邻域内有定义.三、计算(每小题6分,共36分)1.求极限:HlnX2 sinx→0X2.已知y = ln(l + χ2),求几3.求函数J = >0)的导数.5.J X COS XdX ・丄 16.方程y x =X y确定函数y = f(x)f求八四、(H)分)已知/为/(X)的一个原函数,求∫x2∕(x}∕x.五、(6分)求曲线,=壮7的拐点及凹凸区间.六、(10 分)设J广(√∑)/X = X(e、' +1)+C ,求/(X)・(三)填空题(本题共5小题,每小题4分,共20分)・±J_(1)⅛(COSX)r = ________ 石________ .(2)曲线A = Xlnx上及直线X-y + l= °平行的切线方程为y =x-∖(3 )已知f f(e x) = xe~x,且/(D = O ,则大一高等数学期末考试试卷及复习资料详解/(X)= _________ /Cv)= 2(In X)________ .X 211(4)曲线V =3777的斜渐近线方程为 _______ V= 3Λ^9,二、选择题(本题共5小题,每小题4分,共20分)・(1)下列积分结果正确的是(D )(2)函数/W 在[恥]内有定义,其导数广⑴的图形如图1-1所示, 则(D ) •(A)刁宀都是极值点.⑻ g ,/3)),(£,/(£))都是拐点.(C) F 是极值点.,U 是拐点. (D) WJy))是拐点,勺是极值点.(3) 函数y = qe v ÷C 2e-÷A -e'满足的一个微分方程是(D ).(A) /-y-2>∙ = 3xe t . (B) /-y-2y = 3e v . (C) / + y-2y = 3Λ∙e c .(D) / + y~2y = 3e r .lim∕(⅞)-∕(⅞~z0 (4) 设/W 在%处可导,则I h 为(A ) •⑷ 广仇). (B) -f ,M.(C) O. (D)不存在.(5)下列等式中正确的结果是((A) (J* /(x)"∙χ)'Z=/W-(C) 町 /(χ)"χ]=/W -) 微分方程= (V+1)-的通解为三、计算J (本 共4小题,每小题6分,共24分).y =3 _5 "3 O(或令 √Γ+χ = r)四、解答题(本题共4小题,共29分)•1. (本题6分)解微分方程r-5∕÷6j = xe -.解:特征方程r 2-5r + 6 = 0 ------------- 1分 特征解斤=2,r 2 =3. ------------ 1分 3x大一高等数学期末考试试卷及复习资料详解 恤(丄—丄)1∙求极限j X-I In —X 11. xlnx-x+1Iim (—— _ ——)IIm ---------In XIUn I XTl x-1 I---- + In xh ∖x Iim x →,X -1 + xln1.1 + In X 1 IUn -------- =— j 1 + In X +1 2Λ = In Sin t2.方程尸COSWSinf 确定V 为X 的函数,dy y ,(f)-=-一 =∕sm∕, 解 JX 十⑴求dx 及Jx 2 .(3分) (6分)arctan JX3. 4.计算不定积分J石(1+『. arctanA∕√7—— (i + χ)=21 arctan √7t∕ arctan y ∕x ——解 Hatan 仇=2 J √x(l + x)=(arctan2+C ——「一 dx4.计算定积分如+曲.'3χ(l -VTTX) 0解 分)oT7⅛7_ V dx = 一J(:(I-、/i+x)〃X(6分)LL i∖l4/1 «\ ? r V 八2.(本题7分)一个横放着的圆柱形水桶(如图4-1),桶内盛有半桶水,设桶的底半径为R ,水的比重为乙计算桶的一端面上所受的压力.解:建立坐标系如图3.(本题8分)设/B在S】上有连续的导数,f(u) = f(b) = θ9且∫O∕2(X)JΛ =1^试求∫>∕ω∕解:J:Xf(X)f∖x)dx = £ Xf(X)df(x) 2 分= -∫n^^W ------------ 2 分=IV 2(Λ-)⅛-|£72(X)厶一一2 分4.(本题8分)过坐标原点作曲线>, = h^的切线,该切线及曲线y =lnx及X轴围成平面图形D.⑴(3) 求D的面积A;⑵(4) 求D绕直线X = e旋转一周所得旋转体的体积V.解:(1)设切点的横坐标为",则曲线y = In Λ在点(⅞Jn ⅞)处的切线方程y = Inx0 + —(X-X0).氐__I分由该切线过原点知山心-1 = 0,从而心=匕所以该切线的方程为1y = -X.平面图形D的面积1V = -X(2)切线"及X轴及直线Xe所围成的三角形绕直线Xe旋转V I = -7te1所得的圆锥体积为,3 2分曲线尸IZ及X轴及直线所围成的图形绕直线Xe旋转所得的旋转体体积为V2=(oπ(e-e>)2dy9】分因此所求旋转体的体积为V=V l-V2=-^2-e y)2dy = -(5e2-∖2e + 3).五、证明题(本题共1小题,共7分)•1.证明对于任意的实数Y , eJl + x.e x = l + x + —Λ2≥l + x2解法二设fM = e x-x~^则/(0) = 0.因为f f M = e x-∖. 1 分当Xno时,f,M≥o.f(χ)单调增加,/(χ)≥∕(θ)=o.当x≤0时,∕,ω≤0.∕(Λ∙)单调增加,/(X)≥/(0) =0. 所以对于任意的实数X, ∕3≥°∙即e'≥l + I 解法三:由微分中值定理得,R -1 = “ -60 =^(X-O) = ^Xt 其中§位于0 到X 之一1分2分A = V -ey)dy = ~e~^∙解法一:2分2分1分2分间。

大一高数试题和答案与解析

大一高数试题和答案与解析

大一高数试题及答案一、填空题(每小题1分,共10分)________ 11.函数y=arcsin√1-x2+────── 的定义域为_________√1-x2_______________。

