推荐-青海省西宁十四中2018学年高一下学期期末调研测试(数学) 精品

合集下载

【高一数学试题精选】2018年西宁市高一数学下期末试卷(有答案和解释)

【高一数学试题精选】2018年西宁市高一数学下期末试卷(有答案和解释)

2018年西宁市高一数学下期末试卷(有答案和解释)
5 c 2018学年青海省西宁市高一(下)期末数学试卷
参考答案与试题解析
一、选择题(本大题共12小题,每小题5分,满分60分,每小题给出四个选项中,只有一个选项符合要求,请把你认为正确的选项序号填入相应题号的表格内)
1.如果a<b<0,那么下面一定成立的是()
A.a﹣b>0B.ac<bcc. D.a2>b2
【考点】不等式比较大小.
【分析】利用不等式的性质即可得出.
【解答】解∵a<b<0,
∴﹣a>﹣b>0,
∴a2>b2.
故选D.
2.某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛,那么互斥不对立的两个事是()
A.恰有1名男生与恰有2名女生
B.至少有1名男生与全是男生
c.至少有1名男生与至少有1名女生
D.至少有1名男生与全是女生
【考点】互斥事与对立事.
【分析】互斥事是两个事不包括共同的事,对立事首先是互斥事,再就是两个事的和事是全集,由此规律对四个选项逐一验证即可得到答案.
【解答】解A中的两个事符合要求,它们是互斥且不对立的两个事;。

2017-2018学年青海省西宁市高一下学期期末考试数学试题Word版含答案

2017-2018学年青海省西宁市高一下学期期末考试数学试题Word版含答案

2017-2018学年青海省西宁市高一下学期期末考试数学试题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若a b >,则下面一定成立的是( ) A .ac bc > B .1a b > C .11a b< D .22ac bc ³ 2.把红、蓝、白3张纸牌随机地分发给甲、乙、丙三个人,每人分得1张,事件“甲分得红牌”与事件“乙分得红牌”是( )A .对立事件B .不可能事件C .互斥但不对立事件D .以上都不对 3.不等式10x y +->表示的区域在直线10x y +-=的( ) A .右上方 B .右下方 C .左上方 D .左下方 4.已知在等比数列{}n a 中,11a =,59a =,则3a =( ) A .3± B .3 C.5± D .5 5.下列叙述错误的是( )A .若事件A 发生的概率为()P A ,则()01P A #B .互斥事件不一定是对立事件,但是对立事件一定是互斥事件 C.两个对立事件的概率之和为1 D .对于任意两个事件A 和B ,都有()()()P AB P A P B =+6.两灯塔,A B 与海洋观察站C 的距离都为a ,灯塔A 在C 的北偏东30°,B 在C 的南偏东60°,则,A B 两灯塔之间距离为( )A .2aB D .a7.如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件),若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为( )A .3,5B .5,5 C.3,7 D .5,7 8.执行下面的程序框图,如果输入的1a =-,则输出的S =( )A .2B .3 C.4 D .59.在ABC △中,根据下列条件解三角形,其中有两个解的是( ) A .8,16,30a b A ===° B .18,20,60b c B ===° C.15,2,90a b A ===° D .4,3,120a b A ===°10.登山族为了了解某山高()y km 与气温()x ℃之间的关系,随机统计了4次山高与相应的气温,并制作了对照表:由表中数据,得到线性回归方程为()2y x a a R =-+?,由此估计山高为72km 处气温的度数为( )A .10-B .8- C.6- D .4-11.已知直线3y x =-与两坐标轴围成的区域为1W ,不等式组3020x y x x y ì+?ïï³íï-?ïî,所形成的区域为2W ,在区域1W 中随机放置一点,则该点落在区域2W 的概率为( )A .14 B .13C.12 D .23 12.若不等式210x ax ++?对于一切10,2x 骣琪Î琪桫恒成立,则a 的取值范围为( ) A .0a ³ B .2a ? C.52a ?D .3a ? 二、填空题(每题5分,满分20分,将答案填在答题纸上)13.ABC △为钝角三角形,且C ∠为钝角,则22a b +与2c 的大小关系为 .14.将某班的60名学生编号为:01,02,03,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是 .15.已知数列{}n a 是公差不为零的等差数列,12a =,且248,,a a a 成等比数列,则数列{}n a 的通项公式为 .16.若0a >,0b >,a 与b 的等差中项是5,则ab 的最大值是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.为了对某课题进行研究,用分层抽样方法从三所高校,,A B C 的相关人员中抽取若干人组成研究小组,有关数据见下表(单位:人)(1)求,x y ;(2)若从高校B ,C 抽取的人中选2人作专题发言,求这2人都来自高校C 的概率.18.袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率为13,得到黑球或黄球的概率是512,得到黄球或绿球的概率也是512,试求得到黑球、得到黄球、得到绿球的概率各是多少?19.已知数列{}n a 的前n 项和2n S n n =+. (1)求数列{}n a 的通项公式;(2)若等比数列{}n b 满足11b a =,48b a =,求数列{}n b 的前n 项和n T .20.某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[)80,90,并整理得到如下频20,30,[)30,40,…,[)率分布直方图:(1)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[)40,50内的人数;(3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等,试估计总体中男生和女生人数的比例.21.在ABC △中,60A =∠°,37c a =.(1)求sin C 的值;(2)若7a =,求ABC △的面积.22.设函数()()()2230f x ax b x a =+-+?.(1)若不等式()0f x >的解集为()1,3-,求,a b 的值; (2)若()13f =,0a >,0b >,求14a b+的最小值.2017-2018学年青海省西宁市高一下学期期末考试数学试题参考答案一、选择题1-5:DCABD 6-10:CAABC 11、12:BC二、填空题13.222a b c +< 14.16,28,40,52 15.2n 16.25三、解答题17.解:(1)由题意可得2183654x y ==, 所以1,3x y ==.(2)记从高校B 抽取的2人为12,b b ,从高校C 抽取的3人为123,,c c c ,则从高校,B C 抽取的5人中选2人作专题发言的基本事件有:12111213212223121323,,,,,,,,,b b b c b c b c b c b c b c c c c c c c 共10种.设选中的2人都来自高校C 的事件为X ,则事件X 包含的基本事件有:121323,,c c c c c c 共3种. 所以()310P X =. 故选中的2人都来自高校C 的概率为310. 18.解:设任取一个小球得到红球、黑球、黄球、绿球的事件分别为,,,A B C D ,则它们彼此是互斥事件.由题意得()13P A =,()512P B C +=,()512P C D +=,又事件A 与事件B C D ++对立,所以()32P B C D ++=,而()()()P B P C D P B C D ++=++,所以()14P B =,()()()P B C P D P B C D ++=++,所以()14P D =,所以()()()()()116P C P A P B P D =-++=, 所以得到黑球、得到黄球、得到绿球的概率分别是14,16,14. 19.解:(1)已知2n S n n =+,当2n ³时, 1n n n a S S -=-()()22112n n n n n 轾=+--+-=犏臌, 当1n =时,211112a S ==+=,也适合.所以数列{}n a 的通项公式为2n a n =.(2)由(1)知2n a n =,得112b a ==,4816b a ==. 设等比数列{}n b 的公比为q , 则3411682b q b ===,得2q =, 所以()()11121222112nn n n b q T q+--===---.20.解:(1)由频率分布直方图知, 分数在[)70,80的频率为0.04100.4?, 分数在[)80,90的频率为0.02100.2?, 则分数小于70的频率为10.40.20.4--=,故从总体的400名学生中随机抽取一人,估计其分数小于70的概率为0.4. (2)由频率分布直方图知,样本中分数在区间[]50,90的人数为()0.010.020.040.021010090+++创=(人), 已知样本中分数小于40的学生有5人,所以样本中分数在区间[)40,50内的人数为1009055--=(人), 设总体中分数在区间[)40,50内的人数为x , 则5100400x=,得20x =, 所以总体中分数在区间[)40,50内的人数为20人. (3)由频率分布直方图知,分数不小于70的人数为()0.040.021010060+创=(人),已知分数不小于70的男女生人数相等, 故分数不小于70分的男生人数为30人, 又因为样本中有一半男生的分数不小于70, 故男生的频率为:0.6, 即女生的频率为:0.4,即总体中男生和女生人数的比例约为:3:2.21.解:(1)60A =∠°,37c a =,由正弦定理得,33sin sin 77C A ==?. (2)7a =,则3c =, ∴C A <, 由(1)可得13cos 14C =, ∴()131sin sin sin cos cos sin 142B A C A C A C =+=+=?,∴11sin 7322ABC S ac B ==创?△22.解:(1)由()0f x >的解集是()1,3-知1,3-是方程()0f x =的两根. 由根与系数的关系可得313213ab a ì-?ïïí-ï-+=-ïî,解得14a b ì=-ïí=ïî.(2)()13f =得2a b +=, ∵0a >,0b >, ∴()141142a b a b a b 骣琪+=++琪桫; 1452b a a b骣琪=++琪桫19522骣琪?琪桫, 当且仅当2b a =时取得等号, ∴14a b +的最小值是92.。

青海省西宁市高一数学下学期期末考试试题(含解析)

青海省西宁市高一数学下学期期末考试试题(含解析)

西宁市2017-2018学年度第二学期末调研测试卷高一数学第Ⅰ卷(共60分)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把你认为正确的选项序号填入相应题号的表格内)1.1.设,,,且,则()A. B. C. D.【答案】D【解析】当时,选项A错误;当时,选项B错误;当时,选项C错误;∵函数在上单调递增,∴当时,.本题选择D选项.点睛:判断不等式是否成立,主要利用不等式的性质和特殊值验证两种方法,特别是对于有一定条件限制的选择题,用特殊值验证的方法更简便.2. 如下图为一串白黑相间排列的珠子,按这种规律往下排起来,那么第36颗珠子应是什么颜色的()A. 白色B. 黑色C. 白色可能性大D. 黑色可能性大【答案】A【解析】由图可知,珠子出现的规律是3白2黑、3白2黑依次进行下去的特点,据此可知白、黑珠子的出现以5为周期,又……1,故第36颗珠子应该是白色的,故选A.3.3.奥林匹克会旗中央有5个互相套连的圆环,颜色自左至右,上方依次为蓝、黑、红,下方依次为黄、绿,象征着五大洲.在手工课上,老师将这5个环分发给甲、乙、丙、丁、戊五位同学制作,每人分得1个,则事件“甲分得红色”与“乙分得红色”是 ( )A. 对立事件B. 不可能事件C. 互斥但不对立事件D. 不是互斥事件【答案】C【解析】甲、乙不能同时得到红色,因而这两个事件是互斥事件;又甲、乙可能都得不到红色,即“甲或乙分得红色”的事件不是必然事件,故这两个事件不是对立事件.选C.4.4.在中,,,,则解的情况()A. 无解B. 有唯一解C. 有两解D. 不能确定【答案】B【解析】【分析】根据正弦定理,结合题中数据解出,再由,得出,从而,由此可得满足条件的有且只有一个.【详解】中,,根据正弦定理,得,,得,由,得,从而得到,因此,满足条件的有且只有一个,故选B.【点睛】本题主要考查正弦定理在解三角形中的应用,属于中档题.正弦定理是解三角形的有力工具,其常见用法有以下三种:(1)知道两边和一边的对角,求另一边的对角(一定要注意讨论钝角与锐角);(2)知道两角与一个角的对边,求另一个角的对边;(3)证明化简过程中边角互化;(4)求三角形外接圆半径.5.5.一组数据的茎叶图如图所示,则数据落在区间内的概率为A. 0.2B. 0.4C. 0.5D. 0.6【答案】D【解析】【分析】根据茎叶图个原始数据落在区间内的个数,由古典概型的概率公式可得结论. 【详解】由茎叶图个原始数据,数出落在区间内的共有6个,包括2个个个,2个30,所以数据落在区间内的概率为,故选D.【点睛】本题主要考查古典概型概率公式的应用,属于简单题. 在解古典概型概率题时,首先求出样本空间中基本事件的总数,其次求出概率事件中含有多少个基本事件,然后根据公式求得概率.6.6.设,,则()A. B. C. D.【答案】C【解析】【分析】利用“作差法”,只需证明即可得结果.【详解】,,,,恒成立,,即,故选C.【点睛】本题主要考查“作差法”比较两个数的大小,属于简单题. 比较两个数的大小主要有三种方法:(1)作差法;(2)作商法;(3)函数单调性法;(4)基本不等式法.7.7.已知,,是一个等比数列的前三项,则的值为()A. -4或-1B. -4C. -1D. 4或1【答案】B【解析】【分析】由是一个等比数列的连续三项,利用等比中项的性质列方程即可求出的值. 【详解】是一个等比数列的连续三项,,整理,得,解得或,当时,分别为,构不成一个等比数列,,当时,分别为,能构成一个等比数列,,故选B.【点睛】本题主要考查等比数列的定义、等比中项的应用,意在考查对基础知识掌握的熟练程度以及函数与方程思想的应用,属于简单题.8.8.某班有49位同学玩“数字接龙”游戏,具体规则按如图所示的程序框图执行(其中为座位号),并以输出的值作为下一轮输入的值.若第一次输入的值为8,则第三次输出的值为()A. 8B. 15C. 20D. 36【答案】A【解析】【分析】由已知的程序框图,可知该程序的功能是利用条件结构,计算并输出变量的值,模拟程序的运行过程,可得结论.【详解】输入后,满足进条件,则输出;输入,满足条件,则输出;输入,不满足条件,,输出,故第三次输出的值为,故选A.【点睛】本题主要考查程序框图应用,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.9.9.用系统抽样法从160名学生中抽取容量为20的样本,将160名学生从1-160编号.按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第15组中抽出的号码为118,则第一组中按此抽签方法确定的号码是()A. 7B. 6C. 5D. 4【答案】B【解析】【分析】设第一组抽出的号码为,则第组抽出的号码应为,由第15组中抽出的号码为118,列方程可得结果.【详解】因为从160名学生中抽取容量为20的样本所以系统抽样的组数为,间隔为,设第一组抽出的号码为,则由系统抽样的法则,可知第组抽出的号码应为,第组应抽出号码为,得,故选B.【点睛】本题主要考查系统抽样的方法,属于简单题. 系统抽样适合抽取样本较多且个体之间没有明显差异的总体,系统抽样最主要的特征是,所抽取的样本相邻编号等距离,可以利用等差数列的性质解答.10.10.具有线性相关关系的变量,满足一组数据如表所示,若与的回归直线方程为,则的值是()0 1 2 31 8A. 4B.C. 5D. 6【答案】A【解析】由表中数据得:,根据最小二乘法,将代入回归方程,得,故选A.11.11.若关于、的不等式组表示的平面区域是一个三角形,则的取值范围是( )A. B. C. D. 或【答案】C【解析】分析:先画出不等式组表示的平面区域,再根据条件确定的取值范围.详解:画出不等式组表示的平面区域如图阴影部分所示.由解得,∴点A的坐标为(2,7).结合图形可得,若不等式组表示的平面区域是一个三角形,则实数需满足.故选C.点睛:不等式组表示的平面区域是各个不等式所表示的平面区域点集的交集,由不等式组表示的平面图形的形状求参数的取值范围时,可先画出不含参数的不等式组表示的平面区域,再根据题意及原不等式组表示的区域的形状确定参数的取值范围.12.12.公比不为1的等比数列的前项和为,且,,成等差数列,若,则()A. -5B. 0C. 5D. 7【答案】A【解析】【分析】设公比为,运用等差数列中项的性质和等比数列的通项公式,解方程可得公比,再由等比数列的求和公式即可得结果.【详解】设的公比为,由成等差数列,可得,若,可得,解得舍去),则,故选A.【点睛】本题主要考查等比数列的通项公式、等比数列的求和公式以及等差中项的应用,意在考查综合运用所学知识解决问题的能力,属于中档题.二、填空题(本大题共4小题,每小题5分,共20分,将答案填写在题中的横线上)13.13.二次函数的部分对应值如下表:x 0 1 2 3 4y 6 0 0 6则不等式的解集为;【答案】【解析】试题分析:两个根为2,-3,由函数值变化可知a>0∴ax2+bx+c>0的解集是(-∞,-2)∪(3,+∞)。

