土的本构关系(精选)

合集下载

土力学第3章- 土的本构关系

土力学第3章- 土的本构关系

(5) (6)
求a: 将公式(1)式 1 3
a b a
a
求导,切线模量Et为:
Et
1 3 a a a b a 2
(7)
令εa=0,则原点的切线模量,即初始切线模量为:
Ei
R
1 a
1
(8) 代入(1)、(7)式(消去a、b),
( 1 3 ) ult
1 b
(4)
若土样破坏时的偏应力(即强度)为(σ1-σ3)f,令Rf等于破坏时的偏应 力与极限值之比,称为破坏比:
Rf
Rf (4)式代入(5)式得(消去偏应力极限值):b 1 3 f
1 3 f 1 3 ult
2.八面体应力与应变的计算公式
可导出:
八面体法向应力
八面体剪应力
0 ( 1 2 3 ) ( x y z )
0
1 3 1 3
1 3
1 3
1 3 2 2 3 2 3 1 2
2 2 2 x
1 3
a
a b a
( 2)
3.非线形弹性模型
1 3 a
a b a
应力-应变双曲线函数 公式(1)还可以改成:
双曲线函数坐标变换
1 3
1 a
(3)
a
b
1 3
1 a
a
通过求a、b得到弹性模量E. 求b:
b
当轴向应变εa→∞时,偏应力趋向一极限值(σ1-σ3)ult

对于加工硬化材料,屈服应力是随着荷载的提高与变形的增大而提高的。 屈服面不同于破坏面,它不是一个固定的面,图中由A点提高到B点。

土的本构模型

土的本构模型
1 p 1 3 1 sin cv
d vp q M p d dp
d vp M 2 q p 2q p d dp

球应力张量与偏应力张量
土的本构关系
2 应力和应变 – 应力
z
C 等倾面
3 2
z
B x
1
A
y
x y
应力主轴坐标系
八面体面
土的本构关系
2 应力和应变 – 应力
z
C 2 oct 1 oct A y 3 平均主应力 广义剪应力
对八面体面ABC,作用在该面上的 正应力和剪应力分别称为八面体正 应力oct 和八面体剪应力oct:
土的本构关系
土的本构关系
1 概述

土的本构关系 Constitutive relationship 土的本构定律 Constitutive law 土的本构方程 Constitutive equation 土的数学模型 Mathematical model
是反映土的力学性状的数学表达式, 表示形式一般为应力—应变—强度— 时间的关系
• 土体处于极限平衡状态 • 滑动块体间力的平衡 • 刚体+理想塑性计算安全系数
现代土力 学分析方法
应力变形的 综合分析
计算机数值模拟计算 • 土体的本构模型 • 数值计算方法:有限元等 • 应力变形稳定的综合分析
模型试验:如离心机模型试验
本构关系与土力学分析方法
土的本构关系
2 应力和应变 – 应力
1.5 1.4 1.3
p0 , e0
a
e
1.5 1.4 1.3 1.2 1.1 1
p0 , e0
b
e
1.2 1.1 1 100 300 500 p/kPa 700 900

土力学与数值方法:土的本构理论(1)