2.函数y=x+ex上点(0,1)处的切线方程是______________。

f(Xo+2h)-f(Xo-3h)3.设f(X)在Xo可导且f'(Xo)=A,则lim───────────────h→o h= _____________。

4.设曲线过(0,1),且其上任意点(X,Y)的切线斜率为2X,则该曲线的方程是____________。

x5.∫─────dx=_____________。

1-x416.limXsin───=___________。

x→∞ X7.设f(x,y)=sin(xy),则fx(x,y)=____________。

_______R √R2-x28.累次积分∫ dx∫ f(X2+Y2)dy化为极坐标下的累次积分为____________。

0 0d3y3d2y9.微分方程─── +──(─── )2的阶数为____________。

dx3xdx2∞ ∞10.设级数∑ an发散,则级数∑ an _______________。

n=1 n=1000二、单项选择题(在每小题的四个备选答案中,选出一个正确的答案,将其码写在题干的(),1~10每小题1分,11~20每小题2分,共30分)(一)每小题1分,共10分11.设函数f(x)=── ,g(x)=1-x,则f[g(x)]=()x111①1-── ②1+── ③ ──── ④xxx1-x12.x→0 时,xsin──+1是()x①无穷大量②无穷小量③有界变量④无界变量3.下列说法正确的是()①若f( X )在 X=Xo连续,则f( X )在X=Xo可导②若f( X )在 X=Xo不可导,则f( X )在X=Xo不连续③若f( X )在 X=Xo不可微,则f( X )在X=Xo极限不存在④若f( X )在 X=Xo不连续,则f( X )在X=Xo不可导4.若在区间(a,b)恒有f'(x)〈0,f"(x)〉0,则在(a,b)曲线弧y=f(x)为()①上升的凸弧②下降的凸弧③上升的凹弧④下降的凹弧5.设F'(x) =G'(x),则()① F(X)+G(X) 为常数② F(X)-G(X) 为常数③ F(X)-G(X) =0dd④ ──∫F(x)dx=──∫G(x)dxdxdx16.∫ │x│dx=()-1① 0② 1③ 2④ 37.方程2x+3y=1在空间表示的图形是()①平行于xoy面的平面②平行于oz轴的平面③过oz轴的平面④直线x8.设f(x,y)=x3+y3+x2ytg── ,则f(tx,ty)=()y①tf(x,y)②t2f(x,y)1③t3f(x,y)④ ──f(x,y)t2an+1∞9.设an≥0,且lim───── =p,则级数∑an()n→∞ a n=1①在p〉1时收敛,p〈1时发散②在p≥1时收敛,p〈1时发散③在p≤1时收敛,p〉1时发散④在p〈1时收敛,p〉1时发散10.方程y'+3xy=6x2y是()①一阶线性非齐次微分方程②齐次微分方程③可分离变量的微分方程④二阶微分方程(二)每小题2分,共20分11.下列函数中为偶函数的是()①y=ex②y=x3+1③y=x3cosx④y=ln│x│12.设f(x)在(a,b)可导,a〈x1〈x2〈b,则至少有一点ζ∈(a,b)使()①f(b)-f(a)=f'(ζ)(b-a)②f(b)-f(a)=f'(ζ)(x2-x1)③f(x2)-f(x1)=f'(ζ)(b-a)④f(x2)-f(x1)=f'(ζ)(x2-x1)13.设f(X)在 X=Xo 的左右导数存在且相等是f(X)在 X=Xo 可导的()①充分必要的条件②必要非充分的条件③必要且充分的条件④既非必要又非充分的条件d14.设2f(x)cosx=──[f(x)]2,则f(0)=1,则f(x)=()dx①cosx②2-cosx③1+sinx④1-sinx15.过点(1,2)且切线斜率为4x3的曲线方程为y=()①x4②x4+c③x4+1④x4-11 x16.lim─── ∫ 3tgt2dt=()x→0 x3 01① 0②1③ ── ④ ∞3xy17.limxysin───── =()x→0 x2+y2y→0① 0② 1③ ∞ ④ sin118.对微分方程y"=f(y,y'),降阶的方法是()① 设y'=p,则y"=p'dp② 设y'=p,则y"=───dydp③ 设y'=p,则y"=p───dy1dp④ 设y'=p,则y"=── ───pdy∞ ∞19.设幂级数∑ anxn在xo(xo≠0)收敛,则∑ anxn在│x│〈│xo│()n=o n=o①绝对收敛②条件收敛③发散④收敛性与an有关sinx20.设D域由y=x,y=x2所围成,则∫∫ ─────dσ=()D x1 1 sinx① ∫ dx∫ ───── dy0 x x__1 √y sinx② ∫ dy∫ ─────dx0 y x__1 √x sinx③ ∫ dx∫ ─────dy0 x x__1 √x sinx④ ∫ dy∫ ─────dx0 x x三、计算题(每小题5分,共45分)___________/x-11.设y=/────── 求y' 。

大一高数试题及答案

大一高数试题及答案

大一高数试题及答案一、选择题(每题5分,共20分)1. 设函数f(x)=x^3-3x,求f'(x)的值。

A. 3x^2-3B. x^2-3C. 3x^2+3D. x^3-3答案:A2. 求极限lim(x→0) (sinx/x) 的值。

A. 0B. 1C. 2D. -1答案:B3. 设曲线y=x^2+1与直线y=2x+3相交于点A和点B,求交点的横坐标。

A. -2, 1B. 1, 2C. -1, 2D. 1, -2答案:C4. 计算定积分∫(0,1) x^2 dx。

A. 1/3B. 1/2C. 2/3D. 1/4答案:B二、填空题(每题5分,共20分)5. 设函数f(x)=x^2-4x+3,求f(2)的值。

答案:-16. 求不定积分∫(1/x) dx。

答案:ln|x|+C7. 设函数f(x)=e^x,求f'(x)的值。

答案:e^x8. 计算定积分∫(0,π) sinx dx。

答案:2三、解答题(每题10分,共60分)9. 求函数f(x)=x^3-6x^2+11x-6的极值点。

解:首先求导数f'(x)=3x^2-12x+11,令f'(x)=0,解得x=1或x=11/3。

当x<1或x>11/3时,f'(x)>0,函数单调递增;当1<x<11/3时,f'(x)<0,函数单调递减。

因此,x=1为极大值点,x=11/3为极小值点。

10. 求曲线y=x^3-3x^2+2在点(1,0)处的切线方程。

解:首先求导数y'=3x^2-6x,代入x=1得y'|_(x=1)=-3。

切线方程为y-0=-3(x-1),即y=-3x+3。

11. 计算二重积分∬D (x^2+y^2) dxdy,其中D是由x^2+y^2≤4所围成的圆域。

解:将二重积分转换为极坐标系下的形式,即∬D (x^2+y^2) dxdy = ∫(0,2π) ∫(0,2) (ρ^2) ρ dρ dθ = 8π。

大一高等数学复习题(含答案)

大一高等数学复习题(含答案)