青海省西宁市2018届高三数学下学期复习检测(一模)试题一理

青海省西宁市2018届高三数学下学期复习检测(一模)试题一理

乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列,问五
人各得多少钱?”(“钱”是古代一种重量单位).这个问题中,等差数列的通项公式为
()
A. 1 n 7 ( n N *, n 5 ) 66
C. 1 n 7 ( n N *, n 5 ) 66
B. 1 n 3 ( n N *, n 5 ) 62
(参考公式: K 2
n(ad bc)2
,其中 n a b c d )
(a b)(c d )(a c)(b d )
19. 底面为菱形的直棱柱 ABCD A1B1C1D1 中, E, F 分别为棱 A1B1 , A1D1 的中点.
(1)在图中作出一个平面 ,使得 BD ,且平面 AEF // .(不必给出证明过程,只要 求作出 与直棱柱 ABCD A1B1C1D1 的截面.) (2)若 AB AA1 2 , BAD 600 求平面 AEF 与平面 的距离 d . 20. 在平面直角坐标系 xOy 中,点 F1(1, 0) , F2 (1, 0) ,动点 M 满足 OF1 OM OF2 OM 4 . (1)求动点 M 的轨迹 E 的方程; (2)若直线 y kx m 与轨迹 E 有且仅有一个公共点 Q ,且与直线 x 4 相交于点 R ,求
果是相互独立的,求 X 的分布列,数学期望和方差.
独立性检查临界值表:
P(K 2 k0 ) 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001 …
k0
0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828 …
14. 4
15. 512

2017-2018年青海省西宁市高一(下)期末数学试卷(解析版)

2017-2018年青海省西宁市高一(下)期末数学试卷(解析版)

2017-2018学年青海省西宁市高一(下)期末数学试卷一、选择题:共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)设a,b,c∈R,且a>b,则下列选项中一定成立的是()A.ac>bc B.C.a2>b2D.a3>b32.(5分)如图为一串白黑相间排列的珠子,按这种规律往下排起来,那么第36颗珠子的颜色是()A.白色B.黑色C.白色可能性大D.黑色可能性大3.(5分)奥林匹克会旗中央有5个互相套连的圆环,颜色自左至右,上方依次为蓝、黑、红,下方依次为黄、绿,象征着五大洲.在手工课上,老师将这5个环分发给甲、乙、丙、丁、戊五位同学制作,每人分得1个,则事件“甲分得红色”与“乙分得红色”是()A.对立事件B.不可能事件C.互斥但不对立事件D.不是互斥事件4.(5分)在△ABC中,∠A=60°,,,则△ABC解的情况()A.无解B.有唯一解C.有两解D.不能确定5.(5分)一组数据的茎叶图如图所示,则数据落在区间[22,30]内的概率为()A.0.2B.0.4C.0.5D.0.66.(5分)设M=(a+1)(a﹣3),N=2a(a﹣2),则()A.M>A B.M≥N C.M<N D.M≤N7.(5分)若x,2x+2,3x+3是某个等比数列的连续三项,则x=()A.﹣4B.﹣1C.1或4D.﹣1或﹣4 8.(5分)某班有49位同学玩“数字接龙”游戏,具体规则按如图所示的程序框图执行(其中a为座位号),并以输出的值作为下一个输入的值,若第一次输入的值为8,则第三次输出的值为()A.8B.15C.29D.369.(5分)用系统抽样法从160名学生中抽取容量为20的样本,将160名学生从1~160编号.按编号顺序平均分成20组(1~8号,9~16号,153~160号),若第15组中抽出的号码为118,则第一组中按此抽签方法确定的号码是()A.8B.6C.4D.210.(5分)具有线性相关关系得变量x,y,满足一组数据如表所示,若y与x的回归直线方程为=3x﹣,则m的值()A.4B.C.5D.611.(5分)若不等式组表示的平面区域是一个三角形,则a的取值范围是()A.a<5B.a≥7C.5≤a<7D.a<5或a≥712.(5分)公比不为1的等比数列{a n}的前n项和为S n,且﹣2a1,﹣成等差数列,若a1=1,则S4=()A.﹣5B.0C.5D.7二、填空题(本大题共4小题,每小题5分,满分20分,请将答案填写在题中的横线上.)13.(5分)二次函数y=ax2+bx+c(x∈R)的部分对应值如表,则不等式ax2+bx+c<0的解集是.14.(5分)如图是一个边长为4的正方形二维码,为了测算图中黑色部分的面积,在正方形区域内随机投掷400个点,其中落入黑色部分的有225个点,据此可估计黑色部分的面积为.15.(5分)若数列{a n}的前n项和为S n=2n2,则a3+a4的值为.16.(5分)已知x>2,求f(x)=2x+的最小值.三、解答题(共6小题,满分70分,解答写出文字说明、证明过程或演算过程.)17.(10分)渔政船在东海某海域巡航,已知该船正以15海里/时的速度向正北方向航行,该船在A点处时发现在北偏东30°方向的海面上有一个小岛,继续航行20分钟到达B 点,此时发现该小岛在北偏东60°方向上,若该船向正北方向继续航行,船与小岛的最小距离为多少海里?18.(12分)在“六一”联欢会上设有一个抽奖游戏.抽奖箱中共有12张纸条,分一等奖、二等奖、三等奖、无奖四种.从中任取一张,不中奖的概率为,中二等奖或三等奖的概率.(Ⅰ)求任取一张,中一等奖的概率;(Ⅱ)若中一等奖或二等奖的概率是,求任取一张,中三等奖的概率.19.(12分)已知等差数列{a n}的前n项和为S n,且a3=7,a5+a7=26.(Ⅰ)求a n及S n;(Ⅱ)令b n=(n∈N+),求证:数列{b n}为等差数列.20.(12分)某中学从高三男生中随机抽取n名学生的身高,将数据整理,得到的频率分布表如下所示:(Ⅰ)求出频率分布表中①和②位置上相应的数据,并完成下列频率分布直方图;(Ⅱ)为了能对学生的体能做进一步了解,该校决定在第3,4,5组中用分层抽样抽取6名学生进行不同项目的体能测试,若在这6名学生中随机抽取2名学生进行引体向上测试,则第4组中至少有一名学生被抽中的概率.21.(12分)在锐角△ABC中,角A,B,C的对边分别为a,b,c,且a=2c sin A.(Ⅰ)确定角C的大小;(Ⅱ)若c=,且△ABC的面积为,求a+b的值.22.(12分)设函数f(x)=x2﹣3x.(Ⅰ)若不等式f(x)≥m对任意x∈[0,1]恒成立,求实数m的取值范围;(Ⅱ)在(I)的条件下,当m取最大值时,设x>0,y>0且2x+4y+m=0,求+的最小值.2017-2018学年青海省西宁市高一(下)期末数学试卷参考答案与试题解析一、选择题:共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)设a,b,c∈R,且a>b,则下列选项中一定成立的是()A.ac>bc B.C.a2>b2D.a3>b3【解答】解:当c=0时,显然ac=bc,故A错误;当a>0>b时,,故B错误;当0>a>b时,a2<b2,故C错误;∵y=x3是增函数,且a>b,∴a3>b3,故D正确.故选:D.2.(5分)如图为一串白黑相间排列的珠子,按这种规律往下排起来,那么第36颗珠子的颜色是()A.白色B.黑色C.白色可能性大D.黑色可能性大【解答】解:由题图知三白二黑周而复始相继排列,根据36÷5=7余1,可得第36颗应与第1颗珠子的颜色相同,即白色.故选:A.3.(5分)奥林匹克会旗中央有5个互相套连的圆环,颜色自左至右,上方依次为蓝、黑、红,下方依次为黄、绿,象征着五大洲.在手工课上,老师将这5个环分发给甲、乙、丙、丁、戊五位同学制作,每人分得1个,则事件“甲分得红色”与“乙分得红色”是()A.对立事件B.不可能事件C.互斥但不对立事件D.不是互斥事件【解答】解:甲、乙不能同时得到红色,因而这两个事件是互斥事件;又甲、乙可能都得不到红色,即“甲或乙分得红色”的事件不是必然事件,故这两个事件不是对立事件.∴事件“甲分得红色”与“乙分得红色”是互斥但不对立事件.故选:C.4.(5分)在△ABC中,∠A=60°,,,则△ABC解的情况()A.无解B.有唯一解C.有两解D.不能确定【解答】解:∵△ABC中,∠A=60°,a=,b=,∴根据正弦定理,得sin B===,∵∠A=60°,得∠B+∠C=120°∴由sin B=,得∠B=30°,从而得到∠C=90°因此,满足条件的△ABC有且只有一个.故选:B.5.(5分)一组数据的茎叶图如图所示,则数据落在区间[22,30]内的概率为()A.0.2B.0.4C.0.5D.0.6【解答】解:茎叶图中的数据为18,19,21,22,22,27,29,30,30,33;则落在区间[22,30]内的数据为22,22,27,29,30,30共6个,∴所求的概率值为P==0.6.故选:D.6.(5分)设M=(a+1)(a﹣3),N=2a(a﹣2),则()A.M>A B.M≥N C.M<N D.M≤N【解答】解:N﹣M=2a(a﹣2)﹣(a+1)(a﹣3)=2a2﹣4a﹣(a2﹣2a﹣2)=a2﹣2a+2=(a﹣1)2+1>0,即M<N,故选:C.7.(5分)若x,2x+2,3x+3是某个等比数列的连续三项,则x=()A.﹣4B.﹣1C.1或4D.﹣1或﹣4【解答】解:由题意可得(2x+2)2=x(3x+3),化简可得(x+1)(x+4)=0解之可得x=﹣1,或x=﹣4当x=﹣1时,2x+2=0不合题意,应舍去,故选:A.8.(5分)某班有49位同学玩“数字接龙”游戏,具体规则按如图所示的程序框图执行(其中a为座位号),并以输出的值作为下一个输入的值,若第一次输入的值为8,则第三次输出的值为()A.8B.15C.29D.36【解答】解:输入a=8后,满足进条件,则输出a=15,输入a=15后,满足条件,则输出a=29,输入a=29后,不满足条件,则输出a=8,故第三次输出的值为8,故选:A.9.(5分)用系统抽样法从160名学生中抽取容量为20的样本,将160名学生从1~160编号.按编号顺序平均分成20组(1~8号,9~16号,153~160号),若第15组中抽出的号码为118,则第一组中按此抽签方法确定的号码是()A.8B.6C.4D.2【解答】解:由题意,可知系统抽样的组数为20,间隔为8,设第一组抽出的号码为x,则由系统抽样的法则,可知第n组抽出个数的号码应为x+8(n﹣1),所以第15组应抽出的号码为x+8(15﹣1)=118,解得x=6.故选:B.10.(5分)具有线性相关关系得变量x,y,满足一组数据如表所示,若y与x的回归直线方程为=3x﹣,则m的值()A.4B.C.5D.6【解答】解:由表中数据得:=,=,由于由最小二乘法求得回归方程=3x﹣,将=,=代入回归直线方程,得m=4.故选:A.11.(5分)若不等式组表示的平面区域是一个三角形,则a的取值范围是()A.a<5B.a≥7C.5≤a<7D.a<5或a≥7【解答】解:由图可知5≤a<7,故选:C.12.(5分)公比不为1的等比数列{a n}的前n项和为S n,且﹣2a1,﹣成等差数列,若a1=1,则S4=()A.﹣5B.0C.5D.7【解答】解:设公比q不为1的等比数列{a n},﹣2a1,﹣成等差数列,可得﹣a2=﹣2a1+a3,若a1=1,可得﹣q=﹣2+q2,解得q=﹣2(1舍去),则S4===﹣5.故选:A.二、填空题(本大题共4小题,每小题5分,满分20分,请将答案填写在题中的横线上.)13.(5分)二次函数y=ax2+bx+c(x∈R)的部分对应值如表,则不等式ax2+bx+c<0的解集是(﹣2,3).【解答】解:由二次函数y=ax2+bx+c(x∈R)的部分对应值知,x=﹣2时,y=0;x=3时,y=0;且函数y的图象开口向上,∴不等式ax2+bx+c<0的解集是(﹣2,3).故答案为:(﹣2,3).14.(5分)如图是一个边长为4的正方形二维码,为了测算图中黑色部分的面积,在正方形区域内随机投掷400个点,其中落入黑色部分的有225个点,据此可估计黑色部分的面积为9.【解答】解:设黑色部分的面积为S,∵如图是一个边长为4的正方形二维码,为了测算图中黑色部分的面积,在正方形区域内随机投掷400个点,其中落入黑色部分的有225个点,∴=,解得S=9.据此可估计黑色部分的面积为9.故答案为:9.15.(5分)若数列{a n}的前n项和为S n=2n2,则a3+a4的值为24.【解答】解:由题意数列{a n}的前n项和为S n=2n2,∴S1=a1=2;∴a n=S n﹣S n﹣1=2n2﹣2(n﹣1)2=4n﹣2,(n≥1,n∈N*)则a3+a4=10+14=24.故答案为:24.16.(5分)已知x>2,求f(x)=2x+的最小值4+2.【解答】解:由x>2,则x﹣2>0那么:f(x)=2x+=2(x﹣2)+=2.(当且仅当x=时,等号成立),故答案为:.三、解答题(共6小题,满分70分,解答写出文字说明、证明过程或演算过程.)17.(10分)渔政船在东海某海域巡航,已知该船正以15海里/时的速度向正北方向航行,该船在A点处时发现在北偏东30°方向的海面上有一个小岛,继续航行20分钟到达B 点,此时发现该小岛在北偏东60°方向上,若该船向正北方向继续航行,船与小岛的最小距离为多少海里?【解答】解:如图所示,过点C作CD⊥AB,垂足为D.由题意可得:AB=15×=5.∵∠A=30°,∠DBC=60°.∴∠ACB=180°﹣120°﹣30°=30°,∴BC=AB=5.∴在Rt△BCD中,DC=BC•sin60°=×=7.5海里.该船向正北方向继续航行,船与小岛的最小距离为7.5海里.18.(12分)在“六一”联欢会上设有一个抽奖游戏.抽奖箱中共有12张纸条,分一等奖、二等奖、三等奖、无奖四种.从中任取一张,不中奖的概率为,中二等奖或三等奖的概率.(Ⅰ)求任取一张,中一等奖的概率;(Ⅱ)若中一等奖或二等奖的概率是,求任取一张,中三等奖的概率.【解答】解:(Ⅰ)设任取一张,抽得一等奖、二等奖、三等奖、不中奖的事件分别为A,B,C,D,它们是互斥事件,由题意得:P(D)=,P(B+C)=P(B)+P(C)=,由对立事件的概率公式得:P(A)=1﹣P(B+C+D)=1﹣P(B+C)﹣P(D)=1﹣=,∴任取一张,中一等奖的概率为.(Ⅱ)∵P(A+B)=,又P(A+B)=P(A)+P(B),∴P(B)==,又P(B+C)=P(B)+P(C)=,∴P(C)=,∴任取一张,中三等奖的概率为.19.(12分)已知等差数列{a n}的前n项和为S n,且a3=7,a5+a7=26.(Ⅰ)求a n及S n;(Ⅱ)令b n=(n∈N+),求证:数列{b n}为等差数列.【解答】解:(Ⅰ)设等差数列的首项为a1,公差为d,∵a3=7,a3+a2=26.∴由题意得,解得a1=3,d=2,∴a n=a1+(n﹣1)d=3+2(n﹣1)=2n+1.==n(n+2).证明:(Ⅱ)∵=,b n+1﹣b n=n+3﹣(n+2)=1,∴数列{b n}为等差数列.20.(12分)某中学从高三男生中随机抽取n名学生的身高,将数据整理,得到的频率分布表如下所示:(Ⅰ)求出频率分布表中①和②位置上相应的数据,并完成下列频率分布直方图;(Ⅱ)为了能对学生的体能做进一步了解,该校决定在第3,4,5组中用分层抽样抽取6名学生进行不同项目的体能测试,若在这6名学生中随机抽取2名学生进行引体向上测试,则第4组中至少有一名学生被抽中的概率.【解答】解:(Ⅰ)由题意知,第1组:0.050=,解得n=100,第2组的频数为:0.350×100=35人,第3组的频率为:=0.300,∴①处的数字为35,②处的数据为0.300.完成频率分布直方图如下:(Ⅱ)∵第3,4,5组共有60名学生,∴利用分层抽样,有60名学生中抽取6名学生,每组分别为:第3组:人,第4组:人,第5组:人,∴第3,4,5组分别抽取3人,2 人,1人,设第3组的3位同学分别为A1,A2,A3,第4组的2位同学分别为:B1,B2,第5组的1位同学为C,则从6位同学中抽两位同学的可能有:A 1A2,A1A3,,A1B2,A1C,A2A3,A2B1,A2B2,A2C,A3B1,A3B2,A3C,B1B2,B1C,B2C,共15种,其中第4组的两位同学至少有一位同学被选中的有:,A1B2,A2B1,A2B2,A3B1,A3B2,B1B2,B1C,B2C,共9种可能,∴第4组中至少有一名学生被抽中的概率P=.21.(12分)在锐角△ABC中,角A,B,C的对边分别为a,b,c,且a=2c sin A.(Ⅰ)确定角C的大小;(Ⅱ)若c=,且△ABC的面积为,求a+b的值.【解答】解:(1)由及正弦定理得:,∵sin A≠0,∴在锐角△ABC中,.(2)∵,,由面积公式得,即ab=6①由余弦定理得,即a2+b2﹣ab=7②由②变形得(a+b)2=25,故a+b=5.22.(12分)设函数f(x)=x2﹣3x.(Ⅰ)若不等式f(x)≥m对任意x∈[0,1]恒成立,求实数m的取值范围;(Ⅱ)在(I)的条件下,当m取最大值时,设x>0,y>0且2x+4y+m=0,求+的最小值.【解答】解:(Ⅰ)函数f(x)=x2﹣3x的图象是开口朝上,且以直线x=为对称轴的抛物线,故函数f(x)=x2﹣3x在[0,1]上单调递减,当x=1时,函数取最小值﹣2,若不等式f(x)≥m对任意x∈[0,1]恒成立,则m≤﹣2;(Ⅱ)由(I)得:m=﹣2,即2x+4y=2,即x+2y=1由x>0,y>0故+=(+)(x+2y)=3++≥3+2=3+2即+的最小值为3+2.。

