七年级下册数学因式分解概念和提公因式

合集下载

(湘教版)七年级数学下册:第3章《因式分解》复习教学设计

(湘教版)七年级数学下册:第3章《因式分解》复习教学设计

(湘教版)七年级数学下册:第3章《因式分解》复习教学设计一. 教材分析《因式分解》是初中数学的重要内容,也是七年级数学下册第3章的主要内容。

本章主要让学生掌握因式分解的方法和技巧,能够运用因式分解解决一些实际问题。

教材通过引入因式分解的概念,引导学生探究因式分解的方法,如提取公因式法、十字相乘法、分组分解法等。

通过这些方法的学习,让学生能够熟练地对多项式进行因式分解,提高他们的数学思维能力和解决问题的能力。

二. 学情分析学生在学习本章内容之前,已经学习了整式的加减、乘除等基础知识,对于多项式的运算法则有一定的了解。

但是,因式分解作为一种新的解题方法,对学生来说是一个新的挑战。

因此,在教学过程中,需要注重引导学生从已有的知识出发,探究新的知识,培养他们的自主学习能力。

三. 教学目标1.知识与技能目标:让学生掌握因式分解的方法和技巧,能够熟练地对多项式进行因式分解。

2.过程与方法目标:通过小组合作、探究学习,培养学生的合作意识和团队精神,提高他们的数学思维能力和解决问题的能力。

3.情感态度与价值观目标:让学生体验数学学习的乐趣,增强他们对数学学科的兴趣和自信心。

四. 教学重难点1.重点:因式分解的方法和技巧。

2.难点:因式分解的综合运用。

五. 教学方法1.情境教学法:通过创设生动、有趣的情境,激发学生的学习兴趣,提高他们的学习积极性。

2.小组合作学习法:引导学生进行小组合作、探究学习,培养他们的合作意识和团队精神。

3.案例教学法:通过分析典型例题,让学生掌握因式分解的方法和技巧。

4.激励评价法:注重对学生的激励评价,提高他们的自信心和学习动力。

六. 教学准备1.教学课件:制作精美的教学课件,辅助教学。

2.例题:选取具有代表性的例题,进行讲解和分析。

3.练习题:准备一定数量的练习题,巩固所学知识。

4.教学资源:利用网络、图书等资源,收集与因式分解相关的资料,以备拓展学习。

七. 教学过程1.导入(5分钟)利用多媒体展示一些实际问题,引导学生思考如何解决这些问题。

七年级数学下册第3章因式分解提公因式法说课稿新版湘教版20210428258

七年级数学下册第3章因式分解提公因式法说课稿新版湘教版20210428258

提公因式法一、教材分析:(一)教材所处的地位与作用这节课是七年级下册第三章第二节《提公因式法》第一课时。

学习因式分解一是为解高次方程作准备,二是学习对于代数式变形的能力,从中体会分解的思想、逆向思考的作用。

它不仅是现阶段学生学习的重点内容,而且也是学生后续学习的重要基础。

本章教材是在学生学习了整式运算的基础上提出来的,事实上,它是整式乘法的逆向运用,与整式乘法运算有密切的联系.分解因式的变形不仅体现了一种“化归”的思想,而且也是解决后续——分式化简、解方程、恒等变形等学习的基础,为数学交流提供了有效的途径.分解因式这一章在整个教材中起到了承上启下的作用(二)目标分析:A:知识与技能目标:了解因式分解的意义,会用提公因式法进行因式分解.B:过程与方法目标:经历探索多项式各项公因式的过程,并在具体问题中,能确定多项式各项的公因式;会用提公因式法把多项式分解因式;进一步了解分解因式的意义,并渗透化归的思想方法C:情感与价值观目标:培养学生独立思考的习惯,同时又要培养大家合作交流意识。

二、本课内容及重点、难点分析:,本章教材介绍了最基本的分解因式的方法:提公因式法和应用公式法.每一节课的引入,立足渗透类比这种重要的思想方法.通过如类比因数分解的意义导入因式分解的意义等.另外本章的设计多以问题串的形式创设问题情境,如观察多项式x2- 25和9x2- y2,它们有什么共同特征?能否将它们分别写成两个因式的乘积?与同伴交流你的想法等,让学生经历观察、发现、类比、归纳、总结、反思的过程,感受整式乘法与因式分解之间的互逆变形关系,发展学生有条理的思考及语言表达能力.本章在呈现形式上力求突出:通过因数分解与因式分解的类比,让学生体会、理解、认识因式分解的意义;设置了对比整式的乘法来探索因式分解方法的相关活动,让学生感受整式乘法与因式分解之间的这种逆向恒等变形的价值;通过设置恰当的有一定梯度的题目,关注学生知识技能的发展和不同层次学生的学习需要.学习分解因式的作用主要是为后继学习方程与多项式的恒等变形作准备,虽然内容简单,课时也较少,但是,分解因式问题的提出,实际上是对整式乘法的逆过程的思考并运用,逆向思考的方法也是我们处理一般问题的一个重要方法,而且也是人们发现问题的重要方法(发现问题比解决一个问题更重要).教学重点:能观察出多项式的公因式,并根据分配律把公因式提出来。