复习题一、单项选择题:1、5lg 1)(-=x x f 的定义域是( D )A 、()),5(5,+∞∞-YB 、()),6(6,+∞∞-YC 、()),4(4,+∞∞-YD 、())5,4(4,Y ∞-Y ()),6(6,5+∞Y 2、如果函数f(x)的定义域为[1,2],则函数f(x)+f(x 2)的定义域是( B ) A 、[1,2] B 、[1,2] C 、]2,2[- D 、]2,1[]1,2[Y -- 3、函数)1lg()1lg(22x x x x y -++++=( D ) A 、是奇函数,非偶函数 B 、是偶函数,非奇函数 C 、既非奇函数,又非偶函数 D 、既是奇函数,又是偶函数 解:定义域为R ,且原式=lg(x 2+1-x 2)=lg1=0 4、函数)10(1)(2≤≤--=x x x f 的反函数=-)(1x f( C )A 、21x -B 、21x --C 、)01(12≤≤--x xD 、)01(12≤≤---x x 5、下列数列收敛的是( C )A 、1)1()(1+-=+n n n f n B 、⎪⎩⎪⎨⎧-+=为偶数为奇数n nn n n f ,11,11)(C 、⎪⎩⎪⎨⎧+=为偶数为奇数n n n n n f ,11,1)( D 、⎪⎪⎩⎪⎪⎨⎧-+=为偶数为奇数n n n f n nnn ,221,221)( 解:选项A 、B 、D 中的数列奇数项趋向于1,偶数项趋向于-1,选项C 的数列极限为0 6、设1111.0个n n y Λ=,则当∞→n 时,该数列( C )A 、收敛于B 、收敛于C 、收敛于91D 、发散 解:)1011(91101101101111.02n n n y -=+++==ΛΛ 7、“f(x)在点x=x 0处有定义”是当x →x 0时f(x)有极限的( D )A 、必要条件B 、充分条件C 、充分必要条件D 、无关条件8、下列极限存在的是( A ) A 、2)1(lim x x x x +∞→ B 、121lim -∞→xx C 、xx e 1lim → D 、xx x 1lim2++∞→ 解:A 中原式1)11(lim =+=∞→xx 9、xx xx x x sin 2sin 2lim 22+-+∞→=( A ) A 、21B 、2C 、0D 、不存在 解:分子、分母同除以x2,并使用结论“无穷小量与有界变量乘积仍为无穷小量”得10、=--→1)1sin(lim21x x x ( B ) A 、1 B 、2 C 、21D 、0 解:原式=21)1sin()1(lim 221=--⋅+→x x x x 11、下列极限中结果等于e 的是( B )A 、x x x x x sin 0)sin 1(lim +→ B 、xxx x x sin )sin 1(lim +∞→ C 、xxx xxsin )sin 1(lim -∞→-D 、xxx xxsin 0)sin 1(lim +→解:A 和D 的极限为2, C 的极限为1 12、函数||ln 1x y =的间断点有( C )个 A 、1 B 、2 C 、3 D 、4 解:间数点为无定义的点,为-1、0、113、下列函灵敏在点x=0外均不连续,其中点x=0是f(x)的可去间断点的是( B ) A 、x x f 11)(+= B 、x xx f sin 1)(= C 、xe xf 1)9= D 、⎪⎩⎪⎨⎧≥<=0,0,)(1x e x e x f x x解:A 中极限为无穷大,所以为第二类间断点B 中极限为1,所以为可去间断点C 中右极限为正无穷,左极限为0,所以为第二类间断点D 中右极限为1,左极限为0,所以为跳跃间断点 14、下列结论错误的是( A )A 、如果函数f(x)在点x=x 0处连续,则f(x)在点x=x 0处可导B 、如果函数f(x)在点x=x 0处不连续,则f(x)在点x=x 0处不可导C 、如果函数f(x)在点x=x 0处可导,则f(x)在点x=x 0处连续D 、如果函数f(x)在点x=x 0处不可导,则f(x)在点x=x 0处也可能连续 15、设f(x)=x(x+1)(x+2)(x+3),则f ’(0)=( A ) A 、6 B 、3 C 、2 D 、016、设f(x)=cosx ,则=∆∆--→∆xx a f a f x )()(lim0( B )A 、a sinB 、a sin -C 、a cosD 、a cos -解:因为原式=)()()(lim 0a f xx a f a f x '=∆-∆--→∆17、x y 2cos 2=,则=dy ( D )A 、dx x x )2()2(cos 2'' B 、x d x 2cos )2(cos 2' C 、xdx x 2sin 2cos 2- D 、x xd 2cos 2cos 218、f(x)在点x=x 0处可微,是f(x)在点x=x 0处连续的( C ) A 、充分且必要条件 B 、必要非充分条件C 、充分非必要条件D 、既非充分也非必要条件 19、设xnex y 2-+=,则=)0()(n y( A )A 、n n )2(!-+B 、n!C 、1)2(!--+n n D 、n!-220、下列函数在给定区间上满足罗尔定理条件的是( A ) A 、y=x 2-5x+6 [2,3] B 、2)1(1-=x y [0,2]C 、xxe y -= [0,1] D 、⎩⎨⎧≥<+=5,15,1x x x y [0,5]21、求下列极限能直接使用洛必达法则的是( B )A 、x x x sin lim∞→ B 、x xx sin lim 0→ C 、x x x 3sin 5tan lim 2π→D 、x x x x sin 1sinlim20→22、设232)(-+=xxx f ,则当x 趋于0时( B )A 、f(x)与x 是等价无穷小量B 、f(x)与x 是同阶非等价无穷小量C 、f(x)是比x 较高阶的无穷小是D 、f(x)是比x 较低阶的无穷小量解:利用洛必达法则13ln 2ln 13ln 32ln 2lim 232lim )(lim 00000≠+=+-+=→→→x x x x x x x x x x f 23、函数xxee xf -+=)(在区间(-1,1)内( D )A 、单调增加B 、单调减少C 、不增不减D 、有增有减 24、函数21x xy -=在(-1,1)内( A )A 、单调增加B 、单调减少C 、有极大值D 、有极小值 25、函数y=f(x)在x=x 0处取得极大值,则必有( D ) A 、f ’(x 0)=0 B 、f ”(x 0)<0C 、f ‘(x 0)=0且f “(x 0)<0D 、f ‘(x 0)=0或f ‘(x 0)不存在26、f ‘(x0)=0,f “(x0)>0是函数f(x)在点x=x0处以得极小值的一个( B ) A 、必要充分条件 B 、充分非必要条件C 、必要非充分条件D 、既非必要也非充分条件 27、函数y=x 3+12x+1在定义域内( A )A 、单调增加B 、单调减少C 、图形上凹D 、图形下凹28、设函数f(x)在开区间(a ,b )内有f ‘(x)<0且f “(x)<0,则y=f(x)在(a ,b)内( C ) A 、单调增加,图形上凹 B 、单调增加,图形下凹 C 、单调减少,图形上凹 D 、单调减少,图形下凹 29、对曲线y=x 5+x 3,下列结论正确的是( D )A 、有4个极值点B 、有3个拐点C 、有2个极值点D 、有1个拐点 30、若⎰+=C e x dx x f x 22)(,则f(x)=( D )A 、ze x 22 B 、zxe24 C 、xe x 222 D 、)1(22x xe x+31、已知x y 2=',且x=1时y=2,则y=( C ) A 、x 2 B 、x 2+C C 、x 2+1 D 、x 2+2 32、=⎰x d arcsin ( B ) A 、x arcsinB 、x arcsin +C C 、x arccosD 、x arccos +C33、设)(x f '存在,则[]='⎰)(x df ( B )A 、f(x)B 、)(x f 'C 、f(x)+CD 、)(x f '+C 34、若⎰+=C xdx x f 2)(,则=-⎰dx x xf )1(2( D )A 、C x +-22)1(2 B 、C x +--22)1(2 C 、C x +-22)1(21D 、C x +--22)1(21解:C x x d x f dx x xf +--=---=-⎰⎰22222)1(21)1()1(21)1( 35、设⎰+=C x dx x f sin )(,则=-⎰dx xx f 21)(arcsin ( D )A 、arcsinx+CB 、C x +-21sin C 、C x +2)(arcsin 21D 、x+C 解:原式=⎰+=+=C x c x x d x f )sin(arcsin arcsin )(arcsin36、设xex f -=)(,则='⎰dx x x f )(ln ( C )A 、C x +-1B 、C x +-ln C 、C x+1D 、lnx+C解:原式=C xC e C x f x d x f x +=+=+='⎰-1)(ln ln )(ln ln 37、设⎰+=C x dx x xf arcsin )(,则⎰=dx x f )(1( B ) A 、C x +--32)1(43 B 、C x +--32)1(31 C 、C x +-322)1(43 D 、C x +-322)1(32解:对⎰+=C x dx x xf