高考文科数学试题分类汇编--函数与导数

合集下载

2024年高考数学真题分类汇编09:函数与导数(含详细答案解析)

2024年高考数学真题分类汇编09:函数与导数(含详细答案解析)

函数与导数一、单选题1.(2024·全国)已知函数为f (x )=-x 2-2ax -a ,x <0e x+ln (x +1),x ≥0,在R 上单调递增,则a 取值的范围是()A.(-∞,0]B.[-1,0]C.[-1,1]D.[0,+∞)2.(2024·全国)已知函数为f (x )的定义域为R ,f (x )>f (x -1)+f (x -2),且当x <3时f (x )=x ,则下列结论中一定正确的是()A.f (10)>100B.f (20)>1000C.f (10)<1000D.f (20)<100003.(2024·全国)设函数f (x )=a (x +1)2-1,g (x )=cos x +2ax ,当x ∈(-1,1)时,曲线y =f (x )与y =g (x )恰有一个交点,则a =()A.-1B.12C.1D.24.(2024·全国)设函数f (x )=(x +a )ln (x +b ),若f (x )≥0,则a 2+b 2的最小值为()A.18B.14C.12D.15.(2024·全国)曲线f x =x 6+3x -1在0,-1 处的切线与坐标轴围成的面积为()A.16B.32C.12D.-326.(2024·全国)函数f x =-x 2+e x -e -x sin x 在区间[-2.8,2.8]的大致图像为()A. B.C. D.7.(2024·全国)设函数f x =e x +2sin x1+x 2,则曲线y =f x 在0,1 处的切线与两坐标轴围成的三角形的面积为()A.16B.13C.12D.238.(2024·北京)已知x 1,y 1 ,x 2,y 2 是函数y =2x图象上不同的两点,则下列正确的是()A.log 2y 1+y 22>x 1+x22 B.log 2y 1+y 22<x 1+x22C.log 2y 1+y 22>x 1+x 2D.log 2y 1+y 22<x 1+x 29.(2024·天津)下列函数是偶函数的是()A.y=e x-x2x2+1B.y=cos x+x2x2+1C.y=e x-xx+1D.y=sin x+4xe|x|10.(2024·天津)若a=4.2-0.3,b=4.20.3,c=log4.20.2,则a,b,c的大小关系为()A.a>b>cB.b>a>cC.c>a>bD.b>c>a11.(2024·上海)下列函数f x 的最小正周期是2π的是()A.sin x+cos xB.sin x cos xC.sin2x+cos2xD.sin2x-cos2x12.(2024·上海)已知函数f(x)的定义域为R,定义集合M=x0x0∈R,x∈-∞,x0,f x <f x0,在使得M =-1,1的所有f x 中,下列成立的是()A.存在f x 是偶函数B.存在f x 在x=2处取最大值C.存在f x 是严格增函数D.存在f x 在x=-1处取到极小值二、多选题13.(2024·全国)设函数f(x)=(x-1)2(x-4),则()A.x=3是f(x)的极小值点B.当0<x<1时,f(x)<f x2C.当1<x<2时,-4<f(2x-1)<0D.当-1<x<0时,f(2-x)>f(x)14.(2024·全国)设函数f(x)=2x3-3ax2+1,则()A.当a>1时,f(x)有三个零点B.当a<0时,x=0是f(x)的极大值点C.存在a,b,使得x=b为曲线y=f(x)的对称轴D.存在a,使得点1,f1为曲线y=f(x)的对称中心三、填空题15.(2024·全国)若曲线y=e x+x在点0,1处的切线也是曲线y=ln(x+1)+a的切线,则a=.16.(2024·全国)已知a>1,1log8a -1log a4=-52,则a=.17.(2024·全国)曲线y=x3-3x与y=-x-12+a在0,+∞上有两个不同的交点,则a的取值范围为.18.(2024·天津)若函数f x =2x2-ax-ax-2+1有唯一零点,则a的取值范围为.19.(2024·上海)已知f x =x,x>01,x≤0,则f3 =.四、解答题20.(2024·全国)已知函数f(x)=ln x2-x+ax+b(x-1)3(1)若b=0,且f (x)≥0,求a的最小值;(2)证明:曲线y=f(x)是中心对称图形;(3)若f (x )>-2当且仅当1<x <2,求b 的取值范围.21.(2024·全国)已知函数f (x )=e x -ax -a 3.(1)当a =1时,求曲线y =f (x )在点1,f (1) 处的切线方程;(2)若f (x )有极小值,且极小值小于0,求a 的取值范围.22.(2024·全国)已知函数f x =a x -1 -ln x +1.(1)求f x 的单调区间;(2)若a ≤2时,证明:当x >1时,f x <e x -1恒成立.23.(2024·全国)已知函数f x =1-ax ln 1+x -x .(1)当a =-2时,求f x 的极值;(2)当x ≥0时,f x ≥0恒成立,求a 的取值范围.24.(2024·北京)已知f x =x +k ln 1+x 在t ,f t t >0 处切线为l .(1)若切线l 的斜率k =-1,求f x 单调区间;(2)证明:切线l 不经过0,0 ;(3)已知k =1,A t ,f t ,C 0,f t ,O 0,0 ,其中t >0,切线l 与y 轴交于点B 时.当2S △ACO =15S △ABO ,符合条件的A 的个数为?(参考数据:1.09<ln3<1.10,1.60<ln5<1.61,1.94<ln7<1.95)25.(2024·天津)设函数f x =x ln x .(1)求f x 图象上点1,f 1 处的切线方程;(2)若f x ≥a x -x 在x ∈0,+∞ 时恒成立,求a 的取值范围;(3)若x 1,x 2∈0,1 ,证明f x 1 -f x 2 ≤x 1-x 2 12.26.(2024·上海)若f x =log a x (a >0,a ≠1).(1)y =f x 过4,2 ,求f 2x -2 <f x 的解集;(2)存在x 使得f x +1 、f ax 、f x +2 成等差数列,求a 的取值范围.27.(2024·上海)对于一个函数f x 和一个点M a ,b ,令s x =(x -a )2+f x -b 2,若P x 0,f x 0 是s x取到最小值的点,则称P 是M 在f x 的“最近点”.(1)对于f (x )=1x(x >0),求证:对于点M 0,0 ,存在点P ,使得点P 是M 在f x 的“最近点”;(2)对于f x =e x ,M 1,0 ,请判断是否存在一个点P ,它是M 在f x 的“最近点”,且直线MP 与y =f (x )在点P 处的切线垂直;(3)已知y =f (x )在定义域R 上存在导函数f (x ),且函数g (x )在定义域R 上恒正,设点M 1t -1,f t -g t ,M 2t +1,f t +g t .若对任意的t ∈R ,存在点P 同时是M 1,M 2在f x 的“最近点”,试判断f x 的单调性.参考答案:1.B【分析】根据二次函数的性质和分界点的大小关系即可得到不等式组,解出即可.【解析】因为f x 在R上单调递增,且x≥0时,f x =e x+ln x+1单调递增,则需满足--2a2×-1≥0-a≤e0+ln1,解得-1≤a≤0,即a的范围是[-1,0].故选:B.2.B【分析】代入得到f(1)=1,f(2)=2,再利用函数性质和不等式的性质,逐渐递推即可判断.【解析】因为当x<3时f(x)=x,所以f(1)=1,f(2)=2,又因为f(x)>f(x-1)+f(x-2),则f(3)>f(2)+f(1)=3,f(4)>f(3)+f(2)>5,f(5)>f(4)+f(3)>8,f(6)>f(5)+f(4)>13,f(7)>f(6)+f(5)>21,f(8)>f(7)+f(6)>34,f(9)>f(8)+f(7)>55,f(10)>f(9)+f(8)>89,f(11)>f(10)+f(9)>144,f(12)>f(11)+f(10)>233,f(13)>f(12)+f(11)>377f(14)>f(13)+f(12)>610,f(15)>f(14)+f(13)>987,f(16)>f(15)+f(14)>1597>1000,则依次下去可知f(20)>1000,则B正确;且无证据表明ACD一定正确.故选:B.【点睛】关键点点睛:本题的关键是利用f(1)=1,f(2)=2,再利用题目所给的函数性质f(x)>f(x-1)+ f(x-2),代入函数值再结合不等式同向可加性,不断递推即可.3.D【分析】解法一:令F x =ax2+a-1,G x =cos x,分析可知曲线y=F(x)与y=G(x)恰有一个交点,结合偶函数的对称性可知该交点只能在y轴上,即可得a=2,并代入检验即可;解法二:令h x =f(x)-g x ,x∈-1,1,可知h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即可得a=2,并代入检验即可.【解析】解法一:令f(x)=g x ,即a(x+1)2-1=cos x+2ax,可得ax2+a-1=cos x,令F x =ax2+a-1,G x =cos x,原题意等价于当x∈(-1,1)时,曲线y=F(x)与y=G(x)恰有一个交点,注意到F x ,G x 均为偶函数,可知该交点只能在y轴上,可得F0 =G0 ,即a-1=1,解得a=2,若a=2,令F x =G x ,可得2x2+1-cos x=0因为x∈-1,1,则2x2≥0,1-cos x≥0,当且仅当x=0时,等号成立,可得2x2+1-cos x≥0,当且仅当x=0时,等号成立,则方程2x2+1-cos x=0有且仅有一个实根0,即曲线y=F(x)与y=G(x)恰有一个交点,所以a=2符合题意;综上所述:a=2.解法二:令h x =f(x)-g x =ax2+a-1-cos x,x∈-1,1,原题意等价于h x 有且仅有一个零点,因为h -x =a -x 2+a -1-cos -x =ax 2+a -1-cos x =h x ,则h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即h 0 =a -2=0,解得a =2,若a =2,则h x =2x 2+1-cos x ,x ∈-1,1 ,又因为2x 2≥0,1-cos x ≥0当且仅当x =0时,等号成立,可得h x ≥0,当且仅当x =0时,等号成立,即h x 有且仅有一个零点0,所以a =2符合题意;故选:D .4.C【分析】解法一:由题意可知:f (x )的定义域为-b ,+∞ ,分类讨论-a 与-b ,1-b 的大小关系,结合符号分析判断,即可得b =a +1,代入可得最值;解法二:根据对数函数的性质分析ln (x +b )的符号,进而可得x +a 的符号,即可得b =a +1,代入可得最值.【解析】解法一:由题意可知:f (x )的定义域为-b ,+∞ ,令x +a =0解得x =-a ;令ln (x +b )=0解得x =1-b ;若-a ≤-b ,当x ∈-b ,1-b 时,可知x +a >0,ln x +b <0,此时f (x )<0,不合题意;若-b <-a <1-b ,当x ∈-a ,1-b 时,可知x +a >0,ln x +b <0,此时f (x )<0,不合题意;若-a =1-b ,当x ∈-b ,1-b 时,可知x +a <0,ln x +b <0,此时f (x )>0;当x ∈1-b ,+∞ 时,可知x +a ≥0,ln x +b ≥0,此时f (x )≥0;可知若-a =1-b ,符合题意;若-a >1-b ,当x ∈1-b ,-a 时,可知x +a 0,ln x +b 0,此时f (x )<0,不合题意;综上所述:-a =1-b ,即b =a +1,则a 2+b 2=a 2+a +1 2=2a +12 2+12≥12,当且仅当a =-12,b =12时,等号成立,所以a 2+b 2的最小值为12;解法二:由题意可知:f (x )的定义域为-b ,+∞ ,令x +a =0解得x =-a ;令ln (x +b )=0解得x =1-b ;则当x ∈-b ,1-b 时,ln x +b <0,故x +a ≤0,所以1-b +a ≤0;x ∈1-b ,+∞ 时,ln x +b >0,故x +a ≥0,所以1-b +a ≥0;故1-b +a =0,则a 2+b 2=a 2+a +1 2=2a +12 2+12≥12,当且仅当a =-12,b =12时,等号成立,所以a 2+b 2的最小值为12.故选:C .【点睛】关键点点睛:分别求x +a =0、ln (x +b )=0的根,以根和函数定义域为临界,比较大小分类讨论,结合符号性分析判断.5.A【分析】先求出切线方程,再求出切线的截距,从而可求面积.【解析】f x =6x 5+3,所以f 0 =3,故切线方程为y =3(x -0)-1=3x -1,故切线的横截距为13,纵截距为-1,故切线与坐标轴围成的面积为12×1×13=16故选:A .6.B【分析】利用函数的奇偶性可排除A 、C ,代入x =1可得f 1 >0,可排除D .【解析】f -x =-x 2+e -x -e x sin -x =-x 2+e x -e -x sin x =f x ,又函数定义域为-2.8,2.8 ,故该函数为偶函数,可排除A 、C ,又f 1 =-1+e -1e sin1>-1+e -1e sin π6=e 2-1-12e >14-12e>0,故可排除D .故选:B .7.A【分析】借助导数的几何意义计算可得其在点0,1 处的切线方程,即可得其与坐标轴交点坐标,即可得其面积.【解析】fx =ex+2cos x 1+x 2 -e x +2sin x ⋅2x1+x 22,则f0 =e 0+2cos0 1+0 -e 0+2sin0 ×01+02=3,即该切线方程为y -1=3x ,即y =3x +1,令x =0,则y =1,令y =0,则x =-13,故该切线与两坐标轴所围成的三角形面积S =12×1×-13 =16.故选:A .8.A【分析】根据指数函数和对数函数的单调性结合基本不等式分析判断AB ;举例判断CD 即可.【解析】由题意不妨设x 1<x 2,因为函数y =2x 是增函数,所以0<2x 1<2x 2,即0<y 1<y 2,对于选项AB :可得2x1+2x 22>2x 1·2x 2=2x 1+x 22,即y 1+y 22>2x 1+x 22>0,根据函数y =log 2x 是增函数,所以log 2y 1+y 22>log 22x 1+x22=x 1+x22,故A 正确,B 错误;对于选项C :例如x 1=0,x 2=1,则y 1=1,y 2=2,可得log 2y 1+y 22=log 232∈0,1 ,即log 2y 1+y 22<1=x 1+x 2,故C 错误;对于选项D :例如x 1=-1,x 2=-2,则y 1=12,y 2=14,可得log 2y 1+y 22=log 238=log 23-3∈-2,-1 ,即log 2y 1+y 22>-3=x 1+x 2,故D 错误,故选:A .9.B【分析】根据偶函数的判定方法一一判断即可.【解析】对A ,设f x =e x -x 2x 2+1,函数定义域为R ,但f -1 =e -1-12,f 1 =e -12,则f -1 ≠f 1 ,故A 错误;对B ,设g x =cos x +x 2x 2+1,函数定义域为R ,且g -x =cos -x +-x 2-x 2+1=cos x +x 2x 2+1=g x ,则g x 为偶函数,故B 正确;对C ,设h x =e x -xx +1,函数定义域为x |x ≠-1 ,不关于原点对称,则h x 不是偶函数,故C 错误;对D ,设φx =sin x +4x e |x |,函数定义域为R ,因为φ1 =sin1+4e ,φ-1 =-sin1-4e ,则φ1 ≠φ-1 ,则φx 不是偶函数,故D 错误.故选:B .10.B【分析】利用指数函数和对数函数的单调性分析判断即可.【解析】因为y =4.2x 在R 上递增,且-0.3<0<0.3,所以0<4.2-0.3<4.20<4.20.3,所以0<4.2-0.3<1<4.20.3,即0<a <1<b ,因为y =log 4.2x 在(0,+∞)上递增,且0<0.2<1,所以log 4.20.2<log 4.21=0,即c <0,所以b >a >c ,故选:B 11.A【分析】根据辅助角公式、二倍角公式以及同角三角函数关系并结合三角函数的性质一一判断即可 .【解析】对A ,sin x +cos x =2sin x +π4,周期T =2π,故A 正确;对B ,sin x cos x =12sin2x ,周期T =2π2=π,故B 错误;对于选项C ,sin 2x +cos 2x =1,是常值函数,不存在最小正周期,故C 错误;对于选项D ,sin 2x -cos 2x =-cos2x ,周期T =2π2=π,故D 错误,故选:A .12.B【分析】对于ACD 利用反证法并结合函数奇偶性、单调性以及极小值的概念即可判断,对于B ,构造函数f x =-2,x <-1x ,-1≤x ≤11,x >1即可判断.【解析】对于A ,若存在y =f (x )是偶函数, 取x 0=1∈[-1,1],则对于任意x ∈(-∞,1),f (x )<f (1), 而f (-1)=f (1), 矛盾, 故A 错误;对于B ,可构造函数f x =-2,x <-1,x ,-1≤x ≤1,1,x >1,满足集合M =-1,1 ,当x <-1时,则f x =-2,当-1≤x ≤1时,f x ∈-1,1 ,当x >1时,f x =1,则该函数f x 的最大值是f 2 ,则B 正确;对C ,假设存在f x ,使得f x 严格递增,则M =R ,与已知M =-1,1 矛盾,则C 错误;对D ,假设存在f x ,使得f x 在x =-1处取极小值,则在-1的左侧附近存在n ,使得f n >f -1 ,这与已知集合M 的定义矛盾,故D 错误;故选:B .13.ACD【分析】求出函数f x 的导数,得到极值点,即可判断A ;利用函数的单调性可判断B ;根据函数f x 在1,3 上的值域即可判断C ;直接作差可判断D .【解析】对A ,因为函数f x 的定义域为R ,而f x =2x -1 x -4 +x -1 2=3x -1 x -3 ,易知当x ∈1,3 时,f x <0,当x ∈-∞,1 或x ∈3,+∞ 时,f x >0函数f x 在-∞,1 上单调递增,在1,3 上单调递减,在3,+∞ 上单调递增,故x =3是函数f x 的极小值点,正确;对B ,当0<x <1时,x -x 2=x 1-x >0,所以1>x >x 2>0,而由上可知,函数f x 在0,1 上单调递增,所以f x >f x 2 ,错误;对C ,当1<x <2时,1<2x -1<3,而由上可知,函数f x 在1,3 上单调递减,所以f 1 >f 2x -1 >f 3 ,即-4<f 2x -1 <0,正确;对D ,当-1<x <0时,f (2-x )-f (x )=1-x 2-2-x -x -1 2x -4 =x -1 22-2x >0,所以f (2-x )>f (x ),正确;故选:ACD .14.AD【分析】A 选项,先分析出函数的极值点为x =0,x =a ,根据零点存在定理和极值的符号判断出f (x )在(-1,0),(0,a ),(a ,2a )上各有一个零点;B 选项,根据极值和导函数符号的关系进行分析;C 选项,假设存在这样的a ,b ,使得x =b 为f (x )的对称轴,则f (x )=f (2b -x )为恒等式,据此计算判断;D 选项,若存在这样的a ,使得(1,3-3a )为f (x )的对称中心,则f (x )+f (2-x )=6-6a ,据此进行计算判断,亦可利用拐点结论直接求解.【解析】A 选项,f (x )=6x 2-6ax =6x (x -a ),由于a >1,故x ∈-∞,0 ∪a ,+∞ 时f (x )>0,故f (x )在-∞,0 ,a ,+∞ 上单调递增,x ∈(0,a )时,f (x )<0,f (x )单调递减,则f (x )在x =0处取到极大值,在x =a 处取到极小值,由f (0)=1>0,f (a )=1-a 3<0,则f (0)f (a )<0,根据零点存在定理f (x )在(0,a )上有一个零点,又f (-1)=-1-3a <0,f (2a )=4a 3+1>0,则f (-1)f (0)<0,f (a )f (2a )<0,则f (x )在(-1,0),(a ,2a )上各有一个零点,于是a >1时,f (x )有三个零点,A 选项正确;B 选项,f (x )=6x (x -a ),a <0时,x ∈(a ,0),f (x )<0,f (x )单调递减,x ∈(0,+∞)时f (x )>0,f (x )单调递增,此时f (x )在x =0处取到极小值,B 选项错误;C 选项,假设存在这样的a ,b ,使得x =b 为f (x )的对称轴,即存在这样的a ,b 使得f (x )=f (2b -x ),即2x 3-3ax 2+1=2(2b -x )3-3a (2b -x )2+1,根据二项式定理,等式右边(2b -x )3展开式含有x 3的项为2C 33(2b )0(-x )3=-2x 3,于是等式左右两边x 3的系数都不相等,原等式不可能恒成立,于是不存在这样的a ,b ,使得x =b 为f (x )的对称轴,C 选项错误;D 选项,方法一:利用对称中心的表达式化简f (1)=3-3a ,若存在这样的a ,使得(1,3-3a )为f (x )的对称中心,则f (x )+f (2-x )=6-6a ,事实上,f (x )+f (2-x )=2x 3-3ax 2+1+2(2-x )3-3a (2-x )2+1=(12-6a )x 2+(12a -24)x +18-12a ,于是6-6a =(12-6a )x 2+(12a -24)x +18-12a即12-6a =012a -24=018-12a =6-6a,解得a =2,即存在a =2使得(1,f (1))是f (x )的对称中心,D 选项正确.方法二:直接利用拐点结论任何三次函数都有对称中心,对称中心的横坐标是二阶导数的零点,f (x )=2x 3-3ax 2+1,f (x )=6x 2-6ax ,f (x )=12x -6a ,由f (x )=0⇔x =a 2,于是该三次函数的对称中心为a 2,f a2,由题意(1,f (1))也是对称中心,故a2=1⇔a =2,即存在a =2使得(1,f (1))是f (x )的对称中心,D 选项正确.故选:AD【点睛】结论点睛:(1)f (x )的对称轴为x =b ⇔f (x )=f (2b -x );(2)f (x )关于(a ,b )对称⇔f (x )+f (2a -x )=2b ;(3)任何三次函数f (x )=ax 3+bx 2+cx +d 都有对称中心,对称中心是三次函数的拐点,对称中心的横坐标是f (x )=0的解,即-b 3a ,f -b3a 是三次函数的对称中心15.ln2【分析】先求出曲线y =e x +x 在0,1 的切线方程,再设曲线y =ln x +1 +a 的切点为x 0,ln x 0+1 +a ,求出y ,利用公切线斜率相等求出x 0,表示出切线方程,结合两切线方程相同即可求解.【解析】由y =e x +x 得y =e x +1,y |x =0=e 0+1=2,故曲线y =e x +x 在0,1 处的切线方程为y =2x +1;由y =ln x +1 +a 得y =1x +1,设切线与曲线y =ln x +1 +a 相切的切点为x 0,ln x 0+1 +a ,由两曲线有公切线得y =1x 0+1=2,解得x 0=-12,则切点为-12,a +ln 12 ,切线方程为y =2x +12 +a +ln 12=2x +1+a -ln2,根据两切线重合,所以a -ln2=0,解得a =ln2.故答案为:ln216.64【分析】将log 8a ,log a 4利用换底公式转化成log 2a 来表示即可求解.【解析】由题1log 8a -1log a 4=3log 2a -12log 2a =-52,整理得log 2a 2-5log 2a -6=0,⇒log 2a =-1或log 2a =6,又a >1,所以log 2a =6=log 226,故a =26=64故答案为:64.17.-2,1【分析】将函数转化为方程,令x 3-3x =-x -1 2+a ,分离参数a ,构造新函数g x =x 3+x 2-5x +1,结合导数求得g x 单调区间,画出大致图形数形结合即可求解.【解析】令x 3-3x =-x -1 2+a ,即a =x 3+x 2-5x +1,令g x =x 3+x 2-5x +1x >0 ,则g x =3x 2+2x -5=3x +5 x -1 ,令g x =0x >0 得x =1,当x ∈0,1 时,g x <0,g x 单调递减,当x ∈1,+∞ 时,g x >0,g x 单调递增,g 0 =1,g 1 =-2,因为曲线y =x 3-3x 与y =-x -1 2+a 在0,+∞ 上有两个不同的交点,所以等价于y =a 与g x 有两个交点,所以a ∈-2,1.故答案为:-2,1 18.-3,-1 ∪1,3【分析】结合函数零点与两函数的交点的关系,构造函数g x =2x 2-ax 与h x =ax -3,x ≥2a1-ax ,x <2a,则两函数图象有唯一交点,分a =0、a >0与a <0进行讨论,当a >0时,计算函数定义域可得x ≥a 或x ≤0,计算可得a ∈0,2 时,两函数在y 轴左侧有一交点,则只需找到当a ∈0,2 时,在y 轴右侧无交点的情况即可得;当a <0时,按同一方式讨论即可得.