沪科初中数学七下 《因式分解《提公因式法》教案 (公开课获奖)2022沪科版2

沪科初中数学七下  《因式分解《提公因式法》教案 (公开课获奖)2022沪科版2

《提公因式法》教学目标:1、了解因式分解的意义,了解因式分解和整式乘法是整式的两种相反方向的变形.2、会确定多项式中各项的公因式,会用提取公因式法分解多项式的因式.教学重难点教学重点:因式分解的概念及提取公因式法.教学难点:多项式中公因式确实定和当公因式是多项式时的因式分解.教学设计:〔一〕新课引入:回忆:运用所学知识填空〔1〕x 〔x +1〕= 〔2〕〔x +1〕〔x -1〕=〔3〕2ab 〔a 2+b +1〕=反之:〔1〕x 2+x = 〔2〕x 2-1=〔3〕2a ³b +2ab ²+2ab =观察以下式子的特点:〔1〕15=3×5〔2〕18=2×32 〔3〕x 2+x=x 〔x+1〕〔4〕x ²-1=〔x+1〕〔x-1〕〔5〕2a ³b +2ab ²+2ab =2ab 〔a ²+b +1〕由分解质因数类比到分解因式.〔二〕新知学习:1、分解因式的概念,与整式乘法的关系.稳固概念:判断以下各式从左到右哪些是因式分解?〔1〕m 〔a +b 〕=ma +mb〔2〕2a +4=2〔a +2〕〔3〕4a ²-6ab ²+2a =2a 〔2a -3b ²+1〕〔4〕a ²-2a +1=a 〔a -2〕+1〔5〕)10)(10(100)(2-+=-xy x y x y 2、确定公因式.问题:ma +mb +mc 这个多项式有什么特征? 引入公因式概念.例1:找出6x ³y 5-3x ²y 4的公因式,归纳找公因式的方法.课堂练习一:找出以下各多项式中的公因式填在后面括号内.〔1〕3mx-6nx2〔〕〔2〕x4y3+x3y4 〔〕〔3〕12x2yz-9x2y2 〔〕〔4〕5a2-15a3+25a〔〕3、用提公因式法分解因式.m〔a+b+c〕=ma+mb+mc可得ma+mb+mc=m〔a+b+c〕,观察构成乘积的两个因式分别是怎样形成的?m是这个多项式的公因式,而另一个因式是原多项式除以公因式所得的商式.像这种分解因式的方法叫做提公因式法.想一想:提公因式法的理论依据是什么?4、知识运用:例2:把8a²b²+12ab²c分解因式例3:把-24x³-12x²+28x分解因式.判断以下各式分解因式是否正确?如果不对,请加以改正.〔1〕2a2+4a+2=2〔a2+2a〕〔2〕3x2y3-6xy2z=3xy〔xy2-2yz〕把以下各式分解因式.〔1〕x2+x6〔2〕12xyz-9x2y2〔3〕-6x2-18xy+3x〔4〕2a n+2-4a n+1-6a n-1例4:把3a〔b+c〕-3〔b+c〕分解因式将以下各式分解因式.〔1〕p〔a2+b2〕-q〔a2+b2〕〔2〕 2a² 〔y-z〕2-4a〔z-y〕2例5:先分解因式,再求值.4a2〔x+7〕-3〔x+7〕,其中a=-5,x=3.5、拓展与提高:〔1〕20212+2021能被2021整除吗?〔2〕利用因式分解进行计算:23.1×24-46.2×7〔3〕将2a〔a+b-c〕-3b〔a+b-c〕+5c〔c-a-b〕分解因式.〔三〕课堂小结:〔1〕什么叫因式分解?〔2〕确定公因式的方法.〔3〕提公因式法分解因式的步骤.〔4〕提公因式法分解因式的步骤.有理数的乘法和除法教学目标:1、了解有理数除法的意义,理解有理数的除法法那么,会进行有理数的除法运算,会求有理数的倒数。

辽阳县第一中学七年级数学下册 第3章 因式分解小结与复习课件湘教版

辽阳县第一中学七年级数学下册 第3章 因式分解小结与复习课件湘教版

⑤a的4倍大于8 ; ⑥a的一半小于3.
解:①a>0; ②a<0; ③a+5<7; ④a – 2>– 1 ; ⑤4a>8; ⑥ 1 a<3.
2
知识点2 不等式的解与解集
5 0 < 2 ……① x3
2 x > 5 0 ……② 3
你能以第②个式子为 例,明确的得出 x 应 取哪些值吗?
2 x > 5 0 ……② 3
〔1〕-6x2+12x-6; =-6(x2-2x+1) =-6(x-1)2
〔2〕-9x2+24xy-16y2; =-(9x2-24xy+16y2) =-(3x-4y)2
〔3〕a2(a-b)+2ab(a-b)+b2(a-b)〔. 4〕(x+y+1)2-(x-y+1)2;
=(a-b)(a2+2ab+b2) =(a-b)(a+b)2
=(x2+y2)(x-y)
结构图
2.把以下多项式因式分解:
〔1〕x2-9;
〔2〕49m2-81n2;
=(x+3)(x-3)
=(7m+9n)(7m-9n)
(3)x 2 1 ; 144
=
x112
x-
1 12
(4)1 a2 1 b2. 9 25
=13a15b13a-15b
结构图
3.把以下多项式因式分解:
〔3〕xn+1-2xn+xn-1(n是大于1的正整数). =xn-1(x2-2x+1) =xn-1(x-1)2
结构图
12.你能把多项式x2+5x+6因式分解吗?
(1)上式能利用完全平方公式进行因式分解吗? 不能.

湘教版七年级下册第三章因式分解--小结与复习(一)PPT课件

湘教版七年级下册第三章因式分解--小结与复习(一)PPT课件

1、下列代数式的变形当中哪些是因式分解,哪些不是? (1) 3a2+6a=3a(a+2) 是 (2) (2y+1)(2y-1)=4y2-1 否
(3) 18a3bc=3a2b·6ac 否 (4) x²+2x+1=x(x+2)+1 否
2、检验下列因式分解是否正确?
(1).2ab2+8ab3=2ab2 (1+4b) √ (2). 2x2-9= (2x+3)(2x-3) ×
4、将下列各式分解因式:
⑴ -a²-ab;
=-a(a+b)
⑵ m²-n²;
= (m+n)(m-n)
⑶ x²+2xy+y²
=(x+y)²
(5) 3x³+6x²y+3xy²
=3x(x+y)²
(4) 3am²-3an²;
=3a (m+n)(m-n)
(6) x²-4x(x-y)+ 4(x-y)²;
(2y-x)2
平方差公式:a²-b²=(a+b)(a-b)
ቤተ መጻሕፍቲ ባይዱ
符合公式 特征
完全平方公式:a²±2ab+b²=(a±b)²
平方差公式法和完全平方公式法统称公式法
因式分解的一般步骤:
一提:先看多项式各项有无公因式,如有公因式则要 先提取公因式;
二套:再看有几项,如两项,则考虑用平方差公式; 如三项,则考虑用完全平方公式;
(6) 已知:2x-3=0,求代数式x(x2-x)+x2(5-x)-9的值
解下列方程:
(3x- 4) ²- (3x+ 4) ²=48
若AB=0则A=0或 B=0 方法:左边 为0,右边进行因 式分解。