arcsin )(两端关于x 求导得211)(xx xf -=,即211)(xx x f -=,所以C x x d x dx x x dx x f +--=---=-=⎰⎰⎰22222)1(31)1(1211)(1 38、若sinx 是f(x)的一个原函数,则⎰='dx x f x )(( A ) A 、xcosx-sinx+C B 、xsinx+cosx+CC 、xcosx+sinx+CD 、xsinx-cosx+C解:由sinx 为f(x)的一个原函数知f(x)=cosx ,则使用分部积分公式得39、设x e f x+='1)(,则f(x)=( B )A 、1+lnx+CB 、xlnx+C C 、C x x ++22D 、xlnx-x+C 40、下列积分可直接使用牛顿—莱布尼茨公式的是( A ) A 、dx x x ⎰+5231 B 、dx xdx ⎰--1121 C 、⎰-40223)5(x xdx D 、⎰11ln exx xdx解:选项A 中被积函数在[0,5]上连续,选项B 、C 、D 中被积函数均不能保证在闭区间上连续 41、≠⎰-22|sin |ππdx x ( A )A 、0B 、⎰2|sin |2πdx x C 、⎰--02)sin (2πdx x D 、⎰20sin 2πxdx42、使积分⎰=+-22232)1(dx x kx 的常数k=( C )A 、40B 、-40C 、80D 、-80 解:原式=325202)11(2)1()1(2220222==+-=++⎰-k x k x d x k 43、设⎩⎨⎧≤≤-<≤-+=10,101,12)(x x x x f x ,则=⎰-11)(dx x f ( B )A 、312ln 21+B 、352ln 21+C 、312ln 21-D 、352ln 21- 解:352ln 2101)1(3210)22ln 1(1)12()(2312111+=---+=-++=⎰⎰⎰--x x dx x dx dx x f x x44、⎰+-=xdt t t y 02)2()1(,则==0x dxdy( B )A 、-2B 、2C 、-1D 、1 解:dy/dx=(x+1)2(x+2)45、下列广义积分收敛的是( B ) A 、⎰10x dxB 、⎰10x dxC 、⎰10x x dxD 、⎰103x dx解:四个选项均属于⎰1p xdx,该广义积分当p<1时收敛,大于等于1时发散 二、填空题 1、⎰=+dx exe x ( )解:原式=xxxe xe e xe de e dx e e ==⋅⎰⎰+C 2、已知一函数的导数为211)(x x f -=,且当x=1时,函数值为π23, 则此函数F(x)=( π+x arcsin )解:ππ=∴=+=+=-=∴='⎰C C F Cx dx xx F x f x F ,231arcsin )1(arcsin 11)()()(2Θ3、曲线2x e y -=的上凸区间是( (22,22-) ) 解:22,)12(2,2222±=∴-=''-='--x e x y xey x x 4、=+⎰-xdx x x 322cos )sin (22ππ( 8π) 解:⎰⎰⎰⎰--=-===∴222020222222323824cos 1212sin 412cos sin 0cos cos πππππππdx x xdx xdx x xdx x ,x 为奇函数Θ5、若f(x)的一个原函数是sinx ,则⎰=''dx x f )(( -sinx+C )解:x x f x x f x x x f cos )(,sin )(,cos )(sin )(-=''-='='=Θ 6、设2222)ln()(a x a x x x x f +-++=,其中0≠a ,则='')0(f (a1) 解:222222222222222221)0(1)2211(1)()ln(221)2211()ln()(a f a x a x xa x x x f a x x a x x a x x a x x x a x x x f =''+=+⋅+++=''++=+⋅-+⋅++++++='7、曲线⎰+=+=ty t t x sin 1cos cos 2上对应于4π=t 的点外的法线斜率为( 21+ )8、设)2(2x f y =,而x x f tan )(=',则==8πx dy ( π2 )解:)2tan(4)2()2(222x x x x f dxdy='⋅'= 9、=++++++∞→)2211(lim 222nn n n n n Λ( 21)10、设1)1(lim)(2+-=∞→nx xn x f n ,则f(x)的间断点为x=( 0 )解:x 不等于0时,xn x n n x x f n 1111lim )(2=-+-=∞→ X=0时,f(x)=f(0)=0,显然x 不等于0时,f(x)=1/x 连续,又)0()(lim 0f x f x ≠∞=→三、计算题1、求极限22220sin 112lim xx x x x +-+→ 参考答案:原式=81)(81lim )](81211[12lim 4440444220=-=+-+-+→→xx o x x x o x x x x x 2、求极限)1ln()13()1(11320limx e x x xx x +----+→ 参考答案:利用等价无穷小:x x x x a x a x e xxαα~1)1(,~)1ln(,ln ~1,~1-++-- 原式=3ln 32lim 31lim 3ln 1)1(lim 11lim 3ln 1)3(ln )1(11lim 202202023202320-=⎪⎪⎪⎪⎭⎫ ⎝⎛⨯-=⎪⎪⎭⎫ ⎝⎛---+=⋅---+→→→→→x x x x x x e x x x x e x x x x x x x x x3、设⎩⎨⎧-=-=)cos 1()sin (t a y t t a x ,求22dx yd 参考答案:)cos 1(sin t a ta x y dx dy t t -=''= 23222)cos 1(1)cos 1(1cos )cos 1(1)cos 1(sin sin )cos 1(cos )(t a t a t t a t t t t t dx dt dx dy dt d dx dx dy d dx y d --=--=-⋅-⋅--=⋅⎪⎭⎫ ⎝⎛==4、求由方程yxe y +=1所确定隐函数的二阶导数22dxyd 参考答案:把原方程两边对自变量x 求导,得dxdy xe e dx dy y y ⋅+= 解得ye xe e dx dy yy y -=-=21 则32222)2()3()2()()2()2(y e y y dx dye y dx dy e y e dx d dxy d y y yy-⋅-=----⋅=-=5、近似计算数e 的值,使误差不超过10-2 参考答案:n x x n x x e !1!2112++++≈Λ 令x=1)!1(!1!2111++++++=⇒n e n e θΛ要使误差310-<n R ,只需210)!1(3-<+≤n R n经计算,只需取n=5,所以72.27167.20083.00417.01667.05.2!51!2111≈=+++=++++≈Λe 6、讨论函数)1()(3x x x f -=的凸性与相应曲线拐点 参考答案:函数的定义为R3243)(x x x f -=')21(6126)(2x x x x x f -=-=''由0)(=''x f 可得x=0,1/2 列表如下:所以凹区间为),21()0,(+∞⋃-∞ 凸区间为)21,0(拐点为(0,0)和)161,21( 7、 求函数22y x x=+的单调区间、极值点参考答案:定义域为(,0)(0,)-∞⋃+∞.由3222122x y x x x-'=-=,令0y '=得驻点1x =,列表给出单调区间及极值点:所以,函数的单调递减区间为(,0)-∞,(0,1],单调递增区间为[1,)+∞,极小值点为(1,3)8、 求由,2y y x x ===所围图形的面积参考答案:1217)d ()3A x x x x =+-=-9、设210()0xx x f x ex -⎧+≤=⎨>⎩,求31(2)d f x x -⎰.参考答案:方法一:先作变量代换23112111(2)d ()d (1)d d x tt f x x f t t t t e t -=----==++⎰⎰⎰⎰301111147[]1333tt t e e e ----=+-=-+=-. 方法二:先给出2(2)1(2)2(2)2x x x f x ex --⎧+-≤-=⎨>⎩,于是 3232(2)11127(2)d [1(2)]d d 3x f x x x x e x e ----=+-+=-⎰⎰⎰ 10、求曲线33)1(x x y -+=在A (-1,0),B (2,3),C (3,0)各点处的切线方程 参考答案:323323)3(1313)1()3(31)1(3x x x x x x y -+--=-⋅-⋅++-='-Θ 在A (-1,0)点处,34)1(=-'=y k所以在A 点处的切线方程为)1(43+=x y而在B (2,3)点处,0)2(='=y k所以在B 点处的切线方程为y-3=0又在C (3,0)点处,)3(y k '=不存在,即切线与x 轴垂直所以C 点处的切线方程为x=311、在区间⎥⎦⎤⎢⎣⎡2,0π上,曲线x y sin =与直线0,2==y x π所围成的图形分别绕x 轴和y 轴所产生的放置体的体积。