【解析】令f x =0,即2x 2-ax =ax -2 -1,由题可得x 2-ax ≥0,当a =0时,x ∈R ,有2x 2=-2 -1=1,则x =±22,不符合要求,舍去;当a >0时,则2x 2-ax =ax -2 -1=ax -3,x ≥2a1-ax ,x <2a,即函数g x =2x 2-ax 与函数h x =ax -3,x ≥2a1-ax ,x <2a有唯一交点,由x 2-ax ≥0,可得x ≥a 或x ≤0,当x ≤0时,则ax -2<0,则2x 2-ax =ax -2 -1=1-ax ,即4x 2-4ax =1-ax 2,整理得4-a 2 x 2-2ax -1=2+a x +1 2-a x -1 =0,当a =2时,即4x +1=0,即x =-14,当a ∈0,2 ,x =-12+a 或x =12-a>0(正值舍去),当a ∈2,+∞ 时,x =-12+a <0或x =12-a<0,有两解,舍去,即当a ∈0,2 时,2x 2-ax -ax -2 +1=0在x ≤0时有唯一解,则当a ∈0,2 时,2x 2-ax -ax -2 +1=0在x ≥a 时需无解,当a ∈0,2 ,且x ≥a 时,由函数h x =ax -3,x ≥2a1-ax ,x <2a关于x =2a 对称,令h x =0,可得x =1a 或x =3a ,且函数h x 在1a ,2a上单调递减,在2a ,3a上单调递增,令g x =y =2x 2-ax ,即x -a 2 2a 24-y 2a 2=1,故x ≥a 时,g x 图象为双曲线x2a 24-y 2a2=1右支的x 轴上方部分向右平移a2所得,由x2a 24-y 2a2=1的渐近线方程为y =±aa 2x =±2x ,即g x 部分的渐近线方程为y =2x -a 2,其斜率为2,又a ∈0,2 ,即h x =ax -3,x ≥2a1-ax ,x <2a在x ≥2a 时的斜率a ∈0,2 ,令g x =2x 2-ax =0,可得x =a 或x =0(舍去),且函数g x 在a ,+∞ 上单调递增,故有1a <a 3a>a,解得1<a <3,故1<a <3符合要求;当a <0时,则2x 2-ax =ax -2 -1=ax -3,x ≤2a1-ax ,x >2a,即函数g x =2x 2-ax 与函数h x =ax -3,x ≤2a1-ax ,x >2a有唯一交点,由x 2-ax ≥0,可得x ≥0或x ≤a ,当x ≥0时,则ax -2<0,则2x 2-ax =ax -2 -1=1-ax ,即4x 2-4ax =1-ax 2,整理得4-a 2 x 2-2ax -1=2+a x +1 2-a x -1 =0,当a =-2时,即4x -1=0,即x =14,当a ∈-2,0 ,x =-12+a <0(负值舍去)或x =12-a0,当a ∈-∞,2 时,x =-12+a >0或x =12-a>0,有两解,舍去,即当a ∈-2,0 时,2x 2-ax -ax -2 +1=0在x ≥0时有唯一解,则当a ∈-2,0 时,2x 2-ax -ax -2 +1=0在x ≤a 时需无解,当a ∈-2,0 ,且x ≤a 时,由函数h x =ax -3,x ≤2a1-ax ,x >2a关于x =2a 对称,令h x =0,可得x =1a 或x =3a ,且函数h x 在2a ,1a上单调递减,在3a ,2a上单调递增,同理可得:x ≤a 时,g x 图象为双曲线x 2a 24-y 2a 2=1左支的x 轴上方部分向左平移a2所得,g x 部分的渐近线方程为y =-2x +a 2,其斜率为-2,又a ∈-2,0 ,即h x =ax -3,x ≥2a1-ax ,x <2a在x <2a 时的斜率a ∈-2,0 ,令g x =2x 2-ax =0,可得x =a 或x =0(舍去),且函数g x 在-∞,a 上单调递减,故有1a >a 3a<a,解得-3<a <-1,故-3<a <-1符合要求;综上所述,a ∈-3,-1 ∪1,3 .故答案为:-3,-1 ∪1,3 .【点睛】关键点点睛:本题关键点在于将函数f x 的零点问题转化为函数g x =2x 2-ax 与函数h x =ax -3,x ≥2a1-ax ,x <2a的交点问题,从而可将其分成两个函数研究.19.3【分析】利用分段函数的形式可求f 3 .【解析】因为f x =x ,x >01,x ≤0, 故f 3 =3,故答案为:3.20.(1)-2(2)证明见解析(3)b ≥-23【分析】(1)求出f x min =2+a 后根据f (x )≥0可求a 的最小值;(2)设P m ,n 为y =f x 图象上任意一点,可证P m ,n 关于1,a 的对称点为Q 2-m ,2a -n 也在函数的图像上,从而可证对称性;(3)根据题设可判断f 1 =-2即a =-2,再根据f (x )>-2在1,2 上恒成立可求得b ≥-23.【解析】(1)b =0时,f x =ln x2-x+ax ,其中x ∈0,2 ,则f x =1x +12-x =2x 2-x+a ,x ∈0,2 ,因为x 2-x ≤2-x +x 2 2=1,当且仅当x =1时等号成立,故f x min =2+a ,而f x ≥0成立,故a +2≥0即a ≥-2,所以a 的最小值为-2.,(2)f x =ln x2-x+ax +b x -1 3的定义域为0,2 ,设P m ,n 为y =f x 图象上任意一点,P m ,n 关于1,a 的对称点为Q 2-m ,2a -n ,因为P m ,n 在y =f x 图象上,故n =ln m2-m+am +b m -1 3,而f 2-m =ln 2-m m +a 2-m +b 2-m -1 3=-ln m2-m +am +b m -1 3 +2a ,=-n +2a ,所以Q 2-m ,2a -n 也在y =f x 图象上,由P 的任意性可得y =f x 图象为中心对称图形,且对称中心为1,a .(3)因为f x >-2当且仅当1<x<2,故x=1为f x =-2的一个解,所以f1 =-2即a=-2,先考虑1<x<2时,f x >-2恒成立.此时f x >-2即为lnx2-x+21-x+b x-13>0在1,2上恒成立,设t=x-1∈0,1,则ln t+11-t-2t+bt3>0在0,1上恒成立,设g t =ln t+11-t-2t+bt3,t∈0,1,则g t =21-t2-2+3bt2=t2-3bt2+2+3b1-t2,当b≥0,-3bt2+2+3b≥-3b+2+3b=2>0,故g t >0恒成立,故g t 在0,1上为增函数,故g t >g0 =0即f x >-2在1,2上恒成立.当-23≤b<0时,-3bt2+2+3b≥2+3b≥0,故g t ≥0恒成立,故g t 在0,1上为增函数,故g t >g0 =0即f x >-2在1,2上恒成立.当b<-23,则当0<t<1+23b<1时,g t <0故在0,1+2 3b上g t 为减函数,故g t <g0 =0,不合题意,舍;综上,f x >-2在1,2上恒成立时b≥-2 3 .而当b≥-23时,而b≥-23时,由上述过程可得g t 在0,1递增,故g t >0的解为0,1,即f x >-2的解为1,2.综上,b≥-2 3 .【点睛】思路点睛:一个函数不等式成立的充分必要条件就是函数不等式对应的解,而解的端点为函数对一个方程的根或定义域的端点,另外,根据函数不等式的解确定参数范围时,可先由恒成立得到参数的范围,再根据得到的参数的范围重新考虑不等式的解的情况.21.(1)e-1x-y-1=0(2)1,+∞【分析】(1)求导,结合导数的几何意义求切线方程;(2)解法一:求导,分析a≤0和a>0两种情况,利用导数判断单调性和极值,分析可得a2+ln a-1>0,构建函数解不等式即可;解法二:求导,可知f (x)=e x-a有零点,可得a>0,进而利用导数求f x 的单调性和极值,分析可得a2+ln a-1>0,构建函数解不等式即可.【解析】(1)当a=1时,则f(x)=e x-x-1,f (x)=e x-1,可得f(1)=e-2,f (1)=e-1,即切点坐标为1,e-2,切线斜率k=e-1,所以切线方程为y-e-2=e-1x-1,即e-1x-y-1=0.(2)解法一:因为f(x)的定义域为R,且f (x)=e x-a,若a≤0,则f (x)≥0对任意x∈R恒成立,可知f (x )在R 上单调递增,无极值,不合题意;若a >0,令f (x )>0,解得x >ln a ;令f (x )<0,解得x <ln a ;可知f (x )在-∞,ln a 内单调递减,在ln a ,+∞ 内单调递增,则f (x )有极小值f ln a =a -a ln a -a 3,无极大值,由题意可得:f ln a =a -a ln a -a 3<0,即a 2+ln a -1>0,构建g a =a 2+ln a -1,a >0,则g a =2a +1a>0,可知g a 在0,+∞ 内单调递增,且g 1 =0,不等式a 2+ln a -1>0等价于g a >g 1 ,解得a >1,所以a 的取值范围为1,+∞ ;解法二:因为f (x )的定义域为R ,且f (x )=e x -a ,若f (x )有极小值,则f (x )=e x -a 有零点,令f (x )=e x -a =0,可得e x =a ,可知y =e x 与y =a 有交点,则a >0,若a >0,令f (x )>0,解得x >ln a ;令f (x )<0,解得x <ln a ;可知f (x )在-∞,ln a 内单调递减,在ln a ,+∞ 内单调递增,则f (x )有极小值f ln a =a -a ln a -a 3,无极大值,符合题意,由题意可得:f ln a =a -a ln a -a 3<0,即a 2+ln a -1>0,构建g a =a 2+ln a -1,a >0,因为则y =a 2,y =ln a -1在0,+∞ 内单调递增,可知g a 在0,+∞ 内单调递增,且g 1 =0,不等式a 2+ln a -1>0等价于g a >g 1 ,解得a >1,所以a 的取值范围为1,+∞ .22.(1)见解析(2)见解析【分析】(1)求导,含参分类讨论得出导函数的符号,从而得出原函数的单调性;(2)先根据题设条件将问题可转化成证明当x >1时,e x -1-2x +1+ln x >0即可.【解析】(1)f (x )定义域为(0,+∞),f (x )=a -1x =ax -1x当a ≤0时,f (x )=ax -1x <0,故f (x )在(0,+∞)上单调递减;当a >0时,x ∈1a,+∞ 时,f (x )>0,f (x )单调递增,当x ∈0,1a时,f (x )<0,f (x )单调递减.综上所述,当a ≤0时,f (x )在(0,+∞)上单调递减;a >0时,f (x )在1a ,+∞ 上单调递增,在0,1a上单调递减.(2)a ≤2,且x >1时,e x -1-f (x )=e x -1-a (x -1)+ln x -1≥e x -1-2x +1+ln x ,令g (x )=e x -1-2x +1+ln x (x >1),下证g (x )>0即可.g (x )=e x -1-2+1x ,再令h (x )=g (x ),则h (x )=e x -1-1x2,显然h (x )在(1,+∞)上递增,则h (x )>h (1)=e 0-1=0,即g (x )=h (x )在(1,+∞)上递增,故g (x)>g (1)=e0-2+1=0,即g(x)在(1,+∞)上单调递增,故g(x)>g(1)=e0-2+1+ln1=0,问题得证23.(1)极小值为0,无极大值.(2)a≤-12【分析】(1)求出函数的导数,根据导数的单调性和零点可求函数的极值.(2)求出函数的二阶导数,就a≤-12、-12<a<0、a≥0分类讨论后可得参数的取值范围.【解析】(1)当a=-2时,f(x)=(1+2x)ln(1+x)-x,故f (x)=2ln(1+x)+1+2x1+x-1=2ln(1+x)-11+x+1,因为y=2ln(1+x),y=-11+x+1在-1,+∞上为增函数,故f (x)在-1,+∞上为增函数,而f (0)=0,故当-1<x<0时,f (x)<0,当x>0时,f (x)>0,故f x 在x=0处取极小值且极小值为f0 =0,无极大值.(2)f x =-a ln1+x+1-ax1+x-1=-a ln1+x-a+1x1+x,x>0,设s x =-a ln1+x-a+1x1+x,x>0,则s x =-ax+1-a+11+x2=-a x+1+a+11+x2=-ax+2a+11+x2,当a≤-12时,sx >0,故s x 在0,+∞上为增函数,故s x >s0 =0,即f x >0,所以f x 在0,+∞上为增函数,故f x ≥f0 =0.当-12<a<0时,当0<x<-2a+1a时,sx <0,故s x 在0,-2a+1 a上为减函数,故在0,-2a+1a上s x <s0 ,即在0,-2a+1 a上f x <0即f x 为减函数,故在0,-2a+1 a上f x <f0 =0,不合题意,舍.当a≥0,此时s x <0在0,+∞上恒成立,同理可得在0,+∞上f x <f0 =0恒成立,不合题意,舍;综上,a≤-1 2 .【点睛】思路点睛:导数背景下不等式恒成立问题,往往需要利用导数判断函数单调性,有时还需要对导数进一步利用导数研究其符号特征,处理此类问题时注意利用范围端点的性质来确定如何分类.24.(1)单调递减区间为(-1,0),单调递增区间为(0,+∞).(2)证明见解析(3)2【分析】(1)直接代入k=-1,再利用导数研究其单调性即可;(2)写出切线方程y-f(t)=1+k1+t(x-t)(t>0),将(0,0)代入再设新函数F(t)=ln(1+t)-t1+t,利用导数研究其零点即可;(3)分别写出面积表达式,代入2S △ACO =15S ABO 得到13ln (1+t )-2t -15t1+t=0,再设新函数h (t )=13ln (1+t )-2t -15t1+t(t >0)研究其零点即可.【解析】(1)f (x )=x -ln (1+x ),f (x )=1-11+x =x1+x(x >-1),当x ∈-1,0 时,f x <0;当x ∈0,+∞ ,f x >0;∴f (x )在(-1,0)上单调递减,在(0,+∞)上单调递增.则f (x )的单调递减区间为(-1,0),单调递增区间为(0,+∞).(2)f (x )=1+k 1+x ,切线l 的斜率为1+k1+t,则切线方程为y -f (t )=1+k1+t (x -t )(t >0),将(0,0)代入则-f (t )=-t 1+k 1+t,f (t )=t 1+k1+t ,即t +k ln (1+t )=t +t k 1+t ,则ln (1+t )=t 1+t ,ln (1+t )-t1+t =0,令F (t )=ln (1+t )-t1+t,假设l 过(0,0),则F (t )在t ∈(0,+∞)存在零点.F (t )=11+t -1+t -t (1+t )2=t(1+t )2>0,∴F (t )在(0,+∞)上单调递增,F (t )>F (0)=0,∴F (t )在(0,+∞)无零点,∴与假设矛盾,故直线l 不过(0,0).(3)k =1时,f (x )=x +ln (1+x ),f (x )=1+11+x =x +21+x>0.S △ACO =12tf (t ),设l 与y 轴交点B 为(0,q ),t >0时,若q <0,则此时l 与f (x )必有交点,与切线定义矛盾.由(2)知q ≠0.所以q >0,则切线l 的方程为y -t -ln t +1 =1+11+t x -t ,令x =0,则y =q =y =ln (1+t )-tt +1.∵2S △ACO =15S ABO ,则2tf (t )=15t ln (1+t )-t t +1,∴13ln (1+t )-2t -15t 1+t =0,记h (t )=13ln (1+t )-2t -15t1+t(t >0),∴满足条件的A 有几个即h (t )有几个零点.h(t )=131+t -2-15(t +1)2=13t +13-2t 2+2t +1 -15(t +1)2=2t 2+9t -4(t +1)2=(-2t +1)(t -4)(t +1)2,当t ∈0,12 时,h t <0,此时h t 单调递减;当t ∈12,4 时,h t >0,此时h t 单调递增;当t ∈4,+∞ 时,h t <0,此时h t 单调递减;因为h (0)=0,h 120,h (4)=13ln5-20 13×1.6-20=0.8>0,h (24)=13ln25-48-15×2425=26ln5-48-725<26×1.61-48-725=-20.54<0,所以由零点存在性定理及h (t )的单调性,h (t )在12,4 上必有一个零点,在(4,24)上必有一个零点,综上所述,h (t )有两个零点,即满足2S ACO =15S ABO 的A 有两个.【点睛】关键点点睛:本题第二问的关键是采用的是反证法,转化为研究函数零点问题.25.(1)y =x -1(2)2(3)证明过程见解析【分析】(1)直接使用导数的几何意义;(2)先由题设条件得到a =2,再证明a =2时条件满足;(3)先确定f x 的单调性,再对x 1,x 2分类讨论.【解析】(1)由于f x =x ln x ,故f x =ln x +1.所以f 1 =0,f 1 =1,所以所求的切线经过1,0 ,且斜率为1,故其方程为y =x -1.(2)设h t =t -1-ln t ,则h t =1-1t =t -1t,从而当0<t <1时h t <0,当t >1时h t >0.所以h t 在0,1 上递减,在1,+∞ 上递增,这就说明h t ≥h 1 ,即t -1≥ln t ,且等号成立当且仅当t =1.设g t =a t -1 -2ln t ,则f x -a x -x =x ln x -a x -x =x a 1x -1-2ln 1x=x ⋅g 1x.当x ∈0,+∞ 时,1x的取值范围是0,+∞ ,所以命题等价于对任意t ∈0,+∞ ,都有g t ≥0.一方面,若对任意t ∈0,+∞ ,都有g t ≥0,则对t ∈0,+∞ 有0≤g t =a t -1 -2ln t =a t -1 +2ln 1t ≤a t -1 +21t -1 =at +2t-a -2,取t =2,得0≤a -1,故a ≥1>0.再取t =2a ,得0≤a ⋅2a +2a 2-a -2=22a -a -2=-a -2 2,所以a =2.另一方面,若a =2,则对任意t ∈0,+∞ 都有g t =2t -1 -2ln t =2h t ≥0,满足条件.综合以上两个方面,知a 的取值范围是2 .(3)先证明一个结论:对0<a <b ,有ln a +1<f b -f ab -a<ln b +1.证明:前面已经证明不等式t -1≥ln t ,故b ln b -a ln a b -a =a ln b -a ln ab -a +ln b =ln b a b a -1+ln b <1+ln b ,且b ln b -a ln a b -a =b ln b -b ln a b -a +ln a =-ln a b 1-a b +ln a >-ab-1 1-a b+ln a =1+ln a ,所以ln a +1<b ln b -a ln ab -a <ln b +1,即ln a +1<f b -f a b -a<ln b +1.由f x =ln x +1,可知当0<x <1e 时f x <0,当x >1e时f x >0.所以f x 在0,1e 上递减,在1e,+∞ 上递增.不妨设x 1≤x 2,下面分三种情况(其中有重合部分)证明本题结论.情况一:当1e≤x 1≤x 2<1时,有f x 1 -f x 2 =f x 2 -f x 1 <ln x 2+1 x 2-x 1 <x 2-x 1<x 2-x 1,结论成立;情况二:当0<x 1≤x 2≤1e时,有f x 1 -f x 2 =f x 1 -f x 2 =x 1ln x 1-x 2ln x 2.对任意的c ∈0,1e,设φx =x ln x -c ln c -c -x ,则φx =ln x +1+12c -x.由于φx 单调递增,且有φ c 2e1+12c=ln c2e1+12c+1+12c -c2e1+12c<ln1e1+12c+1+12c -c2=-1-12c +1+12c=0,且当x ≥c -14ln 2c-1 2,x >c 2时,由12c -x≥ln 2c -1可知φ x =ln x +1+12c -x >ln c 2+1+12c -x =12c -x-ln 2c -1 ≥0.所以φ x 在0,c 上存在零点x 0,再结合φ x 单调递增,即知0<x <x 0时φ x <0,x 0<x <c 时φ x >0.故φx 在0,x 0 上递减,在x 0,c 上递增.①当x 0≤x ≤c 时,有φx ≤φc =0;②当0<x <x 0时,由于c ln 1c =-2f c ≤-2f 1e =2e <1,故我们可以取q ∈c ln 1c,1 .从而当0<x <c1-q 2时,由c -x >q c ,可得φx =x ln x -c ln c -c -x <-c ln c -c -x <-c ln c -q c =c c ln 1c-q <0.再根据φx 在0,x 0 上递减,即知对0<x <x 0都有φx <0;综合①②可知对任意0<x ≤c ,都有φx ≤0,即φx =x ln x -c ln c -c -x ≤0.根据c ∈0,1e和0<x ≤c 的任意性,取c =x 2,x =x 1,就得到x 1ln x 1-x 2ln x 2-x 2-x 1≤0.所以f x 1 -f x 2 =f x 1 -f x 2 =x 1ln x 1-x 2ln x 2≤x 2-x 1.情况三:当0<x 1≤1e ≤x 2<1时,根据情况一和情况二的讨论,可得f x 1 -f 1e≤1e -x 1≤x 2-x 1,f 1e -f x 2 ≤x 2-1e ≤x 2-x 1.而根据f x 的单调性,知f x 1 -f x 2 ≤f x 1 -f 1e 或f x 1 -f x 2 ≤f 1e-f x 2 .故一定有f x 1 -f x 2 ≤x 2-x 1成立.综上,结论成立.【点睛】关键点点睛:本题的关键在于第3小问中,需要结合f x 的单调性进行分类讨论.26.(1)x |1<x <2(2)a >1【分析】(1)求出底数a ,再根据对数函数的单调性可求不等式的解;(2)存在x 使得f x +1 、f ax 、f x +2 成等差数列等价于a 2=21x +342-18在0,+∞ 上有解,利用换元法结合二次函数的性质可求a 的取值范围.【解析】(1)因为y =f x 的图象过4,2 ,故log a 4=2,故a 2=4即a =2(负的舍去),而f x =log 2x 在0,+∞ 上为增函数,故f 2x -2 <f x ,故0<2x -2<x 即1<x <2,故f 2x -2 <f x 的解集为x |1<x <2 .(2)因为存在x 使得f x +1 、f ax 、f x +2 成等差数列,故2f ax =f x +1 +f x +2 有解,故2log a ax =log a x +1 +log a x +2 ,因为a >0,a ≠1,故x >0,故a 2x 2=x +1 x +2 在0,+∞ 上有解,由a 2=x 2+3x +2x 2=1+3x +2x 2=21x +34 2-18在0,+∞ 上有解,令t =1x ∈0,+∞ ,而y =2t +34 2-18在0,+∞ 上的值域为1,+∞ ,故a 2>1即a >1.27.(1)证明见解析(2)存在,P 0,1 (3)严格单调递减【分析】(1)代入M (0,0),利用基本不等式即可;(2)由题得s x =(x -1)2+e 2x ,利用导函数得到其最小值,则得到P ,再证明直线MP 与切线垂直即可;(3)根据题意得到s 1 x 0 =s 2 x 0 =0,对两等式化简得f x 0 =-1g (t ),再利用“最近点”的定义得到不等式组,即可证明x 0=t ,最后得到函数单调性.【解析】(1)当M (0,0)时,s x =(x -0)2+1x -0 2=x 2+1x2≥2x 2⋅1x 2=2,当且仅当x 2=1x 2即x =1时取等号,故对于点M 0,0 ,存在点P 1,1 ,使得该点是M 0,0 在f x 的“最近点”.(2)由题设可得s x =(x -1)2+e x -0 2=(x -1)2+e 2x ,则s x =2x -1 +2e 2x ,因为y =2x -1 ,y =2e 2x 均为R 上单调递增函数,则s x =2x -1 +2e 2x 在R 上为严格增函数,而s 0 =0,故当x <0时,s x <0,当x >0时,s x >0,故s x min =s 0 =2,此时P 0,1 ,而f x =e x ,k =f 0 =1,故f x 在点P 处的切线方程为y =x +1.而k MP =0-11-0=-1,故k MP ⋅k =-1,故直线MP 与y =f x 在点P 处的切线垂直.(3)设s 1x =(x -t +1)2+f x -f t +g t 2,s 2x =(x -t -1)2+f x -f t -g t 2,而s 1x =2(x -t +1)+2f x -f t +g t f x ,s 2x =2(x -t -1)+2f x -f t -g t f x ,若对任意的t ∈R ,存在点P 同时是M 1,M 2在f x 的“最近点”,设P x 0,y 0 ,则x 0既是s 1x 的最小值点,也是s 2x 的最小值点,因为两函数的定义域均为R ,则x 0也是两函数的极小值点,则存在x0,使得s 1 x 0 =s 2 x 0 =0,即s 1 x 0 =2x 0-t +1 +2f x 0 f x 0 -f (t )+g (t ) =0①s 2 x 0 =2x 0-t -1 +2f x 0 f x 0 -f (t )-g (t ) =0②由①②相等得4+4g (t )⋅f x 0 =0,即1+f x 0 g (t )=0,即f x 0 =-1g (t ),又因为函数g (x )在定义域R 上恒正,则f x 0 =-1g (t )<0恒成立,接下来证明x 0=t ,因为x 0既是s 1x 的最小值点,也是s 2x 的最小值点,则s 1x 0 ≤s (t ),s 2x 0 ≤s (t ),即x 0-t +1 2+f x 0 -f t +g t 2≤1+g t 2,③x 0-t -12+f x 0 -f t -g t 2≤1+g t 2,④③+④得2x 0-t 2+2+2f x 0 -f (t ) 2+2g 2(t )≤2+2g 2(t )即x 0-t 2+f x 0 -f t 2≤0,因为x 0-t 2≥0,f x 0 -f t 2≥0则x 0-t =0f x 0 -f t =0,解得x 0=t ,则f t =-1g (t )<0恒成立,因为t 的任意性,则f x 严格单调递减.【点睛】关键点点睛:本题第三问的关键是结合最值点和极小值的定义得到f x 0 =-1g (t ),再利用最值点定义得到x 0=t 即可.。

