苏州大学2014届高考考前指导卷(2)定稿
2014年高考江苏卷试题及答案
南通数学网 初高中课件、教案、习题应有尽有 2014年普通高等学校招生全国统一考试(江苏卷)解析版数学Ⅰ江苏苏州 何睦 江苏扬州 孟伟业 江苏南京 王刚 整理提供一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1. 已知集合A ={4,3,1,2--},}3,2,1{-=B ,则=B A I ▲ . 【答案】{1,3}-【解析】由题意得{1,3}A B =-I 【考点】交集、并集、补集 (B).2. 已知复数2)i 25(+=z (i 为虚数单位),则z 的实部为 ▲ . 【答案】21【解析】由题意2(52i)=25+20i 42120i z =+-=+,其实部为21. 【考点】复数的概念 (B).3. 右图是一个算法流程图,则输出的n 的值是 ▲ . 【答案】5【解析】本题实质上就是求不等式220n>的最小整数解,220n>整数解为5n ≥,因此输出的5n =. 【考点】流程图 (A).4. 从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是 ▲ . 【答案】13【解析】从1,2,3,6这4个数中任取2个数共有246C =种取法,其中乘积为6的有1,6和2,3两种取法,因此所求概念为2163P ==. 【考点】古典概型 (B).5. 已知函数x y cos =与)2sin(ϕ+=x y (0≤πϕ<),它们的图象有一个横坐标为3π的交点,则ϕ的值是 ▲ . 【答案】6π 【解析】由题意cos sin(2)33ππϕ=⨯+,即21sin()32πϕ+=, 所以2236k ππϕπ+=+或252()36k k ππϕπ+=+∈Z ,即22k πϕπ=-或2()6k k πϕπ=+∈Z . 又0ϕπ≤<,所以6πϕ=.【考点】函数sin()y A x ωϕ=+的图象与性质 (B),三角函数的概念(B). (三角函数图象的交点与已开始 0←n 1+←n n 202>n输出n 结束 (第3题)NY知三角函数值求角)6. 设抽测的树木的底部周长均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有 ▲ 株树木的底部周长小于100cm. 【答案】24【解析】由题意在抽测的60株树木中,底部周长小于100cm 的株数为(0.015+0.025)⨯10⨯60=24. 【考点】总体分布的估计 (A). (频率分布直方图)7. 在各项均为正数的等比数列}{n a 中,,12=a 4682a a a +=,则6a 的值是 ▲ .【答案】4【解析】设公比为q ,因为21a =,则由8642a a a =+得6422q q q =+,4220q q --=, 解得22q =或21q =-(舍),所以4624a a q ==. 【考点】等比数列 (C). (等比数列的通项公式)8. 设甲、乙两个圆柱的底面分别为1S ,2S ,体积分别为1V ,2V ,若它们的侧面积相等,且4921=S S ,则21V V 的值是 ▲ . 【答案】32【解析】设甲、乙两个圆柱的底面和高分别为1r 、1h ,2r 、2h ,则112222r h r h ππ=,1221h r h r =, 又21122294S r S r ππ==,所以1232r r =,则222111111212222222221232V r h r h r r r V r h r h r r r ππ==⋅=⋅==. 【考点】柱、锥、台、球的表面积与体积 (A).9. 在平面直角坐标系xOy 中,直线032=-+y x 被圆4)1()2(22=++-y x 截得的弦长 为 ▲ . 255【解析】圆4)1()2(22=++-y x 的圆心为(2,1)C -,半径为2r =,点C 到直线230x y +-=的距离为2222(1)3512d +⨯--==+,所求弦长为2292552245l r d =-=-【考点】直线与圆、圆与圆的位置关系 (B). (直线与圆相交的弦长问题)10. 已知函数2()1f x x mx =+-,若对于任意]1,[+∈m m x ,都有0)(<x f 成立,则实数m 的取值范围是 ▲ .组距频率100 80 90 110 0.0100.015 0.020 0.025 0.030 底部周长/cm(第6题)【答案】2,0⎛⎫- ⎪⎪⎝⎭【解析】画出二次函数的分析简图:由图象分析可得结论:开口向上的二次函数()f x在[],m n上恒小于0的充要条件为()0,()0.f mf n<⎧⎨<⎩开口向下的二次函数()f x在[],m n上恒大于0的充要条件为()0,()0.f mf n>⎧⎨>⎩22()0,2(1)0.230.2mf mmf mm⎧<<⎪⎛⎫<⎧⎪⇒⇒∈ ⎪⎨⎨ ⎪+<⎩⎝⎭⎪-<<⎪⎩. (江苏苏州何睦)【考点】一元二次不等式(C). (一元二次方程根的分布、二次函数的性质)【变式】变式1已知函数,1)(2-+=mxxxf若对于任意()1,+∈mmx,都有0)(<xf成立,则实数m的取值范围是__________ . ⎥⎦⎤⎢⎣⎡-0,22(江苏苏州何睦)变式 2 已知函数,1)(2-+=mxxxf若对于任意[)1,+∈mmx,都有0)(<xf成立,则实数m的取值范围是__________ .⎥⎦⎤⎝⎛-0,22(江苏苏州何睦)变式3 已知函数,1)(2-+=mxxxf若存在]1,[+∈mmx,使得0)(<xf成立,则实数m的取值范围是__________ . ⎪⎪⎭⎫⎝⎛-22,23(江苏苏州何睦)变式 4 已知函数12)(2++=xxxf,若存在实数t,当],1[mx∈时,xtxf≤+)(恒成立,则实数m的最大值是__________ . 4 (江苏苏州陈海锋)变式5 若关于x的不等式012≥-++mmxx恒成立,则实数=m________. 2(江苏苏州陈海锋)变式6 设)(xf是定义在R上的奇函数,且当0≥x时,2)(xxf=,若对任意的]2,[+∈t tx,不等式)(2)(xftxf≥+恒成立,则实数t的取值范围是________.[)+∞,2(江苏苏州陈海锋)11. 在平面直角坐标系xOy中,若曲线xbaxy+=2(a,b为常数)过点)5,2(-P,且该曲线在点P处的切线与直线0327=++y x 平行,则b a +的值是 ▲ . 【答案】3-【解析】曲线2b y ax x =+过点(2,5)P -,则452ba +=-①,又22b y ax x '=-,所以7442b a -=-②,由①、②解得1,2.a b =-⎧⎨=-⎩所以3a b +=-.【考点】导数的几何意义 (B).12. 如图,在平行四边形ABCD 中,已知8AB =,5AD =,3CP PD =u u u r u u u r ,2AP BP ⋅=u u ur u u u r ,则AB AD ⋅u u u r u u u r 的值是 ▲ . 【答案】22【解析】解法一:(基底法)考虑将条件中涉及的,AP BP u u u r u u u r向量用基底,AB AD u u u r u u u r表示,而后实施计算.14AP AD DP AD AB =+=+u u u r u u u r u u u r u u u r u u u r ,34BP BC CP AD AB =+=-u u u r u u u r u u u r u u u r u u u r .则2213132()()44216AP BP AD AB AD AB AD AD AB AB ⋅==+⋅-=-⋅-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r .因为8,5AB AD ==,则3122564162AB AD =-⨯-⋅u u ur u u u r ,故22AB AD ⋅=u u u r u u u r . (江苏苏州 何睦)解法二:(坐标法)不妨以A 点为坐标原点,AB 所在直线作为x 轴建立平面直角坐标系,可设(0,0),(8,0),(.),(2,),(8,)A B D a t P a t C a t ++,则(2,)AP a t =+u u u r ,(6,)BP a t =-u u u r. 由2AP BP ⋅=u u u r u u u r,得22414a t a +-=,由5AD =,得2225a t +=,则411a =,所求822AB AD a ⋅==u u u r u u u r. (江苏苏州 何睦)【考点】平面向量的加法、减法及数乘运算 (B),平面向量的数量积 (C).13. 已知)(x f 是定义在R 上且周期为3的函数,当)3,0[∈x 时,21()22f x x x =-+. 若函数a x f y -=)(在区间]4,3[-上有10个零点(互不相同),则实数a 的取值范围是 ▲ .【答案】10,2⎛⎫ ⎪⎝⎭【解析】作出函数21()2,[0,3)2f x x x x =-+∈的图象,可知1(0)2f =,当1x =时,1()2f x =极大,7(3)2f =,方程()0f x a -=在[3,4]x ∈-上有10个零点,即函数()y f x =的图象与直线y a =在[3,4]-上有10个交点,由于函数()f x 的周期为3,因此直线y a =与函数21()2,[0,3)2f x x x x =-+∈的图象有4个交点,则10,2a ⎛⎫∈ ⎪⎝⎭. A B DP(第12题)(江苏扬州 孟伟业)【考点】函数与方程 (A),函数的基本性质 (B). (函数的零点,周期函数的性质,函数图象的交点问题)14. 若△ABC 的内角满足C B A sin 2sin 2sin =+,则C cos 的最小值是 ▲ . 62-【解析】由正弦定理得22a b c =,由余弦定理结合基本不等式有: 2222222222231231(2242242cos 2222a b a b a b a b a b cC abab ab ab ++-+++-====2231226242a b -≥=,当且仅当6a =时等号成立. (江苏苏州 何睦) 【考点】正弦定理、余弦定理及其应用 (B),基本不等式 (C). 变式1 △ABC 中,角A ,B ,C 所对边的长分别为a ,b ,c ,若a 2+b 2=2c 2,则cos C 的最小值为________.21(江苏无锡 张芙华) 变式2 △ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A CB B AC C B A cos sin sin cos sin sin cos sin sin +=,若2ab c的最大值为_______. 23(江苏无锡 张芙华) 变式3 在△ABC 中,设AD 为BC 边上的高,且AD = BC ,b ,c 分别表示角B ,C 所对的边长,则b cc b+的取值范围是________. []5,2 (江苏苏州 陈海锋)变式4 已知三角形ABC ∆的三边长c b a ,,成等差数列,且84222=++c b a ,则实数b 的取值范围是_________. (]72,62(江苏南通 丁勇)拓展 在△ABC 中,已知(),0,1m n ∈,且sin sin sin m A n B C +=,求cos C 的最小值. 解:由正弦定理得ma nb c +=,由余弦定理结合基本不等式有:222222222(1)(1)21cos [(1)(1)]222a b c m a n b mnab a bC m n mnab ab b a+--+--===-+--22(1)(1)m n mn --.(当且仅当2222(1)(1)m a n b -=-时等号成立).(江苏常州 封中华)二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15. (本小题满分14分)已知),2(ππα∈,55sin =α.(1)求)4sin(απ+的值;(2)求)265cos(απ-的值.【解析】本小题主要考查三角函数的基本关系式、两角和与差及二倍角的公式,考查运算求解能力.满分14分.(1) 因为α∈π,π2⎛⎫⎪⎝⎭,sin α5,所以cos α=2251sin α-.故sin π4α⎛⎫+ ⎪⎝⎭=sin π4cos α+cos π4sin α2252510⎛+= ⎝⎭. (2) 由(1)知sin2α=2sin αcos α=525425⎛=- ⎝⎭, cos2α=1-2sin 2α=1-25325⨯=⎝⎭,所以cos 5π5π5π2cos cos 2sin sin 2666ααα⎛⎫-=+ ⎪⎝⎭=3314433525⎛+⎛⎫⨯+⨯-= ⎪ ⎝⎭⎝⎭【考点】同角三角函数的基本关系式 (B),两角和(差)的正弦、余弦及正切 (C),二倍角的正弦、余弦及正切 (B),运算求解能力.16. (本小题满分14分)如图,在三棱锥ABC P -中,D ,E ,F 分别为棱AB AC PC ,,的中点.已知AC PA ⊥,6PA =,8BC =,5DF =.求证:(1) 直线//PA 平面DEF ;(2) 平面⊥BDE 平面ABC .【解析】本小题主要考查直线与直线、直线与平面以及平面与平面的位置关系,考查空间想象能力和推理论证能力. 满分14分.(1) 因为D ,E 分别为棱PC ,AC 的中点, 所以DE ∥PA .又因为PA ⊄ 平面DEF ,DE ⊂平面DEF , 所以直线PA ∥平面DEF .(2) 因为D ,E ,F 分别为棱PC ,AC ,AB 的中点, PA =6,BC =8,所以DE ∥PA ,DE =12PA =3,EF =12BC =4. 又因为DF =5,故DF 2=DE 2+EF 2,(第16题)PDCEFBA所以∠DEF =90°,即DE 丄EF . 又PA ⊥AC ,DE ∥PA ,所以DE ⊥AC .因为AC ∩EF =E ,AC ⊂平面ABC ,EF ⊂平面ABC , 所以DE ⊥平面ABC .又DE ⊂平面BDE ,所以平面BDE ⊥平面ABC .【考点】直线与平面平行、垂直的判定及性质 (B),两平面平行、垂直的判定及性质 (B),空间想象能力和推理论证能力.17. (本小题满分14分)如图,在平面直角坐标系xOy 中,21,F F 分别是椭圆22221(0)x y a b a b+=>>的左、右焦点,顶点B的坐标为),0(b ,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结C F 1.(1) 若点C 的坐标为)31,34(,且22=BF ,求椭圆的方程;(2) 若1F C AB ⊥,求椭圆离心率e 的值.【解析】本小题主要考查椭圆的标准方程与几何性质、直线与直线的位置关系等基础知识,考查运算求解能力. 满分14分.设椭圆的焦距为2c ,则1(,0)F c -,2(,0)F c .(1) 因为()0,B b ,所以222BF b c a =+=,又22BF =故2a =因为点41,33C ⎛⎫⎪⎝⎭在椭圆上,所以22161991a b +=,解得21b =.故所求椭圆的方程为2212x y +=.(2) 解法一(官方解答):(垂直关系的最后表征)因为()0,B b ,2(,0)F c 在直线AB 上, 所以直线AB 的方程为1x yc b+=. 解方程组22221,1,x y c b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩ 得()2122221222,a c x a c b c a y a c ⎧=⎪+⎪⎨-⎪=⎪+⎩, 220,.x y b =⎧⎨=⎩ 所以点A 的坐标为22222222(),a c b c a a c a c ⎛⎫- ⎪++⎝⎭. 又AC 垂直于x 轴,由椭圆的对称性,可得点C 的坐标为22222222(),a c b a c a c a c ⎛⎫- ⎪++⎝⎭. 因为直线1F C 的斜率为()()()22222222322023b a c b a c a c a c a c c c a c ---+=+--+,直线AB 的斜率为b c-,且1F C AB ⊥, 所以()222313b a c b a c c c -⎛⎫⋅-=- ⎪+⎝⎭,又222b a c =-,整理得225a c =. F 1 F 2Oxy BCA故215e =,因此5e =.解法二:(垂直关系的先行表征)设000012(,),(.),(,0),(,0)C x y A x y F c F c --, 由1,FC AB ⊥得001y b x c c ⋅=-+-,由A 在2BF 上,则001x y c b-+=; 联立20000,.cx by c bx cy bc ⎧-=-⎪⎨-=⎪⎩解得:20222022,2.ca x b c bc y b c ⎧=⎪⎪-⎨⎪=⎪-⎩又00(,)C x y 在椭圆上,代入椭圆方程整理得2242224(2)c a c a c +=-,即225a c =, 所以椭圆的离心率为5e =【考点】中心在坐标原点的椭圆的标准方程与几何性质 (B),直线的平行关系与垂直关系 (B),直线方程 (C),运算求解能力. (椭圆的标准方程、椭圆的离心率)18. (本小题满分16分)如图,为了保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区. 规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆. 且古桥两端O 和A 到该圆上任意一点的距离均不少于80m. 经测量,点A 位于点O 正北方向60m 处,点C 位于点O 正东方向170m 处(OC 为河岸),34tan =∠BCO . (1) 求新桥BC 的长;(2) 当OM 多长时,圆形保护区的面积最大?【解析】本小题主要考查直线方程、直线与圆的位置关系和解三角形等基础知识,考查建立数学模型及运用数学知识解决实际问题的能力. 满分16分.解法一(官方解法一):(1) 如图,以O 为坐标原点,OC 所在直线为x 轴, 建立平面直角坐标系xOy . 由条件知()()0,60,170,0A C , 直线BC 的斜率4tan 3BCk BCO =-∠=-.170 m60 m 东北OA BM C170 m60 m xyOA BM C(第18题)又因为AB BC ⊥,所以直线AB 的斜率34AB k =. 设点B 的坐标为(),a b ,则041703BC b k a -==--,60304AB b k a -==-解得80,120a b ==.所以22(17080)(0120)150BC -+-. 因此新桥BC 的长为150m.(2) 设保护区的边界圆M 的半径为r m ,OM d = m (060)d ≤≤. 由条件知,直线BC 的方程为4(170)3y x =--,即436800x y +-=.由于圆M 与直线BC 相切,故点()0,M d 到直线BC 的距离是r ,即2236806803543d dr --==+. 因为O 和A 到圆M 上任意一点的距离均不少于80 m , 所以80(60)80r d r d -≥⎧⎨--≥⎩,,即68038056803(60)80.5dd d d -⎧-≥⎪⎪⎨-⎪--≥⎪⎩,解得1035d ≤≤.故当10d =时,68035dr -=最大,即圆面积最大. 所以当OM = 10 m 时,圆形保护区的面积最大.解法二(官方解法二):(1) 如图,延长OA ,CB 于点F . 因为4tan 3FOC ∠=,所以4sin 5FOC ∠=,3cos 5FOC ∠=.因为OA = 60,OC = 170,所以680tan 3OF OC FOC =∠=,850cos 3OC CF FOC ==∠. 从而5003AF OF OA =-=.因为OA OC ⊥,所以4cos sin 5AFB FCO ∠=∠=.又因为AB BC ⊥,所以400cos 3BF AF AFB =∠=.从而150BC CF BF =-=.因此新桥BC 的长为150 m.(2) 设保护区的边界圆M 与BC 的切点为D ,连接MD ,则MD BC ⊥,且MD 是圆M 的半径,并设MD r = m ,OM d = m (060)d ≤≤. 因为OA OC ⊥,所以sin cos CFO FCO ∠=∠. 故由(1)知3sin 68053MD MD r CFO MF OF OM d ∠====--,所以68035dr -=. 因为O 和A 到圆M 上任意一点的距离均不少于80 m ,170 m60 m xyOA BM C(第18题)F D所以80(60)80,r d r d -≥⎧⎨--≥⎩, 即68038056803(60)80.5dd d d -⎧-≥⎪⎪⎨-⎪--≥⎪⎩,解得1035d ≤≤.故当10d =时,68035dr -=最大,即圆面积最大. 所以当OM =10 m 时,圆形保护区的面积最大.(1)的解法三:连结AC ,由题意知6tan 17ACO ∠=,则由两角差的正切公式可得: 2tan tan()3ACB BCO ACO ∠=∠-∠=,故cos 150BC ACB AC =∠⋅= m. 所以新桥BC 的长度为150m. (江苏苏州 何睦)(2)的解法三:设BC 与圆切于点N ,连接MN ,过点A 作//AH BC 交MN 于点H . 设OM a =,则60AM a =-,由古桥两端O 和A 到该圆上任意一点的距离均不少于80 m , 那么80(60)80r a r a -≥⎧⎨--≥⎩,解得1035a ≤≤. 由4tan tan 3AMH OCN ∠=∠=,可得3(60)5MH a =-,由(1)的解法二可得100AB =,所以33100(60)13655MN x x =+-=-+,故MN 即圆的半径的最大值为130,当且仅当10a =时取得半径的最大值.综上可知,当10OM = m 时,圆形保护区的面积最大. (江苏兴化 顾卫)【考点】直线方程 (C),直线与圆、圆与圆的位置关系 (B),解三角形 (B),建立数学模型及运用数学知识解决实际问题的能力.19. (本小题满分16分)已知函数x x x f -+=e e )(,其中e 是自然对数的底数. (1) 证明:)(x f 是R 上的偶函数;(2) 若关于x 的不等式)(x mf ≤1e -+-m x 在),0(+∞上恒成立,求实数m 的取值范围;(3) 已知正数a 满足:存在),1[0+∞∈x ,使得)3()(030x x a x f +-<成立. 