大一高数试题和答案及解析

大一高数试题和答案及解析

大一高数试题及答案一、填空题(每小题1分,共10分)________ 11.函数y=arcsin√1-x2+────── 的定义域为_________√1-x2_______________。

2.函数y=x+ex上点(0,1)处的切线方程是______________。

f(Xo+2h)-f(Xo-3h)3.设f(X)在Xo可导且f'(Xo)=A,则lim───────────────h→o h= _____________。

4.设曲线过(0,1),且其上任意点(X,Y)的切线斜率为2X,则该曲线的方程是____________。

x5.∫─────dx=_____________。

1-x416.limXsin───=___________。

x→∞ X7.设f(x,y)=sin(xy),则fx(x,y)=____________。

_______R √R2-x28.累次积分∫ dx∫ f(X2+Y2)dy化为极坐标下的累次积分为____________。

0 0d3y3d2y9.微分方程─── +──(─── )2的阶数为____________。

dx3xdx2∞ ∞10.设级数∑ an发散,则级数∑ an _______________。

n=1 n=1000二、单项选择题(在每小题的四个备选答案中,选出一个正确的答案,将其码写在题干的()内,1~10每小题1分,11~20每小题2分,共30分)(一)每小题1分,共10分11.设函数f(x)=── ,g(x)=1-x,则f[g(x)]=()x111①1-── ②1+── ③ ──── ④xxx1-x12.x→0 时,xsin──+1是()x①无穷大量②无穷小量③有界变量④无界变量3.下列说法正确的是()①若f( X )在 X=Xo连续,则f( X )在X=Xo可导②若f( X )在 X=Xo不可导,则f( X )在X=Xo不连续③若f( X )在 X=Xo不可微,则f( X )在X=Xo极限不存在④若f( X )在 X=Xo不连续,则f( X )在X=Xo不可导4.若在区间(a,b)内恒有f'(x)〈0,f"(x)〉0,则在(a,b)内曲线弧y=f(x)为()①上升的凸弧②下降的凸弧③上升的凹弧④下降的凹弧5.设F'(x) =G'(x),则()① F(X)+G(X) 为常数② F(X)-G(X) 为常数③ F(X)-G(X) =0dd④ ──∫F(x)dx=──∫G(x)dxdxdx16.∫ │x│dx=()-1① 0② 1③ 2④ 37.方程2x+3y=1在空间表示的图形是()①平行于xoy面的平面②平行于oz轴的平面③过oz轴的平面④直线x8.设f(x,y)=x3+y3+x2ytg── ,则f(tx,ty)=()y①tf(x,y)②t2f(x,y)1③t3f(x,y)④ ──f(x,y)t2an+1∞9.设an≥0,且lim───── =p,则级数∑an()n→∞ a n=1①在p〉1时收敛,p〈1时发散②在p≥1时收敛,p〈1时发散③在p≤1时收敛,p〉1时发散④在p〈1时收敛,p〉1时发散10.方程y'+3xy=6x2y是()①一阶线性非齐次微分方程②齐次微分方程③可分离变量的微分方程④二阶微分方程(二)每小题2分,共20分11.下列函数中为偶函数的是()①y=ex②y=x3+1③y=x3cosx④y=ln│x│12.设f(x)在(a,b)可导,a〈x1〈x2〈b,则至少有一点ζ∈(a,b)使()①f(b)-f(a)=f'(ζ)(b-a)②f(b)-f(a)=f'(ζ)(x2-x1)③f(x2)-f(x1)=f'(ζ)(b-a)④f(x2)-f(x1)=f'(ζ)(x2-x1)13.设f(X)在 X=Xo 的左右导数存在且相等是f(X)在 X=Xo 可导的()①充分必要的条件②必要非充分的条件③必要且充分的条件④既非必要又非充分的条件d14.设2f(x)cosx=──[f(x)]2,则f(0)=1,则f(x)=()dx①cosx②2-cosx③1+sinx④1-sinx15.过点(1,2)且切线斜率为4x3的曲线方程为y=()①x4②x4+c③x4+1④x4-11 x16.lim─── ∫ 3tgt2dt=()x→0 x3 01① 0② 1③ ── ④ ∞3xy17.limxysin───── =()x→0 x2+y2y→0① 0② 1③ ∞ ④ sin118.对微分方程y"=f(y,y'),降阶的方法是()① 设y'=p,则y"=p'dp② 设y'=p,则y"=───dydp③设y'=p,则y"=p───dy1dp④ 设y'=p,则y"=── ───pdy∞ ∞19.设幂级数∑ anxn在xo(xo≠0)收敛,则∑ anxn在│x│〈│xo│()n=o n=o①绝对收敛②条件收敛③发散④收敛性与an有关sinx20.设D域由y=x,y=x2所围成,则∫∫ ─────dσ=()D x1 1 sinx① ∫ dx∫ ───── dy0 x x__1 √y sinx② ∫ dy∫ ─────dx0 y x__1 √x sinx③ ∫ dx∫ ─────dy0 x x__1 √x sinx④ ∫ dy∫ ─────dx0 x x三、计算题(每小题5分,共45分)___________/x-11.设y=/────── 求y' 。

大一高数试题及答案

大一高数试题及答案

大一高数试题及答案一、选择题(每题3分,共15分)1. 函数f(x) = x^2 + 3x - 2在x=1处的导数是:A. 0B. 4C. 6D. 82. 曲线y = x^3 - 2x^2 + x - 5在点(1, -7)处的切线斜率是:A. -1B. 0C. 1D. 23. 定积分∫(0,1) x^2 dx的值是:A. 1/3B. 1/4C. 1/5D. 1/64. 函数f(x) = sin(x) + cos(x)的周期是:A. πB. 2πC. π/2D. 4π5. 以下哪个级数是收敛的:A. 1 - 1/2 + 1/3 - 1/4 + ...B. 1 + 1/2 + 1/3 + 1/4 + ...C. 1 - 1/2 + 1/4 - 1/8 + ...D. 1 + 2 + 3 + 4 + ...二、填空题(每题2分,共10分)6. 函数f(x) = x^3 - 2x^2 + x - 5在x=2时的值是________。