2021-2022学年七年级数学下册同步精品课件之因式分解——提公因式法(沪科版)

2021-2022学年七年级数学下册同步精品课件之因式分解——提公因式法(沪科版)
8.4.1 因式分解
—— 提公因式法
知识回顾 ① 完全平方公式
两个数的和(或差)的平方,等于这两个数的平方和加(或减) 这 两个数乘积的 2 倍.
② 平方差公式 (a+b)(a-b)=a2-b2
两个数的和乘以这两个数的差,等于这两个数的平方差. 拓展提高 ② 利用平方差公式计算的关键是: 确定公式中的 a 和 b 怎样确定 a 与 b:符号相同的项看作 a,符号相反的项看作 b. 确定 a 和 b 后套用公式即可.
变式练习:
ab= 3 ,a+b= 5 ,求多项式 a3b+2a2b2+ab3 的值.
8
4
巩固练习
4、已知 x2+3x-2=0,求代数式 2x3+6x2-4x 的值.
巩固练习
5、试说明 817-279-913 能被 45 整除.
一、因式分解
把一个多项式化为几个整式的积的形式,叫做因式分解,也 叫做把这个多项式分解因式.
例 2 把下列各式分解因式:
(1) 2x(b+c)-3y(b+c)
解:原式= (b+c) ( 2x-3y )
确定公因式的方法: ① 定系数: 当各项系数都是整数时,公因式的系数应取各项系 数的最大公因数; ② 定字母: 公因式中的字母应取各项都含有的相同的字母; ③ 定指数: 取相同字母的最低次数. ④ 看整体: 如果多项式中含有相同的多项式因式,则应将其 看成一个整体,不要拆开.
② 因式分解的结果是将多项式化为几个整式的积的形式. 积中 几个相同的因式的积要写成幂的形式.
③ 因式分解必须彻底,要把一个多项式分解到每一个因式都不 能分解为止.
对应练习
2、判断整下式列乘各法式哪些是整式乘法?因哪式些分是解因式分解?

浙教版七年级下数学因式分解难题

浙教版七年级下数学因式分解难题

一■分式知识要点回顾1.因式分解几中常用方法①提取公因式法。

②乘法公式法:a2-b2二a b a-b ;a2_2ab b2二a_b 2。

③分组分解法:ma mb na nb = m a b n a b j i:a b m n。

④十字相乘法:x2・a・bx・ab=x・ax・b。

2.分式的有关概念A A .C A A 十C(1 )分式的基本性质:一=——C或—= --------- (C M0),其中A , B, C均为整式。

B B *C B B + C(2)分式的约分分式的约分依据是分式的基本性质,约去分子和分母中相同因式的最低次幕,约去分子和分母系数的最大公约数。

(3)分式的通分把两个或多个因式通分,先求出各个分式分母的最简公分母,再用分式的基本性质变形,达到通分目的。

(4)分式的运算①分式乘法法则: a c•—=ac - 。

b d bd②分式除法法则: a c / d : _ adb d bc bca c a 二c③分式的加减法:(1)同分母分式相加减:;(2)异分母分式相加减:b b ba c ad bc ad 二bc———= 十 = -------------- 。

b 一d bd bd bd3.分式方程(1)定义:只含分式或分式和整式,并且分母里含有未知数的方程叫做分式方程。

(2)解分式方程。

温馨提示:(1)在方程两边都乘以最简公分母时,切勿漏项;(2)验根是必要步骤。

二•巩固练习1.解下列分式方程‘ 2 小x 1 -x 2x (2)x_2 x -5x 6 x_3 2 -x , 11 -x -3 3 - x2.因式分解2 2a -6ab 12b 9b -4a x2_ 2xy「xz yz y2x2 -7x 6 x2 4x - 523x -11x 10 2x -11x 242 2x y 「3xy 2 2y -12y-282 2 2 x 4 -16xx 2「4xy _1 4y 2o12a b x-y -4ab y-x3.分式的混合运算(a 2-5a 21) 且-b . a? -a+2b‘ a 2+4ab+4 b 2a 1 a 1a —1 a -2a 1 a亠 a 2 -42 2xr. E y _ 2y打如* x2+6xy+9y £ 时卩2x-6 ,4-4x x 2(x 3)x 2 x -6 3—x其中a=1.4. 化简求值2x 2x -8/ X -2 x 4、—2十(x 3 2x xx x 1a 2「5a 6 a 2 -5a 4 a 「3 T—2 2a —16 a -4 a 41 —x 3 (2)x^ g 厂2),其中1 x= . 25•计算2 2x -x_2x x-6X2_X_6 X2X_2的结果是6.当m为非负数时,求代数式———3有最大值还是最小值,并求出此最值。

初中数学因式分解方法

初中数学因式分解方法

初中数学因式分解方法一、运用公式法我们知道整式乘法与因式分解互为逆变形。

如果把乘法公式反过来就是把多项式分解因式。

于是有:a^2-b^2=(a+b)(a-b)a^2+2ab+b^2=(a+b)^2a^2-2ab+b^2=(a-b)^2如果把乘法公式反过来,就可以用来把某些多项式分解因式。

这种因式分解的方法叫做运用公式法。

二、提公因法如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。

例:分解因式x3.-2x,2-xx3,-2x2,-x=x(x2-2x-1)三、完全平方公式1、把乘法公式(a+b)^2=a^2+2ab+b^2和(a-b)^2=a^2-2ab+b^2反过来。

就可以得到:a^2+2ab+b^2=(a+b)^2和a^2-2ab+b^2=(a-b)^2,这两个公式叫完全平方公式。

这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

把a^2+2ab+b^2和a^2-2ab+b^2这样的式子叫完全平方式。

2、完全平方式的形式和特点:①项数:三项;②有两项是两个数的的平方和,这两项的符号相同;③有一项是这两个数的积的两倍。

3、当多项式中有公因式时,应该先提出公因式,再用公式分解。

4、完全平方公式中的a、b可表示单项式,也可以表示多项式。

这里只要将多项式看成一个整体就可以了。

5、因式分解,必须分解到每一个多项式因式都不能再分解为止。

四、分式的乘除法1、把一个分式的分子与分母的公因式约去,叫做分式的约分。

2、分式进行约分的目的是要把这个分式化为最简分式。

3、如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分。

4、分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)^2=(y-x)^2,(x-y)^3=-(y-x)^3。

