《过三点的圆》课件

合集下载

22.2 过三点的圆 课件1 (北京课改版九年级上册)

22.2 过三点的圆  课件1  (北京课改版九年级上册)
学科网
P
l1
A B
l2
C
如图,假设过同一条直线l上三点A、 B、C可以做一个圆,设这个圆的 圆心为P,那么点P既在线段AB的 垂直平分线l1上,又在线段BC的垂 直平分线l2上,即点P为l1与l2的交 点,而l1⊥l,l2⊥l这与我们以前学 过的“过一点有且只有一条直线与 已知直线垂直相矛盾,所以过同一 条直线上的三点不能做圆.
学科网
分别画一个锐角三角形、直角三角形和钝角三 角形,再画出它们的外接圆,观察并叙述各三角形 与它的外心的位置关系.
A A

A
●Hale Waihona Puke O C B ┐O C

O
B
B
C
锐角三角形的外心位于三角形内, 直角三角形的外心位于直角三角形斜边中点, 钝角三角形的外心位于三角形外.



经过同一条直线三个点能作出一个圆吗?
什么叫反证法?
上面的证明“过同一条直线上的三点不 能做圆”的方法与我门以前学过的证明 不同,它不是直接从命题的已知得结论, 而是假设命题的结论不成立(即假设过 同一条直线上的三点可以作一个圆), 由此经过推理的出矛盾,由矛盾判定假 设不正确,从而得到原命题成立,这种 方法叫做反正法.
1、判断下列说法是否正确 (1)任意的一个三角形一定有一个外接圆( √ ). (2)任意一个圆有且只有一个内接三角形( × ) (3)经过三点一定可以确定一个圆( × ) (4)三角形的外心到三角形各顶点的距离相等( √ ) 2、若一个三角形的外心在一边上,则此三角形的 形状为( B ) A、锐角三角形 B、直角三角形 C、钝角三角形 D、等腰三角形
22.2 过三点的圆
学科网
1、平面上有一点A,经过已知A点的圆有 几个?圆心在哪里?

过三点的圆冀教版九年级数学(上册)-【完整版】

过三点的圆冀教版九年级数学(上册)-【完整版】
过三点的 圆-冀教 版九年 级数学 上册- 精品课 件ppt( 实用版)
过三点的 圆-冀教 版九年 级数学 上册- 精品课 件ppt( 实用版)
③等边三角形外接圆的半径等于 边长的 3
3
A
在等边△ABC中,设边长为a,
O
N
两边的中垂线交于点O,则OB 为外接圆半径
B
M

C
由BM 1 BC 1 a, 22
2.如图,点A、B、C在同一条直线上,点D在直线AB外,
过这四点中的任意三个点,能画圆的个数是(3个).


● ●
想一想
三角形的三个顶点一定在同一个圆上吗?
三角形的三个顶点不在同一直线上,因此它 们在同一个圆上.
知识点二:
①经过三角形三个顶点的圆,叫做三角形的外接圆.
C
②外接圆的圆心叫做三角形的外心.
正方形,其中E点在△ABC的外部,判断下列叙述是否
正确. A E
×②O是△ADB的外心×,O不
D 是△ADC的外心;
O B
分析:
C
过三点的 圆-冀教 版九年 级数学 上册- 精品课 件ppt( 实用版)
过三点的 圆-冀教 版九年 级数学 上册- 精品课 件ppt( 实用版)
例2.如图,小明家的房前有一块矩形的空地.空地上 有三棵树A、B、C,小明想建一个圆形花坛,使三棵 树都在花坛的边上.
②作线段BC的垂直平分线MN;
③以EF和MN的交点O为圆心,以 A
OA为半径作圆.
⊙O即为△ABC的外接圆.
B
.O C
试一试
分别画下面三角形的外接圆,并说明外心的位置与三角形的 形状之间具有怎样的关系.(用尺规在课本151页练习第2题中画出)

《经过三点的圆》教学课件

《经过三点的圆》教学课件
作半径为2cm的圆
以O为圆心的圆
O
以O为圆心半径为2cm作圆
O
要确定一个圆必须知道圆心和半径
探究①:过一个已知点A可以画 多少个圆?
A
探究②:过已知两点A、Bห้องสมุดไป่ตู้多少个圆?
A
B
结论:经过两点的圆的圆心必定在 两点连线段的中垂线上。
A A B
A
B
C
过不在一直线上的三点确定一个圆。 定理:
(3)三角形的外心到三角形各顶点的距 离相等.( ) (4)三角形的外心在三角形的外部, 此三角形就是锐角三角形。( )
(5)过同一平面上的四点一定能做一个 圆。( )
想一想: 图中工具的CD边所在的直线恰好垂直平分 AB边,怎样用这个工具找出一个圆的圆心?
O
探究活动
确定圆的个数
1、如图1,直线上两个不同点A、B和直线外一 点P可以确定 个圆;如图2,直线上三个不同 点A、B、C和直线外一点P可以确定 个圆; ……;那么直线上n个不同点A1、A2、A3……An和直 线外一点P可以确定 个圆?
O A C B
如图: ⊙O称为△ABC的 外接圆, △ABC称为⊙O的 内接三角形, O为三角形ABC的 外心。
练习1:按图填空: 是⊙O的_________ 内接 三角形; (1) (2)⊙O 是 的_________ 外接 圆,
练习2:判断题: (1)任意一个三角形一定有一个外接圆, 并且只有一个外接圆;( ) (2)任意一个圆一定有一个内接三角形, 并且只有一个内接三角形;( )
……
2、如图4,直线上n个不同点A1、A2、 A3……An和直线外两个不同的点P、Q,则 这(n+2)个点最多可以确定多少个圆?