青海省高一下学期数学期末考试试卷

青海省高一下学期数学期末考试试卷

青海省高一下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)已知集合,且,则实数a的取值范围是()A .B .C .D .2. (2分) (2020高一下·北京期末) 已知向量,,满足,则()A . 1B . -1C . 4D . -43. (2分)等于()A .B .C .D .4. (2分)设ABC的一个顶点是A(3,-1),的平分线所在直线方程分别为x=0,y=x , 则直线BC的方程为()A . y=2x+5B . y=2x+2C . y=3x+5D . y=-x+5. (2分) (2020高一下·上海期末) 设,则“ ”是“ 为偶函数”的()A . 充分而不必要条件B . 必要而不充分条件C . 充分必要条件D . 既不充分也不必要条件6. (2分)(2017·怀化模拟) 若x,y满足:,则z= 的最大值与最小值之和为()A .B .C .D .7. (2分)(2019·怀化模拟) 已知点是的重心,,若,,则的最小值是()A .B .C .D .8. (2分)等比数列满足,且,则当时,()A .B .C .D .9. (2分) (2017高一下·汽开区期末) 已知直三棱柱ABC-A1B1C1中,∠ABC=120°,AB=2 ,BC=CC1=1 ,则异面直线AB1与BC1所成角的余弦值为()A .B .C .D .10. (2分)(2020·厦门模拟) 记数列的前n项和为,设,则数列的前10项和为()A .B .C .D .二、双空题 (共4题;共4分)11. (1分) (2019高三上·日喀则月考) 在等差数列中,已知 a4+a8=16 ,则 ________.12. (1分) (2018高一下·石家庄期末) 直线的倾斜角是________.13. (1分) (2019高一上·安康月考) 已知角α的顶点在坐标原点,始边与x轴正半轴重合,终边经过点,则 ________.14. (1分)已知 =(﹣1,3), =(2,﹣1),则与的夹角为________.三、填空题 (共3题;共3分)15. (1分)如图,函数F(x)的图象是由指数函数f(x)=bx与幂函数g(x)=xa“拼接”而成,记m=aa ,n=ab , p=ba , q=bb则m,n,p,q的大小关系为________(用“<”连接).16. (1分)(2020·西安模拟) 已知平面向量,(,)满足,且与的夹角为,则的最大值是________.17. (1分) (2018高三上·成都月考) 平行四边形ABCD中,是平行四边形ABCD内一点,且,若,则的最大值为________.四、解答题 (共5题;共50分)18. (10分)(2018高二上·广州期中) 如图,的边边所在直线的方程为满足 ,点在边所在直线上且满足.(I)求边所在直线的方程;(II)求的外接圆的方程;(III)若点的坐标为 ,其中为正整数。