七年级下册因式分解公式

七年级下册因式分解公式

七年级下册因式分解公式全文共四篇示例,供读者参考第一篇示例:七年级下册因式分解公式因式分解是数学中的一个基础概念,也是代数中的重要内容之一。

在七年级下册的学习中,因式分解也成为了我们学习的一部分。

因式分解是指把一个多项式按照其因式进行乘法分解,从而简化表达式,使计算更加方便。

掌握因式分解的方法和技巧,对于解题起到事半功倍的效果。

在本文中,我们将主要讨论七年级下册中常见的因式分解公式。

一、提取公因式把4a+8b的因式分解公式中,4a和8b都能被4整除,所以提取出4,得到4(a+2b)。

二、因式分解的基本原理在因式分解中,我们经常会用到几个基本的公式,这些公式是因式分解的基石。

下面是七年级下册常见的因式分解公式:1. 二次三项式的因式分解公式:二次三项式就是指有三项的二次多项式,常见的形式是ax^2 + bx + c,其中a、b、c分别是系数。

当二次三项式的系数a不为1时,通常我们采用求解二次方程的方法来因式分解,公式为(mx + n)(px + q)。

把4x^2 + 12x + 8的公式因式分解为(2x + 2)(2x + 4)。

完全平方式是指一个多项式可以写成两个平方式之和的形式,常见的形式是a^2 + 2ab + b^2,其中a、b为变量。

3. 因式分解的常见技巧:除了以上基本原理,我们在因式分解中还需要掌握一些常见的技巧,以便更快、更准确地进行计算。

(1)合并同类项:在因式分解中,我们经常需要合并同类项,即把相同变量的项合并在一起。

把2x + 3x的合并同类项为5x。

(2)利用减法求和差:有时候,我们可以通过利用减法求差来进行因式分解。

把x^2 - 9的因式分解为(x+3)(x-3)。

在七年级下册的学习中,因式分解是一个非常重要的内容,不仅仅是代数中的一部分,也是思维训练的一部分。

掌握因式分解的方法和技巧,不仅可以解决各种数学问题,还可以提升我们的数学思维能力。

希望通过本文的介绍,大家能更好地掌握七年级下册因式分解的相关知识,取得更好的学习成绩。

七年级数学下册《综合运用提公因式法和公式法进行因式分解》教案、教学设计

七年级数学下册《综合运用提公因式法和公式法进行因式分解》教案、教学设计
2.设计丰富的教学活动,帮助学生巩固公式记忆,提高运用公式解决问题的能力。
3.结合生活实例,让学生感受因式分解在实际生活中的应用,培养学生的数学应用意识。
4.关注学生的个体差异,针对性地进行辅导,提高学生的学习效果。
三、教学重难点和教学设想
(一)教学重难点
1.教学重点:
-掌握提公因式法的基本步骤和技巧,能够准确识别和提取公因式。
-通过课堂问答、小组讨论、课后作业和测验等方式,了解学生对提公因式法和公式法的掌握程度。
-鼓励学生自我评价和同伴评价,培养学生的自我监控和反思能力。
4.教学策略:
-对学习困难的学生,提供个别辅导和额外的学习资源,帮助他们克服难点。
-对学有余力的学生,提供拓展性问题和挑战性任务,激发他们的学习潜能。
-创设一个鼓励探索、允许犯错的学习环境,培养学生的创新思维和解决问题的能力。
4.老师在批改作业时,要关注学生的解题思路和方法,及时给予反馈,指导学生改进。
-采用问题驱动的教学方法,通过设置一系列具有挑战性的问题,激发学生的探究欲望。
-利用多媒体和实物演示,增强学生对因式分解概念和过程的理解。
-设计小组合作和同伴互助活动,促进学生的交流与合作,共同解决难点问题。
2.教学过程:
-引入阶段:通过实际生活中的问题引入因式分解的概念,让学生感受到数学的实用性。
1.对公因式的识别和提取不够熟练,容易忽略一些细节,导致解题失误。
2.对公式法的掌握程度不同,部分学生对平方差公式、完全平方公式等记忆不牢固,应用时容易出现混淆。
3.部分学生对因式分解的实际应用意义理解不够深刻,缺乏将所学知识运用到实际问题中的能力。
针对以上学情,教师在教学过程中应注重以下方面:
1.加强对学生的引导,让学生在实际操作中体会因式分解的方法和技巧。

湘教版数学七年级下册 3.2 提公因式法 教案(表格式)

湘教版数学七年级下册 3.2 提公因式法 教案(表格式)

二、学生学情分析根据学生在上一节课的经验,学生只是对因式分解有了一个初步的印象和判断,而对于怎样把一个多项式进行因式分解还很茫然,相应的数学能力还有待于进一步加强和巩固。

因此,本课由学生自主观察探索解题途径,在此过程中,通过观察、对比、归纳等手段,确定多项式各项的公因式,加强学生的直觉思维,渗透化归的思想方法,培养学生的观察能力;引导学生由找到公因式过渡到提公因式,再由单项式与多项式的乘法运算过渡到因式分解,进一步发展学生的类比思想;寻找出确定多项式各项的公因式的一般方法,培养学生的初步归纳能力。

三、教学重点会确定多项式的公因式四、教学难点掌握提公因式法进行因式分解五、教学基本流程情境引入--探究新知---合作探究---巩固练习---综合提升--归纳小结--布置作业六、教学过程(一)情境引入1.观察下列式子有什么特点?结论:多项式中各项都含有的相同的字母。

设计意图:在学生能顺利地找到含有相同的字母之后,引出公因式的概念,进而引出提公因式法的概念。

师生活动:教师提出问题后主要由学生总结,学生能很快用类比的方法找到这些式子中相同的因式,知道公因式的概念。

(二)探究新知(2)z 2y +yz 3 (1) 活动1:说出下列多项式各项的公因式结论:找公因式的方法:一定系数--各项系数的最大公因数;二定字母--相同字母;三定指数--相同字母的最低次幂。