7. 函数f(x) = e^x的导数是________。

8. 定积分∫(1, e) 1/x dx的值是________。

9. 函数y = ln(x)的反函数是________。

10. 函数f(x) = x^2 + 2x + 3的最小值是________。

三、解答题(共75分)11. 求函数f(x) = x^3 - 6x^2 + 11x - 6的极值点。

(10分)12. 证明函数f(x) = x^3在R上是单调递增的。

(10分)13. 求定积分∫(0, 2) (2x + 1)^2 d x,并求出其几何意义。

(15分)14. 解不等式:x^2 - 4x + 3 < 0。

(15分)15. 利用泰勒公式展开e^x在x=0处的前三项,并计算其近似值。

(25分)四、附加题(10分)16. 假设你有一个函数f(x) = x^4 - 4x^3 + 6x^2 - 4x + 2,求其在区间[0, 1]上的最小值。

(完整版)大一高数试题及答案.doc,推荐文档

(完整版)大一高数试题及答案.doc,推荐文档

C. 2(x 1) 2x
D. 2(x 1) x
2.已知 f(x)=ax+b,且 f(-1)=2,f(1)=-2,则 f(x)=( )
A.x+3
B.x-3
C.2x
D.-2x
3. lim ( x ) x ( ) x x 1
A.e
B.e-1
C.
D.1
4.函数 y
x 3 的连续区间是( )
4.若在区间(a,b)内恒有 f ' ( x) 0, f "( x) 0 ,则在
(a,b)内曲线弧y=f(x)为 ( )
①上升的凸弧
②下降的凸弧
③上升的凹弧
④下降的凹弧
5.设 F ' ( x) G' ( x) ,则 ( )
① F(X)+G(X) 为常数 ② F(X)-G(X) 为常数 ③ F(X)-G(X) =0
1.(-1,1)
2.2x-y+1=0
4.y=x2+1
5.
1 2
arctan x 2
c
7.ycos(xy)
3.5A 6.1
π/2 π 8.∫ dθ ∫ f(r2)rdr
0
0
9.三阶
பைடு நூலகம்
10.发散
二、单项选择题(在每小题的四个备选答案中,选出一个正确的答案,将其码写在题干的 ( )内,1~10每小题1分,11~20每小题2分,共30分)
B.x5+C
C. 2 x 3 C 3
x5 D.
C
15
13.
8
3
e
x
dx
( )
8
A.0
B. 2
8
3
e
x

大一高数试题及答案

大一高数试题及答案

大一高数试题及答案一、选择题1. 设函数 f(x) = x^2 + 3x + 2,下面哪个选项是其导函数?A. f'(x) = 2x + 3B. f'(x) = 2x + 6C. f'(x) = x^2 + 3x + 2D. f'(x) = 3x^2 + 2x + 32. 已知函数 f(x) 连续,则 f(x) = 3x 的解集为:A. x ∈ RB. x = 3C. x = 0D. x = -33. 设函数 y = x^3 - 2x^2 + 3x + 4,求其极值点。