高考文科数学真题汇编:导数及应用老师版.doc

高考文科数学真题汇编:导数及应用老师版.doc

2012-2017 年高考文科数学真题汇编:导数及应用老师版学科教师辅导教案学员姓名年级高三辅导科目数学授课老师课时数2h 第次课授课日期及时段2018 年月日:—:历年高考试题汇编(文)——导数及应用1.(2014 大纲理)曲线y xe x 1在点(1,1)处切线的斜率等于( C )A .2e B.e C.2D.12.(2014 新标 2 理) 设曲线 y=ax-ln(x+1) 在点 (0,0)处的切线方程为 y=2x,则 a= ( D )A. 0B. 1C. 2D. 33.( 2013 浙江文 ) 已知函数 y=f(x)的图象是下列四个图象之一,且其导函数 y=f′(x)的图象如右图所示,则该函数的图象是 ( B )4.(2012 陕西文)设函数 f(x)= 2x +lnx 则( D )A .x= 1为 f(x) 的极大值点B.x= 1为f(x) 的极小值点C.x=2 为 f(x) 的极大值点D.x=2 为 f(x) 的极小值点5.(2014 新标 2 文) 函数f (x)在x x0 处导数存在,若p : f ( x0 )0 :q : x x0是 f ( x) 的极值点,则A .p是q的充分必要条件 B. p是q的充分条件,但不是 q 的必要条件C. p是q的必要条件,但不是q的充分条件D. p既不是 q 的充分条件,也不是 q 的必要条件【答案】 C6.(2012 广东理)曲线y x3 x 3 在点 1,3 处的切线方程为___________________.【答案】 2x-y+1=07.(2013 广东理)若曲线y kx ln x 在点 (1,k) 处的切线平行于x 轴,则k【答案】 -18.(2013 广东文)若曲线y ax2 ln x 在点 (1,a) 处的切线平行于 x 轴,则 a .【答案】1 29 . ( 2014 广东文 ) 曲线y 5 e x 3 在点 (0, 2) 处的切线方程为.【答案】 5x+y+2=010.(2013 江西文)若曲线 y= xα +1(α∈ R)在点( 1,2)处的切线经过坐标原点,则α=。