试比较1e -a 与1e -a 的大小,并证明你的结论.【解析】本小题主要考查初等函数的基本性质、导数的应用等基本知识,考查综合运用数学思想方法分析与解决问题的能力. 满分16分.(1) 因为对任意x ∈R ,都有()()()e e e e xx x x f x f x -----=+=+=,所以()f x 是R 上的偶函数.(2) 解法一(官方解答):由条件知()()e e 1e 10,x x x m --+-≤-+∞在上恒成立. 令e (0)x t x =>,则1t >,所以21111111t m t t t t -≤-=--+-++-对于任意1t >成立.因为()()1111211311t t t t -++≥-⋅=--,所以1113111t t -≥--++-, 当且仅当2t =,即ln2x =时等号成立.因此实数m 的取值范围是1,3⎛⎤-∞- ⎥⎝⎦.解法二:考虑不等式两边同乘x e ,则不等式转化为2[(e )1]1(1)e x x m m +≤+-在(0,)+∞上恒成立. 令e (1)x t t =>,则问题可简化为:2(1)10mt m t m +-+-≤在()1,t ∈+∞上恒成立. 构造函数2()(1)1g t mt m t m =+-+-,由图象易得当0m ≥时不符合题意. 当0m <时,11,2(1)0.m m g -⎧≤⎪⎨⎪<⎩或11,21()0.2m m m g m-⎧≥⎪⎪⎨-⎪<⎪⎩解得13m ≤-.综上可知,实数m 的取值范围为1(,]3-∞-. (江苏苏州 陈海锋)(3) 令函数()()31e 3e x x g x a x x =+--+,则()()21e 31e x x g x a x '=-+-.当1x ≥时,1e 0ex x ->,210x -≥,又0a >,故()0g x '>,所以()g x 是[)1,+∞上的单调增函数,因此()g x 在[)1,+∞上的最小值是()11e e 2g a -=+-.由于存在[)01,x ∈+∞,使0030e e (3)0x x a x x -+--+<成立,当且仅当最小值()10g <, 故1e e 20a -+-<,即1e e 2a -+>.令函数()(e 1)ln 1h x x x =---,则()e 11h x x-'=-,令()0h x '=,得e 1x =-. 当()0,e 1x ∈-时,()0h x '<,故()h x 是()0,e 1-上的单调减函数. 当()e 1,x ∈-+∞时,()0h x '>,故()h x 是()e 1,-+∞上的单调增函数. 所以()h x 在()0,+∞上的最小值时()e 1h -.注意到()()1e 0h h ==,所以当()()1,e 10,e 1x ∈-⊆-时,()()()e 110h h x h -≤<=. 当()()e 1,e e 1,x ∈-⊆-+∞时,()()e 0h x h <=,所以()0h x <对任意的()1,e x ∈成立. ①当()1e e ,e 1,e 2a -⎛⎫+∈⊆⎪⎝⎭时,()0h a <,即()1e 1ln a a -<-,从而1e 1e a a --<; ②当e a =时,1e 1e a a --=;③当()e,(e 1,)a ∈+∞⊆-+∞时,()()e 0h a h >=,即()1e 1ln a a ->-,故1e 1e a a -->.综上所述,当1e e ,e 2a -⎛⎫+∈⎪⎝⎭时,1e 1e a a --<,当e a =时,1e 1e a a --=,当()e,a ∈+∞时,1e 1e a a -->. (3)的民间思路:难题分解1:如何根据条件求出参数a 的取值范围? 分解路径1:直接求函数的最值.解:令30000()()(3)g x f x a x x =--+,只要在0[1,)x ∈+∞上,0min ()0g x <即可. 002200()1'()3(1)x x e g x a x e-=+-. 当01x =时,0'()0g x =.; 当01x >时,2010x ->,02()10x e ->,则0'()0g x >.故在区间[1,)+∞上,0'()0g x ≥,即函数0()g x 为[1,)+∞的增函数,则1min 0()(1)20g x g e e a -==+-<,解得12e e a -+>.(江苏苏州 何睦)分解路径2:参数分离可以吗?解:欲使条件满足,则)03x ⎡∈⎣,此时3030x x -+>,则0300()3f x a x x >-+, 构造函数00300()()3f x g x x x =-+,即求此函数在03x ⎡∈⎣上的最小值. 0003200003200()(3)()(33)()(3)o x x x x e e x x e e x g x x x ----+-+-+'=-+. 因为03x ⎡∈⎣,000032000,30,0,330x x x x e e x x e e x --->-+>+>-+<, 则000032000()(3)()(33)0x x x x e e x x e e x ----+-+-+>. 则0()0g x '>在03x ⎡∈⎣上恒成立,故10min()(1)2e e g x g -+==, 故12e e a -+>(江苏苏州 何睦)难题分解2:如何根据求得的参数a 的取值范围比较1e -a 与1e -a 的大小? 分解路径1:(取对数)1-a e 与1-e a 均为正数,同取自然底数的对数, 即比较(1)ln a e -与(1)ln e a -的大小,即比较ln 1e e -与ln 1aa -的大小. 构造函数ln ()(1)1xh x x x =>-,则211ln ()(1)x x h x x --'=-, 再设1()1ln m x x x =--,21()xm x x-'=,从而()m x 在(1,)+∞上单调递减, 此时()(1)0m x m <=,故()0h x '<在(1,)+∞上恒成立,则ln ()1xh x x =-在(1,)+∞上单调递减.当12e e a e -+<<时,11e a a e -->;当a e =时,11a e e a --=;当a e >时,11e a a e --<.(江苏苏州 何睦) 分解路径2:(变同底,构造函数比大小) 要比较1ea -与e 1a-的大小,由于e 1(1)ln e aae--=,那么1[(1)ln (1)]1e e a a a a e e-----=,故只要比较1a -与(1)ln e a -的大小.令()(1)ln (1)h x e x x =---,那么1'()1e h x x-=-. 当1x e >-时,'()0h x <;当01x e <<-时,'()0h x >.所以在区间(0,1)e -上,()h x 为增函数;在区间(1,)e -+∞上,()h x 为减函数.又()0h e =,(1)0h =,则(1)0h e ->,1()02e e h -+>;那么当12e e a e -+<<时,()0h a >,()1h a e >,11e a a e -->;a e >当a e ≥时,()0h a ≤,()01h a e <≤,11e a a e --≤.综上所述,当12e e a e -+<<时,11e a a e -->;当a e =时,11a e e a --=;当时,11e a a e --<. (江苏苏州 王耀)【考点】函数的基本性质 (B),利用导数研究函数的单调性与极值 (B),综合运用数学思想方法分析与解决问题的能力.20. (本小题满分16分)设数列}{n a 的前n 项和为n S .若对任意正整数n ,总存在正整数m ,使得m n a S =,则称}{n a 是“H 数列”.(1) 若数列}{n a 的前n 项和n n S 2=(∈n N *),证明:}{n a 是“H 数列”;(2) 设}{n a 是等差数列,其首项11=a ,公差0<d . 若}{n a 是“H 数列”,求d 的值; (3) 证明:对任意的等差数列}{n a ,总存在两个“H 数列”}{n b 和}{n c ,使得n n n c b a += (∈n N *)成立.【解析】本小题主要考查数列的概念、等差数列等基础知识,考查探究能力及推理论证能力. 满分16分.(1) 证明:由已知,当1n ≥时,111222n n n n n n a S S +++=-=-=,于是对任意的正整数n ,总存在正整数1m n =+,使得2n n m S a ==,所以{}n a 是“H 数列”.(2) 解法一(官方解答):由已知,得2122S a d d =+=+,因为{}n a 是“H 数列”,所以存在正整 数m ,使得2m S a =,即()211d m d +=+-,于是()21m d -=.因为0d <,所以20m -<,故1m =,从而1d =-. 当1d =-时,2n a n =-,()32n n n S -=是小于2的整数,*n ∈Ν.于是对任意的正整数n ,总存在正整数()3222n n n m S -=-=-,使得2n m S m a =-=,所以{}n a 是“H 数列”,因此d 的值为1-.解法二:由{}n a 是首项为1的等差数列,则1(1)m a m d =+-,22n n n S n d -=+,又数列是“H 数列”,不妨取2n =时,存在满足条件的正整数m ,使得1(1)2m d d +-=+,即(2)1m d -=,(i )当3m ≥时,此时0d >,不符合题意,应舍去; (ii )当2m =时,不存在满足条件的d ;(iii )当1m =时,1d =-. 此时数列{}n a 的通项公式为2n a n =-, 下面我们一起来验证{}n a 为“H 数列”:2n a n =-;232n n n S -=,此时2432n n m -+=,容易验证m 为正整数. (江苏苏州 何睦) 解法三:由题意设1(1)m a m d =+-;又等差数列{}n a 的前n 项和22n n nS n d -=+;由题意知对任意正整数n ,总存在正整数m ,使得n m S a =,21(1)2n nm d n d -+-=+(*);那么m 随着n 的变化而变化,可设满足函数关系式()m f n =.又0d <,那么要使(*)对任意自然数n 恒成立,则21()2m f n n Bn C ==++;代入得:221(1)(1)222d n n d Bnd d Cd n d ++-+=-+,即有1210d Bd d Cd ⎧=-⎪⎨⎪-+=⎩; 又当1n =时,1m n ==,即112B C ++=,由此可以解得3,22B C =-=,1d =-. 此时2n a n =-. (江苏苏州 王耀)解法四:,n m n N S a ∀∈=,所以1(2)n m S a n '-=≥,由题意得1n n S S -≤,所以m m a a '≤,即m m '≥. 对于任意的n ,存在,m m '使得n m m a a a '=-, 即1(1)1(1)[1(1)]n d m d m d '+-=+-=+-, 化简可得11n m m d'=--+.(*) 当1d <-时,此时1d不是整数,此时(*)式不满足; 当10d -<<时,此时11d ->,而0m m '-≥,所以113n m m d'=--+≥恒成立,不对n N ∀∈恒成立,所以1d =-. (江苏兴化 顾卫)解法五:由}{n a 是首项为1的等差数列,且数列}{n a 是“H 数列”,则2221S a a =+>,又0d <,所以22111S a a =+==,则20a =,从而211d a a =-=-,此时2n a n =-,21322n S n n =-+,由n m S a =得,2342n n m -+=为正整数,从而数列}{n a 是“H 数列”.(江苏常州 封中华) (3) 解法一(官方解答):设等差数列{}n a 的公差为d , 则()()()*11111()n a a n d na n d a n =+-=+--∈Ν. 令()()11,1n n b na c n d a ==--,则*()n n n a b c n =+∈Ν. 下证{}n b 是“H 数列”.设{}n b 的前n 项和为n T ,则()()*112n n n T a n +=∈Ν, 于是对任意的正整数n ,总存在正整数()12n n m +=,使得n m T b =,所以{}n b 是“H 数列”. 同理可证{}n c 也是“H 数列”.所以,对任意的等差数列{}n a ,总存在两个“H 数列” {}n b 和{}n c ,使得*()n n n a b c n =+∈Ν成立.解法二:由(2)的解答过程可知:等差数列{}n b 中若111b d =-时, {}n b 是“H 数列”, 则1111(1)2n b b n d b b n =+-=-. 同理等差数列{}n c 中若121c d =时,{}n c 是“H 数列”,121(1)n c c n d c n =+-=. 任意的等差数列{}n a ,则可表示为n a An B =+. 令11b c A -+=,12b B =,此时12B b =,12B c A =+.所以对任意的等差数列{}n a ,总存在两个等差“H 数列”{}n b 和{}n c , 使得*()n n n a b c n N =+∈成立.【考点】数列的概念 (A)、等差数列 (C),探究能力及推理论证能力.数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答....................若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修4—1:几何证明选讲](本小题满分10分)如图,AB 是圆O 的直径,C 、D 是圆O 上位于AB 异侧的两点. 证明:∠ OCB =∠ D .【解析】本小题主要考查圆的基本性质,考查推理论证能力. 本小题满分10分.证明:因为,B C 是圆O 上的两点,所以OB OC =. 故OCB B ∠=∠.又因为,C D 是圆O 上位于AB 异侧的两点, 故,B D ∠∠为同弧所对的两个圆心角, 所以B D ∠=∠. 因此OCB D ∠=∠.B .[选修4—2:矩阵与变换](本小题满分10分)已知矩阵A 121x -⎡⎤=⎢⎥⎣⎦,B 1121⎡⎤=⎢⎥-⎣⎦,向量2y ⎡⎤=⎢⎥⎣⎦α,x ,y 为实数.若=A αB α,求x +y 的值. 【解析】本小题主要考查矩阵的乘法等基础知识,考查运算求解能力. 本小题满分10分.解:由已知,得1222212y x y xy --+⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦A α,1122214y y y +⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦B α. 因为=A αB α,所以22224y y xy y -++⎡⎤⎡⎤=⎢⎥⎢⎥+-⎣⎦⎣⎦,故222,24,y y xy y -+=+⎧⎨+=-⎩ 解得1,24.x y ⎧=-⎪⎨⎪=⎩ 所以72x y +=.(第21—A 题)C .[选修4—4:坐标系与参数方程](本小题满分10分) 在平面直角坐标系xOy 中,已知直线l 的参数方程21,2)(2;x t y ⎧=⎪⎪⎨⎪=⎪⎩为参数,直线l 与抛物线24y x=相交于A 、B 两点,求线段AB 的长.【解析】本小题主要考查直线的参数方程、抛物线的标准方程等基础知识,考查运算求解能力. 本小题满分10分.解法一(官方解答):将直线l 的参数方程21,22x y ⎧=⎪⎪⎨⎪=+⎪⎩代入抛物线方程24y x =, 得222(2)4(1)22+=-. 解得120,2t t ==-所以1282AB t t =-=解法二:将直线l 的参数方程化为直角坐标方程为3x y +=,联立方程组23,4x y y x +=⎧⎨=⎩解得12x y =⎧⎨=⎩,或97.x y =⎧⎨=-⎩,即交点,A B 分别为()1,2和()9,6-,所以22(19)(26)8 2.AB =-++= (江苏镇江 陈桂明) 解法三:将直线l 的参数方程化为直角坐标方程为3x y +=,联立方程组23,4,x y y x +=⎧⎨=⎩ 消去y 有21090x x -+=,则121210,9x x x x +==.所以2212121()411100368 2.AB k x x x x =++-+-=(江苏镇江 陈桂明)D .[选修4—4:不等式证明选讲](本小题满分10分) 已知x >0,y >0,证明:22(1)(1)9x y x y xy ++++≥.【解析】本小题主要考查算术-几何平均不等式,考查推理论证能力.本小题满分10分.证明:因为0,0x y >>,所以223130x y xy ++≥, 故222233(1)(1)339x y x y xy x y xy ++++≥.【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22. (本小题满分10分)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同. (1) 从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P ;(2) 从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x 1、x 2、x 3, 随机变量X 表示x 1、x 2、x 3中的最大数,求X 的概率分布和数学期望E (X ).【解析】本小题主要考查排列与组合、离散型随机变量的均值等基础知识,考查运算求解能力. 满分10分.解:(1) 取出的2个颜色相同的球可能是2个红球、2个黄球或2个绿球,所以222432296315.3618C C C P C ++++=== (2) 随机变量X 的所有可能的取值为2,3,4.{}4X =表示的随机事件是取到的4个球是4个红球,故44491(4)126C P X C ===;{}3X =表示的随机事件是取到的4个球是3个红球和1个其它颜色的球,或3个黄球和1个其它颜色的球,故313145364913(3)63C C C C P X C +===;于是13111(2)1(3)(4)1.6312614P X P X P X ==-=-==--= 所以随机变量X 的概率分布如下表:X 2 3 4 P111413631126因此随机变量X 的数学期望120()234.14631269E X =⨯+⨯+⨯=23. (本小题满分10分)已知函数sin ()(0)xf x x x=>,设()n f x 是1()n f x -的导数,n ∈*N . (1) 求12πππ2()()222f f +的值;(2) 证明:对于任意n ∈*N ,等式1πππ2()()444n n nf f -+=都成立.【解析】本题主要考查简单的复合函数的导数,考查探究能力及应用数学归纳法的推理论证能力.(1) 解:由已知102sin cos sin ()()()x x x f x f x x x x''===-, 故21223cos sin sin 2cos 2sin ()()()x x x x x f x f x x x x x x '⎛⎫''==-=--+ ⎪⎝⎭,所以12234216(),()22f f πππππ=-=-+,即122f π⎛⎫ ⎪⎝⎭+2122f ππ⎛⎫=- ⎪⎝⎭.(2) 证明一(官方解法):由已知得:0()sin xf x x =,等式两边分别对x 求导:00()()cos f x xf x x '+=, 即01()()cos sin()2f x xf x x x π+==+,类似可得:122()()sin sin()f x xf x x x π+=-=+,2333()()cos sin()2f x xf x x x π+=-=+, 344()()sin sin(2)f x xf x x x π+==+.下面用数学归纳法证明等式1()()sin()2n n n nf x xf x x π-+=+对所有的n *∈Ν都成立. (ⅰ) 当1n =时,由上可知等式成立;(ⅱ) 假设当n k =时等式成立,即1()()sin()2k k k kf x xf x x π-+=+. 因为[]111()()()()()(1)()()k k k k k k k kf x xf x kf x f x kf x k f x xf x --+'''+=++=++, (1)sin()cos()()sin 2222k k k k x x x x ππππ'+⎡⎤⎡⎤'+=++=+⎢⎥⎢⎥⎣⎦⎣⎦, 所以1(1)(1)()()sin 2k k k k f x xf x x π++⎡⎤++=+⎢⎥⎣⎦.因此当1n k =+时,等式成立.综合(ⅰ),(ⅱ)可知等式1()()sin()2n n n nf x xf x x π-+=+对所有的n *∈Ν都成立. 令4x π=,可得1()()sin()()44442n n n nf f x n πππππ*-+=+∈Ν.所以12)444n n nf f n πππ*-⎛⎫⎛⎫+=∈ ⎪ ⎪⎝⎭⎝⎭Ν. 解法二:令=)(x g n *1),()(N n x xf x nf n n ∈+-所以x x xf x f x g cos )()()(101=+=,又)()()()1()()()()(111x g x xf x f n x f x x f x f n x g n n n n n n n++-=++='++'=' 故ΛΛ,sin )(,cos )(,sin )()(4312x x g x x g x x g x g -=-=-='= 所以)()(4x g x g n n =+,即22)4(=πn g ,命题得证.(江苏南通陆王华)。
2014年苏州市高考数学考前指导卷
.