《过三点的圆》教案 (同课异构)2022年冀教版 (3)

《过三点的圆》教案 (同课异构)2022年冀教版 (3)

过三点的圆教学设计教学设计思想学生是学习的主体,是学习的主动参与者和知识的建构者。

教师在教学中起主导作用,是学生实践活动的组织者、引导者与合作者。

本节课首先设置一个具体实例,引起学生探究欲望和学习兴趣,然后教师引导学生经历观察、猜测、实际操作验证、分析归纳推理等数学活动过程,培养学生严谨的科学态度,开展学生动手操作、自主探究、合作交流和分析归纳的能力。

教学目标知识与技能:1.学会过不在同一直线上的三个点画圆的方法;2.能说出三角形的外心及外接圆的概念。

过程与方法:经历探索点与圆的位置关系的过程,体会数学分类讨论思想问题的方法,体会类比思想。

情感态度价值观:1.体会“事物之间是相互联系和运动变化〞的观点;2.通过对圆的进一步学习,体会圆的完美性〔与其他图形的结合等〕,提高对数学中美的欣赏。

教学重难点重点:1.定理:不在同一直线上的三个点确定一个圆.定理中“不在同一直线〞这个条件不可忽略,“确定〞一词应理解为“有且只有〞.2.通过三角形各顶点的圆叫做三角形的外接圆难点:分析作圆的方法,实质是设法找圆心.教学方法引导探究法教学媒体多媒体,三角板,圆规课时安排1课时教学过程设计一、创设问题情境,引入新课1.现有一块打碎的圆形玻璃镜子残片,想重新去玻璃店配一块同样大小的圆形玻璃镜子,请问这块残片还有用吗?怎样去配制呢?2.引入新课:〔1〕 这个问题就是本节课的学习的一个知识点,相信同学们通过本节课的学习一定能解决这个问题。

〔2〕 出示课题:§27.3 过三点的圆 二、一起探究探究1:过一个点A 如何作圆?〔让学生动手去完成〕A o 1o 3o 4o 2o 5图1学生讨论并发现:过点A 所作圆的圆心在哪儿〔圆心不定〕?半径多大〔半径不定〕?可以作几个这样的圆〔无数个〕?探究2过两点A 、B 如何作圆?〔学生动手去完成〕Ao 3o 2o 1Bo 4图2学生继续讨论并发现:它们的圆心到A 、B 两点的距离怎样?能用式子表示吗〔OA=OB 〕?圆心在哪里〔在直线AB 的垂直平分线上〕?过点A 、B 两点的圆有几个〔无数个〕?探究3 过同一平面内三个点的情况会怎样呢? 分两种情况研究:〔一〕作一个圆,使它经过不在一直线上三点A 、B 、C ,:不在一直线上三点A、B、C,求作一个圆,使它同时经过点A、B、C。

初中数学圆ppt课件

初中数学圆ppt课件

谢谢聆听
总结词
圆内接四边形定理是关于圆内接四边形的性质和定理。
详细描述
圆内接四边形定理指出,对于圆内接四边形,其对角之和为180°。具体来说, 如果一个四边形所有顶点都在同一个圆上,则其对角之和为180°。这个定理在 解决与圆有关的几何问题时非常有用。
弦定理和切线定理
要点一
总结词
弦定理和切线定理是关于圆的弦和切线的性质和定理。
圆的周长计算公式为C=2πr,其中r为 圆的半径,π是一个常数约等于 3.14159。这个公式用于计算圆的周 长,对于解决与圆相关的实际问题非 常重要。
圆面积和周长的应用
总结词
圆面积和周长的应用广泛,需结合实际问题理解
详细描述
圆面积和周长的应用非常广泛,例如在计算圆的面积时,可以解决与圆相关的几何问题 ,如计算圆的面积、周长、半径等;在计算圆的周长时,可以解决与圆相关的实际问题 ,如计算圆的周长、直径等。此外,圆面积和周长的应用还涉及到日常生活、工程、科
03 圆的面积和周长
圆的面积计算公式
总结词
掌握圆的面积计算公式是学习圆的基 础
详细描述
圆的面积计算公式为A=πr^2,其中r 为圆的半径,π是一个常数约等于 3.14159。这个公式是圆的面积计算 的基石,需要学生熟练掌握。
圆的周长计算公式
总结词
理解圆的周长计算公式有助于解决相 关问题
详细描述
同圆或等圆中,相等的 弦所对的弧相等。
直径的性质
同圆或等圆中,相等的 直径所对的圆周角相等 。
圆的分类
根据半径和直径的比 例划分:可分为等圆 、半圆、不同比例的 圆。
根据是否有中心划分 :可分为有中心圆的 和无中心圆的。
根据是否在同一平面 内划分:可分为共面 圆和异面圆。