A. (1, 6)B. (-1, -3)C. (0, 4)D. (2, 2)二、计算题1. 求函数 f(x) = 2x^2 + 5x - 3 的两个零点。

2. 求函数 f(x) = x^3 - 3x^2 + 2x - 4 在 x = 2 处的导数值。

三、解答题1. 求函数 f(x) = x^2 + 3x + 2 的顶点坐标及对称轴方程。

2. 求函数 f(x) = x^3 - 3x^2 + 2x - 4 在整个定义域上的单调区间。

答案解析:一、选择题1. A解析:由 f(x) = x^2 + 3x + 2,对 x 进行求导得到 f'(x) = 2x + 3。

2. A解析:由 f(x) = 3x,函数 f(x) 直接写出,解集为整个实数集 R。

3. B解析:求导得到 f'(x) = 3x^2 - 4x + 3,令 f'(x) = 0 解得 x = -1,代入原函数求得 y = -3,故极值点为 (-1, -3)。

二、计算题1. 首先,通过求根公式或配方法可得到两个零点 x1 = 1 和 x2 = -1.5。

2. 对函数 f(x) = x^3 - 3x^2 + 2x - 4 进行求导得到 f'(x) = 3x^2 - 6x + 2,将 x = 2 代入得到 f'(2) = 8。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大一高等数学复习题(含答案)复习题一、 单项选择题:1、5lg 1)(-=x x f 的定义域是( D ) A 、()),5(5,+∞∞- B 、()),6(6,+∞∞- C 、()),4(4,+∞∞- D 、())5,4(4, ∞- ()),6(6,5+∞2、如果函数f(x)的定义域为[1,2],则函数f(x)+f(x 2)的定义域是( B ) A 、[1,2] B 、[1,2] C 、]2,2[- D 、]2,1[]1,2[ -- 3、函数)1lg()1lg(22x x x x y -++++=( D )A 、是奇函数,非偶函数B 、是偶函数,非奇函数C 、既非奇函数,又非偶函数D 、既是奇函数,又是偶函数解:定义域为R ,且原式=lg(x 2+1-x 2)=lg1=0 4、函数)10(1)(2≤≤--=x x x f 的反函数=-)(1x f( C ) A 、21x - B 、21x --C 、)01(12≤≤--x x D 、)01(12≤≤---x x5、下列数列收敛的是( C ) A 、1)1()(1+-=+n nn f n B 、⎪⎩⎪⎨⎧-+=为偶数为奇数n nn n n f ,11,11)(C 、⎪⎩⎪⎨⎧+=为偶数为奇数n n n n n f ,11,1)( D 、⎪⎪⎩⎪⎪⎨⎧-+=为偶数为奇数n n n f n nnn,221,221)(解:选项A 、B 、D 中的数列奇数项趋向于1,偶数项趋向于-1,选项C 的数列极限为06、设1111.0个n ny =,则当∞→n 时,该数列( C )A 、收敛于0.1B 、收敛于0.2C 、收敛于91 D 、发散解:)1011(91101101101111.02n n ny-=+++==7、“f(x)在点x=x 0处有定义”是当x →x 0时f(x)有极限的( D )A 、必要条件B 、充分条件C 、充分必要条件D 、无关条件8、下列极限存在的是( A ) A 、2)1(lim x x x x +∞→ B 、121lim -∞→xxC 、xx e 10lim → D 、xx x 1lim2++∞→解:A 中原式1)11(lim =+=∞→xx 9、xx x x x x sin 2sin 2lim 22+-+∞→=( A )A 、21B 、2C 、0D 、不存在解:分子、分母同除以x2,并使用结论“无穷小量与有界变量乘积仍为无穷小量”得 10、=--→1)1sin(lim 21x x x ( B )A 、1B 、2C 、21D 、0 解:原式=21)1sin()1(lim 221=--⋅+→x x x x11、下列极限中结果等于e 的是( B ) A 、xxx x x sin 0)sin 1(lim +→ B 、xxx xx sin )sin 1(lim +∞→C 、xx x xx sin )sin 1(lim -∞→- D 、xxx xxsin 0)sin 1(lim +→解:A 和D 的极限为2, C 的极限为1 12、函数||ln 1x y =的间断点有( C )个 A 、1 B 、2 C 、3 D 、4 解:间数点为无定义的点,为-1、0、1 13、下列函灵敏在点x=0外均不连续,其中点x=0是f(x)的可去间断点的是( B )A 、x x f 11)(+=B 、x xx f sin 1)(=C 、xe xf 1)9= D 、⎪⎩⎪⎨⎧≥<=0,0,)(1x e x e x f x x解:A 中极限为无穷大,所以为第二类间断点 B 中极限为1,所以为可去间断点C 中右极限为正无穷,左极限为0,所以为第二类间断点D 中右极限为1,左极限为0,所以为跳跃间断点14、下列结论错误的是( A )A 、如果函数f(x)在点x=x 0处连续,则f(x)在点x=x 0处可导B 、如果函数f(x)在点x=x 0处不连续,则f(x)在点x=x 0处不可导C 、如果函数f(x)在点x=x 0处可导,则f(x)在点x=x 0处连续D 、如果函数f(x)在点x=x 0处不可导,则f(x)在点x=x 0处也可能连续15、设f(x)=x(x+1)(x+2)(x+3),则f ’(0)=( A ) A 、6 B 、3 C 、2 D 、0 16、设f(x)=cosx ,则=∆∆--→∆xx a f a f x )()(lim( B )A 、a sinB 、a sin -C 、a cosD 、a cos -解:因为原式=)()()(lim 0a f xx a f a f x '=∆-∆--→∆17、xy 2cos 2=,则=dy ( D ) A 、dx x x )2()2(cos2'' B 、xd x 2cos )2(cos2'C 、xdx x 2sin 2cos 2-D 、x xd 2cos 2cos 218、f(x)在点x=x 0处可微,是f(x)在点x=x 0处连续的( C )A 、充分且必要条件B 、必要非充分条件C 、充分非必要条件D 、既非充分也非必要条件 19、设xne xy 2-+=,则=)0()(n y( A )A 、nn )2(!-+ B 、n! C 、1)2(!--+n n D 、n!-2 20、下列函数在给定区间上满足罗尔定理条件的是( A )A 、y=x 2-5x+6 [2,3]B 、2)1(1-=x y[0,2]C 、xxe y -= [0,1] D 、⎩⎨⎧≥<+=5,15,1x x x y [0,5]21、求下列极限能直接使用洛必达法则的是( B )A 、x x x sin lim ∞→ B 、xxx sin lim 0→ C 、x x x 3sin 5tan lim 2π→D 、xxx x sin 1sin lim20→22、设232)(-+=x xx f ,则当x 趋于0时( B )A 、f(x)与x 是等价无穷小量B 、f(x)与x 是同阶非等价无穷小量C 、f(x)是比x 较高阶的无穷小是D 、f(x)是比x 较低阶的无穷小量 解:利用洛必达法则13ln 2ln 13ln 32ln 2lim 232lim )(lim 00000≠+=+-+=→→→x x x x x x x x x x f23、函数xxe e xf -+=)(在区间(-1,1)内( D )A 、单调增加B 、单调减少C 、不增不减D 、有增有减24、函数21x x y -=在(-1,1)内( A )A 、单调增加B 、单调减少C 、有极大值D 、有极小值25、函数y=f(x)在x=x 0处取得极大值,则必有( D )A 、f ’(x 0)=0B 、f ”(x 0)<0C 、f ‘(x 0)=0且f “(x 0)<0D 、f ‘(x 0)=0或f ‘(x 0)不存在26、f ‘(x0)=0,f “(x0)>0是函数f(x)在点x=x0处以得极小值的一个( B )A 、必要充分条件B 、充分非必要条件C 、必要非充分条件D 、既非必要也非充分条件27、函数y=x 3+12x+1在定义域内( A ) A 、单调增加 B 、单调减少 C 、图形上凹 D 、图形下凹28、设函数f(x)在开区间(a ,b )内有f ‘(x)<0且f “(x)<0,则y=f(x)在(a ,b)内( C ) A 、单调增加,图形上凹 B 、单调增加,图形下凹C 、单调减少,图形上凹D 、单调减少,图形下凹29、对曲线y=x 5+x 3,下列结论正确的是( D ) A 、有4个极值点 B 、有3个拐点 C 、有2个极值点 D 、有1个拐点 30、若⎰+=Cex dx x f x22)(,则f(x)=( D )A 、ze x 22 B 、zxe 24 C 、xe x 222 D 、)1(22x xex+31、已知x y 2=',且x=1时y=2,则y=( C ) A 、x 2 B 、x 2+C C 、x 2+1 D 、x 2+2 32、=⎰x d arcsin( B )A 、x arcsinB 、x arcsin +C C 、x arccosD 、xarccos +C33、设)(x f '存在,则[]='⎰)(x df ( B )A 、f(x)B 、)(x f 'C 、f(x)+CD 、)(x f '+C 34、若⎰+=Cx dx x f 2)(,则=-⎰dx xxf )1(2( D )A 、Cx+-22)1(2 B 、Cx+--22)1(2 C 、Cx+-22)1(21 D 、Cx+--22)1(21 解:C x x d x f dx xxf +--=---=-⎰⎰22222)1(21)1()1(21)1(35、设⎰+=C x dx x f sin )(,则=-⎰dx x x f 21)(arcsin ( D )A 、arcsinx+CB 、Cx +-21sin C 、Cx +2)(arcsin 21D 、x+C解:原式=⎰+=+=C x c x x d x f )sin(arcsin arcsin )(arcsin36、设xe xf -=)(,则='⎰dx xx f )(ln ( C ) A 、C x +-1 B 、C x +-ln C 、C x+1 D 、lnx+C 解:原式=C xC eC x f x d x f x+=+=+='⎰-1)(ln ln )(ln ln37、设⎰+=C x dx x xf arcsin )(,则⎰=dx x f )(1( B ) A 、Cx +--32)1(43B 、Cx +--32)1(31C 、Cx +-322)1(43D 、Cx +-322)1(32解:对⎰+=C x dx x xf arcsin )(两端关于x 求导得211)(xx xf -=,即211)(xx x f -=,所以C x x d x dx x x dx x f +--=---=-=⎰⎰⎰22222)1(31)1(1211)(138、若sinx 是f(x)的一个原函数,则⎰='dx x f x )(( A )A 、xcosx-sinx+CB 、xsinx+cosx+C C 、xcosx+sinx+CD 、xsinx-cosx+C 解:由sinx 为f(x)的一个原函数知f(x)=cosx ,则使用分部积分公式得 39、设xef x+='1)(,则f(x)=( B )A 、1+lnx+CB 、xlnx+C C 、Cx x ++22D 、xlnx-x+C40、下列积分可直接使用牛顿—莱布尼茨公式的是( A ) A 、dx x x ⎰+5231B 、dxxdx ⎰--1121 C 、⎰-4223)5(x xdx D 、⎰11ln exx xdx解:选项A 中被积函数在[0,5]上连续,选项B 、C 、D 中被积函数均不能保证在闭区间上连续 41、≠⎰-22|sin |ππdx x ( A )A 、0B 、⎰2|sin |2πdxx C 、⎰--02)sin (2πdxx D 、⎰2sin 2πxdx42、使积分⎰=+-22232)1(dx xkx 的常数k=( C )A 、40B 、-40C 、80D 、-80解:原式=325202)11(2)1()1(2220222==+-=++⎰-k x k x d x k43、设⎩⎨⎧≤≤-<≤-+=10,101,12)(x x x x f x ,则 =⎰-11)(dx x f ( B )A 、312ln 21+B 、352ln 21+C 、312ln 21-D 、352ln 21- 解:352ln 2101)1(3210)22ln 1(1)12()(2312111+=---+=-++=⎰⎰⎰--x x dx x dx dx x f x x44、⎰+-=xdtt t y 02)2()1(,则==0x dxdy( B )A 、-2B 、2C 、-1D 、1 解:dy/dx=(x+1)2(x+2)45、下列广义积分收敛的是( B ) A 、⎰10xdx B 、⎰1xdx C 、⎰1xx dx D 、⎰103xdx 解:四个选项均属于⎰10px dx,该广义积分当p<1时收敛,大于等于1时发散二、填空题 1、⎰=+dx exe x ( )解:原式=xx x ex e e xe de e dx e e==⋅⎰⎰+C2、已知一函数的导数为211)(xx f -=,且当x=1时,函数值为π23, 则此函数F(x)=( π+x arcsin ) 解:ππ=∴=+=+=-=∴='⎰C C F Cx dx xx F x f x F ,231arcsin )1(arcsin 11)()()(23、曲线2x e y -=的上凸区间是( (22,22-) )解:22,)12(2,2222±=∴-=''-='--x e x y xe y x x4、=+⎰-xdx x x 322cos )sin (22ππ( 8π ) 解:⎰⎰⎰⎰--=-===∴222020222222323824cos 1212sin 412cos sin 0cos cos πππππππdx x xdx xdx x xdx x ,x 为奇函数5、若f(x)的一个原函数是sinx ,则⎰=''dx x f )(( -sinx+C )解:x x f x x f x x x f cos )(,sin )(,cos )(sin )(-=''-='='= 6、设2222)ln()(a x a x x x x f +-++=,其中0≠a ,则='')0(f ( a1 )解:222222222222222221)0(1)2211(1)()ln(221)2211()ln()(a f a x a x xa x x x f a x x a x x a x x a x x x a x x x f =''+=+⋅+++=''++=+⋅-+⋅++++++='7、曲线⎰+=+=ty t t x sin 1cos cos 2上对应于4π=t 的点外的法线斜率为( 21+ ) 8、设)2(2x f y =,而xx f tan )(=',则==8πx dy (π2 )解:)2tan(4)2()2(222x x x xf dxdy ='⋅'=9、=++++++∞→)2211(lim 222n n n n n n ( 21 ) 10、设1)1(lim)(2+-=∞→nx xn x f n ,则f(x)的间断点为x=( 0 )解:x 不等于0时,xn x n n x x f n 1111lim)(2=-+-=∞→X=0时,f(x)=f(0)=0,显然x 不等于0时,f(x)=1/x 连续,又)0()(lim 0f x f x ≠∞=→三、计算题 1、求极限22220sin 112lim x x x x x +-+→参考答案: 原式=81)(81lim )](81211[12lim 4440444220=-=+-+-+→→x x o x x x o x x x x x2、求极限)1ln()13()1(11320limx e x x x x x +----+→参考答案:利用等价无穷小:xx x x a x a x e x xαα~1)1(,~)1ln(,ln ~1,~1-++--原式=3ln 32lim 31lim 3ln 1)1(lim 11lim 3ln 1)3(ln )1(11lim 202202023202320-=⎪⎪⎪⎪⎭⎫⎝⎛⨯-=⎪⎪⎭⎫ ⎝⎛---+=⋅---+→→→→→x x x x x x e x x x x e x x x x xx x xx 3、设⎩⎨⎧-=-=)cos 1()sin (t a y t t a x ,求22dx y d参考答案:)cos 1(sin t a t a x y dx dy t t -=''=23222)cos 1(1)cos 1(1cos )cos 1(1)cos 1(sin sin )cos 1(cos )(t a t a t t a t t t t t dx dt dx dy dt d dx dx dy d dx y d --=--=-⋅-⋅--=⋅⎪⎭⎫ ⎝⎛==4、求由方程yxe y +=1所确定隐函数的二阶导数22dx y d参考答案:把原方程两边对自变量x 求导,得 dxdy xe e dxdyy y⋅+=解得ye xe e dx dy yy y -=-=21则32222)2()3()2()()2()2(y ey y dx dye y dx dy e y e dx d dxy dy y yy-⋅-=----⋅=-=5、近似计算数e 的值,使误差不超过10-2参考答案:n x x n x x e !1!2112++++≈令x=1)!1(!1!2111++++++=⇒n e n e θ要使误差310-<nR,只需210)!1(3-<+≤n Rn经计算,只需取n=5,所以72.27167.20083.00417.01667.05.2!51!2111≈=+++=++++≈ e6、讨论函数)1()(3x x x f -=的凸性与相应曲线拐点 参考答案: 函数的定义为R 3243)(x x x f -=')21(6126)(2x x x x x f -=-=''由0)(=''x f 可得x=0,1/2 列表如下: x(-∞,0)(0,1/2)1/2(1/2,+∞))(x f ''- 0 + 0 - )(x f凹拐点凸拐点凹所以凹区间为),21()0,(+∞⋃-∞ 凸区间为)21,0( 拐点为(0,0)和)161,21( 7、 求函数22y x x=+的单调区间、极值点参考答案:定义域为(,0)(0,)-∞⋃+∞. 由3222122x yx x x-'=-=,令0y '=得驻点1x =,列表给出单调区间及极值点: x (,0)-∞(0,1) 1 (1,)+∞y '- — 0 + ()f x极小值3所以,函数的单调递减区间为(,0)-∞,(0,1],单调递增区间为[1,)+∞,极小值点为(1,3) 8、 求由,,2yx y x x 所围图形的面积参考答案:120174()d (d )233Axx xxx x9、设210()0xx x f x ex -⎧+≤=⎨>⎩,求31(2)d f x x-⎰.参考答案:方法一:先作变量代换 23112111(2)d ()d (1)d d x tt f x x f t t t t e t-=----==++⎰⎰⎰⎰301111147[]1333tt t e e e ----=+-=-+=-. 方法二:先给出2(2)1(2)2(2)2x x x f x ex --⎧+-≤-=⎨>⎩,于是3232(2)11127(2)d [1(2)]d d 3x f x x x x e x e ----=+-+=-⎰⎰⎰10、求曲线33)1(xx y -+=在A (-1,0),B (2,3),C (3,0)各点处的切线方程参考答案:323323)3(1313)1()3(31)1(3x x x x x x y -+--=-⋅-⋅++-='-在A (-1,0)点处,34)1(=-'=y k所以在A 点处的切线方程为)1(43+=x y而在B (2,3)点处,0)2(='=y k 所以在B 点处的切线方程为y-3=0又在C (3,0)点处,)3(y k '=不存在,即切线与x 轴垂直所以C 点处的切线方程为x=311、在区间⎥⎦⎤⎢⎣⎡2,0π上,曲线x y sin =与直线0,2==y x π所围成的图形分别绕x 轴和y 轴所产生的放置体的体积。

相关文档
最新文档