2018年全国高考文科数学分类汇编----函数与导数

2018年全国高考文科数学分类汇编----函数与导数

2018年全国高考文科数学分类汇编——函数与导数1.(北京)设函数f(x)=[ax2﹣(3a+1)x+3a+2]e x.(Ⅰ)若曲线y=f(x)在点(2,f(2))处的切线斜率为0,求a;(Ⅱ)若f(x)在x=1处取得极小值,求a的取值范围.【解答】解:(Ⅰ)函数f(x)=[ax2﹣(3a+1)x+3a+2]e x的导数为f′(x)=[ax2﹣(a+1)x+1]e x.曲线y=f(x)在点(2,f(2))处的切线斜率为0,可得(4a﹣2a﹣2+1)e2=0,解得a=;(Ⅱ)f(x)的导数为f′(x)=[ax2﹣(a+1)x+1]e x=(x﹣1)(ax﹣1)e x,若a=0则x<1时,f′(x)>0,f(x)递增;x>1,f′(x)<0,f(x)递减.x=1处f(x)取得极大值,不符题意;若a>0,且a=1,则f′(x)=(x﹣1)2e x≥0,f(x)递增,无极值;若a>1,则<1,f(x)在(,1)递减;在(1,+∞),(﹣∞,)递增,可得f(x)在x=1处取得极小值;若0<a<1,则>1,f(x)在(1,)递减;在(,+∞),(﹣∞,1)递增,可得f(x)在x=1处取得极大值,不符题意;若a<0,则<1,f(x)在(,1)递增;在(1,+∞),(﹣∞,)递减,可得f(x)在x=1处取得极大值,不符题意.综上可得,a的范围是(1,+∞).2. (江苏)函数f(x)=的定义域为[2,+∞).【解答】解:由题意得:≥1,解得:x≥2,∴函数f(x)的定义域是[2,+∞).故答案为:[2,+∞).3.(江苏)函数f(x)满足f(x+4)=f(x)(x∈R),且在区间(﹣2,2]上,f(x)=,则f(f(15))的值为.【解答】解:由f(x+4)=f(x)得函数是周期为4的周期函数,则f(15)=f(16﹣1)=f(﹣1)=|﹣1+|=,f()=cos()=cos=,即f(f(15))=,故答案为:4.(江苏)若函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,则f(x)在[﹣1,1]上的最大值与最小值的和为﹣3.【解答】解:∵函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,∴f′(x)=2x(3x﹣a),x∈(0,+∞),①当a≤0时,f′(x)=2x(3x﹣a)>0,函数f(x)在(0,+∞)上单调递增,f(0)=1,f (x)在(0,+∞)上没有零点,舍去;②当a>0时,f′(x)=2x(3x﹣a)>0的解为x>,∴f(x)在(0,)上递减,在(,+∞)递增,又f(x)只有一个零点,∴f()=﹣+1=0,解得a=3,f(x)=2x3﹣3x2+1,f′(x)=6x(x﹣1),x∈[﹣1,1],f′(x)>0的解集为(﹣1,0),f(x)在(﹣1,0)上递增,在(0,1)上递减,f(﹣1)=﹣4,f(0)=1,f(1)=0,∴f(x)min=f(﹣1)=﹣4,f(x)max=f(0)=1,∴f(x)在[﹣1,1]上的最大值与最小值的和为:f(x)max+f(x)min=﹣4+1=﹣3.5.(江苏)某农场有一块农田,如图所示,它的边界由圆O的一段圆弧(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为△CDP,要求A,B均在线段MN上,C,D均在圆弧上.设OC与MN所成的角为θ.(1)用θ分别表示矩形ABCD和△CDP的面积,并确定sinθ的取值范围;(2)若大棚I内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.【解答】解:(1)S=(40sinθ+10)•80cosθ=800(4sinθcosθ+cosθ),矩形ABCDS△CDP=•80cosθ(40﹣40sinθ)=1600(cosθ﹣cosθsinθ),当B、N重合时,θ最小,此时sinθ=;当C、P重合时,θ最大,此时sinθ=1,∴sinθ的取值范围是[,1);(2)设年总产值为y,甲种蔬菜单位面积年产值为4t,乙种蔬菜单位面积年产值为3t,则y=3200t(4sinθcosθ+cosθ)+4800t(cosθ﹣cosθsinθ)=8000t(sinθcosθ+cosθ),其中sinθ∈[,1);设f(θ)=sinθcosθ+cosθ,则f′(θ)=cos2θ﹣sin2θ﹣sinθ=﹣2sin2θ﹣sinθ+1;令f′(θ)=0,解得sinθ=,此时θ=,cosθ=;当sinθ∈[,)时,f′(θ)>0,f(θ)单调递增;当sinθ∈[,1)时,f′(θ)<0,f(θ)=800(4sinθcosθ+cosθ),(1)S单调递减;∴θ=时,f(θ)取得最大值,即总产值y最大.答:矩形ABCDS△CDP=1600(cosθ﹣cosθsinθ),sinθ∈[,1);(2)θ=时总产值y最大.6. (江苏)记f′(x),g′(x)分别为函数f(x),g(x)的导函数.若存在x0∈R,满足f(x0)=g(x0)且f′(x0)=g′(x0),则称x0为函数f(x)与g(x)的一个“S点”.(1)证明:函数f(x)=x与g(x)=x2+2x﹣2不存在“S点”;(2)若函数f(x)=ax2﹣1与g (x)=lnx存在“S点”,求实数a的值;(3)已知函数f(x)=﹣x2+a,g(x)=.对任意a >0,判断是否存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”,并说明理由.【解答】解:(1)证明:f′(x)=1,g′(x)=2x+2,则由定义得,得方程无解,则f(x)=x与g(x)=x2+2x﹣2不存在“S点”;(2)f′(x)=2ax,g′(x)=,x>0,由f′(x)=g′(x)得=2ax,得x=,f()=﹣=g()=﹣lna2,得a=;(3)f′(x)=﹣2x,g′(x)=,(x≠0),由f′(x0)=g′(x0),得b=﹣>0,得0<x0<1,由f(x0)=g(x0),得﹣x02+a==﹣,得a=x02﹣,令h(x)=x2﹣﹣a=,(a>0,0<x<1),设m(x)=﹣x3+3x2+ax﹣a,(a>0,0<x<1),则m(0)=﹣a<0,m(1)=2>0,得m(0)m(1)<0,又m(x)的图象在(0,1)上连续不断,则m(x)在(0,1)上有零点,则h(x)在(0,1)上有零点,则f(x)与g(x)在区间(0,+∞)内存在“S”点.7.(全国1卷)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()DA.y=﹣2x B.y=﹣x C.y=2x D.y=x【解答】解:函数f(x)=x3+(a﹣1)x2+ax,若f(x)为奇函数,可得a=1,所以函数f(x)=x3+x,可得f′(x)=3x2+1,曲线y=f(x)在点(0,0)处的切线的斜率为:1,则曲线y=f(x)在点(0,0)处的切线方程为:y=x.故选:D.8.(全国1卷)设函数f(x)=,则满足f(x+1)<f(2x)的x的取值范围是()A.(﹣∞,﹣1]B.(0,+∞)C.(﹣1,0)D.(﹣∞,0)【解答】解:函数f(x)=,的图象如图:满足f(x+1)<f(2x),可得:2x<0<x+1或2x<x+1≤0,解得x∈(﹣∞,0).故选:D.9.(全国1卷)已知函数f(x)=log2(x2+a),若f(3)=1,则a=﹣7.【解答】解:函数f(x)=log2(x2+a),若f(3)=1,可得:log2(9+a)=1,可得a=﹣7.故答案为:﹣7.10. (全国1卷)已知函数f(x)=ae x﹣lnx﹣1.(1)设x=2是f(x)的极值点,求a,并求f(x)的单调区间;(2)证明:当a≥时,f(x)≥0.【解答】解:(1)∵函数f(x)=ae x﹣lnx﹣1.∴x>0,f′(x)=ae x﹣,∵x=2是f(x)的极值点,∴f′(2)=ae2﹣=0,解得a=,∴f(x)=e x﹣lnx﹣1,∴f′(x)=,当0<x<2时,f′(x)<0,当x>2时,f′(x)>0,∴f(x)在(0,2)单调递减,在(2,+∞)单调递增.证明:(2)当a≥时,f(x)≥﹣lnx﹣1,设g(x)=﹣lnx﹣1,则﹣,当0<x<1时,g′(x)<0,当x>1时,g′(x)>0,∴x=1是g(x)的最小值点,故当x>0时,g(x)≥g(1)=0,∴当a≥时,f(x)≥0.11.(全国2卷)函数f(x)=的图象大致为()BA.B.C.D.【解答】解:函数f(﹣x)==﹣=﹣f(x),则函数f(x)为奇函数,图象关于原点对称,排除A,当x=1时,f(1)=e﹣>0,排除D.当x→+∞时,f(x)→+∞,排除C,故选:B.12.(全国2卷)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f (1)=2,则f(1)+f(2)+f(3)+…+f(50)=()CA.﹣50 B.0 C.2 D.50【解答】解:∵f(x)是奇函数,且f(1﹣x)=f(1+x),∴f(1﹣x)=f(1+x)=﹣f(x﹣1),f(0)=0,则f(x+2)=﹣f(x),则f(x+4)=﹣f(x+2)=f(x),即函数f(x)是周期为4的周期函数,∵f(1)=2,∴f(2)=f(0)=0,f(3)=f(1﹣2)=f (﹣1)=﹣f(1)=﹣2,f(4)=f(0)=0,则f(1)+f(2)+f(3)+f(4)=2+0﹣2+0=0,则f(1)+f(2)+f(3)+…+f(50)=12[f(1)+f(2)+f(3)+f(4)]+f(49)+f(50)=f(1)+f(2)=2+0=2,故选:C.13.(全国2卷)曲线y=2lnx在点(1,0)处的切线方程为y=2x﹣2.【解答】解:∵y=2lnx,∴y′=,当x=1时,y′=2∴曲线y=2lnx在点(1,0)处的切线方程为y=2x﹣2.故答案为:y=2x﹣2.14.(全国2卷)已知函数f(x)=x3﹣a(x2+x+1).(1)若a=3,求f(x)的单调区间;(2)证明:f(x)只有一个零点.【解答】解:(1)当a=3时,f(x)=x3﹣a(x2+x+1),所以f′(x)=x2﹣6x﹣3时,令f′(x)=0解得x=3,当x∈(﹣∞,3﹣2),x∈(3﹣2,+∞)时,f′(x)>0,函数是增函数,当x∈(3﹣2时,f′(x)<0,函数是单调递减,综上,f(x)在(﹣∞,3﹣2),(3﹣2,+∞),上是增函数,在(3﹣2上递减.(2)证明:因为x2+x+1=(x+)2+,所以f(x)=0等价于,令,则,所以g(x)在R上是增函数;取x=max{9a,1},则有=,取x=min{9a,﹣1},则有=,所以g(x)在(min{9a,﹣1},max{9a,1})上有一个零点,由单调性则可知,f(x)只有一个零点.15.(全国3卷)下列函数中,其图象与函数y=lnx的图象关于直线x=1对称的是()B A.y=ln(1﹣x)B.y=ln(2﹣x)C.y=ln(1+x) D.y=ln(2+x)【解答】解:首先根据函数y=lnx的图象,则:函数y=lnx的图象与y=ln(﹣x)的图象关于y 轴对称.由于函数y=lnx的图象关于直线x=1对称.则:把函数y=ln(﹣x)的图象向右平移2个单位即可得到:y=ln(2﹣x).即所求得解析式为:y=ln(2﹣x).故选:B.16.(全国3卷)函数y=﹣x4+x2+2的图象大致为()DA.B.C.D.【解答】解:函数过定点(0,2),排除A,B.函数的导数f′(x)=﹣4x3+2x=﹣2x(2x2﹣1),由f′(x)>0得2x(2x2﹣1)<0,得x<﹣或0<x<,此时函数单调递增,排除C,故选:D.17.(全国3卷)已知函数f(x)=ln(﹣x)+1,f(a)=4,则f(﹣a)=﹣2.【解答】解:函数g(x)=ln(﹣x)满足g(﹣x)=ln(+x)==﹣ln(﹣x)=﹣g(x),所以g(x)是奇函数.函数f(x)=ln(﹣x)+1,f(a)=4,可得f(a)=4=ln(﹣a)+1,可得ln(﹣a)=3,则f(﹣a)=﹣ln(﹣a)+1=﹣3+1=﹣2.故答案为:﹣2.18.(全国3卷)已知函数f(x)=.(1)求曲线y=f(x)在点(0,﹣1)处的切线方程;(2)证明:当a≥1时,f(x)+e≥0.【解答】解:(1)=﹣.∴f′(0)=2,即曲线y=f(x)在点(0,﹣1)处的切线斜率k=2,∴曲线y=f(x)在点(0,﹣1)处的切线方程方程为y﹣(﹣1)=2x.即2x﹣y﹣1=0为所求.(2)证明:函数f(x)的定义域为:R,可得=﹣.令f′(x)=0,可得,当x时,f′(x)<0,x时,f′(x)>0,x∈(2,+∞)时,f′(x)<0.∴f(x)在(﹣),(2,+∞)递减,在(﹣,2)递增,注意到a≥1时,函数g(x)=ax2+x﹣1在(2,+∞)单调递增,且g(@)=4a+1>0函数g(x)的图象如下:∵a≥1,∴,则≥﹣e,∴f(x)≥﹣e,∴当a≥1时,f(x)+e≥0.19.(上海)设常数a∈R,函数f(x)=1og2(x+a).若f(x)的反函数的图象经过点(3,1),则a=7.【解答】解:∵常数a∈R,函数f(x)=1og2(x+a).f(x)的反函数的图象经过点(3,1),∴函数f(x)=1og2(x+a)的图象经过点(1,3),∴log2(1+a)=3,解得a=7.故答案为:7.20.(上海)已知α∈{﹣2,﹣1,﹣,1,2,3},若幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,则α=﹣1.【解答】解:∵α∈{﹣2,﹣1,,1,2,3},幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,∴a是奇数,且a<0,∴a=﹣1.故答案为:﹣1.21. (上海)已知常数a>0,函数f(x)=的图象经过点P(p,),Q(q,).若2p+q=36pq,则a=6.【解答】解:函数f(x)=的图象经过点P(p,),Q(q,).则:,整理得:=1,解得:2p+q=a2pq,由于:2p+q=36pq,所以:a2=36,由于a>0,故:a=6.故答案为:622. (上海)设D是含数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只能是()B A.B.C.D.0【解答】解:设D是含数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,故f(1)=cos=,故选:B.23.(上海)某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S中的成员仅以自驾或公交方式通勤.分析显示:当S中x%(0<x<100)的成员自驾时,自驾群体的人均通勤时间为f(x)=(单位:分钟),而公交群体的人均通勤时间不受x影响,恒为40分钟,试根据上述分析结果回答下列问题:(1)当x在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族S的人均通勤时间g(x)的表达式;讨论g(x)的单调性,并说明其实际意义.【解答】解;(1)由题意知,当30<x<100时,f(x)=2x+﹣90>40,即x2﹣65x+900>0,解得x<20或x>45,∴x∈(45,100)时,公交群体的人均通勤时间少于自驾群体的人均通勤时间;(2)当0<x≤30时,g(x)=30•x%+40(1﹣x%)=40﹣;当30<x<100时,g(x)=(2x+﹣90)•x%+40(1﹣x%)=﹣x+58;∴g(x)=;当0<x<32.5时,g(x)单调递减;当32.5<x<100时,g(x)单调递增;说明该地上班族S中有小于32.5%的人自驾时,人均通勤时间是递减的;有大于32.5%的人自驾时,人均通勤时间是递增的;当自驾人数为32.5%时,人均通勤时间最少.24.(天津)已知a=log3,b=(),c=log,则a,b,c的大小关系为()D A.a>b>c B.b>a>c C.c>b>a D.c>a>b【解答】解:∵a=log 3,c=log=log35,且5,∴,则b=()<,∴c>a>b.故选:D.25.(天津)已知函数f(x)=e x lnx,f′(x)为f(x)的导函数,则f′(1)的值为e.【解答】解:函数f(x)=e x lnx,则f′(x)=e x lnx+•e x;∴f′(1)=e•ln1+1•e=e.故答案为:e.26.(天津)己知a∈R,函数f(x)=.若对任意x∈[﹣3,+∞),f(x)≤|x|恒成立,则a的取值范围是[] .【解答】解:当x≤0时,函数f(x)=x2+2x+a﹣2的对称轴为x=﹣1,抛物线开口向上,要使x≤0时,对任意x∈[﹣3,+∞),f(x)≤|x|恒成立,则只需要f(﹣3)≤|﹣3|=3,即9﹣6+a﹣2≤3,得a≤2,当x>0时,要使f(x)≤|x|恒成立,即f(x)=﹣x2+2x﹣2a,则直线y=x的下方或在y=x上,由﹣x2+2x﹣2a=x,即x2﹣x+2a=0,由判别式△=1﹣8a≤0,得a≥,综上≤a≤2,故答案为:[,2].27.(天津)设函数f(x)=(x﹣t1)(x﹣t2)(x﹣t3),其中t1,t2,t3∈R,且t1,t2,t3是公差为d的等差数列.(Ⅰ)若t2=0,d=1,求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)若d=3,求f(x)的极值;(Ⅲ)若曲线y=f(x)与直线y=﹣(x﹣t2)﹣6有三个互异的公共点,求d的取值范围.【解答】解:(Ⅰ)函数f(x)=(x﹣t1)(x﹣t2)(x﹣t3),t2=0,d=1时,f(x)=x(x+1)(x﹣1)=x3﹣x,∴f′(x)=3x2﹣1,f(0)=0,f′(0)=﹣1,∴y=f(x)在点(0,f(0))处的切线方程为y﹣0=﹣1×(x﹣0),即x+y=0;(Ⅱ)d=3时,f(x)=(x﹣t2+3)(x﹣t2)(x﹣t2﹣3)=﹣9(x﹣t2)=x3﹣3t2x2+(3﹣9)x﹣+9t2;∴f′(x)=3x2﹣6t2x+3﹣9,令f′(x)=0,解得x=t2﹣或x=t2+;当x变化时,f′(x),f(x)的变化情况如下表;(﹣∞,t2﹣)t2﹣(t 2﹣,t 2+)t 2+(t 2+,+∞)∴f(x)的极大值为f(t2﹣)=﹣9×(﹣)=6,极小值为f(t2+)=﹣9×=﹣6;(Ⅲ)曲线y=f(x)与直线y=﹣(x﹣t2)﹣6有三个互异的公共点,等价于关于x的方程(x﹣t2+d)(x﹣t2)(x﹣t2﹣d)+(x﹣t2)﹣6=0有三个互异的实数根,令u=x﹣t2,可得u3+(1﹣d2)u+6=0;设函数g(x)=x3+(1﹣d2)x+6,则曲线y=f(x)与直线y=﹣(x﹣t2)﹣6有3个互异的公共点,等价于函数y=g(x)有三个不同的零点;又g′(x)=3x2+(1﹣d2),当d2≤1时,g′(x)≥0恒成立,此时g(x)在R上单调递增,不合题意;当d2>1时,令g′(x)=0,解得x1=﹣,x2=;∴g(x)在(﹣∞,x1)上单调递增,在(x1,x2)上单调递减,在(x2,+∞)上也单调递增;∴g(x)的极大值为g(x1)=g(﹣)=+6>0;极小值为g(x2)=g()=﹣+6;若g(x2)≥0,由g(x)的单调性可知,函数g(x)至多有两个零点,不合题意;若g(x2)<0,即>27,解得|d|>,此时|d|>x2,g(|d|)=|d|+6>0,且﹣2|d|<x1;g(﹣2|d|)=﹣6|d|3﹣2|d|+6<0,从而由g(x)的单调性可知,函数y=g(x)在区间(﹣2|d|,x1),(x1,x2),(x2,|d|)内各有一个零点,符合题意;∴d的取值范围是(﹣∞,﹣)∪(,+∞).28.(浙江)函数y=2|x|sin2x的图象可能是()DA. B. C.D.【解答】解:根据函数的解析式y=2|x|sin2x,得到:函数的图象为奇函数,故排除A和B.当x=时,函数的值也为0,故排除C.故选:D.29.(浙江)我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一.凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁,鸡母,鸡雏个数分别为x,y,z,则,当z=81时,x=8,y=11.【解答】解:,当z=81时,化为:,解得x=8,y=11.故答案为:8;11.30.(浙江)已知λ∈R,函数f(x)=,当λ=2时,不等式f(x)<0的解集是{x|1<x<4} .若函数f(x)恰有2个零点,则λ的取值范围是(1,3] .【解答】解:当λ=2时函数f(x)=,显然x≥2时,不等式x﹣4<0的解集:{x|2≤x<4};x<2时,不等式f(x)<0化为:x2﹣4x+3<0,解得1<x<2,综上,不等式的解集为:{x|1<x<4}.函数f(x)恰有2个零点,函数f(x)=的草图如图:函数f(x)恰有2个零点,则λ∈(1,3].故答案为:{x|1<x<4};(1,3].31.(浙江)已知函数f(x)=﹣lnx.(Ⅰ)若f(x)在x=x1,x2(x1≠x2)处导数相等,证明:f(x1)+f(x2)>8﹣8ln2;(Ⅱ)若a≤3﹣4ln2,证明:对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.【解答】证明:(Ⅰ)∵函数f(x)=﹣lnx,∴x>0,f′(x)=﹣,∵f(x)在x=x1,x2(x1≠x2)处导数相等,∴=﹣,∵x 1≠x2,∴+=,由基本不等式得:=≥,∵x 1≠x2,∴x1x2>256,由题意得f(x1)+f(x2)==﹣ln(x1x2),设g(x)=,则,∴列表讨论:∴g(x)在[256,+∞)上单调递增,∴g(x1x2)>g(256)=8﹣8ln2,∴f(x1)+f(x2)>8﹣8ln2.(Ⅱ)令m=e﹣(|a|+k),n=()2+1,则f(m)﹣km﹣a>|a|+k﹣k﹣a≥0,f(n)﹣kn﹣a<n(﹣﹣k)≤n(﹣k)<0,∴存在x0∈(m,n),使f(x0)=kx0+a,∴对于任意的a∈R及k∈(0,+∞),直线y=kx+a与曲线y=f(x)有公共点,由f(x)=kx+a,得k=,设h(x)=,则h′(x)==,其中g(x)=﹣lnx,由(1)知g(x)≥g(16),又a≤3﹣4ln2,∴﹣g(x)﹣1+a≤﹣g(16)﹣1+a=﹣3+4ln2+a≤0,∴h′(x)≤0,即函数h(x)在(0,+∞)上单调递减,∴方程f(x)﹣kx﹣a=0至多有一个实根,综上,a≤3﹣4ln2时,对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.。