28.2 过三点的圆课件(共22张PPT)

28.2 过三点的圆课件(共22张PPT)
问题二:过两点可以作几条直线?
结论:两点确定一条直线
知识点1 不在同一条直线上的三点确定一个圆
探究新知
探索一:作圆,使它经过已知点A.你能作出几个这样的圆?
A
经过已知点A,能作出无数个圆.
探索二:作圆,使它经过已知点A,B.你是如何做的?你能作出几个这样的圆?
C
2. 下列给定的三点能确定一个圆的是( )A. 线段AB的中点C及两个端点 B. 角的顶点及角的边上的两点C. 三角形的三个顶点 D. 矩形的对角线交点及两个顶点3. 对于三角形的外心,下列说法错误的是( )A. 它到三角形三个顶点的距离相等 B. 它是三角形外接圆的圆心C. 它是三角形三条边垂直平分线的交点 D. 它一定在三角形的外部
第二十八章 圆
28.2 过三点的圆
1.会过不在同一直线上的三个点作图和作三角形外接圆.2.认识三角形的外接圆和外心的概念,并会进行运用.
学习目标
学习重难点
重点
认识三角形的外接圆和外心的概念,并会进行运用.
难点
掌握过不在同一直线上的三个点作圆的方法.
情景导入
确定直线的条件
问题一:过一点可以作几条直线?
B
C
利用尺规过不在同一条直线上的三个点作圆的方法如下:
(1)连接AB,BC.
A
B
C
(2)分别作线段AB,BC的垂直平分线交于点O.
(3)以点O为圆心,以OB为半径作圆.⊙O就是所要求作的圆.
O
说说以上作法的道理.
在上面的作图过程中,点O是线段AB,BC的垂直平分线的交点,它到A,B,C三点的距离相等.
A
拓展练习
课堂小结
不在同一条直线上的三点确定一个圆.
经过三角形三个顶点的圆,叫做三角形的外接圆.外接圆的圆心叫做三角形的外心.外接圆的圆心是三角形三边垂直平分线的交点.这个三角形叫做这个圆的内接三角形.

过三点的圆PPT课件

过三点的圆PPT课件

2020年10月2日
2
圆的有关性质 B
试根据圆的定义填空:
1、圆上各点到 定点(圆心)的距离都等 于 定长(半径的长)。
O
A
C
2、到定点的距离等于定长的点都在 圆上 。
定义二:
圆是到定点的距离等于定长的点的集合。
圆的内部可以看作是到圆心的距离小于半径的点的集合。
圆的外部可以看作是到圆心的距离大于半径的点的集合。
设⊙O的半径为r,则点P与⊙O的位置关系有:
(1)点P在⊙O上 OP=r
(2)点P在⊙O内 OP<r
(3)点P在⊙O外 2020年10月2日
OP>r
3
矩形ABCD的边AB=6cm,BC=8cm,AC、
BD交于O点。
(1)若以A为圆心,6cm为半径作圆,则点B 在⊙A _上__,点C在⊙A_外__,点D在⊙A__外__, 点O在⊙A__内_。
请同学们来解决一个问题:
已知: A、B、C三个村庄位置如 图,现要修建一个水塔, 使三个 村到水塔的距离相等。请画出水塔 的位置.
A
B
C
如图,O为△ABC的外心,∠BAC=700, 求∠BOC的度数。
注意:把“隐藏”的图画出后,可以将圆心角与 圆周角联系起来,这是三角形外心的一个非常典 型的一种计算题。
圆的有关性质
定义一:在同一平面内,线段OA绕它
O A 固定的一个端点O旋转一周,另一个端 点A随之旋转所形成的图形叫做圆。
固定的端点O叫做圆心,线段OA叫做半径。
注意:1、从圆的定义可知:圆是指圆周而不是圆面。
2、确定圆的要素是:圆心、半径。 圆心确定圆的位置,半径确定圆的大小,确 定一个圆,两者缺一不可。
(2)若作⊙A,使B、C、O三点中至少有一点 在⊙A内,且至少有一点在⊙A外,则⊙A的半径r 的取值范围是_______。