设计意图:通过本环节中寻找多项式(3)中的公因式,引导他们归纳出确定多项式各项公因式的方法,培养学生的初步归纳能力。

师生活动:学生知道每一个多项式都由三部分组成:系数部分、字母部分和指数部分,因此,有必要将系数部分、字母部分和指数部分分开讨论。

在教师的引导下,学生能分别找出公因式的系数部分与字母部分,最后找到这个多项式的公因式。

活动2:找出下列多项式各项的公因式结论:通过活动1中的方法确定公因式;注意首项为负时,要把负号提出来。

设计意图:让学生尝试着用找公因式法的找稍微复杂的多项式的公因式,为过渡到因式分解提供必要的准备.师生活动:由于有了找公因式的方法,学生能较快地找到公因式,但指数为字母的时候,容易出错,老师多鼓励。

青岛版七下数学第12章因式分解教学设计教学设计

青岛版七下数学第12章因式分解教学设计教学设计

青岛版七下数学第12章因式分解教学设计教学设计一. 教材分析《青岛版七下数学第12章因式分解教学设计》是根据我国新课程标准编写的一本教材。

本章主要内容包括:因式分解的概念、提公因式法、公式法、十字相乘法等。

通过本章的学习,使学生掌握因式分解的方法和技巧,提高他们的数学解题能力。

二. 学情分析学生在学习本章内容前,已掌握了有理数、整式的乘法等基础知识,但对于因式分解的概念和方法还不够了解。

因此,在教学过程中,教师需要针对学生的实际情况,循序渐进地引导学生学习,使他们能够理解和掌握因式分解的方法。

三. 教学目标1.知识与技能目标:使学生掌握因式分解的概念和方法,能够运用提公因式法、公式法、十字相乘法等进行因式分解。

2.过程与方法目标:通过观察、分析、归纳等方法,培养学生发现问题、分析问题和解决问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们勇于探索、积极进取的精神。

四. 教学重难点1.重点:因式分解的概念和方法。

2.难点:提公因式法、公式法、十字相乘法的运用。

五. 教学方法1.情境教学法:通过设置问题情境,激发学生的学习兴趣,引导学生主动参与课堂活动。

2.启发式教学法:教师提出问题,引导学生思考、讨论,培养学生的思维能力。

3.实践教学法:让学生通过动手操作、动脑思考,加深对因式分解方法的理解。

4.小组合作学习:学生分组讨论,共同完成任务,培养学生的合作意识。

六. 教学准备1.教学课件:制作课件,展示因式分解的方法和例子。

2.练习题:准备适量的练习题,巩固所学知识。

3.教学工具:黑板、粉笔、投影仪等。

七. 教学过程1.导入(5分钟)利用实例引入因式分解的概念,让学生初步了解因式分解的意义。

2.呈现(10分钟)展示因式分解的方法(提公因式法、公式法、十字相乘法),并通过例题讲解各个方法的应用。

3.操练(10分钟)让学生独立完成练习题,巩固因式分解的方法。

教师巡回指导,解答学生的问题。

七年级下册数学因式分解知识点

七年级下册数学因式分解知识点

因式分解概述定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式。

意义:它是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具。

因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用。

学习它,既可以复习的整式四则运算,又为学习分式打好基础;学好它,既可以培养学生的观察、注意、运算能力,又可以提高学生综合分析和解决问题的能力。

分解因式与整式乘法互为逆变形。

因式分解的方法因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法。

而在竞赛上,又有拆项和添减项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,对称多项式轮换对称多项式法,余数定理法,求根公式法,换元法,长除法,除法等。

注意三原则1 分解要彻底2 最后结果只有小括号3 最后结果中多项式首项系数为正(例如:-3x^2+x=-x(3x-1))基本方法⑴提公因式法各项都含有的公共的因式叫做这个多项式各项的公因式。

如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。

具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。

如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。

提出“-”号时,多项式的各项都要变号。

口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶。

例如:-am+bm+cm=-m(a-b-c);a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)。

注意:把2a^2+1/2变成2(a^2+1/4)不叫提公因式⑵公式法如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法。

8.因式分解-----提公因式法课件数学沪科版七年级下册

8.因式分解-----提公因式法课件数学沪科版七年级下册
1.理解因式分解的概念,以及因式分解与整式乘法的关系. 2.会用提取公因式的方法分解因式.(重点) 3.会确定公因式以及提出公因式后的另外一个因式.(难点) 4.感受因式分解在解决相关问题中的作用。
如图,一块菜地被分成三部分,你能用不同的方式
表示这块草坪的面积吗? 方法一:m(a+b+c)
a
b
c
1
将x= 2 代入上式,得
原式=4.
1.下列式子从左到右的变形是否为因式分解?为什么?
(1)a(a 2b) a2 2ab

(2)bx Biblioteka bx2 bx(1 x)是(3)a2 4 (a 2)(a 2)

(4) x2 2 x 1 x( x 2) 1 否
(5)24a2bc 23 a 2 3bc
提公因 式法
提公因式
注意
分两步:(公因式为多项式,注意整体思想) 第一步找公因式;第二步提公因式
1.首项为负数时,提负号,多项式的各项要 变号; 2.多项式出现相反的因式时,先变形化成相 同的因式再提公因式。
解:(1)3x+ x3=x ·3+x·x2=x(3+x2);
(2)7x3-21x2=7x2·x -7x2·3=7x2(x-3);
(3)8a3b2 -12ab3c+ab =ab·8a2b- ab·12b2c +ab·1= ab(8a2b-12b2c+1);
例2.把下列各式因式分解:
(1)a(x y) b( y x);
8.已知: 2x+y=4,xy=3,求代数式2x2y+xy2的值.
解:2x2y+xy2=xy(2x+y)=3 ×4=12.