西宁十四中数学高一下期末经典习题

西宁十四中数学高一下期末经典习题

一、选择题1.(0分)[ID :12723]已知向量a ,b 满足4a =,b 在a 上的投影(正射影的数量)为-2,则2a b -的最小值为( ) A.B .10CD .82.(0分)[ID :12721]已知扇形的周长是12,面积是8,则扇形的中心角的弧度数是( ) A .1B .4C .1或4D .2或43.(0分)[ID :12718]为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程ˆˆˆybx a =+,其中ˆˆˆ0.76,b a y bx ==-,据此估计,该社区一户收入为15万元家庭年支出为( ) A .11.4万元B .11.8万元C .12.0万元D .12.2万元4.(0分)[ID :12714]在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是 A .甲地:总体均值为3,中位数为4 B .乙地:总体均值为1,总体方差大于0 C .丙地:中位数为2,众数为3 D .丁地:总体均值为2,总体方差为35.(0分)[ID :12710]已知集合{}{}2|320,,|05,A x x x x R B x x x N =-+=∈=<<∈,则满足条件A C B ⊆⊆的集合C 的个数为( )A .1B .2C .3D .46.(0分)[ID :12695]已知集合A ={1,2,3}, B ={x|x 2<9},则A ∩B = A .{−2,−1,0,1,2,3} B .{−2,−1,0,1,2} C .{1,2,3} D .{1,2}7.(0分)[ID :12690]《九章算术》中,将底面是直角三角形的直三棱柱称为“堑堵”.某“堑堵”的三视图如图所示,则它的表面积为( )A .2B .422+C .442+D .642+8.(0分)[ID :12687]C ∆AB 是边长为2的等边三角形,已知向量a ,b 满足2a AB =,C 2a b A =+,则下列结论正确的是( )A .1b =B .a b ⊥C .1a b ⋅=D .()4C a b +⊥B9.(0分)[ID :12675]要得到函数23sin 23y x x =+2sin 2y x =的图象( )A .向左平移3π个单位 B .向右平移3π个单位 C .向左平移6π个单位 D .向右平移6π个单位 10.(0分)[ID :12632]有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为 A .45B .35C .25D .1511.(0分)[ID :12656]某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生B .200号学生C .616号学生D .815号学生12.(0分)[ID :12647]与直线40x y --=和圆22220x y x y ++-=都相切的半径最小的圆的方程是A .()()22112x y +++= B .()()22114x y -++= C .()()22112x y -++=D .()()22114x y +++=13.(0分)[ID :12641]设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则5a =A .12-B .10-C .10D .1214.(0分)[ID :12697]已知定义在R 上的偶函数f (x )满足f (x -4)=f (x ),且在区间[0,2]上f (x )=x ,若关于x 的方程f (x )=log a |x |有六个不同的根,则a 的范围为( ) A .6,10B .6,22C .(2,22D .(2,4)15.(0分)[ID :12681]若,αβ均为锐角,sin 5α=,()3sin 5αβ+=,则cos β=AB.25C或25 D.25-二、填空题16.(0分)[ID :12828]已知数列{}n a 前n 项和为n S ,若22nn n S a =-,则n S =__________.17.(0分)[ID :12793]已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为____.18.(0分)[ID :12789]对于函数()f x ,()g x ,设(){}0m x f x ∈=,(){}0n x g x ∈=,若存在m ,n 使得1m n -<,则称()f x 与()g x 互为“近邻函数”.已知函数()()13log 2exf x x -=+-与()1422xx g x a +=⋅-+互为“近邻函数”,则实数a 的取值范围是______.(e 是自然对数的底数)19.(0分)[ID :12758]关于函数()sin sin f x x x =+有如下四个结论: ①()f x 是偶函数;②()f x 在区间,2ππ⎛⎫⎪⎝⎭上单调递增;③()f x 最大值为2;④()f x 在[],ππ-上有四个零点,其中正确命题的序号是_______.20.(0分)[ID :12745]设f(x)={1−√x,x ≥0x 2,x <0,则f(f(−2))=________21.(0分)[ID :12741]已知a ∈R ,命题p :[]1,2x ∀∈,20x a -≥,命题q :x ∃∈R ,2220x ax a ++-=,若命题p q ∧为真命题,则实数a 的取值范围是_____.22.(0分)[ID :12769]设12a =,121n n a a +=+,21n n n a b a +=-,*n N ∈,则数列{}n b 的通项公式n b = .23.(0分)[ID :12767]设,x y 满足约束条件210,{0,0,0,x y x y x y --≤-≥≥≥若目标函数()0,0z ax by a b =+>>的最大值为1,则14a b+的最小值为_________.24.(0分)[ID :12763]已知函数()2,01,0x x f x x x >⎧=⎨+≤⎩若()()10f a f +=,则实数a 的值等于________.25.(0分)[ID :12753]在直三棱柱111ABC A B C -中,90ACB ∠=,12AA =,1AC BC ==,则异面直线1A B 与1AC 所成角的余弦值是_____________.三、解答题26.(0分)[ID :12876]一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a ,b ,c .(Ⅰ)求“抽取的卡片上的数字满足a b c +=”的概率; (Ⅱ)求“抽取的卡片上的数字a ,b ,c 不完全相同”的概率.27.(0分)[ID :12871]如图,在正方体1111ABCD A B C D -中,S 是11B D 的中点,E ,F ,G 分别是BC ,DC ,SC 的中点.求证:(1)直线//EG 平面11BDD B ; (2)平面//EFG 平面11BDD B .28.(0分)[ID :12863]如图,某园林单位准备绿化一块直径为BC 的半圆形空,ABC ∆外的地方种草,ABC ∆的内接正方形PQRS 为一水池,其余的地方种花,若1BC =,ABC θ∠=,02πθ⎛⎫∈ ⎪⎝⎭,,设ABC ∆的面积为1S ,正方形的面积为2.S(1)用θ表示1S 和2S ;(2)当θ变化时,求12S S 的最小值及此时角θ的大小.29.(0分)[ID :12852]已知函数2()4f x x ax =-++,()|1||1|g x x x =++-. (1)当1a =时,求不等式()()f x g x ≥的解集;(2)若不等式()()f x g x ≥的解集包含[–1,1],求a 的取值范围.30.(0分)[ID :12830]ABC ∆中,D 是BC 上的点,AD 平分∠BAC,ABD ∆面积是ADC ∆面积的2倍. (1)求sin sin BC;(2)若AD=1,DC=,求BD和AC的长.2【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.C3.B4.D5.D6.D7.D8.D9.C10.C11.C12.C13.B14.A15.B二、填空题16.【解析】分析:令得当时由此推导出数列是首项为1公差为的等差数列从而得到从而得到详解:令得解得当时由)得两式相减得整理得且∴数列是首项为1公差为的等差数列可得所以点睛:本题考查数列的通项公式的求法是中17.【解析】设正方体边长为则外接球直径为【考点】球【名师点睛】求多面体的外接球的面积和体积问题常用方法有(1)三条棱两两互相垂直时可恢复为长方体利用长方体的体对角线为外接球的直径求出球的半径;(2)直棱18.【解析】【分析】先求出的根利用等价转换的思想得到在有解并且使用分离参数方法可得结果【详解】由令所以又已知函数与互为近邻函数据题意可知:在有解则在有解即在有解令又令所以当时当时所以所以则故答案为:【点19.①③【解析】【分析】利用奇偶性的定义判定函数的奇偶性可判断出命题①的正误;在时去绝对值化简函数的解析式可判断函数在区间上的单调性可判断命题②的正误;由以及可判断出命题③的正误;化简函数在区间上的解析20.-1【解析】【分析】由分段函数的解析式先求出f(-2)的值并判定符号从而可得f(f(-2))的值【详解】∵fx=1-xx≥0x2x<0-2<0∴f-2=-22=4>0所以f(f(-2))=f4=1-21.或【解析】【分析】根据不等式恒成立化简命题为根据一元二次方程有解化简命题为或再根据且命题的性质可得结果【详解】若命题:为真;则解得:若命题:为真则解得:或若命题是真命题则或故答案为或【点睛】解答非命22.2n+1【解析】由条件得且所以数列是首项为4公比为2的等比数列则23.【解析】【分析】【详解】试题分析:试题分析:由得平移直线由图象可知当过时目标函数的最大值为即则当且仅当即时取等号故的最小值为考点:1利用可行域求线性目标函数的最值;2利用基本不等式求最值【方法点晴】24.-3【解析】【分析】先求再根据自变量范围分类讨论根据对应解析式列方程解得结果【详解】当a>0时2a=-2解得a=-1不成立当a≤0时a+1=-2解得a=-3【点睛】求某条件下自变量的值先假设所求的值25.【解析】【分析】先找出线面角运用余弦定理进行求解【详解】连接交于点取中点连接则连接为异面直线与所成角在中同理可得异面直线与所成角的余弦值是故答案为【点睛】本题主要考查了异面直线所成的角考查了空间想象三、解答题26.27.28.30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题 1.D 解析:D 【解析】 【分析】b 在a 上的投影(正射影的数量)为2-可知||cos ,2b a b <>=-,可求出||2b ≥,求22a b -的最小值即可得出结果.【详解】因为b 在a 上的投影(正射影的数量)为2-, 所以||cos ,2b a b <>=-, 即2||cos ,b a b =-<>,而1cos ,0a b -≤<><,所以||2b ≥,因为2222222(2)44||4||||cos ,4||a b a b a a b b a a b a b b -=-=-⋅+=-<>+22=1644(2)4||484||b b -⨯⨯-+=+所以22484464a b -≥+⨯=,即28a b -≥,故选D. 【点睛】本题主要考查了向量在向量上的正射影,向量的数量积,属于难题.2.C【解析】设扇形的半径为r ,弧长为 l ,则121282l r S lr +===,, ∴解得28r l ==, 或44r l ==,41lrα==或, 故选C .3.B解析:B 【解析】 试题分析:由题,,所以.试题解析:由已知,又因为ˆˆˆybx a =+,ˆˆˆ0.76,b a y bx ==- 所以,即该家庭支出为万元.考点:线性回归与变量间的关系.4.D解析:D 【解析】试题分析:由于甲地总体均值为,中位数为,即中间两个数(第天)人数的平均数为,因此后面的人数可以大于,故甲地不符合.乙地中总体均值为,因此这天的感染人数总数为,又由于方差大于,故这天中不可能每天都是,可以有一天大于,故乙地不符合,丙地中中位数为,众数为,出现的最多,并且可以出现,故丙地不符合,故丁地符合.考点:众数、中位数、平均数、方差5.D解析:D 【解析】 【分析】 【详解】求解一元二次方程,得{}()(){}2|320,|120,A x x x x x x x x =-+=∈=--=∈R R{}1,2=,易知{}{}|05,1,2,3,4B x x x =<<∈=N .因为A C B ⊆⊆,所以根据子集的定义, 集合C 必须含有元素1,2,且可能含有元素3,4, 原题即求集合{}3,4的子集个数,即有224=个,故选D. 【点评】本题考查子集的概念,不等式,解一元二次方程.本题在求集合个数时,也可采用列举法.列出集合C 的所有可能情况,再数个数即可.来年要注意集合的交集运算,考查频度极高.6.D解析:D 【解析】试题分析:由x 2<9得−3<x <3,所以B ={x|−3<x <3},因为A ={1,2,3},所以A ∩B ={1,2},故选D.【考点】 一元二次不等式的解法,集合的运算【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.7.D解析:D 【解析】 【分析】根据题意和三视图知几何体是一个放倒的直三棱柱,由三视图求出几何元素的长度,由面积公式求出几何体的表面积. 【详解】根据题意和三视图知几何体是一个放倒的直三棱柱,底面是一个直角三角形,两条直角边,斜边是2,且侧棱与底面垂直,侧棱长是2,∴几何体的表面积12222262S =⨯+⨯⨯=+ 故选D . 【点睛】本题考查三视图求几何体的表面积,由三视图正确复原几何体是解题的关键,考查空间想象能力.8.D解析:D 【解析】 试题分析:2,2AB a AC a b ==+,AC AB b ∴=+,b AC AB BC ∴=-=.由题意知12,cos1201212b a b a b ⎛⎫=⋅=⋅=⨯⨯-=- ⎪⎝⎭.()()2422a b BC AB BC BC AB BC BC∴+⋅=+⋅=⋅+212cos1202222402AB BC ⎛⎫=⋅+=⨯⨯⨯-+= ⎪⎝⎭.()4a b BC ∴+⊥.故D正确.考点:1向量的加减法;2向量的数量积;3向量垂直.9.C解析:C 【解析】 【分析】化简函数2sin 2y x x =+-. 【详解】依题意2ππsin 22sin 22sin 236y x x x x ⎡⎤⎛⎫⎛⎫=+=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故只需将函数2sin 2y x =的图象向左平移6π个单位.所以选C. 【点睛】本小题主要考查三角函数降次公式和辅助角公式,考查三角函数图象变换的知识,属于基础题.10.C解析:C 【解析】选取两支彩笔的方法有25C 种,含有红色彩笔的选法为14C 种,由古典概型公式,满足题意的概率值为142542105C p C ===. 本题选择C 选项. 考点:古典概型名师点睛:对于古典概型问题主要把握基本事件的种数和符合要求的事件种数,基本事件的种数要注意区别是排列问题还是组合问题,看抽取时是有、无顺序,本题从这5支彩笔中任取2支不同颜色的彩笔,是组合问题,当然简单问题建议采取列举法更直观一些.11.C解析:C 【解析】 【分析】等差数列的性质.渗透了数据分析素养.使用统计思想,逐个选项判断得出答案. 【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =, 所以610n a n=+()n *∈N ,若8610n =+,则15n =,不合题意;若200610n =+,则19.4n =,不合题意; 若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C . 【点睛】本题主要考查系统抽样.12.C解析:C 【解析】圆22220x y x y ++-=的圆心坐标为()1,1-,过圆心()1,1-与直线40x y --=垂直的直线方程为0x y +=,所求圆的圆心在此直线上,又圆心()1,1-到直线40x y --==,设所求圆的圆心为(),a b ,且圆心在直线40x y --==0a b +=,解得1,1a b ==-(3,3a b ==-不符合题意,舍去 ),故所求圆的方程为()()22112x y -++=.故选C .【名师点睛】本题主要考查直线与圆的位置关系,考查了数形结合的思想,考查了计算能力,属于中档题.13.B解析:B 【解析】分析:首先设出等差数列{}n a 的公差为d ,利用等差数列的求和公式,得到公差d 所满足的等量关系式,从而求得结果3d =-,之后应用等差数列的通项公式求得51421210a a d =+=-=-,从而求得正确结果.详解:设该等差数列的公差为d , 根据题中的条件可得32433(32)224222d d d ⨯⨯⨯+⋅=⨯++⨯+⋅, 整理解得3d =-,所以51421210a a d =+=-=-,故选B.点睛:该题考查的是有关等差数列的求和公式和通项公式的应用,在解题的过程中,需要利用题中的条件,结合等差数列的求和公式,得到公差d 的值,之后利用等差数列的通项公式得到5a 与1a d 和的关系,从而求得结果.14.A解析:A 【解析】由()4f x f x -=()得:4T =,当010]x ∈(,时,函数的图象如图:()()()26102f f f ===,再由关于x 的方程()log a f x x =有六个不同的根,则关于x 的方程()log a f x x =有三个不同的根,可得log 62 log 102a a<⎧⎨>⎩,解得610a ∈(,),故选A.点睛:本题主要考查了函数的周期性,奇偶性,函数的零点等基本性质,函数的图象特征,体现了数形结合的数学思想,属于中档题;首先求出()f x 的周期是4,画出函数的图象,将方程根的个数转化为函数图象交点的个数,得到关于a 的不等式,解得即可.15.B解析:B 【解析】 【分析】利用角的等量代换,β=α+β-α,只要求出α的余弦,α+β的余弦,利用复合角余弦公式展开求之. 【详解】∵α为锐角,252sin α= s ,∴α>45°且5cos α= , ∵()3sin 5αβ+=,且13225< ,2παβπ∴+<<,∴45cosαβ+=-() , 则cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα453252555=-+= 故选B. 【点睛】本题考查两角和与差的正弦、余弦函数公式,以及同角三角函数间的基本关系,熟练掌握公式是解本题的关键.二、填空题16.【解析】分析:令得当时由此推导出数列是首项为1公差为的等差数列从而得到从而得到详解:令得解得当时由)得两式相减得整理得且∴数列是首项为1公差为的等差数列可得所以点睛:本题考查数列的通项公式的求法是中解析:*2()n n S n n N =∈【解析】分析:令1n =,得12a =,当2n ≥ 时,11122n n n S a ---=-,由此推导出数列{}2n na 是首项为1公差为12的等差数列,从而得到()112n n a n -+=,从而得到n S . 详解:令1n =,得11122a a =-,解得12a = ,当2n ≥ 时,由22n n n S a =-),得11122n n n S a ---=-,两式相减得()()1112222,nn n n n n n a S S a a ---=-=--- 整理得111222n n n n a a ---=,且111,2a = ∴数列{}2n n a是首项为1公差为12 的等差数列, ()111,22n na n ∴=+- 可得()112,n n a n -=+ 所以()12221222.nn n nn n S a n n -⎡⎤=-=+-=⋅⎣⎦点睛:本题考查数列的通项公式的求法,是中档题,解题时要认真审题,注意构造法的合理运用.17.【解析】设正方体边长为则外接球直径为【考点】球【名师点睛】求多面体的外接球的面积和体积问题常用方法有(1)三条棱两两互相垂直时可恢复为长方体利用长方体的体对角线为外接球的直径求出球的半径;(2)直棱 解析:92π【解析】设正方体边长为a ,则226183a a =⇒= ,外接球直径为34427923,πππ3382R V R ====⨯=. 【考点】 球【名师点睛】求多面体的外接球的面积和体积问题常用方法有(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心,本题就是第三种方法.18.【解析】【分析】先求出的根利用等价转换的思想得到在有解并且使用分离参数方法可得结果【详解】由令所以又已知函数与互为近邻函数据题意可知:在有解则在有解即在有解令又令所以当时当时所以所以则故答案为:【点解析:10,2⎛⎤ ⎥⎝⎦.【解析】 【分析】先求出()0f x =的根,利用等价转换的思想,得到()0g x =在1m n -<有解,并且使用分离参数方法,可得结果 【详解】由()()13log 2exf x x -=+-,令()0f x =所以1x =,又已知函数()()13log 2e xf x x -=+-与()1422xx g x a +=⋅-+互为“近邻函数”据题意可知:()0g x =在11x -<有解,则()0g x =在02x <<有解即1224x x a +-=在02x <<有解,令()1224x xh x +-=, 又令2x t =,()1,4t ∈,11,14t ⎛⎫∈ ⎪⎝⎭所以2222111222t y t t -⎛⎫==--+ ⎪⎝⎭ 当112t =时max 12y =当11t=时0y = 所以10,2y ⎛⎤∈ ⎥⎝⎦所以()10,2h x ⎛⎤∈ ⎥⎝⎦,则10,2a ⎛⎤∈ ⎥⎝⎦故答案为:10,2⎛⎤ ⎥⎝⎦【点睛】本题考查对新定义的理解,以及分离参数方法的应用,属中档题.19.①③【解析】【分析】利用奇偶性的定义判定函数的奇偶性可判断出命题①的正误;在时去绝对值化简函数的解析式可判断函数在区间上的单调性可判断命题②的正误;由以及可判断出命题③的正误;化简函数在区间上的解析解析:①③ 【解析】 【分析】利用奇偶性的定义判定函数()y f x =的奇偶性,可判断出命题①的正误;在,2x ππ⎛⎫∈⎪⎝⎭时,去绝对值,化简函数()y f x =的解析式,可判断函数()y f x =在区间,2ππ⎛⎫ ⎪⎝⎭上的单调性,可判断命题②的正误;由22f π⎛⎫=⎪⎝⎭以及()2f x ≤可判断出命题③的正误;化简函数()y f x =在区间[],ππ-上的解析式,求出该函数的零点,即可判断命题④的正误. 【详解】对于命题①,函数()sin sin f x x x =+的定义域为R ,关于原点对称,且()()()sin sin sin sin sin sin f x x x x x x x f x -=-+-=+-=+=,该函数为偶函数,命题①正确; 对于命题②,当2x ππ<<时,sin 0x >,则()sin sin 2sin f x x x x =+=,则函数()y f x =在,2ππ⎛⎫ ⎪⎝⎭上单调递减,命题②错误;对于命题③,sin 1x ∴≤,sin 1x ≤,()2f x ∴≤,又22f π⎛⎫= ⎪⎝⎭,所以,函数()y f x =的最大值为2,命题③正确;对于命题④,当0πx <<时,sin 0x >,()sin sin 2sin 0f x x x x =+=>, 由于该函数为偶函数,当0x π-<<时,()0f x >, 又()()()00f f f ππ=-==,所以,该函数在区间[],ππ-上有且只有三个零点.因此,正确命题的序号为①③. 故答案为:①③. 【点睛】本题考查与三角函数相关命题真假的判断,涉及三角函数的奇偶性、单调性、最值以及零点的判断,解题的关键就是将三角函数的解析式化简,考查推理能力,属于中等题.20.-1【解析】【分析】由分段函数的解析式先求出f(-2)的值并判定符号从而可得f(f(-2))的值【详解】∵fx=1-xx≥0x2x<0-2<0∴f-2=-22=4>0所以f(f(-2))=f4=1- 解析:-1 【解析】【分析】由分段函数的解析式先求出f(−2)的值并判定符号,从而可得f(f(−2))的值. 【详解】∵f (x )={1−√x,x ≥0x 2,x <0,−2<0,∴f (−2)=(−2)2=4>0,所以f(f(−2))=f (4)=1−√4=−1,故答案为-1. 【点睛】本题主要考查分段函数的解析式,属于简单题. 求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值.21.或【解析】【分析】根据不等式恒成立化简命题为根据一元二次方程有解化简命题为或再根据且命题的性质可得结果【详解】若命题:为真;则解得:若命题:为真则解得:或若命题是真命题则或故答案为或【点睛】解答非命解析:2a ≤-或1a = 【解析】 【分析】根据不等式恒成立化简命题p 为1a ≤,根据一元二次方程有解化简命题q 为2a ≤-或1a ≥,再根据且命题的性质可得结果.【详解】若命题p :“[]1,2x ∀∈,20x a -≥”为真; 则10a -≥, 解得:1a ≤,若命题q :“x ∃∈R ,2220x ax a ++-=”为真, 则()24420a a ∆=--≥,解得:2a ≤-或1a ≥,若命题“p q ∧”是真命题,则2a ≤-,或1a =, 故答案为2a ≤-或1a = 【点睛】解答非命题、且命题与或命题真假有关的题型时,应注意:(1)原命题与其非命题真假相反;(2)或命题“一真则真”;(3)且命题“一假则假”.22.2n+1【解析】由条件得且所以数列是首项为4公比为2的等比数列则解析:2n+1 【解析】由条件得111112222222111n n n n n n n n a a a b b a a a ++++++++====---,且14b =,所以数列{}n b 是首项为4,公比为2的等比数列,则11422n n n b -+=⋅=.23.【解析】【分析】【详解】试题分析:试题分析:由得平移直线由图象可知当过时目标函数的最大值为即则当且仅当即时取等号故的最小值为考点:1利用可行域求线性目标函数的最值;2利用基本不等式求最值【方法点晴】 解析:9【解析】 【分析】 【详解】试题分析:试题分析: 由()0,0z ax by a b =+>>得a zy x b b=-+,平移直线,a z y x b b =-+由图象可知,当a zy x b b=-+过()1,1A 时目标函数的最大值为1,即1z a b =+=,则1414()a b a b a b ⎛⎫+=++ ⎪⎝⎭441452549b a b aa b a b=+++≥+⋅=+=,当且仅当4b a a b =,即122b a ==时,取等号,故14a b+的最小值为9.考点:1、利用可行域求线性目标函数的最值;2、利用基本不等式求最值. 【方法点晴】本题主要考查可行域、含参数目标函数最优解和均值不等式求最值,属于难题.含参变量的线性规划问题是近年来高考命题的热点,由于参数的引入,提高了思维的技巧、增加了解题的难度, 此类问题的存在增加了探索问题的动态性和开放性,此类问题一般从目标函数的结论入手,对目标函数变化过程进行详细分析,对变化过程中的相关量的准确定位,是求最优解的关键.24.-3【解析】【分析】先求再根据自变量范围分类讨论根据对应解析式列方程解得结果【详解】当a>0时2a=-2解得a=-1不成立当a≤0时a+1=-2解得a=-3【点睛】求某条件下自变量的值先假设所求的值解析:-3 【解析】 【分析】先求()f a ,再根据自变量范围分类讨论,根据对应解析式列方程解得结果. 【详解】()()()102f a f f a +=⇒=-当a>0时,2a=-2,解得a=-1,不成立 当a≤0时,a+1=-2,解得a=-3 【点睛】求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.25.【解析】【分析】先找出线面角运用余弦定理进行求解【详解】连接交于点取中点连接则连接为异面直线与所成角在中同理可得异面直线与所成角的余弦值是故答案为【点睛】本题主要考查了异面直线所成的角考查了空间想象 解析:3010【解析】 【分析】先找出线面角,运用余弦定理进行求解 【详解】连接1AB 交1A B 于点D ,取11B C 中点E ,连接DE ,则1DE AC ,连接1A E1A DE ∴∠为异面直线1A B 与1AC 所成角在111RtAC B 中,111AC =,1111122C E C B == 15A E ∴=同理可得16A D =5DE =222165530cos 652A DE +-⎝⎭⎝⎭⎝⎭∠==⨯⨯,∴异面直线1A B 与1AC 所成角的余弦值是10【点睛】本题主要考查了异面直线所成的角,考查了空间想象能力,运算能力和推理论证能力,属于基础题.三、解答题 26.(1)19;(2)89. 【解析】试题分析:(1)所有的可能结果(,,)a b c 共有33327⨯⨯=种,而满足a b c +=的(,,)a b c 共计3个,由此求得“抽取的卡片上的数字满足a b c +=”的概率;(2)所有的可能结果(,,)a b c 共有33327⨯⨯=种,用列举法求得满足“抽取的卡片上的数字a 、b 、c 完全相同”的(,,)a b c 共计三个,由此求得“抽取的卡片上的数字a 、b 、c 完全相同”的概率,再用1减去此概率,即得所求.试题解析:(1) 所有的可能结果(,,)a b c 共有33327⨯⨯=种, 而满足a b c +=的(,,)a b c 有(1,1,2)、(1,2,3)、(2,1,3)共计3个 故“抽取的卡片上的数字满足a b c +=”的概率为31279= (2) 所有的可能结果(,,)a b c 共有33327⨯⨯=种满足“抽取的卡片上的数字a 、b 、c 完全相同”的(,,)a b c 有(1,1,1)、(2,2,2)、(3,3,3)共计三个故“抽取的卡片上的数字a 、b 、c 完全相同”的概率为31279= 所以“抽取的卡片上的数字a 、b 、c 不完全相同”的概率为18199-= 考点:独立事件的概率.【方法点睛】求复杂事件的概率通常有两种方法:一是将所求事件转化成彼此互斥的事件的和;二是先求其对立事件的概率,然后再应用公式求解.如果采用方法一,一定要将事件拆分成若干个互斥事件,不能重复和遗漏;如果采用方法二,一定要找准其对立事件,否则容易出现错误.27.(1)证明见解析(2)证明见解析 【解析】 【分析】(1)结合几何体,因为,E G 分别是,BC SC 的中点,所以//EG SB .,再利用线面平行的判定定理证明.(2)由,F G 分别是,DC SC 的中点,得//FG SD .由线面平行的判定定理//FG 平面11BDD B .,再由(1)知,再利用面面平行的判定定理证明.【详解】 证明: (1)如图,连接SB ,,E G 分别是,BC SC 的中点,//EG SB ∴.又SB ⊂平面11,BDD B EG ⊄平面11BDD B ,所以直线//EG 平面11BDD B . (2)连接,,SD F G 分别是,DC SC 的中点,//FG SD ∴.又∵SD ⊂平面11,BDD B FG ⊄平面11,BDD B//FG ∴平面11BDD B .又EG ⊂平面,EFG FG ⊂平面,EFG EG FG G ⋂=, ∴平面//EFG 平面11BDD B . 【点睛】本题主要考查了线面平行,面面平行的判断定定理,还考查了转化化归的能力,属于中档题.28.(1)2121sin cos sin cos 41sin cos S S θθθθθθ⎛⎫== ⎪+⎝⎭,;(2)最小值944πθ=, 【解析】 【分析】(1)在Rt ABC ∆中,可用,R θ表示,AB AC ,从而可求其面积,利用三角形相似可得PS 的长度,从而可得2S .(2)令sin 2t θ=,从而可得(]21144,0,14t t S t S ⎛⎫=++∈ ⎪⎝⎭,利用(]4,0,1s t t t=+∈的单调性可求12S S 的最小值. 【详解】 (1)在Rt ABC ∆中,cos ,sin AB AC θθ==,所以11sin cos 2S θθ=,02πθ⎛⎫∈ ⎪⎝⎭,. 而BC 边上的高为sin cos sin cos 1θθθθ=, 设APS ∆斜边上的为1h ,ABC ∆斜边上的高为2h ,因APS ABC ∆∆,所以12sin cos sin cos h PS PS BC h θθθθ-==, 故sin cos 1sin cos PS θθθθ=+,故222sin cos 1sin cos S PS θθθθ⎛⎫== ⎪+⎝⎭,02πθ⎛⎫∈ ⎪⎝⎭,. (2)()()212221sin cos 2sin 224sin 2sin cos 1si 1sin cos 2sin cos n cos S S θθθθθθθθθθθθ++===⎛⎫ ⎪+⎝⎭,令(]sin 2,0,1t t θ=∈,则()212214444t t S t t S +⎛⎫==++ ⎪⎝⎭. 令(]4,0,1s t t t=+∈,设任意的1201t t <<≤, 则()()1212121240t t t t s s t t ---=>,故(]4,0,1s t t t=+∈为减函数, 所以min 5s =,故m 12in94S S ⎛⎫= ⎪⎝⎭,此时1t =即4πθ=. 【点睛】直角三角形中的内接正方形的问题,可借助于解直角三角形和相似三角形得到各边与角的关系,三角函数式的最值问题,可利用三角变换化简再利用三角函数的性质、换元法等可求原三角函数式的最值.29.(1)1{|1}2x x --≤≤;(2)[1,1]-. 【解析】【详解】试题分析:(1)分1x <-,11x -≤≤,1x >三种情况解不等式()()f x g x ≥;(2)()()f x g x ≥的解集包含[1,1]-,等价于当[1,1]x ∈-时()2f x ≥,所以(1)2f -≥且(1)2f ≥,从而可得11a -≤≤.试题解析:(1)当1a =时,不等式()()f x g x ≥等价于21140x x x x -+++--≤.① 当1x <-时,①式化为2340x x --≤,无解;当11x -≤≤时,①式化为220x x --≤,从而11x -≤≤;当1x >时,①式化为240x x +-≤,从而11712x -+<≤. 所以()()f x g x ≥的解集为117{|1}2x x -+-≤≤. (2)当[]1,1x ∈-时,()2g x =.所以()()f x g x ≥的解集包含[]1,1-,等价于当[]1,1x ∈-时()2f x ≥.又()f x 在[]1,1-的最小值必为()1f -与()1f 之一,所以()12f -≥且()12f ≥,得11a -≤≤.所以a 的取值范围为[]1,1-.点睛:形如||||x a x b c -+-≥(或c ≤)型的不等式主要有两种解法:(1)分段讨论法:利用绝对值号内式子对应方程的根,将数轴分为(,]a -∞,(,]a b ,(,)b +∞ (此处设a b <)三个部分,将每部分去掉绝对值号并分别列出对应的不等式求解,然后取各个不等式解集的并集.(2)图像法:作出函数1||||y x a x b =-+-和2y c =的图像,结合图像求解. 30.(1)12;(2)1 【解析】 试题分析:(1)借助题设条件运用三角形的面积公式求解;(2)借助题设余弦定理立方程组求解.试题解析:(1),1sin 2ACD S AC AD CAD ∆=⋅⋅∠, ∵2ABD ACD S S ∆∆=,BAD CAD ∠=∠,∴2AB AC =.由正弦定理可知sin 1sin 2B AC C AB ∠==∠. (2)∵::2:1ABD ACD BD DC S S ∆∆==,22DC =, ∴2BD =.设AC x =,则2AB x =,在△ABD 与△ACD 中,由余弦定理可知,2222cos 2AD BD AB ADB AD BD +-∠==⋅22223cos 2x AD CD AC ADC AD CD -+-∠==⋅ ∵ADB ADC π∠+∠=,∴cos cos ADB ADC ∠=-∠,223x -=1x =, 即1AC =.考点:三角形的面积公式正弦定理余弦定理等有关知识的综合运用.。