π 2 x sin (0≤x≤1)的最小值为 g(θ),则对一切 θ [0, ] ,g(θ)的最大值 x 2 2 cos
二、解答题:本大题共 6 小题,共计 90 分.请在答题卡指定区域内 作答,解答时应写出必要的文字说明、 ........ 证明过程或演算步骤.
15.如图,三棱柱ABC—A 1 B 1 C 1 的侧面AA 1 B 1 B为正方形,侧面BB 1 C 1 C为菱形,∠CBB 1 = 60°,AB⊥B 1 C. (1)求证:平面AA 1 B 1 B⊥平面BB 1 C 1 C; C C1 (2)若AB=2,求三棱柱ABC A 1 B 1 C 1 的体积.
20.已知函数 f ( x) x3 3 x 2 ax (a R ) , g ( x) | f ( x) | .
(1)求以 P 2, f (2) 为切点的切线方程,并证明此切线恒过一个定点; (2)若 g ( x) ≤ kx 对一切 x[0,2]恒成立,求 k 的最小值 h(a) 的表达式; (3)设 a > 0,求 y g ( x) 的单调增区间.
要使竹篱笆用料最省,只需其长度 PQ 最短,所以 PQ 2 x 2 y 2 2 xy cos120 x y xy
2 2
(200 1.5 y )2 y 2 (200 1.5 y ) y 1.75 y 2 400 y 40000 ( 0 y
当y
400 ) 3
200 21 800 200 时, PQ 有最小值 ,此时 x . 7 7 7 答:(Ⅰ)当 AP AQ 100 米时,三角形地块 APQ 的面积最大为 2500 3 平方米; 200 800 (Ⅱ)当 AP 米 , AQ 米时,可使竹篱笆用料最省. 7 7
江苏省2014届高三高考模拟专家卷 物理(2) Word版含解析.pdf
2014下
D {l E(
a a
il0t:*ahh
= r. X*ffitr}xtr fs,y)dy Il* Il' 2
's. E I trf,*.Wtou' (a* o)Atfit lql<
a=l
p"r.+*l"
s
[K
lo. #e|f{irt*' Ft&fi+'&R=
a-0
++, 7"+t
s
+
a
*':'eshn.-
\
Hale Waihona Puke -.ffiTrtJ&ffi,(€rJ.ffi7 tl, * 3sr)) o
a
r itHyl,o,, E+oEa frffi , =fi
z --,Y:f &. rf;t**ratri4
I ztl
n=t
6Pt
a. r.ffi., ifr,E Ft)' *.& i[.-r-]" +l
fr\a,, )
r.(r0hwex.#FerTfr,x#tFlffif... ?rrl . toLz)
''
&-?
, i!a:.i{,a:
+, , ;:n'nqr-4
2.Qaft)*H#t'*E,j|4m,H+LxJwH(x-l),*y2=2,t#tfiHt -\'- " (zw ' ) rEr.tfftrrtl.
苏州大学2014届高考考前指导卷(2)
2 10 2 sin (sin 45 cos cos 45 sin ) 10 20 2 sin cos sin sin 2 cos 2 1 20 . 2 sin(2 45) 1 因为 (0, 45) ,所以当 22.5 时有 AB 的最小值 20( 2 1) .
15 所以 ak+ak+1=2k-8+2(k+1)-8=4k-14,即 16<4k-14<22,解得 <k<9,又 k∈N*,所以 k=8. 2 答案 8
2 x y 1, 9.若 x,y 满足约束条件 x y 2, 目标函数 z kx 2 y(k N * ) 仅在点(1,1)处取得最小值,则 k 的值为 y x 2,
_______. k 1 解析 作出不等式组对应的平面区域如图,目标函数为 y=- x+ z,仅在(1,1)差取得最 2 2 k 小值时,有-1<- <2,解得-4<k<2,则 k 1 . 2 答案 1 10.已知函数 f(x)=sin x+cos x 的定义域为[a,b],值域为[-1, 2],则 b-a 的取值范围是________. π π 3π 解析 由条件可得,长度最小的定义域可能是 -2,4 ,此时 b - a = 4 ,长度最大的定义域可能是 -π,π,此时 b-a=3π,即 b-a 的取值范围是3π,3π. 2 4 2 2 3π 3π 答案 4,2 tanA → → → →2 11.已知△ABC 中,3( CA + CB )· AB =4 AB ,则 = tanB .
解析 由已知得: 3(CA CB) (CB CA) 4 AB ,即 3(a2 b2 ) 4c2 .
2
答案7
a 2 c 2 b2 tan A sin A cos B a a 2 c 2 b2 2 2ac 7. tan B sin B cos A b b c 2 a 2 b 2 c 2 a 2 2bc
2014江苏省高考试卷含解析考试重点和考试技巧
1、下面语段中画线的词语,使用不恰当的一项是石钟山上那些错落有致的奇石以及记载着天下兴衰的石刻令人叹为观止。
石钟山的名字也叫得奇,围绕这一名字的由来,人们开展了激烈的争论。
卷入这场争论的,有名扬四海的文人墨客,也有戎马倥偬的赳赳武夫,还有名不见经传的山野村人。
无论结果如何,不容置喙的是,石钟山因此更加有名了。
A.叹为观止 B.戎马倥偬 C.名不见经传 D.不容置喙2、依次填入下列横线处的词语,最恰当的一组是研究伊始,该团队选取了华北、西北地区生产的几十种马铃薯进行分析,从营养成分、、硬度等方面多次试验,确定了适合加工马铃薯面条的两个品种。
随后,又从诸多面粉种类中试验选取了的小麦粉加以调试。
A.鉴别色泽终于适量B.鉴别色彩终于适当C.甄别色泽最终适当D.甄别色彩最终适量3、下列各句中,没有语病的一句是(4分)A.具有自动化生产、智能识别和系统操控等功能的工业机器人,正成为国内不少装备制造企业提高生产效率,解决人力成本上涨的利器。
B.如何引导有运动天赋的青少年热爱并且投身于滑雪运动,从而培养这些青少年对滑雪运动的兴趣,是北京冬奥申委正在关注的问题。
C.要深化对南极地区海冰融化现象和南极上空大气运动过程的认识,就必须扩大科学考察区域,加强科研观测精度,改进实验设计方法。
D.各级各类学校应高度重视校园网络平台建设,着力培养一批熟悉网络技术、业务精湛的教师,以便扎实有效地开展网络教育教学工作。
4、下列语句中,标点符号使用不正确的一项是(3分)A.在远走他乡、辗转天涯时,他才明白为什么那些远离家乡的人们会那么怀念故乡?B.中国传统文化重视人生哲学,儒家坚持以修身为本,追求的是“齐家、治国、平天下”。
C.建立现代科学的三大基石是理论、实验和数学(包括计算、统计与建立在抽象模型基础上的演绎推理)。
D.2012年开始实施的新《标点符号用法》,我们要怎样贯彻:通知各校自行学习?组织骨干教师来培训?5、下列词语中加点字的读音,全部正确的一项是A.暂时zàn 埋怨mái 谆谆告诫zhūn 引吭高歌hángB.豆豉chǐ踝骨huái 踉踉跄跄cāng 按图索骥jìC.梗概gěn 删改shān 炊烟袅袅niǎo 明眸皓齿mïuD.搁浅gē解剖pōu 鬼鬼祟崇suì不屑一顾xiâ6、依次填入下列横线处的词语,最恰当的一组是研究伊始,该团队选取了华北、西北地区生产的几十种马铃薯进行分析,从营养成分、、硬度等方面多次试验,确定了适合加工马铃薯面条的两个品种。
2014届江苏高考数学考前指导卷(2)(含答案)-推荐下载
6. 已知函数 y f (x) 是奇函数,当 x 0 时, f (x) x2 ax(a R) ,且 f (2) 6 ,
则a=
.
7.一块边长为 10 cm 的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形作侧
面,以它们的公共顶点 P 为顶点,加工成一个如图所示的正四棱锥形容器.当 x=6 cm 时,该容器的容
8.已知数列{an}的前 n 项和 Sn=n2-7n,且满足 16<ak+ak+1<22,则正整数 k=________.
2x y 1,
9.若
x,y
满足约束条件
x
y 2,
目标函数 z kx 2 y(k N* ) 仅在点(1,1)处取得最小值,则 k 的值为
y x 2,
_______.
10.已知函数 f(x)=sin x+cos x 的定义域为[a,b],值域为[-1, 2],则 b-a 的取值范围是________.
11.已知△ABC 中,3(→CA+→CB)·→AB=4→AB2,则ttaannAB=
.
12.设平面点集 A=Error!,B={(x,y)|(x-1)2+(y-1)2≤1},则 A∩B 所表示的平面图形的面积为
意的正整数 n,都有 1<cn≤ 6- 2.
4 南京清江花苑严老师
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
苏州大学2018届高考考前指导卷2(终稿)
(2)①若
,求
的最大值;
②在 x轴上是否存在一点 P,使得
为定值,若存在,求出点 P;若不存在,请说明理由.
y
B
OQ
x
A
(第 18题图)
3
19.(本小题满分 16分) 已知数列{an},{bn}满足:bn=an+1-an(n∈N*).
(1)若 a1=1,bn=n,求数列{an}的通项公式;
(2)若 bn+1bn-1=bn(n≥2),且 b1=1,b2=2.
(1)若点 M 是线段 BC的中点,
,求 b的值;
(2)若
,求△ ABC的面积.
,
.
2
17.(本小题满分 14分) 某校在圆心角为直角,半径为
的扇形区域内进行野外生存训练.如图所示,在相距
的 A,B
两个位置分别有 300,100名学生,在道路 OB上设置集合地点 D,要求所有学生沿最短路径到 D点集
S← 2I+1 I← I+2 End While Print S (第 5题图)
为▲.
8.设 Sn是等比数列{an}的前 n项和,若满足 a4+3a11=0,则
▲.
9.已知
,函数
和
存在相同的极值点,则
▲.
10.在平面直角坐标系 xOy中,已知圆 C:x2+(y-1)2=4,若等边△PAB的一边 AB为圆 C的一条弦,
所以
平面 CDE.
(2)在△ABD中,因为∠ABD=60º,BD=2AB,
所以
,即
,
因为
,所以
又
,所以
平面 ACD,
又
面 ABC,所以平面 ABC⊥平面 ACD.