2024年送教上门数学教案精心整理

2024年送教上门数学教案精心整理

2024年送教上门数学教案精心整理一、教学内容本节课选自数学七年级下册教材第四章《因式分解》,具体内容为:4.1 因式分解的定义及基本概念,4.2 提公因式法,4.3 运用公式法进行因式分解。

二、教学目标1. 理解因式分解的定义,掌握因式分解的基本方法。

2. 学会运用提公因式法和公式法进行因式分解。

3. 能够解决实际问题,提高数学思维能力。

三、教学难点与重点重点:因式分解的定义,提公因式法和公式法的运用。

难点:熟练运用提公因式法和公式法进行因式分解。

四、教具与学具准备1. 教具:多媒体教学设备,投影仪,黑板。

2. 学具:练习本,草稿纸,计算器。

五、教学过程1. 实践情景引入通过生活中的例子,如分水果、分配任务等,引导学生了解因式分解的概念。

2. 例题讲解(1)讲解因式分解的定义,通过具体例子让学生理解。

(2)以提公因式法和公式法为例,详细讲解两种方法的步骤。

3. 随堂练习(1)让学生尝试用提公因式法和公式法进行因式分解。

(2)针对学生的练习,进行讲解和指导。

4. 知识巩固(2)针对重难点,进行巩固练习。

5. 课堂小结六、板书设计1. 因式分解的定义及基本概念2. 提公因式法3. 公式法4. 典型例题及解题步骤七、作业设计1. 作业题目(1)用提公因式法进行因式分解:6x^2 9x。

(2)用公式法进行因式分解:x^2 4。

(3)实际应用题:一个长方形的长是宽的两倍,求长方形的面积。

2. 答案(1)3x(2x 3)(2)(x + 2)(x 2)(3)面积 = 长× 宽 = 2宽× 宽 = 2宽^2八、课后反思及拓展延伸1. 反思:本节课学生对因式分解的理解程度,以及教学方法的有效性。

2. 拓展延伸:引入更多因式分解的方法,如分组分解法、十字相乘法等,让学生在课后进行学习和练习。

重点和难点解析1. 教学目标的设定2. 教学难点与重点的识别3. 教学过程的实践情景引入4. 例题讲解的深度和广度5. 作业设计的针对性和实用性6. 课后反思及拓展延伸的实际应用一、教学目标的设定(1)理解因式分解的定义,掌握因式分解的基本方法。

专题8.25 因式分解及提取公因式(知识讲解)-七年级数学下册基础知识专项讲练(沪科版)

专题8.25 因式分解及提取公因式(知识讲解)-七年级数学下册基础知识专项讲练(沪科版)