土力学与数值方法:土的本构理论(1)
Ei
1
-
3
1
(
1
-
3)f
(
1
-
3) ult
1 O
双曲线应力-应变关系
• 切线弹性模量 Et 基于三轴排水试验建立起来的非线性模型,对于正常固 结粘性土、松砂及中密砂,具有应变硬化特征,偏应力 q=σ1-σ3与轴应变ε1之间的关系可以用双曲线进行拟合, 可表示为:
ζ1 ζ 3 ε1 a bε1
土的变形特性:
非线性和非弹性 塑性体积应变和剪胀性 塑性剪应变 硬化和软化 应力路径和应力历史对变形的影响 中主应力对变形的影响 高固结压力的影响 各向异性
在简单应力条件下,可以通过试验的方法确定土的 本构关系,但在复杂应力条件下试验就比较困难,因此, 根据简单应力条件下得到的结果,结合理论分析的方法 建立复杂应力条件下的本构关系,求得普遍形式的本构 方程。 弹性理论 弹塑性理论
R f ( ζ1 ζ 3 ) ζ3 2 1 K p 1 R S E a f L ( ζ ζ ) p 1 3 f ζ ζ3 a SL 1 ( ζ1 ζ 3 ) f
2
n
代入Et公式中后,得到:
ζ3 E t K E pa p a
第四章:土的本构理论
土的本构关系又称为本构模型,即描述土的应力- 应变-关系的数学表达式。土的σ -ε 关系很复杂,具有 非线性、粘弹塑性,同时强度发挥程度、应力历史以及 土的组成状态和结构等对其都有影响。 已建立的本构模型很多,重要的有以下几类: 弹性模型-----Winkler、弹性半空间、分层地基模型 非线性弹性模型-----D-C模型 弹塑性模型------剑桥模型 粘弹性模型 边界面模型 内蕴时间模型

高等土力学-土的本构关系--清华大学

高等土力学-土的本构关系--清华大学

sij偏应力张量,其物理意义代表作用于 该点的纯剪应力分量
偏应力张量
第二章 土的本构关系
2.2 应力和应变 – 应力
仁者乐山 智者乐水
J1 Skk 0
1 1 J 2 sijsij (1 2 )2 (2 3 )2 (3 1 )2 2 6


1 J 3 S ijS jk S ki 3 1 ( 21 2 3 )( 2 2 1 3 )( 2 3 1 2 ) 27
第 14,18,19,33题
第二章 土的本构关系
2.1 概述
仁者乐山 智者乐水

土的本构关系 Constitutive relationship 土的本构定律 Constitutive law 土的本构方程 Constitutive equation 土的数学模型 Mathematical model
本构关系与土力学分析方法
第二章 土的本构关系
2.1 概述
仁者乐山 智者乐水

传统土力学:线弹性、刚塑性或理想塑性 研究初期:20世纪60年代,高重建筑物及 深厚基础问题;计算机技术发展 迅速发展时期:80年代达到高潮,“土力 学园地中最绚烂的花朵” 目前:土的结构性、非饱和土、循环加载、 动力本构模型等
《高等土力学》之二
土的本构关系
张 丙 印
清华大学水利水电工程系 岩 土 工 程 研 究 所
第二章 土的本构关系
2.1 概述 2.2 应力和应变 2.3 土的应力变形特性
2.4 土的弹性模型
2.5 土的弹塑性模型的一般原理 2.6 剑桥模型(Cam—Clay) 2.7 其它典型弹塑性模型 2.8 土的结构性及土的损伤模型

土的本构结构

土的本构结构

土的本构关系土体是天然地质材料的历史产物。

土是一种复杂的多孔材料,在受到外界荷载作用后,其变形具有以下特性:①土体的变形具有明显的非线性,如:土体的压缩试验e~p 曲线、三轴剪切试验的应力—应变关系曲线、现场承载板试验所得的p~s曲线等; ②土体在剪切应力作用下会产生塑性应变,同时球应力也引起塑性应变; ③土体尤其是软粘土,具有十分明显的流变特性;④由于土体的构造或沉积等原因,使土具有各向异性; ⑤紧砂、超固结粘土等在受剪后都表现出应变软化的特性; ⑥土体的变形与应力路径有关,证明不同的加载路径会出现较大的差别; ⑦剪胀性等。

为了更好地描述土体的真实力学—变形特性,建立其应力、应变和时间的关系,在各种试验和工程实践经验的基础上提出一种数学模型,即: 土体的本构关系。

自从Roscoe等人首次建立了剑桥模型以来, 土的本构关系的研究经历了一个蓬勃发展的阶段, 出现了一些具有实用价值的本构模型。

虽然很多的理论为建立土的本构关系提供了有力的工具, 但是由于土是一种三相体材料, 在性质上既不同于固体也不同于液体, 是介于两者之间的特殊材料, 所以人们常借助于固体力学或流体力学理论, 同时结合工程实践经验来解决土工问题, 从而研究土的本构关系形成了自己一套独特的方法—半理论半经验的方法。