16.解(1)因为点 M 是线段 来自C的中点,,设,则
苏州大学2014届高考考前指导卷(1)
苏州大学2014届高考考前指导卷(1)一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请把答案直接填在答题卡...相应位置上...... 1.已知集合A ={x |x >5},集合B ={x |x <a },若A B=(5,6),则实数a 的取值范围是________.解析 答案 62.设(1+2i)2=a +b i(,a b R ∈),则ab=________.解析 (1+2i)2=1+4i -4=-3+4i . 答案 -123.若函数f (x )=sin(x +φ)(0<φ<π)是偶函数,则φ=________.解析 因为函数f (x )=sin(x +φ)(0<φ<π)是偶函数,所以φ=π2.答案 π24.已知双曲线C :x 2a 2-y 2b2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为________.解析 由焦距为10知,c =5,即a 2+b 2=25,根据双曲线方程可知,渐近线方程为y =±bax ,带入点P 的坐标得,a =2b ,联立方程组可解得a 2=20,b 2=5,所以双曲线方程x 220-y25=1.答案 x 220-y25=15.从3位男生1位女生中任选两人,恰好是一男一女的概率是________.解析 设恰好选出的是一男一女的事件为A ,则()3162P A ==.答案 126.已知函数2()ay x a R x =+∈在1x =处的切线与直线210x y -+=平行,则a =________.解析 2'2ay x x=-,当1x =时,22k a =-=,得到0a =.答案 07.图1是某学生的数学考试成绩茎叶图,第1次到第14次的考试成绩依次记为A 1,A 2,…,A 14.图2是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图.那么算法流程图输出的结果是________.解析 依据算法中的程序框图知其作用是统计茎叶图中数学考试成绩不低于90分的次数,由茎叶图易知共有10次,故输出的结果为10. 答案 10 8.已知等差数列{a n }的公差不为零,a 1+a 2+a 5>13,且a 1,a 2,a 5成等比数列,则a 1的取值范围为________.解析 利用a 1,a 2,a 5成等比数列确定公差与首项的关系,再解不等式即可.设等差数列{a n }的公差为d ,则d ≠0,所以a 1,a 2,a 5成等比数列,则a 22=a 1a 5,即(a 1+d )2=a 1(a 1+4d ),故d =2a 1,代入不等式a 1+a 2+a 5>13解得a 1>1. 答案 (1,+∞)9.在△ABC 中,若AB =1,|||AC AB AC BC =+=,则BA →·BC→|BC →|=______.解析 如图AB →+AC →=AD →,依题意,得|AD →|=|BC →|,所以四边形ABDC 是矩形,∠BAC=90°. 因为AB =1,AC =3,所以BC =2.cos ∠ABC =AB BC =12,BA →·BC→|BC →|=|BA →|| BC →|cos ∠ABC |BC →|=|BA →|cos ∠ABC =12.答案 1210.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,a =8,b =10,△ABC 的面积为203,则△ABC 的最大角的正切值是________. 解析 由题意可以求出sin C ,得到∠C 有两解,借助余弦定理分别求出三角形中最大角的正切值.由S △ABC=12ab sin C ,代入数据解得sin C =32,又∠C 为三角形的内角,所以C =60°或120°.若C =60°,则在△ABC 中,由余弦定理得c 2=a 2+b 2-2ab cos C =84,此时,最大边是b ,故最大角为∠B ,其余弦值cosB =a 2+c 2-b 22ac =3221,正弦值sin B =53221,正切值tan B =533;若C =120°,此时,C 为最大角,其正切值为tan 120°=-3. 答案 533或- 311.在三棱锥P ABC -中,底面是边长为3的正三角形,且3PA =,4PB =,5PC =,则三棱锥P ABC -的体积P ABC V -= .解析 不妨设三条侧棱都3,则底面为直角三角形;由三棱锥的侧棱都相等可知顶点在底面的射影为底面的外心,即为底边的中点,且底面外接圆半径52r =;那么,三棱锥的高h ==. 则可知三棱锥的体积111(34)3322V Sh ==⋅⋅⋅⋅=答案.12.已知函数f (x )=|x 2+2x -1|,若a <b <-1,且f (a )=f (b ),则ab +a +b 的取值范围是________.解析 作出函数图象可知若a <b <-1,且f (a )=f (b ),即为a 2+2a -1=-(b 2+2b -1),整理得(a +1)2+(b +1)2=4,设⎩⎪⎨⎪⎧a =-1+2cos θ,b =-1+2sin θ,θ∈⎝⎛⎭⎫π,5π4,所以ab +a +b =-1+2sin 2θ∈(-1,1). 答案 (-1,1)13.已知实数b a ,分别满足15323=+-a a a ,55323=+-b b b , 则b a +的值为 . 解析 观察题目条件15323=+-a a a ,55323=+-b b b ,我们可以构造函数32()35f x x x x =-+,则()1,()5f a f b ==,通过导数2()3650f x x x '=-+>,不难发现()f x 在R 上单调递增,故a b <.进一步尝试发现(0)0,(1)3f f ==,此时断定01a b <<<,特别关注()()(1)2f a f b f +=,32()35f x x x x =-+是中心对称图形.而323()35(1)2(1)3f x x x x x x =-+=-+-+可以看成是由32y x x =+平移得到,即()f x 关于点(1,3)中心对称,故2a b +=.答案 214.已知A ,B ,C 是平面上任意三点,BC =a ,CA =b ,AB =c ,则y =c a +b +bc的最小值是________.解析 相对固定b ,c ,即把b ,c 视为常数,代数式y =c a +b +bc随着正数a 的变大而变小,要使y 最小,只要a 最大,因为A ,B ,C 是平面上任意三点,且BC =a ,CA =b ,AB =c ,故a 的最大值是b +c ,所以y =c a +b +b c ≥c 2b +c +b c=12⎝⎛⎭⎫b c +12+⎝⎛⎭⎫b c +12-12≥2-12,即最小值是2-12. 答案 2-12二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤.15.已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2a cos B =c cos B +b cos C .(1)求角B 的大小;(2)设向量m =(cos A ,cos 2A ),n =(12,-5),求当m·n 取最大值时,tan C 的值. 解 (1)由题意,2sin A cos B =sin C cos B +cos C sin B , 所以2sin A cos B =sin(B +C )=sin(π-A )=sin A . 因为0<A <π,所以sin A ≠0.所以cos B =22. 因为0<B <π,所以B =π4.(2)因为m·n =12cos A -5cos 2A ,所以m·n =-10cos 2A +12cos A +5=-10⎝⎛⎭⎫cos A -352+435. 所以当cos A =35时,m·n 取最大值.此时sin A =45(0<A <π2),于是tan A =43.所以tan C =-tan(A +B )=-tan A +tan B1-tan A tan B=7.16.如图,在四棱锥P - ABCD 中,已知AB =1,BC = 2,CD = 4,AB ∥CD ,BC ⊥CD ,平面P AB ⊥平面ABCD ,P A ⊥AB .(1)求证:BD ⊥平面P AC ;(2)已知点F 在棱PD 上,且PB ∥平面F AC ,求DF :FP .证明(1)∵平面P AB ⊥平面ABCD ,平面P AB 平面ABCD = AB ,P A ⊥AB ,P A ⊂平面P AB , ∴ P A ⊥平面ABCD .∵BD ⊂平面ABCD ,∴P A ⊥BD . 连结ACBD O =,∵AB = 1,BC = 2,CD = 4,∴12A B B CB C C D==. ∵AB ∥CD ,BC ⊥CD ,∴Rt ABC ∆∽Rt BCD ∆.A BCDFP P FDCBA O∴BDC ACB ∠=∠.∴90ACB CBD BDC CBD ∠+∠=∠+∠=︒.则AC ⊥BD .∵AC PA A =,∴BD ⊥平面P AC .(2)∵PB //平面F AC ,PB ⊂平面PBD ,平面PBD 平面F AC= FO ,∴FO ∥PB ,∴DF DOPF OB=. 又∵AB //CD ,且41==CD AB OD BO ,∴DF :FP=4:1.17.某创业投资公司拟投资开发某种新能源产品,估计能获得10万元到1 000万元的投资收益.现准备制定一个对科研课题组的奖励方案:资金y (单位:万元)随投资收益x (单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%.(1)若建立函数y =f (x )模型制定奖励方案,试用数学语言表述该公司对奖励函数f (x )模型的基本要求,并分析函数y =x150+2是否符合公司要求的奖励函数模型,并说明原因;(2)若该公司采用模型函数y =10x -3ax +2作为奖励函数模型,试确定最小的正整数a 的值.解 (1)设奖励函数模型为y =f (x ),按公司对函数模型的基本要求,函数y =f (x )满足:当x ∈[10,1 000]时,①f (x )在定义域[10,1 000]上是增函数;②f (x )≤9恒成立;③f (x )≤x5恒成立.对于函数模型f (x )=x150+2.当x ∈[10,1 000]时,f (x )是增函数,f (x )max =f (1 000)=1 000150+2=203+2<9,所以f (x )≤9恒成立. 但x =10时,f (10)=115+2>105,即f (x )≤x5不恒成立,故该函数模型不符合公司要求.(2)对于函数模型f (x )=10x -3a x +2,即f (x )=10-3a +20x +2,当3a +20>0,即a >-203时递增;要使f (x )≤9对x ∈[10,1 000]恒成立,即f (1 000)≤9,3a +18≥1 000,a ≥9823;要使f (x )≤x 5对x ∈[10,1 000]恒成立,即10x -3a x +2≤x 5,x 2-48x +15a ≥0恒成立,所以a ≥1925.综上所述,a ≥9823,所以满足条件的最小的正整数a 的值为328.18.椭圆C :22221(0)x y a b a b +=>>的左、右焦点分别是12,F F ,离心率为32,过F 1且垂直于x 轴的直线被椭圆C 截得的线段长为1.(1)求椭圆C 的方程;(2)点P 是椭圆C 上除长轴、短轴端点外的任一点,过点P 作直线l ,使得l 与椭圆C 有且只有一个公共点,设l 与y 轴的交点为A ,过点P 作与l 垂直的直线m ,设m 与y 轴的交点为B ,求证:△P AB 的外接圆经过定点.解 (1)由于c 2=a 2-b 2,将x =-c 代入椭圆方程22221x y a b+=,得y =±2b a .由题意知22b a =1,即a =2b 2,又e =c a =32, 所以a =2,b =1. 所以椭圆C 的方程为2214x y +=. (2)设P (x 0,y 0)(y 0≠0),则直线l 的方程为y -y 0=k (x -x 0).联立0022,1,4y kx y kx x y =+-⎧⎪⎨+=⎪⎩ 整理得(1+4k 2)x 2+8(ky 0-k 2x 0)x +4(y 20-2kx 0y 0+k 2x 20-1)=0. 由题意Δ=0,即(4-x 20)k 2+2x 0y 0k +1-y 20=0.又220014x y +=,所以16y 20k 2+8x 0y 0k +x 20=0,故k =-004x y . 所以直线l 方程为0014x x y y +=,令x =0,解得点A 01(0,)y ,又直线m 方程为00043y y x y x =-,令x=0,解得点B 0(0,3)y -, △P AB 的外接圆方程为以AB 为直径的圆方程,即2001()(3)0x y y y y +-+=. 整理得:220013(3)0x y y y y +-+-=,分别令2230,0,x y y ⎧+-=⎨=⎩解得圆过定点(.19.已知函数f (x )=ax +ln x ,g (x )=e x .(1)当a ≤0时,求f (x )的单调区间;(2)若不等式g (x )<x -mx有解,求实数m 的取值范围.解 (1)f (x )的定义域是(0,+∞),f ′(x )=a +1x(x >0),1°当a =0时,f ′(x )>0,∴f (x )在(0,+∞)上单调递增;2°当a <0时,由f ′(x )=0,解得x =-1a,则当x ∈⎝⎛⎭⎫0,-1a 时,f ′(x )>0,f (x )单调递增,当x ∈⎝⎛⎭⎫-1a ,+∞时,f ′(x )<0,f (x )单调递减, 综上所述:当a =0时,f (x )在(0,+∞)上单调递增,当a <0时,f (x )在⎝⎛⎭⎫0,-1a 上单调递增,在⎝⎛⎭⎫-1a ,+∞上单调递减. (2)由题意:e x <x -mx有解,即e x x <x -m 有解,因此只需m <x -e x x ,x ∈(0,+∞)有解即可,设h (x )=x -e x x ,h ′(x )=1-e xx -e x 2x =1-e x ⎝⎛⎭⎫x +12x ,因为x +12x ≥212=2>1,且x ∈(0,+∞)时e x >1, 所以1-e x ⎝⎛⎭⎫x +12x <0,即h ′(x )<0.故h (x )在(0,+∞)上单调递减,∴h (x )<h (0)=0,故m <0.20.已知无穷数列{a n }的各项均为正整数,S n 为数列{a n }的前n 项和.(1)若数列{a n }是等差数列,且对任意正整数n 都有33()n n S S =成立,求数列{a n }的通项公式; (2)对任意正整数n ,从集合{a 1,a 2,…,a n }中不重复地任取若干个数,这些数之间经过加减运算后所得数的绝对值为互不相同的正整数,且这些正整数与a 1,a 2,…,a n 一起恰好是1至S n 全体正整数组成的集合.(ⅰ)求a 1,a 2的值; (ⅱ)求数列{a n }的通项公式.解 (1)设无穷等差数列{a n }的公差为d , 因为33()n n S S =对任意正整数n 都成立,所以分别取n =1,n =2时,则有:⎩⎪⎨⎪⎧a 1=a 31,8a 1+28d =(2a 1+d )3.因为数列{a n }的各项均为正整数,所以d ≥0. 可得a 1=1,d =0或d =2.当a 1=1,d =0时,a n =1,33()n n S S =成立; 当a 1=1,d =2时,S n =n 2,所以33()n n S S =.因此,共有2个无穷等差数列满足条件,通项公式为a n =1或a n =2n -1. (2)(ⅰ)记A n ={1,2,…,S n },显然a 1=S 1=1.对于S 2=a 1+a 2=1+a 2,有A 2={1,2,…,S n }={1,a 2,1+a 2,|1-a 2|}={1,2,3,4}, 故1+a 2=4,所以a 2=3.(ⅱ)由题意可知,集合{a 1,a 2,…,a n }按上述规则,共产生S n 个正整数.而集合{a 1,a 2,…,a n ,a n +1}按上述规则产生的S n +1个正整数中,除1,2,…,S n 这S n 个正整数外,还有a n -1,a n +1+i ,|a n +1-i |(i =1,2,…,S n ),共2S n +1个数. 所以,S n +1=S n +(2S n +1)=3S n +1.又S n +1+12=3⎝⎛⎭⎫S n +12,所以S n =⎝⎛⎭⎫S 1+12·3n -1-12=12·3n -12. 当n ≥2时,a n =S n -S n -1=12·3n -12-⎝⎛⎭⎫12·3n -1-12=3n -1,而a 1=1也满足a n =3n -1. 所以,数列{a n }的通项公式是a n =3n -1.。
苏州大学2016届高考考前指导卷2