专题8.25因式分解及提取公因式(知识讲解)【学习目标】1、了解因式分解的意义,以及它与整式乘法的关系;2、能确定多项式各项的公因式,会用提公因式法将多项式分解因式.【要点梳理】要点一、因式分解把一个多项式化成几个整式积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.特别说明:(1)因式分解只针对多项式,而不是针对单项式,是对这个多项式的整体,而不是部分,因式分解的结果只能是整式的积的形式.(2)要把一个多项式分解到每一个因式不能再分解为止.(3)因式分解和整式乘法是互逆的运算,二者不能混淆.因式分解是一种恒等变形,而整式乘法是一种运算.要点二、公因式多项式的各项中都含有相同的因式,那么这个相同的因式就叫做公因式.特别说明:(1)公因式必须是每一项中都含有的因式.(2)公因式可以是一个数,也可以是一个字母,还可以是一个多项式.(3)公因式的确定分为数字系数和字母两部分:①公因式的系数是各项系数的最大公约数.②字母是各项中相同的字母,指数取各字母指数最低的.要点三、提公因式法把多项式分解成两个因式的乘积的形式,其中一个因式是各项的公因式m ,另一个因式是,即,而正好是除以m所得的商,这种因式分解的方法叫提公因式法.特别说明:(1)提公因式法分解因式实际上是逆用乘法分配律,即.(2)用提公因式法分解因式的关键是准确找出多项式各项的公因式.(3)当多项式第一项的系数是负数时,通常先提出“—”号,使括号内的第一项的系数变为正数,同时多项式的各项都要变号.(4)用提公因式法分解因式时,若多项式的某项与公因式相等或它们的和为零,则提取公因式后,该项变为:“+1”或“-1”,不要把该项漏掉,或认为是0而出现错误.【典型例题】类型一、多项式的因式分解➽➼因式分解的判定1.下列由左边到右边的变形,哪些是因式分解?为什么?(1)2(3)(3)9a a a +-=-;(2)24(2)(2)m m m -=+-;(3)221()()1a b a b a b -+=+-+;(4)2mR 2mr 2m(R r)+=+.【答案】(1)从左到右不是因式分解,是整式乘法;(2)是因式分解;(3)不是因式分解,因为最后结果不是几个整式的积的形式;(4)是因式分解.【分析】根据因式分解的定义:把一个多项式化成几个整式积的形式叫做因式分解,也叫分解因式,逐一判断即可.解:(1)2(3)(3)9a a a +-=-,从左到右不是因式分解,是整式乘法;(2)24(2)(2)m m m -=+-,是因式分解;(3)221()()1a b a b a b -+=+-+,不是因式分解,因为最后结果不是几个整式的积的形式;(4)()222mR mr m R r +=+,是因式分解.【点拨】本题考查了多项式的因式分解,属于基础概念题型,熟知因式分解的定义是关键.举一反三:【变式1】检验下列因式分解是否正确.(1)9b 2-4a 2=(2a +3b )(2a -3b );(2)x 2-3x -4=(x +4)(x -1).【答案】(1)不正确.(2)不正确.【分析】计算右侧的整式乘法,看左右两边是否相等,即可判断因式分解是否正确.解:(1)∵(2a +3b)(2a -3b)=(2a)2-(3b)2=4a 2-9b 2≠9b 2-4a 2,∴因式分解9b 2-4a 2=(2a +3b)(2a -3b)不正确.(2)∵(x +4)(x -1)=x 2+3x -4≠x 2-3x -4,∴因式分解x 2-3x -4=(x +4)(x -1)不正确.【点拨】本题考查了整式的乘法与因式分解的联系,属于简单题,正确计算整式的乘法是解题关键.【变式2】辨别下面因式分解的正误并指明错误的原因.(1)()324238124423a b ab ab ab a b b -+=-;(2)()4334242x x y x x y -=-;(3)()2321a a a a-=-【答案】(1)错误,原因是另一个因式漏项了;(2)错误,原因是公因式没有提完;(3)错误,原因是与整式乘法相混淆【分析】(1)根据提取公因式的方法,第三项提取公因式的结果为1即可判断;(2)根据公因式的系数是多项式各项系数的最大公约数;字母取各项都含有的相同字母,相同字母的指数取次数最低的确定公因式为2x 3,即可判断;(3)根据因式分解的定义确定原式的变形是整式乘法运算,不是因式分解.解:(1)∵()324238124423+1a b ab ab ab a b b -+=-∴原式错误,原因是另一个因式漏项了;(2)∵()4334222x x y x x y -=-∴原式错误,原因是公因式没有提完;(3)∵因式分解是把一个多项式分解为几个因式乘积的形式∴()2321a a a a -=-是整式乘法运算,不是因式,∴原式错误,原因是与整式乘法相混淆【点拨】本题考查因式分解的定义及因式分解的方法,不要把整式乘法和因式分解两种运算相混淆和正确用提取公因式法因式分解是解答此题的关键.类型二、多项式的因式分解➽➼已知因式分解结果求参数2.在分解因式2x ax b ++时,小明看错了b ,分解结果为()()24x x ++;小张看错了a ,分解结果为()()19x x --,求a ,b 的值.【答案】6a =,9b =【分析】根据题意甲看错了b ,分解结果为()()24x x ++,可得a 系数是正确的,乙看错了a ,分解结果为()()19x x --,b 系数是正确的,在利用因式分解是等式变形,可计算的参数a 、b 的值.解:∵()()22468x x x x ++=++,小明看错了b ,∴6a =,∵()()219109x x x x --=-+,小张看错了a ,∴9b =,∴6a =,9b =.【点拨】本题主要考查因式分解的系数计算,解题的关键在于弄清哪个系数是正确的.举一反三:【变式1】若3a -是25a a m ++的一个因式,求m 的值.【答案】=24m -【分析】设另一个因式为+a n ,则有()()253-++=+a a a m a n ,进行整理使得左右式子对应系数相等求出m 、n 值即可求解.解:设另一个因式为+a n ,则有()()253-++=+a a a m a n ,即()22533++=+--a a m a n a n ,∴35-=n ,3m n =-,∴=8n ,24=-m .【点拨】本题考查因式分解、整式的混合运算,熟知因式分解是把多项式转化为几个整式积的形式是解答的关键.【变式2】已知3216x x x a --+有因式4x -,求a 的值,并将其因式分解.【答案】16a =,原式()()()441x x x =+--【分析】首先根据题意“3216x x x a --+有因式4x -”,可得出4x =,进而得出当4x =时,32160x x x a --+=,然后把4x =代入32160x x x a --+=,即可算出a 的值,然后把a 的值代入3216x x x a --+,即可得到321616x x x --+,然后再用提公因式法和平方差公式分解因式,即可得出结果.解:∵3216x x x a --+有因式4x -,∴40x -=,即4x =,∴4x =时,32160x x x a --+=,∴把4x =代入32160x x x a --+=,可得:6416640a --+=,解得:16a =,∴把16a =代入3216x x x a --+,可得:321616x x x --+,∴321616x x x --+()()21161x x x =---()()2161x x =--()()()441x x x =+--.【点拨】本题考查了提公因式法分解因式、平方差公式,解本题的关键在熟练掌握因式分解.类型三、多项式的因式分解➽➼公因式➽➼提取公因式3.已知:2312A x =-,233510B x y xy =+,(1)(3)1C x x =+++.问多项式A ,B ,C 是否有公因式?若有,求出其公因式;若没有,请说明理由.【答案】有公因式;公因式为(x+2)【分析】分别将多项式A=3x 2-12,B=5x 2y 3+10xy 3,C=(x+1)(x+3)+1,进行因式分解,再寻找他们的公因式.解:多项式A 、B 、C 有公因式,∵A=()()()2231234322x x x x -=-=+-,B=()233351052x y xy xy x +=+,C=()()()222131431442x x x x x x x +++=+++=++=+∴多项式A 、B 、C 的公因式是:()2x +【点拨】熟练掌握提公因式的方法,先通过化简是解题的关键.举一反三:【变式1】多项式224x y -与2244x xy y ++的公因式是()A .x y-B .4x y +C .2x y-D .2x y +【答案】D【分析】先对多项式224x y -与2244x xy y ++进行因式分解,再根据公因式的定义解决此题.解:∵224(2)(2)x y x y x y -=+-,22244(2)x xy y x y ++=+,∴224x y -与2244x xy y ++的公因式为2x y +;故选:D .【点拨】本题主要考查因式分解以及公因式的定义,熟练掌握运用公式法进行因式分解以及公因式的定义是解决本题的关键.【变式2】下列各组中,没有公因式的一组是()A .ax bx -与by ay-B .ab ac -与ab bc -C .268xy x y -与43x -+D .()3a b -与()2b y a -【答案】B【分析】将每一组因式分解,找公因式即可解:A.()ax bx x a b -=-,()by ay y a b -=--,有公因式a b -,故不符合题意;B.()ab ac a b c -=-,()ab bc b a c -=-,没有公因式,符合题意;C.()268234xy x y xy x -=-,4334x x -+=-,有公因式34x -,故不符合题意;D.()3a b -与()2b y a -有公因式a b -,故不符合题意;故选:B【点拨】本题考查公因式,熟练掌握因式分解是解决问题的关键4.因式分解:(1)282abc bc -;(2)()()26x x y x y +-+;【答案】(1)()24bc a c -(2)()()23x y x +-【分析】(1)用提公因式法解答;(2)用提公因式法解答.(1)解:原式()24bc a c =-(2)解:原式()()23x y x =+-【点拨】此题考查了因式分解——提公因式法,熟练掌握提取公因式的方法是解本题的关键.举一反三:【变式1】把下列多项式因式分解:(1)2x xy x -+;(2)22m n mn mn -+;(3)33322292112x y x y x y -+;(4)()()22x x y y x y -+-.【答案】(1)()1x x y -+(2)()1mn m n -+(3)()223374x y xy x -+(4)()()22x y x y -+【分析】(1)直接提取公因式x ,进而分解因式得出答案;(2)直接提取公因式mn ,进而分解因式得出答案;(3)直接提取公因式223x y ,进而分解因式得出答案;(4)直接提取公因式()x y -,进而分解因式得出答案.(1)解:()21x xy x x x y -+=-+(2)解:()221m n mn mn mn m n -+=-+(3)解:()33322222921123374x y x y x y x y xy x +--=+(4)解:()()()()2222x x y y x y x y x y -+-=-+【点拨】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法——提公因式法、公式法、十字相乘法、分组分解法,并会结合多项式的特征,灵活选用合适的方法是解题的关键.【变式2】因式分解:3215+10a a .【答案】25(32)a a +【分析】用提公因式法分解因式即可.解:()3222215+105352532a a a a a a a =⋅+⋅=+.【点拨】本题主要考查了提公因式法分解因式,解题的关键是准确找出公因式25a.。