青海省西宁市高一下学期数学期末考试试卷

青海省西宁市高一下学期数学期末考试试卷

青海省西宁市高一下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2018·大庆模拟) 若是夹角为的两个单位向量,则向量的夹角为()A .B .C .D .2. (2分)阅读下侧程序框图,为使输出的数据为31,则①处应填的数字为A . 4B . 5C . 6D . 73. (2分) (2018高一下·应县期末) 若,是第三象限的角,则()A . 3B .C .D .4. (2分) (2017高二下·眉山期中) 某学校为了调查学生的学习情况,由每班随机抽取5名学生进行调查,若一班有50名学生,将每一学生编号从01到50,请从随机数表的第1行第5、6列(如表为随机数表的前2行)的开始,依次向右,直到取足样本,则第五个编号为()附随机数表:7816657208026314070243699728019832049234493582003623486969387481A . 63B . 02C . 43D . 075. (2分) (2017高三上·商丘开学考) 已知点A(2,m),B(1,2),C(3,1)若• =| |,则实数m等于()A . 1B .C . 2D .6. (2分) (2016高一下·邯郸期中) 若一组数据x1 , x2 , x3 ,…,xn的平均数为2,方差为3,2x1+5,2x2+5,2x3+5,…,2xn+5的平均数和方差分别是()A . 9,11B . 4,11C . 9,12D . 4,177. (2分) (2017高二上·泉港期末) 设函数f(x)在R上可导,其导函数为f′(x),且函数f(x)在x=﹣2处取得极大值,则函数y=xf′(x)的图象可能是()A .B .C .D .8. (2分) (2017高三上·赣州期末) 将函数f(x)=cos2ωx的图象向右平移个单位,得到函数y=g (x)的图象,若y=g(x)在上为减函数,则正实数ω的最大值为()A .B . 1C .D . 39. (2分)(2018·陕西模拟) 已知函数的最小正周期为,则该函数的图象()A . 关于点对称B . 关于点对称C . 关于直线对称D . 关于直线对称10. (2分)设向量与的夹角为60°,且||=2, ||=则等于()A .B .C . 3D . 611. (2分)(2020·华安模拟) 已知且,则的值是()A .B .C .D .12. (2分)已知函数f(x)=sin(ωx﹣)+cos(ωx﹣)(0<ω<10)的图象关于直线x=1对称,则满足条件的ω的值的个数为()A . 1B . 2C . 3D . 4二、填空题 (共4题;共13分)13. (1分)已知,则 =________.14. (1分)用秦九韶算法求多项式f(x)=6x6+4x4+3x3+x当x=2的值得过程中,V3的值为________.15. (1分) (2020高二上·遂宁期末) 已知点是直线上一动点,是圆的两条切线,为切点,若弦长的最小值为,则实数的值为________16. (10分)已知集合,,设,在集合M内随机取出一个元素.(1)求以为坐标的点落在圆内的概率;(2)求以为坐标的点到直线的距离不大于的概率.三、解答题 (共6题;共60分)17. (10分)计算题(1)已知tanα=2,求的值;(2)已知0<α<π,sinα+cosα= ,求tanα的值.18. (10分) (2018高一下·安徽期末) 某企业根据供销合同生产某种型号零件10万件,规定:零件长度(单位:毫米)在区间内,则为一等品;若长度在或内,则为二等品;否则为不合格产品.现从生产出的零件中随机抽取100件作样本,其长度数据的频率分布直方图如图所示.(1)试估计该样本的平均数;(2)根据合同,企业生产的每件一等品可获利10元,每件二等品可获利8元,每件不合格产品亏损6元,若用样本估计总体,试估算该企业生产这批零件所获得的利润.19. (10分) (2016高二下·武汉期中) 已知M为△ABC的中线AD的中点,过点M的直线分别交两边AB、AC 于点P、Q,设=x ,,记y=f(x).(1)求函数y=f(x)的表达式;(2)设g(x)=x3+3a2x+2a,x∈[0,1].若对任意x1∈[ ,1],总存在x2∈[0,1],使得f(x1)=g(x2)成立,求实数a的取值范围.20. (10分) (2017高二下·沈阳期末) 某市卫生防疫部门为了控制某种病毒的传染,提供了批号分别为的五批疫苗,供全市所辖的三个区市民注射,每个区均能从中任选其中一个批号的疫苗接种.(1)求三个区注射的疫苗批号中恰好有两个区相同的概率;(2)记三个区选择的疫苗批号的中位数为X,求 X的分布列及期望.21. (10分) (2017高二上·武清期中) 已知直线l1:(2a﹣1)x+y﹣4=0,l2:2x+(a+1)y+2=0,a∈R,l1∥l2 .(1)求a的值;(2)若圆C与l1、l2均相切,且与l1相切的切点为P(2a,2a),求圆C的方程.22. (10分)函数在它的某一个周期内的单调减区间是 .(1)求的解析式;(2)将的图象先向右平移个单位,再将图象上所有点的横坐标变为原来的(纵坐标不变),所得到的图象对应的函数记为,若对于任意的,不等式恒成立,求实数的取值范围.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共13分)13-1、14-1、15-1、16-1、16-2、三、解答题 (共6题;共60分) 17-1、17-2、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、。

青海省高一下学期数学期末考试试卷 A卷(测试)

青海省高一下学期数学期末考试试卷 A卷(测试)