苏州大学2016届高考考前指导卷(2)一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上......... 1.设集合A ={x |x >2},B ={x |x <4},则A ∩B =▲______. 2.已知z =41+i(i 是虚数单位),则复数z 的实部为▲______.3.在平面直角坐标系xOy 中,抛物线y =x 2的焦点坐标为▲______. 4.在平面直角坐标系xOy 中,函数y =2sin ⎝⎛⎭⎫2x -π6图象距y 轴最近的对 称轴的方程是▲______.5.一个盒子里装有标号为1,2,3,4,5的5张标签,随机地抽取3张 标签,则“取出的3张标签的标号的平均数是3”的概率为▲______. 6.根据如图所示的伪代码,最后输出的i 的值为▲______.7.已知等差数列{a n }的公差为2,且a 1,a 2,a 5成等比数列,则a 2的值为▲______. 8.如图所示,在三棱锥A -BCD 中,E 是侧棱AC 的中点,F 在 侧棱AD 上,且2AF =FD .若三棱锥A -BEF 的体积是2,则 四棱锥B -ECDF 的体积为▲______.9.在平行四边形ABCD 中,已知AB =4,AD =3,∠BAD =60°, 点E ,F 分别满足AE →=2ED →,DF →=FC →,则AF →·BE →=▲______. 10.在平面直角坐标系xOy 中,过O 的直线l 与曲线y =e x-2交于不同的两点A ,B ,分别过A ,B 作x 轴的垂线,分别与曲线 y =ln x 交于点C ,D ,则直线CD 的斜率为▲______. (e 是自然对数的底数)11.在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,上顶点为A ,线段AF 2的中垂线交椭圆于点B ,若F 1在线段AB 上,则椭圆的离心率为▲______. 12.在△ABC 中,设角A ,B ,C 所对的边长分别为a ,b ,c ,若A =2C ,c =2,a 2=4b -4,则a的值为▲______.13.设函数f (x )=⎩⎨⎧a -|x +1|,x ≤1,(x -a )2,x >1,函数g (x )=2-f (x ),若函数y =f (x )-g (x )恰有4个零点,则实数a 的取值范围是▲______.14.在数列{a n }中,若a i =k 2(2k ≤i <2k +1,i ∈N *,k ∈N ),则满足a i +a 2i ≥100的i 的最小值为▲______.T ←1 i ←3While T <10 T ←T +i i ←i +2 End While Print i(第8题)二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分14分)在平面直角坐标系xOy 中,设向量a =(sin x ,34),b =(cos x ,-1).(1)当a ∥b 时,求cos 2x -sin2x 的值;(2)设函数f (x )=2(a +b )·b ,若f (α2)=34,α∈(π2,π),求sin α的值.16.(本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,∠ABC =90°,AB =BC =BB 1,点D ,E 分别为棱BC ,CC 1的中点.(1)求证:B 1D ⊥平面ABE ;(2)若点P 是线段B 1D 上一点,且B 1P PD =12,求证:A 1P ∥平面ADE .17.(本小题满分14分)在平面直角坐标系xOy 中,已知圆O :x 2+y 2=4与x 轴的负半轴的交点为A ,点P 在直线l :3x +y -a =0上,过点P 作圆O 的切线,切点为T . (1)若a =8,切点T (3,-1),求直线AP 的方程; (2)若P A =2PT ,求实数a 的取值范围.18.(本小题满分16分)中国古建筑中的窗饰是艺术和技术的统一体,给人于美的享受.如图所示,图(1)为一花窗;图(2)所示是一扇窗中的一格,呈长方形,长30cm ,宽26cm ,其内部窗芯(不含长方形边框)用一种条形木料做成,由两个菱形和六根支条构成,整个窗芯关于长方形边框的两条对称轴成轴对称.设菱形的两条对角线长分别为x cm 和y cm ,窗芯所需条形木料的长度之和为L .(1)试用x ,y 表示L ;(2)如果要求六根支条的长度均不小于2cm ,每个菱形的面积为130cm 2,那么做这样一个窗芯至少需要多长的条形木料(不计榫卯及其它损耗)?EA1(第16题)19.(本小题满分16分)设函数f (x )=(x -k -1)e x ,其中e 为自然对数的底数,e ≈2.71828,k ∈R . (1)求f (x )在区间(0,+∞)上的单调区间和极值;(2)①若对于任意的x ∈[1,2],都有f (x )<4x 成立,求k 的取值范围; ②若x 1≠x 2,且f (x 1)=f (x 2),证明:x 1+x 2<2k .20.(本小题满分16分)已知数列{a n },{b n }分别满足a 1=1,b 1=-1,且对任意的n ∈N *,都有|a n +1-a n |=2,|b n +1b n|=2.设数列{a n },{b n }的前n 项和分别为S n ,T n .(1)若数列{a n },{b n }都为递增数列,求数列{a n },{b n }的通项公式;(2)若数列{c n }满足:存在唯一的正整数k (k ≥2),使得c k <c k -1,称数列{c n }为“k 坠点数列”. ①若数列{a n }为“5坠点数列”,求S n ;②若数列{a n }为“p 坠点数列”,数列{b n }为“q 坠点数列”,是否存在正整数m ,使得S m +1=T m ?若存在,求m 的最大值;若不存在,说明理由.苏州大学2016届高考考前指导卷(2)参考答案1.(2,4) 2.2 3.(0,14) 4.x =-π6 5.15 6.9 7.3 8.109.-6 10.1 11.3312.23. 13.(2,3] 14.128 解答与提示 1.A ∩B =(2,4).2.由题意z =41+i=2-2i ,所以z 的实部为2.3.由题知2p =1,p 2=14,所以抛物线的焦点坐标为(0,14).4.由2x -π6=k π+π2(k ∈Z ),得x =k π2+π3.当k =-1时,直线x =-π6是与y 轴最近的对称轴.5.从1,2,3,4,5这五个数中任取3个数,用列举法可知,共有10种情况,而其中三个数的平均数是3的只有1,3,5和2,3,4两种情况,所以所求概率为p =210=15.6.T =1,i =3;T =4,i =5;T =9,i =7;T =16,i =9.输出值i 为9.7.由a 22=a 1a 5可知(a 1+2)2=a 1(a 1+8),解得a 1=1,即a 2=3.8.因为S △AEF S △ACD =12AE ·AF ·sin A12AC ·AD ·sin A =16,V =6V A -BEF =12,则四棱锥B -ECDF 的体积为10.9.因为AE →=23AD →,AF →=AD →+DF →=AD →+12AB →,BE →=BA →+AE →=23AD →-AB →,所以AF →·BE →=(AD →+12AB →)·(23AD →-AB →)=23AD →2-12AB →2-23AB →·AD →=6-8-4=-6. 10.设A (x 1,ex 1-2),B (x 2,ex 2-2),则由点O ,A ,B 共线可知e x 1-2x 1=e x 2-2x 2,即e x 1-x 2=x1x 2,得x 1-x 2=ln x1x 2,故有k CD =ln x 1-ln x 2x 1-x 2=lnx 1x 2x 1-x 2=1. 11.由题意知AB =BF 2,设BF 1=x ,则x +x +a =2a ,即x =a 2,故AF 1=2F 1B ,易得B (-3c 2,-b 2),代入椭圆方程得9c 24a 2+b 24b 2=1,解得c 2a 2=13,所以e =33.12.由余弦定理4b -4=4+b 2-4b cos2C ,即b 2-4b (1+cos2C )+8=0,故b 2-8b cos 2C +8=0.由正弦定理得2b -1sin2C =2sin C ,即cos C =b -12,所以b 2-b (b -1)2+8=0,解得b =4,所以a 2=4b -4=12,a =23.13.由题意当y =f (x )-g (x )=2[f (x )-1]=0时,即方程f (x )=1有4个解.又由函数y =a -|x +1|与函数y =(x -a )2的大致形状可知,直线y =1与函数f (x )=⎩⎨⎧a -|x +1|,x ≤1,(x -a )2,x >1图象的左右两支曲线都有两个交点,如图所示,那么⎩⎪⎨⎪⎧(1-a )2>1,f (-1)>1,f (1)≤1,即⎩⎪⎨⎪⎧a >2a <0,a >1,a -2≤1,解得2<a ≤3. 14.当2k ≤i <2k+1时,a i =k 2,2k +1≤2i <2k +2,所以a 2i =(k +1)2.又a i +a 2i ≥100,所以k 2+(k +1)2≥100,解得k 的最小值是7,即i ≥27=128.15.(1)因为a ∥b ,即34cos x +sin x =0,即tan x =-34,所以cos 2x -sin2x =cos 2x -2sin x cos x sin 2x +cos 2x =1-2tan x 1+tan 2x =85. 16.(2)f (x )=2(a +b )·b =2a ·b +2b 2=2sin x cos x -32+2(cos 2x +1)=sin2x +cos2x +32=2sin(2x +π4)+32.因为f (α2)=34,所以f (α2)=2sin(α+π4)+32=34,即sin(α+π4)=-328,又α∈(π2,π),所以3π4<α+π4<5π4,故cos(α+π4)=-1-(328)2=-468,所以sin α=sin[(α+π4)-π4]=22(sin(α+π4)-cos(α+π4))=22(-328+468)=-3+238.16.(1)在直三棱柱ABC -A 1B 1C 1中,因为BB 1⊥ABC ,AB ⊂平面ABC ,所以BB 1⊥AB . 因为∠ABC =90°,所以BC ⊥AB .又BC ,BB 1⊂平面BCC 1B 1,BC ∩BB 1=B ,所以AB ⊥平面BCC 1B 1. 因为DB 1⊂平面BCC 1B 1,所以AB ⊥DB 1.在平面BCC 1B 1中,因为BC =BB 1,所以四边形BCC 1B 1为正方形. 因为点D ,E 分别为BC ,CC 1的中点,所以ΔBCE ∽ΔB 1BD , 所以∠CBE =∠BB 1D ,所以∠CBE +∠B 1DB =π2,即B 1D ⊥BE .又因为BA ,BE ⊂平面ABE ,BA ∩BE =B ,所以B 1D ⊥平面ABE . (2)连接PC ,交DE 于点F ;连接A 1C 交AE 于点G .连接FG . 在正方形BCC 1B 1中,利用B 1P PD =12及平面几何知识可得PFFC=2.在正方形ACC 1A 1中,利用CE =∥12AA 1,得A 1G GC=2. 所以,在ΔCA 1P 中,A 1G GC =PFFC =2,所以A 1P ∥GF .又A 1P /⊂平面ADE ,GF ⊂平面ADE ,所以A 1P ∥平面ADE .1A17.(1)由题意,直线PT 切于点T ,则OT ⊥PT .又切点T 的坐标为(4,-3),所以直线OT 的斜率k OT =-3, 所以直线PT 的斜率k PT =-1k OT =33, 故直线PT 的方程为y +1=33(x -3),即3x -y -4=0. 联立直线l 和PT 的方程,得⎩⎪⎨⎪⎧3x -y -4=0,3x +y -8=0,解得⎩⎨⎧x =23,y =2,即P (23,2).所以直线AP 的斜率k =2-023+2=13+1=3-12,故直线AP 的方程为y =3-12(x +2),即x -(3+1)y +2=0. (2)设P (x ,y ),由P A =2PT ,可得(x +2)2+y 2=4(x 2+y 2-4),即3x 2+3y 2+4x -20=0, 即满足P A =2PT 的点P 的轨迹是圆(x -23)2+y 2=649,所以问题可转化为直线3x +y -a =0与圆(x -23)2+y 2=649有公共点,所以d =|3×23-a |(3)2+1≤83,即|233-a |≤163,解得-16+233≤a ≤16+233.18.(1)由题意,水平方向每根支条长(单位:cm)为m =30-2x2=15-x ,竖直方向每根支条长(单位:cm)为n =26-y 2=13-y2,菱形的边长(单位:cm)为(x 2)2+(y 2)2=x 2+y 22. 从而,0<x <15,0<y <26,所需木料的长度(单位:cm)之和L =2(15-x )+4(13-y2)+8×x 2+y 22=82+4x 2+y 2-2(x +y ),0<x <15,0<y <26.(2))由题意,12xy =13,即y =260x.又由⎩⎪⎨⎪⎧15-x ≥2,13-y 2≥2,得13011≤x ≤13. 所以L =82+4x 2+(260x )2-2(x +260x ),13011≤x ≤13.令t =x +260x ,则t'=1-260x 2.当13011≤x ≤13时,有t'<0,所以t =x +260x 在区间[13011,13]上单调递减,所以t ∈[33,37211]. 所以L =82+2[2(x +260x )2-520-(x +260x)] =82+2[t 2-520+t 2-520-t ]=82+2[t 2-520+-520t 2-520+t],t ∈[33,37211]. 因为函数y =t 2-520和y =-520t 2-520+t在区间[33,37211]上均为增函数,所以L =82+2[t 2-520+-520t 2-520+t ]在区间[33,37211]上为增函数,所以,当t =33,即x =13,y =20时,L 有最小值16+4569. 答:做这样一个窗芯至少需要16+4569cm 长的条形木料. 19.(1)因为f '(x )=(x -k )e x ,x >0.(i)若k ≤0,则f '(x )>0,所以f (x )的递增区间是(0,+∞),无递减区间;无极值. (ii)若k >0,则当0<x <k 时,f '(x )<0;当x =k 时,f '(x )=0;当x >k 时,f '(x )>0, 所以f (x )的递减区间是(0,k ],递増区间是[k ,+∞), 所以f (x )的极小值为f (k )=-e k ,无极大值. (2))①由f (x )<4x ,可得(x -k -1)e x -4x <0.因为e x >0,所以x -k -1<4x e x ,即k >x -1-4xe x 对任意x ∈[1,2]恒成立.记g (x )=x -1-4xe x ,则g '(x )=1-4(1-x )e x =e x +4(x -1)e x.因为x ∈[1,2],所以g '(x )>0,即g (x )在x ∈[1,2]上单调递增,故g (x )max =g (2)=1-8e 2=e 2-8e2.所以实数k 的取值范围为(e 2-8e2,+∞).②由已知f (x 1)=f (x 2)(x 1≠x 2),结合(1)可知,k >0,所以f (x )在区间(-∞,k ]上单调递减,在区间[k ,+∞)上单调递增. 又f (k +1)=0,所以,当x <k +1时,f (x )<0.不妨设x 1<k <x 2<k +1,此时x 2>k ,2k -x 1>k ,所以, 要证x 1+x 2<2k ,即证2k -x 1>x 2,即证f (2k -x 1)>f (x 2). 因为f (x 1)=f (x 2),所以,本题即证f (2k -x 1)>f (x 1).设h (x )=f (2k -x )-f (x )=(-x +k -1)e 2kex-(x -k -1)e x ,x <k , 则 h '(x )=(x -k )e 2k e x -(x -k )e x =(x -k )(e 2k -e 2x)e x, 所以,当x <k 时,h '(x )<0;当x =k 时,h '(x )=0, 所以h (x )在区间(-∞,k ]上单调递减,所以当x ∈(-∞,k )时,h (x )>h (k )=-e k +e k =0. 所以,当x <k 时,f (2k -x )>f (x ),即f (2k -x 1)>f (x 1)成立, 所以x 1+x 2<2k .20.(1)数列{a n },{b n }都为递增数列,所以a n +1-a n =2,b 2=-2b 1,b n +2=2b n +1,n ∈N *,所以a n =2n -1,b n =⎩⎨⎧-1,n =1,2n -1,n ≥2.(2))①因为数列{a n }满足:存在唯一的正整数k =5,使得a k <a k -1,且|a n +1-a n |=2,所以数列{a n }必为1,3,5,7,5,7,9,11,…,即前4项成首项为1,公差为2的等差数列,从第5项开始成首项5,公差为2的等差数列,故S n =⎩⎨⎧n 2,n ≤4,n 2-4n +15,n ≥5.②因为b 2n +1=4b n 2,即b n +1=±2b n ,所以|b n |=2n -1.而数列{b n }为“q 坠点数列”,且b 1=-1,所以数列{b n }中有且只有两个负项.假设存在正整数m ,使得S m +1=T m , 显然m ≠1,且T m 为奇数.而{a n }中各项均为奇数,所以m 必为偶数.S m +1≤1+3+…+(2m +1)=(m +1)2 .i .当q >m 时,T m =-1+21+···+2m -2+2m -1=2m -3.当m ≥6时,2m -3>(m +1)2,故不存在m ,使得S m +1=T m 成立. ii .当q =m 时,T m =-1+21+···+2m -2-2m -1=-3<0,显然不存在m ,使得S m +1=T m 成立.iii .当q <m 时,T m ≥-1+21+…+(+2m -3)+(-2m -2)+2m -1=2m -1-3,当2m -1-3≤(m +1)2时,才存在m ,使得S m +1=T m 成立,所以m ≤6.当m =6时,q <6,构造数列{a n }为:1,3,1,3,5,7,9,…,数列{b n }为:-1,2,4,8,-16,32,…此时p =3,q =5,所以m 的最大值为6.。
苏州大学2018届高考考前指导卷2(终稿)