建立一个成功的本构关系关键有两点:第一要建立一个函数能较好地反映土在受力下的响应特征;第二要充分利用试验结果提供的数据比较容易地确定模型参数。

模型都需要满足以下基本条件:(1)不违背更高一级的基本物理原理(如热力学第一、第二定律)。

(2)建立在一定的力学理论基础之上(如弹性理论、塑性理论等)。

(3)模型参数能够通过常规试验求取。

从工程应用的角度出发,研究问题的精度就需要进行合理的控制,从而在计算精度与计算设备、计算难度、计算时间以及计算成本之间获得平衡。

另外,任何理论、方法都应以实践应用为目的,这样才具有价值。

综合上述两点,从工程应用的角度去分析各种土的本构关系是非常有必要的。

高等土力学-土的本构关系

高等土力学-土的本构关系

本构关系与土力学分析方法
第二章 土的本构关系
2.1 概述
仁者乐山 智者乐水

传统土力学:线弹性、刚塑性或理想塑性 研究初期:20世纪60年代,高重建筑物及 深厚基础问题;计算机技术发展 迅速发展时期:80年代达到高潮,“土力 学园地中最绚烂的花朵” 目前:土的结构性、非饱和土、循环加载、 动力本构模型等
第 14,18,19,33题
第二章 土的本构关系
2.1 概述
仁者乐山 智者乐水

土的本构关系 Constitutive relationship 土的本构定律 Constitutive law 土的本构方程 Constitutive equation 土的数学模型 Mathematical model
2 2 1 3 1 3 2 3 b 1 3
应力洛德角
第二章 土的本构关系
2.2 应力和应变 – 应力
仁者乐山 智者乐水
3
平面
S
Q O 1 R P 2
• 平均主应力p:平面的位置OQ
• 剪应力q:平面上到Q距离PQ
• 洛德角:平面上的角度
zy
xy
xz x
x ij yx zx
xy y zy
xz yz z 13 23 33

二阶对称张量,具
有6个独立的分量
11 12 21 22 31 32

球应力张量与偏应力张量
第二章 土的本构关系
2.2 应力和应变 – 应力
仁者乐山 智者乐水
z
C 等倾面
3 2
z
B x
1

高等土力学主要知识点整理(李广信版)

高等土力学主要知识点整理(李广信版)

高等土力学主要知识点整理(李广信版)第二章土的本构关系(一)概述材料的本构关系是反映其力学性能的数学表达式,一般为应力-应变时间-强度的关系,也称本构定律、本构方程。

土的强度是土受力变形的一个阶段,即微小应力增量小,发生无限大(或不可控制)应变增量,实际是本构关系一个组成部分,是土受力变形的最后阶段。

第一应力不变量kk z y x I σσσσ=++=1第二应力不变量kk yz xz xy z y z x y x I στττσσσσσσ=---++=2222第三应力不变量22232xyz xz y yz x yz xz xy z y x I τστστστττσσσ---+= 坐标系选择使剪应力为零3211σσσ++=I ,3231212σσσσσσ++=I 3213σσσ=I 球应力张量)(31)(3131321332211σσσσσσσσ++=++==kk m 偏应力张量ii kk ij ij s δσσ31-=,其中=≠=j i j i ii 10δ,克罗内克解第一偏应力不变量01≡=kk s J 第二偏应力不变量()()()[]23123222126121σσσσσσ-+-+-==ji ij s s J 第二偏应力不变量()()()213312321322227131σσσσσσσσσ------==ki jk ij s s s J 1.土的应力应变特性:非线性(应变/加工硬化、应变/加工软化)、剪胀性、弹塑性、各向异性、结构性、流变性(蠕变、应力松弛)。