全国卷历年高考函数与导数真题归类分析(含答案)

全国卷历年高考函数与导数真题归类分析(含答案)

全国卷历年高考函数与导数真题归类分析(含答案)全国卷历年高考函数与导数真题归类分析(含答案)(2015年-2018年共11套)函数与导数小题(共23小题)一、函数奇偶性与周期性1.(2015年1卷13)若函数$f(x)=x\ln(x+a+x^2)$为偶函数,则$a=$解析】由题知$y=\ln(x+a+x^2)$是奇函数,所以$\ln(x+a+x^2)+\ln(-x+a+x^2)=\ln(a+x-x)=\ln a$,解得$a=1$。

考点:函数的奇偶性。

2.(2018年2卷11)已知$$f(x)=\begin{cases}\frac{x+1}{x},x<0\\ax^2,x\geq0\end{cases}$$ 是定义域为$(-\infty,0)\cup[0,+\infty)$的奇函数,满足$f(\frac{1}{2})=1$。

若,$f'(-1)=-2$,则$a=$解:因为$f(x)$是奇函数,所以$f(-\frac{1}{2})=-1$,$f(0)=0$。

又因为$f'(-1)=-2$,所以$f'(-x)|_{x=1}=2$,$f'(0+)=0$,$f'(0-)=0$。

由此可得$$\begin{aligned}a&=\lim\limits_{x\to 0^+}\frac{f(x)-f(0)}{x-0}\\&=\lim\limits_{x\to 0^+}\frac{ax^2}{x}\\&=\lim\limits_{x\to0^+}ax\\&=\lim\limits_{x\to 0^-}ax\\&=-\frac{1}{2}\end{aligned}$$ 故选B。

3.(2016年2卷12)已知函数$f(x)(x\in R)$满足$f(-x)=2-f(x)$,若函数$y=\sum\limits_{i=1}^m(x_i+y_i)$的图像的交点为$(x_1,y_1),(x_2,y_2),\cdots,(x_m,y_m)$,则$\sum\limits_{i=1}^m(x_i+y_i)=( )$解析】由$f(x)$的奇偶性可得$f(0)=1$,又因为$f(x)$是偶函数,所以$f'(0)=0$。

高考文科数学试题分类汇编----函数与导数

高考文科数学试题分类汇编----函数与导数

函数与导数一 选择题(辽宁文)(11)函数)(x f 的定义域为R ,2)1(=-f ,对任意R ∈x ,2)(>'x f ,则42)(+>x x f 的解集为(A )(1-,1) (B )(1-,+∞) (C )(∞-,1-) (D )(∞-,+∞)(重庆文)3.曲线223y x x =-+在点(1,2)处的切线方程为 A .31y x =- B .35y x =-+C .35y x =+D .2y x =(重庆文)6.设11333124log ,log ,log ,,,233a b c a b c ===则的大小关系是A .a b c <<B .c b a <<C .b a c <<D .b c a <<(重庆文)7.若函数1()2f x x n =+-(2)n >在x a =处取最小值,则a =A.1+ B.1 C .3D .4(辽宁文)(6)若函数))(12()(a x x xx f -+=为奇函数,则a =(A )21 (B )32 (C )43(D )1 (上海文)15.下列函数中,既是偶函数,又是在区间(0,)+∞上单调递减的函数为 A .2y x -=B .1y x -=C .2y x =D .13y x =(全国新课标文)(3)下列函数中,既是偶函数又在(0,)+∞单调递增的函数是(A )3y x = (B )||1y x =+ (C )21y x =-+ (D )||2x y -=(全国新课标文)(10)在下列区间中,函数()43xf x e x =+-的零点所在的区间为(A )1(,0)4- (B )1(0,)4 (C )11(,)42 (D )13(,)24(全国新课标文)(12)已知函数()y f x =的周期为2,当[1,1]x ∈-时2()f x x =,那么函数()y f x =的图象与函数|lg |y x =的图象的交点共有(A )10个 (B )9个 (C )8个 (D )1个 (全国大纲文)2.函数0)y x =≥的反函数为A .2()4x y x R =∈ B .2(0)4x y x =≥C .24y x =()x R ∈D .24(0)y x x =≥(全国大纲文)10.设()f x 是周期为2的奇函数,当0≤x≤1时,()f x =2(1)x x -,则5()2f -=A .-12B .1 4-C .14D .12(湖北文)3.若定义在R 上的偶函数()f x 和奇函数()g x 满足()()xf x gx e +=,则()g x =A .xxe e-- B .1()2x xe e -+ C .1()2xx e e -- D .1()2x xe e -- (福建文)6.若关于x 的方程x 2+mx+1=0有两个不相等的实数根,则实数m 的取值范围 A .(-1,1) B .(-2,2) C .(-∞,-2)∪(2,+∞) D .(-∞,-1)∪(1,+∞)(福建文)8.已知函数f (x )=。

山东省高考数学文科汇总--函数与导数

山东省高考数学文科汇总--函数与导数

近年山东文科高考分类汇编---函数与导数部分【2016山东(文)】20.设f(x)=xlnx﹣ax2+(2a﹣1)x,a∈R.(Ⅰ)令g(x)=f′(x),求g(x)的单调区间;(Ⅱ)已知f(x)在x=1处取得极大值,求实数a的取值范围.【解析】解:(Ⅰ)∵f(x)=xlnx﹣ax2+(2a﹣1)x,∴g(x)=f′(x)=lnx﹣2ax+2a,x>0,g′(x)=﹣2a=,当a≤0,g′(x)>0恒成立,即可g(x)的单调增区间是(0,+∞);当a>0,当x>时,g′(x)<0,函数为减函数,当0<x<,g′(x)>0,函数为增函数,∴当a≤0时,g(x)的单调增区间是(0,+∞);当a>0时,g(x)的单调增区间是(0,),单调减区间是(,+∞);(Ⅱ)∵f(x)在x=1处取得极大值,∴f′(1)=0,①当a≤0时,f′(x)单调递增,则当0<x<1时,f′(x)<0,f(x)单调递减,当x>1时,f′(x)>0,f(x)单调递增,∴f(x)在x=1处取得极小值,不合题意,②当0<a<时,>1,由(1)知,f(x)在(0,)内单调递增,当0<x<1时,f′(x)<0,当1<x<时,f′(x)>0,∴f(x)在(0,1)内单调递减,在(1,)内单调递增,即f(x)在x=1处取得极小值,不合题意.③当a=时,=1,f′(x)在(0,1)内单调递增,在(1,+∞)上单调递减,则当x>0时,f′(x)≤0,f(x)单调递减,不合题意.④当a>时,0<<1,当<x<1时,f′(x)>0,f(x)单调递增,当x>1时,f′(x)<0,f(x)单调递减,∴当x=1时,f(x)取得极大值,满足条件.综上实数a的取值范围是a>.【2015山东(文)】20. (本小题满分13分)设函数. 已知f处的切线与直线平行.曲线在点(1,(1)))由题意知,曲线在点【2014山东(文)】(20) (本小题满分13分) 设函数 x 1f(x)=alnx +x +1-,其中a 为常数. (I)若0a =,求曲线()y f x =在点(1,(1))f 处的切线方程; (II )讨论函数()f x 的单调性.【解析】20、(1)0a =当时212(),()1(1)x f x f x x x -'==++ 221(1)(11)2f '==+ (1)0(1,0)f =∴ 又直线过点1122y x ∴=- (2) 22()(0)(1)a f x x x x '=+>+ 220()0.()(1)a f x f x x '==+①当时,恒大于在定义域上单调递增. 2222(1)20()=0.()(1)(1)a a x x a f x f x x x x x ++'>=+>++②当时,在定义域上单调递增. 2210(22)4840,.2a a a a a <∆=+-=+≤≤-③当时,即()f x 开口向下,在定义域上单调递减。

历年高考文科数学汇编函数和导数.doc

历年高考文科数学汇编函数和导数.doc

历年高考文科数学汇编一一函数与导数一、选择题(2018.6)设函数/(兀)=丘+(。

-1)++似.若/⑴为奇函数,则曲线y = f(x)在点((),0)处的切 线方程为(D )A. y = -2xB.歹=一兀 C- y = 2 兀 D ・ V = x3T JT JI JI(A) y=2sin(2x+^-) (B) y=2sin(2x+~^~) (C) y 二2sin(2x-才) (D) y 二2sin(2x-亍) (2014.5)设函数/(兀)曲)的定义域为尺,且/(兀)是奇函数,&(兀)是偶函数,则下列结论 中正确的是(C )A./3g(x)是偶函数B. L/3lg 。

)是奇函数C. /(兀)虫(兀)1是奇函数D. 是奇函数 (2016.8)若 a>b>0, 0<c<l,则(B )(A) log a c<logbC (B) log c a<log c b (C) ac<bc (D) ca>cb07 r <C0 (2018.12) 设函数/(x) = f '则满足/(x + l)</(2x)的x 的取值范围是(D )1 , x>0(2018.8) 已知函数/(x) = 2cos 2x-sin 2x+ 2,贝!J (/(x)的最小正周期为兀,最大值为3/(%)的最小正周期为兀,最大值为4 /(兀)的最小正周期为2兀,最大值为3/(X )的最小正周期为2兀,最大值为4cin 9 YA. B. C. D. (2017.8) 函数y 二严竺的部分图像大致为( 1 一COSX C B. D. (D)(2017.9)已知函数 f(x) = lnx + ln(2-x),A. /(兀)在(0,2)单调递增C. y= f(x)的图像关于直线x<L 对称 兀 ) /⑴在(0,2) y= fM 的图像关于点(1,0)对称 单调递减1 _ 一 (2016.6)若将函数y=2sin (2x+y)的图像向右平移玄个周期后,所得图像对应的函数为(D ) ) C oOX-l _ O Y < 1 沁 2(X+d"l'且则 f®)=(5 3 (B) -- (C)-- 4 4 (2016.12) 若函数f(x) = x--sin 2x + as\nx 在(YO ,+OO )单调递增,则a 的取值范围是(2 2解:广(X )= 1 ——COS2% + tzCOSX..0 对 X G R 恒成立,故 1 ——(2cos?兀一 l ) + GCOSX..0 , 即 6ZCOSX- —COS 2 X + -..0 恒成立,即一爲2 +〃 +」..[)对 r e [-l,l ]恒成立,4 5 构造/(/) =-4尸+ m ,开口冋卜的二次函数/⑴的最小值的口J 能值为端点值,解:根据题中函数特征,当时,函数/(兀)=-3^+1显然有两个零点且一正一负;当 。