苏州大学2018届高考考前指导卷2一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请把答案直接填在答题..卡相应位置上....... 1.设全集{|2,}U x x x =∈N ≥,集合2{|5,}A x x x =∈N ≥,则UA = ▲ .2.已知i 是虚数单位,复数(12i)(i)a -+是纯虚数,则实数a 的值为 ▲ . 3.利用计算机随机产生0~1之间的数a ,则事件“310a ->”发生的概率为 ▲ .4.某地区连续5天的最低气温(单位:C ︒)依次为8,4,1,0,2--,则该组数据的方差为 ▲ . 5.执行如图所示的伪代码,则输出的结果为 ▲ .6.若抛物线24x y =的弦AB 过焦点F ,且AB 的长为6,则弦AB 的中点M 的纵坐标为 ▲ .7.已知一个正方体的外接球体积为1V ,其内切球体积为2V ,则21V V的值为 ▲ .8.设S n 是等比数列{a n }的前n 项和,若满足a 4 + 3a 11= 0,则2114S S = ▲ . 9.已知0a >,函数2()()f x x x a =-和2()(1)g x x a x a =-+-+存在相同的极值点,则a = ▲ . 10. 在平面直角坐标系xOy 中,已知圆C :x 2+(y -1)2=4,若等边△PAB 的一边AB 为圆C 的一条弦,则PC 的最大值为 ▲ .11. 若cos 2cos()4ααπ=+,则tan()8απ+= ▲ .12. 已知0,0a b >>,则222a ba b b a+++的最大值为 ▲ . 13. 在ABC △中,90C =∠°,24AB BC ==,,M N 是边AB 上的两个动点,且1MN =,则CM CN ⋅的取值范围为 ▲ .14. 设函数()33,2,,x x x a f x x x a ⎧-<=⎨-⎩,≥若关于x 的不等式()4f x a >在实数集R 上有解,则实数a 的取值范围是 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分14分)如图,在多面体ABCDE 中,∠ABD =60º,BD =2AB ,AB ∥CE ,AB ⊥CD , (1)求证://AB 平面CDE ; (2)求证:平面ABC ⊥平面ACD . 16.(本小题满分14分)在△ ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知60B =︒,8c =. (1)若点M 是线段BC 的中点, 3AMBM=,求b 的值; (2)若12b =,求△ ABC 的面积.C ABDE(第15题图)某校在圆心角为直角,半径为1km 的扇形区域内进行野外生存训练.如图所示,在相距1km 的A ,B 两个位置分别有300,100名学生,在道路OB 上设置集合地点D ,要求所有学生沿最短路径到D 点集合,记所有学生行进的总路程为S (km ). (1)设ADO θ∠=,写出S 关于θ的函数表达式; (2)当S 最小时,集合地点D 离点A 多远?18.(本小题满分16分)在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>的离心率为22,右准线方程为4x =,(,0)Q n 是椭圆C 的长轴上一点(Q 异于长轴端点),过点Q 的直线l 交椭圆于A ,B 两点. (1)求椭圆C 的标准方程;(2)①若2n =,求OA OB ⋅的最大值;②在x 轴上是否存在一点P ,使得PA PB ⋅为定值,若存在,求出点P ;若不存在,请说明理由.O yxBAQ BDOA(第17题图)(第18题图)已知数列{a n },{b n }满足:b n =a n +1-a n (n ∈N *). (1)若a 1=1,b n =n ,求数列{a n }的通项公式; (2)若b n +1b n -1=b n (n ≥2),且b 1=1,b 2=2.①记c n =a 6n -1(n ≥1),求证:数列{c n }为等差数列;②若数列{a nn}中任意一项的值均未在该数列中重复出现无数次,求首项a 1应满足的条件.20.(本小题满分16分)已知函数()ln f x x ,1()g x xx. (1)①若直线1ykx 与()ln f x x 的图像相切, 求实数k 的值;②令函数()()()h x f x g x ,求函数()h x 在区间[,1]a a上的最大值.(2)已知不等式2()()f x kg x 对任意的(1,)x 恒成立,求实数k 的范围.苏州大学2018届高考考前指导卷(2)参考答案一、填空题1.{2} 2.2- 3.234.16 5.11 6.2 7. 8.769.3 10.4 11.1312.2 13. 11[,9]4 14. 1(,)(7,)2-∞+∞填空题参考解答或提示 1.{}{|2}2UA x x x =<∈=N ≤.2. (12i)(i)(2)(12)i a a a -+=++-是纯虚数,所以实数a 的值为2-.3.本题为几何概型,因为13103a a ->⇒>,所以所求概率112313P -==. 4. 8(4)(1)0215x +-+-++==,所以该组数据的方差为52211()165i i s x x ==-=∑.5.第1次,33S I ==,;第2次,75S I ==,;第三次,117S I ==,. 6.设1122(,),(,)A x y B x y ,则126AB y y p =++=,所以1262222M y y y +-===. 7.设正方体棱长为a,则333311132224π214π2V R R V R R a ⎛⎫⎪⎛⎫ ⎪===== ⎪⎪⎝⎭ ⎪⎝⎭8.由题意得74430a a q +⋅=,又40a ≠,所以713q =-,321211421411()1731161()3S q S q ---===---. 9. 2322()()2+f x x x a x ax a x =-=-,所以22()34+(3)()f x x ax a x a x a '=-=--;由题意得132a a -=或12a a -=,又0,a >所以3a =. 10.由题意知,在PAC △中,由正弦定理可得,sin sin PC ACPAC APC=∠∠, 所以2sin 4sin sin30PC PAC PAC =∠=∠︒,所以当90PAC ∠=︒时,PC 的最大值为4. 11. cos 2cos(),cos()2cos()48888ααααπππππ=++-=++,所以3sin()sin cos()cos 8888ααππππ+=+所以11tan()833tan8απ+===π.12.设20,20m a b n b a =+>=+>,则22,33m n n ma b --==, 所以原式242222233222233333m n n mn m n m m n m n m n --=+=---⋅=-≤, 当且仅当233n mm n=即2n m =,也即3222b a +=时等号成立. 13.设MN 的中点为D ,则2221=()()4CM CN CD DM CD DN CD DM CD ⋅+⋅+=-=-, 故只需考虑||CD 的最大、最小值.如图,点D 在D 1及D 2处(1212AD CD AB =⊥,)分别取得最大、最小值.由222137,34CD CD ==,所以CM CN ⋅的取值范围为11[,9]4. 14.由题意知,max ()4f x a >①当0a <时,因为(0)0f =, max ()4f x a >显然成立;②当0a =时,()33,02,0,x x x f x x x ⎧-<=⎨-⎩,≥ max ()(1)204f x f a =-=>=,满足题意;③当0a >时,令332,x x -=解得121,2x x =-=,所以 i )当02a <<时,max max ()(1)24,f x f a =-=>解得102a <<; ii )当2a >时,3()3f x a a <-,由题意334a a a ->,解得7a >; 综上所述,实数a 的取值范围是1(,)(7,)2-∞+∞.二、解答题15. 证明(1)由题意AB ∥CE ,CE ⊂面CDE ,AB ⊄平面CDE ,所以//AB 平面CDE.(2)在△ABD 中,因为∠ABD =60º,BD =2AB ,所以︒⋅⋅-+=60cos 2222BD AB BD AB AD ,即223AB AD =, 因为222BD AD AB =+,所以AB AD ⊥, 又AB CD AD CD D ⊥=,,所以⊥AB 平面ACD , 又⊂AB 面ABC ,所以平面ABC ⊥平面ACD.16. 解(1)因为点M 是线段BC 的中点,3AMBM=,设BM x =,则3AM x =, 又60B =︒,8c =,在△ABM 中,由余弦定理得2236428cos60x x x =+-⨯︒, 解得4x =(负值舍去),则4BM =,8BC =. 所以△ ABC 中为正三角形,则8b =.(2)在△ ABC 中,由正弦定理sin sin b c B C =,得8sin 2sin 12c BC b===. 又b c >,所以B C >,则C为锐角,所以cos 3C =则()1sin sin sin cos cos sin 2A B C B C B C =+=++=, 所以△ ABC的面积1sin 4826S bc A ===17. 解(1)因为在△OAD 中,θ=∠ADO ,1OA =,所以由正弦定理可知1ππsin sin sin 33AD ODθθ==⎛⎫+ ⎪⎝⎭, 解得πsin 3sin AD OD θθ⎛⎫+ ⎪⎝⎭=,且π2π(,)33θ∈,故πsin 33001001001sin S AD BD θθ⎤⎛⎫+ ⎪⎥⎝⎭⎥=+=+-⎢⎥⎢⎥⎣⎦3cos 50sin θθ-=+,π2π(,)33θ∈, (2) 令3cos sin y θθ-=,则有23cos 1sin y θθ-+'= ,当1cos 3θ>时,0y '<; 当1cos 3θ<时,0y '>;可知,当且仅当1cos 3θ=时,y 有最小值22,当AD =时,此时总路程S有最小值50km .答:当集合点D 离出发点Akm时,总路程最短,其最短总路程为50km .18. 解(1)由2c e a ==,右准线方程为24a x c==,所以,a =2b =,即椭圆22:184x y C +=.(2)①由已知,(2,0)Q ,当直线AB 垂直于x 轴时,A,(2,B , 2OA OB ⋅=.当直线AB 不垂直于x 轴时,设直线AB :(2)y k x =-,代入22184x y +=得2222(12)8880k x k x k +-+-=,设11(,)A x y ,22(,)B x y ,212121212(2)(2)OA OB x x y y x x k x x ⋅=+=+--2221212(1)2()4k x x k x x k =+-++2222222(1)(88)8241212k k k k k k k +-=-⋅+++224812k k -=+210212k =-+<2. 所以,当直线AB 垂直于x 轴时,OA OB ⋅取到最大值2. ②设点(,0)P t ,11(,)PA x t y =-,22(,)PB x t y =-, 当直线AB 不垂直于y 轴时,设AB :x my n =+,代入22184x y +=得222(2)280m y mny n +++-=,12121212()()()()PA PB x t x t y y my n t my n t y y ⋅=--+=+-+-+221212(1)()()()m y y m n t y y n t =++-++-22222(8)(1)2()()2n m m n n t n t m -+--=+-+ 22222[82()]8()2m n n n t n n t m ---+-=+-+, 令2282()812n n n t n ----=得2384n t n+=, 当2384n t n +=时,2222222883894()()522416n n n PA PB n t n n n n --+⋅=+-=+-=+-.当直线AB 垂直于y 轴时,(A n ,(,B n ,238(,0)4n P n+ 2222238894()54216n n PA PB n n n n+-⋅=-+=+-.所以,在x 轴上存在点238(,0)4n P n +,使得PA PB ⋅为定值2294516n n+-.方法二 先利用直线l 垂直于x 轴和垂直于y 轴两种情况下PA PB ⋅的值不变,猜想点238(,0)4n P n+,然后再证明此时PA PB ⋅为定值2294516n n+-. 19. 解(1)当n ≥2时,有a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=a 1+b 1+b 2+…+b n -1=n 22-n2+1.又a 1=1也满足上式,所以数列{a n }的通项公式是a n =n 22-n2+1.(2)①因为对任意的n ∈N *,有b n +6=b n +5b n +4=1b n +3=b n +1b n +2=b n , 所以c n +1-c n =a 6n +5-a 6n -1=b 6n -1+b 6n +b 6n +1+b 6n +2+b 6n +3+b 6n +4=1+2+2+1+12+12=7.所以数列{c n }为等差数列.②设c n =a 6(n -1)+i (n ∈N *)(其中i 为常数且i ∈{1,2,3,4,5,6},所以c n +1-c n =a 6(n -1)+6+i -a 6(n -1)+i =b 6(n -1)+i +b 6(n -1)+i +1+b 6(n -1)+i +2+b 6(n -1)+i +3+b 6(n -1)+i +4+b 6(n -1)+i +5=7,即数列{a 6(n -1)+i }均为以7为公差的等差数列.设f k =a 6k +i 6k +i =a i +7k i +6k =76(i +6k )+a i -76i i +6k =76+a i -76ii +6k (其中n =6k +i ,k ≥0,i 为{1,2,3,4,5,6}中一个常数)当a i =76i 时,对任意的n =6k +i ,有a n n =76;当a i ≠76i 时,f k +1-f k =a i -76i i +6(k +1)-a i -76ii +6k =(a i -76i )-6[i +6(k +1)](i +6k ),①若a i >76i ,则对任意的k ∈N 有f k +1<f k ,所以数列{a 6k +i 6k +i }为递减数列;②若a i <76i ,则对任意的k ∈N 有f k +1>f k ,所以数列{a 6k +i 6k +i }为递增数列.综上所述,集合B ={76}∪{43}∪{12}∪{-13}∪{-16}={76,43,12,-13,-16}.当a 1∈B 时,数列{a nn}中必有某数重复出现无数次;当a 1 B 时,数列{a 6k +i6k +i }(i =1,2,3,4,5,6)均为单调数列,任意一个数在这6个数列中最多出现一次,所以数列{an n }任意一项的值均未在该数列中重复出现无数次.20. 解(1)设切点00(,)x y ,1()f x x. 所以000001ln 1x y x y kx k ,,,所以20x e ,21ke . (2)因为1()g x xx在(0,)上单调递增,且(1)0g .所以1ln ,01,1()()|()|ln ||1ln , 1.x x x xh x f x g x x xxxxx x当01x 时,1()ln h x x xx ,211()10h x xx , 当1x ≥时,1()ln h x xxx ,222111()10x x h x xx x ,所以()h x 在(0,1)上单调递增,在(1,)上单调递减,且max()(1)0h x h .当01a 时,max()(1)0h x h ;当1a ≥时,max1()()ln h x h a a aa.(3)令1()2ln ()F x x k x x ,(1,)x .所以222212()(1)kx xkF x k xxx .设2()2x kx xk ,①当0k 时,()0F x ,所以()F x 在(1,)上单调递增,又(1)0F ,所以不成立;②当0k 时,对称轴01x k , 当11k≤时,即1k ≥,(1)220k ≤,所以在(1,)上,()0x ,所以()0F x ,又(1)0F ,所以()0F x 恒成立;当11k时,即01k ,(1)220k,所以在(1,)上,由()0x ,0xx ,所以0(1,)xx ,()0x ,即()0F x ;0(,)xx ,()0x ,即()0F x ,所以max0()()(1)0F x F x F ,所以不满足()0F x 恒成立.综上可知:1k ≥.。
(江苏专版)2014届高考数学大二轮专题复习 审题 解题 回扣 中档大题保分练(二) 文
中档大题保分练(二)(推荐时间:50分钟)1. 已知函数f (x )=32sin 2x -12(cos 2x -sin 2x )-1,x ∈R ,将函数f (x )向左平移π6个单位后得到函数g (x ),设△ABC 三个内角A ,B ,C 的对边分别为a ,b ,c .(1)若c =7,f (C )=0,sin B =3sin A ,求a 和b 的值;(2)若g (B )=0且m =(cos A ,cos B ),n =(1,sin A -cos A tan B ),求m ·n 的取值范围.解 (1)f (x )=32sin 2x -12cos 2x -1=sin ⎝⎛⎭⎪⎫2x -π6-1 g (x )=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π6-π6-1=sin ⎝ ⎛⎭⎪⎫2x +π6-1 由f (C )=0,∴sin ⎝⎛⎭⎪⎫2C -π6=1. ∵0<C <π,∴-π6<2C -π6<116π, ∴2C -π6=π2,∴C =π3.cos π3. , ∴m ·n =cos A +cos B (sin A -cos A tan B )=cos A +sin A cos B -cos A sin B=32sin A +12cos A =sin ⎝⎛⎭⎪⎫A +π6. ∵A +C =5π6,∴0<A <5π6,∴π6<A +π6<π,∴0<sin ⎝⎛⎭⎪⎫A +π6≤1. ∴m ·n 的取值范围是(0,1].2. 某市文化馆在春节期间举行高中生“蓝天海洋杯”象棋比赛,规则如下:两名选手比赛时,每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时结束.假设选手甲与选手乙比赛时,甲每局获胜的概率皆为23,且各局比赛胜负互不影响. (1)求比赛进行4局结束,且乙比甲多得2分的概率;(2)设ξ表示比赛停止时已比赛的局数,求随机变量ξ的分布列和数学期望.解 (1)由题意知,乙每局获胜的概率皆为1-23=13. 比赛进行4局结束,且乙比甲多得2分即前两局乙胜一局,3,4局连胜,则P 2=C 1213·23·13·13=481. (2)由题意知,ξ的取值为2,4,6.则P (ξ=2)=⎝ ⎛⎭⎪⎫232+⎝ ⎛⎭⎪⎫132=59,P (ξ=4)=C 1213·23⎝ ⎛⎭⎪⎫232+C 1213·23⎝ ⎛⎪⎫13⎛⎪⎫121·22=16.3BAD =ABCD ,且BB 1=2a ,E 为CC 1的中点,F 为AB 的中点.(1)求证:△DEB 1为等腰直角三角形;(2)求二面角B 1-DE -F 的余弦值.(1)证明 连接BD ,交AC 于O ,因为四边形ABCD 为菱形,∠BAD =60°,所以BD =a , 因为BB 1、CC 1都垂直于面ABCD ,所以BB 1∥CC 1,又面B 1C 1D 1∥面ABCD ,所以BC ∥B 1C 1.所以四边形BCC 1B 1为平行四边形,则B 1C 1=BC =a ,因为BB 1、CC 1、DD 1都垂直于面ABCD ,所以DB 1=DB 2+BB 21=a 2+2a 2=3a , DE =DC 2+CE 2=a 2+a 22=6a 2, B 1E =B 1C 21+C 1E 2=a 2+a 22=6a 2, 所以DE 2+B 1E 2=6a 2+6a 24=3a 2=DB 21, 所以△DEB 1为等腰直角三角形.(2)解 取DB 1的中点H ,因为O ,H 分别为DB ,DB 1的中点,所 以OH ∥BB 1.以OA ,OB ,OH 分别为x ,y ,z 轴建立空间直角坐标系,则D ⎝ ⎛⎭⎪⎫0,-a 2,0,E ⎝ ⎛⎭⎪⎫-32a ,0,22a ,B 1⎝ ⎛⎭⎪⎫0,a 2,2a , F ⎝ ⎛⎭⎪⎫34a ,a 4,0, 所以DB 1→=(0,a ,2a ),DE →=⎝ ⎛⎭⎪⎫-32a ,a 2,22a ,DF →=⎝ ⎛⎭⎪⎫34a ,34a ,0. 设面DB 1E 的法向量n 1=(x 1,y 1,z 1),则n 1·DB →1=0,n ·DE →=0,即ay 1+2az 1=0且-32ax 1+a 2y 1+22az 1=0, 令z 1=1,则n 1=(0,-2,1)设面DFE 的法向量为n 2=(x 2,y 2,z 2),则n 2·DF →=0,n 2·DE →=0即34ax 2+34ay 2=0 且-32ax 2+a 2y 2+22az 2=0, 令x 2=1,则n 2=⎝ ⎛⎭⎪⎫1,-33,263,则cos 〈n 1,n 2〉=63+2633×1+13+83=22, 则二面角B 1-DE -F 的余弦值为22. 4. 已知n ∈N *,数列{d n }满足d n =3+-n 2,数列{a n }满足a n =d 1+d 2+d 3+…+d 2n ;又知数列{b n }中,b 1=2,且对任意正整数m ,n ,b m n =b n m .(1)求数列{a n }和数列{b n }的通项公式;(2)将数列{b n }中的第a 1项,第a 2项,第a 3项,……,第a n 项,……删去后,剩余的项按从小到大的顺序排成新数列{c n },求数列{c n }的前2 013项和.解 方法一 (1)∵d n =3+-n 2, ∴a n =d 1+d 2+d 3+…+d 2n .=3×2n 2=3n . 又由题知:令m =1,则b 2=b 21=22,b 3=b 31=23,…,b n =b n 1=2n .若b n =2n ,则b m n =2nm ,b n m =2mn ,∴b m n =b n m 恒成立. 6项、第9项……删去后构成的新数列{c n }中的奇b 1=1,b 2=4,公比均是8, c 4+c 6+…+c 2 012) =-81 0071-+-1-=20×81 006-67. 方法二 (1)=d 1+d 2+…+n =3n . 由b m n =b nm 及b 1=2>0知b n >0,对b m n =b n m 两边取对数得,m lg b n =n lg b m ,令m =1,得lg b n =n lg b 1=n lg 2=lg 2n ,∴b n =2n .(2)T 2 013=c 1+c 2+…+c 2 013=b 1+b 2+b 4+b 5+b 7+b 8+…+b 3 018+b 3 019=(b 1+b 2+…+b 3 019)-(b 3+b 6+…+b 3 018)=-23 0191-2--81 0061-23=20×81 006-67.。