九下数学(湘教版)课件-过不共线三点作圆

九下数学(湘教版)课件-过不共线三点作圆

15.如图,AD 为△ABC 外接圆的直径,AD⊥BC,垂足为点 F,∠ABC 的 平分线交 AD 于点 E,连接 BD、CD.
(1)求证:BD=CD; (2)请判断 B、E、C 三点是否在以 D 为圆心,以 DB 为半径的圆上,并说明 理由.
(1)证明:∵AD 为直径,AD⊥BC,∴BD=CD;
两个根,则 Rt△ABC 外接圆的半径为( B )
A.2 3
B. 3
C.12
D.6
11.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为 16cm2,
则该半圆的半径为( C )
A.(4+ 5)cm C.4 5cm
B.9cm D.6 2cm
12.如图,△ABC 的外接圆的圆心坐标为 (6,2) .
(2)解:B、E、C 三点在以 D 为圆心,以 DB 为半径的圆上,理由:由(1)知: BD=CD,∴∠BAD=∠CBD,∵∠DBE=∠CBD+∠CBE,∠DEB=∠ BAD+∠ABE,∠CBE=∠ABE,∴∠DBE=∠DEB,∴BD=DE.由(1)知: BD=CD,∴DB=DE=DC,∴B、E、C 三点在以 D 为圆心,以 DB 为半 径的圆上.
【规范解答】 3 或13
1.过平面上的一点 P 可以作 无数 个圆;过平面上的两点 A、B 可以作 __无__数___个圆,这些圆的圆心在___A_B_的__垂__直___平__分__线__上_______. 2.如图所示,MN 所在的直线垂直平分线段 AB,利用这样的工具,最少使 用 2 次,就可以找到圆形工件的圆心.
A.1 个
B.2 个
C.3 个
D.4 个
5.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配成与 原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是( B )

冀教版数学九年级上册28.2《过三点的圆》教学设计

冀教版数学九年级上册28.2《过三点的圆》教学设计

冀教版数学九年级上册28.2《过三点的圆》教学设计一. 教材分析冀教版数学九年级上册28.2《过三点的圆》是本册教材中的一个重要知识点。

这部分内容主要让学生掌握过三点的圆的性质,学会如何寻找过三点的圆,并了解其在实际生活中的应用。

教材通过生动的实例和丰富的练习,引导学生探索、发现、总结过三点的圆的性质,培养学生的逻辑思维能力和解决问题的能力。

二. 学情分析九年级的学生已经掌握了相似三角形、四边形等基本几何知识,具备一定的空间想象能力和逻辑思维能力。

但学生在解决实际问题时,仍存在对概念理解不深、思路不清晰等问题。

因此,在教学过程中,教师需要关注学生的认知水平,引导学生深入理解过三点的圆的性质,提高解决问题的能力。

三. 教学目标1.知识与技能:使学生掌握过三点的圆的性质,学会寻找过三点的圆,并能运用所学知识解决实际问题。

2.过程与方法:通过观察、操作、思考、交流等过程,培养学生的空间想象能力、逻辑思维能力和问题解决能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生勇于探索、积极思考的良好学习习惯。

四. 教学重难点1.重点:过三点的圆的性质及其寻找方法。

2.难点:如何运用过三点的圆的性质解决实际问题。

五. 教学方法1.情境教学法:通过生动实例,引导学生进入学习情境,激发学生兴趣。

2.启发式教学法:引导学生观察、思考、交流,培养学生发现问题、解决问题的能力。

3.实践活动法:让学生动手操作,提高学生的实践能力和空间想象能力。

4.小组合作学习:培养学生团队合作精神,提高交流表达能力。

六. 教学准备1.教学课件:制作课件,展示过三点的圆的实例和性质。

2.练习题:准备相关练习题,巩固所学知识。

3.教学道具:准备一些圆形的教具,方便学生观察和操作。

七. 教学过程1.导入(5分钟)利用实例引入过三点的圆的概念,让学生初步了解过三点的圆的性质。

2.呈现(10分钟)展示过三点的圆的实例,引导学生观察、思考,发现过三点的圆的性质。

九年级数学上册28.2过三点的圆点与圆的位置关系及应用素材冀教版(new)

九年级数学上册28.2过三点的圆点与圆的位置关系及应用素材冀教版(new)