高中高考数学函数与导数分类汇编文.docx

高中高考数学函数与导数分类汇编文.docx

2011-2019新课标文科高考《函数与导数》一、选择题【 2019 新课标10.20.3)】 3.已知a log20.2, b 2 ,c0.2 ,则(A .a b cB .a c b C.c a b 【答案】 B【 2019 新课标1sin x x】 5.函数 f(x)=2在 [ —π,π]的图像大致为cos x xA .B .C. D .【答案】D【 2019新课标 2 】 6.设 f(x) 为奇函数,且当xx≥0时, f(x)= e 1,则当x1x xA .eB .e1C .e1【答案】D【2019 新课标 2 】 10.曲线 y=2sinx+cosx 在点 ( π,–1)处的切线方程为(A .x y 1 0 B .2 x y 2 1 0 C.2 x y 2 1 0 D .x y 1 0【答案】 Cy x x x1, ae 处的切线方程【 2019新课标3】 7.已知曲线a在点e lnA. a e, b1B. a e, b 1C. a e 1 ,b 1【答案】C【详解】f x 是 R 的偶函数,f log 31f log 3 4 .43 f x 在 (0, +∞)单调递减, f log 3 42,又 log 3 4 1 2 23 21f 22f 23f log 3,故选 C .4【点睛】本题主要考查函数的奇偶性、单调性,考查学生转化与化归及分析问题力.【 2018 新课标 1 】6 .设函数3 2f ( x) x ( a 1) xax . 若 f ( x) 为奇函数,处的切线方程为()A . y2 x B . yxC . y2 x D .【答案】 D【 2018 新课标】 12.设函数A . (, 1] B .【答案】 D2 x,x ≤ 0, 1) f (2f ( x )则满足 f (x1,x 0,(0,)C . ( 1,0)D .xx【 2018 新课标 2 】 3.函数ee)f (x )x 2的图象大致为(【 2018 新课标 3 】 9.函数y x4x2 2 的图像大致为()【答案】 D【 2017 新课标 1 】 9.已知函数 f ( x )ln x ln(2x),则(C)A . f ( x)在( 0,2)单调递增B .f (x )在( 0,2 )单C. y= f (x )的图像关于直线x=1 对称 D . y= f (x)的图像关【 2017 新课标 2 】 8. 函数f ( x)ln( x 2的单调递增区间是(2 x 8)A.(-,-2)B. (-,-1)C.(1, +)D. (4, +)2【解析】由 x ﹣ 2x﹣ 8> 0 得: x∈(﹣∞,﹣ 2)∪( 4, +∞),令 t=x2﹣ 2x ﹣ 8,则 y=lnt ,∵ x∈(﹣∞,﹣ 2)时, t=x2﹣ 2x ﹣ 8为减x ∈( 4 , +∞)时, t=x 2﹣ 2x ﹣ 8 为增函数;y=lnt 为增函数,故函数 f ( x) =ln ( x2﹣ 2x ﹣ 8)的单调递增区间是(4, +∞),故选:【 2017 新课标 3 】 7. 函数y1x sin x的部分图像大致为(D 2xB .C.【 2017 新课标 3 】 12. 已知函数2x 1x 1f ( x ) x 2 x a(e e ) 有唯一111A B C D 1【 2016新 1 】( 12)若函数 f ( x)x -1a sin x 在, sin2 x3是(C)( A )1,1 (B)1,111( D )1( C)3,1,333y=10 lg【 2016新 2 】10. 下列函数中,其定域和域分与函数( D)( A ) y=x( B) y=lg xx( D )y ( C) y=2【解析】 y 10lg x x ,定域与域均0,,只有 D 足,故【 2016新 2 】 12. 已知函数f(x) ( x∈ R)足 f(x)=f(2-x),若函数m交点( x1,y 1), (x2,y2 ),⋯,(x m,y m),x i =(B)i 1(A)0(B)m(C) 2m(D) 4m 【解析】因 y f ( x), y| x 2 2 x 3| 都关于x 1 称,所以它交点偶数,其和2mm ,当 m 奇数,其和m11 m ,222421【 2016新 3 】( 7)已知a 2 3 , b33 , c 25 3,(A)(A)b<a<c(B) a<b<c(C) b<c<a(D) c<a<b 【2016 新 3 】( 4)某旅游城市向游客介本地的气温情况,制了一年中各月平均最高气温和平均最低气温的雷达 .中 A 点表示十月的平均最高气温15℃, B 点表示四月的平均最低气温5℃ .下面叙述不正确的是( D )( A )各月的平均最低气温都在0℃以上( B )七月的平均温差比一月的平均温差大1B. (,1(1,) C. (11) D.A. ( ,1))3,333[解析 ] 因为函数 f ( x)ln(1x )12 , 是偶函数, x[ 0,)时函x1f ( x) f ( 2 x 1)x 2 x1,2(2 x211.故x1) , 解得x3【 2015新课标 2 】 11.如图,长方形的边AB=2 , BC=1,O是 AB 的中P 沿着边 BC,CD, 与 DA 运动,记∠ BOP=x ,将动点P 到 A,B 两点的距和表示为函数 f (x ),则 f(x) 的图像大致为(B)Y Y Y2222O ππ3π πX O ππ3π πππ 3 ππXXO424424244CA B[解析 ] 如图,当点P 在 BC 上时,∵DBOP= x,PB=tan x,PA=4+ t2时取得最大值 15 PA+ PB= tan x + 4 + tan x ,当x4定点作椭圆,显然,当点 P 在 C,D 之间移动时 PA+PB< 15 B.,以 A .又函数【 2014 新课标 1 】5. 设函数 f ( x ), g( x ) 的定义域为R ,且 f (x )是奇函列结论中正确的是(C)A. f ( x) g ( x) 是偶函数B.| f ( x) | g ( x) 是奇函数C. f ( x) | g ( x) | 是奇函数D.| f ( x) g ( x ) | 是奇函数【参考答案】:设 F ( x) f ( x) g ( x) ,则 F ( x) f ( x) g ( x) ,∵当 a 0时, x,20; x2,0 , f ( x) 0; x0, , f ( x)aa要使 f ( x) 有唯一的零点24 ,a x0且 x0>0,只需 f (2) 0 ,即aa[解析 2]由已知a0 , f ( x )=ax32有唯一的正零点,等价于3 x11,则问题又等价于a33t有唯一的正零根有唯一的正零根,令 t tx有唯一的交点且交点在在y 轴右侧,记f (t)33t , f (t )2 t3tt, 1 , f (t)0; t1,1, f (t )0; , t1,, f (t )0,正零根,只需a f ( 1) 2 ,选C【 2014新课标 2 】 3. 函数f x在 x x0处导数存在,若p : f( x0 )点,则(C)( A )p是q的充分必要条件( B )p是q的充分条件,但不是( C)p是q的必要条件,但不是q 的充分条件( D )p既不是q的充分条件,也不是q 的必要条件【 2014新课标 2 】( 11)若函数 f ( x)kx ln x 在区间(1,+)单调( D )( A ), 2(B), 1(C)2,(D)1,【 2013 新课标 1 】 12.已知函数f(x) =20,若x 2 x, xln( x1), x0.|f(x)|≥ax,则a的取值范围是( D ).A . ( -∞, 0)B . (-∞, 1)C . [ - 2,1]D . [ - 2,0]【解析】可画出|f(x)| 的图象如图所示.当 a> 0 时, y= ax 与 y = |f(x)| 恒有公共点,所以排除B, C;【 2013 新课标 2 】 11.已知函数3 2f(x) = x + ax + bx + c ,下列结论中错误A . ? x 0 ∈ R , f(x 0)= 0B .函数 y = f(x) 的图像是中心对称图形C .若 x 0 是 f(x) 的极小值点,则 f(x) 在区间 ( -∞, x 0)单调递减D .若 x 0 是 f(x) 的极值点,则 f ′0 )= 0(x [解析 ] 若 x 0 是 f(x) 的极小值点,则 y = f(x) 的图像大致如下图所示,则在 (-∞, x 0)上不单调,故C 不正确.【 2013 新课标 2 】 12. 若存在正数 x 使 2x(x - a)< 1 成立,则 a 的取值范围是 ( D).A . ( -∞,+ ∞ )B . (- 2,+ ∞ )C . (0,+ ∞ )D . (- 1,+ ∞)1xx[解析 ] 由题意可得, a x1,该函数2(x > 0).令 f(x) = x2可知 f(x) 的值域为 (- 1,+ ∞),故 a >- 1 时,存在正数 x 使原不等式成【 2012 新课标 1 】 11.当 0< x ≤1xlog a x ,则 a 的取值范围是时, 42A . (0 ,2) B . ( 222, 1)C . (1 , 2 )D . ( 2 , 2)a1[解析 ] :由指数函数与对数函数的图像知11,解得 0alog a4 22【 2012 新课标 2 】 2.函数 yx1( x1)的反函数为(A)21( x 0)B . y x221( x 0)DA . y x 1( x 1) C . yx【解析】由yx1x12x21,而 x1,故 yyy21( x0) ,故选答案Ay x1【 2012新课标 2 】 11.已知x ln, y log 5 2 ,z e 2 ,则(【 2011新课标1】 (5) 下面四个条件中,使a b 成立的充分而不必要的条2233( A )a>b 1( B )a>b 1( C)a>b( D )a>b【解析】即寻找命题P ,使 P a b ,且 a b 推不出 P ,逐项验证知可【 2011 新课标1】(10)设 f( x ) 是周期为2的奇函数,当0x 1 时,f ((A)(A) -1(B)11(D)1 24(C)24【解析】由f( x ) 是周期为 2 的奇函数 ,利用周期性和奇偶性得:f (5f (5f (111(111 )2)) f ( )2)2 222222【 2011新课标2】 3.下列函数中,既是偶函数又在( 0,+)单调递增A .y x3B .y | x | 1C .y x21D .y 2 [解析 ] 可以直接判断: A 是奇函数, B 是偶函数,又是(0, +∞)的【 2011新课标2】 10.在下列区间中,函数f(x)=e x+4x-3 的零点所在的A .(1,0)B.(0,1)C.(1,1) D .(1,3)444224[解析 ] :只需验证端点值,凡端点值异号就是答案. 故选 C.【 2011新课标2】 12.已知函数y = f (x) 的周期为2,当 x ∈ [-1,1] 时 f 的图像与函数y = |lgx| 的图像的交点共有(A)A . 10 个B. 9 个C. 8 个 D . 1 个[解析 ] :本题可用图像法解,易知共10 个交点,故选 A.1二、填空题【 2019 新课标 1 】 13.曲线y 3(x 2x) e x在点(0,0)处的切线方程为【答案】y=3x【 2018新课标1】 13.已知函数 f ( x )log 2 ( x 2a) .若 f (3) 1 ,则 a 【答案】 -7【 2018新课标2】 13.曲线y2ln x 在点(1,0)处的切线方程为_____【答案】 y=2x –2【 2018新课标3】 16.已知函数f x ln12x 1 , f a 4 ,x【答案】 -2【 2016新课标3】( 16)已知 f (x) 为偶函数,当x0 时, f ( x)x e(1,2) 处的切线方程式__ y 2 x ________【 2015新课标1】( 14)已知函数f(x)=ax 3 +x+1的图像在点(1, f(1) a= 1.【 2015新课标2】( 13)已知函数 f (x)ax 3 2 x的图像过点( - 1,【 2015新课标2】( 16)已知曲线y x ln x 在点(1,1)处的切线与曲y ax 2(a2)x1相切,则 a8。

高考数学分类汇编函数(包含导数)

高考数学分类汇编函数(包含导数)

高考数学分类汇编函数(包含导数)一、选择题1.(市回民中学2008-2009学年度上学期高三第二次阶段测试文科) 函数x x x f ln )(+=的零点所在的区间为 ( )A .(-1,0)B .(0,1)C .(1,2)D .(1,e )答案:B.2(市回民中学2008-2009学年度上学期高三第二次阶段测试文科)具有性质:1()()f f x x =-的函数,我们称为满足“倒负”变换的函数,下列函数:①1y x x=-;②1y x x =+;③,(01)0,(1)1(1)x x y x x x⎧⎪<<⎪==⎨⎪⎪->⎩中满足“倒负”变换的函数是( )A .①②B .①③C .②③D .只有① 答案:B.3.(二中2009届高三期末数学试题) 已知0||2||≠=b a ,且关于x 的函数x b a x a x x f ⋅++=23||2131)(在R 上有极值,则与的夹角围为( ) A .)6,0[π B .],6(ππC .],3(ππD .2[,]33ππ答案:C.4.(二中2009届高三期末数学试题)已知函数()f x 是定义在R 上的偶函数,且对任意x ∈R ,都有(1)(3)f x f x -=+。

当[4,6]x ∈时,()21x f x =+,设函数()f x 在区间[2,0]-上的反函数为1()f x -,则1(19)f -的值为 A .2log 3- B .22log 3- C .212log 3-D .232log 3-答案:D.5.(省二中2008—2009学年上学期高三期中考试)已知),(,)1(log )1()3()(+∞-∞⎩⎨⎧≥<--=是x x x ax a x f a 上是增函数,那么实数a 的取值围是()A .(1,+∞)B .(3,∞-)C .)3,23[D .(1,3)答案:C.6.(省二中2008—2009学年上学期高三期中考试) 若关于x 的方程,01)11(2=+++xx a ma (a>0,且1≠a )有解,则m 的取值围是() A .)0,31[- B .]1,0()0,31[ - C .]31,(--∞D .),1(+∞答案:A.7.(省二中2008—2009学年上学期高三期中考试)已知函数)(x f 是定义在R 上的偶函数,且对任意R x ∈,都有)3()1(+=-x f x f 。

全国卷历年高考函数与导数真题归类分析(含答案)

全国卷历年高考函数与导数真题归类分析(含答案)

全国卷历年高考函数与导数真题归类分析(含答案)(2015年-2018年共11套) 函数与导数小题(共23小题)一、函数奇偶性与周期性1.(2015年1卷13)若函数f (x )=ln(x x +为偶函数,则a=【解析】由题知ln(y x =是奇函数,所以ln(ln(x x ++- =22ln()ln 0a x x a +-==,解得a =1.考点:函数的奇偶性2.(2018年2卷11)已知是定义域为的奇函数,满足.若,则A.B. 0C. 2D. 50解:因为是定义域为的奇函数,且,所以,因此,因为,所以,,从而,选C.3.(2016年2卷12)已知函数()()R f x x ∈满足()()2f x f x -=-,若函数1x y x+=与()y f x =图像的交点为()11x y ,,()22x y ,,⋯,()m m x y ,,则()1mi i i x y =+=∑( )(A )0 (B )m (C )2m(D )4m【解析】由()()2f x f x =-得()f x 关于()01,对称,而111x y x x +==+也关于()01,对称, ∴对于每一组对称点'0i i x x += '=2i i y y +,∴()111022mmmi i i i i i i mx y x y m ===+=+=+⋅=∑∑∑,故选B .二、函数、方程与不等式4.(2015年2卷5)设函数211log (2),1,()2,1,x x x f x x -+-<⎧=⎨≥⎩,2(2)(log 12)f f -+=( )(A )3 (B )6 (C )9 (D )12【解析】由已知得2(2)1log 43f -=+=,又2log 121>, 所以22log 121log 62(log 12)226f -===,故,2(2)(log 12)9f f -+=.5.(2018年1卷9)已知函数.若g (x )存在2个零点,则a 的取值范围是A. [–1,0)B. [0,+∞)C. [–1,+∞)D. [1,+∞) 解:画出函数的图像,在y 轴右侧的去掉,画出直线,之后上下移动,可以发现当直线过点A 时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.6.(2017年3卷15)设函数1,0,()2,0,+⎧=⎨>⎩x x x f x x ≤则满足1()()12f x f x +->的x 的取值范围是________.【解析】()1,02 ,0+⎧=⎨>⎩x x x f x x ≤,()112f x f x ⎛⎫+-> ⎪⎝⎭,即()112f x f x ⎛⎫->- ⎪⎝⎭由图象变换可画出12y f x ⎛⎫=- ⎪⎝⎭与()1y f x =-的图象如下:1141)2-)由图可知,满足()112f x f x ⎛⎫->- ⎪⎝⎭的解为1,4⎛⎫-+∞ ⎪⎝⎭.7.(2017年3卷11)已知函数211()2(e e )x x f x x x a --+=-++有唯一零点,则a =()A .1-2B .13C .12 D .1【解析】由条件,211()2(e e )x x f x x x a --+=-++,得:221(2)1211211(2)(2)2(2)(e e )4442(e e )2(e e )x x x x x x f x x x a x x x a x x a ----+----+-=---++=-+-+++=-++∴(2)()f x f x -=,即1x =为()f x 的对称轴,由题意,()f x 有唯一零点,∴()f x 的零点只能为1x =,即21111(1)121(e e )0f a --+=-⋅++=,解得12a =.三、函数单调性与最值8.(2017年1卷5)函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]- B .[1,1]- C .[0,4] D .[1,3]【解析】:()()()()12112112113f x f f x f x x -≤-≤⇒≤-≤-⇒-≤-≤⇒≤≤故而选D 。