加工硬化:应力随应变增加而增加,但增加速率越来越慢,最后趋于稳定(正常固结黏土、松砂)加工软化:应力一开始随应变增加而增加,超过一个峰值后,应力随应变增加而减小,最后趋于稳定(超固结黏土、松砂)剪胀性:剪应力引起的体积变化,含剪胀和剪缩土的结构性:由土颗粒空间排列集合、土中各相和颗粒间作用力造成,可明显提高土的强度和刚度。

灵敏度:原状黏性土与重塑土的无侧限抗压强度之比土的蠕变:应力状态不变条件下,应变随时间逐渐增长的现象,随土的塑性、活动性、含水量增加而加剧土的应力松弛:维持应变不变,材料内应力随时间逐渐减小的现象压硬性:土的变形模量(指无侧限,压缩模指完全侧限)随围压而提高的现象。

(完整版)土的本构模型综述

(完整版)土的本构模型综述

土的本构模型综述1 土本构模型的研究内容土体是天然地质材料的历史产物。

土是一种复杂的多孔材料,在受到外部荷载作用后,其变形具有非线性、流变性、各向异性、剪胀性等特点。

为了更好地描述土体的真实力学—变形特性,建立其应力应变和时间的关系,在各种试验和工程实践经验的基础上提出一种数学模型,即为土体的本构关系。

自Roscoe等1958~1963年创建剑桥模型以来,各国学者相继提出了数百个土的本构模型,包括不考虑时间因素的线弹性模型、非线弹性模型、弹塑性模型和考虑时间因素的流变模型等。

本文将结合土本构模型的研究进程,综合分析已建立的经典本构模型,指出各种模型的优缺点和适用性,并对土本构模型的未来研究趋势进行展望。

2 土的本构模型的研究进程早期的土力学中的变形计算主要是基于线弹性理论的。

在线弹性模型中,只需两个材料常数即可描述其应力应变关系,即E和v或K和G或λ和μ。

其中邓肯张双曲线模型是研究最多、应用最广的非线弹性模型。

20世纪50年代末~60年代初,土塑性力学的发展为土的本构模型的研究开辟了一条新的途径。

Drucker等(1957年)提出在Mohr-Coulomb锥形屈服面上再加一组帽形屈服面,Roscoe等(1958年~1963年)建立了第一个土的本构模型——剑桥模型,标志着土的本构模型研究新阶段的开始。

70年代到80年代,计算机技术的迅速发展推动了非线性力学理论、数值计算方法和土工试验的发展,为在岩土工程中进行非线性、非弹性数值分析提供了可能性,各国学者提出了上百种土的本构模型,包括考虑多重屈服面的弹塑性本构模型和考虑土的变形及内部应力调整的时间效应的粘弹塑性模型。

此外,其他本构模型如土的结构性模型、内时本构模型等也是从不同角度描述土本构关系,有的学者则借用神经网络强大的自组织、自学习功能来反演土的本构关系。

3 几种经典的土本构模型3.1 Mohr-Coulomb(M-C)理想弹塑性模型Coulomb 在土的摩擦试验、压剪试验和三轴试验的基础上,于1773年提出了库仑破坏准则,即剪应力屈服准则,它认为当土体某平面上剪应力达到某一特定值时,就进入屈服。