江苏省2014届高考数学考前辅导之解答题(含答案)
C 江苏省2014届高考数学考前辅导之解答题1.已知向量2(3sin ,1),(cos ,cos )444x x xm n ==.(1)若1m n ⋅=,求2cos()3x π-的值;(2)记()f x m n =⋅,在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且满足C b B c a cos cos )2(=-,求函数f (A )的取值范围.1.解:(1)23sin cos cos 444x x x m n ⋅=⋅+ 1sin(262x π=++∵1m n ⋅= ∴1sin(262x π+= ┉┉┉┉┉┉┉┉┉┉┉┉┉4分211cos()12sin ()23262x x ππ+=-+= 21cos()cos()332x x ππ-=-+=- ┉┉┉┉┉7分(2)∵(2a -c )cos B =b cos C由正弦定理得(2sinA -sin C)cos B=sinBcosC ┉┉┉┉┉┉8分 ∴2sinAcosB-sinCcosB=sinBcosC ∴2sinAcosB=sin(B+C)∵A B C π++= ∴sin()sin 0B C A +=≠,∴1cos ,23B B π== ∴203A π<< ┉┉┉┉┉┉11分∴1,sin()(,1)6262262A A ππππ<+<+∈ ┉┉┉┉┉┉12分 又∵1()sin(262x f x π=++,∴1()sin(262A f A π=++ ┉┉┉┉┉┉13分故函数f (A )的取值范围是3(1,)2. ┉┉┉2.设锐角△ABC 内角A ,B ,C 的对边分别为a ,b ,c .已知边a =23,△ABC 的面积S =34(b 2+c 2-a 2).求:(1)内角A ;(2)周长l 的取值范围.3.如图,AB 为圆O 的直径,点E 、F 在圆O 上,且//AB EF ,矩形ABCD 所在的平面和圆O 所在的平面互相垂直,且2AB =,1AD EF ==.(1)求证:AF ⊥平面CBF ;(2)设FC 的中点为M ,求证://OM 平面DAF ; (3)设平面CBF 将几何体EFABCD 分成的两个锥体的体积分别为F ABCD V -,F CBE V -,求:F ABCD F CBE V V --. 3.解:(1)证明: 平面⊥ABCD 平面ABEF ,AB CB ⊥,平面 ABCD 平面ABEF =AB ,⊥∴CB 平面ABEF ,⊂AF 平面ABEF ,CB AF ⊥∴ ,又AB 为圆O 的直径,BF AF ⊥∴, ⊥∴AF 平面CBF . ………5分 (2)设DF 的中点为N ,则MN //CD 21,又AO //CD 21, 则MN //AO ,MNAO 为平行四边形,//OM ∴AN ,又⊂AN 平面DAF ,⊄OM 平面DAF ,//OM ∴平面DAF . ………9分(3)过点F 作AB FG ⊥于G , 平面⊥ABCD 平面ABEF ,⊥∴FG 平面ABCD ,FG FG S V ABCD ABCD F 3231=⋅=∴-, ………11分⊥CB 平面ABEF ,CB S V V BFE BFE C CBE F ⋅==∴∆--31FG CB FG EF 612131=⋅⋅⋅=, ………14分ABCD F V -∴1:4:=-CBE F V .4.多面体PABCD 的直观图及三视图如图所示,E 、F 、G 分别为PA 、AD 和BC 的中点,M 为PG 上的点,且:3:4PM MG =.(1)求多面体PABCD 的体积; (2)求证:PC BDE 平面; (3)求证:FM ⊥平面PBC .4.解:(14分(2)连接AC 与BD 交于点O ,连接EO则在PAC ∆中,由E 、O 分别为PA 和AC 的中点,得EO PC ………………6分 因为EO BDE ⊂平面所以PC BDE 平面 ……………………………………………… 8分 (3)连接PF 与FG ,则BC ⊥平面PFG所以BC FM ⊥ ……………………………………………… 10分 在PFG ∆中,2,PF FG PG ==:3:4PM MG =可求得MG =,FM =,故222FM MG FG += 所以FM PG ⊥ ……………………………………………… 12分 又PG BC G ⋂=所以FM ⊥平面PBC ……………………………………………… 14分5.(本小题满分15分)P A B CD E F GM 左视图主视图 俯视图在平面直角坐标系xOy 中 ,已知以O 为圆心的圆与直线l :(34)y mx m =+-,()m R ∈恒有公共点,且要求使圆O 的面积最小. (1)写出圆O 的方程;(2)圆O 与x 轴相交于A 、B 两点,圆内动点P 使||PA 、||PO 、||PB 成等比数列,求PA PB ⋅的范围; (3)已知定点Q (4-,3),直线l 与圆O 交于M 、N 两点,试判断tan QM QN MQN ⋅⨯∠ 是否有最大值,若存在求出最大值,并求出此时直线l 的方程,若不存在,给出理由.5.解:(1)因为直线l :(34)y mx m =+-过定点T (4,3)由题意,要使圆O 的面积最小, 定点T (4,3)在圆上,所以圆O 的方程为2225x y +=. ………4分(2)A (-5,0),B (5,0),设00(,)P x y ,则220025x y +< (1)00(5,)PA x y =---,00(5,)PB x y =--,由||,||,||PA PO PB 成等比数列得,2||||||PO PA PB =⋅,4[,0)2PA PB ∴⋅∈-………………………9分 (3)tan ||||cos tan QM QN MQN QM QN MQN MQN ⋅⨯∠=⋅∠⨯∠||||sin 2MQNQM QN MQN S=⋅∠= . ………11分由题意,得直线l 与圆O 的一个交点为M (4,3),又知定点Q (4-,3),直线MQ l :3y =,||8MQ =,则当(0,5)N -时MQN S 有最大值32. ………14分即tan QM QN MQN ⋅⨯∠有最大值为32,此时直线l 的方程为250x y --=. ………15分6.如图,在四棱锥A -BCDE 中,底面BCDE 是直角梯形,∠BED =90︒,BE ∥CD ,AB =6,BC =5,CD BE =13,侧面ABE ⊥底面BCDE .且∠BAE =90︒. (1)求证:平面ADE ⊥平面ABE ;(2)过点D 作平面α∥平面ABC ,分别与BE ,AE交于点F ,G ,求△DFG 的面积.7.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),直线l 为圆O :x 2+y 2=b 2的一条切线,且经过椭圆的右焦点,记椭圆离心率为e .(1)若直线l 的倾斜角为π6,求e 的值;(2)是否存在这样的e ,使得原点O 关于直线l 的对称点恰好在椭圆C 上?若存在,请求出e 的值;若不存在,请说明理由.8.如图,已知椭圆x 2a 2+y 24=1(a >0)上两点A (x 1,y 1),B (x 2,y 2),x 轴上两点M (1,0),N (-1,0).(1)若tan ∠ANM =-2,tan ∠AMN =12,求该椭圆的方程;(2)若MA →=-2MB →,且0<x 1<x 2,ABC D E求椭圆的离心率e的取值范围.9.已知线段CD =CD 的中点为O ,动点A 满足2AC AD a +=(a 为正常数). (1)求动点A 所在的曲线方程;(2)若存在点A ,使AC AD ⊥,试求a 的取值范围;(3)若2a =,动点B 满足4BC BD +=,且AO OB ⊥,试求AOB ∆面积的最大值和最小值.9.解:(1)以O 为圆心,CD 所在直线为轴建立平面直角坐标系若2AC AD a +=<0a <A 所在的曲线不存在;若2AC AD a +==a =,动点A所在的曲线方程为0(y x =≤;若2AC AD a +=>a >,动点A 所在的曲线方程为222213x y a a +=-. ……………………………………………… 4分(2)由(1)知a A ,使AC AD ⊥, 则以O为圆心,OC =26a ≤所以aa . ……………………………………………8分(3)当2a =时,其曲线方程为椭圆2214x y +=由条件知,A B 两点均在椭圆2214x y +=上,且AO OB ⊥ 设11(,)A x y ,22(,)B x y ,OA 的斜率为k (0)k ≠,则OA 的方程为y kx =, OB 的方程为1y x k=-解方程组2214y kxx y =⎧⎪⎨+=⎪⎩得212414x k =+,212414k y k =+ 同理可求得222244k x k =+,22244y k =+ …………………………………………… 10分 A O B ∆面积2S= ………………12分 令21(1)k t t +=>则S =令22991125()49()(1)24g t t t t t =-++=--+> 所以254()4g t <≤,即415S ≤< ……………………………………………… 14分当0k =时,可求得1S =,故415S ≤≤, 故S 的最小值为45,最大值为1. ……………………………………………… 10.(本小题满分15分)某工厂有216名工人接受了生产1000台GH 型高科技产品的总任务,已知每台GH 型产品由4个G 型装置和3个H 型装置配套组成.每个工人每小时能加工6个G 型装置或3个H 型装置.现将工人分成两组同时开...始.加工,每组分别加工一种装置.设加工G 型装置的工人有x 人,他们加工完G 型装置所需时间为g (x ),其余工人加工完H 型装置所需时间为h (x )(单位:小时,可不为整数). (1)写出g (x ),h (x )的解析式;(2)比较g (x )与h (x )的大小,并写出这216名工人完成总任务的时间f (x )的解析式; (3)应怎样分组,才能使完成总任务用的时间最少? 10. 解:(1)由题知,需加工G 型装置4000个,加工H 型装置3000个,所用工人分别为x 人,(216-x )人.∴g (x )=x64000,h (x )=3)216(3000⋅-x ,即g (x )=x 32000,h (x )=x-2161000(0<x <216,x ∈N *). ……………………4分 (2)g (x )-h (x )=x 32000-x-2161000=)216(3)5432(1000x x x --⋅. ∵0<x <216,∴216-x >0.当0<x ≤86时,432-5x >0,g (x )-h (x )>0,g (x )>h (x );当87≤x <216时,432-5x <0,g (x )-h (x )<0,g (x )<h (x ).∴f (x )=⎪⎪⎩⎪⎪⎨⎧∈<≤-∈≤<.,21687,2161000,,860,32000**N N x x xx x x……………………8分(3)完成总任务所用时间最少即求f (x )的最小值. 当0<x ≤86时,f (x )递减,∴f (x )≥f (86)=8632000⨯=1291000. ∴f (x )min =f (86),此时216-x =130.当87≤x <216时,f (x )递增,∴f (x )≥f (87)=872161000-=1291000.∴f (x )min =f (87),此时216-x =129. ∴f (x )min =f (86)=f (87)=1291000.∴加工G 型装置,H 型装置的人数分别为86、130或87、129……………………15分11.抛掷一枚骰子,当它每次落地时,向上的点数称为该次抛掷的点数,可随机出现1到6点中的任一个结果,连续抛掷三次,将第一次,第二次,第三次抛掷的点数分别记为c b a ,,,求长度为c b a ,,的三条线段能构成等腰三角形的概率.11.【解】连续抛掷三次, 点数分别为c b a ,,的基本事件总数为216666=⨯⨯ 长度为c b a ,,的三条线段能构成等腰三角形有下列两种情形①当c b a ==时, 能构成等边三角形,有;1,1,1;2,2,2; 6,6,6共6种可能. ②当c b a ,,恰有两个相等时,设三边长为z y x ,,,其中}6,5,4,3,2{∈x ,且y x ≠;若2=x ,则y 只能是1或3,共有2种可能; 若3=x ,则y 只以是5,4,2,1,共有4种可能; 若6,5,4=x ,则y 只以是集合}6,5,4,3,2,1{中除x 外的任一个数,共有53⨯种可能; ∴当c b a ,,恰有两个相等时,符合要求的c b a ,,共有63)5342(3=⨯++⨯ 故所求概率为722366363=+=P 12.已知关于x 的一元二次函数14)(2+-=bx ax x f .(1)设集合P={1,2, 3}和Q={-1,1,2,3,4},分别从集合P 和Q 中随机取一个数作为a 和b ,求函数)(x f y =在区间[),1+∞上是增函数的概率;(2)设点(a ,b )是区域⎪⎩⎪⎨⎧>>≤-+0008y x y x 内的随机点,求()[1,)y f x =+∞在区间上是增函数的概率.12.解:(1)∵函数14)(2+-=bx ax x f 的图象的对称轴为,2abx =要使14)(2+-=bx ax x f 在区间),1[+∞上为增函数,当且仅当a >0且a b ab≤≤2,12即 ……………………………3分 若a =1则b =-1, 若a =2则b =-1,1; 若a =3则b =-1,1; ……………………5分∴事件包含基本事件的个数是1+2+2=5∴所求事件的概率为51153=. ……………………………7分(2)由(Ⅰ)知当且仅当a b ≤2且a >0时,函数),1[14)(2+∞+-=在区是间bx ax x f 上为增函数,依条件可知试验的全部结果所构成的区域为80(,)00a b a b a b ⎧⎫+-≤⎧⎪⎪⎪>⎨⎨⎬⎪⎪⎪>⎩⎩⎭构成所求事件的区域为三角形部分. 由),38,316(208得交点坐标为⎪⎩⎪⎨⎧==-+ab b a …………11分 ∴所求事件的概率为31882138821=⨯⨯⨯⨯=P .13.如图,已知椭圆2222:1x y C a b+=(0)a b >>的左顶点,右焦点分别为,A F ,右准线为m 。
2014年江苏高考试卷 (含答案)
试题 ㊁ 参考答案
目 录
语文Ⅰ试题 …………………………………………………………… 1 语文Ⅰ试题参考答案 ………………………………………………… 4 语文Ⅱ( 附加题) …………………………………………………… 5 语文Ⅱ( 附加题) 参考答案 ………………………………………… 6 英语试题 ……………………………………………………………… 6 英语试题参考答案 ………………………………………………… 15 数学Ⅰ试题 ………………………………………………………… 16 数学Ⅰ试题参考答案 ……………………………………………… 17 数学Ⅱ( 附加题) …………………………………………………… 21 数学Ⅱ( 附加题) 参考答案 ………………………………………… 22 政治试题 …………………………………………………………… 24 政治试题参考答案 ………………………………………………… 29 历史试题 …………………………………………………………… 30 历史试题参考答案 ………………………………………………… 35 地理试题 …………………………………………………………… 37 地理试题参考答案 ………………………………………………… 43 物理试题 …………………………………………………………… 45 物理试题参考答案 ………………………………………………… 49 化学试题 …………………………………………………………… 51 化学试题参考答案 ………………………………………………… 56 生物试题 …………………………………………………………… 57 生物试题参考答案 ………………………………………………… 63
ห้องสมุดไป่ตู้
语文Ⅰ试题
2014届高三数学(理)高考考前指导
12、解应用性问题的思路:审题尤为重 要.审题需将那些与数学无关内容抛开,以 数学的眼光捕捉信息,构建模型,同时要注 意将图形、文字、表格等语言转变为数学语 言.具体做法是:①先全面理解题意和概念 背景②透过冗长叙述,抓重点词句,提出重 点数据③综合联系,提炼数量关系,依靠数 学方法,建立数学模型(模型一般很简 单).如此将应用问题化为纯数学问题.此外, 求解过程和结果不能离开实际背景.
70分左右。
(3)要养成一个一次就作对一步到位的习 惯。我做一次就是正确的结论,不要给自己 回过头来检查的习惯。高考的时候设置一个 15分钟的倒数哨声,这就是提醒部分考生把 会做的题要写好。 同学们,高考迫近,紧张是免不了的,关键 是自我调整,学会考试,以平和的心态参加 考试,以审慎的态度对待试题,以细心的态 度对待运算,以灵动的方法对待新颖试题, 才能临场考出理想的成绩。
4、解答题解题方法 三角与向量、数列,容易题 三角考什么?怎样出题?