青海省高一下学期数学期末考试试卷 A卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)集合A={-1,0,1},B={y|y=cosx,x∈A},则A B=()A . {0}B . {1}C . {0,1}D . {-1,0,1}2. (2分)函数f(x)= 的最小正周期为()A .B .C . 2D . 43. (2分) (2018高二上·东至期末) 已知直线与直线垂直,则的值为()A . 0B .C . 1D .4. (2分)(2018高二上·湖滨月考) 设△ 的内角所对的边分别为,若,则△ 的形状为()A . 锐角三角形B . 直角三角形C . 等边三角形D . 等腰三角形5. (2分)等差数列的前n项和为,且,,则公差等于()A . 3B .C . 1D . -26. (2分)(2012·辽宁理) 设变量x,y满足,则2x+3y的最大值为()A . 20B . 35C . 45D . 557. (2分)在△ABC中,A=30°,B=60°,C=90°,那么三边之比a:b:c等于()A . 1:2:3B . 3:2:1C . 1::28. (2分)已知向量均为单位向量,若它们的夹角,则||等于()A .B .C .D . 49. (2分)若c osθ<0,且cosθ-sinθ=,那么θ是()A . 第一象限角B . 第二象限角C . 第三象限角D . 第四象限角10. (2分) (2019高一上·沈阳月考) 要得到函数的图象,只需将函数的图象上所有的点的()A . 横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动个单位长度B . 横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动个单位长度C . 横坐标缩短到原来的倍(纵坐标不变),再向左平行移动个单位长度D . 横坐标缩短到原来的倍(纵坐标不变),再向右平行移动个单位长度11. (2分)巳知点(x,y)在ΔABC所包围的阴影区域内(包含边界),若B(3,)是使得z=ax-y取得最大值的最优解,则实数a的取值范围为()B .C .D .12. (2分) (2016高一下·临川期中) 已知数列{an}满足:,对于任意的n∈N* ,,则a999﹣a888=()A .B .C .D .二、填空题 (共4题;共4分)13. (1分) (2017高一下·泰州期中) 两条平行线l1:3x+4y=2与l2:ax+4y=7的距离为________.14. (1分)某A地位于B地正西方向5 km处,C地位于A地正北方向5 km处,则C地相对于B地的位移是________.15. (1分)(2017·北京) 若等差数列{an}和等比数列{bn}满足a1=b1=﹣1,a4=b4=8,则 =________.16. (1分)海上一观测站测得方位角240°的方向上有一艘停止待修的商船,在商船的正东方有一艘海盗船正向它靠近,速度为每小时90海里.此时海盗船距观测站10 海里,20分钟后测得海盗船距观测站20海里,再过________分钟,海盗船即可到达商船.三、解答题 (共6题;共50分)17. (10分) (2018高二上·福州期末) 在中,角A,B,C的对边分别为(1)求的值;(2)若的面积.18. (5分) (2017高一上·密云期末) 已知向量,.(Ⅰ)若,共线,求x的值;(Ⅱ)若⊥ ,求x的值;(Ⅲ)当x=2时,求与夹角θ的余弦值.19. (15分) (2016高一下·南沙期末) 已知正数数列{an}的前n项和为Sn ,点P(an , Sn)在函数f (x)= x2+ x上,已知b1=1,3bn﹣2bn﹣1=0(n≥2,n∈N*),(1)求数列{an}的通项公式;(2)若cn=anbn,求数列{cn}的前n项和Tn;(3)是否存在整数m,M,使得m<Tn<M对任意正整数n恒成立,且M﹣m=9,说明理由.20. (10分) (2016高三上·翔安期中) 已知,其中向量(x∈R),(1)求函数y=f(x)的单调递增区间;(2)在△ABC中,角A、B、C的对边分别为a、b、c,已知f (A)=2,a= ,b= ,求边长c的值.21. (5分)已知函数.(Ⅰ)求的最小正周期和单调增区间;(Ⅱ)若为的一个零点,求的值.22. (5分)(2017·顺义模拟) 设数列{an}的前n项和为Sn .若对∀n∈N* ,总∃k∈N* ,使得Sn=ak ,则称数列{an}是“G数列”.(Ⅰ)若数列{an}是等差数列,其首项a1=1,公差d=﹣1.证明:数列{an}是“G数列”;(Ⅱ)若数列{an}的前n项和Sn=3n(n∈N*),判断数列{an}是否为“G数列”,并说明理由;(Ⅲ)证明:对任意的等差数列{an},总存在两个“G数列”{bn}和{cn},使得an=bn+cn(n∈N*)成立.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共50分)17-1、17-2、18-1、19-1、19-2、19-3、20-1、20-2、21-1、22-1、。

青海西宁市数学高一下期末经典练习卷(含解析)

青海西宁市数学高一下期末经典练习卷(含解析)