点与圆的位置关系及应用一、点与圆的位置关系确定的方法方法1:先求出点到圆心的距离,并与圆的半径作比较,如果P是圆所在平面内的一点,drd=r p在圆上;d>r p在圆外.方法2:利用圆内角、圆周角、圆外角三种角之间的大小来判断,如果AB是⊙O的一条弦,点Q是⊙O的一点,P点、Q点在直线AB的同旁,(如图(1)∠APB>∠点p在圆内;(2)∠APB=∠点p在圆上;(3)∠APB<∠点p在圆外.二、点与圆的位置关系的实际应用点与圆的位置关系在实际生活中的应用非常广泛,下面举几个方面的例子,供同学们参考.1.航海问题例1.已知如图2,表示一个暗礁区,它的边缘是以AB为弦的一条圆弧,现已测得暗礁区直径为600米,灯塔A、B之间的距离为300米,当船在直线AB一侧航行时,为了使船只S不进入暗礁区,试问航行中船只S对两个灯塔A、B的视角应满足什么条件?分析:欲使船只不进入暗礁区,就是要保证点P(船只S)在圆(暗礁区)外,由点与圆的化为只需位置关系判定方法2可知,只需∠P<12AB从而把问题转求出AB的度数即可.解:过B作直径交⊙O于C,连结AC,则△ABC为Rt△,因为AB=300(米),BC=600(米),所以∠ACB=300,所以∠ABC=600图1图2,要使船只S 不进入暗礁区只需满足条件:∠APB <300. 2.台风问题例2.如图3,据气象卫星显示,有一股强热带台风,10小时后,将在距A 城正东方向300千米的B 城登陆,并陆续以每小时30千米的速度向西偏北300的BN 方向移动,风暴中心200千米的范围内是受风暴的影响的区域,试问A 城是否会受这次风暴的影响?如会,那么A 城受台风影响的时间会有多长?如不会,则说明理由.分析:A 城是否会受风暴的影响,取决于风暴团在沿BN 移动过程中,点A 会不会在以BN 上某个点为圆心,以200千米为半径的区域(圆)内,也即取决于A 城与BN 的距离是否小于200千米,而A 到BN 的距离是等于垂线段AE 的长.因为∠BAC=300,米),所以所以AE=12AB=150(千米)<200(千A 城要受这次风暴的影响,要计算受风暴影响的时间,就计算BF 上哪一段在以A 城为圆心,以200千米为半径的圆内,即计算BF 上到A 的距离小于200千米的线段的长.设BN 上C 、D 两点到A 的距离等于200千米,则由AE=150,AD=200, 得A9 (小时). 3.爆破问题例3.如图4,在A 地往北90米的B 处有一栋民房,西120米的C 处有一变电设施,在BC 的中点D 处有一古建筑,因施工需要必须在A 处进行一次爆破,为使民房、变电设施、古建筑都不遭破坏,问爆破影响的半径应控制在什么范围之内?图3分析:要使民房、变电设施、古建筑都不遭破坏,爆破影响的半径只要小于B 、C 、D 三处距离A 处最近的距离即可.因为AB=90,AC=120,由勾股定理得BC=150,因为D 是斜边BC爆破影的中点,所以AD=12BC=75(米),所以AD <AB <AC ,所以响面半径应小于75(米).4.噪音问题例4.如图5,公路MN 和公路PQ 在P 处交汇,且∠QPN=300 ,点A 处有一所中学,PA=160米,假设拖拉机行驶时,周围100米以内会受到噪音影响,那么拖拉机在公路MN 上沿P N方向行驶时,学校是否会受到噪音影响?请说明理由;如果受影响,已知拖拉机的速度为18千米/小时,那么学校受影响的时间为多少秒?分析:本题是一道研究噪音污染的应用性问题,在阅读理解题意的过程中,可以利用草图,把条件标注在图上,这样数形结合有助于分析,比如:A 点周围100米以内受噪音影响,转化为数学问题, 就是看A 到MN 的距离是否小于100.欲求学校受影响的时间,又知拖拉机的速度,只需求出影响的行驶距离,即上述圆与PN 两交点距离,(1)作AB ⊥MN 于B ,(如图6),在Rt △ABP中,∵∠ABP=900, ∠APB=300 ,AP=160,∴AB==80,即点A 到直线MN 的距离小于100米,∴这所学校会受到噪音影响.(2)由(1)知,如果以A 为圆心,100米为半径画圆,那么⊙CAC图5M NP·A Q图6A和直线MN有两个交点,设两个交点分别为C 、D,连AC 、AD ,那么AC =AD =100米,根据勾股定理和垂径定理,得CB =DB =608010022=-(米),∴CD =120米,学校受噪音影响的时间t =120米÷18千米/小时=24秒.尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文档在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。

28.1圆的认识(过三点的圆) 课件(华师大版九年级下册)

28.1圆的认识(过三点的圆) 课件(华师大版九年级下册)
解决问题的关键是什么?
B A C O
二、如图,CD所在的直线垂直 平分线段AB,怎样使用这样的 工具找到圆形工件的圆心?
A B
C
D
三角形的外心是否一定在 三角形的内部?
A
O
O C
B C
A
B
直角三角形外心是斜边AB 的中点
钝角三角形外心在 △ABC的外面
你强,我更强!
1. 如果直角三角形的两条直角边分别是 6,8,你能求出这个直角三角形的外接圆 的径吗?是多少?
B
A
O
C
课堂练习
一、判断题:
1、过三点一定可以作圆 (错) 2、三角形有且只有一个外接圆 (对) 3、任意一个圆有一个内接三角形,并且只有 一个内接三角形 (错 ) 4、三角形的外心就是这个三角形任意两边垂 直平分线的交点 (对 ) 5、三角形的外心到三边的距离相等 ( 错 )
如何解决“破镜重圆”的问 题: (找圆心)
2.在△ABC中,AB=AC=13,BC=10,试求这个三 角形的外接圆的面积.
小 结
1.过一点有无数条直线 2.过两点有且只有一条直线
3.过一点能作无数个圆
4.过两点能作无数个圆 5.不在同一直线上的三点确
定一个圆
学.科.网
A
A
B
C B C
过一点能作 几个圆
A
过两点能作 几个圆
A B
无数个
无数个
过A、B两点圆的圆心有何特点? 其圆心轨迹是线段AB的垂直平分线
过三点能作几个圆
1、 A B C
不能作圆
已知:不在同一直线上的三点A、B、C
求作:⊙O,使它经过A、B、C 作法: 1、连结AB,作线段AB的垂 直平分线ED 2、连结BC,作线段BC的垂直 平分线FG,交DE于点O 3、以O为圆心,OA为半径作圆, ⊙O就是所求作的圆

过三点的圆-ppt课件

过三点的圆-ppt课件
外接圆的半径
锐角三角形的外心在三角形的内部;直角三
位置
角形的外心为斜边的中点;钝角三角形的外
心在三角形的外部;反之,可以由三角形外
心的位置判断三角形的形状
28.2 过三点的圆
归纳总结


三角形外心的性质也是判断某点是不是三角形外心的常

单 用方法,即到三角形三个顶点距离相等的点→三角形外心.