土的本构关系

土的本构关系

式中,g为塑性势面的数学表达式塑性势函数, g ( ij , H a ) 0,式中H a为硬化参数;d 是一个确定塑性应变增量 大小的函数,由加工硬化规律确定。 如果材料的塑性势面通屈服面不同,则称为相关联流动规则, 上式可改写为:
ijp d
ij
式中,为屈服函数。如果材料的塑性势面通屈服面不同,则称为 非相关联流动规则。
(3)
①试验曲线 f 点为破坏点,则定义破坏 比 R f 为:
( 1 3 ) Rf b( 1 3 ) f ( 1 3 )ult
粘性土1=15% ~ 20%对应的( 1 3 )值。
(4)
式中( 1 3 ) f 为破坏时的偏应力,砂性土试验曲线 1峰值;
(二) 非线性弹性地基模型
具有代表性的邓肯-张模型 (Duncan-Chang model,1970) (1)特点
如图a所示,实际上加荷路径不等于 卸荷路径,为非弹性。现假定卸荷路径与 加荷路径相同,即与路径无关,只考虑 OA,认为AB与OA重合,即为非线性。
图a 非线性弹性地基模型
(2)D-C模型的假设和表达式
1.弹性模型-----Winkler、弹性半空间、分层地基 2.非线性弹性模型-----D-C 3.弹塑性模型------剑桥 4.粘弹性模型 5.边界面模型 6.内蕴时间模型
(一) 土体的变形特性
1.非线性和非弹性 2.塑性体积应变和剪胀性 3.塑性剪应变 4.硬化和软化 5.应力路径和应力历史对变形的影响 6.中主应力对变形的影响 7.高固结压力的影响 8.各向异性
1
a b1
式中,1为轴向应变; ( 1 3 )为主应力差; a, b为双曲线函数参数; 1 1 为双曲线初始切线斜率,即Ei ; a a 1 1 为双曲线渐近线,即( 1 3 )ult 。 b b

土的基本特性及本构关系与强度理论

土的基本特性及本构关系与强度理论

土的基本特性及本构关系与强度理论一、本文概述本文旨在深入探讨土的基本特性、本构关系以及强度理论,以增进对土壤力学行为的理解,并为土木工程、地质工程、环境工程等领域提供理论基础和实践指导。