一、选择题1.(0分)[ID :12727]设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S = A .5 B .7 C .9 D .112.(0分)[ID :12721]已知扇形的周长是12,面积是8,则扇形的中心角的弧度数是( ) A .1B .4C .1或4D .2或43.(0分)[ID :12716]已知集合{}220A x x x =-->,则A =RA .{}12x x -<<B .{}12x x -≤≤C .}{}{|12x x x x <-⋃D .}{}{|1|2x x x x ≤-⋃≥4.(0分)[ID :12714]在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是 A .甲地:总体均值为3,中位数为4 B .乙地:总体均值为1,总体方差大于0 C .丙地:中位数为2,众数为3D .丁地:总体均值为2,总体方差为35.(0分)[ID :12705]已知()()()sin cos ,02f x x x πωϕωϕωϕ=+++>,<,()f x 是奇函数,直线y =与函数()f x 的图象的两个相邻交点的横坐标之差的绝对值为2π,则( ) A .()f x 在3,88ππ⎛⎫⎪⎝⎭上单调递减 B .()f x 在0,4π⎛⎫⎪⎝⎭上单调递减 C .()f x 在0,4π⎛⎫⎪⎝⎭上单调递增 D .()f x 在3,88ππ⎛⎫⎪⎝⎭上单调递增 6.(0分)[ID :12685]已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x =f +x -,若(1)2f =,则(1)(2)f +f (3)(2020)f f +++=( )A .50B .2C .0D .50-7.(0分)[ID :12631]设函数f (x )=cos (x +3π),则下列结论错误的是 A .f(x)的一个周期为−2π B .y=f(x)的图像关于直线x=83π对称 C .f(x+π)的一个零点为x=6πD .f(x)在(2π,π)单调递减 8.(0分)[ID :12667]若函数()sin cos f x x x ωω=-(0)>ω在,22ππ⎛⎫- ⎪⎝⎭上单调递增,则ω的取值不可能为( )A .14B .15C .12D .349.(0分)[ID :12660]函数()lg ||f x x x =的图象可能是( )A .B .C .D .10.(0分)[ID :12645]如图,点N 为正方形ABCD 的中心,ECD ∆为正三角形,平面ECD ⊥平面,ABCD M 是线段ED 的中点,则( )A .BM EN =,且直线,BM EN 是相交直线B .BM EN ≠,且直线,BM EN 是相交直线C .BM EN =,且直线,BM EN 是异面直线D .BM EN ≠,且直线,BM EN 是异面直线11.(0分)[ID :12639]在ABC ∆中,内角,,A B C 所对的边分别是,,a b c .已知5a =,7b =,8c =,则A C +=A .90︒B .120︒C .135︒D .150︒12.(0分)[ID :12719]如图,在ABC 中,90BAC ︒∠=,AD 是边BC 上的高,PA ⊥平面ABC ,则图中直角三角形的个数是( )A .5B .6C .8D .1013.(0分)[ID :12681]若,αβ均为锐角,25sin α=()3sin 5αβ+=,则cos β=A B .25C 或25D .25-14.(0分)[ID :12657]函数()(1)lg(1)35f x x x x =-+--的零点个数为( ) A .3B .2C .1D .015.(0分)[ID :12652]将直线2x -y +λ=0沿x 轴向左平移1个单位,所得直线与圆x 2+y 2+2x -4y =0相切,则实数λ的值为( ) A .-3或7 B .-2或8 C .0或10D .1或11二、填空题16.(0分)[ID :12827]在直角ABC ∆中,三条边恰好为三个连续的自然数,以三个顶点为圆心的扇形的半径为1,若在ABC ∆中随机地选取m 个点,其中有n 个点正好在扇形里面,则用随机模拟的方法得到的圆周率π的近似值为__________.(答案用m ,n 表示) 17.(0分)[ID :12822]已知两个正数,x y 满足4x y +=,则使不等式14m x y+≥恒成立的实数m 的范围是__________18.(0分)[ID :12819]设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =__________.19.(0分)[ID :12803]已知函数())ln1f x x =+,()4f a =,则()f a -=________.20.(0分)[ID :12794]若21cos 34πα⎛⎫-= ⎪⎝⎭,则sin 26πα⎛⎫+= ⎪⎝⎭________. 21.(0分)[ID :12787]已知数列{}n a 为正项的递增等比数列,1582a a +=,2481a a ⋅=,记数列2n a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,则使不等式12019113n T ->成立的最大正整数n 的值是_______.22.(0分)[ID :12755]已知点()M a b ,在直线3415x y +=_______.23.(0分)[ID :12768]设0x >,0y >,24x y +=,则(1)(21)x y xy++的最小值为__________.24.(0分)[ID :12752]已知复数z x yi =+,且2z -yx的最大值为__________.25.(0分)[ID :12807]抛物线214y x =-上的动点M 到两定点(0,1)(1,3)--、的距离之和的最小值为__________.三、解答题26.(0分)[ID :12918]已知函数f (x )是定义在R 上的偶函数,且当x ≥0时,f (x )=x 2﹣2x .(1)求f (0)及f (f (1))的值; (2)求函数f (x )的解析式;(3)若关于x 的方程f (x )﹣m =0有四个不同的实数解,求实数m 的取值范围, 27.(0分)[ID :12889]已知:a b c 、、是同一平面内的三个向量,其中()1,2a = (1)若25c =,且//c a ,求c 的坐标; (2)若52b =,且2a b +与2a b -垂直,求a 与b 的夹角θ. (3)若()1,1b =,且a 与a b λ+的夹角为锐角,求实数λ的取值范围. 28.(0分)[ID :12875]已知向量(3,2)a =-,(2,1)=b ,(3,1)c =-,,m t ∈R . (1)求||a tb +的最小值及相应的t 的值; (2)若a mb -与c 共线,求实数m .29.(0分)[ID :12847]在ABC 中,a , b ,c 分别是角A , B ,C 的对边,3cos 5B =,21AB BC ⋅=- . (1)求ABC 的面积; (2)若7a = ,求角C .30.(0分)[ID :12838]我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x (吨)、一位居民的月用水量不超过x 的部分按平价收费,超出x 的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[)[)0,0.5,0.5,1,...,[)4,4.5分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a 的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由; (3)若该市政府希望使85%的居民每月的用水量不超过标准x (吨),估计x 的值,并说明理由.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.A2.C3.B4.D5.A6.C7.D8.D9.D10.B11.B12.C13.B14.B15.A二、填空题16.【解析】【分析】【详解】由题意得的三边分别为则由可得所以三角数三边分别为因为所以三个半径为的扇形面积之和为由几何体概型概率计算公式可知故答案为【方法点睛】本题題主要考查面积型的几何概型属于中档题解决17.【解析】【分析】由题意将代入进行恒等变形和拆项后再利用基本不等式求出它的最小值根据不等式恒成立求出m的范围【详解】由题意知两个正数xy满足则当时取等号;的最小值是不等式恒成立故答案为【点睛】本题考查18.【解析】原式为整理为:即即数列是以-1为首项-1为公差的等差的数列所以即【点睛】这类型题使用的公式是一般条件是若是消就需当时构造两式相减再变形求解;若是消就需在原式将变形为:再利用递推求解通项公式19.【解析】【分析】发现计算可得结果【详解】因为且则故答案为-2【点睛】本题主要考查函数的性质由函数解析式计算发现是关键属于中档题20.【解析】【分析】根据诱导公式将三角函数式化简可得再由诱导公式及余弦的二倍角公式化简即可得解【详解】因为化简可得即由诱导公式化简得而由余弦的二倍角公式可知故答案为:【点睛】本题考查了诱导公式在三角函数21.6【解析】【分析】设等比数列{an}的公比q由于是正项的递增等比数列可得q>1由a1+a5=82a2•a4=81=a1a5∴a1a5是一元二次方程x2﹣82x+81=0的两个实数根解得a1a5利用通22.3【解析】【分析】由题意可知表示点到点的距离再由点到直线距离公式即可得出结果【详解】可以理解为点到点的距离又∵点在直线上∴的最小值等于点到直线的距离且【点睛】本题主要考查点到直线的距离公式的应用属于23.【解析】【分析】把分子展开化为再利用基本不等式求最值【详解】由得得等号当且仅当即时成立故所求的最小值为【点睛】使用基本不等式求最值时一定要验证等号是否能够成立24.【解析】【分析】根据复数z的几何意义以及的几何意义由图象得出最大值【详解】复数且复数z的几何意义是复平面内以点为圆心为半径的圆的几何意义是圆上的点与坐标原点连线的斜率由图可知:即的最大值为故答案为:25.4【解析】【分析】【详解】由题意得交点设作与准线垂直垂足为作与准线垂直垂足为则三、解答题26.27.28.29. 30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题 1.A 解析:A 【解析】1353333,1a a a a a ++===,5153355()25522S a a a a =+=⨯==,选A. 2.C解析:C 【解析】设扇形的半径为r ,弧长为 l ,则121282l r S lr +===,, ∴解得28r l ==, 或44r l ==,41lrα==或, 故选C .3.B解析:B 【解析】分析:首先利用一元二次不等式的解法,求出220x x -->的解集,从而求得集合A ,之后根据集合补集中元素的特征,求得结果. 详解:解不等式220x x -->得12x x -或, 所以{}|12A x x x =<->或,所以可以求得{}|12R C A x x =-≤≤,故选B.点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.4.D解析:D 【解析】试题分析:由于甲地总体均值为,中位数为,即中间两个数(第天)人数的平均数为,因此后面的人数可以大于,故甲地不符合.乙地中总体均值为,因此这天的感染人数总数为,又由于方差大于,故这天中不可能每天都是,可以有一天大于,故乙地不符合,丙地中中位数为,众数为,出现的最多,并且可以出现,故丙地不符合,故丁地符合.考点:众数、中位数、平均数、方差5.A解析:A 【解析】 【分析】首先整理函数的解析式为()24f x x πωϕ⎛⎫=++ ⎪⎝⎭,由函数为奇函数可得4πϕ=-,由最小正周期公式可得4ω=,结合三角函数的性质考查函数在给定区间的单调性即可. 【详解】由函数的解析式可得:()24f x x πωϕ⎛⎫=++ ⎪⎝⎭,函数为奇函数,则当0x =时:()4k k Z πϕπ+=∈.令0k =可得4πϕ=-.因为直线2y =与函数()f x 的图像的两个相邻交点的横坐标之差的绝对值为2π结合最小正周期公式可得:22ππω=,解得:4ω=.故函数的解析式为:()24f x x =. 当3,88x ππ⎛⎫∈⎪⎝⎭时,34,22x ππ⎛⎫∈ ⎪⎝⎭,函数在所给区间内单调递减; 当0,4x π⎛⎫∈ ⎪⎝⎭时,()40,x π∈,函数在所给区间内不具有单调性; 据此可知,只有选项A 的说法正确. 故选A . 【点睛】本题主要考查辅助角公式的应用,考查了三角函数的周期性、单调性,三角函数解析式的求解等知识,意在考查学生的转化能力和计算求解能力.6.C解析:C 【解析】 【分析】利用()f x 是定义域为(,)-∞+∞的奇函数可得:()()f x f x -=-且()00f =,结合(1)(1)f x =f +x -可得:函数()f x 的周期为4;再利用赋值法可求得:()20f =,()32f =-,()40f =,问题得解.【详解】因为()f x 是定义域为(,)-∞+∞的奇函数, 所以()()f x f x -=-且()00f = 又(1)(1)f x =f +x -所以()()()()()21111f x f x f x f x f x ⎡⎤⎡⎤+=++=-+=-=-⎣⎦⎣⎦ 所以()()()()()4222f x f x f x f x f x ⎡⎤⎡⎤+=++=-+=--=⎣⎦⎣⎦ 所以函数()f x 的周期为4,在(1)(1)f x =f +x -中,令1x =,可得:()()200f f ==在(1)(1)f x =f +x -中,令2x =,可得:()()()3112f f f =-=-=- 在(1)(1)f x =f +x -中,令3x =,可得:()()()4220f f f =-=-= 所以(1)(2)f +f ()()()()2020(3)(2020)12344f f f f f f ⎡⎤+++=⨯+++⎣⎦ 50500=⨯=故选C 【点睛】本题主要考查了奇函数的性质及函数的周期性应用,还考查了赋值法及计算能力、分析能力,属于中档题.7.D解析:D 【解析】f (x )的最小正周期为2π,易知A 正确; f 8π3⎛⎫⎪⎝⎭=cos 8ππ33⎛⎫+ ⎪⎝⎭=cos3π=-1,为f (x )的最小值,故B 正确; ∵f (x +π)=cos ππ3x ⎛⎫++ ⎪⎝⎭=-cos π3x ⎛⎫+ ⎪⎝⎭,∴f ππ6⎛⎫+ ⎪⎝⎭=-cos ππ63⎛⎫+ ⎪⎝⎭=-cos 2π=0,故C 正确; 由于f 2π3⎛⎫⎪⎝⎭=cos 2ππ33⎛⎫+ ⎪⎝⎭=cosπ=-1,为f (x )的最小值,故f (x )在,2ππ⎛⎫ ⎪⎝⎭上不单调,故D 错误. 故选D.8.D解析:D 【解析】∵()sin cos (0)4f x x x x πωωωω⎛⎫=-=-> ⎪⎝⎭∴令22,242k x k k Z ππππωπ-+≤-≤+∈,即232,44k k x k Z ππππωωωω-+≤≤+∈ ∵()sin cos (0)f x x x ωωω=->在,22ππ⎛⎫-⎪⎝⎭上单调递增 ∴42ππω-≤-且342ππω≥ ∴102ω<≤故选D. 9.D 解析:D 【解析】 【分析】分析函数()y f x =的定义域、奇偶性及其在()0,1上的函数值符号,可得出结论. 【详解】函数()lg f x x x =的定义域为{}0x x ≠,定义域关于原点对称,()()lg lg f x x x x x f x -=--=-=-,函数()y f x =为奇函数,排除A 、C 选项;当01x <<时,lg 0x <,此时()lg 0f x x x =<,排除B 选项. 故选:D. 【点睛】本题考查由函数的解析式选择函数图象,一般分析函数的定义域、奇偶性、单调性、零点以及函数值符号,考查推理能力,属于中等题.10.B解析:B 【解析】 【分析】利用垂直关系,再结合勾股定理进而解决问题. 【详解】如图所示, 作EO CD ⊥于O ,连接ON ,过M 作MF OD ⊥于F . 连BF ,平面CDE ⊥平面ABCD .,EO CD EO ⊥⊂平面CDE ,EO ∴⊥平面ABCD ,MF ⊥平面ABCD ,MFB ∴∆与EON ∆均为直角三角形.设正方形边长为2,易知3,12EO ON EN ===, 35,,722MF BF BM ==∴=.BM EN ∴≠,故选B . 【点睛】本题考查空间想象能力和计算能力, 解答本题的关键是构造直角三角性.11.B解析:B【解析】 【分析】 由已知三边,利用余弦定理可得1cos 2B =,结合b c <,B 为锐角,可得B ,利用三角形内角和定理即可求A C +的值.【详解】在ABC ∆中,5a =,7b =,8c =,∴由余弦定理可得:2222564491cos 22582a cb B ac +-+-===⨯⨯, b c <,故B 为锐角,可得60B =︒,18060120A C ∴+=︒-︒=︒,故选B .【点睛】本题主要考查利用余弦定理解三角形以及三角形内角和定理的应用.12.C解析:C【解析】【分析】根据线面垂直得出一些相交直线垂直,以及找出题中一些已知的相交直线垂直,由这些条件找出图中的直角三角形.【详解】①PA ⊥平面ABC ,,,,PA AB PA AD PA AC PAB ∴⊥⊥⊥∴∆,,PAD PAC ∆∆都是直角三角形; ②90,BAC ABC ︒∠=∴是直角三角形; ③,,AD BC ABD ACD ⊥∴∆∆是直角三角形;④由,PA BC AD BC ⊥⊥得BC ⊥平面PAD ,可知:,,BC PD PBD PCD ⊥∴∆∆也是直角三角形.综上可知:直角三角形的个数是8个,故选C .【点睛】本题考查直角三角形个数的确定,考查相交直线垂直,解题时可以充分利用直线与平面垂直的性质得到,考查推理能力,属于中等题.13.B解析:B【解析】【分析】利用角的等量代换,β=α+β-α,只要求出α的余弦,α+β的余弦,利用复合角余弦公式展开求之.【详解】∵α为锐角,52sin 52α=s ,∴α>45°且55cos α= , ∵()3sin 5αβ+=,且132252< ,2παβπ∴+<<, ∴45cosαβ+=-() , 则cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα453252555=-+= 故选B.【点睛】本题考查两角和与差的正弦、余弦函数公式,以及同角三角函数间的基本关系,熟练掌握公式是解本题的关键.14.B解析:B【解析】【分析】可采用构造函数形式,令()()()35lg 1,1x h x x g x x +=+=-,采用数形结合法即可求解 【详解】由题可知,1x >-,当1x =时,()80f x =-≠,令358()(1)lg(1)350lg(1)311x f x x x x x x x +=-+--=⇒+==+--, 令()()()35lg 1,1x h x x g x x +=+=-,画出函数图像,如图:则两函数图像有两交点,故函数()(1)lg(1)35f x x x x =-+--的零点个数为2个 故选:B【点睛】本题考查函数零点个数的求解,数形结合思想,属于中档题15.A解析:A【解析】试题分析:根据直线平移的规律,由直线2x ﹣y+λ=0沿x 轴向左平移1个单位得到平移后直线的方程,然后因为此直线与圆相切得到圆心到直线的距离等于半径,利用点到直线的距离公式列出关于λ的方程,求出方程的解即可得到λ的值.解:把圆的方程化为标准式方程得(x+1)2+(y ﹣2)2=5,圆心坐标为(﹣1,2),半径为,直线2x ﹣y+λ=0沿x 轴向左平移1个单位后所得的直线方程为2(x+1)﹣y+λ=0, 因为该直线与圆相切,则圆心(﹣1,2)到直线的距离d==r=,化简得|λ﹣2|=5,即λ﹣2=5或λ﹣2=﹣5,解得λ=﹣3或7故选A考点:直线与圆的位置关系.二、填空题16.【解析】【分析】【详解】由题意得的三边分别为则由可得所以三角数三边分别为因为所以三个半径为的扇形面积之和为由几何体概型概率计算公式可知故答案为【方法点睛】本题題主要考查面积型的几何概型属于中档题解决 解析:12n m【解析】【分析】【详解】由题意得ABC ∆的三边分别为,1,2x x x ++ 则由()()22221x x x +=++ 可得3n = ,所以,三角数三边分别为3,4,5,因为A B C π∠+∠+∠= ,所以三个半径为1 的扇形面积之和为211=22ππ⨯⨯ ,由几何体概型概率计算公式可知1122,1342n n m m ππ=∴=⨯⨯,故答案为12n m. 【方法点睛】本题題主要考查“面积型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本裏件对应的区域测度把握不准导致错误 ;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误.17.【解析】【分析】由题意将代入进行恒等变形和拆项后再利用基本不等式求出它的最小值根据不等式恒成立求出m 的范围【详解】由题意知两个正数xy 满足则当时取等号;的最小值是不等式恒成立故答案为【点睛】本题考查 解析:94m ≤【解析】【分析】由题意将4x y +=代入14x y+进行恒等变形和拆项后,再利用基本不等式求出它的最小值,根据不等式恒成立求出m 的范围.【详解】由题意知两个正数x ,y 满足4x y +=, 则14559144444x y x y y x x y x y x y +++=+=++≥+=,当4y x x y=时取等号;14x y ∴+的最小值是94, 不等式14m x y +≥恒成立,94m ∴≤. 故答案为94m ≤. 【点睛】本题考查了利用基本不等式求最值和恒成立问题,利用条件进行整体代换和合理拆项再用基本不等式求最值,注意一正二定三相等的验证.18.【解析】原式为整理为:即即数列是以-1为首项-1为公差的等差的数列所以即【点睛】这类型题使用的公式是一般条件是若是消就需当时构造两式相减再变形求解;若是消就需在原式将变形为:再利用递推求解通项公式 解析:1n- 【解析】原式为1111n n n n n n n a S S S S S S ++++=⇔-=,整理为:1111n n S S +-= ,即1111n n S S +-=-,即数列1n S ⎧⎫⎨⎬⎩⎭是以-1为首项,-1为公差的等差的数列,所以()()1111n n n S =-+--=- ,即1n S n=- . 【点睛】这类型题使用的公式是11{n n n S a S S -=- 12n n =≥ ,一般条件是()n n S f a = ,若是消n S ,就需当2n ≥ 时构造()11n n S f a --= ,两式相减1n n n S S a --= ,再变形求解;若是消n a ,就需在原式将n a 变形为:1n n n a S S -=- ,再利用递推求解通项公式. 19.【解析】【分析】发现计算可得结果【详解】因为且则故答案为-2【点睛】本题主要考查函数的性质由函数解析式计算发现是关键属于中档题 解析:2-【解析】【分析】发现()()f x f x 2+-=,计算可得结果.【详解】因为()()))()22f x f x ln x 1ln x 1ln 122x x +-=+++=+-+=, ()()f a f a 2∴+-=,且()f a 4=,则()f a 2-=-.故答案为-2【点睛】本题主要考查函数的性质,由函数解析式,计算发现()()f x f x 2+-=是关键,属于中档题.20.【解析】【分析】根据诱导公式将三角函数式化简可得再由诱导公式及余弦的二倍角公式化简即可得解【详解】因为化简可得即由诱导公式化简得而由余弦的二倍角公式可知故答案为:【点睛】本题考查了诱导公式在三角函数 解析:78【解析】【分析】根据诱导公式,将三角函数式21cos 34πα⎛⎫-= ⎪⎝⎭化简可得1sin 64πα⎛⎫-= ⎪⎝⎭,再由诱导公式及余弦的二倍角公式,化简sin 26πα⎛⎫+⎪⎝⎭即可得解. 【详解】 因为21cos 34πα⎛⎫-= ⎪⎝⎭ 化简可得1cos 624ππα⎛⎫--= ⎪⎝⎭,即1cos 264ππα⎡⎤⎛⎫--= ⎪⎢⎥⎝⎭⎣⎦ 由诱导公式化简得1sin 64πα⎛⎫-= ⎪⎝⎭ 而sin 26πα⎛⎫+ ⎪⎝⎭ cos 226ππα⎛⎫=-- ⎪⎝⎭ cos 2cos 233ππαα⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭ cos 26πα⎛⎫=- ⎪⎝⎭ 由余弦的二倍角公式可知cos 26πα⎛⎫- ⎪⎝⎭ 212sin 6πα⎛⎫=-- ⎪⎝⎭ 2171248⎛⎫=-⨯= ⎪⎝⎭故答案为:78【点睛】 本题考查了诱导公式在三角函数化简中的应用,余弦二倍角公式的简单应用,属于中档题. 21.6【解析】【分析】设等比数列{an}的公比q 由于是正项的递增等比数列可得q >1由a1+a5=82a2•a4=81=a1a5∴a1a5是一元二次方程x2﹣82x+81=0的两个实数根解得a1a5利用通解析:6【解析】【分析】设等比数列{a n }的公比q ,由于是正项的递增等比数列,可得q >1.由a 1+a 5=82,a 2•a 4=81=a 1a 5,∴a 1,a 5,是一元二次方程x 2﹣82x+81=0的两个实数根,解得a 1,a 5,利用通项公式可得q ,a n .利用等比数列的求和公式可得数列{2na }的前n 项和为T n .代入不等式2019|13T n ﹣1|>1,化简即可得出. 【详解】 数列{}n a 为正项的递增等比数列,1582a a +=,a 2•a 4=81=a 1a 5,即15158281a a a a +=⎧⎨⋅=⎩解得15181a a =⎧⎨=⎩,则公比3q =,∴13n n a -=, 则2122221333n n T -=++++ 11132311313n n -⎛⎫=⨯=- ⎪⎝⎭-, ∴12019113n T ->,即1201913n ⨯>,得32019n <,此时正整数n 的最大值为6. 故答案为6.【点睛】本题考查了等比数列的通项公式与求和公式、一元二次方程的解法、不等式的解法,考查了推理能力与计算能力,属于中档题.22.3【解析】【分析】由题意可知表示点到点的距离再由点到直线距离公式即可得出结果【详解】可以理解为点到点的距离又∵点在直线上∴的最小值等于点到直线的距离且【点睛】本题主要考查点到直线的距离公式的应用属于 解析:3【解析】【分析】()0,0到点(),a b 的距离,再由点到直线距离公式即可得出结果.【详解】 22a b +可以理解为点()0,0到点(),a b 的距离,又∵点(),M a b 在直线:3425l x y +=上,∴22a b +的最小值等于点()0,0到直线34150x y +-=的距离,且22304015334d ⨯+⨯-==+.【点睛】本题主要考查点到直线的距离公式的应用,属于基础题型.23.【解析】【分析】把分子展开化为再利用基本不等式求最值【详解】由得得等号当且仅当即时成立故所求的最小值为【点睛】使用基本不等式求最值时一定要验证等号是否能够成立解析:92. 【解析】【分析】 把分子展开化为(1)(21)2212552x y xy x y xy xy xy xy xy++++++===+,再利用基本不等式求最值.【详解】由24x y +=,得2422x y xy +=≥,得2xy ≤ (1)(21)221255592222x y xy x y xy xy xy xy xy ++++++===+≥+=, 等号当且仅当2x y =,即2,1x y ==时成立.故所求的最小值为92. 【点睛】使用基本不等式求最值时一定要验证等号是否能够成立. 24.【解析】【分析】根据复数z 的几何意义以及的几何意义由图象得出最大值【详解】复数且复数z 的几何意义是复平面内以点为圆心为半径的圆的几何意义是圆上的点与坐标原点连线的斜率由图可知:即的最大值为故答案为: 解析:【解析】【分析】根据复数z 的几何意义以及y x的几何意义,由图象得出最大值. 【详解】复数z x yi =+且23z -=,复数z 的几何意义是复平面内以点(2,0)为圆心,3为半径的圆22(2)3x y -+=.y x的几何意义是圆上的点与坐标原点连线的斜率 由图可知:max 331y x ⎛⎫==⎪⎝⎭ 即y x3 3【点睛】本题主要考查了复数的几何意义的应用,属于中档题.25.4【解析】【分析】【详解】由题意得交点设作与准线垂直垂足为作与准线垂直垂足为则解析:4【解析】【分析】【详解】由题意得交点(0,1)F - ,设(1,3)A - ,作AN 与准线垂直,垂足为N ,作MH 与准线垂直,垂足为H ,则314MA MF MA MH AN +=+≥=+=三、解答题26.(1)f (0)=0,f (1)=﹣1(2)()222,02,0x x x f x x x x ⎧-≥=⎨+<⎩(3)(﹣1,0) 【解析】【分析】(1)根据题意,由函数的解析式,将x =0代入函数解析式即可得f (0)的值, 同理可得f (1)的值,利用函数的奇偶性分析可得f (f (1))的值;(2)设x <0,则﹣x >0,由函数的解析式分析f (﹣x )的解析式,进而由函数的奇偶性分析可得答案;(3)若方程f (x )﹣m =0有四个不同的实数解,则函数y =f (x )与直线y =m 有4个交点,作出函数f (x )的图象,由数形结合法分析即可得答案.【详解】(1)根据题意,当x ≥0时,f (x )=x 2﹣2x ;则f (0)=0,f (1)=1﹣2=﹣1,又由函数f (x )为偶函数,则f (1)=f (﹣1)=﹣1,则f (f (1))=f (﹣1)=﹣1;(2)设x <0,则﹣x >0,则有f (﹣x )=(﹣x )2﹣2(﹣x )=x 2+2x ,又由函数f (x )为偶函数,则f (x )=f (﹣x )=x 2+2x ,则当x <0时,f (x )=x 2+2x ,∴()222,02,0x x x f x x x x ⎧-≥=⎨+<⎩(3)若方程f (x )﹣m =0有四个不同的实数解,则函数y =f (x )与直线y =m 有4个交点,而y =f (x )的图象如图:分析可得﹣1<m <0;故m 的取值范围是(﹣1,0).【点睛】本题考查偶函数的性质以及函数的图象,涉及方程的根与函数图象的关系,注意利用数形结合法分析与应用,是中档题.27.(1)(2,4)或(-2,-4) (2)π (3)()5,00,3⎛⎫-⋃+∞ ⎪⎝⎭【解析】【分析】(1)设(,)c x y =,根据条件列方程组解出即可;(2)令(2)(2)0a b a b +⋅-=求出a b ⋅,代入夹角公式计算;(3)利用()0a a b λ+>⋅,且a 与a λb +不同向共线,列不等式求出实数λ的取值范围.【详解】解:设(,)c x y =, ∵25c =,且//c a ,∴222020y x x y -=⎧⎨+=⎩,解得24x y =⎧⎨=⎩或24x y =-⎧⎨=-⎩, ∴(2,4)c =或(2,4)c =--;(2)∵2a b +与2a b -垂直,∴(2)(2)0a b a b +⋅-=,即222320a a b b +⋅-=,∴52a b ⋅=-, ∴52cos 1||||5a b a b θ-⋅===-⋅,∴a 与b 的夹角为π; (3)a 与a λb +的夹角为锐角则()0a a b λ+>⋅,且a 与a λb +不同向共线, ()25(12)0a a a a b b λλλ+==+>∴⋅++⋅, 解得:53λ>-, 若存在t ,使()a b a t λ=+,0t > ()()1,21,1(1,2)a b λλλλ+=+=++则()1,2(1,2)t λλ=++,122t t t t λλ+=⎧∴⎨+=⎩,解得:10t λ=⎧⎨=⎩,所以53λ>-且0λ≠, 实数λ的取值范围是()5,00,3⎛⎫-⋃+∞ ⎪⎝⎭.【点睛】本题考查了平面向量的数量积运算,利用数量积研究夹角,注意夹角为锐角,数量积大于零,但不能同向共线,夹角为钝角,数量积小于零,但不能反向共线,本题是中档题. 28.(1)45t =2)35. 【解析】【分析】(1)利用向量的模长公式计算出||a tb +的表达式然后求最值.(2)先求出a mb -的坐标,利用向量平行的公式得到关于m 的方程,可解得答案.【详解】(1)∵(23,2)a tb t t +=-+,∴||(2a tb t +=-==当45t =时,||a tb +. (2)(32,2)a mb m m -=---.∵a mb -与c 共线,∴32630m m +-+=,则35m =. 【点睛】本题考查向量的模长的计算以及其最值和根据向量平行求参数的值,属于基础题. 29.(1)14;(2) 45C =︒. 【解析】 试题分析:(1)先求出ac 的值,再由同角三角函数基本关系式求出sinB ,从而求出三角形的面积即可;(2)根据余弦定理即正弦定理计算即可.试题解析:(1)∵21AB BC ⋅=- ,21BA BC ⋅= ,cos arccos 21BA BC BA BC B B ⋅=⋅⋅==∴35ac = ,∵3cos 5B = ,∴4sin 5B = ,∴114sin 3514225ABC S ac B ==⨯⨯= (2)35ac = ,7a = ,∴5c =由余弦定理得,2222cos 32b a c ac B =+-=∴b =,由正弦定理:sin sin c b C B = ,∴4sin sin 5c C B b === ∵c b < 且B 为锐角,∴C 一定是锐角,∴45C =︒30.(1)0.3;(2)3.6万;(3)2.9.【解析】【分析】【详解】试题分析:本题主要考查频率分布直方图、频率、频数的计算等基础知识,考查学生的分析问题、解决问题的能力. 第(1)问,由高×组距=频率,计算每组的频率,根据所有频率之和为1,计算出a 的值;第(2)问,利用高×组距=频率,先计算出每人月均用水量不低于3吨的频率,再利用频率×样本容量=频数,计算所求人数;第(3)问,将前6组的频率之和与前5组的频率之和进行比较,得出2.5≤x<3,再估计x 的值.试题解析:(1)由频率分布直方图知,月均用水量在[0,0.5)中的频率为0.08×0.5=0.04, 同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5)中的频率分别为0.08,0.20,0.26,0.06,0.04,0.02.由0.04+0.08+0.5×a+0.20+0.26+0.5×a+0.06+0.04+0.02=1, 解得a=0.30.(2)由(1),100位居民每人月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12. 由以上样本的频率分布,可以估计全市30万居民中月均用水量不低于3吨的人数为 300 000×0.12="36" 000.(3)因为前6组的频率之和为0.04+0.08+0.15+0.20+0.26+0.15=0.88>0.85,而前5组的频率之和为0.04+0.08+0.15+0.20+0.26=0.73<0.85,所以2.5≤x<3.由0.3×(x –2.5)=0.85–0.73, 解得x=2.9.所以,估计月用水量标准为2.9吨时,85%的居民每月的用水量不超过标准.【考点】频率分布直方图【名师点睛】本题主要考查频率分布直方图、频率、频数的计算公式等基础知识,考查学生的分析问题、解决问题的能力.在频率分布直方图中,第n 个小矩形的面积就是相应组的频率,所有小矩形的面积之和为1,这是解题的关键,也是识图的基础.。