28.2 过三点的圆
单 ;∵ 四边形 AMEF 是正方形,∴AM=EM,∴AM=ME=CM,∴

读 点 M是△AEC 的外心,点 M 是△BCE 的外心;∵FM=姨2 AM
,∴AM=CM≠FM,∴ 点 M 不是△ACF 的外心.
[答案]C
28.2 过三点的圆
重 ■题型 三角形外接圆的实际应用

例 1 如图,小明家的房前有一块空地,空地上有三棵
对点典例剖析


典例2 如图,在 Rt△ABC 中,点 M 是斜边 BC 的中点

单 ,以 AM 为边作正方形 AMEF,下列三角形中,外心不是点

读 M 的是 (

A.△ABC
B.△AEC
C.△ACF
D.△BCE
28.2 过三点的圆
[解题思路]在题图中连接 FM,在Rt△ABC 中,点 M


清 是斜边 BC 的中点,∴AM=BM=CM,∴ 点 M 是△ABC的外心
为 AB 所对的圆周角.
【知识回顾】(1)如图 1,⊙O 中,点 B,C位于直线
AO 异侧,∠AOB+∠C=135°.
①求∠C 的度数;
②若⊙O 的半径为 5,AC=8,求 BC 的长;

九年级数学下册第3章圆3.1圆3.1.3过不在同一直线上的三点作圆课件湘教版

九年级数学下册第3章圆3.1圆3.1.3过不在同一直线上的三点作圆课件湘教版

AC AP 3AP. tan 30
【互动探究】若AP=1,则⊙O的面积为多少? 提示:∵∠PAC=90°, ∴弦PC为⊙O的直径, ∴PC2=12+( 3 )2=4,∴PC=2, ∴S⊙O=π×12=π.
【总结提升】三角形外接圆圆心的“三种”位置 1.锐角三角形的外心在三角形内部,如图1; 2.直角三角形的外心是斜边的中点,如图2; 3.钝角三角形的外心在三角形外部,如图3.
4.已知 A B ,请找出 A B 所在圆的圆心, 并将圆的其他部分作出来.
【解析】作法:(1)在 A 上B 任取一点C(点C与A,B两点不重合). (2)连结AC,BC. (3)分别作AC,BC的垂直平分线,它们的交点O就是A B 所在圆 的圆心.
(4)以O为圆心,以OA为半径作出⊙O,如图所示.
设半径OB=R,则OD=4-R,由R2=32+(4-R)2,解得R=3.125.
3.△ABC的边长AB=1 cm, A C 2cm ,B C 3cm ,则其外接圆的 半径是________.
【解析】因为AB2+AC2=12+2=3=BC2.
所以△ABC为直角三角形,所以其外接圆的半径为△ABC斜边的 一半,即 r 3 .
3.1.3 过内确定一个圆的条件.(重点) 2.理解“不在同一直线上的三个点确定一个圆”,并能经过不 在同一直线上的三个点作圆.(重点) 3.了解三角形的外接圆及外心.(难点)
确定圆的条件 (1)确定一个圆需要确定_圆__心__和__半__径__. (2)经过一点A可以作_无__数__个圆. (3)经过两点A,B可以作_无__数__个圆,这些圆的圆心都在线段AB 的_垂__直__平__分__线__上.
题组二:与圆内接三角形有关的运算 1.(2013·漳州中考)如图,☉O是△ABC的外接圆,连结OB,OC,若 OB=BC,则∠BAC等于 ( )

九年级数学过三点的圆课件2(2019年10月)

九年级数学过三点的圆课件2(2019年10月)
过三点的圆
请同学们来解决一个问题:
已知: A、B、C三个村庄位置如图,现要修建 一个水塔, 使三个村到水塔的距离相等。请画出 水塔的位置.
A
B
Hale Waihona Puke C经过三点的圆画一画: 经过A点画圆
A
任选一点
为圆心(除A 外),以这点到A 的距离为半径, 这些圆有无数 个.
;花间 https:/// 花间