土作为自然界中广泛存在的介质,其力学特性对于工程结构的稳定性和安全性至关重要。

因此,研究土的基本特性、建立合理的本构关系以及探索强度理论,对于预防地质灾害、优化工程设计、提高施工效率等方面都具有重要的意义。

本文首先对土的基本特性进行概述,包括土的分类、物理性质、化学性质以及力学性质等方面。

在此基础上,进一步探讨土的本构关系,即土的应力-应变关系,包括弹性、弹塑性和塑性等方面。

通过对土的本构关系的深入研究,可以更准确地描述土的力学行为,为工程实践提供理论支持。

本文还将重点介绍土的强度理论,包括土的抗剪强度、抗压强度等方面。

土的强度理论是土力学中的核心内容之一,它对于评估土的承载能力、预测土的变形和破坏等方面具有重要的指导作用。

通过对土的强度理论的深入研究,可以为工程实践提供更加准确、可靠的理论依据。

本文将系统介绍土的基本特性、本构关系以及强度理论,以期为提高土木工程、地质工程、环境工程等领域的理论水平和实践能力做出贡献。

二、土的基本特性土是一种由固体颗粒、液体水和气体组成的三相体,其特性受到这些组成部分的性质、相对含量以及它们之间的相互作用的影响。

土的基本特性主要包括其物质组成、物理性质、力学性质和环境特性。

物质组成:土主要由固体颗粒(如砂粒、粘土粒等)、水和气体组成。

固体颗粒的大小、形状和分布决定了土的粒度特征和结构特性。

物理性质:土的物理性质包括密度、含水率、孔隙率、饱和度等。

这些性质对于理解土的力学行为和环境响应至关重要。

例如,密度反映了土体的紧实程度,含水率则影响了土的塑性和流动性。

力学性质:土的力学性质是指在外部荷载作用下土的应力-应变关系和强度特性。

土的力学性质受到其物质组成、物理状态和环境条件的影响。

从工程应用的角度浅谈土的本构关系

从工程应用的角度浅谈土的本构关系

从工程应用的角度浅谈土的本构关系1.引言从工程应用的角度出发,研究问题的精度就需要进行合理的控制,另外,任何理论、方法都应以实践应用为目的,这样才具有价值。

综合上述两点,从工程应用的角度去分析各种土的本构关系是非常有必要的。

本构关系是反映材料的力学性状的数学表达式,表示形式一般为应力-应变-强度-时间的关系[1]。

土的本构关系十分复杂,除受时间因素影响外,还受温度、湿度等因素影响。

同时,强度可以视为土体应力-应变发展的一个特殊阶段,因此本文主要讨论土的应力-应变关系。

2.本构关系的发展对于一般的岩土工程问题,稳定问题是主要问题,如地基稳定问题、斜坡稳定问题等,一般采用极限平衡法对土体进行分析。

这种分析不考虑土体破坏前的变形过程及变形量,只关心土体处于最后整体滑动时的状态及条件,实际上是刚塑性或理想塑性的理论。

此外,随着计算手段、试验手段的提高,也极大地促进了本构关系的发展[1]。

2.1.弹性本构关系弹性本构关系主要分为线弹性模型与非线性弹模型性两种。

基于广义虎克定律的线弹性理论形式简单,参数少,物理意义明确,已有广泛的工程应用基础。

2.1.1.线弹性模型线弹性模型将土的应力-应变关系视为线性关系,顾只需要确定土的2个材料常数:E(弹性模量),(泊松比)或基于这两个材料参数所导出的其他形式的两个参数,便可确定这种土的本构关系。

2.1.2.非线性弹性模型应力应变关系的非线性是土的基本变形特征之一,所建立的非线性弹性模型有割线模型和切线模型。

割线模型是一种计算材料应力应变全量关系的模型,而切线模型是立在增量应力应变关系基础上的弹性模型。

具有代表性的非线性弹性模型有:邓肯-张双曲线模型、沈珠江模型等。

2.1.3.高阶非线弹性理论模型这种模型可表示为全量应力应变关系,也可以表现为增量应力应变关系;可以存在变形能函数,也可以不存在,按照不同建模条件出现不同的理论模型。

2.2.弹塑性本构关系随着土本构关系模型的发展,增量弹塑性理论模型在现代土力学中得到广泛应用。

土力学及数值方法:土本构理论(1)

土力学及数值方法:土本构理论(1)

将轴应变ε1、Ei、 (σ1-σ3)ult的表达式代入到切线模量公式 里,得到: 应力水平
σ3 Et K E pa p a
n
破坏应力(σ1-σ3)f可根据M-C破坏准则确定:
( σ1 σ 3 ) f 2c cos 2σ 3 sin 1 sin
将ε1代入上式:
νt
G、F 、d为试验参数
G F lg (σ 3 /pa ) d ( σ1 σ 3 ) 1 n K p ( σ /p ) [ 1 R ( σ σ )( 1 sin )/( 2 c cos 2 σ sin )] E a 3 a f 1 3 3
模型的一般说明
•Green超弹性模型 超弹性模型假定,材料在一定的应力或应变状态下,具 有唯一的能量密度函数Ω(σij)或W(εij)且二阶可微,本构 方程为:
σ ij W Ω 或 εij εij σ ij
将具有该性质的材料称超弹性材料。
增量型本构方程:
σ ij
割线弹性张量
2W es dσ ij dεkl dεkl Dijkl dεkl εkl εij εkl εij 2Ω es dεij dσ kl dσ kl C ijkl dσ kl σ kl σ ij σ kl
B 4G/ 3 B 2G/ 3 B 2G/ 3 0 0 0 B 4 G/ 3 B 2 G/ 3 0 0 0 B 4G/ 3 0 0 0 D 对 G 0 0 称 G 0 G
同样,独立的弹性常数只有2个,相互可以换算。
• B-G形式的本构关系 为了将应力和应变的球张量与偏张量分开,将三个正应 力公式相加: 体积弹性模量
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档