1。三角形问题:正弦定理,余弦定理。面积。
2。两角和与差的三角函数。
3。题目的形成:以平面向量为载体(向量平行,
垂直,数量积)
Hale Waihona Puke 4、数列这个板块,重点考三个方面:一个通项;
一个是求和、证明(求和型不等式的证明,用数学 归纳法证明
立几,容易题
(二)各章考点分析
序号
1
内容
题量
知识点
2
3
1集合的概念及运算 集合与简易逻辑 1 2命题量词逻辑联接词 3充要条件 1函数的基本概念 2函数图象和性质 函数 3 3基本初等函数 4导数 江苏省大丰高级中学 陈彩余 数列 1-2 等差等比数列的基本 知识及其综合应用
各章考点分析
序号 内容 题量 知识点 1三角函数式 的化简和求值 1-2 2三角函数的图象 和性质 3解斜三角形
mjt-苏州大学2014届高考数学考前指导卷【1】及答案
苏州大学2014届高考考前指导卷(1)一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上......... 1.已知集合A ={x |x >5},集合B ={x |x <a },若A B={x |5<x <6},则实数a 的值为 . 2.设(1+2i)2=a +b i(,a b ∈R ),则ab = .3.若函数f (x )=sin(x +φ)(0<φ<π)是偶函数,则φ= .4.已知双曲线C :x 2a 2-y 2b2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为 .5.从3位男生1位女生中任选两人,恰好是一男一女的概率是________.6.已知函数2()a y x a x=+∈R 在1x =处的切线与直线210x y -+=平行,则a =________. 7.图1是某学生的数学考试成绩茎叶图,第1次到第14次的考试成绩依次记为A 1,A 2,…,A 14.图2是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图.那么算法流程图输出的结果是________.8.已知等差数列{a n }的公差不为零,a 1+a 2+a 5>13,且a 1,a 2,a 5成等比数列,则a 1的取值范围为 .9.在△ABC 中,若AB =1,|||AC AB AC BC =+=,则BA →·BC→|BC →|= .10.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,a =8,b =10,△ABC 的面积为203,则△ABC 的最大角的正切值是________.11.已知三棱锥P ABC -的底面是边长为3的正三角形,其三条侧棱的长分别为3,4,5,则该三棱锥P ABC -的体积为 .12.已知函数f (x )=|x 2+2x -1|,若a <b <-1,且f (a )=f (b ),则ab +a +b 的取值范围是 .13.已知实数b a ,分别满足15323=+-a a a ,55323=+-b b b , 则b a +的值为 .14.已知A ,B ,C 是平面上任意三点,BC =a ,CA =b ,AB =c ,则y =c a +b +bc的最小值是 .解 依题意,得b+c ≥a,于是c/(a+b)+b/c=[c/(a+b)]+[(a+b)/2c]-(1/2)≥2[c/(a+b)*(a+b)/c]^(1/2)-(1/2) =(根2)-(1/2).其中,等号当且仅当b+c=a 且c/(a+b)=(a+b)/2c,即a=(1+根2)c/2,b=(-1+根2)c/2时成立.所以,所求最小值为:(根2)-(1/2).二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤.15.已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2a cos B =c cos B +b cos C .(1)求角B 的大小;(2)设向量m =(cos A ,cos 2A ),n =(12,-5),求当m·n 取最大值时,tan C 的值.16.如图,在四棱锥P - ABCD 中,已知AB =1,BC = 2,CD = 4,AB ∥CD ,BC ⊥CD ,平面P AB ⊥平面ABCD ,P A ⊥AB . (1)求证:BD ⊥平面P AC ;(2)已知点F 在棱PD 上,且PB ∥平面F AC ,求DF :FP .17.某创业投资公司拟投资开发某种新能源产品,估计能获得10万元到1 000万元的投资收益.现准备制定一个对科研课题组的奖励方案:资金y (单位:万元)随投资收益x (单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%.(1)若建立函数y =f (x )模型制定奖励方案,试用数学语言表述该公司对奖励函数f (x )模型的基本要求,并分析函数y =x150+2是否符合公司要求的奖励函数模型,并说明原因;(2)若该公司采用模型函数y =10x -3ax +2作为奖励函数模型,试确定最小的正整数a 的值.A BC D FPx 轴的直线被椭圆C 截得的线段长为1. (1)求椭圆C 的方程;(2)点P 是椭圆C 上除长轴、短轴端点外的任一点,过点P 作直线l ,使得l 与椭圆C 有 且只有一个公共点,设l 与y 轴的交点为A ,过点P 作与l 垂直的直线m ,设m 与y 轴的交点为B ,求证:△P AB 的外接圆经过定点.19.已知函数f (x )=ax +ln x ,g (x )=e x .(1)当a ≤0时,求f (x )的单调区间;(2)若不等式g (x )<x -mx有解,求实数m 的取值范围.20.已知无穷数列{a n }的各项均为正整数,S n 为数列{a n }的前n 项和.(1)若数列{a n }是等差数列,且对任意正整数n 都有33()n n S S =成立,求数列{a n }的通项公式;(2)对任意正整数n ,从集合{a 1,a 2,…,a n }中不重复地任取若干个数,这些数之间经过加减运算后所得数的绝对值为互不相同的正整数,且这些正整数与a 1,a 2,…,a n 一起恰好是1至S n 全体正整数组成的集合. (ⅰ)求a 1,a 2的值;(ⅱ)求数列{a n }的通项公式.苏州大学2014届高考考前指导卷(1)参考答案一、填空题1.6 2.-12 3.π2 4.x 220-y 25=1 5.126.07.108.(1, +∞) 9.12 10.533或- 3 1112.(-1,1) 13.214.2-12二、解答题15.(1)由题意,2sin A cos B =sin C cos B +cos C sin B ,所以2sin A cos B =sin(B +C )=sin(π-A )=sin A .因为0<A <π,所以sin A ≠0.所以cos B =22.因为0<B <π,所以B =π4.(2)因为m·n =12cos A -5cos 2A ,所以m·n =-10cos 2A +12cos A +5=-10⎝⎛⎭⎫cos A -352+435. 所以当cos A =35时,m·n 取最大值.此时sin A =45(0<A <π2),于是tan A =43.所以tan C =-tan(A +B )=-tan A +tan B1-tan A tan B=7.16.证明(1)∵平面P AB ⊥平面ABCD ,平面P AB 平面ABCD = AB , P A ⊥AB ,P A ⊂平面P AB ,∴ P A ⊥平面ABCD .∵BD ⊂平面ABCD ,京翰教育北京家教辅导——全国中小学一对一课外辅导班∴12AB BC BC CD ==. ∵AB ∥CD ,BC ⊥CD , ∴Rt ABC ∆∽Rt BCD ∆.∴BDC ACB ∠=∠. ∴90ACB CBD BDC CBD ∠+∠=∠+∠=︒.则AC ⊥BD .∵AC PA A =,∴BD ⊥平面P AC .(2)∵PB //平面F AC ,PB ⊂平面PBD ,平面PBD 平面F AC= FO ,∴FO ∥PB ,∴DF DOPF OB=. 又∵AB //CD ,且14BO AB OD CD ==,∴DF :FP=4:1. 17.(1)设奖励函数模型为y =f (x ),按公司对函数模型的基本要求,函数y =f (x )满足: 当x ∈[10,1 000]时,①f (x )在定义域[10,1 000]上是增函数;②f (x )≤9恒成立;③f (x )≤x5恒成立.对于函数模型f (x )=x150+2.当x ∈[10,1 000]时,f (x )是增函数,f (x )max =f (1 000)=1 000150+2=203+2<9,所以f (x )≤9恒成立.但x =10时,f (10)=115+2>105,即f (x )≤x5不恒成立,故该函数模型不符合公司要求.(2)对于函数模型f (x )=10x -3a x +2,即f (x )=10-3a +20x +2,当3a +20>0,即a >-203时递增;要使f (x )≤9对x ∈[10,1 000]恒成立,即f (1 000)≤9,3a +18≥1 000,a ≥9823;要使f (x )≤x 5对x ∈[10,1 000]恒成立,即10x -3a x +2≤x 5,x 2-48x +15a ≥0恒成立,所以a ≥1925.综上所述,a ≥9823,所以满足条件的最小的正整数a 的值为328.18.(1)由于c 2=a 2-b 2,将x =-c 代入椭圆方程22221x y a b +=,得y =±2b a .由题意知22b a=1,即a =2b 2,又e =c a=32, 所以a =2,b =1. 所以椭圆C 的方程为2214x y +=. (2)设P (x 0,y 0)(y 0≠0),则直线l 的方程为y -y 0=k (x -x 0).联立0022,1,4y kx y kx x y =+-⎧⎪⎨+=⎪⎩ 整理得(1+4k 2)x 2+8(ky 0-k 2x 0)x +4(y 20-2kx 0y 0+k 2x 20-1)=0. 由题意Δ=0,即(4-x 20)k 2+2x 0y 0k +1-y 20=0.又220014x y +=,所以16y 20k 2+8x 0y 0k +x 20=PF D CBA O0,故k =-4y . 所以直线l 方程为0014x xy y +=,令x =0,解得点A 01(0,)y ,又直线m 方程为00043y y x y x =-,令x=0,解得点B 0(0,3)y -, △P AB 的外接圆方程为以AB 为直径的圆方程,即2001()(3)0x y y y y +-+=.整理得:220013(3)0x y y y y +-+-=,分别令2230,0,x y y ⎧+-=⎨=⎩ 解得圆过定点(.19.(1)f (x )的定义域是(0,+∞),f ′(x )=a +1x(x >0),1°当a =0时,f ′(x )>0,∴f (x )在(0,+∞)上单调递增;2°当a <0时,由f ′(x )=0,解得x =-1a,则当x ∈⎝⎛⎭⎫0,-1a 时,f ′(x )>0,f (x )单调递增,当x ∈⎝⎛⎭⎫-1a ,+∞时,f ′(x )<0,f (x )单调递减,综上所述:当a =0时,f (x )在(0,+∞)上单调递增,当a <0时,f (x )在⎝⎛⎭⎫0,-1a 上单调递增,在⎝⎛⎭⎫-1a ,+∞上单调递减. (2)由题意:e x <x -mx有解,即e x x <x -m 有解,因此只需m <x -e x x ,x ∈(0,+∞)有解即可,设h (x )=x -e x x ,h ′(x )=1-e xx -e x 2x=1-e x ⎝⎛⎭⎫x +12x ,因为x +12x≥212=2>1,且x ∈(0,+∞)时e x >1,所以1-e x ⎝⎛⎭⎫x +12x <0,即h ′(x )<0.故h (x )在(0,+∞)上单调递减,∴h (x )<h (0)=0,故m <0.20.(1)设无穷等差数列{a n }的公差为d ,因为33()n n S S =对任意正整数n 都成立,所以分别取n =1,n =2时,则有:⎩⎪⎨⎪⎧a 1=a 31,8a 1+28d =(2a 1+d )3.因为数列{a n }的各项均为正整数,所以d ≥0. 可得a 1=1,d =0或d =2.当a 1=1,d =0时,a n =1,33()n n S S =成立;当a 1=1,d =2时,S n =n 2,所以33()n n S S =. 因此,共有2个无穷等差数列满足条件,通项公式为a n =1或a n =2n -1.n n 1121222S n }={1,a 2,1+a 2,|1-a 2|}={1,2,3,4},故1+a 2=4,所以a 2=3.(ⅱ)由题意可知,集合{a 1,a 2,…,a n }按上述规则,共产生S n 个正整数.而集合{a 1,a 2,…,a n ,a n +1}按上述规则产生的S n +1个正整数中,除1,2,…,S n 这S n 个正整数外,还有a n +1,a n +1+i ,|a n +1-i |(i =1,2,…,S n ),共2S n +1个数. 所以,S n +1=S n +(2S n +1)=3S n +1.又S n +1+12=3⎝⎛⎭⎫S n +12,所以S n =⎝⎛⎭⎫S 1+12·13n --12=12·3n -12. 当n ≥2时,a n =S n -S n -1=12·3n -12-⎝⎛⎭⎫12·13n --12=13n -,而a 1=1也满足a n =13n -. 所以,数列{a n }的通项公式是a n =13n -.。
【免费下载】江苏省2014届高考数学考前辅导之解答题(含答案)
3.解:(1)证明: 平面 ABCD 平面 ABEF , CB AB ,
平面 ABCD 平面 ABEF = AB ,CB 平面 ABEF ,
AF 平面 ABEF , AF CB ,
函数 f(A)的取值范围.
1.解:(1) m n
3 sin x cos x cos2 x
∵mn 1
1 cos(x ) 1 2sin2 ( x ) 1
2
(2)∵(2a-c)cosB=bcosC
3
44
由正弦定理得(2sinA-sinC)cosB=sinBcosC
(3)过点 F 作 FG AB 于 G ,平面 ABCD 平面 ABEF ,
FG
VF CBE
平面
ABCD ,VFABCD
CB 平面 ABEF ,
VCBFE
1 3 SBFE
VFABCD : VFCBE 4 :1 .
CB
1 3
11 32
S ABCD
7
………5 分
………11 分
………14 分
2
2 左视图
2
所以 BC FM
……………………………………………… 10 分
在 PFG 中, PF 3, FG 2, PG 7 , PM : MG 3 : 4
可求得 MG 4 7 , FM 2 21 ,故 FM 2 MG2 FG2
5.(本小题满分 15 分)
在平面直角坐标系 xOy 中 ,已知以 O 为圆心的圆与直线 l : y mx (3 4m) , (m R) 恒有公共点,且要
苏州大学2024届高考新题型2月指导卷数学试题+答案
苏州大学2024届高考新题型2月指导卷数 学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.满足{}{,,,}a A a b c d ⊆⊆的集合A 共有A .7个B .8个C .15个D .16个2.设0πx <<,则函数sin 2()2sin x f x x=+的最小值为 A .1B .32C .2D .523.已知某4个数据的平均数为6,方差为3,现再加入一个数据8,则这5个数据的方差为A .125 B .145 C .165 D .185 4.设直线l 的方向向量为(1,2,2)u =− ,则向量(1,1,2)a −在直线l 上的投影向量为A .122(,,)333−B .12(,)33C .112(,,)999−D .122(,,)999−5.若圆锥的内切球半径为1,圆锥的侧面展开图为一个半圆,则圆锥的体积为A .2πB .8π3C .3πD .4π6.十六进制是一种逢16进1的计数制.我国曾在重量单位上使用过十六进制,比如成语“半斤八两”,即十六两为一斤.在现代,计算机中也常用到十六进制,其采用数字09 和字母A F 共16个计数符号.这些符号与十进制的数的对应关系如下表: 十六进制 0 1 2 3 4 5 6 7 8 9 A B C D E F十进制123456789 10 11 12 13 14 15例如,用十六进制表示: E D 1B +=,则A B ×= A .6E B .72C .5F D .BD7.已知双曲线C :2221(0)y x b b−=>的左右焦点分别为1F ,2F ,过2F 且与x 轴垂直的直线与C 的一个交点为P ,12PF F ∆的内心为M,若2||MF =,则C 的离心率为AB .32CD .28.若3sin cos θθ+,则π1tan()π8tan()8θθ+−=+ A .7−B .14−C .17D .27二、选择题:本题共3小题,每小题6分,共18分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
17.解(1)如图,作OM垂直AB,垂足为M,则OM=10,
由题意 , , .在 中,由正弦定理得 ,即 .
6.已知函数 是奇函数,当 时, ,且 ,则 =.
7.一块边长为10 cm的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形作侧面,以它们的公共顶点P为顶点,加工成一个如图所示的正四棱锥形容器.当x=6 cm时,该容器的容积为________cm3.
8.已知数列{an}的前n项和Sn=n2-7n,且满足16<ak+ak+1<22,则正整数k=________.
(2)假设存在一点Q(m,0),使得直线QA,QB的倾斜角互为补角,依题意可知直线l斜率存在且不为零,
直线l的方程为y=k(x-1)(k≠0),由消去y得(3k2+2)x2-6k2x+3k2-6=0,
设A(x1,y1),B(x2,y2),则x1+x2=,x1·x2=.∵直线QA,QB的倾斜角互为补角,∴kQA+kQB=0,即+=0,又y1=k(x1-1),y2=k(x2-1),代入上式可得2x1x2+2m-(m+1)(x1+x2)=0,∴2×+2m-(m+1)×=0,即2m-6=0,∴m=3,
13.设曲线 在点 处的切线为 ,曲线 在点 处的切线为 .若存在 ,使得 ,则实数 的取值范围是.
14.若关于x的不等式(组) 恒成立,则所有这样的解x构成的集合是.
二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤.
15.如图,在△ 中, , 为 中点, .
在 中, ,所以 .
(2)
.
因为 ,所以当 时有AB的最小值 .
此时, .
答:A,B都设在公路上离市中心 km处,才能使AB最短,其最短距离是 km.
18.解(1)由椭圆的定义知a=,设P(x,y),则有·=-,则=-,
∴化简得椭圆C的方程是+=1.∵·=,∴||·||cos∠AOB=,∴||·||sin∠AOB=4,∴S△AOB=||·||sin∠AOB=2,又S△AOB=|y1-y2|×1,故|y1-y2|=4.
易知h(x)分别在(0,1)上单调递减,在(1,+∞)上单调递增,所以h(x)的最小值为h(1)=0,
所以f(x)≥x-1恒成立.
设k(x)=lnx-(x-1),则k′(x)=(x>0).易知k(x)分别在(0,1)上单调递增,在(1,+∞)上单调递减,所以k(x)的最大值为k(1)=0,所以g(x)≤x-1恒成立.
4.抛物线 的准线方程为________.
5.将参加夏令营的500名学生编号为001,002,…,500,采用系统抽样的方法抽取一个容量为50的样本,且随机抽得的号码为003,这500名学生分住在三个营区,编号从001到200在第一营区,从201到355在第二营区,从356到500在第三营区,则第三个营区被抽中的人数为________.
即(n-1)an+1-(n+1)an+2(n+1)=0,③
所以nan+2-(n+2)an+1+2(n+2)=0,④④-③得nan+2-(2n+1)an+1+(n+1)an+2=0,
(1)试求AB关于角 的函数关系式;
(2)问把A、B分别设在公路上离市中心O多远处,才能使AB最短,并求其最短距离.
18.已知椭圆C:+=1(a>b>0)上任一点P到两个焦点的距离的和为2,P与椭圆长轴两顶点连线的斜率之积为-.设直线l过椭圆C的右焦点F,交椭圆C于两点A(x1,y1),B(x2,y2).
9.若x,y满足约束条件 目标函数 仅在点(1,1)处取得最小值,则k的值为_______.
10.已知函数f(x)=sinx+cosx的定义域为[a,b],值域为[-1,],则b-a的取值范围是________.
11.已知△ABC中,3(+)·=42,则=.
12.设平面点集A=,B={(x,y)|(x-1)2+(y-1)2≤1},则A∩B所表示的平面图形的面积为________.
(1)若·=(O为坐标原点),求|y1-y2|的值;
(2)当直线l与两坐标轴都不垂直时,在x轴上是否总存在点Q,使得直线QA,QB的倾斜角互为补角?若存在,求出点Q坐标;若不存在,请说明理由.
19.已知函数f(x)=x3-2x+1,g(x)=lnx.
(1)求函数F(x)=f(x)-g(x)的单调区间和极值;
故存在这样的实常数k=1和m=-1,使得x>0时,f(x)≥kx+m且g(x)≤kx+m.
20.解(1)令n=1得3a1=2a1+2,解得a1=2;令n=3得3(8+a3)=4a2+12,解得a3=12.
(2)由已知3Sn=(n+1)an+n(n+1),①
3Sn+1=(n+2)an+1+(n+1)(n+2),②②-①得3an+1=(n+2)an+1-(n+1)an+2(n+1),
∴存在Q(3,0)使得直线QA,QB的倾斜角互为补角.
19.解(1)由F(x)=x3-2x+1-lnx(x>0),得F′(x)=(x>0),令F′(x)=0得x=1,易知F(x)分别在(0,1)上单调递减,在(1,+∞)上单调递增,从而F(x)的极小值为F(1)=0.
(2)易知f(x)与g(x)有一个公共点(1,0),而函数g(x)在点(1,0)处的切线方程为y=x-1,下面只需验证都成立即可.设h(x)=x3-2x+1-(x-1)(x>0),则h′(x)=3x2-3=3(x+1)(x-1)(x>0).
(2)是否存在实常数k和m,使得x>0时,f(x)≥kx+m且g(x)≤kx+m?若存在,分别求出k和m的值;若不存在,说明理由.
20.已知数列{an}的前 项和为Sn,且满足a2=6,3Sn=(n+1)an+n(n+1).
(1)求a1,a3;
(2)求数列{an}的通项公式;
(3)已知数列{bn}的通项公式是bn=,cn=bn+1-bn,试判断数列{cn}是否是单调数列,并证明对任意的正整数n,都有1<cn≤-.
苏州大学2014届高考考前指导卷(2)
一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请把答案直接填在答题卡相应位置上.
1.设全集U=R,集合A={x|x> 1},则集合∁UA=________.
2.设复数z满足z(4-3i)=1,则z的模为________.
3.右图是某算法流程图,则程序运行后输出的结果是______.
苏州大学2014届高考考前指导卷(2)参考答案
一、填空题
1.{x|x 1}2. 3.274. 5.16.57.48
8.89.1 10.11.712.13.[ ]14.
二、解答题
15.解(1)∵ ,∴ ,∵ ,∴ ቤተ መጻሕፍቲ ባይዱ , ,∴ .
(2)由(1)得,∴ ,
在 中,由正弦定理得: ,
∴ ,则高 .
16.证明(1)AC与BD交于O点,连接EO.正方形ABCD中,BO=AB,又因为AB=EF,∴BO=EF,又因为EF∥BD,∴EFBO是平行四边形,∴BF∥EO,又∵BF⊄平面ACE,EO⊂平面ACE,∴BF∥平面ACE.
记锐角 .且满足 .
(1)求 ;
(2)求 边上高的值.
16.如图,正方形ABCD和三角形ACE所在的平面互相垂直,EF∥BD,AB=EF.
(1)求证:BF∥平面ACE;
(2)求证:BF⊥BD.
17.如图,某城市有一条公路从正西方AO通过市中心O后转向东北方OB,现要修筑一条铁路L,L在OA上设一站A,在OB上设一站B,铁路在AB部分为直线段,为了市民出行方便与城市环境问题,现要求市中心O到AB的距离为10 km,设 .