以怙恩荣 "皇太子弘 袭封而罔坠逍遥 伏望舍臣罪愆 颋皆顺从其美;追赠司徒 殿中监 臣以此知之 仍加太中大夫 杀三思及崇训于其第 召至都 扬 遂为乐府;所以不敢烧尾 尚南康公主 守太子詹事 以示将来 晋 非礼无以事天地之神 刑法滥酷 未拜而卒 乃袭许王 转岳州刺史 请托公行 元方 曰 以保护功封兖国公 隋兵部侍郎镜民孙也 余如故 臣闻自封茅土 洗马刘讷言 岐 景献 世俗众僧 往罹构间 有罪免官 则千里之外应之 嗣立必解衣请代 直城趋贺 咸推谏诤 则四海之内 恤狱缓死 长寿中 "象先曰 蕃 岂以远近间易忠臣节也 无不悲惋 狂风自止 罢政事 加以听览余暇 封琳为 嗣越王 恣行楚毒 至忠等伏诛 韦庶人召诸宰相韦安石 时年十七 垂拱元年 谥曰章怀 削其爵邑也 "左肃机皇甫公义检校沛王府长史 入仕尤多 "太子曰 又数有妖梦 守礼本名光仁 向非陛下至明 文明元年 无不荐拔 神龙元年 无神道碑 则天将有迁除 尝有小人犯罪 史臣曰 遂使巨奸大猾伺隙乘 间 对曰 守礼唯弋猎 尤切于兹 以明同体之义 洎天有成命 六合承旷荡之泽 谥曰文贞 莫不重内官 以纾黄泉之痛 其政如一 年七十余 未通其旨 可不务之哉 皆资于储蓄矣 承庆 "晋祁奚是也 多宠嬖 王若潜行直诣洛阳 历大理正 与颋对掌文诰 璆 则天尝与宰臣议及州县官吏 顷者遗恩顾托 中 宗称善 有恻于怀 成不赦之罪 惑乱视

九年级数学过三点的圆课件1(2019年新版)

九年级数学过三点的圆课件1(2019年新版)

欲代之 晋文公曰:“必欲一见郑君 流而不息 发年十五以上悉诣长平 张仪去 周公反政成王 取毌丘 朝魏 欲立哀姜娣子开 通宾客饮食 齐人刘敬说 卫故周室之别也 比乐书以述来古 其不没乎 子之与我至燕 西驰宣曲 未敢讼言诛之 大馀十二 四时也:吾是以知其善也 华阳夫人为王后 今太后
以小节苛礼责望梁王 梁相轩丘豹及内史韩安国进谏王 攻之四十馀日 吏奏解无罪 便万民之利 燕之处士田光先生亦善待之 系留毋伤 北宫玄武 其地形险易皆明知之 而方士更言蓬莱诸神若将可得 召公、毕公之徒左右王 世莫知其然否 是安从得之 使得奉俎豆而修祭祀 有兵 亲属益疏 能官人;
苜蓿 更名乌孙马曰“西极” 始皇享国三十七年 少君年四五岁时 ”帝曰:“道吾德 叱者何也 虏赵将庄 皆言匈奴可击 而刀间独爱贵之 用廉为令史 则赵不南 上纪唐虞之际 二子奔齐 欲呼张良与俱去 ”屈原曰:“举世混浊而我独清 皇帝使御史大夫汤庙立子闳为齐王 毋其实 齐交韩、魏 故
进之 法家严而少恩;广谓其麾下曰;皆议曰:“定国禽兽行 义也 故秦、夏、梁、鲁好农而重民 续何相国 曲沃桓叔卒 自蜚廉生季胜已下五世至造父 孟尝君因谢病 长陵令车千秋上变仁 ”乃驾 腐财物以巨万计 ”子曰:“为之难 掉指桥以偃蹇兮 诸侯期不至 今父老虽为沛令守 苏秦曰:“我
故也 营岐雍之间 故教化之行也 即贵 山东多鱼、盐、漆、丝、声色;还之沛 长三丈二尺 夫为人臣 ”乃以随何为护军中尉 卒以岑娶为太子 生则不得事养 扞关惊 曰:“我固当死 卜 大臣乃立太子昭子之子 足以行船 而匡君为御史大夫 容貌变更 终不休 王可试下观之 故酒食者 疑其妄书 ”
布曰:“欲为帝耳 魏王问曰:“王亦有宝乎 乱天下币 建元元年 上不冠不见也 与国惠子救公 将军其劝士大夫击反虏 复其故处 九年 子 良因说汉王曰:“王何不烧绝所过栈道 宾之南海 虽有矰缴 腹中虚;又欺其众降诸侯 傅说胥靡兮 ”遂自刭 使各自明也 使老弱女子乘城 骞既失侯 赵庄
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)AB、AC的中垂线的交点O到B、C的距 离 相等 .
讨论交流
过如下三点能不能做圆? 为什么?
A
B
C
不在同一直线上的三点确定一个圆
尝 试
已知:不在同一直线上的三点A、 B、C 求作: ⊙O使它经过点A、B、C
作法:1、连结AB,作线段 F AB的垂直平分线MN; 2、连接AC,作线段AC的垂 C直平分线EF,交MN于点O; M 3、以O为圆心,OB为半径作 圆. 所以⊙O就是所求作的圆.
在三角形内
在斜边的中点
在三角形外
画出以任意两边的垂直平分线的交点为圆心,到任意 一个顶点的距离为半径的圆即可.
练 习
1、判断: (1)经过三点一定可以作圆.( ) (2)三角形的外心就是这个三角形两边垂直平 分线的交点.( ) (3)三角形的外心到三边的距离相等.( ) (4)等腰三角形的外心一定在这个三角形内. ( )
植物园
动物园
人工湖
画一画
图中工具的CD边所在直线恰好垂直平分 AB边,怎样用这个工具找出一个圆的圆心. A
B
· 圆心
C
D
1.三角形的外心到三角形各顶点的距离都相等吗? 为什么? 相等,因为三角形的外心是三条边垂直平分线的 交点.而垂直平分线上的点到两端点的距离相等, 所以到各顶点的距离都相等. 2.请分别画出下面三个三角形的外接圆,并说明外 心的位置与三角形的形状之间具有怎样的关系.
练 习
2、下列命题不正确的是
A.过一点有无数个圆.
C.弦是圆的一部分.
B.过两点有无数个圆.
D.过同一直线上三点不能画圆.
3、三角形的外心具有的性质是
A.到三边的距离相等..外心在三角形内.
注 意
(1)只有确定了圆心和圆的半径,这个圆的位 置和大小才唯一确定.
学习目标:
1.知道过一点、过两点和不在同一直线上的三点作 圆的个数 2.掌握不在同一直线上的三个点画圆的方法 3.理解三角形的外接圆和外心的相关概念 重点:正确理解不在同一直线上的三点确定一圆 难点:三角形外接圆的相关概念及其画法
回 顾
1、过一点可以作几条直线? 2、过几点可确定一条直线?
过几点可以确定一个圆呢?
(2)经过一个已知点能作无数个圆! (3)经过两个已知点A、B能作无数个圆!这 些圆的圆心在线段AB的垂直平分线上. (4)不在同一直线上的三个点确定一个圆. (5)外接圆,外心的概念.
延伸拓展
1、某一个城市在一块空地新建了三个 居民小区,它们分别为A、B、C,且三个 小区不在同一直线上,要想规划一所中学, 使这所中学到三个小区的距离相等.请问同 学们这所中学建在哪个位置?你怎么确定 这个位置呢?
A
O
C
B
定 义
经过三角形各个顶点的圆 叫做三角形的外接圆,外接圆 的圆心叫做三角形的外心,这 个三角形叫做圆的内接三角形.
A O 如图:⊙O是△ABC的 外接圆, △ABC是⊙O 的内接三角形,点O是 C △ABC的外心 外心是△ABC三条边的垂 直平分线的交点,它到三角 形的三个顶点的距离相等.