冀教版数学七年级下1.1直接提公因式分解因式课件

冀教版数学七年级下1.1直接提公因式分解因式课件

2. 多项式a2b2-2a2b的两项中,有没有公共的因式? 若有,是哪些?
实际上,有
感悟新知
多项式 ma+mb+mc
a2b2-2a2b
项 ma,mb,mc a2b2,-2a2b
各项的公因式 m
a,b,ab
知2-讲
感悟新知
知2-讲
逆用乘法对加法的分配率,可以把公因式写在括 号外边,作为积的一个因式,写成下面的情势:
A.-6
B.6
C.-2或6
D.-2或30
知2-练
感悟新知
知2-练
10. 如果多项式- 1 abc+ 1 ab2-a2bc的一个因式是
5
5
- 1 ab,那么另一个因式是( 5
A
)
A.c-b+5ac
B.c+b-5ac
C.c-b+ 1 ac 5
D.c+b- 1 ac 5
感悟新知
11. 因式分解:x2-2x+(x-2)=_(_x_+__1_)_(x_-__2_)_.
感悟新知
总结
知1-讲
找公因式的方法:一看系数:若各项系数都是整数,应 取各项的系数的最大公约数;二看字母:公因式的字母是各 项相同的字母;三看字母的次数:各相同字母的指数取最低 次数;四看整体:如果多项式中含有相同的多项式,应将其 看作整体,不要拆开;五看首项符号,若多项式中首项含 “-”号,则公因式符号为负.
知2-练
感悟新知
知2-练
2. 把下列多项式的公因式和分解因式的结果填入表格 中:
多项式 5a2+10a2bc 12xyz-9x2y2 2x2+4xy-6x
公因式 5a2 3xy 2x
分解因式的结果 5a2(1+2bc) 3xy(4z-3xy) 2x(x+2y-3)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因式分解的概念和提公因式法
知识归纳:
因式分解概念1、把 化成 的形式,叫做把这个多项式因式分解。

2、因式分解与 是互逆变形,分解的结果对不对可以用 运算检验。

3、提公因式:ma+mb+mc=
典例精析:
例1、下列变形是分解因式的是( )。

A x 2-4x+4=x(x -4)+4 ,
B (x +3)2=x 2+6x +9
C x 2+6x +9 = (x +3)2
D (x+3)(x-3)=x 2-9
例2、将下列各式分解因式
① ② ③ ④ ⑤ ⑥
小结:确定公因式的方法
①系数:取各项系数的最大公约数(如果首项系数是负数,则公因式的系
数也是负数);
②字母:取各项都含有的字母;
③指数:取相同字母的最低次数。

例3、填空
22220,5,a b ab a b ab a b +==-+=+=则,;
()()=-+-10010122__________。

举一反三:
1、下列从左边到右边的变形,是因式分解的是( )
A.29)3)(3(x x x -=+- ;
B.))((23n m n m m mn m -+=-;
C.
)1)(3()3)(1(+--=-+y y y y ;D.z yz z y z z y yz +-=+-)2(2242 x xy x +-352n
m n m y x y x 1142---yz x y x 2234830+-y
xy y x 1518122++-z xy y x 242128-x
x 642-
2、多项式3222315520m n m n m n +-的公因式是( )
A.5mn ;
B.225m n ;
C.25m n ;
D.25mn
11、24m 2n +18n 的公因式是________________;
12.若()()2310x x x a x b --=++,则a b= 。

13. x+y=9,xy=8,2x 2y+2xy 2的值为
8.利用分解因式计算22017-22017,则结果是 ( )
( A )2 ( B ) 1 ( C )22017 ( D ) 22017 将下列各式分解因式
(1)2ax+4ay (2) 9x 3+6x 2 +3x (3) 4a 2-6a
(4) 4x 2y-12xy (5) -5a 2x+15ax 2 (6) –x 3+2x 2-3x 典例精析
例4、分解因式
(1))1(8)1(4)1(2+++++x cm x bm x am
(2))3()3(2a b y b a x ---
(3)2(a-b)2 – a + b
举一反三:分解因式1.x(x-2)-3(2-x)2 2.(a+c )(a-b)2-(a-c)(b-a)2
3.把 -12xy 2(x+y)+ 18x 2y(x+y)因式分解
选一选:将多项式a (x-y )+2bx-2by 分解因式,正确的结果是( )
A .(x-y )(-a+2b )
B .(x-y )(a+2b )
C .(x-y )(a-2b )
D .-(x-y )(a+2b )
【当堂检测】:
1.选择题
(1)多项式-2a n-1-4a n+1的公因式是M ,则M 等于( )
A .2a n-1
B .-2a n
C .-2a n-1
D .-2a n+
(2)下列因式分解不正确的是( )
A .-2ab 2+4a 2b=2ab (-b+2a )
B .3m (a-b )-9n (b-a )=3(a-b )(m+3n )
C .-5ab+15a 2bx+25ab 3y=-5ab (-3ax-5b 2y )
D .3ay 2-6ay-3a=3a (y 2-2y-1)
(3)将多项式a (x-y )+2bx-2by 分解因式,正确的结果是( )
A .(x-y )(-a+2b )
B .(x-y )(a+2b )
C .(x-y )(a-2b )
D .-(x-y )(a+2b )
2.把下列各式分解因式:
(1)(a+b )-(a+b )2; (2)x (x-y )+y (y-x );
(3)22x)-(y -y)-(x b a (4))-(6ab -b)-(a 422b a b a。

相关文档
最新文档