青海省高一下学期数学期末教学质量检查试卷B卷

青海省高一下学期数学期末教学质量检查试卷B卷
(2) 预计在今后的销售中,销售量与销售单价仍然服从(1)中的关系,若该种机器配件的成本是2.5元/件,那么该配件的销售单价应定为多少元才能获得最大利润?
参考公式:回归直线方程 =b +a,其中b= .
参考数据: =392, =502.5.
20. (2分) (2019高一上·广东月) 已知函数
(1) 将函数 化简成 的形式,并指出 的最小正周期、振幅、初相和单调递增区间;
②某校高中三个年级共有 人,其中高一 人、高二 人、高三 人,为了了解学生对数学的建议,拟抽取一个容量为 的样本;
③某剧场有 排,每排有 个座位,在一次报告中恰好坐满了听众,报告结束后,为了了解听众意见,需要请 名听众进行座谈.
A . 简单随机抽样,系统抽样,分层抽样;
B . 分层抽样,系统抽样,简单随机抽样;
A . 2
B . 4
C . 1
D . 8
3. (1分) (2018高二上·成都月考) 已知点 ,点 是圆 上任意一点,则 面积的最大值是( )
A . 6
B . 8
C .
D .
4. (1分) (2019高二上·内蒙古月考) 完成下列抽样调查,较为合理的抽样方法依次是( )
①从 件产品中抽取 件进行检查;
正确命题的代号是________(写出所有正确命题的代号).
16. (1分) (2017高一上·东城期末) 已知角α为第四象限角,且 ,则sinα=________;tan(π﹣α)=________.
三、 解答题 (共6题;共13分)
17. (2分) (2017高一下·盐城期末) 已知向量 和 ,其中 , ,k∈R.
15. (1分) (2017高一下·河北期末) 某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的(产品净重,单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,下列命题中:①样本中净重大于或等于98克并且小于102克的产品的个数是60;②样本的众数是101;③样本的中位数是 ; ④样本的平均数是101.3.

青海省高一下学期数学期末教学质量检查试卷

青海省高一下学期数学期末教学质量检查试卷

青海省高一下学期数学期末教学质量检查试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共12分)1. (1分)已知命题:p1:函数的最小值为3;p2:不等式的解集是{x|x<1};p3:,使得成立;p4:,成立.其中的真命题是()A . p1B . p1 , p3C . p2 , p4D . p1 , p3 , p42. (1分) (2019高三上·临沂期中) 已知向量,满足,则向量与的夹角的余弦值为()A .B .C .D .3. (1分)直线ax-y+2a=0与圆x2+y2=9的位置关系是()A . 相离B . 相交C . 相切D . 不确定4. (1分) (2018高二上·玉溪期中) 已知高一(1)班有48名学生,班主任将学生随机编号为01,02,……,48,用系统抽样方法,从中抽8人,若05号被抽到了,则下列编号的学生被抽到的是()A . 16B . 22C . 29D . 335. (1分)设,则()A .B .C .D .6. (1分)若将函数的图象向右平移个单位长度后与函数的图象重合,则的最小值为()A . 1B . 2C .D .7. (1分)如果运行右面的程序框图,那么输出的结果是()A . 1,9,15B . 1,7,15C . 1,9,17D . 2,10,188. (1分) (2018高二上·黑龙江月考) 甲在微信群中发布6元“拼手气”红包一个,被乙、丙、丁三人抢完,若三人均领到整数元,且每人至少领到1元,则乙获得“最佳手气” 即乙领到的钱数不少于其他任何人的概率是A .B .C .D .9. (1分)已知圆的方程为x2+y2-6x-8y=0.设该圆过点H(3,5)的两条弦分别为AC和BD,且.则四边形ABCD的面积最大值为()A .B .C . 49D . 5010. (1分)在区间内任取一点,则此点所对应的实数大于1的概率为()A .B .C .D .11. (1分) (2019高三上·杭州月考) 函数,的值域是()A .B .C .D .12. (1分)已知非零向量与满足且则为()A . 等边三角形B . 直角三角形C . 等腰非等边三角形D . 三边均不相等的三角形二、填空题 (共4题;共4分)13. (1分) (2019高二下·上海月考) 已知正方体的棱长为1,则平面和平面的距离为________.14. (1分)(2020·龙江模拟) 已知,则 ________.15. (1分) (2020高二上·辽源期末) 已知与之间的一组数据:257101357则与的线性回归方程为必过点________.16. (1分) (2019高一上·永嘉月考) 已知,且是第三象限角,则 ________.三、解答题 (共6题;共13分)17. (2分) (2018高三上·赣州期中) 已知,,满足.(1)将表示为的函数,并求的最小正周期;(2)已知分别为的三个内角对应的边长,的最大值是,且,求的取值范围.18. (2分)(2017·揭阳模拟) 某学校在一次第二课堂活动中,特意设置了过关智力游戏,游戏共五关.规定第一关没过者没奖励,过n(n∈N*)关者奖励2n﹣1件小奖品(奖品都一样).如图是小明在10次过关游戏中过关数的条形图,以此频率估计概率.(Ⅰ)求小明在这十次游戏中所得奖品数的均值;(Ⅱ)规定过三关者才能玩另一个高级别的游戏,估计小明一次游戏后能玩另一个游戏的概率;(Ⅲ)已知小明在某四次游戏中所过关数为{2,2,3,4},小聪在某四次游戏中所过关数为{3,3,4,5},现从中各选一次游戏,求小明和小聪所得奖品总数超过10的概率.19. (3分)(2019·龙岩模拟) 中国人民大学发布的《中国大学生创业报告》显示,在国家“双创”政策的引导下,随着社会各方对于大学生创业实践的支持力度不断加强,大学生创业意向高涨,近九成的在校大学生曾考虑过创业,近两成的学生有强烈的创业意向. 数据充分表明,大学生正以饱满的热情投身到创新创业的大潮之中,大学生创业实践正呈现出生机勃勃的态势。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西宁十四中18-18学年高一下学期期末调研测试
高 一 数 学
一、选择题(本大题共12小题,每小题4分,共48分,每小题给出的四个选项中,只有一
个选项符合要求,请把你认为正确的选项序号填入下面相应题号的表格内) 1.若sin 0α<且tan 0α>,则α是
A .第一象限角
B .第二象限角
C .第三象限角
D .第四象限角 2.函数()sin cos f x x x =+的最大值为
A .1
B .2 3.2(sin cos )1y x x =--是
A .最小正周期为2π的偶函数
B .最小正周期为2π的奇函数
C .最小正周期为π的偶函数
D .最小正周期为π的奇函数
4.已知ABC ∆中,60a b B ︒===,那么角A 等于
A .135︒
B .90︒
C .45︒
D .30︒
5.把函数sin ()y x x R =∈的图象上所有点向左平移动3
π
个单位长度,再把所得图象上所有点的横坐标缩短到原来的
1
2
倍(纵坐标不变),得到的图象所表示的函数是 A .sin(2),3y x x R π=+∈ B .sin(),26x y x R π
=+∈
C .sin(2),3y x x R π=-∈
D .2
sin(2),3
y x x R π=+∈
6.2
(tan cot )cos x x x +=
A .tan x
B .sin x
C .cos x
D .cot x 7.若点P 分有向线段AB 所成的比为1
3
-
,则点B 分有向线段PA 所成的比是 A .32- B .12- C .1
2
D .3
8.若(2,4),(1,3),AB AC ==则BC =
A .(1,1)
B .(1,1)--
C .(3,7)
D .(3,7)-- 9.设a 、b 是非零向量,若函数()()()f x xa b a xb =+⋅-的图象是一条直线,则必有
A .a b ⊥
B .//a b
C .||||a b =
D .||||a b ≠
10.已知cos()sin 6
π
αα-
+=
则7
sin()6
απ+的值是
A ..45- D .45
11.已知向量a 、b 满足:||1,||2,||2,a b a b ==-=则||a b +=
A .1
B 12.2sin(
2),[0,]6
y x x π
π=-∈为增函数的区间是
A .[0,
]3π
B .7[,]1212ππ
C .5[,]36ππ
D .5
[,]6
ππ 二、填空题(本大题共4个小题,每小题4分,共16分,请将答案填写在题中的横线上)。

13.已知向量a 与b 的夹角为120︒
,且||||4a b ==,那么a b ⋅的值为__________
14.设向量(1,2),(2,3)a b ==,若向量a b λ+与向量(4,7)c =--共线,则λ=________。

15.若角α的终边经过点(1,2)P -,则tan 2α值为___________。

16.若3
sin(
),25
π
θ+=则cos 2θ=___________ 三、解答题(本大题共6个小题,共56分。

解答应写出文字说明、证明过程或演算步骤。

) 17.已知A 、B 都是锐角,且(1tan )(1tan )2A B ++=,求证:4
A B π
+=
18.已知函数sin(),y A x x R ωϕ=+∈(其中0,0)A ω>>的图象在y 轴右侧的第一个最
高点(函数取最大值的点)为M ,与x 轴的原点右侧的第一个交点为(6,0)N ,求这个函数的解析式
19.已知在ABC ∆中,23
sin(),cos ,34
A B B +==-求cos A 的值。

20.如右图,已知任意两个非零向量a 、b ,试作a b,a 2b,a 3b OA OB OC =+=+=+,你
能判断A 、B 、C 三点之间的位置关系吗?为什么?
21.把函数2
245y x x =-+的图象按向量a 平移,得到2
2y x =的图象,且
,(1,1),4a b c b c ⊥=-⋅=。

(1)求向量b ;
(2)(1,2),(3,),//OA OB m b AB =-=,求m
22.(本小题满分10分)
在ABC ∆中,内角A 、B 、C 对边的边长分别是a 、b 、c ,已知2,3
c C π
==
(1)若ABC ∆a 、b ; (2)若sin 2sin ,B A =求ABC ∆的面积。

相关文档
最新文档