2019年高考文科函数与导数一-8页文档资料

2019年高考文科函数与导数一-8页文档资料

2019年高考数学(文)试题分类汇编函数与导数一. 选择题:1.(全国一1)函数y = D ) A .{|1}x x ≤B .{|0}x x ≥C .{|10}x x x ≥或≤D .{|01}x x ≤≤2.(全国一2)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( A )3.(全国一4)曲线324y x x =-+在点(13),处的切线的倾斜角为( B ) A .30°B .45°C .60°D .120°4.(全国一8)若函数()y f x =的图象与函数1y =的图象关于直线y x =对称,则()f x =( A ) A .22e x -B .2e xC .21e x +D .2+2e x5.(全国二4)函数1()f x x x=-的图像关于( C ) A .y 轴对称B . 直线x y -=对称C . 坐标原点对称D . 直线x y =对称6.(全国二5)若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( C ) A .a <b <c B .c <a <b C . b <a <c D . b <c <a7.(全国二7)设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a ( A ) A .1B .12C .12-D .1-8.(安徽卷6)函数2()(1)1(0)f x x x =-+≤的反函数为CA .B .C .D .A .1()11(1)f x x x -=--≥B . 1()11(1)f x x x -=+-≥C .1()11(2)f x x x -=--≥D . 1()11(2)f x x x -=--≥9.(安徽卷9).设函数1()21(0),f x x x x=+-< 则()f x ( A )A .有最大值B .有最小值C .是增函数D .是减函数10.(北京卷2)若372log πlog 6log 0.8a b c ===,,,则( A ) A .a b c >>B .b a c >>C .c a b >>D .b c a >>11.(北京卷5)函数2()(1)1(1)f x x x =-+<的反函数为( B ) A .1()11(1)f x x x -=+-> B .1()11(1)f x x x -=--> C .1()11(1)f x x x -=+-≥D .1()11(1)f x x x -=--≥12.(福建卷11)如果函数y=f (x )的图象如右图,那么导函数y=f (x )的图象可能是A13.(广东卷8) 命题“若函数()log (0,1)a f x x a a =>≠在其定义域内是减函数,则log 20a <”的逆否命题是( A )A 、若log 20a ≥,则函数()log (0,1)a f x x a a =>≠在其定义域内不是减函数B 、若log 20a <,则函数()log (0,1)a f x x a a =>≠在其定义域内不是减函数C 、若log 20a ≥,则函数()log (0,1)a f x x a a =>≠在其定义域内是减函数D 、若log 20a <,则函数()log (0,1)a f x x a a =>≠在其定义域内是减函数14.(广东卷9)设a R ∈,若函数x y e ax =+,x R ∈,有大于零的极值点,则( A )A 、1a <-B 、1a >-C 、1a e <-D 、1a e>-15.(海南卷4)设()ln f x x x =,若0'()2f x =,则0x =( B )A. 2eB. eC. ln 22D. ln 216.(湖北卷6)已知()f x 在R 上是奇函数,且2(4)(),(0,2)()2,(7)f x f x x f x x f +=∈==当时,则 AA.-2B.2C.-98D.9817.(湖北卷8) 函数1()1f x n x =+ DA.(,4][2,)-∞-+∞B. (4,0)(0,1)-⋃C.[4,0)(0,1]-D.[4,0)(0,1]-⋃18.(福建卷4)函数f (x )=x 3+sin x +1(x ∈R),若f (a )=2,则f (-a )的值为B A.3 B.0 C.-1 D.-2 19.(湖南卷4)函数)0()(2≤=x x x f 的反函数是( B ))0()(.1≥=-x x x f A )0()(.1≥-=-x x x fB)0()(.1≤--=-x x x fC )0()(.21≤-=-x x x fD20.(湖南卷6)下面不等式成立的是( A )A .322log 2log 3log 5<<B .3log 5log 2log 223<<C .5log 2log 3log 232<<D .2log 5log 3log 322<< 21.(江西卷3)若函数()y f x =的定义域是[0,2],则函数(2)()1f xg x x =-的定义域是B A .[0,1] B .[0,1) C . [0,1)(1,4]U D .(0,1) 22.(江西卷4)若01x y <<<,则CA .33y x <B .log 3log 3x y <C .44log log x y <D .11()()44x y <23.(江西卷12)已知函数2()2(4)4f x x m x m =+-+-,()g x mx =,若对于任一实数x ,()f x 与()g x 的值至少有一个为正数,则实数m 的取值范围是CA . [4,4]-B .(4,4)-C . (,4)-∞D .(,4)-∞- 24.(辽宁卷2)若函数(1)()y x x a =+-为偶函数,则a =( C )25.(辽宁卷6)设P 为曲线C :223y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为04π⎡⎤⎢⎥⎣⎦,,则点P 横坐标的取值范围为( A )A .112⎡⎤--⎢⎥⎣⎦,B .[]10-,C .[]01,D .112⎡⎤⎢⎥⎣⎦, 27.(辽宁卷8)将函数21x y =+的图象按向量a 平移得到函数12x y +=的图象,则( A ) A .(11)=--,aB .(11)=-,aC .(11)=,aD .(11)=-,a28.(山东卷3)函数ππln cos 22y x x ⎛⎫=-<< ⎪⎝⎭的图象是( A )29.(山东卷4)给出命题:若函数()y f x =是幂函数,则函数()y f x =的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( C ) A .3 B .2 C .1 D .030.(山东卷5)设函数2211()21x x f x x x x ⎧-⎪=⎨+->⎪⎩,,,,≤则1(2)f f ⎛⎫⎪⎝⎭的值为( A ) A .1516B .2716-C .89D .1831.(山东卷12)已知函数()log (21)(01)x a f x b a a =+->≠,的图象如图所示,则a b ,满足的关系是( A ) A .101a b -<<<B .101b a -<<<C .101b a -<<<-D .1101a b --<<<32.(陕西卷7)已知函数3()2x f x +=,1()f x -是()f x 的反函数,若16mn =(m n ∈+R ,),则11()()f m f n --+的值为( D )xxA .B .C .D .x33.(陕西卷11)定义在R 上的函数()f x 满足()()()2f x y f x f y xy +=++(x y ∈R ,),(1)2f =,则(2)f -等于( A )A .2B .3C .6D .934.(四川卷2)函数()1ln 212y x x ⎛⎫=+>- ⎪⎝⎭的反函数是( C )(A)()112x y e x R =-∈ (B)()21x y e x R =-∈(C)()()112xy e x R =-∈ (D)()21xy e x R =-∈35.(四川卷9)函数()f x 满足()()213f x f x ⋅+=,若()12f =,则()99f =( C ) (A)13 (B)2 (C)132 (D)21336.(天津卷3)函数14)y x =≤≤的反函数是( A ) A .2(1)(13)y x x =-≤≤ B .2(1)(04)y x x =-≤≤ C .21(13)y x x =-≤≤D .21(04)y x x =-≤≤37.(天津卷10)设1a >,若对于任意的[]2x a a ∈,,都有2y a a ⎡⎤∈⎣⎦,满足方程log log 3a a x y +=,这时a 的取值的集合为( B )A .{}12a a <≤B .{}2a a ≥C .{}23a a ≤≤D .{}23,38.(重庆卷6)函数1210-=xy(0<x ≤1)反函数是D(A)1)10y x => (B)y x >110)(C) y =110<x ≤)1 (D) y =110<x ≤)139.(重庆卷7)函数f (x 的最大值为B(A)25(B)12(C)2(D)140.(重庆卷12)函数f (x(0≤x ≤2π)的值域是C(A)[-11,44](B)[-11,33] (C)[-11,22](D)[-22,33]二. 填空题:1.(安徽卷13)函数2()f x =的定义域为 .[3,)+∞2.(北京卷13)如图,函数()f x 的图象是折线段ABC ,其中A B C ,,的坐标分别为(04)(20)(64),,,,,,则((0))f f = ;函数()f x 在1x =处的导数(1)f '= .3.(北京卷14)已知函数2()cos f x x x =-,对于ππ22⎡⎤-⎢⎥⎣⎦,上的任意12x x ,,有如下条件:①12x x >; ②2212x x >; ③12x x >.其中能使12()()f x f x >恒成立的条件序号是 .②4.(湖北卷13)方程223x x -+=的实数解的个数为 . 25.(湖南卷15)设[]x 表示不超x 的最大整数,(如[]145,22=⎥⎦⎤⎢⎣⎡=)。

高考文科数学导数真题汇编(带答案)

高考文科数学导数真题汇编(带答案)

高考文科数学导数真题汇编(带答案)高考数学文科导数真题汇编答案一、客观题组4.设函数f(x)在R上可导,其导函数f'(x),且函数f(x)在x=-2处取得极小值,则函数y=xf'(x)的图象可能是。

5.设函数f(x)=x^2-2x,则f(x)的单调递减区间为。

7.设函数f(x)在R上可导,其导函数f'(x),且函数f(x)在x=2处取得极大值,则函数y=xf'(x)的图象可能是。

8.设函数f(x)=1/(2x-lnx),则x=2为f(x)的极小值点。

9.函数y=1/(2x-lnx)的单调递减区间为(0,1]。

11.已知函数f(x)=x^2+bx+c的图象经过点(1,2),且在点(2,3)处的切线斜率为4,则b=3.12.已知函数f(x)=ax^2+bx+c的图象过点(1,1),且在点(2,3)处的切线斜率为5,则a=2.二、大题组2011新课标】21.已知函数f(x)=aln(x/b)+2,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y-3=0.(1) 求a、b的值;(2) 证明:当x>1,且x≠b时,f(x)>2ln(x/b)。

解析】1) f'(x)=a/(xlnb)+2/x,由于直线x+2y-3=0的斜率为-1/2,且过点(1,f(1)),解得a=1,b=1.2) 由(1)知f(x)=ln(x)+1,所以f(x)-2ln(x/b)=ln(x/b)+1>0,当x>1,且x≠b时,f(x)>2ln(x/b)成立。

2012新课标】21.设函数f(x)=ex-ax-2.(1) 求f(x)的单调区间;(2) 若a=1,k为整数,且当x>0时,(x-k)f'(x)+x+1>0,求k的最大值。

解析】1) f(x)的定义域为(-∞,+∞),f'(x)=ex-a,若a≤0,则f'(x)>0,所以f(x)在(-∞,+∞)单调递增。

高考文科数学试题分类汇编----函数与导数

高考文科数学试题分类汇编----函数与导数

函数与导数一 选择题(辽宁文)(11)函数)(x f 的定义域为R ,2)1(=-f ,对任意R ∈x ,2)(>'x f ,则42)(+>x x f 的解集为(A )(1-,1) (B )(1-,+∞) (C )(∞-,1-) (D )(∞-,+∞) (重庆文)3.曲线223y x x =-+在点(1,2)处的切线方程为 A .31y x =- B .35y x =-+C .35y x =+D .2y x =(重庆文)6.设11333124log ,log ,log ,,,233a b c a b c ===则的大小关系是 A .a b c<<B .c b a <<C .b a c <<D .b c a <<(重庆文)7.若函数1()2f x x n =+-(2)n >在x a =处取最小值,则a = A.1+B.1+ C .3D .4(辽宁文)(6)若函数))(12()(a x x xx f -+=为奇函数,则a =(A )21 (B )32 (C )43(D )1 (上海文)15.下列函数中,既是偶函数,又是在区间(0,)+∞上单调递减的函数为 A .2y x -=B .1y x -=C .2y x =D .13y x =(全国新课标文)(3)下列函数中,既是偶函数又在(0,)+∞单调递增的函数是(A )3y x = (B )||1y x =+ (C )21y x =-+ (D )||2x y -=(全国新课标文)(10)在下列区间中,函数()43xf x e x =+-的零点所在的区间为(A )1(,0)4- (B )1(0,)4 (C )11(,)42 (D )13(,)24(全国新课标文)(12)已知函数()y f x =的周期为2,当[1,1]x ∈-时2()f x x =,那么函数()y f x =的图象与函数|lg |y x =的图象的交点共有 (A )10个 (B )9个 (C )8个 (D )1个 (全国大纲文)2.函数0)y x =≥的反函数为A .2()4x y x R =∈ B .2(0)4x y x =≥C .24y x =()x R ∈D .24(0)y x x =≥(全国大纲文)10.设()f x 是周期为2的奇函数,当0≤x≤1时,()f x =2(1)x x -,则5()2f -=A .-12B .1 4-C .14D .12(湖北文)3.若定义在R 上的偶函数()f x 和奇函数()g x 满足()()xf x gx e +=,则()g x =A .xxe e-- B .1()2x xe e -+ C .1()2xx e e -- D .1()2x xe e -- (福建文)6.若关于x 的方程x 2+mx+1=0有两个不相等的实数根,则实数m 的取值范围 A .(-1,1) B .(-2,2) C .(-∞,-2)∪(2,+∞) D .(-∞,-1)∪(1,+∞)(福建文)8.已知函数f (x )=。

天津历年高考文科数学试题及答案汇编十一函数和导数

天津历年高考文科数学试题及答案汇编十一函数和导数

天津历年高考文科数学试题及答案汇编十一函数和导数1.函数(0≤x≤4)的反函数是什么?A。

y=(x-1) (1≤x≤3)B。

y=(x-1) (0≤x≤4)C。

y=x-1 (1≤x≤3)D。

y=x-1 (0≤x≤4)2.已知函数,则不等式f(x)≥x的解集是什么?A。

[-1,1]B。

[-2,2]C。

[-2,1]D。

[-1,2]3.若对于任意的x∈[a,2a],都有y∈[a,a]满足方程loga x+loga y=3,这时a的取值集合为什么?A。

{a|1<a≤2}B。

{a|a≥2}C。

{a|2≤a≤3}D。

{2,3}4.设a=log2,b=log3,c=(),则()0.3A。

a<b<cB。

a<c<bC。

b<c<aD。

b<a<c5.已知函数的最小正周期为π,将y=f(x)的图象向左平移|φ|个单位长度,所得图象关于y轴对称,则φ的一个值是多少?A。

B。

C。

D。

6.设函数的解集是什么?A。

(-3,1)∪(3,+∞)B。

(-3,1)∪(2,+∞)C。

(-1,1)∪(3,+∞)D。

(-∞,-3)∪(1,3)7.若a=b=3,a+b=2,则大值是多少?A。

2B。

C。

1D。

8.下面的不等式在___成立的是什么?A。

f(x)>B。

f(x)<C。

f(x)>xD。

f(x)<x9.若关于x的不等式(2x-1)<ax的解集中整数恰好有3个,则实数a的取值范围是什么?10.函数f(x)=e+x-2的零点所在的一个区间是什么?A。