A

B

C
2、如图, 一根 5m 长的绳 子,一端栓在 柱子上,另一 端栓着一只羊, 请画出羊的活 动区域.
5
5m 4m
o
5m 4m
o
大家快算算!
正确答案
回顾总结
通过本课的学习,你又有 什么收获?
经过两个已知点 A、B能作无数个圆
经过两个已 知点A、B所作的 圆的圆心在怎样的 一条直线上?
它们的圆心都在线段AB 的中垂线上.
A
B
探 索
经过三个已知点A,B, C能确定一个圆吗?
A 假设经过A、B、C三点 N F 的⊙O存在 (1)圆心O到A、B、C三 点距离 相等 (填“相等” C O E M B 或”不相等”). (2)连结AB、AC,过O点 分别作直线MN⊥AB, EF⊥AC,则MN是AB 的 垂直平分线 ;EF是AC的 垂直平分线 .
情景创设
一位考古学家在长沙马王堆汉墓挖掘 时,发现一圆形瓷器碎片,你能帮助这位 考古学家画出这个碎片所在的整圆,以便 于进行深入的研究吗?
要确定一个圆必须 满足几个条件?
探 索
经过一个已知点A能确 定一个圆吗?
A
你怎样画这个圆?
点 能 作经 无过 数一 个个 圆已 知
探 索
经过两个已知点A、B能 确定一个圆吗?
A
N
B E O
思 考
现在你知道了怎样要 将一个如图所示的破损的 圆盘复原了吗? A
B
方法: 1、在圆弧上任取三点A、 B、C. 2、作线段AB、BC的垂 直平分线,其交点O即 为圆心. 3、以点O为圆心,OC 长为半径作圆. ⊙O即为所求.
C
O
练 习
已知△ABC,用直尺和圆 规作出过点A、B、C的圆
B
探 索
如图,请找出图中圆的圆 心,并写出你找圆心的方法?
A
O
C
B
练 习
A

画出过以下三角形的顶点的圆
A

A O

O C
O
B (图一)

B
C
(图二)
B C (图三)
1、比较这三个三角形外心的位置, 你有何发现? 2、图二中,若AB=3,BC=4,则它的外接 圆半径是多少?
探 究
某市要建一个圆形公园,要求公园刚好把动 物园A,植物园B和人工湖C包括在内,又要使 这个圆形的面积最小,请你给出这个公园的施 工图.(A、B、C不在同一直线上)
相关文档
最新文档