(-2,-1)B。

(-1,)C。

(,1)D。

(1,2)11.设a=log5 4,b=(log5 3),c=log4 5,则什么是正确的?A。

a<c<bB。

b<c<aC。

a<b<cD。

b<a<c1.函数f(x)=lgx的单调递减区间是什么?单调递减区间为(0,1]。

2.已知函数f(x)=,若函数y=f(x)﹣a|x|恰有4个零点,则实数a的取值范围为什么?实数a的取值范围为(-∞,-2]∪[2,+∞)。

20112019高考数学函数与导数分类汇编文

20112019高考数学函数与导数分类汇编文

2011-2019 新课标文科高考《函数与导数》分类汇编一、选择题【 2019 新课标 1 】 3.已知 a log 2 0.2,b 2 , c 0.2 ,则()A . a b cB . a c bC . c a bD . b c a【答案】 B】 5.函数 f(x)= sin x【 2019 新课标 1x 在[ —π,π ] 的图像大概为cos xx2A .B .C .D .【答案】 D【 2019 新课标 2 】6.设 f(x) 为奇函数,且当 x ≥0时, f(x)= e x1,则当 x<0时, f(x)= ( )A . ex1B . ex1C . ex1D . ex1【答案】 D【 2019 新课标 2 】10 .曲线 y=2sinx+cosx 在点 ( π,– 1) 处的切线方程为( )A . x y1 0B . 2x y 2 1 0C . 2x y 2 1 0D . x y1 0【答案】 Ce xln在点 1, ae【 2019 新课标 3】 7. 已知曲线处的切线方程为 y2 xb ,则()yaxxA. a e, b1B. ae,b1C. ae 1,b 1D. a e 1, b1【答案】 D【详解】详解:y/aexln x1, k = y /|x=1 = ae+ 1= 2a = e- 1将 (1,1) 代入 y2 xb 得 2 b1,b1 ,应选 D .【点睛】正确求导数是进一步计算的基础,此题易由于导数的运算法例掌握不熟,二致使计算错误.求导要 “慢 ”,计算要准,是解答此类问题的基本要求.【 2019 新课标 3】 12. 设 fx 是定义域为R 的偶函数,且在0,单一递减,则( )132123A. ff 22f 23B. ff 23f 22log 5log 841413223C. f22f 23flog 5D. f23f22f log 5441【答案】 C【详解】fx是 R 的偶函数,flog 3 1f log 3 4.423,又 f x2 3log 3 41在 (0,+∞) 单一递减,f log 3 4f 2 3f 2 2,22321f log 3,应选 C .f 22f 234【点睛】此题主要考察函数的奇偶性、单一性,考察学生转变与化归及剖析问题解决问题的能力.【 2018 新课标 1 】6.设函数f ( x)x 3 ( a 1)x 2ax . 若 f ( x) 为奇函数,则曲线y f (x) 在点 (0,0)处的切线方程为()A . y2x B . yxC . y 2 xD . y x【答案】 D【 2018 新课标】 12 .设函数 f (x)x≤2 , x则知足 f (x 1) f (2 x)的 x 的取值范围是()0,1, x0,A .( ,1]B . (0, )C . ( 1,0)D . (,0)【答案】 D【 2018 新课标 2 】3.函数f (x)e xe x的图象大概为()x 2【答案】 B【 2018 新课标 2 】12 .已知 f ( x)是定义域为( ,) 的奇函数,知足 f (1x) f (1 x) .若 f)1( 2,则()A .50B.0C.2D.50【答案】 C【 2018 新课标 3 】7.以下函数中,其图像与函数y ln x 的图像对于直线x 1 对称的是()A .y ln 1x B .y ln 2x C.y ln 1x D .y ln 2x【答案】 B2【 2018 新课标 3 】9.函数 yx 4 x 22 的图像大概为()【答案】 D【 2017 新课标 1 】9.已知函数 f (x)lnxln(2x) ,则(C )A . f (x) 在( 0,2 )单一递加B . f (x) 在( 0,2 )单一递减C . y= f (x) 的图像对于直线 x=1 对称D . y= f (x) 的图像对于点(1,0)对称【 2017 新课标 2 】8. 函数 f ( x) ln( x22x8) 的单一递加区间是(D )A.(- ,-2)B. (- ,-1)C.(1, +) D.(4,+)【分析】由x 2﹣ 2x ﹣ 8> 0 得: x ∈(﹣ ∞,﹣ 2)∪( 4, +∞),令 t=x 2﹣ 2x ﹣ 8,则 y=lnt ,∵ x ∈(﹣ ∞,﹣ 2 )时, t=x 2﹣ 2x ﹣ 8 为减函数;x ∈( 4 ,+∞)时, t=x 2﹣2x﹣ 8 为增函数; y=lnt 为增函数,故函数 f ( x ) =ln ( x 2﹣ 2x ﹣8)的单一递加区间是(4 , +∞),应选: D .【 2017 新课标 3 】7. 函数 y 1x的部分图像大概为(x sin 2D )xB .C .D .【新课标 】 已知函数() 22( x1x1)2017 3 12. fxxxa ee有独一零点,则 a()1B11D 1A3C22【分析】'() 22( x1e x 1)0 ,得1fxxa ex即 x1 为函数的极值点,故f (1)则 122a0 , a12【 2016 新课标 1 】( 8)若 a>b>0 , 0<c<1 ,则( B) (A ) log a b c ccc ( D ) c ab c<logc ( B ) log a<log b ( C ) a <b >c【 2016 新课标 1 】( 9)函数 y=2x 2–e|x|在 [–2,2] 的图像大概为(D )A. B. C.D.31【2016 新课标 1】( 12 )若函数 f ( x)x -sin2 x a sin x 在,单一递加, 则 a 的取值范围是( C)31(C )11(D )1( A )1,1(B )1,,1,3333y=10lgx【 2016 新课标 2】10. 以下函数中, 其定义域和值域分别与函数 的定义域和值域同样的是( D)( A ) y=x( B ) y=lg x( C ) y=2x( D ) y1x【分析】 y10lg xx ,定义域与值域均为0,,只有 D 知足,应选D .【 2016 新课标 2】12. 已知函数 f(x) ( x ∈R )知足 f(x)=f(2-x) ,若函数 y=|x 2-2x-3|与 y=f(x) 图像的交点为( x 1 ,y 1), (x 2 2m,y ), ?,( x ,ymm ),则x i= (B)i 1(A)0(B) m(C) 2m(D) 4 m1 对称,当 m| x 2【分析】由于 yf ( x), y 2 x 3| 都对于 x 1 对称,所以它们交点也对于x 为偶数时,其和为2mm ,当 m 为奇数时,其和为2m 1 1 m ,所以选 B. 22421【 2016 新课标 3 】( 7 )已知 a 23, b33, c25 3,则( A)(A)b<a<c(B) a<b<c(C) b<c<a(D) c<a<b【 2016 新课标 3】( 4)某旅行城市为向旅客介绍当地的气温状况,绘制了一年中各月均匀最高气平和均匀最低气温的雷达图 .图中 A 点表示十月的均匀最高气温约为15 ℃, B 点表示四月的均匀最低气温约为5℃ .下边表达不正确的选项是(D )( A )各月的均匀最低气温都在0℃以上( B )七月的均匀温差比一月的均匀温差大( C )三月和十一月的均匀最高气温基真同样( D)均匀最高气温高于20 ℃的月份有 5 个【 2015 新课标 1】(10)已知函数,且f(a)=-3,则f(6-a)=(A) 7531( A)-(B)-(C)-(D)-4444【 2015新课标 1】( 12)设函数 y=f ( x)的图像对于直线y=-x 对称,且f( -2 ) +f ( -4) =1 ,则a= (C)( A)-1(B)1(C)2(D )411) 建立的x的取 1 + x 2【 2015新课标 2 】12.设函数 f ( x) = ln(1 + x ) -,则使得 f ( x) > f (2x -值范围是(A)41B. (,1(1,)1111A. ( ,1)) C. (, ) D.(,)( ,)333333[分析 ]由于函数f ( x)ln(1x )12 ,是偶函数,x[ 0,)时函数是增函数1x(2x 1)2,解得1f ( x) f ( 2x 1)x2x1,x 2x 1. 应选A.3【 2015 新课标 2 】11. 如图,长方形的边AB=2 , BC=1,O 是 AB 的中点,点P 沿着边 BC,CD, 与 DA 运动,记∠ BOP=x,将动点P 到 A,B 两点的距离之和表示为函数 f (x),则 f(x) 的图像大概为(B)P C DxO B AY Y YY2222O π π3 ππX O π π3π ππ π 3ππXπ π3ππXO O2X 42442424444A B C D[分析 ]如图,当点P 在 BC 上时,∵DBOP= x,PB= tan x,PA= 4 + tan2 x ,PA+ PB= tan x + 4 + tan2 x , 当 x时获得最大值1 5 ,以A,B为焦点C,D为椭圆上两4定点作椭圆,明显,当点 P 在 C,D 之间挪动时 PA+PB< 1 5 .又函数 f ( x)不是一次函数,应选B.【 2014 新课标 1 】5. 设函数 f (x), g( x) 的定义域为R ,且f (x)是奇函数,g (x) 是偶函数,则下列结论中正确的选项是(C)A. f (x)g ( x)是偶函数B. | f ( x) | g( x)是奇函数C. f ( x) | g( x) |是奇函数D. | f ( x) g (x) |是奇函数【参照答案】:设 F ( x) f ( x) g ( x),则 F ( x)f( x) g( x) ,∵f ( x)是奇函数,g( x) 是偶函数,∴ F (x) f (x) g(x) F ( x) ,F ( x)为奇函数,选 C.【解题方法】:①把四个选项逐个剖析,②利用性质f ( x) 奇, | f ( x) | 为偶,奇奇 =偶,奇偶 =奇。

(完整版)高考文科数学试题分类汇编导数

(完整版)高考文科数学试题分类汇编导数

2012 高考文科试题分析分类汇编:导数1.【 2012 高考重庆文8】设函数 f ( x) 在R上可导,其导函数 f ( x) ,且函数 f ( x) 在x 2处获得极小值,则函数y xf( x) 的图象可能是【答案】 C【分析】:由函数 f (x) 在x 2 处获得极小值可知x 2 ,f (x)0 ,则 xf (x)0 ;x 2 ,f (x)0 则2 x0 时xf ( x) 0, x0 时xf ( x) 0【考点定位】本题考察函数的图象,函数单一性与导数的关系,属于基础题.2.【 2012 高考浙江文10】设 a> 0, b> 0, e 是自然对数的底数A.若 e a+2a=e b +3b,则 a>bB.若 e a+2a=e b +3b,则 a< bC.若 e a-2a=e b-3b,则 a> bD.若 e a-2a=e b-3b,则 a< b【答案】 A【命题企图】本题主要考察了函数复合单一性的综合应用,经过结构法技巧性方法确立函数的单一性 .a2b a b x【分析】若 a e b ,必有 e2a e 2b .构造函数:,则f x e 2 x3f x e x 2 0 恒建立,故有函数 f x e x2x 在x>0上单一递加,即a> b 建立.其他选项用相同方法清除.23.【 2012高考陕西文 9】设函数 f ( x) =+lnx 则()xA . x=1为 f(x) 的极大值点B.x= 1为 f(x) 的极小值点22C. x=2 为 f(x) 的极大值点 D .x=2 为 f(x) 的极小值点【答案】 D.【分析】 f ' x 21x2,令 f ' x0 ,则 x 2 .x2x x2当 x 2 时, f ' x 21x2x2x x20 ;当 x 2 时, f ' x 21x2x2x x20 .即当 x 2 时, f x 是单一递减的;当 x 2 时, f x 是单一递加的.所以 x 2 是 f x的极小值点.应选 D .4. 【 2012 高考辽宁文8】函数 y=1x2㏑ x 的单一递减区间为2(A)( 1,1]( B)( 0,1]( C.) [1 , +∞)( D)( 0, +∞)【答案】 B【命题企图】本题主要考察利导数公式以及用导数求函数的单一区间,属于中档题。

2021年高考文科数学试题汇编----函数与导数(教师用)

2021年高考文科数学试题汇编----函数与导数(教师用)

函数与导数一、选择题(安徽文5)若点(a,b)在lg y x = 图像上,a ≠1,则下列点也在此图像上的是(A )(a 1,b ) (B) (10a,1-b) (C) (a10,b+1) (D)(a 2,2b) 【答案】D 【命题意图】本题考查对数函数的基本运算,考查对数函数的图像与对应点的关系.【解析】由题意lg b a =,lg lg b a a 22=2=,即()2,2a b 也在函数lg y x = 图像上.(安徽文10) 函数()()n f x ax x 2=1-在 区间〔0,1〕上的图像如图所示,则n 可 能是(A )1 (B) 2 (C) 3 (D) 4【答案】A 【命题意图】本题考查导数在研究函数单调性中的应用,考查函数图像,考查思维的综合能力.难度大.【解析】代入验证,当1n =时,()()()f x ax x a x x x 232=1-=-2+,则()()f x a x x 2'=3-4+1, 由()()f x a x x 2'=3-4+1=0可知,121,13x x ==,结合图像可知函数应在10,3⎛⎫⎪⎝⎭递增,在1,13⎛⎫⎪⎝⎭递减,即在13x =取得最大值,由()()f a 21111=⨯1-=3332,知a 存在.故选A.(北京文8)已知点()0,2A ,()2,0B ,若点C 在函数2y x =的图象上,则使得ABC ∆的面积为2的点C 的个数为A. 4B. 3C. 2D. 1 【答案】A(福建文6)若关于x 的方程x 2+mx +1=0有两个不相等的实数根,则实数m 的取值范围是 A .(-1,1) B .(-2,2) C .(-∞,-2)∪(2,+∞) D .(-∞,-1)∪(1,+∞) 【答案】C(福建文8)已知函数f(x)=⎩⎨⎧2x , x >0 x +1,x≤0,若f(a)+f(1)=0,则实数a 的值等于A .-3B .-1C .1D .3 【答案】A(福建文10)若a >0,b >0,且函数f(x)=4x 3-ax 2-2bx +2在x =1处有极值,则ab 的最大值等于A .2B .3C .6D .9 【答案】D(广东文4)函数1()lg(1)1f x x x=++-的定义域是 ( ) A .(,1)-∞- B .(1,)+∞ C .(1,1)(1,)-+∞ D .(,)-∞+∞【答案】C(湖南文7)曲线sin 1sin cos 2x y x x =-+在点(,0)4M π处的切线的斜率为( )A .12-B .12 C.2- D.2【答案】B 【解析】22cos (sin cos )sin (cos sin )1'(sin cos )(sin cos )x x x x x x y x x x x +--==++,所以2411'|2(sincos )44x y πππ===+。

2021年高考文科数学试题汇编----函数与导数(教师用)

2021年高考文科数学试题汇编----函数与导数(教师用)

函数与导数一、选择题〔安徽文5〕假设点(a,b)在lg y x = 图像上,a ≠1,那么以下点也在此图像上的是〔A 〕〔a 1,b 〕 (B) (10a,1-b) (C) (a10,b+1) (D)(a 2,2b) 【答案】D 【命题意图】此题考查对数函数的根本运算,考查对数函数的图像与对应点的关系. 【解析】由题意lg b a =,lg lg b a a 22=2=,即()2,2a b 也在函数lg y x = 图像上. (安徽文10) 函数()()n f x ax x 2=1-在 区间〔0,1〕上的图像如下图,那么n 可 能是〔A 〕1 (B) 2 (C) 3 (D) 4【答案】A 【命题意图】此题考查导数在研究函数单调性中的应用,考查函数图像,考查思维的综合能力.难度大.【解析】代入验证,当1n =时, ,那么()()f x a x x 2'=3-4+1, 由()()f x a x x 2'=3-4+1=0可知,121,13x x ==,结合图像可知函数应在10,3⎛⎫ ⎪⎝⎭递增,在1,13⎛⎫⎪⎝⎭递减,即在13x =取得最大值,由()()f a 21111=⨯1-=3332,知a 存在.应选A. 〔北京文8〕点()0,2A ,()2,0B ,假设点C 在函数2y x =的图象上,那么使得ABC ∆的面积为2的点C 的个数为 A. 4 B. 3 C. 2 D. 1 【答案】A〔福建文6〕假设关于x 的方程x 2+mx +1=0有两个不相等的实数根,那么实数m 的取值范围是 A .〔-1,1〕 B .〔-2,2〕 C .〔-∞,-2〕∪〔2,+∞〕 D .〔-∞,-1〕∪〔1,+∞〕 【答案】C〔福建文8〕函数f(x)=⎩⎨⎧2x , x >0 x +1,x≤0,假设f(a)+f(1)=0,那么实数a 的值等于A .-3B .-1C .1D .3 【答案】A〔福建文10〕假设a >0,b >0,且函数f(x)=4x 3-ax 2-2bx +2在x =1处有极值,那么ab的最大值等于A .2B .3C .6D .9【答案】D〔广东文4〕函数1()lg(1)1f x x x=++-的定义域是 〔 〕 A .(,1)-∞- B .(1,)+∞ C .(1,1)(1,)-+∞ D .(,)-∞+∞【答案】C〔湖南文7〕曲线sin 1sin cos 2x y x x =-+在点(,0)4M π处的切线的斜率为〔 〕A .12-B .12 C. D【答案】B 【解析】22cos (sin cos )sin (cos sin )1'(sin cos )(sin cos )x x x x x x y x x x x +--==++,所以2411'|2(sincos )44x y πππ===+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

文科函数与导数
一选择题
(辽宁文)(11)函数
)(x f 的定义域为R ,2)1(f ,对任意R x ,2)(x f ,则
42)
(x x f 的解集为
(A )(
1,1)(B )(
1,+
)(C )(,
1)(D )
(,+)
(重庆文)3.曲线2
2
3y
x
x 在点(1,2)处的切线方程为
A .31y x
B .35y x
C .35
y
x
D .2y
x (重庆文)6.设1
1
3
3
3
12
4log ,log
,log ,,,2
3
3
a
b c
a b c 则的大小关系是
A .
a b c B .c b a C .
b a
c D .b c a
(重庆文)7.若函数
1()2
f x x
n (2)n
在x
a 处取最小值,则a
A .1
2B .1
3
C .3
D .4
(辽宁文)(6)若函数)
)(12()
(a x
x x
x f 为奇函数,则a=
(A )
2
1(B )
3
2(C )
4
3(D )1
(上海文)15.下列函数中,既是偶函数,又是在区间
(0,
)上单调递减的函数为
A .2
y x B .1
y x C .2
y x
D .1
3
y
x (全国新课标文)(3)下列函数中,既是偶函数又在
(0,
)单调递增的函数是(A )3
y
x
(B )||1y x (C )2
1
y x
(D )||
2
x y
(全国新课标文)(10)在下列区间中,函数
()
43x
f x e
x 的零点所在的区间为(A )1(
,0)4
(B )1(0,
)
4
(C )11
(,)
42
(D )13
(,)
24
(全国新课标文)(12)已知函数()y
f x 的周期为2,当[1,1]x 时2
()f x x ,那么函
数()y
f x 的图象与函数
|lg |y x 的图象的交点共有
(A )10个
(B )9个
(C )8个
(D )1个
(全国大纲文)2.函数2(0)y x x ≥的反函数为
A .2
()4
x
y
x
R B .2
(0)
4
x
y
x ≥C .2
4y
x ()
x
R D .2
4(0)
y x x ≥(全国大纲文)10.设()f x 是周期为2的奇函数,当0≤x ≤1时,()f x =2(1)x x ,则
5(
)2
f =
A .-
12
B .
14
C .
14
D .
12
(湖北文)3.若定义在R 上的偶函数
()f x 和奇函数()g x 满足()
()x
f x gx
e ,则()g x =
A .
x
x
e
e
B .
1()
2
x
x
e e C .1
()
2
x
x
e
e D .1()
2
x
x
e
e (福建文)6.若关于x 的方程x 2
+mx+1=0有两个不相等的实数根,则实数
m 的取值范围
A .(-1,1)
B .(-2,2)
C .(-∞,-2)∪(2,+∞)
D .(-∞,-1)∪(1,+∞)
(福建文)8.已知函数f (x )=。

若f (a )+f (1)=0,则实数a 的值等于A .-3
B .-1
C .1
D .3
(福建文)10.若a>0,b>0,且函数f (x )=3
2
42x
ax
bx 在x=1处有极值,则
ab 的最大
值等于A .2
B .3
C .6
D .9
(山东文) 3.若点(a,9)在函数3x
y
的图象上,则tan=
6
a 的值为
(A )0 (B)
33
(C) 1 (D)
3
(山东文) 4.曲线2
11y x
在点P(1,12)处的切线与y 轴交点的纵坐标是
(A)-9
(B)-3
(C)9
(D)15
(山东文)10.函数
2sin 2
x y
x 的图象大致是。

相关文档
最新文档